WorldWideScience

Sample records for vpi and su training reactor

  1. VPI-NECM, Nuclear Engineering Program Collection for College Training

    International Nuclear Information System (INIS)

    Honomichl, Jiri; Kulikowska, Teresa; Szczesna, Barbara

    1991-01-01

    1 - Description of problem or function: The VPI Modules consist of 6 independent programs designed to calculate: module FARCON - neutron slowing down and epithermal group constants, module SLOCON - thermal neutron spectrum and group constants, module DISFAC - slow neutron disadvantage factors, module ODOG - solution of a one group neutron diffusion equation, module ODMUG - three group critically problem, module FUELBURN - fuel burnup in slow neutron fission reactors. 2 - Method of solution: Module FARCON solves the diffusion equation for a homogeneous medium composed of N isotopes, in 33 groups in fast and resonance energy region. The solution in the thermal energy region carried out by module SLOCON is based on the Wigner-Wilkins approximation and applies the Runge-Kutta method. The burnup calculations are carried out in 3 energy groups. Only Xe-135 and Sm-149 are treated directly. All the other fission products are represented by 2 pseudo isotopes. Module ODOG solves the finite difference diffusion equation by a direct method. Module ODMUG uses the Chebyshev acceleration of outer iterations. It gives a possibility to calculate a critical boron concentration. 3 - Restrictions on the complexity of the problem: It is assumed that the elementary reactor cell consists of the fuel rod surrounded by water. The library data are limited to isotopes typical for water power reactors. The reactor can be treated in one dimension only, i.e. as a slab, sphere or cylinder with one-dimensional symmetry

  2. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  3. ISIS Training Reactor: A Reactor Dedicated to Education and Training for Students and Professionals

    International Nuclear Information System (INIS)

    Foulon, F.

    2014-01-01

    Conclusion: • INSTN strategy: complete theoretical courses by practical courses on the ISIS research reactor. • Training courses integrated both in Academic degree programs and continuing education. • 27 hours of training courses have been developed focusing on the practical and safety aspects of reactor operation. • The Education and Training activity became the main activity of ISIS reactor: 400 trainees/year; 360 hours/year; 40% in English. • Remote access to the Training courses: Internet Reactor Laboratory under development to be started from 2014 to broadcast training courses from ISIS reactor to guest institutions

  4. Training and Certification of Research Reactor Personnel

    International Nuclear Information System (INIS)

    Zarina Masood

    2011-01-01

    The safe operation of a research reactor requires that reactor personnel be fully trained and certified by the relevant authorities. Reactor operators at PUSPATI TRIGA Reactor underwent extensive training and are certified, ever since the reactor first started its operation in 1982. With the emphasis on enhancing reactor safety in recent years, reactor operator training and certification have also evolved. This paper discusses the changes that have to be implemented and the challenges encountered in developing a new training programme to be in line with the national standards. (author)

  5. Training courses at VR-1 reactor

    International Nuclear Information System (INIS)

    Sklenka, L.; Kropik, M.

    2006-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilization - i.e. extensive educational program. The educational program is intended for the training of university students and selected nuclear power plant personnel. The training courses provide them experience in reactor and neutron physics, dosimetry, nuclear safety and operation of nuclear facilities. At present, the training course participants can go through more than 20 standard experimental exercises; particular exercises for special training can be prepared. Approximately 200 university students become familiar with the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. The VR-1 reactor takes also part in Eugene Wigner Course on Reactor Physics Experiments in the framework of European Nuclear Educational Network (ENEN) association. Recently, training courses for Bulgarian research reactor specialists supported by IAEA were carried out. An attractive program including demonstration of reactor operation is prepared also for high school students. Every year, more than 1500 high school students come to visit the reactor, as do many foreigner visitors. (author)

  6. Education and Training on ISIS Research Reactor

    International Nuclear Information System (INIS)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X.

    2013-01-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions

  7. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  8. Training of research reactor personnel

    International Nuclear Information System (INIS)

    Cherruau, F.

    1980-01-01

    Research reactor personnel operate the reactor and carry out the experiments. These two types of work entail different activities, and therefore different skills and competence, the number of relevant staff being basically a function of the size, complexity and versatility of the reactor. Training problems are often reactor-specific, but the present paper considers them from three different viewpoints: the training or retraining of new staff or of personnel already employed at an existing facility, and training of personnel responsible for the start-up and operation of a new reactor, according to whether local infrastructure and experience already exist or whether they have to be built up from scratch. On-the-spot experience seems to be an essential basis for sound training, but requires teaching abilities and aids often difficult to bring together, and the availability of instructors that does not always fit in smoothly with current operational and experimental tasks. (author)

  9. Advanced Examination Techniques Applied to the Assessment of Vacuum Pressure Impregnation (VPI) of ITER Correction Coils

    CERN Document Server

    Sgobba, Stefano; Samain, Valerie; Libeyre, Paul; Cecillon, Alexandre; Dawid, J

    2014-01-01

    The ITER Magnet System includes a set of 18 superconducting correction coils (CC) which are used to compensate the error field modes arising from geometrical deviations caused by manufacturing and assembly tolerances. The turn and ground insulation are electrically insulated with a multi-layer fiberglass polyimide interleaved composite, impregnated with epoxy resin using vacuum pressure impregnation (VPI). Adequate high voltage insulation (5 kV), mechanical strength and rigidity of the winding pack should be achieved after impregnation and curing of the insulation system. VPI is an effective process to avoid defects such dry spots and incomplete wet out. This insulation technology has also been developed since several years for application to large superconducting coils and more recently to ITER CC. It allows the coils to be impregnated without impacting on their functional characteristics. One of the critical challenges associated with the construction of the CC is the qualification of the VPI insulation. Se...

  10. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2010-01-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  11. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, J.K.; Allison, C.M. [Innovative Systems Software, 1242 South Woodruff Avenue, Idaho Falls, Idaho 83404 (United States)

    2010-07-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  12. IAEA Activities supporting education and training at research reactors

    International Nuclear Information System (INIS)

    Peld, N.D.; Ridikas, D.

    2013-01-01

    Full-text: Through the provision of neutrons for experiments and their historical association with universities, research reactors have played a prominent role in nuclear education and training of students, scientists and radiation workers. Today education and training remains the foremost application of research reactors, involving close to 160 facilities out of 246 operational. As part of its mandate to facilitate and expand the contribution of atomic energy to peace, health and prosperity throughout the world, the IAEA administers a number of activities intended to promote nuclear research and enable access to nuclear technology for peaceful purposes, one of which is the support of various education and training measures involving research reactors. In the last 5 years, education and training has formed one pillar for the creation of research reactor coalitions and networks to pool their resources and offer joint programmes, such as the on-going Group Fellowship Training Course. Conducted mainly through the Eastern European Research Reactor Initiative, this programme is a periodic sic week course for young scientists and engineers on nuclear techniques and administration jointly conducted at several member research reactor institutes. Organization of similar courses is under consideration in Latin America and the Asia-Pacific Region, also with support from the IAEA. Additionally, four research reactor institutes have begun offering practical education courses through virtual reactor experiments and operation known as the Internet Reactor Laboratory. Through little more than an internet connection and projection screens, university science departments can be connected regionally or bilaterally with the control room o a research reactor for various training activities. Finally, two publications are being prepared, namely Hands-On Training Courses Using Research Reactors and Accelerators, and Compendium on Education and training Based on Research Reactors. These

  13. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  14. U.S. NRC training for research and training reactor inspectors

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Kunze, J.F.

    2011-01-01

    Currently, a large number of license activities (Early Site Permits, Combined Operating License, reactor certifications, etc.), are pending for review before the United States Nuclear Regulatory Commission (US NRC). Much of the senior staff at the NRC is now committed to these review and licensing actions. To address this additional workload, the NRC has recruited a large number of new Regulatory Staff for dealing with these and other regulatory actions such as the US Fleet of Research and Test Reactors (RTRs). These reactors pose unusual demands on Regulatory Staff since the US Fleet of RTRs, although few (32 Licensed RTRs as of 2010), they represent a broad range of reactor types, operations, and research and training aspects that nuclear reactor power plants (such as the 104 LWRs) do not pose. The US NRC must inspect and regulate all these entities. This paper addresses selected training topics and regulatory activities provided US NRC Inspectors for US RTRs. (author)

  15. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  16. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Xoubi, N.

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U 3 Si 2 ) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×10 14 cm -2 s -1 , and is controlled by a Hafnium control absorber rod and B 4 C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  17. Safety operation of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    2001-01-01

    There are three nuclear research reactors in the Czech Republic in operation now: light water reactor LVR-15, maximum reactor power 10 MW t , owner and operator Nuclear Research Institute Rez; light water zero power reactor LR-0, maximum reactor power 5 kW t , owner and operator Nuclear Research Institute Rez and training reactor VR-1 Sparrow, maximum reactor power 5 kW t , owner and operate Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. The training reactor VR-1 Vrabec 'Sparrow', operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly it is designed for training the students of Czech universities, preparing the experts for the Czech nuclear programme, as well as for certain research work, and for information programmes in the nuclear programme, as well as for certain research work, and for information programmes in sphere of using the nuclear energy (public relations). (author)

  18. Training and research reactor facility longevity extension program

    International Nuclear Information System (INIS)

    Carriveau, G.W.

    1991-01-01

    Since 1943, over 550 training and research reactors have been in operation. According to statistics from the International Atomic Energy Agency, ∼325 training and research reactors are currently in service. This total includes a wide variety of designs covering a range of power and research capabilities located virtually around the world. A program has been established at General Atomics (GA) that is dedicated to the support of extended longevity of training and research reactor facilities. Aspects of this program include the following: (1) new instrumentation and control systems; (2) improved and upgraded nuclear monitoring and control channels; (3) facility testing, repair and upgrade services that include (a) pool or tank integrity, (b) cooling system, and (c) water purification system; (4) fuel element testing procedures and replacement; (5) control rod drive rebuilding and upgrades; (6) control and monitoring system calibration and repair service; (7) training services, including reactor operations, maintenance, instrumentation calibration, and repair; and (8) expanded or new uses such as neutron radiography and autoradiography, isotope production, nuclear medicine, activation analysis, and material properties modification

  19. The training and research reactor of the Zittau Technical College

    International Nuclear Information System (INIS)

    Ackermann, G.; Hampel, R.; Konschak, K.

    1979-01-01

    The light-water moderated training and research reactor of the Zittau Technical College, which has been put into operation 1 July 1979, is described. Having a power of 10 MW, it is provided for education of students and advanced training of nuclear power plant staff members. High inherent nuclear safety and economy of operation are achieved by appropriate design of the reactor core and the use of fresh fuel elements provided for the 10-MW research reactor at the Rossendorf Central Institute for Nucleear Research for one year on a loan basis. Further characteristics of the reactor are easy accessibility of the core interior for in-core studies, sufficient external experimental channels, and a control and protection system meeting the requirements of teaching operation. The installed technological and dosimetric devices not only ensure reliable operation of the reactor, but also extend the potentialities of experimental work and education that is reported in detail. The principles on which the training programs are based are explained in the light of some examples. The training reactor is assumed to serve for providing basic knowledge about processes in nuclear power stations with pressurized water reactors. Where the behaviour of a nuclear power station cannot sufficiently be demonstrated by the training reactor, a reasonable completion of practical training at special simulation models and experimental facilities of the Technical College and at the nuclear power plant simulator of the Rheinsberg nuclear power plant school has been conceived. (author)

  20. Extensive utilisation of VR-1 reactor for nuclear education and training

    International Nuclear Information System (INIS)

    Rataj, J.

    2010-01-01

    The paper presents utilisation of the VR-1 reactor for nuclear education and training at national and international level. VR-1 reactor has been operating by the Czech Technical University since December 1990. The reactor is a pool-type light water reactor based on enriched uranium (19.7% 235 U) with maximum thermal power 1kW and for short time period up to 5kW. The moderator of neutrons is light water, which is also used as a reflector, a biological shielding and a coolant. Heat is removed from the core by natural convection. The pool disposition of the reactor facilitates access to the core, setting and removing of various experimental samples and detectors, easy and safe handling of fuel assemblies. The reactor core can contain from 17 to 21 fuel assemblies IRT-4M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The reactor is equipped with several experimental devices; e.g. horizontal, radial and tangential channels used to take out a neutron beam, reactivity oscillator for dynamics study and bubble boiling simulator. The reactor has been used very efficiently especially for education and training of university students and NPP's specialists for more than 18 years. The VR-1 reactor is utilised within various national and international activities such as Czech Nuclear Education Network (CENEN), European Nuclear Education Network and also Eastern European Research Reactor Initiative (EERRI). The reactor is well equipped for education and training not only by the experimental facility itself but also by incessant development of training methods and improvement of education experiments. The education experiments can be combined into training courses attended by students according to their study specialization and knowledge level. The training programme is aimed to the reactor and neutron physics, dosimetry, nuclear safety, and control of nuclear installations. Every year, approximately 250 university students undergo

  1. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  2. New training reactor at Dresden Technical University

    International Nuclear Information System (INIS)

    Hansen, W.; Knorr, J.; Wolf, T.

    2006-01-01

    A total of 14 low-power (up to 10 W) training reactors have been operated at German universities, 9 of them officially classified as being operational in 2004, though for very different uses. This number is expected to drop sharply. The only comprehensive upgrading of a training reactor took place at Dresden Technical University: AKR-2, the most modern facility in Germany, started routine operation in April 2005, under a newly granted license pursuant to Sec. 7, Subsec. 1 of the German Atomic Energy Act, for training students in nuclear technology, for suitable research projects, and a a center of information about reactor technology and nuclear technology for the interested public. One special aspect of this refurbishment was the installation of digital safety I and C systems of the TELEPERM XS line, which are used also in other modern plants. This fact, plus the easy possibility to use the plant for many basic experiments in reactor physics and radiation protection, make the AKR-2 attractive also to other users (e.g. for training reactor personnel or other persons working in nuclear technology). (orig.)

  3. Basic training of nuclear power reactor personnel

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1981-01-01

    The basic training of nuclear power reactor personnel should be given very close attention since it constitutes the foundation of their knowledge of nuclear technology. Emphasis should be given on the thorough understanding of basic nuclear concepts in order to have reasonable assurance of successful assimilation by those personnel of more specialized and advanced concepts to which they will be later exposed. Basic training will also provide a means for screening to ensure that those will be sent for further spezialized training will perform well. Finally, it is during the basic training phase when nuclear reactor operators will start to acquire and develop attitudes regarding reactor operation and it is important that these be properly founded. (orig.)

  4. Reactor safety training for decision making

    International Nuclear Information System (INIS)

    Scott, C.K.

    2003-01-01

    The purpose of this paper is to describe an approach to reactor safety training for technical staff working at an operating station. The concept being developed is that, when the engineer becomes a registered professional engineer, they have sufficient reactor safety knowledge to perform independent technical work without compromising the safety of the plant. This goal would be achieved with a focused training program while working as an engineer-in-training (four years in NB). (author)

  5. Education and training by utilizing irradiation test reactor simulator

    International Nuclear Information System (INIS)

    Eguchi, Shohei; Koike, Sumio; Takemoto, Noriyuki; Tanimoto, Masataka; Kusunoki, Tsuyoshi

    2016-01-01

    The Japan Atomic Energy Agency, at its Japan Materials Testing Reactor (JMTR), completed an irradiation test reactor simulator in May 2012. This simulator simulates the operation, irradiation test, abnormal transient change during operation, and accident progress events, etc., and is able to perform operation training on reactor and irradiation equipment corresponding to the above simulations. This simulator is composed of a reactor control panel, process control panel, irradiation equipment control panel, instructor control panel, large display panel, and compute server. The completed simulator has been utilized in the education and training of JMTR operators for the purpose of the safe and stable operation of JMTR and the achievement of high operation rate after resuming operation. For the education and training, an education and training curriculum has been prepared for use in not only operation procedures at the time of normal operation, but also learning of fast and accurate response in case of accident events. In addition, this simulator is also being used in operation training for the purpose of contributing to the cultivation of human resources for atomic power in and out of Japan. (A.O.)

  6. Use of the Oregon State University TRIGA reactor for education and training

    International Nuclear Information System (INIS)

    Dodd, B.

    1989-01-01

    This paper summarizes the recent use of the Oregon State University TRIGA Reactor (OSTR) for education and training. In particular, data covering the last 5 yr are presented, which cover education through formal university classes, theses, public information, and school programs. Training is covered by presenting data on domestic and foreign reactor operator training, health physics training, and neutron activation analysis training. While education and training only occupy ∼16% of the OSTR's total use time, nevertheless, this is an important mission of all nonpower reactors that cannot be performed effectively in any other way

  7. Extensive utilization of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, Karel; Sklenka, Lubomir

    2003-01-01

    Full text: The training reactor VR-1 Vrabec ('Sparrow'), operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly, it is designed and operated for training of students from Czech universities, preparing of experts for the Czech nuclear programme, as well as for certain research and development work, and for information programmes in the sphere of non-military nuclear energy use (public relation). The VR-1 training reactor is a pool-type light-water reactor based on enriched uranium with maximum thermal power 1kWth and short time period up to 5kW th . The moderator of neutrons is light demineralized water (H 2 O) that is also used as a reflector, a biological shielding, and a coolant. Heat is removed from the core with natural convection. The reactor core contains 14 to 18 fuel assemblies IRT-3M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The core is accommodated in a cylindrical stainless steel vessel - pool, which is filled with water. UR-70 control rods serve the reactor control and safe shutdown. Training of the VR-1 reactor provides students with experience in reactor and neutron physics, dosimetry, nuclear safety, and nuclear installation operation. Students from technical universities and from natural sciences universities come to the reactor for training. Approximately 200 university students are introduced to the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. Practical Course on Reactor Physics in Framework of European Nuclear Engineering Network has been newly introduced. Currently, students can try out more than 20 experimental exercises. Further training courses have been included

  8. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  9. Use of the VR-1 ''Vrabec'' training reactor

    International Nuclear Information System (INIS)

    Matejka, K.; Kolros, A.; Krops, S.; Polach, S.; Sklenka, L.

    1994-01-01

    An overview is presented of the extent and ways of using the VR-1 training reactor, which is operated by the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague. A list and the characteristics of 16 problems developed for teaching purposes is given, and the 14 faculties and 2 research institutes participating in the teaching activities are listed. The reactor is used in the education and training of nuclear scientists and engineers. The instrumentation, experimental, handling and operating tools, as well as documentation and texts relating to the reactor are described. The following examples of the teaching activities are included: a guided visit to the operating reactor site, reactor dynamics study and delayed neutron measurement, training course, and the basic criticality experiment. Nuclear safety aspects (hypothetical accidents, quality control and system qualification demonstration, safety culture) are stressed during the education. The reactor department is involved in international cooperation projects. (J.B.). 3 refs

  10. Extensive utilization of training reactor VR-1

    International Nuclear Information System (INIS)

    Karel, Matejka; Lubomir, Sklenka

    2005-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilisation - i.e. extensive educational programme. The educational programme is intended for the training of university students (all technical universities in Czech Republic) and selected nuclear power plant personnel. At the present, students can go through more than 20 different experimental exercises. An attractive programme including demonstration of reactor operation is prepared also for high school students. Moreover, research and development works and information programmes proceed at the VR-1 reactor as well

  11. Education and research at the VR-1 Vrabec training reactor facility

    International Nuclear Information System (INIS)

    Matejka, K.

    1993-01-01

    The results of 12 years' efforts devoted to the construction of the VR-1 ''Vrabec'' training reactor at the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague and to establishing the training reactor department, as well as the contribution of the training reactor facility to the teaching and scientific activities of the Faculty are presented in a comprehensive manner. The thesis is divided into 2 parts: (i) preconditions, reactor construction and commissioning, and constituting the reactor department, and (ii) basic and comprehensive information concerning the current utilization of the reactor for the benefit of students from various university level institutions. The prospects of scientific activities of the department are also outlined. Attention is paid to selected nuclear safety aspects of the reactor during operation and teaching of students, as well as to its innovated digital control system whose implementation is planned. The results achieved are compared with the initial goals and with similar experience abroad. (P.A.)

  12. The Utilization of Dalat nuclear research reactor for education and training purposes

    International Nuclear Information System (INIS)

    Luong, Ba Vien; Nguyen, Nhi Dien; Le, Vinh Vinh; Nguyen, Xuan Hai

    2017-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kWt is today the unique one in Vietnam. It was designed for the purposes of radioisotope production, neutron activation analysis, basic and applied researches, and nuclear education and training. With the rising demand in development of human resources for utilization of atomic energy in the country, the DNRR has been playing an important role in the nuclear education and training for students from universities and professionals who are interested in reactor engineering. At present, the Dalat Nuclear Research Institute (DNRI) offers two types of training course utilizing the research reactor: an one-week practical training course is applied for undergraduate students and a two-week training course on reactor engineering is applied for the professionals. This paper presents the reactor facility and experiments performed at the DNRR for education and training purposes. In addition, the co-operation between the DNRI with national and international educational organizations for nuclear human resource development for national and regional demands is also mentioned in the paper. (author)

  13. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  14. Radiation-hygienic estimation of training reactors location

    International Nuclear Information System (INIS)

    Konstantinov, Yu.O.; Fedorin, Eh.V.

    1978-01-01

    The radiation exposure conditions are provided during the normal operation (excluding emergency situations) of four training pool type reactors. Radiation monitoring of the environment near the reactors do not show any increase in external irradiation or in radioactive contamination over what is considered normal radiation background in the locality. Therefore it is possible to judge the potential levels of additional exposure of the population to radiation from the reactors only by means of theoretic modeling of the radiation conditions. Tabular data on maximal levels of this additional radiation are presented, and it is concluded from these data that it is permissible to install training and research reactors up to 3000 kilowatts within large cities, including dwelling areas

  15. Use of research reactors for training and teaching nuclear sciences

    International Nuclear Information System (INIS)

    Safieh, J.; Gless, B.

    2002-01-01

    Training activities on reactors are organized by Cea on 2 specially dedicated reactors Ulysse (Saclay) and Siloette (Grenoble) and 2 research reactors Minerve (Cadarache) and Azur (Cadarache, facility managed by Technicatome). About 4000 students have been trained on Ulysse since its commissioning more than 40 years ago. The concept that led to the design of Ulysse was to build a true reactor dedicated to teaching and training activities and that was able to operate with great flexibility and under high conditions of safety, this reactor is inspired from the Argonaut-type reactor. The main specificities of Ulysse are: a nominal power of 100 kW, a maximal thermal neutron flux of 1.4 10 12 n.cm -2 .s -1 , a 90 % enriched fuel, a graphite reflector, the use of water as coolant and moderator, and 6 cadmium plates as control rods. Ulysse allows students to get practical experience on a large range of topics: approach to criticality, effect of the starting neutron source, calibration of control rods, distribution of the neutron flux in the thermal column, temperature coefficient, radiation detectors, neutron activation analysis, and radioprotection. (A.C.)

  16. Use of multiple on-campus reactors in education and training programs

    International Nuclear Information System (INIS)

    Schlapper, G.A.

    1989-01-01

    In its undergraduate and graduate programs in nuclear engineering and health physics, Texas A ampersand M University utilizes two reactors for the training and education of students. The 5-W AGN-201 nuclear training reactor has been in use since the late 1950s, while the 1-MW TRIGA Nuclear Science Center Reactor (NSCR) was first utilized in late 1961. Both facilities have been upgraded since initial criticality, the AGN power level being increased from the original 200-mW limit to its 5-W current level and the NSCR undergoing conversion from a 100-kW materials test reactor fueled deign to a 1-MW TRIGA-fueled facility. The AGN reactor is operated by the Department of Nuclear Engineering of the College of Engineering and is almost solely utilized in training and education programs. The NSCR facility is administered by the Texas Engineering Experiment Station and support research efforts of faculty and students of departments within and outside the university in addition to contributing to the education and training programs of the nuclear engineering department

  17. WWER-1000 reactor simulator. Material for training courses and workshops. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No.12, Reactor Simulator Development (2001). Course material for workshops using a pressurized water reactor (PWR) simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication, Training Course Series No. 22, 2nd edition, Pressurized Water Reactor Simulator (2005) and Training Course Series No.23, 2nd edition, Boiling Water Reactor Simulator (2005). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation

  18. The design and use of proficiency based BWR reactor maintenance and refuelling training mockups

    International Nuclear Information System (INIS)

    Ford, G.J.

    1996-01-01

    The purpose of this paper is to describe the ABB experience with the design and use of boiling water reactor training facilities. The training programs were developed and implemented in cooperation with the nuclear utilities. ABB operates two facilities, the ABB ATOM Light Water Reactor Service Center located in Vasteras, Sweden, and the ABB Combustion Engineering Nuclear Operations BWR Training Center located in Chattanooga, Tennessee, USA. The focus of the training centers are reactor maintenance and refueling activities plus the capability to develop and qualify tools, procedures and repair techniques

  19. A critical heat flux correlation for advanced pressurized light water reactor application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Hame, W.

    1982-05-01

    Many CHF-correlations have been developed for water cooled rod clusters representing typical PWR or BWR fuel element geometries with relative wide rod lattices. However the fuel elements of an Advanced Pressurized Water Reactor (APWR) have a tight fuel rod lattice, in view of increasing the fuel utilization. It was therefore decided to produce a new CHF-correlation valid for rod bundles with tight lattices. The already available WSC-2 correlation was chosen as a basis. The geometry dependent parameters of this correlation were determined again with the method of the root mean square fitting from the experimental data of the CHF-tests performed in the frame of the Light Water Breeder Reactor programme at the Bettis Laboratory. These tests include triangular array rod bundles with very tight lattices. Furthermore the effect of spiral spacer ribs was investigated on the basis of experimental data from the Columbia University. Application of the new CHF-correlation to conditions typical for an APWR shows that the predicted critical heat fluxes are much smaller than those calculated with the usual PWR-CHF-correlations, but they are higher than those predicted by the B+W-VPI+SU correlation. (orig.) [de

  20. A dedicated program for the extended longevity of research and training reactors

    International Nuclear Information System (INIS)

    Carriveau, G.W.

    1992-01-01

    In the past 49 years, over 555 research and training reactors have been in operation, with approximately 325 currently in service. The age distribution of operating research reactors shows that the average age is about 24 years; about 74% are 20 years old or older and about 33% are 30 years old or older. This group of reactors represents a very large investment in capital expense with replacement costs in 1990's prices much higher than when they were originally constructed. Furthermore, decommissioning costs may be much greater than the original investments. General Atomics has been directly involved for the better part of the nearly fifty year history of research and training reactors. This paper will describe a General Atomics program illustrating a dedicated commitment to the full service support of extended and improved use for all types of research and training reactors. (author)

  1. The training of the staff for work with radioactive materials and work on nuclear reactor in the Institute; Obuka kadrova za rukovanje radioizotopima i pogon nuklearnih reaktora u Institutu 'Boris Kidric' - Vinca

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M; Mladjenovic, O; Sotic, O [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1978-05-15

    A short informational review of the activities in the 'Boris Kidric' Institute on the training courses for the use of radioactive materials and for operating nuclear reactors including power reactors. The survey of the courses is given in the enclosures. (author) Kratak informativni pregled delatnosti u IBK na kursevima za obuku kadrova u rukovanju readioaktivnim materijalima i pogonu nuklearnih reaktora, ukljucujuci reaktore snage. pregled kurseva i materijala za njih dati su u prilozima. (author)

  2. New human machine interface for VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Sklenka, L.; Chab, V.

    2002-01-01

    The contribution describes a new human machine interface that was installed at the VR-1 training reactor. The human machine interface update was completed in the summer 2001. The human machine interface enables to operate the training reactor. The interface was designed with respect to functional, ergonomic and aesthetic requirements. The interface is based on a personal computer equipped with two displays. One display enables alphanumeric communication between a reactor operator and the control and safety system of the nuclear reactor. Messages appear from the control system, the operator can write commands and send them there. The second display is a graphical one. It is possible to represent there the status of the reactor, principle parameters (as power, period), control rods' positions, the course of the reactor power. Furthermore, it is possible to set parameters, to show the active core configuration, to perform reactivity calculations, etc. The software for the new human machine interface was produced in the InTouch developing environment of the WonderWare Company. It is possible to switch the language of the interface between Czech and English because of many foreign students and visitors at the reactor. The former operator's desk was completely removed and superseded with a new one. Besides of the computer and the two displays, there are control buttons, indicators and individual numerical displays of instrumentation there. Utilised components guarantee high quality of the new equipment. Microcomputer based communication units with proper software were developed to connect the contemporary control and safety system with the personal computer of the human machine interface and the individual displays. New human machine interface at the VR-1 training reactor improves the safety and comfort of the reactor utilisation, facilitates experiments and training, and provides better support of foreign visitors.(author)

  3. Hands-on Training Courses Using Research Reactors and Accelerators

    International Nuclear Information System (INIS)

    2014-01-01

    The enhancement of nuclear science education and training in all Member States is of interest to the IAEA since many of these countries, particularly in the developing world, are building up and expanding their scientific and technological infrastructures. Unfortunately, most of these countries still lack sufficient numbers of well-educated and qualified nuclear specialists and technologists. This may arise from, amongst other things: a lack of candidates with sufficient educational background in nuclear science who would qualify to receive specialized training; a lack of institutions available for training nuclear science specialists; a lack of lecturers in nuclear related fields; and a lack of suitable educational and teaching materials. A related concern is the potential loss of valuable knowledge accumulated over many decades due to the ageing workforce. An imperative for Member States is to develop and offer suitable graduate and postgraduate academic programmes which combine study and project work so that students can attain a prerequisite level of knowledge, abilities and skills in their chosen subject area. In nearly all academic programmes, experimental work forms an essential and integral component of study to help students develop general and subject specific skills. Experimental laboratory courses and exercises can mean practical work in a conventional laboratory or an advanced facility with an operational particle accelerator or research reactor often accompanied by computer simulations and theoretical exercises. In this context, available or newly planned research reactors and particle accelerators should be seen as extremely important and indispensable components of nuclear science and technology curricula. Research reactors can demonstrate nuclear science and technology based on nuclear fission and the interaction of neutrons and photons with matter, while particle accelerators can demonstrate nuclear science and technology based on charged particle

  4. Radiation protection personnel training in Research Reactors

    International Nuclear Information System (INIS)

    Fernandez, Carlos Dario; Lorenzo, Nestor Pedro de

    1996-01-01

    The RA-6 research reactor is considering the main laboratory in the training of different groups related with radiological protection. The methodology applied to several courses over 15 years of experience is shown in this work. The reactor is also involved in the construction, design, start-up and sell of different installation outside Argentina for this reason several theoretical and practical courses had been developed. The acquired experience obtained is shown in this paper and the main purpose is to show the requirements to be taken into account for every group (subjects, goals, on-job training, etc) (author)

  5. VR-1 training reactor in use for twelve years to train experts for the Czech nuclear power sector

    International Nuclear Information System (INIS)

    Matejka, K.; Sklenka, L.

    2003-01-01

    The VR-1 training reactor has been serving students of the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, for more than 12 years now. The operation history of the reactor is highlighted. The major changes made at the VR-1 reactor are outlined and the main experimentally verified core configurations are shown. Some components of the new equipment installed on the VR-1 reactor are described in detail. The fields of application are shown: the reactor serves not only the training of university students within whole Czech Republic but also the training of specialists, research activities, and information programmes in the nuclear power domain. (P.A.)

  6. Maximizing the use of research reactors in training power reactor operating staff with special reference to US experience

    International Nuclear Information System (INIS)

    Cox, J.A.

    1976-01-01

    Research reactors have been used in training nuclear power plant personnel for many years. Using the experience in the United States of America a programme is proposed that will maximize the training conducted at a research reactor and lessen the time that the staff must spend training elsewhere. The programme is adaptable to future training of replacement staff and for staff retraining. (author)

  7. Development of Reactor TRIGA PUSPATI Simulator for Education and Training

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Zarina Masood; Muhammad Rawi Mohamed Zin

    2016-01-01

    The real-time simulator for Reactor TRIGA PUSPATI (RTP) which is under development. The main purpose of this simulator is operator training and a dynamic test bed (DTB) to test and validate the control logics in reactor regulating system (RRS) of RTP. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, operator station, a network switch, control rod drive mechanism and a large display panel. The RTP hardwired panel is replicated similar to real console. The software includes a mathematical model includes reactor kinetics and thermal-hydraulics that implements plant dynamics in real-time using LabVIEW, an instructor station module work as host computer that manages user instructions, and a human machine interface module as a graphical user interface which is used in the real RTP plant. The developed TRIGA reactor simulators are installed in the Malaysian Nuclear Agency nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet which is consist of Programmable Logic Controller (PLC) S7-1500, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB such as neutron detector signal and control rod positions, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. Normal and abnormal case test have been emulated for this project. In conclusion, the functions and the control performance of the developed RTP dynamic test bed simulator have been tested showing reasonable and acceptable results. (author)

  8. Nuclear renaissance in the reactor training of Areva

    International Nuclear Information System (INIS)

    De Braquilanges, Bertrand; Napior, Amy; Schoenfelder, Christian

    2010-01-01

    Because of the perspectives of new builds, a significant increase in the number of design, construction and management personnel working in AREVA, their clients and sub-contractors has been estimated for the next future. In order to cope with the challenge to integrate newly hired people quickly and effectively into the AREVA workforce, a project - 'Training Task Force (TTF)' - was launched in 2008. The objective was to develop introductory and advanced courses and related tools harmonized between AREVA Training Centers in France, Germany and USA. First, a Global Plants Introductory Session (GPIS) was developed for newly hired employees. GPIS is a two weeks training course introducing in a modular way AREVA and specifically the activities and the reactors technical basics. As an example, design and operation of a nuclear power plant is illustrated on EPRTM. Since January 2009, these GPIS are held regularly in France, Germany and the US with a mixing of employees from these 3 regions. Next, advanced courses for more experienced employees were developed: - Advanced EPR TM , giving a detailed presentation of the EPR TM reactor design; - Codes and Standards; - Technical Nuclear Safety. Finally, feasibility studies on a Training Material Management (TMM) system, able to manage the training documentation, and on a worldwide training administration tool, were performed. The TTF project was completed mid of 2009; it transferred their recurrent activities to a new AREVA training department. This unit now consists of the French, German and US Reactors Training Centers. In particular, all courses developed by the TTF are now implemented worldwide with an opening to external trainees. The current worldwide course catalogue includes training courses for operation and maintenance personnel as well as for managers, engineers and non technical personnel of nuclear operators, suppliers, safety authorities and expert organizations. Training delivery is supported effectively by tools

  9. A small-scale experimental reactor combined with a simulator for training purposes

    International Nuclear Information System (INIS)

    Destot, M.; Hagendorf, M.; Vanhumbeeck, D.; Lecocq-Bernard, J.

    1981-01-01

    The authors discuss how a small-scale reactor combined to a training simulator can be a valuable aid in all forms of training. They describe the CEN-based SILOETTE reactor in Grenoble and its combined simulator. They also take a look at prospects for the future of the system in the light of experience acquired with the ARIANE reactor and the trends for the development of simulators for training purposes [fr

  10. Study on reactor power transient characteristics (reactor training experiments). Control rod reactivity calibration by positive period method and other experiment

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Sunagawa, Takeyoshi

    2014-01-01

    In this paper, it is reported about some experiments that have been carried out in the reactor training that targets sophomore of the department of applied nuclear engineering, FUT. Reactor of Kinki University Atomic Energy Research Institute (UTR-KINKI) was used for reactor training. When each critical state was achieved at different reactor output respectively in reactor operating, it was confirmed that the control rod position at that time does not change. Further, control rod reactivity calibration experiments using positive Period method were carried out for shim safety rod and regulating rod, respectively. The results were obtained as reasonable values in comparison with the nominal value of the UTR-KINKI. The measurement of reactor power change after reactor scram was performed, and the presence of the delayed neutron precursor was confirmed by calculating the half-life. The spatial dose rate measurement experiment of neutrons and γ-rays in the reactor room in a reactor power 1W operating conditions were also performed. (author)

  11. Nuclear Education and Training Courses as a Commercial Product of a Low Power Research Reactor

    International Nuclear Information System (INIS)

    Böck, H.; Villa, M.; Steinhauser, G.

    2013-01-01

    The Vienna University of Technology (VUT) operates a 250 kW TRIGA Mark II research reactor at the Atominstitut (ATI) since March 1962. This reactor is uniquely devoted to nuclear education and training with the aim to offer an instrument to perform academic research and training. During the past decade a number of requests to the Atominstitut asked for the possibility to offer this reactor for external training courses. Over the years, such courses have been developed as regular courses for students during their academic curricula at the VUT/ATI. The courses cover such subjects as “Reactor physics and kinetics”, andReactor instrumentation and control”, in total about 20 practical exercises. Textbooks have been developed in English language for both courses. Target groups for commercial courses are other universities without an access to research reactors (i.e., the Technical University of Bratislava, Slovak Republic, or the University of Manchester, UK), international organisations (i.e., IAEA Dept of Safeguards, training section), research centres (ie. Mol, Belgium) for retraining of their reactor staff or nuclear power plants for staff retraining. These courses have been very successful during the past five years in such a manner that the Atominstitut has now to decline new course applications as the reactor is also used for Masters thesis and PhD work which requires full power operation while courses require low power operation. The paper describes typical training programs, target groups and possible transfers of these courses to other reactors. (author)

  12. Minority and female training programs at the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.

    1992-01-01

    Nuclear power industry operations staffs are composed predominantly of white males because most of the personnel come from the nuclear submarine and surface branches of the U.S. Navy. The purpose of the minority and female training programs sponsored by the Ford Nuclear Reactor at the University of Michigan is to provide a path for minorities and women to enter the nuclear industry as operators, technicians, and, in the long term, as graduate engineers. The training programs are aimed at high school students, preferably juniors. While the training is directed toward operation of a nuclear reactor, it is equally applicable to careers in most other technical fields. It is hoped that some of the participants will remain at the Ford Nuclear Reactor as reactor operators, enter college, and obtain college degrees, after which they will enter the nuclear industry as graduate engineers

  13. Nuclear renaissance in the reactor training of Areva

    Energy Technology Data Exchange (ETDEWEB)

    De Braquilanges, Bertrand [Reactor Training Center/France Manager, La Tour Areva - 1, place Jean Millier - 92084 Paris - La Defense (France); Napior, Amy [Reactor Training Center/USA Manager, 1300 Old Graves Mill Road - Lynchburg VA, 2450 (United States); Schoenfelder, Christian [Reactor Training Center/Germany Manager, Kaiserleistrasse 29 - 63067 Offenbach (Germany)

    2010-07-01

    Because of the perspectives of new builds, a significant increase in the number of design, construction and management personnel working in AREVA, their clients and sub-contractors has been estimated for the next future. In order to cope with the challenge to integrate newly hired people quickly and effectively into the AREVA workforce, a project - 'Training Task Force (TTF)' - was launched in 2008. The objective was to develop introductory and advanced courses and related tools harmonized between AREVA Training Centers in France, Germany and USA. First, a Global Plants Introductory Session (GPIS) was developed for newly hired employees. GPIS is a two weeks training course introducing in a modular way AREVA and specifically the activities and the reactors technical basics. As an example, design and operation of a nuclear power plant is illustrated on EPRTM. Since January 2009, these GPIS are held regularly in France, Germany and the US with a mixing of employees from these 3 regions. Next, advanced courses for more experienced employees were developed: - Advanced EPR{sup TM}, giving a detailed presentation of the EPR{sup TM} reactor design; - Codes and Standards; - Technical Nuclear Safety. Finally, feasibility studies on a Training Material Management (TMM) system, able to manage the training documentation, and on a worldwide training administration tool, were performed. The TTF project was completed mid of 2009; it transferred their recurrent activities to a new AREVA training department. This unit now consists of the French, German and US Reactors Training Centers. In particular, all courses developed by the TTF are now implemented worldwide with an opening to external trainees. The current worldwide course catalogue includes training courses for operation and maintenance personnel as well as for managers, engineers and non technical personnel of nuclear operators, suppliers, safety authorities and expert organizations. Training delivery is supported

  14. Operation characteristics and conditions of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.; Kolros, A.; Polach, S.; Sklenka, L.

    1994-01-01

    The first 3 years of operation of the VR-1 training reactor are reviewed. This period includes its physical start-up (preparation, implementation, results) and operation development as far as the current operating configuration of the reactor core. The physical start-up was commenced using a reactor core referred to as AZ A1, whose physical parameters had been verified by calculation and whose configuration was based on data tested experimentally on the SR-0 reactor at Vochov. The next operating core, labelled AZ A2, was already prepared during the test operation of the VR-1 reactor. Its configuration was such that both of the main horizontal channels, radial and tangential, could be employed. The configuration that followed, AZ A3, was an intermediate step before testing the graphite side reflector. The current reactor core, labelled AZ A3 G, was obtained by supplementing the previous core with a one-sided graphite side reflector. (Z.S.). 2 tabs., 11 figs., 2 refs

  15. SuPer-Homogenization (SPH) Corrected Cross Section Generation for High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hiruta, Hikaru [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    The deterministic full core simulators require homogenized group constants covering the operating and transient conditions over the entire lifetime. Traditionally, the homogenized group constants are generated using lattice physics code over an assembly or block in the case of prismatic high temperature reactors (HTR). For the case of strong absorbers that causes strong local depressions on the flux profile require special techniques during homogenization over a large volume. Fuel blocks with burnable poisons or control rod blocks are example of such cases. Over past several decades, there have been a tremendous number of studies performed for improving the accuracy of full-core calculations through the homogenization procedure. However, those studies were mostly performed for light water reactor (LWR) analyses, thus, may not be directly applicable to advanced thermal reactors such as HTRs. This report presents the application of SuPer-Homogenization correction method to a hypothetical HTR core.

  16. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    Energy Technology Data Exchange (ETDEWEB)

    Lescop, B.; Badeau, G.; Ivanovic, S.; Foulon, F. [National Institute for Nuclear science and Technology French Atomic Energy and Alternative Energies Commission (CEA), Saclay Research Center, 91191 Gif-sur-Yvette (France)

    2015-07-01

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. The facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10{sup 12} n/cm{sup 2}.s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also

  17. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    International Nuclear Information System (INIS)

    Lescop, B.; Badeau, G.; Ivanovic, S.; Foulon, F.

    2015-01-01

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. The facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10 12 n/cm 2 .s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also modify the

  18. SARIE upgrade: Nuclear reactor and water systems 'engineering and training' simulator

    International Nuclear Information System (INIS)

    Roth, P.

    2006-01-01

    Confronted as of its origins with the on-board layout constraints of the French Navy ships, TECHNICATOME integrates, as of the design, the ergonomics and the risks control related to the human factors. During more than 30 years, TECHNICATOME demonstrated a one of a kind know-how from the design to the execution of powerful, flexible and highly available nuclear compact reactors. A total control which includes up to the supervision and monitoring systems, the acoustic discreetly of the systems and its components, implemented on on-board reactors, testing reactors as well as experimental reactors. The functionalities of simulation were right from the start used by TECHNICATOME during the design phase of these installations to carry out operation engineering analyses on the thermal hydraulic and neutron aspects, to validate the principles of operation of the supervision systems like by the use of digital models in 3D CAD to validate the kinematics of operation or the interactions between systems. More recently, and starting from the end of the Nineties, a thought needs was launched to determine the interests related to the development of a training simulator associated with these installations with objectives, among others, to ensure the phase of initial training of the new operators, to widen the field of the training to the accidental situations, the management of crisis and crews behaviour supervision, the possibilities of replay which support the consolidation of the acquired knowledge(debriefing) with situation resume, and to increase the overall training capacity. An upgrade and modernisation project of these various simulation means was thus launched since 2001 with the objective to optimize the whole of the tasks supported by these means. (author)

  19. Training methods and facilities on reactor and simulators at the Grenoble Nuclear Research Centre

    International Nuclear Information System (INIS)

    Destot, M.; Siebert, S.

    1987-01-01

    Siloette is a CEA unit with a threshold vocation: operation of the Siloette 100 KW pool-type research reactor; basic training in reactor physics for nuclear power plant operators; and production of nuclear power plant simulators: PWR, GCR and more generally of all types of industrial unit simulators, thermal power plant, network, chemical plant, etc. From this experience, they would emphasize in particular the synergy arising from these complementary activities, the essential role of training in basic principles as a complement to operation training, and the ever-increasing importance of design ergonomics of the training means

  20. Guideline related to training and re-training of research reactor personnel

    International Nuclear Information System (INIS)

    1983-01-01

    The guideline, which entered into force on 1 July 1983, lays down training and re-training requirements to be met by research reactor personnel in the framework of the Radiation Protection Ordinance of 26 November 1969, the Regulation related to the Licensing of Nuclear Facilities of 21 June 1979, and the Regulation related to Further Education in the Field of Radiation Protection 27 January 1975. It contains the scope of application; the principles and objectives; the minimum requirements relating to technical qualification of plant managers, shift personnel, and responsible radiation protection officers; appointment and certification; the preservation of the technical qualification; and exceptional and transitional regulations

  1. IAEA-RCA training course on in-service inspection of research reactors

    International Nuclear Information System (INIS)

    2002-01-01

    Bhabha Atomic Research Centre (BARC) has acquired a wide range of experience for over four decades in design, construction, operation and maintenance of research reactors. The two-week training course on In-Service Inspection of Research Reactors (ISI) has greatly increased the awareness in the field of ISI of Research Reactors. The training course has been formulated so as to cover most of the topics relevant to ISI of research reactors. Important topics such as rationale for in-service inspection, material degradation mechanisms, non-destructive examination techniques, design evaluation of flaws and radiological, codal and regulatory aspects of ISI for research reactors were covered. Lectures on ISI of elastomeric materials and concrete structures, which are generally used in the construction of reactors have also been included in the course. Papers relevant to INIS are indexed separately

  2. Training and teaching with SILOETTE reactor and associated simulators at the Nuclear Research Centre of Grenoble

    International Nuclear Information System (INIS)

    Destot, M.

    1983-10-01

    Thanks to its three reactors SILOE (35 MW), MELUSINE (8 MW) and SILOETTE (100 KW), the Reactor Department of the Nuclear Research Centre of Grenoble has gained a considerable experience in the operation and utilization of research and material testing reactors. Inside of this general framework, the Reactor Department of Grenoble has built up a training and teaching centre that has been permanently active since 1975, with the aim of satisfying the considerable needs arising from the development of electro-nuclear power stations. The course is mainly intended for engineers and technicians who will be responsible for running power stations. A thorough series of practical exercices, carried out in the SILOETTE training reactor and in a PWR or in a Gas Cooled Reactor Simulator, desmonstrates the application of the theorical courses and familiarises the trainees with the behaviour of reactors and power stations

  3. Moroccan TRIGA nuclear reactor, an important tool for the development of research, education and training

    International Nuclear Information System (INIS)

    Caoui, A.

    2011-01-01

    Full text: The construction of the Nuclear Research Center of Maamora (NRCM) will enable to the National Center for Nuclear Energy, Sciences and Techniques (CNESTEN) to fulfill its missions for promotion of nuclear techniques in socioeconomic fields, act as technical support for the authorities, and contribute to the introduction of nuclear power for electricity generation considered in the new energy strategy as alternative option for the period 2020-2030. The CNESTEN has commisioned its nuclear research reactor Triga Mark II of 2000 KW on 2007 for wich the operating authorization was delivered on 2009. This research reactor is the keystone structure of the NRCM, its existing and planed utilization include: production of radioisotopes for medical use, neutron activation analysis, non-destructive examination techniques, neutron scattering, reactor physics research and training. In term of human ressources development, CNESTEN is more focusing on education and training for wich an international training Center is under development. The TRIGA research reactor will be an important component of this center. In order to promote the utilization of the reserch reactor in socio-economical sectors at national level, CNESTEN organizea meetings, schools and conferences around each of the reactor applications, and offers the opportunity to researchers, students, socio-economic operators to know more about reactor utilization within scientific visits, courses and training programs. At the international level, CNESTEN strengthens its international partenership. The regional and international cooperation with IAEA, AFRA and bilateral parteners (USA, France), constitutes the platform for capacity building in different areas of CNESTEN RIGA research reactor utilization

  4. NORA project offers unique reactor research and advanced training opportunities

    International Nuclear Information System (INIS)

    1961-01-01

    An international program for reactor research and advanced training for a period of three years has been established in connection with the Norwegian critical assembly NORA. The aim of the project is to determine, through integral experiments, the basic reactor physics data for lattices moderated with light-water, heavy-water or mixtures of heavy and light water, with fuels of different sizes and spacing, three different enrichments and compositions. The objectives, programme, and facilities are described in details

  5. Setting-up of remote reactor LAB and tapping into CARRN for distance education and training in nuclear field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eugene [The Nelson Mandeal African Institute of Science and Technology, Arusha (Tanzania, United Republic of)

    2013-07-01

    For a developing country embarking on a research reactor project, building adequate human resource capacity is one of the biggest challenges. Tanzania has been considering a research reactor for some time. The success of future research reactor project impinges on vigorous education and training of necessary personnel to operate and fully utilize the facility. In Africa, underutilization of research reactors is a chronic issue. It is not only misuse of valuable resources but also poses potential safety and security concerns. To mitigate such concerns and to promote education and training, Central African Research Reactor Network (CARRN) was formed in June of 2011. Borrowing from Jordan's success, this paper presents customised curricula to take advantage of CARRN for distance education and training in nuclear field.

  6. Setting-up of remote reactor LAB and tapping into CARRN for distance education and training in nuclear field

    International Nuclear Information System (INIS)

    Park, Eugene

    2013-01-01

    For a developing country embarking on a research reactor project, building adequate human resource capacity is one of the biggest challenges. Tanzania has been considering a research reactor for some time. The success of future research reactor project impinges on vigorous education and training of necessary personnel to operate and fully utilize the facility. In Africa, underutilization of research reactors is a chronic issue. It is not only misuse of valuable resources but also poses potential safety and security concerns. To mitigate such concerns and to promote education and training, Central African Research Reactor Network (CARRN) was formed in June of 2011. Borrowing from Jordan's success, this paper presents customised curricula to take advantage of CARRN for distance education and training in nuclear field

  7. Approach to training the operators of WWER-440 reactors

    International Nuclear Information System (INIS)

    Pironkov, L.; Minakova, R.

    2002-01-01

    The paper has three parts. (1) Personnel Training and Qualifications (2) Description of Kozloduy NPP Training and Qualification System (TQS) built in the last 7 years and its interfaces with the Certification System and (3) Application of the TQS for the Senior Reactor Operator (SRO). (author)

  8. Experiments with the SUR 100 training reactor

    International Nuclear Information System (INIS)

    Milicic, B.

    1984-06-01

    This paper contains a compilation of various experiments using the SUR - 100 reactor for training purposes, which have been widly proved in practical work at the School for Nuclear Technology of the Karlsruhe Research Center. (orig.) [de

  9. Education and training at the Rensselaer Polytechnic Institute reactor critical facility

    International Nuclear Information System (INIS)

    Harris, D.R.

    1989-01-01

    The Rensselaer Polytechnic Institute (RPI) Reactor Critical Facility (RCF) has provided hands-on education and training for RPI and other students for almost a quarter of a century. The RCF was built in the 1950s by the American Locomotive Company (ALCO) as a critical facility in which to carry out experiments in support of the Army Package power Reactor (APPR) program. A number of APPRs were built and operated. In the middle 1960s, ALCO went out of business and provided the facility to RPI. Since that time, RPI has operated the RCF primarily in a teaching mode in the nuclear engineering department, although limited amounts of reactor research, activation analysis, and reactivity assays have been carried out as well. Recently, a U.S. Department of Energy (DOE) upgrade program supported refueling the RCF with 4.81 wt% enriched UO 2 high-density pellets clad in stainless steel rods. The use of these SPERT (F1) fuel rods in the RCF provided a cost-effective approach to conversion from high-enrichment bombgrade fuel to low-enrichment fuel. More important, however, is the fact that the new fuel is of current interest for light water power reactors with extended lifetime fuel. Thus, not only are critical reactor experiments being carried out on the fuel but, more importantly, the quality of the education and training has been enhanced

  10. RA reactor operation and maintenance in 1992, Part 1; Deo 1 - Pogon i odrzavanje nuklearnog reaktoro RA u 1992. Godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Cupac, S; Sulem, B; Zivotic, Z; Majstorovic, D; Tanaskovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1992-12-01

    During 1992 Ra reactor was not in operation. All the activities were fulfilled according to the previously adopted plan. Basic activities were concerned with revitalisation of the RA reactor and maintenance of reactor components. All the reactor personnel was busy with reconstruction and renewal of the existing reactor systems and building of the new systems, maintenance of the reactor devices. Part of the staff was trained for relevant tasks and maintenance of reactor systems. [Serbo-Croat] U toku 1992 godine poslovi u okviru projekta 'Istrazivacki nuklearni reaktor RA' obavljani su u skladu sa programom i planom rada. Osnovne aktivnosti na kojima je radjeno odnosile su se na revitalizaciju reaktora RA, kao i na odrzavanje opreme. U ovom periodu reaktor nije bio u pogonu. Svo osoblje je bilo angazovano na poslovima rekonstrukcije i modernizacije postojecih i dogradnje novih reaktorskih sistema, na odrzavanju opreme a deo tehnickog osoblja je bio obucavan za vrsenje odgovarajucih poslova u pogonu i odrzavanju opreme.

  11. Radiation conditions at the training IRT-2000 and IR-100 reactors

    International Nuclear Information System (INIS)

    Fedorin, Eh.V.; Bronshtejn, I.Eh; Martynov, Yu.N.; Chistyakov, N.I.

    1978-01-01

    The experience is reviewed of radiation hygiene surveys and radiation safety provision during instructional processes on two training and research nuclear reactors of the IRT-2000 type (No. 1 and No. 2) and on an IR-200 reactor. From an analysis of individual dosimetry data the conclusion is made that the trainees and personnel are exposed mainly to external gamma-radiation and also, to a minor degree, to thermal neutrons and beta-radiation. It has been found that a high level of radiation safety is ensured on the training and research so that research and instruction activities are conducted at annual levels of exposure substantially lower than 0.5 rem in the case of trainees and 5 rem in the case of personnel

  12. Reactor physics studies at the Zittau Training and research reactor ZLFR

    Energy Technology Data Exchange (ETDEWEB)

    Konschak, K.; Horche, W.; Honisch, H.; Berger, J. (Ingenieurhochschule Zittau (German Democratic Republic). Sektion Kraftwerksanlagenbau und Energieumwandlung); Doerschel, B. (Technische Univ., Dresden (German Democratic Republic). Sektion Physik)

    1982-04-01

    It is reported on experimental studies during the start-up period of the Zittau training and research reactor ZLFR. The critical mass obtained is in good agreement with the calculated value. It corresponds to a core charge of 90 fuel assemblies ECH-1. The shutdown reactivity of the safety rod and of the three control rods is 3.2% in total. The reactivity effects due to shuffling, internals, and configuration modifications as well as to intentional or unintentional changes in the operating conditions have been analyzed from the viewpoint of safe operation.

  13. A research reactor simulator for operators training and teaching

    International Nuclear Information System (INIS)

    De Carvalho, R. P.; Maiorino, J. R.

    2006-01-01

    This work describes a training simulator of Research Reactors (RR). The simulator is an interactive tool for teaching and operator training of the bases of the RR operation, reactor physics and thermal hydraulics. The Brazilian IEA-R1 RR was taken as the reference (default configuration). The implementation of the simulator consists of the modeling of the process and system (neutronics, thermal hydraulics), its numerical solution, and the implementation of the man-machine interface through visual interactive screens. The point kinetics model was used for the nuclear process and the heat and mass conservation models were used for the thermal hydraulic feed back in the average core channel. The heat exchanger and cooling tower were also modeled. The main systems were: the reactivity control system, including the automatic control, and the primary and secondary coolant systems. The Visual C++ was used to codes and graphics lay-outs. The simulator is to be used in a PC with Windows XP system. The simulator allows simulation in real time of start up, power maneuver, and shut down. (authors)

  14. The operating organization and the recruitment, training and qualification of personnel for research reactors. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide provides recommendations on meeting the requirements on the operating organization and on personnel for research reactors. It covers the typical operating organization for research reactor facilities; the recruitment process and qualification in terms of education, training and experience; programmes for initial and continuing training; the authorization process for those individuals having an immediate bearing on safety; and the processes for their requalification and reauthorization

  15. New measuring and protection system at VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Jurickova, M.

    2006-01-01

    The contribution describes the new measuring and protection system of the VR-1 training reactor. The measuring and protection system upgrade is an integral part of the reactor I and C upgrade. The new measuring and protection system of the VR-1 reactor consists of the operational power measuring and the independent power protection systems. Both systems measure the reactor power and power rate, initiate safety action if safety limits are exceeded and send data (power, power rate, status, etc.) to the reactor control system. The operational power measuring system is a full power range system that receives signal from a fission chamber. The signal is evaluated according to the reactor power either in the pulse or current mode. The current mode utilizes the DC current and Campbell techniques. The new independent power protection system operates in the two highest reactor power decades. It receives signals from a boron chamber and evaluates it in the pulse mode. Both systems are computer based. The operational power measuring and independent power protection systems are diverse - different types and location of chambers, completely different hardware, software algorithms for the power and power rate calculations, software development tools and teems for the software manufacturing. (author)

  16. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Gronow, Sabine; Saunders, Elizabeth; Land, Miriam; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice1, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Brettin, Thomas; Detter, John C.; Han, Cliff; Bristow, James; Goker, Markus; Rohde, Manfred; Eisen, Jonathan A.; Markowitz, Victor; Kyrpides, Nikos C.; Klenk, Hans-Peter; Hugenholtz, Philip

    2009-05-20

    Capnocytophaga ochracea (Prevot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically yet uncharted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic organism with the ability to grow under anaerobic as well as under aerobic conditions (oxygen concentration larger than 15percent), here only in the presence of 5percent CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. New control and safety rod unit for the training reactor of the Dresden Technical University

    International Nuclear Information System (INIS)

    Adam, E.; Schab, J.; Knorr, J.

    1983-01-01

    The extension of the experimental training of students at the training reactor AKR of the Dresden Technical University requires the reconstruction of the reactor with a new control and safety rod unit. The specific conditions at the AKR led to a new variant. Results of preliminary experiments, design and mode of operation of the first unit as well as hitherto gained operation experiences are presented. (author)

  18. Study on the present and future training of managers and operators for reactor facilities

    International Nuclear Information System (INIS)

    Hagemann, G.; Preuss, W.; Tietze, A.; Wuest, S.

    1973-09-01

    The study gives a survey on the training methods for the operating personnel of reactors in operation or under construction in the FRG and compares them with the training and testing methods of other countries, in particular the USA. (RW/AK) [de

  19. United States Department of Energy breeder reactor staff training domestic program

    International Nuclear Information System (INIS)

    1984-01-01

    Two US DOE projects in the Pacific Northwest offer unique on-the-scene training opportunities at sodium-cooled fast-reactor plants: the Fast Flux Test Facility (FFTF) near Richland, Washington, which has operated successfully in a wide range of irradiation test programs since 1980; and the Experimental Breeder Reactor II (EBR-II) near Idaho Falls, Idaho, which has been in operation for approximately 20 years. Training programs have been especially designed to take advantage of this plant experience. Available courses are described

  20. Training nuclear power plant personnel on SR-O reactor

    International Nuclear Information System (INIS)

    Cerny, K.; Boucek, F.; Kveton, M.; Prokopec, Z.; Fleischhans, J.

    1983-01-01

    The SR-O reactor is an experimental pool-type reactor with a maximum output of 1 MW and maximum thermal neutron flux density of 5.3x10 13 m -2 s -1 . The reactor is described in detail and its specifications are given. The protection and control systems of the reactor permit both manual and automatic operation. The reactor is used for training courses for nuclear power plant operators and for post-graduate study courses for other specialists. Intensive courses for 4 to 6 persons take 15 to 20 days. The course is adjusted to the results of introductory theoretical tests. An optimal teaching method has been developed based on the flowchart algorithmic method, dividing activities into operations (manipulations with controls, issuing commands, making records, etc.) and decision making (information reception and processing). (M.D.)

  1. Modern design and safety analysis of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Jordan, K.A.; Springfels, D.; Schubring, D.

    2015-01-01

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed

  2. Modern design and safety analysis of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kjordan@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Springfels, D., E-mail: dspringfels@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Schubring, D., E-mail: dlschubring@ufl.edu [University of Florida, 202 Nuclear Science Building, PO Box 118300, Gainesville, FL 32611-8300 (United States)

    2015-05-15

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed.

  3. Education and training activities at North Carolina State University's PULSTAR reactor

    International Nuclear Information System (INIS)

    Mayo, C.W.

    1992-01-01

    Research reactor utilization has been an integral part of the North Carolina State University's (NCSU's) nuclear engineering program since its inception. The undergraduate curriculum has a strong teaching laboratory component. Graduate classes use the reactor for selected demonstrations, experiments, and projects. The reactor is also used for commercial power reactor operator training programs, neutron radiography, neutron activation analysis (NAA), and sample and tracer activation for industrial short courses and services as part of the university's land grant mission. The PULSTAR reactor is a 1-MW pool-type reactor that uses 4% enriched UO 2 pellet fuel in Zircaloy II cladding. Standard irradiation facilities include wet exposure ports, a graphite thermal column, and a pneumatic transfer system. In the near term, general facility upgrades include the installation of signal isolation and computer data acquisition and display functions to improve the teaching and research interface with the reactor. In the longer term, the authors foresee studies of new core designs and the development of beam experiment design tools. These would be used to study modifications that may be desired at the end of the current core life and to undertake the development of new research instruments

  4. The role of a small teaching reactor in education and training

    International Nuclear Information System (INIS)

    Bobek, L.M.; Mayer, J.A. Jr.

    1992-01-01

    It cannot be simply concluded that because an undergraduate nuclear engineering program has access to a higher power research reactor that the number of BS graduates will be proportionately larger than a program whose reactor operates at a much lower power level. What can be concluded is that although smaller in size and capability, low-power research reactors and the nuclear engineering programs they serve provide an important role in producing much-needed nuclear engineers and scientists at the undergraduate level. Designed and built by General Electric primarily as a teaching tool for nuclear engineering education, the nuclear reactor at Worcester Polytechnic Institute (WPI) first began operation in 1959. The reactor power level was upgraded from 1 to 10 kW in 1969, and its 20-yr operating license was renewed in 1983. With the support of DOE funds, the reactor was converted to low-enriched fuel in 1988. Under partial funding from the DOE University Reactor Instrumentation Program, the reactor control console will soon be replaced. Since a small research reactor is an ideal tool for providing basic and intermediate nuclear training, the incorporation of nuclear subjects into traditional disciplines will consequently enhance reactor facility usage. With its continued modernization, the WPI nuclear reactor facility will play a key role in meeting nuclear manpower needs while providing excellent and rewarding career opportunities for students in all disciplines for many years to come

  5. Training and qualification of licensed reactor operators at General Public Utilities Nuclear Corporation

    International Nuclear Information System (INIS)

    Long, R.L.; Coe, R.P.

    1992-01-01

    Following the Three Mile Island-2 (TMI-2) accident in 1979, the utility responsible for managing the facility has looked closely at the training and qualification of its reactor operators. Performance-based operator training programmes are now in place, as required by the United States National Academy for Nuclear Training. Operators also participate directly in the development of a professional code of behaviour. (UK)

  6. The reconstruction of the training reactor of the Budapest Technical University

    International Nuclear Information System (INIS)

    Viragh, E.

    1981-01-01

    The reconstruction of the training reactor between 1978 and 1981 did not hinder the education and training activities of the University. Dosimetric measurements during the test run revealed no additional hazard from the elevation of power from 10 to 100 kW. (author)

  7. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Capnocytophaga ochracea (Pr vot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically not yet charted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic (CO2-requiring) organism with the ability to grow under anaerobic as well as aerobic conditions (oxygen concentration larger than 15%), here only in the presence of 5% CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome se-quence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Pilot program: NRC severe reactor accident incident response training manual: Severe reactor accident overview

    International Nuclear Information System (INIS)

    McKenna, T.J.; Martin, J.A.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Giitter, J.G.; Watkins, R.M.

    1987-02-01

    This pilot training manual has been written to fill the need for a general text on NRC response to reactor accidents. The manual is intended to be the foundation for a course for all NRC response personnel. Severe Reactor Accident Overview is the second in a series of volumes that collectively summarize the US Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes elementary perspectives on severe accidents and accident assesment. Each volume serves, respectively, as the text for a course of instruction in a series of courses. Each volume is accompanied by an appendix of slides that can be used to present this material. The slides are called out in the text

  9. AKR-1 nuclear training reactor of Dresden Technical University turns twenty-five

    International Nuclear Information System (INIS)

    Hansen, W.

    2003-01-01

    Twenty-five years ago, in the night of July 27 to 28, 1978, the AKR-1 nuclear training reactor of the Dresden Technical University went critical for the first time and was commissioned. On the occasion of this anniversary, a colloquy was arranged with representatives from science, politics and industry, at which the reactor's history, the excellent achievements in research and training with the reactor, and the status and perspectives of this research facility were described. The AKR-1 had been built within the framework of the Nuclear Development Program of the then German Democratic Republic (GDR). The Nuclear Power Scientific Division of the Dresden Technical University had been entrusted with the responsibility, among other things, to train university personnel for the GDR Nuclear Power Program. The review by an expert group in 1996 of this plant had resulted in a recommendation in favor of long-term plant operation. A nuclear licensing procedure to this effect was initiated, and the necessary technical backfitting measures were implemented. The AKR-1 plant now equally serves for the specialized training of students and for research. (orig.) [de

  10. Combined use of the RPI [Rensselaer Polytechnic Institute] reactor for training and critical experiments

    International Nuclear Information System (INIS)

    Harris, D.R.; Rohr, R.R.; Rodriguez-Vera, F.

    1990-01-01

    The Rensselaer Polytechnic Institute (RPI) reactor critical facility (RCF) has provided educational and research opportunities for RPI and other students for >25 yr. The RCF was built by the American Locomotive Company (ALCO) in the 1950s as a critical facility in support of the army package power reactor program, and, when ALCO went out of business in 1964, the RCF was acquired by RPI. Since that time, RPI has operated the RCF primarily in a teaching mode in the nuclear engineering department, although reactor research, activation analyses, and reactivity assays have been carried out as well. Until recently, the RCF was fueled by plates containing highly enriched uranium as a cermet in stainless steel. This highly enriched uranium (HEU) fuel was replaced recently by 4.81 wt% enriched UO 2 high-density pellets clad in stainless steel rods. The use of these SPERT (F1) fuel rods in the RCF provided a cost-effective method for conversion of the core from HEU to low-enriched uranium and for enhancement of the RCF training and research program. The RCF is the only facility in the United States that provides reactor training on a core containing fuel that is similar to that used in power industry light water reactors (LWRs). Moreover, the RCF is the only facility in the United States currently available for supplying critical experimental data in support of the LWR power industry. Thus, the RCF is in a unique position to carry out important training and research services consistent with RPI's nuclear engineering objectives

  11. Study of dietary supplements compositions by neutron activation analysis at the VR-1 training reactor

    Science.gov (United States)

    Stefanik, Milan; Rataj, Jan; Huml, Ondrej; Sklenka, Lubomir

    2017-11-01

    The VR-1 training reactor operated by the Czech Technical University in Prague is utilized mainly for education of students and training of various reactor staff; however, R&D is also carried out at the reactor. The experimental instrumentation of the reactor can be used for the irradiation experiments and neutron activation analysis. In this paper, the neutron activation analysis (NAA) is used for a study of dietary supplements containing the zinc (one of the essential trace elements for the human body). This analysis includes the dietary supplement pills of different brands; each brand is represented by several different batches of pills. All pills were irradiated together with the standard activation etalons in the vertical channel of the VR-1 reactor at the nominal power (80 W). Activated samples were investigated by the nuclear gamma-ray spectrometry technique employing the semiconductor HPGe detector. From resulting saturated activities, the amount of mineral element (Zn) in the pills was determined using the comparative NAA method. The results show clearly that the VR-1 training reactor is utilizable for neutron activation analysis experiments.

  12. Innovations and Enhancements for a Consortium of Big-10 University Research and Training Reactors. Final Report

    International Nuclear Information System (INIS)

    Brenizer, Jack

    2011-01-01

    The Consortium of Big-10 University Research and Training Reactors was by design a strategic partnership of seven leading institutions. We received the support of both our industry and DOE laboratory partners. Investments in reactor, laboratory and program infrastructure, allowed us to lead the national effort to expand and improve the education of engineers in nuclear science and engineering, to provide outreach and education to pre-college educators and students and to become a key resource of ideas and trained personnel for our U.S. industrial and DOE laboratory collaborators.

  13. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  14. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.; Powers, Jeffrey J.

    2016-01-01

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 "7LiF-BeF_2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  15. Reactor operator: Training for the job while earning college credit

    International Nuclear Information System (INIS)

    Murdick, S.A.

    1988-01-01

    The nuclear industry is looking for ways to maximize the dollars spent to train licensed reactor operators and other personnel and, at the same time, upgrade their educational level. The prospects of college credit and/or degree requirements imposed by the US Nuclear Regulatory Commission have provided a significant driving force behind this search. The task is complicated, however, because shift schedules do not permit reactor operators to pursue higher education through the traditional classroom route, and the need for plant-specific training and requalification programs dictate against uniformly adapting college-based courses for training use. The National Program on Noncollegiate Sponsored Instruction (National PONSI) has been of considerable help to the nuclear industry in meeting these challenges. Through its college credit recommendation service, National PONSI has assessed the comparability of certain industry training activities to college-level instruction and has been instrumental in gaining academic recognition of these activities. The program has become a vital means for the industry to achieve its dual mission of preparing employees to successfully perform their jobs and providing them with ways to obtain college degrees in the shortest possible time

  16. Reactor operator: Training for the job while earning college credit

    Energy Technology Data Exchange (ETDEWEB)

    Murdick, S.A.

    1988-01-01

    The nuclear industry is looking for ways to maximize the dollars spent to train licensed reactor operators and other personnel and, at the same time, upgrade their educational level. The prospects of college credit and/or degree requirements imposed by the US Nuclear Regulatory Commission have provided a significant driving force behind this search. The task is complicated, however, because shift schedules do not permit reactor operators to pursue higher education through the traditional classroom route, and the need for plant-specific training and requalification programs dictate against uniformly adapting college-based courses for training use. The National Program on Noncollegiate Sponsored Instruction (National PONSI) has been of considerable help to the nuclear industry in meeting these challenges. Through its college credit recommendation service, National PONSI has assessed the comparability of certain industry training activities to college-level instruction and has been instrumental in gaining academic recognition of these activities. The program has become a vital means for the industry to achieve its dual mission of preparing employees to successfully perform their jobs and providing them with ways to obtain college degrees in the shortest possible time.

  17. Team skills training

    International Nuclear Information System (INIS)

    Coe, R.P.; Carl, D.R.

    1991-01-01

    Numerous reports and articles have been written recently on the importance of team skills training for nuclear reactor operators, but little has appeared on the practical application of this theoretical guidance. This paper describes the activities of the Training and Education Department at GPU Nuclear (GPUN). In 1987, GPUN undertook a significant initiative in its licensed operator training programs to design and develop initial and requalification team skills training. Prior to that time, human interaction skills training (communication, stress management, supervisory skills, etc.) focused more on the individual rather than a group. Today, GPU Nuclear conducts team training at both its Three Mile Island (YMI), PA and Oyster Creek (OC), NJ generating stations. Videotaped feedback is sued extensively to critique and reinforce targeted behaviors. In fact, the TMI simulator trainer has a built-in, four camera system specifically designed for team training. Evaluations conducted on this training indicated these newly acquired skills are being carried over to the work environment. Team training is now an important and on-going part of GPUN operator training

  18. Upgrade of VR-1 training reactor I and C

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Chab, V.

    2003-01-01

    The contribution describes the upgrade of the VR-1 training reactor I and C (Instrumentation and Control). The reactor was put into operation in the 1990, and its I and C seems to be obsolete now. The new I and C utilises the same digital technology as the old one. The upgrade has been done gradually during holidays in order not to disturb the reactor utilisation during teaching and training. The first stage consisted in the human-machine interface and the control room upgrade in 2001. A new operator's desk, displays, indicators and buttons were installed. Completely new software and communication interface to the present I and C were developed. During the second stage in 2002, new control rod drivers and safety circuits were installed. The rod motors were replaced and necessary mechanical changes on the control rod mechanism, induced by the utilisation of the new motor, were done. The new safety circuits utilise high quality relays with forced contacts to guarantee high reliability of their operation. The third stage, the control system upgrade is being carried out now. The new control system is based on an industrial PC mounted in a 19 inch crate. The operating system of the PC is the Microsoft Windows XP with the real time support RTX of the VentureCom Company. A large amount of work has been devoted to the software requirements to specify all dependencies, modes and permitted actions, safety measures, etc. The Department took an active part in the setting of software requirements and later in verification and validation of the software and the whole control system. Finally, a new protection system consisting of power measuring and power protection channels will be installed in 2004 or 2005. (author)

  19. Reactor training simulator for the Replacement Research Reactor (RRR)

    International Nuclear Information System (INIS)

    Etchepareborda, A; Flury, C.A; Lema, F; Maciel, F; Alegrechi, D; Damico, M; Ibarra, G; Muguiro, M; Gimenez, M; Schlamp, M; Vertullo, A

    2004-01-01

    The main features of the ANSTO Replacement Research Reactor (RRR) Reactor Training Simulator (RTS) are presented.The RTS is a full-scope and partial replica simulator.Its scope includes a complete set of plant normal evolutions and malfunctions obtained from the plant design basis accidents list.All the systems necessary to implement the operating procedures associated to these transients are included.Within these systems both the variables connected to the plant SCADA and the local variables are modelled, leading to several thousands input-output variables in the plant mathematical model (PMM).The trainee interacts with the same plant SCADA, a Foxboro I/A Series system.Control room hardware is emulated through graphical displays with touch-screen.The main system models were tested against RELAP outputs.The RTS includes several modules: a model manager (MM) that encapsulates the plant mathematical model; a simulator human machine interface, where the trainee interacts with the plant SCADA; and an instructor console (IC), where the instructor commands the simulation.The PMM is built using Matlab-Simulink with specific libraries of components designed to facilitate the development of the nuclear, hydraulic, ventilation and electrical plant systems models [es

  20. Experience in the recruitment, organization and training of operations and maintenance personnel for the Malaysian research reactor

    International Nuclear Information System (INIS)

    Jamal Khair Ibrahim.

    1983-01-01

    The TRIGA Reactor located at the Tun Ismail Atomic Research Centre (PUSPATI) Complex is owned and operated by the Nuclear Energy Unit of the Prime Minster's Department. The operations and maintenance personnel are part and parcel of the national civil service organization. As such, the requirement and remuneration of these personnel are handled by a central federal government personnel management agency in common with personnel from other federal government agencies. In addition, the reactor is the first and only one in Malaysia, a developing country, which is the process of committing herself towards a nuclear power programme. These factors coupled with the absence of an independent reactor operator licensing agency posed unique problems in the recruitment, organization, training and licensing of operations personnel for the facility. The paper discusses these factors and their bearing on the recruitment, training, licensing and career development prospects of the PUSPATI TRIGA Reactor operators. (author)

  1. Utilization of the Dalat Research Reactor for Radioisotope Production, Neutron Activation Analysis, Research and Training

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Duong Van Dong; Cao Dong Vu; Nguyen Xuan Hai

    2013-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW pool type reactor loaded with a mixed core of HEU (36% enrichment) and LEU (19.75% enrichment) fuel assemblies. The reactor is used as a neutron source for the purposes of radioisotopes production, neutron activation analysis, basic and applied research and training. The reactor is operated mainly in continuous runs of 108 hours for cycles of 3–4 weeks for the above mentioned purposes. The current status of safety, operation and utilization of the reactor is given and some aspects for improvement of commercial products and services of the DNRR are also discussed in this paper. (author)

  2. Investigation of slightly forced buoyant flow in a training reactor

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.; Por, G.

    2001-01-01

    A measurement based on the temperature noise analysis method was carried out in the Training Reactor of the Budapest University of Technology and Economics. The main goals were the estimation of the flow velocity immediately above the reactor core and investigation of the thermal-hydraulical conditions of the reactor, mainly in the core. Subsequently 2D and 3D computations were carried out with the aid of the code CFX- 4.3. The main objective of the 2D calculation was to clarify the thermal-hydraulical conditions of the whole reactor tank with a reasonable computing demand. It was also necessary to accomplish 3D numerical investigations of the reactor core and the space above since three dimensional effects of the flow could only be studied in this way. In addition, obtaining certain boundary conditions of the 3D computations was another significant aim of the 2D investigations. It is important that the results of the noise analysis and the operational measuring system of the reactor gave us a basis for verifying our computations.(author)

  3. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit

  4. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  5. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.

  6. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  7. SILOETTE, a training centre for reactor physics at the Nuclear Research Centre of Grenoble

    International Nuclear Information System (INIS)

    Destot, M.

    1983-10-01

    The Reactor Department of Grenoble has created, based on Siloette, an activity of training in reactor physics, wich is running since 1975 to meet the important needs generated by the development of electronuclear power stations. Its essential goal is to provide an initiation to the basic physical phenomena which determine the operation of the reactors. For that purpose, a rather comprehensive program of practical works on reactor (SILOETTE) and on nuclear power station simulators (PWR, UNGG) is proposed besides lectures and conferences, general and specialized teaching on the reactor operation principle, kinetics, dynamics and thermics

  8. Simulators and their use in the training of CEGB reactor operations engineers

    International Nuclear Information System (INIS)

    Madden, V.J.; Tompsett, P.A.

    1988-01-01

    The development of simulators in the Central Electricity Generating Board's nuclear power training are traced, and, in describing the overall training programme of an advanced gas-cooled reactor operations engineer, the contribution made by a range of simulation devices from concept through to full-scope replica simulators is indicated. The capabilities of today's simulators are such that they are also making other contributions to the commissioning and safe operation of nuclear power plants. They are being successfully used for ergonomic and procedure validation work and the testing and commissioning of software for automatic control systems, and data and alarm processing systems. (author)

  9. Training courses for the staff of the nuclear power station KRSKO conducted at the TRIGA reactor center in Ljubljana

    International Nuclear Information System (INIS)

    Pregl, G.; Najzer, M.

    1976-01-01

    The training program for the Nuclear Power Station Krsko was divided into two modules: fundamentals of nuclear engineering and specialized training according to duties that candidates are supposed to take at the power station. Basic training was organized at the TRIGA Reactor Center in Ljubljana in two different versions. The first version intended for plant operators and all engineers lasted for six months and included about 500 hours of classroom lessons and seminars and 31 laboratory experiments. The educational program was conventional. The following topics were covered: nuclear and atomic physics, reactor theory, reactor dynamics, reactor instrumentation and control, heat transfer in nuclear power plants, nuclear power plant systems, reactor materials, reactor safety, and radiation protection. Until now, two groups, consisting of 37 candidates altogether, have attended this basic course. Plans have been made to conduct two additional courses of about 20 students each for technicians other than operators. The program of this second version will be reduced, with the emphasis on reactor core physics and radiation protection. Classroom lessons will be strongly supported by laboratory experiments. (author)

  10. Training simulator for nuclear power plant reactor control model and method

    International Nuclear Information System (INIS)

    Czerbuejewski, F.R.

    1975-01-01

    A description is given of a method and system for the real-time dynamic simulation of a nuclear power plant for training purposes, wherein a control console has a plurality of manual and automatic remote control devices for operating simulated control rods and has indicating devices for monitoring the physical operation of a simulated reactor. Digital computer means are connected to the control console to calculate data values for operating the monitoring devices in accordance with the control devices. The simulation of the reactor control rod mechanism is disclosed whereby the digital computer means operates the rod position monitoring devices in a real-time that is a fraction of the computer time steps and simulates the quick response of a control rod remote control lever together with the delayed response upon a change of direction

  11. CAI and training system for the emergency operation procedure in the advanced thermal reactor, FUGEN

    International Nuclear Information System (INIS)

    Kozaki, T.; Imanaga, K.; Nakamura, S.; Maeda, K.; Sakurai, N.; Miyamoto, M.

    2003-01-01

    In the Advanced Thermal Reactor (ATR ) of the JNC, 'FUGEN', a symptom based Emergency Operating Procedure (EOF) was introduced in order to operate Fugen more safely and it became necessary for the plant operators to master the EOF. However it took a lot of time for the instructor to teach the EOP to operators and to train them. Thus, we have developed a Computer Aided Instruction (CAI) and Training System for the EOP, by which the operators can learn the EOP and can be trained. This system has two major functions, i.e., CAI and training. In the CAI function, there are three learning courses, namely, the EOP procedure, the simulation with guidance and Q and A, and the free simulation. In the training function, all of necessary control instruments (indicators, switches, annunciators and so forth) and physics models for the EOP training are simulated so that the trainees can be trained for all of the EOPs. In addition, 50 kinds of malfunction models are installed in order to perform appropriate accident scenarios for the EOP. The training of the EOP covers the range from AOO (Anticipated Operational Occurrence) to Over-DBAs (Design Based Accidents). This system is built in three personal computers that are connected by the computer network. One of the computers is expected to be used for the instructor and the other two are for the trainees. The EOP is composed of eight guidelines, such as 'Reactor Control' and 'Depression and Cooling', and the operation screens which are corresponded to the guidelines are respectively provided. According to the trial, we have estimated that the efficiency of the learning and the training would be improved about 30% for the trainee and about 75% for the instructor in the actual learning and training. (author)

  12. Team training using full-scale reactor coolant pump seal mock-ups

    International Nuclear Information System (INIS)

    McDonald, T.J.; Hamill, R.W.

    1987-01-01

    The use of full-scale reactor coolant pump (RCP) seal mock-ups has greatly enhanced Northeast Utilities' ability to effectively utilize the team training approach to technical training. With the advent of the Institute of Nuclear Power Operations accreditation come a new emphasis and standards for the integrated training of plant engineering personnel, maintenance mechanics, quality control personnel, and health physics personnel. The results of purchasing full-scale RCP mock-ups to pilot the concept of team training have far exceeded expectations and cost-limiting factors. The initial training program analysis identified RCP seal maintenance as a task that required training for maintenance department personnel. Due to radiation exposure considerations and the unavailability of actual plant equipment for training purposes, the decision was made to procure a mock-up of an RCP seal assembly and housing. This mock-up was designed to facilitate seal cartridge removal, disassembly, assembly, and installation, duplicating all internal components of the seal cartridge and housing area in exact detail

  13. IAEA Workshop (Training Course) on Codes and Standards for Sodium Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The training course consisted of lectures and Q&A sessions. The lectures dealt with the history of the development of Design Codes and Standards for Sodium Cooled Fast Reactors (SFRs) in the respective country, the detailed description of the current design Codes and Standards for SFRs and their application to ongoing Fast Reactor design projects, as well as the ongoing development work and plans for the future in this area. Annex 1 contains the detailed Workshop program

  14. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin

    2014-01-01

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor

  15. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin [University of Illinois, Urbana (United States)

    2014-08-15

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor.

  16. Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems : Method Development for Multi-Physics in Reactors

    NARCIS (Netherlands)

    Perkó, Z.

    2015-01-01

    This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well

  17. Simulación con el código MCNP del reactor nuclear RP-10 en su configuración #14, BOC

    OpenAIRE

    Lázaro, Gerardo; Parreño, Fernando

    2001-01-01

    Se presenta los resultados de exceso de reactividad del núcleo del reactor RP-10 en su configuración 14. Este exceso de reactividad ha sido calculado con MCNP4B con un modelo que describe en detalle las características de los elementos combustibles normales y de control, así como de cada elemento que constituye la configuración de trabajo #14. Este modelo fue previamente utilizado en el reactor RP-0 y ha sido aplicado en la configuración de arranque para el cálculo del exceso de reactividad y...

  18. A simulator-based nuclear reactor emergency response training exercise.

    Science.gov (United States)

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  19. Flow-based method for epinephrine determination using a solid reactor based on molecularly imprinted poly(FePP-MAA-EGDMA)

    International Nuclear Information System (INIS)

    Sartori, Lucas Rossi; Santos, Wilney de Jesus Rodrigues; Kubota, Lauro Tatsuo; Segatelli, Mariana Gava; Tarley, Cesar Ricardo Teixeira

    2011-01-01

    A solid phase reactor based on molecularly imprinted poly(iron (III) protoporphyrin-methacrylic acid-ethylene glycol dimethacrylate) (MIP-MAA) has been synthesized by bulk method and applied as an selective material for the epinephrine determination in the presence of hydrogen peroxide. In order to prove the selective behaviour of MIP, two blank polymers named non-imprinted polymer (NIP1), non-imprinted polymer in the absence of hemin (NIP2) as well as a poly(iron (III) protoporphyrin-4-vynilpyridine-ethylene glycol dimethacrylate) (MIP-4VPy) were synthesized. The epinephrine-selective MIP-MAA reactor was used in a flow injection system, in which an epinephrine solution (120 μL) at pH 8.0 percolates in the presence of hydrogen peroxide (300 μmol L -1 ) through MIP-MAA. The oxidation of epinephrine by hydrogen peroxide is increased by using MIP-MAA, being the product formed monitored by amperometry at 0.0 V vs. Ag/AgCl. The MIP-MAA showed better selective behaviour than NIP1, NIP2 and MIP-4VPy, demonstrating the effectiveness of molecular imprinting effect. Highly improved response was observed for epinephrine in detriment of similar substances (phenol, ascorbic acid, methyl-L-DOPA, p-aminophenol, catechol, L-DOPA and guaiacol). The method provided a calibration curve ranging from 10 to 500 μmol L -1 and a limit of detection of 5.2 μmol L -1 . Kinetic data indicated a value of maximum rate V max (0.993 μA) and apparent Michaelis-Menten constant of K m app (725.6 μmol L -1 ). The feasibility of biomimetic solid reactor was attested by its successful application for epinephrine determination in pharmaceutical formulation.

  20. RA reactor operation and maintenance in 1994, Part 1; Deo 1 - Pogon i odrzavanje nuklearnog reaktora RA u 1994. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Cupac, S; Sulem, B; Zivotic, Z; Mikic, N; Tanaskovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1994-12-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. The spent fuel elements used from the very beginning of reactor operation are stored in the existing pools. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988 and was fulfilled in 1990. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor. [Serbo-Croat] U proteklom periodu reaktor RA nije bio u pogonu zato sto je 30. jula Republicki komitet za zdravlje i socijalnu politiku republike Srbije, zabranio njegov rad zbog toga sto reaktor ne poseduje sistem za udesno hladjenje i ne poseduje odgovarajuce filtere u sistemu specijalne ventilacije. Zavrseni su radovi na izgradnji sistema za udesno hladjenje, rekonstrukciji postojeceg sistema specijalne ventilacije i rekonstrukciji sistema za napajanje elektricnom energijom. Zapoceti su radovi na modernizaciji, odnosno zameni instrumentacije reaktora ali njegova realizacija kasni

  1. Major Refurbishment of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Joradn, Kelly; Berglund, Matthew; Shea, Brian

    2013-01-01

    The research reactor fleet is aging with few replacements being built. At the same time the technology for refurbishment of the older reactors has advanced well beyond that of currently installed equipment. The disparity between new and old technology results in an inability to find simple replacements for the older, highly integrated components. The lack of comprehensive guidance for digital equipment adds to the technical problems of installing individual replacement parts. Up to this point, no U. S. facilities have attempted a complete modernization effort because of the time commitment, financial burden, and licensing required for a total upgrade. The University of Florida Training Reactor is tackling this problem with a replacement of nearly all of the major facility sub-systems, including electrical distribution, reactor controls, nuclear instrumentation, security, building management, and environmental controls. This approach offers increased flexibility over the piece-by-piece replacement method by leveraging modern control systems based on global standards and capable of good data interchange with higher levels of redundancy. The UFTR reviewed numerous technologies to arrive at the final system architecture and this 'clean-slate' installation methodology. It is this concept of total system replacement and strict use of modular, open-standards technology that has allowed for a facility design that will be easy to install, maintain, and build upon over time

  2. Major Refurbishment of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joradn, Kelly; Berglund, Matthew; Shea, Brian [Univ., of Florida, Florida (United States)

    2013-07-01

    The research reactor fleet is aging with few replacements being built. At the same time the technology for refurbishment of the older reactors has advanced well beyond that of currently installed equipment. The disparity between new and old technology results in an inability to find simple replacements for the older, highly integrated components. The lack of comprehensive guidance for digital equipment adds to the technical problems of installing individual replacement parts. Up to this point, no U. S. facilities have attempted a complete modernization effort because of the time commitment, financial burden, and licensing required for a total upgrade. The University of Florida Training Reactor is tackling this problem with a replacement of nearly all of the major facility sub-systems, including electrical distribution, reactor controls, nuclear instrumentation, security, building management, and environmental controls. This approach offers increased flexibility over the piece-by-piece replacement method by leveraging modern control systems based on global standards and capable of good data interchange with higher levels of redundancy. The UFTR reviewed numerous technologies to arrive at the final system architecture and this 'clean-slate' installation methodology. It is this concept of total system replacement and strict use of modular, open-standards technology that has allowed for a facility design that will be easy to install, maintain, and build upon over time.

  3. An independent safety assessment of Department of Energy nuclear reactor facilities: Training of operating personnel and personnel selection

    International Nuclear Information System (INIS)

    Drain, J.F.

    1981-02-01

    This study has been prepared for the Department of Energy's Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. Its purpose is to provide the Committee with background information on, and assessment of, the selection, training, and qualification of nuclear reactor operating personnel at DOE-owned facilities

  4. Design of subjects training on reactor simulator and feasibility study - toward the empirical evaluation of interface design concept

    International Nuclear Information System (INIS)

    Yamaguchi, Y.; Furukawa, H.; Tanabe, F.

    1998-01-01

    On-going JAERI's project for empirical evaluation of the ecological interface design concept was first described. The empirical evaluation is planned to be proceeded through three consecutive steps; designing and actual implementation of the interface on reactor simulator, verification of the interface created, and the validation by the simulator experiment. For conducting the project, three different experimental resources are prerequisite, that are, data analysis method for identifying the operator's strategies, experimental facility including reactor simulator, and experimental subjects or subjects training method. Among the three experimental resources, subjects training method was recently designed and a simulator experiment was earned out in order to examine the feasibility of the designed training method. From the experiment and analysis of the experimental records, we could conclude that it is feasible that the experimental subjects having an appropriate technical basis can gain the sufficient competence for evaluation work of the interface design concept by using the training method designed. (author)

  5. International Project on Innovative Nuclear Reactors and Fuel Cycles: Introduction and Education and Training Activity

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Phillips, J.R.; Rho, K.; Grigoriev, A.; Korinny, A.; Ponomarev, A.

    2015-01-01

    The IAEA’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution with aim to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21st century. INPRO seeks to bring together technology holders, users and newcomers to consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles, with a particular focus on sustainability and needs of developing countries. It is a mechanism for INPRO Members to collaborate on topics of joint interest. INPRO activities are undertaken in close cooperation with Member States in the following main areas: Global Scenarios, Innovations, Sustainability Assessment and Strategies, Policy and Dialogue. The paper presents short introduction in INPRO and specifically the distant Education and Training INPRO activity on important topics of nuclear energy sustainability to audiences in different Member States. These activities can support capacity building and national human resource development in the nuclear energy sector. The main benefit of such training courses and workshops is that it is not only targeted to students, but also to lecturers of technical and nuclear universities. Moreover, young professionals working at nuclear energy departments, electric utilities, energy ministries and R&D institutions can participate in such training and benefit from it. (authors)

  6. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    Science.gov (United States)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  7. Calibration of new I and C at VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, Martin; Jurickova, Monika

    2011-01-01

    The paper describes a calibration of the new instrumentation and control (I and C) at the VR-1 training reactor in Prague. The I and C uses uncompensated fission chambers for the power measurement that operate in a pulse or a DC current and a Campbell regime, according to the reactor power. The pulse regime uses discrimination for the avoidance of gamma and noise influence of the measurement. The DC current regime employs a logarithmic amplifier to cover the whole reactor DC current power range with only one electronic circuit. The system computer calculates the real power from the logarithmic data. The Campbell regime is based on evaluation of the root mean square (RMS) value of the neutron noise. The calculated power from Campbell range is based on the square value of the RMS neutron noise data. All data for the power calculation are stored in computer flash memories. To set proper data there, it was necessary to carry out the calibration of the I and C. At first, the proper discrimination value was found while examining the spectrum of the neutron signal from the chamber. The constants for the DC current and Campbell calculations were determined from an independent reactor power measurement. The independent power measuring system that was used for the calibration was accomplished by a compensated current chamber with an electrometer. The calculated calibration constants were stored in the computer flash memories, and the calibrated system was again successfully compared with the independent power measuring system. Finally, proper gamma discrimination of the Campbell system was carefully checked.

  8. Flow-based method for epinephrine determination using a solid reactor based on molecularly imprinted poly(FePP-MAA-EGDMA)

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Lucas Rossi [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal de Alfenas (Unifal-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas/MG (Brazil); Santos, Wilney de Jesus Rodrigues [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria Zeferino Vaz s/n,13083-970, Campinas/SP (Brazil); Kubota, Lauro Tatsuo [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria Zeferino Vaz s/n,13083-970, Campinas/SP (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (Unicamp), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino Vaz s/n, 13083-970, Campinas/SP (Brazil); Segatelli, Mariana Gava [Departamento de Quimica, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia PR 445 Km 380, 86051-990, Londrina/PR (Brazil); Tarley, Cesar Ricardo Teixeira, E-mail: tarley@uel.br [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal de Alfenas (Unifal-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas/MG (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (Unicamp), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino Vaz s/n, 13083-970, Campinas/SP (Brazil)

    2011-03-12

    A solid phase reactor based on molecularly imprinted poly(iron (III) protoporphyrin-methacrylic acid-ethylene glycol dimethacrylate) (MIP-MAA) has been synthesized by bulk method and applied as an selective material for the epinephrine determination in the presence of hydrogen peroxide. In order to prove the selective behaviour of MIP, two blank polymers named non-imprinted polymer (NIP1), non-imprinted polymer in the absence of hemin (NIP2) as well as a poly(iron (III) protoporphyrin-4-vynilpyridine-ethylene glycol dimethacrylate) (MIP-4VPy) were synthesized. The epinephrine-selective MIP-MAA reactor was used in a flow injection system, in which an epinephrine solution (120 {mu}L) at pH 8.0 percolates in the presence of hydrogen peroxide (300 {mu}mol L{sup -1}) through MIP-MAA. The oxidation of epinephrine by hydrogen peroxide is increased by using MIP-MAA, being the product formed monitored by amperometry at 0.0 V vs. Ag/AgCl. The MIP-MAA showed better selective behaviour than NIP1, NIP2 and MIP-4VPy, demonstrating the effectiveness of molecular imprinting effect. Highly improved response was observed for epinephrine in detriment of similar substances (phenol, ascorbic acid, methyl-L-DOPA, p-aminophenol, catechol, L-DOPA and guaiacol). The method provided a calibration curve ranging from 10 to 500 {mu}mol L{sup -1} and a limit of detection of 5.2 {mu}mol L{sup -1}. Kinetic data indicated a value of maximum rate V{sub max} (0.993 {mu}A) and apparent Michaelis-Menten constant of K{sub m}{sup app}(725.6 {mu}mol L{sup -1}). The feasibility of biomimetic solid reactor was attested by its successful application for epinephrine determination in pharmaceutical formulation.

  9. Investigations of the reactivity temperature coefficient of the Dresden Technical University training and research reactor

    International Nuclear Information System (INIS)

    Adam, E.; Knorr, J.

    1982-01-01

    Approximate formulas are derived for determining the temperature coefficient of reactivity of the training and research reactor (AKR) of the Dresden Technical University. Values calculated on the basis of these approximations show good agreement with experimentally obtained results, thus confirming the applicability of the formulas to simple systems

  10. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  11. New digital control and power protection system of VR 1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Juoeickova, M.

    2005-01-01

    The contribution describes the new VR-1 training reactor control and power protection system at the Czech Technical University in Prague. The control system provides safety and control functions, calculates average values of the important variables and sends data and system status to the human-machine interface. The upgraded control system is based on a high quality industrial PC. The operating system of the PC is the Microsoft Windows XP with the real time support RTX of the VentureCom Company. The software was developed according to requirements in MS Visual C. The independent power protection system is a component of the reactor safety (protection) system with high quality and reliability requirements. The digital system is redundant; each channel evaluates the reactor power and the velocity of power changes and provides safety functions. The digital part of the channel is multiprocessor-based. The software was developed with respect to nuclear standards. The software design was coded in the C language regarding the NRC restrictions. Configuration management, verification and validation accompanied the software development. Both systems were thoroughly tested. Firstly, the non active tests were carried out. During these tests, the active core of the reactor was subcritical; the input signals were generated from HPIB and VXI controlled instruments to simulate different operational and safety events. The software for instruments control and tests evaluation utilized Agilent VEE development system. After the successful non active checking, the active tests followed. (author)

  12. Annual progress report of the University of Florida Training Reactor September 1, 1979-August 31, 1980

    International Nuclear Information System (INIS)

    Diaz, N.J.

    1980-11-01

    Reported are: reactor operation, modifications, maintenance and tests, changes to technical specifications and standard operating procedures, radioactive releases and environmental surveillance, and training utilization

  13. Computer modeling of the dynamic processes in the Maryland University Training Reactor - (MUTR)

    International Nuclear Information System (INIS)

    White, Bernard H. IV; Ebert, David

    1988-01-01

    The simulator described in this paper models the behaviour of the Maryland University Training Reactor (MUTR). The reactor is a 250 kW, TRIGA reactor. The computer model is based on a system of five primary equations and eight auxiliary equations. The primary equations consist of the prompt jump approximation, a heat balance equation for the fuel and the moderator, and iodine and xenon buildup equations. For the comparison with the computer program, data from the reactor was acquired by using a personal computer (pc) which contained a Strawberry Tree data acquisition Card, connected to the reactor. The systems monitored by the pc were: two neutron detectors, fuel temperature, water temperature, three control rod positions and the period meter. The time differenced equations were programmed in the basic language. It has been shown by this paper, that the MUTR power rise from low power critical to high power, can be modelled by a relatively simple computer program. The program yields accurate agreement considering the simplicity of the program. The steady state error between the reactor and computer power is 4.4%. The difference in steady state temperatures, 112 deg. C and 117 deg. C, of the reactor and computer program, respectively, also yields a 4.5% error. Further fine tuning of the coefficients will yield higher accuracies

  14. Well-Conditioned Multi-Level Fast Multipole Modeling of Military Communication Channels

    National Research Council Canada - National Science Library

    Carin, Lawrence

    2004-01-01

    Duke University and Virginia Polytechnic Institute and State University (VPI&SU) propose to team in a research effort to develop computer codes for the analysis and prediction of electromagnetic wave (EM...

  15. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  16. Multimedia Course on Nuclear Reactors Physics, Application to a Tailored On the Job Training Course

    International Nuclear Information System (INIS)

    Dies, Javier

    2014-01-01

    In order to improve education and training quality, a Multimedia on Nuclear Reactor Physics has been developed. In some institutions, this course is called Fundamentals of Nuclear Reactor Operation. Nowadays, this multimedia has about 800 slides and the text is in Spanish, English, French and Russian. Until now about 126 institutions from 53 countries have applied for the multimedia. The teacher uses the multimedia during his lectures. Students use it at home to study this course

  17. Development of a training simulator to operators of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carvalho, Ricardo Pinto de

    2006-01-01

    This work reports the development of a Simulator for the IEA-R1 Research Reactor. The Simulator was developed with Visual C++ in two stages: construction of the mathematics models and development and configuration of graphics interfaces in a Windows XP executable. A simplified modeling was used for main physics phenomena, using a point kinetics model for the nuclear process and the energy and mass conservation laws in the average channel of the reactor for the thermal hydraulic process. The dynamics differential equations were solved by using finite differences through the 4th order Runge- Kutta method. The reactivity control, reactor cooling, and reactor protection systems were also modeled. The process variables are stored in ASCII files. The Simulator allows navigating by screens of the systems and monitoring tendencies of the operational transients, being an interactive tool for teaching and training of IEA-R1 operators. It also can be used by students, professors, and researchers in teaching activities in reactor and thermal hydraulics theory. The Simulator allows simulations of operations of start up, power maneuver, and shut down. (author)

  18. The role of the IPR-R1 TRIGA Mark I research reactor in nuclear education and training in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Andrea V.; Mesquita, Amir Z.; Maretti Junior, Fausto; Souza, Rose Mary G.P.; Dalle, Hugo M.; Paiano, Silvestre, E-mail: avf@cdtn.br, E-mail: amir@cdtn.br, E-mail: fmj@cdtn.br, E-mail: souzarm@cdtn.br, E-mail: dallehm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The revival of the Brazilian nuclear program has anticipated a large demand for training in nuclear technology. The Nuclear Technology Development Center (CDTN), a research institute of the Brazilian Nuclear Energy Commission (CNEN), offers the Operator Training Course on Research Reactors (CTORP). This course has existed since 1974 and about 258 workers were certificated by CTORP. This article describes the activities of CTORP and presents a proposal for its activities expansion in order to provide the current demand in the nuclear technology. Experimental research projects programs would be created in the postgraduate course at CDTN. In addition to the normal reactor physics topics addressed by CTORP, new subjects such as thermal hydraulic and instrumentation should be added and discussed too. (author)

  19. The role of the IPR-R1 TRIGA Mark I research reactor in nuclear education and training in Brazil

    International Nuclear Information System (INIS)

    Ferreira, Andrea V.; Mesquita, Amir Z.; Maretti Junior, Fausto; Souza, Rose Mary G.P.; Dalle, Hugo M.; Paiano, Silvestre

    2011-01-01

    The revival of the Brazilian nuclear program has anticipated a large demand for training in nuclear technology. The Nuclear Technology Development Center (CDTN), a research institute of the Brazilian Nuclear Energy Commission (CNEN), offers the Operator Training Course on Research Reactors (CTORP). This course has existed since 1974 and about 258 workers were certificated by CTORP. This article describes the activities of CTORP and presents a proposal for its activities expansion in order to provide the current demand in the nuclear technology. Experimental research projects programs would be created in the postgraduate course at CDTN. In addition to the normal reactor physics topics addressed by CTORP, new subjects such as thermal hydraulic and instrumentation should be added and discussed too. (author)

  20. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  1. Reduced enrichment fuel and its reactivity effects in the University Training Reactor Moata

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1983-08-01

    Concern for nuclear proliferation is likely to preclude future supply of highly enriched uranium fuel for research reactors such as the University Training Reactor Moata. This study calculates the fuel densities necessary to maintain the reactivity per plate of the present high enrichment (90 per cent 235 U) fuel for a range of lower enrichments assuming that no geometry changes are allowed. The maximum uranium density for commercially available aluminium-type research reactor fuels is generally considered to be about 1.7 g cm -3 . With this density limitation, the minimum enrichment to maintain present reactivity per plate is about 35 per cent 235 U. For low enrichment (max. 20 per cent 235 U) fuel, the required U density is about 2.9 g cm -3 , which is beyond the expected range for UAl/sub x/-Al but within that projected for the longer term development and full qualification for U 3 O 8 -Al. Medium enrichment (nominally 45 per cent 235 U) Al/sub x/-Al would be entirely satisfactory as an immediate replacement fuel, requiring no modifications to the reactor and operating procedures, and minimal reappraisal of safety issues. Included in this study are calculations of the fuel coefficients at various enrichments, the effect of replacing standard fuel plates or complete elements with 45 per cent enriched fuel, and the reactivity to be gained by replacing 12-plate with 13-plate elements

  2. Necessity of research reactors

    International Nuclear Information System (INIS)

    Ito, Tetsuo

    2016-01-01

    Currently, only three educational research reactors at two universities exist in Japan: KUR, KUCA of Kyoto University and UTR-KINKI of Kinki University. UTR-KINKI is a light-water moderated, graphite reflected, heterogeneous enriched uranium thermal reactor, which began operation as a private university No. 1 reactor in 1961. It is a low power nuclear reactor for education and research with a maximum heat output of 1 W. Using this nuclear reactor, researches, practical training, experiments for training nuclear human resources, and nuclear knowledge dissemination activities are carried out. As of October 2016, research and practical training accompanied by operation are not carried out because it is stopped. The following five items can be cited as challenges faced by research reactors: (1) response to new regulatory standards and stagnation of research and education, (2) strengthening of nuclear material protection and nuclear fuel concentration reduction, (3) countermeasures against aging and next research reactor, (4) outflow and shortage of nuclear human resources, and (5) expansion of research reactor maintenance cost. This paper would like to make the following recommendations so that we can make contribution to the world in the field of nuclear power. (1) Communication between regulatory authorities and business operators regarding new regulatory standards compliance. (2) Response to various problems including spent fuel measures for long-term stable utilization of research reactors. (3) Personal exchanges among nuclear experts. (4) Expansion of nuclear related departments at universities to train nuclear human resources. (5) Training of world-class nuclear human resources, and succession and development of research and technologies. (A.O.)

  3. Annual progress report of the University of Florida Training Reactor, September 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Diaz, N.J.; Vernetson, W.G.

    1982-11-01

    The University of Florida Training Reactor's overall utilization for the past reporting year has decreased by about 50% compared to the previous year, approaching the low levels of utilization characteristic of the previous two reporting years ending in August 1979 and August 1980 respectively. The energy generation also continues to be far below average historical levels and represents a drop of nearly 50% from the improved level of the previous year. The UFTR continues to operate with an outstanding safety record and in full compliance with regulatory requirements. The reactor and associated facilities continue to maintain a high in-state visibility and strong industry relationship. It is hoped that more indirect industry training will be accomplished in the upcoming year

  4. Equipment for neutron measurements at VR-1 Sparrow training reactor

    International Nuclear Information System (INIS)

    Kolros, Antonin; Huml, Ondrej; Kos, Josef

    2008-01-01

    Full text: The VR-1 Sparrow training reactor is the experimental nuclear facility especially employed for education and teaching of students from different technical universities in the Czech Republic and other countries. Since 2005 the uniform all-purpose devices EMK310 have been used for measurement at reactor laboratory with different type of gas filled neutron detectors. The neutron detection system are employed for reactivity measurement, control rod calibration, critical experiment, study of delayed neutrons, study of nuclear reactor dynamics and study of detection systems dead time. The small dimension isotropic detectors are especially used for measurement of thermal neutron flux distribution inside the reactor core. The EMK-310 is a high performance, portable, three-channel fast amplitude analyzer designed for counting applications. It was developed for nuclear applications and made in close co-operation with firm TEMA Ltd. The precise rack eliminates electromagnetic disturbance and contains the control unit and four modules. The modules of high voltage supply and amplifier for gas filled detectors or scintillation probes are used in basic configuration. Software is tailored specifically to the reactor measurement and allows full online control. For applications involving the study of signals that may vary with the time, example study of delayed neutrons or nuclear reactor dynamics, the EMK-310 provides a Multichannel Scaling (MCS) acquisition mode. MCS dwell time can be set from 2 ms. Now, the new generation of digital multichannel analyzers DA310 is introduced. They have similarly attributes as EMK310 but the output information of unipolar signals from detector is more complete. The pipeline A/D converter with field programmable gate array (FPGA) is the hearth of the DA310 device. The resolution is 12 bits (4096 channels); the sample frequency is 80 MHz. The application for the neutron noise analysis is supposed. The correction method for non linearity

  5. Design of a Control Room for Jordan Research and Training Reactor (JRTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun; Suh, Sang Moon; Lee, Hyun Chul; Park, Je Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Since the main role of JRTR(Jordan Research and Training Reactor) operating personnel is safe and reliable operation of the reactor, MCR(Main Control Room) and SCR(Supplementary Control Room) must provide them with sufficient information and controls needed to optimize their performance. Before the TMI accident, control room were generally designed just with intuitive common sense, without using any proper HFE(human factors engineering) practices. Many results derived from the analysis of TMI accident showed that a more comprehensive and systematic approaches to develop MCR design requirements were needed. Moreover changes of operators' role as a decision maker from a physical controller in rapid improvement of control system which resulted in higher automation clearly needed more featured regulatory requirements and guidelines. So many regulatory and industrial guidance for control room design have been developed by relevant institution and regulatory bodies. In this paper, a conceptual design of the JRTR control room in the effort of satisfying current regulatory requirements and guidelines are presented. And some information display design is also presented

  6. Research in nuclear reactor theory and experimental reactors; Istrazivanja u teoriji nuklearnih reaktora i ekspeimentalni reaktori

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Elektrotehnicki fakultet, Beograd (Yugoslavia)

    1978-05-15

    The paper is devoted to the possibilities of using experimental reactors for scientific research in nuclear power with a stress on problems in nuclear reactor theory. The stationary and nonstationary neutron fields, burnup prediction and analyses as well as fuel element development and the corresponding role of test-reactors were dealt with. It was shown that the investigations in nuclear reactor theory in Yugoslavia were developing continuously and in a useful interaction with experiments on research reactors. The needs for continuing the work on fundamental problems in neutron transport theory and on improving the calculation methods for thermal power reactors, together with the improvement of performances of existing research systems, were pointed out. A new quality in scientific work could be obtained dealing with the problems connected to a possible introduction of test-reactors, and fast systems later on. It was also pleaded for the corresponding orientations in fundamental sciences. (author) Rad je posvecen mogucnostima koriscenja eksperimentalnih reaktora za naucna istrazivanja u nuklearnoj energetici, sa akcentom na probleme teorije nuklearnih reaktora. Obradjena su stacionarna i nestacionarna neutronska polja, predikcija i analize sagorevanja, kao i razvoj gorivnih elemenata te uloga test-reaktora u osvajanju njihove tehnologije. Pokazano je da su se istrazivanja u teoriji nuklearnih reaktora u nas odvijala kontinualno i u korisnoj interakciji sa eksperimentima na istrazivackim reaktorima. Istaknuta je potreba nastavljanja rada na fundamentalnim problemima transportne teorije neutrona i na usavrsavanju metoda proracuna termalnih enerrgetskih reaktora, uz poboljsanje performansi postojecih istrazivackih sistema. Novi kvalitet u naucnom radu bi predstavljala orijentacija na probleme vezane sa eventualnim uvodjenjem test-reaktora, a zatim i brzih sistema. Pledirano je i za odgovarajuca usmeravanja u fundamentalnim naukama. (author)

  7. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  8. Monju operator training report. Training results and upgrade of the operation training simulator in 2002 YF

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto; Kawanishi, Tomotake; Yoshida, Kazuo

    2003-09-01

    The prototype fast breeder reactor, Monju, has been performing deliberately the operator training which is composed of the regulated training required by the government and the self-training. The training used a full scope type simulator (MARS: Monju Advanced Reactor Simulator) plays an important role among of the above mentioned trainings and greatly contributes to the Monju operator training for Monju restarting. This report covers the activities of Monju operator training in 2002 FY, i.e. the training results and the remodeling working of the MARS in progress since 1999. (1) Eight simulator training courses were carried out 46 times and 180 trainees participated. Additionally, both the regulated training and self-training were held total 10 times by attended 34 trainees, as besides simulator training. (2) Above training data was reduced compare with the last year's data (69 times (338 trainees)) due to the indispensable training courses in Monju operator training were changed by reorganized operator's number and decreasing of training times owing to remodeling working of the simulator was conducted. (3) By means of upgrading of the MARS completed in 2002 FY, its logic arithmetic time was became speedier and its instructing function was improved remarkably, thus, the simulator training was became to be more effective. Moreover, it's planning to do both remodeling in the next year as the final working: remodeling of reactor core model with the aim of improvement simulating accuracy and corresponding to the sodium leakage measures. Regarding on the Monju training results and simulator's remodeling so far finished, please referring JNC report number of JNC TN 4410 2002-001 Translation of Monju Simulator Training owing Monju Accident and Upgrade of MARS''. (author)

  9. The final report of ''on-the-job training'' on the CANDU reactor

    International Nuclear Information System (INIS)

    Kim, D.H.; Koh, B.J.

    1983-01-01

    This is the final Report for the technical ''on-the-job traning'' for the Wolsung CANDU nuclear power plant which is the first Pressurized Heavy Water Reactor setting up in Korea. The technical ''on-the-job traning'' was established to increase the capability for the nuclear safety evaluation in order to contribute the future safe operation of the CANDU nuclear power plant. The training has been excuted through three level courses as elementary, intermediate and ''on-the-job training'' at Wolsung power plant. The elementary course was introduction to the CANDU basics and fundamentals. The intermediate course was the more advanced course, and the detailed concepts and engineering explanations of the CANDU system had been instructed. The third course was the ''on-the-job training'' at the Wolsung plant site, which was the most emphasized course during the project. (Author)

  10. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Yoder, John; Bessler, Nancy J.

    1988-01-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  11. Performance of small reactors at universities for teaching, research, training and service (TRTS): thirty five years' experience with the Dalhousie University SLOWPOKE-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chatt, A., E-mail: a.chatt@dal.ca [Dalhousie Univ., Trace Analysis Research Centre, Dept. of Chemistry, Halifax, Nova Scotia (Canada)

    2013-07-01

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility, operated during 1976-2011, was the only research reactor in Atlantic Canada as well as the only one associated with a chemistry department in a Canadian university. The most outstanding features of the facility included: a rapid (100 ms) cyclic pneumatic sample transfer system, a permanently installed Cd-site, and a Compton-suppression gamma-ray spectrometer. The usage encompassed fundamental as well as applied studies in various fields using neutron activation analysis (NAA). The facility was used for training undergraduate/graduate students, postdoctoral fellows, technicians, and visiting scientists, and for cooperative projects with other universities, research organizations and industries. (author)

  12. Safety evaluation report related to the renewal of the operating license for the training and research reactor at the University of Maryland (Docket No. 50-166)

    International Nuclear Information System (INIS)

    1984-03-01

    This Safety Evaluation Report for the application filed by the University of Maryland (UMD) for a renewal of operating license R-70 to continue to operate a training and research reactor facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Maryland and is located at a site in College Park, Prince Georges County, Maryland. The staff concludes that this training reactor facility can continue to be operated by UMD without endangering the health and safety of the public

  13. Application of JAERI research reactors to education

    International Nuclear Information System (INIS)

    Ogawa, Shigeru; Morozumi, Minoru

    1987-01-01

    At the dawning of the atomic age in Japan, training on reactor operation and reactor engineering experiments has been started in 1958 using JRR-1 (a 50 kW water boiler type reactor with liquid fuel), which was the first research reactor in Japan. The role of the training has been transferred to JRR-4 (a 3500 kW swimming pool type reactor with ETR type fuel) since 1969 due to the decommission of JRR-1. The training courses which have been held are: JRR-1 Short-Term Course for Operation (1958 ∼ 1963) General Course (1961 ∼ ) Reactor Engineering Course (1976 ∼ ) Training Course in Nuclear Technology (International course)(1986 ∼ ). And individual training concerning research reactors for the participants of scientist exchange program sponsored by Science and Technology Agency and of bilateral agreement have been initiated in 1985. The graduates of these courses work as staff members in various fields in nuclear industry. (author)

  14. Dispositivo de posicionamiento de muestras biológicas para su irradiación en un canal radial de un reactor nuclear // Biological samples positioning device for irradiations on a radial channel at the nuclear research reactor

    Directory of Open Access Journals (Sweden)

    Maritza Rodríguez - Gual

    2010-05-01

    Full Text Available ResumenPor la demanda de un dispositivo experimental para el posicionamiento de las muestras biológicaspara su irradiación en un canal radial de un reactor nuclear de investigaciones en funcionamiento, seconstruyó y se puso en marcha un dispositivo para la colocación y retirada de las muestras en laposición de irradiación de dicho canal. Se efectuaron las valoraciones económicas comparando conotro tipo de dispositivo con las mismas funciones. Este trabajo formó parte de un proyectointernacional entre Cuba y Brasil que abarcó el estudio de los daños inducidos por diferentes tipos deradiación ionizante en moléculas de ADN. La solución propuesta es comprobada experimentalmente,lo que demuestra la validez práctica del dispositivo. Como resultado del trabajo, el dispositivoexperimental para la irradiación de las muestras biológicas se encuentra instalado y funcionando yapor 5 años en el canal radial # 3(BH#3 Palabras claves: reactor nuclear de investigaciones, dispositivo para posicionamiento de muestras,___________________________________________________________________________AbstractFor the demand of an experimental device for biological samples positioning system for irradiationson a radial channel at the nuclear research reactor in operation was constructed and started up adevice for the place and remove of the biological samples from the irradiation channels withoutinterrupting the operation of the reactor. The economical valuations are effected comparing withanother type of device with the same functions. This work formed part of an international projectbetween Cuba and Brazil that undertook the study of the induced damages by various types ofionizing radiation in DNA molecules. Was experimentally tested the proposed solution, whichdemonstrates the practical validity of the device. As a result of the work, the experimental device forbiological samples irradiations are installed and operating in the radial beam hole #3(BH#3

  15. Training simulator for advanced gas-cooled reactor (AGR) shutdown sequence equipment

    International Nuclear Information System (INIS)

    Shankland, J.P.; Nixon, G.L.

    1978-01-01

    Successful shutdown of nuclear plant is of prime importance for both safety and economic reasons and large sums of money are spent on equipment to make shutdowns fully automatic, thus removing the possibility of operator errors. While this aim can largely be realized, one must consider the possibility of automatic equipment or plant failures when operators are required to take manual action, and off-line training facilities should be available to operating staff to minimize the risk of incorrect actions being taken. This paper presents the practice adopted at Hunterston 'B' Nuclear Power Station to solve this problem and concerns the computer-based training simulator for the Reactor Shutdown Sequence Equipment (RSSE) which was commissioned in January 1977. The plant associated with shutdown is briefly described and the reasoning which shows the need for a simulator is outlined. The paper also gives details of the comprehensive facilities available on the simulator and goes on to describe the form that shutdown training takes and the experience gained at this time. (author)

  16. Training and training simulators for emergency situations in France

    International Nuclear Information System (INIS)

    Petit, G.

    1990-01-01

    The aim of this paper is to present principles and means set up by Electricite de France (E.D.F.) to provide the required tailor-made training. Today, recent advantages in computing capacities and software engineering along with the completion of Research and Development Training Division programs in the reactor safety (R+D) field (CATHARE, BETHSY..) give E.D.F. the opportunity to conceive and operate new tools for training which are described in the paper: RTGV-SEPIA: a simulator devoted to self training in SGTR field, thanks to a powerful expert system. SIPA: a 'generator of simulators' aiming at control and engineering studies and training, provided with a software able to give in real time a relevant description of complex topologies with diphasic flow patterns (up to a 12'' break in the primary coolant system of a reactor). (orig./DG) [de

  17. Training at the masters degree level in physics and technology of nuclear reactors in the uk

    International Nuclear Information System (INIS)

    Weaver, D.R.

    2000-01-01

    This paper discusses the current situation of university-based training for the nuclear power industry in the UK, drawing on information gathered as part of the survey for a review currently being undertaken by the Committee for Technical and Economic Studies on Nuclear Energy Development and Fuel Cycle (NDC) of the Nuclear Energy Agency (NEA) of the OECD. A particular focus will be the Physics and Technology of Nuclear Reactors MSc course at the University of Birmingham. In the past there were other similar MSc courses in the UK, but through the evolution of time the Birmingham course is now unique in its role of providing masters level training so specifically aimed at the commercial nuclear programme. Mention will, however, be made of other training at the postgraduate level elsewhere in the UK. A description is given of the need to consider a new form of relationship between industry and university in order to provide optimise the provision of masters level training. (author)

  18. Preparing the construction of a school reactor

    International Nuclear Information System (INIS)

    Matejka, K.

    1977-01-01

    The possibilities are discussed of teaching and training nuclear reactor operation and control, teaching experimental reactor physics and investigating reactor lattice parameters using a training reactor to be installed at the Faculty of Nuclear Science and Physical Engineering in Prague. Requirements are indicated for the reactor's technical design and the Faculty's possibilities to contribute to its construction. (J.B.)

  19. Neutrons for research and training

    International Nuclear Information System (INIS)

    Villa, M.; Bichler, M.; Hameed, F.; Jericha, E.; Steinhauser, G.; Sterba, J.H.; Boeck, H.

    2008-01-01

    The 250 kW TRIGA Mark-II reactor operates since March 1962 at the Atomic Institute in Vienna, Austria. Its main tasks are nuclear education and training in the fields of neutron- and solid state physics, nuclear technology, reactor safety, radiochemistry, radiation protection and dosimetry, and low temperature physics and fusion research. Academic research is carried out by students in the above mentioned fields co-ordinated and supervised by about 80 staff members with the aim of a master- or PhD degree in one of the above mentioned areas. During the past 15 years about 600 students graduated through the Atomic Institute. The paper focuses on the results in neutron- and solid state physics and the co-operation between the low power TRIGA reactor with high flux neutron sources in Europe. The use of the TRIGA reactor at the Atomic Institute in Vienna as an irradiation facility in neutron activation analysis has a remarkable history. Present research work includes the recent determination of the precise half-life of 182 Hf and the participation in an archaeological long-term research programme. The TRIGA reactor operated by the Atomic Institute is now the only nuclear facility in Austria. Although Austria follows a dedicated anti-nuclear policy, the Atomic Institute enjoys a relatively undisturbed nuclear freedom in its nuclear activities. This allows us to use the research reactor not only for academic training but also for international training courses especially in nuclear technology. The presentation will outline typical training programmes and summarizes the experience with international training courses. (authors)

  20. Ulysse, mentor reactor

    International Nuclear Information System (INIS)

    Bouquin, B.; Rio, I.; Safieh, J.

    1997-01-01

    On July 23, 1961, the ULYSSE reactor began its first power rise. Designed at that time to train nuclear engineering students and reactor operators, this reactor still remains an indispensable tool for nuclear teaching and a choice instrument for scientists. (author)

  1. Safety Evaluation Report related to the renewal of the operating license for the TRIGA training and research reactor at the University of Utah (Docket No. 50-407)

    International Nuclear Information System (INIS)

    1985-03-01

    This Safety Evaluation Report for the application filed by the University of Utah (UU) for a renewal of operating license R-126 to continue to operate a training and research reactor facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the University of Utah and is located on its campus in Salt Lake City, Salt Lake County, Utah. The staff concludes that this training reactor facility can continue to be operated by UU without endangering the health and safety of the public

  2. Research Reactor Utilization at the University of Utah for Nuclear Education, Training and Services

    International Nuclear Information System (INIS)

    Jevremovic, T.; Choe, D.O.

    2013-01-01

    In the years of nuclear renaissance we all recognize a need for modernizing the approaches in fostering nuclear engineering and science knowledge, in strengthening disciplinary depth in students’ education for their preparation for workforce, and in helping them learn how to extend range of skills, develop habits of mind and subject matter knowledge. The education infrastructure at the University of Utah has been recently revised to incorporate the experiential learning using our research reactor as integral part of curriculum, helping therefore that all of our students build sufficient level of nuclear engineering literacy in order to be able to contribute productively to nuclear engineering work force or continue their education toward doctoral degrees. The University of Utah TRIGA Reactor built 35 years ago represents a university wide facility to promote research, education and training, as well as is used for various applications of nuclear engineering, radiation science and health physics. Our curriculum includes two consecutive classes for preparation of our students for research reactor operating license. Every year the US Nuclear Regulatory Commission’s representatives hold the final exam for our students. Our activities serve the academic community of the University of Utah, commercial and government entities, other universities and national laboratories as well. (author)

  3. Revitalization of reactor usage through reactor sharing

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1986-01-01

    The purpose of this work was to renew interest in using the University Florida Training Reactor (UFTR) for educational and training purposes outside the Nuclear Engineering Sciences (NES) and Environmental Engineering Sciences (EES) Departments at the University of Florida and for research by others outside the NES Department. The availability of the UFTR made possible through a US Department of Energy (DOE) Reactor Sharing Grant provided the mechanism to pursue generation of renewed interest at all levels both within the University of Florida and from other educational and corporate institutions

  4. Radiation field studies at the training and research reactor AKR of the Dresden Technical University

    International Nuclear Information System (INIS)

    Leuschner, A.; Reiss, U.; Pretzsch, G.

    1983-01-01

    Results of radiation field studies in the experimental channels of the training and research reactor of the Technical University of Dresden are presented. The flux densities of thermal, intermediate and fast neutrons were determined by means of activation detectors., Gamma dose rates have been measured by thermoluminescent dosimeters. The measured results show symmetry with respect to the vertical axis of the reactor and allow to draw conclusions with regard to the efficiency of the individual layers of the shield. They are an essential basis of performing irradiation experiments in the experimental channels. The results of measurements were compared with those of shielding and design calculations. Taking into account the measuring errors and the approximations used in the computational models, no unexpected deviations have been observed. Hence, the measured and calculated results can be assessed to be in good agreement. (author)

  5. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  6. The application of MVC design pattern in Daya bay reactor neutrino experiments online safety training system

    International Nuclear Information System (INIS)

    Liu Guanchuan; Chu Yuanping

    2011-01-01

    The article made an introduction to MVC, which is an architectural pattern used in software engineering. It specified the advantages and disadvantages of MVC and also the application of MVC in Daya Bay nuclear reactor neutrino experiment online safety training system. (authors)

  7. The next 20 years operation of the 36 years old Hungarian training reactor

    International Nuclear Information System (INIS)

    Aszodi, A.

    2007-01-01

    Hungary prepares for extending the design lifetime of the four VVER-440/213 type units; in that case they will finish operation between 2032 and 2037. Discussion on possible new nuclear units in Hungary was recently commenced. The paper describes actions in human resource management and knowledge management, and also the new safety analysis methods which were applied during the recent Periodic Safety Review of the Hungarian Training Reactor

  8. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1986; Istrazivacki nuklearni reaktor RA, deo 1, pogon i odrzavanje nukleanog reaktora RA u 1986. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Martinc, R; Cupac, S; Sulem, B; Badrljica, R; Majstorovic, D; Sanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1986-12-01

    In order to enable future reliable operation of the RA reactor, according to new licensing regulations, three major tasks started in 1984 were fulfilled: building of the new emergency system, reconstruction of the existing ventilation system, and reconstruction of the power supply system. Simultaneously in 1985/1986 renewal of the instrumentation and reconstruction of the system for handling and storage of the spent fuel in the reactor building have started. Design projects for these tasks are almost finished and the reconstruction of both systems is expected to be finished until 1988 and mid 1989 respectively. RA reactor Safety report was finished according to the recommendations of the IAEA. Investments in 1986 were used for 8000 kg of heavy water, maintenance of reactor systems and supply of new components, reconstruction of reactor systems. This report includes 8 annexes concerning reactor operation, activities of services and financial issues. [Serbo-Croat] Sa ciljem da se obezbedi pouzdan rad reaktora RA a u skladu sa zakonskim propisima, zavrsena su tri velika zahvata zapoceta 1984: izgradnja novog sistema za udesno hladjenje, rekonstrukcija postojeceg sistema za ventilaciju, i modernizacija reaktorske instrumentacije. Istovremeno tokom 1985/1986. zapoceta je modernizacija instrumentacije i rekonstrukcija sistema za rukovanje i skladistenje iskoriscenog goriva u zgradi reaktora. Projekti za navedene radove su vec zavrseni ili su u zavrsnoj fazi, a ocekuje se da ce rekonstrukcija oba sistema biti zavrsena do kraja 1988. odnosno sredine 1989. godine. Izrada izvestaja o sigurnosti reaktora RA, prema preporukama MAAE zavrsena je 1986. Investiciona ulaganja na reaktoru Ra u 1986. iskoriscena su za: nabavku 8000 kg teske vode, za investiciono odrzavanje reaktorskih sistema i nabavku opreme, za rekonstrukciju reaktorskih sistema. Ovaj izvestaj sadrzi 8 priloga koji opisuju rad reaktora, rad strucnih sluzbi i finansiranje.

  9. Simulator training effectiveness: instructor training and qualifications

    International Nuclear Information System (INIS)

    Scholand, G.W.

    1985-01-01

    Nuclear power plant simulators have become the most important tool in training nuclear power plant operators. Yet, as these machines continue to become even more sophisticated, highly trained and experienced instructors with unique skills and insights are still essential in order to achieve effective and meaningful training. The making of a qualified simulator instructor involves training and techniques that exceed the traditional programs required of a Senior Reactor Operator (SRO). This paper discusses (i) the training necessary to produce a competent simulator instructor; and (ii) the continuing task of maintaining his or her proficiency. (author)

  10. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  11. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  12. Operating Experience Review(OER) and development of Issues Tracking System(ITS) for Jordan Research and Training Reactor(JRTR)

    International Nuclear Information System (INIS)

    Kim, Yong Jun; Lee, Hyun Chul

    2011-01-01

    The operation of the Jordan Research and Training Reactor which Korean consortium designs will start in March 2015. Though the power level of JRTR is different from the one of HANARO, a Korean research reactor, experience and expertise gained from the successful operation of the multipurpose research reactor, HANARO, would be applied for the design of JRTR because the basic operation principles of two reactors are almost same. From the point of human factors view, Operating Experience Review (OER) has the accurate purpose of reflecting accumulated knowledge to a new design and this activity are required to perform in the beginning stage of the control room designs in nuclear facilities. OER is to identify human factors engineering (HFE) issues related to safety. The issues from operating experience provide a basis for improving the plant design in a timely way. Identified issues are reported to an issues tracking system (ITS) so as to manage and resolve issues. HFE related safety issues are to be extracted from OER. The purpose of this paper is to present the scope and methods of OER for the JRTR design. In addition, a new ITS is proposed. The ITS is effective for issue management and has simplified states for issue development and small numbers of steps for issue control

  13. Assessment of the implementation of a neutron measurement system during the commissioning of the Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Hoon; Suh, Sang Mun [Division of Research Reactor System Design, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cha, Han Ju [Dept. of Electrical Engineering, Intelligent Power Conversion Laboratory, Chungnam National University, Daejeon (Korea, Republic of)

    2017-04-15

    The Jordan Research and Training Reactor (JRTR) is the first research reactor in Jordan, the commissioning of which is ongoing. The reactor is a 5-MWth, open-pool type, light-water-moderated, and cooled reactor with a heavy water reflector system. The neutron measurement system (NMS) applied to the JRTR employs a wide-range fission chamber that can cover from source range to power range. A high-sensitivity boron trifluoride counter was added to obtain more accurate measurements of the neutron signals and to calibrate the log power signals; the NMS has a major role in the entire commissioning stage. However, few case studies exist concerning the application of the NMS to a research reactor. This study introduces the features of the NMS and the boron trifluoride counter in the JRTR and shares valuable experiences from lessons learned from the system installation to its early commissioning. In particular, the background noise relative to the signal-to-noise ratio and the NMS signal interlock are elaborated. The results of the count rates with the neutron source and the effects of the discriminator threshold are summarized.

  14. Training reactor operators and shift supervisors

    International Nuclear Information System (INIS)

    Schwarz, O.

    1980-01-01

    To establish a central institution run by power plant operators to harmonize the training of power plant operating personnel was raised, and put into practice, quite early in the Federal Republic of Germany. A committee devoted to training plant crews, which had been set up by the organizations of German electricity utilities responsible for operating power plants, was changed into a Kraftwerksschule e.V. (Power Plant School) in 1963. This school runs training courses, along standard lines, for operating personnel of thermal power plants, especially for operators and power plant supervisors, in close cooperation with power plant operators. As the peaceful utilization of nuclear energy expanded, also the training of nuclear power plant operators was included in 1969. Since September 1977, the center has had a simulator of a PWR nuclear power plant, since January 1978 also that of a BWR plant available for training purposes. Besides routine operation the trainees also learn to control those incidents which occur only very rarely in real nuclear power plants. (orig./UA) [de

  15. Optimization of a Chemical Reaction Train

    Directory of Open Access Journals (Sweden)

    Bahar Sansar

    2010-01-01

    Full Text Available This project consists of the optimization of a chemical reactor train. The reactor considered here is the continuous stirred tank reactor (CSTR, one of the reactor models used in engineering. Given the design equation for the CSTR and the cost function for a reactor, the following values are determined; the optimum number of reactors in the reaction train, the volume of each reactor and the total cost.

  16. Training courses on the use of neutron detection systems carried out on the ISIS research reactor

    International Nuclear Information System (INIS)

    Lescop, Bernard; Foulon, Francois

    2013-06-01

    Training courses on the use of the neutron detection systems for the control of the nuclear reactors are carried out by the National Institute for Nuclear Science using the ISIS research reactor. The study and the comprehension of the operation of these systems are facilitated by the use a research reactor in order to observe the electronic signals in real conditions. Thus, ISIS reactor offers a wide range of neutron fluxes and the level of power can be easily set to any value from zero to nominal power (700 kW). Different kinds of detectors (counters, ionization chambers), which operate in the different modes of detection (pulse, current and Campbelling) can be placed in the periphery of the core for the courses. The electronic signal can be analyzed at each step of the detection process. One goal of the courses is to understand the role of each component of the detection system: detector, cable and each electronic module. A comparison with the nuclear instrumentation used by the instrumentation and control of ISIS reactor is also made. This comparison is very useful to understand the role of the neutron instrumentation in terms of safety, availability, reliability and maintainability. (authors)

  17. Pressurized water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23 'Boiling Water Reactor Simulator' (2003). This report consists of course material for workshops using a pressurized water reactor simulator

  18. Communication and computer technologies for teaching physics in nuclear reactors

    International Nuclear Information System (INIS)

    Murua, C; Chautemps, A; Odetto, J; Keil, W; Trivino, S; Rossi, F; Perez Lucero, A

    2012-01-01

    In order to train personnel inn order to train personnel in Embalse Nuclear Power Plant, and provided that such training given primarily on the location of such a facility, we designed a pedagogical strategy that combined the use of conventional resources with new information technologies. Since the Nuclear Reactor RA-0 is an ideal tool for teaching Reactor Physics, priority was the use of it, both locally remotely. The teaching strategy is based on four pillar: -Lectures on the Power Plant (using a virtual classroom to support); -Remote monitoring of Ra-0 Nuclear Reactor parameters while operating (RA0REMOTO); -Use, through the Internet, of the Ra-0 Nuclear Reactor Simulator (RA0SIMUL); -Made in the Nuclear Reactor RA-0 of Reactor Physics practical. The work emphasizes RA0REMOTO and RA0SIMUL systems. The RA0REMOTO system is an appendix of the Electronic Data Acquisition System (SEAD) of the Nuclear Reactor RA-0. This system acquires signals from Reactor instrumentation and sends them to a server running the software that 'publish' the reactor parameters on the internet. Students may, during the lectures, monitor any parameter of the reactor while it operates, which allows teachers to compare theory with reality. RA0SIMUL is a simulator on the RA-0, which allows students to 'operate' a reactor analyzing the underlying physics concepts (author)

  19. Assessment of the effectiveness of training technology transfer activities at soviet-designed reactors

    International Nuclear Information System (INIS)

    Haber, S.; Shurberg, D.; Yoder, J.; Draper, D.

    2003-01-01

    The U.S. Department of Energy (DOE) has been working with personnel at Soviet-Designed Reactors (SDRs) to enhance management and operational safety by upgrading many areas of plant operations to levels that meet established international standards. Since 1992 this work has included activities related to training. The work initially focussed on the establishment of nuclear training centers in Russia and Ukraine and the transfer of U.S. training methodologies but has since expanded to include all Russian and Ukrainian nuclear power stations and training centers as well as SDRs within other countries. A key component to the work has been the determination of programmatic effectiveness. Of specific interest has been the success of the transfer of U.S. training methodologies to SDRs so the capability exists for independent expansion of training efforts. Of equal importance has been the question of whether the training programs being developed are having the desired impact on facility safety performance. While progress has been made in the evaluation of the impact of training on facility safety performance, the question has not yet been fully answered. The issue has been further confounded due to wide-ranging and concurrent changes being made beyond training to many aspects of facility operations and maintenance. This paper focuses on the selection of a strategy to upgrade and, as necessary, develop training programs to assist in the improvement of SDR safety. Difficulties encountered in the development of assessment strategies across all SDRs that are being worked with are discussed. In addition, measures collected related to the success of the overall program efforts and data indicating the success of the DOE efforts in the transfer and adoption by SDRs of an effective training methodology are outlined. (author)

  20. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  1. New studies of the natural convection around a fuel rod of the BME training reactor with PIV/LIF technique

    International Nuclear Information System (INIS)

    Szijarto, R.; Aszodi, A.; Yamaji, B.

    2011-01-01

    In this paper the model of a fuel pin of the Training Reactor of Budapest University of Technology and Economics was investigated with Particle Image Velocimetry and Laser Induced Fluorescence measurement methods. An experimental setup was designed, built and optimized to investigate the natural convection around a model of a fuel pin of the Training Reactor. The processes were analysed using an electrically heated rod, which models the geometry of the fuel rods in the Training Reactor. The heated length of the model is the same as the active length of the real fuel rods. The rod is placed in a glass tank with a shape of a square-based prism. An additional cooling system ensures constant flow conditions around the rod. The setup consists of an additional flow channel box, the equivalent diameter of which is equal to the equivalent diameter of the real fuel assembly. Simultaneous measurements of velocity and temperature fields were performed in different vertical positions for both cases of natural convection with and without the flow channel box. The effect of the presence of the channel was analyzed, and a laminarizating influence was observed. The local heat transfer coefficient was calculated for every measurement. The two dimensional measurement techniques gave extensive results, the structure of the hydraulic and thermal boundary layer were fully analyzed. (Authors)

  2. PWR training from conception to criticality

    International Nuclear Information System (INIS)

    Molloy, B.

    1993-01-01

    Since the accident at the Three Mile Island Pressurized Water Reactor in 1979, training of reactor personnel has been critically evaluated and reviewed. In the United Kingdom, the building of the first Pressurized Water Reactor at Sizewell in Suffolk, has brought staff training into sharp relief also. This article looks at the training program, set up in response to concerns over safety, which has been evolving over the last ten years. Simulators are widely used so that staff, especially reactor operators, are thoroughly conversant with operational technology long before reactor commissioning takes place. (UK)

  3. WWER-1000 reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series 12, 'Reactor Simulator Development' (2001). Course material for workshops using a pressurized water reactor (PWR) Simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003) and Training Course Series No. 23 'Boiling Water Reactor Simulator' (2003). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation. N. V. Tikhonov and S. B. Vygovsky of the Moscow Engineering and Physics Institute prepared this report for the IAEA

  4. RA reactor operation and maintenance in 1992, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Tanaskovic, M.

    1992-01-01

    During 1992 Ra reactor was not in operation. All the activities were fulfilled according to the previously adopted plan. Basic activities were concerned with revitalisation of the RA reactor and maintenance of reactor components. All the reactor personnel was busy with reconstruction and renewal of the existing reactor systems and building of the new systems, maintenance of the reactor devices. Part of the staff was trained for relevant tasks and maintenance of reactor systems [sr

  5. Boiling water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and workshop material and sponsors workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 simulator from the Moscow Engineering and Physics Institute, Russian Federation is presented in the IAEA publication: Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a pressurized water reactor (PWR) simulator developed by Cassiopeia Technologies Incorporated, Canada, is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003). This report consists of course material for workshops using a boiling water reactor (BWR) simulator. Cassiopeia Technologies Incorporated, developed the simulator and prepared this report for the IAEA

  6. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won

    2014-01-01

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  7. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface.

  8. The reactor trainer: state-of-the-art classroom learning

    International Nuclear Information System (INIS)

    Stater, R.G.

    1996-01-01

    The Reactor Trainer is a professional, PC based, graphically enhanced, training resource specifically developed and customized for Class Room teaching of and learning about, reactor behavior. This unique, and focused, learning-target sets The Trainer apart from the panorama of the more common PC plant simulator. Its educational scope extends along a logical learning path, starting with important fundamental behavioral concepts of delayed neutrons, neutron multiplying factors, and reactor rate, moving to simple reactor transients in real time, and culminating with more complex operational evolutions. The Trainer empowers the Instructor with a dynamic Class Room demonstrator and the student with a superior hands-on learning tool. The Trainer's versatility encompasses a wide variety of educational needs, including initial operator training, requalification training, Shift Technical Advisor training, and other advanced or specialized training. In addition, The Reactor Trainer enhances prerequisite preparation of operator candidates for full-scale control room training and, in so doing, PC economics relieves full-scale simulator hours. (author)

  9. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1988; Istrazivacki nuklearni reaktor RA, deo 1, pogon i odrzavanje nukleanog reaktora RA u 1988. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Martinc, R; Cupac, S; Sulem, B; Badrljica, R; Majstorovic, D; Sanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1988-12-15

    According to the action plan for 1988, operation of the RA reactor should have been restarted in October, but the operating license was not obtained. Control and maintenance of the reactor components was done regularly and efficiently dependent on the availability of the spare parts. The major difficulty was maintenance of the reactor instrumentation. Period of the reactor shutdown was used for repair of the heavy water pumps in the primary coolant loop. With the aim to ensure future safe and reliable reactor operation, action were started concerning renewal of the reactor instrumentation. Design project was done by the soviet company Atomenergoeksport. The contract for constructing this equipment was signed, and it is planned that the equipment will be delivered by the end of 1990. In order to increase the space for storage of the irradiated fuel elements and its more efficient usage, projects were started concerned with reconstruction of the existing fuel handling equipment, increase of the storage space and purification of the water in the fuel storage pools. These projects are scheduled to be finished in mid 1989. This report includes 8 annexes concerning reactor operation, activities of services and financial issues. [Serbo-Croat] Prema planu za 1988. godinu, reaktor RA je trebalo da pusten u rad oktobra meseca, medjutim nije dobio dozvolu za nastavak rada. Kontrola i odrzavanje opreme izvrsavani su redovno i efikasno, u granicama koje su diktirane raspolozivoscu repromaterijala i rezervnih delova. Najvecu poteskocu pricinjavalo je odrzavanje instrumentacije. Period stajanja u 1988. godini iskoriscen je za remont teskovodnih pumpi u primarnom kolu hladjenja. U cilju povecanja pouzdanosti rada reaktora zapoceti su radovi na modernizaciji instrumentacije, projekat je izradjen u sovjetskoj organizaciji Atomenergoeksport, sklopljen je ugovor o izradi ove opreme koja bi trebalo da bude isporucena do kraja 1990. U cilju povecanja prostora za skladistenje ozracenog

  10. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  11. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  12. Sharing of Rensselaer Polytechnic Institute Reactor Critical Facility (RCF)

    International Nuclear Information System (INIS)

    1995-01-01

    The RPI Reactor Critical Facility (RCF) operated successfully over the period fall 1994 - fall 1995. During this period, the RCF was used for Critical Reactor Laboratory spring 1995 (12 students); Reactor Operations Training fall 1994 (3 students); Reactor Operations Training spring 1995 (3 students); and Reactor Operations Training fall 1995 (3 students). Thirty-two Instrumentation and Measurement students used the RCF for one class for hands-on experiments with nuclear instruments. In addition, a total of nine credits of PhD thesis work were carried out at the RCF. This document constitutes the 1995 Report of the Rensselaer Polytechnic Institute's Reactor Critical Facility (RCF) to the USNRC, to the USDOE, and to RPI management

  13. RA Research nuclear reactor Part 1, RA Reactor operation and maintenance in 1987; Istrazivacki nuklearni reaktor RA Deo 1 - Pogon i odrzavanje nuklearnog reaktora RA u 1987. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Martinc, R; Cupac, S; Sulem, B; Badrljica, R; Majstorovic, D; Sanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1987-12-15

    RA research reacto was not operated due to the prohibition issued in 1984 by the Government of Serbia. Three major tasks were finished in order to fulfill the licensing regulations about safety of nuclear facilities which is the condition for obtaining permanent operation licence. These projects involved construction of the emergency cooling system, reconstruction of the existing special ventilation system, and renewal of the system for electric power supply of the reactor systems. Renewal of the RA reactor instrumentation system was initiated. Design project was done by the Russian Atomenergoeksport, and is foreseen to be completed by the end of 1988. The RA reactor safety report was finished in 1987. This annual report includes 8 annexes concerning reactor operation, activities of services and financial issues, and three special annexes: report on testing the emergency cooling system, report on renewal of the RA reactor and design specifications for reactor renewal and reconstruction. [Serbo-Croat] Reaktor RA nije radio usled zabrane Izvsnog veca Skupstine Srbije od 27. avgusta 1984. U cilju povecanja pouzdanosti rada reaktora a da bi se udovoljilo zakonskim propisima sto je uslov za dobijanje stalne dozvole za rad realizovana su tri velika zahvata na reaktoru RA. Ovi zahvati obuhvatili su izgradnju sistema za hladjenje jezgra reaktora u slucaju nuzde, rekonstukciju postojeceg sistema specijalne ventilacije i rekonstrukciju sistema napajanja elektricnom energijom neophodnih potrosaca reaktora RA. Zapoceti su radovi na modernizaciji intrumentacije reaktora RA, projekat je izradjen u sovjetskoj organizaciji Atomenergoeksport, a trebalo bi da se realizuje do kraja 1989. godine. U cilju povecanja prostora za skladistenje ozracenog nuklearnog goriva i njegovog efikasnijeg koriscenja, izradjen je su projekti za rekonstrukciju postojecih uredjaja za rukovanje gorivom, povecanje smestajnog kapaciteta i preciscavanje vode u bazenima za odlezavanje. Realizaija ovih

  14. Physics and kinetics of TRIGA reactor

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)

  15. A central European training course on reactor physics and kinetics - the 'Eugene Wigner Course' - Organisers view

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.; Matejka, K.; Sklenka, L.; Miglierini, M.; Sukods, C.

    2004-01-01

    Initiated by the 5th Framework Program of the European Commission, the European Nuclear Engineering Network (ENEN) is preparing the future European Nuclear Education schemes, degrees and requirements. To fully utilize the benefits of international cooperation and to promote the knowledge of students in nuclear engineering a 2.5 weeks course has been held, both in spring 2003 and 2004. The main emphasis of the course is to perform reactor physics and kinetics experiments on three different research- and training reactors in three different locations (Vienna, Prague, Budapest). The experimental work is preceded by theoretical lectures aiming to prepare the students for the experiments (Bratislava). The students' work will be evaluated, and upon success the students will get a certificate. The finally accepted credit (ECTS) value will be determined by the students' home university. The ENEN-recommended value is between 6 and 8 ECTS. The more detailed description of the course will be given in the full paper. (author)

  16. Pilot program: NRC severe reactor accident incident response training manual. Overview and summary of major points

    International Nuclear Information System (INIS)

    McKenna, T.J.; Martin, J.A. Jr.; Giitter, J.G.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Watkins

    1987-02-01

    Overview and Summary of Major Points is the first in a series of volumes that collectively summarize the U.S. Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes elementary perspectives on severe accidents and accident assessment. Other volumes in the series are: Volume 2-Severe Reactor Accident Overview; Volume 3- Response of Licensee and State and Local Officials; Volume 4-Public Protective Actions-Predetermined Criteria and Initial Actions; Volume 5 - U.S. Nuclear Regulatory Commission. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. The volumes have been organized into these training modules to accommodate the scheduling and duty needs of participating NRC staff. Each volume is accompanied by an appendix of slides that can be used to present this material

  17. The first critical experiment with a new type of fuel assemblies IRT-3M on the training reactor VR-I

    International Nuclear Information System (INIS)

    Matejka, Karel; Sklenka, Lubomir

    1997-01-01

    The paper 'The first critical experiment with a new type of fuel assemblies IRT-3M on training reactor VR-1 presents basic information about the replacement of fuel on the reactor VR-1 run on FJFI CVUT in Prague. In spring 1997 the IRT-2M fuel type used till then was replaced by the IRT-3M type. When the fuel was replaced, no change in its enrichment was made, i.e. its level remained as 36% 235 U. The replacement itself was carried out in tight co-operation with the Nuclear Research Institute Rez plc., as related to the operation of the research reactor LVR-15. The fuel replacement on the VR-I reactor is a part of the international program RERTR (Reduced Enrichment for Research and Test Reactors) in which the Czech Republic participates. (author)

  18. RA reactor operation and maintenance in 1996, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1996-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. Since the RA reactor is shutdown since 1984, it is high time for decision making of its future status. Possible solutions for the future status of the RA reactor discussed in this report are: renewal of reactor components for the reactor restart, conservation of the reactor (temporary shutdown) or permanent reactor shutdown. Control and maintenance of the reactor instrumentation and devices was done regularly but dependent on the availability of the spare parts and financial means. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  19. Reactivity worth measurement of the control blades of the University of Florida training reactor

    International Nuclear Information System (INIS)

    Quintero-Leyva, Barbaro

    1997-01-01

    A series of experiments were carried out in order to measure the reactivity worth of the safety and regulating blades of the University of Florida Training Reactor (UFTR) using the Inverse Kinetics, the Inverse Kinetics-Rod Drop method and the Power Ratio. The reactor's own instrumentation (compensated ion chamber) and an independent counting system (fission chamber) were used. A very smooth exponential decay of the flux was observed after 6s of the beginning of the transients using the reading of the reactor detector. The results of the measurements of the reactivity using both detectors were consistent and in good agreement. The compensated ion chamber showed a very smooth exponential behavior; this suggests that if we could record the power for a small sample time, say 0.1 s from the beginning of the transient, several additional research projects could be accomplished. First, precise intercomparison of the methods could be achieved if the statistics level is acceptable. Second, a precise description of the bouncing of the blades and its effects on the reactivity could be achieved. Finally, the design of a reactivity-meter could be based on such study. (author)

  20. Storage experience in Hungary with fuel from research reactors

    International Nuclear Information System (INIS)

    Gado, J.; Hargitai, T.

    1996-01-01

    In Hungary several critical assemblies, a training reactor and a research reactor have been in operation. The fuel used in the research and training reactors are of Soviet origin. Though spent fuel storage experience is fairly good, medium and long term storage solutions are needed. (author)

  1. Magnox Electric Littlebrook reactor inspection and repair rehearsal facility

    International Nuclear Information System (INIS)

    Barnes, S.A.; Clayton, R.; Gaydon, B.G.; Ramsey, B.H.

    1996-01-01

    Magnox reactors, although designed to be maintenance free during their operational life, have nevertheless highlighted the need for test rig facilities to train operators in the methods and techniques of reactor inspection and repair. The history of the facility for reactor engineering development (FRED) is described and its present role as a repair rehearsal facility noted. Advances in computer graphics may, in future, mean that such operator training will be virtual reality rather than analog reality based; however the need for such rigs to commission techniques and equipment and to establish performance and reliability is likely to continue. (UK)

  2. FISA 2009 - 7th European Commission conference on EURATOM research and training in reactor systems. Conference proceedings

    International Nuclear Information System (INIS)

    Goethem, G. van; Manolatos, P.; Hugon, M.; Bhatnagar, V.; Deffrennes, M.; Webster, S.

    2010-01-01

    The main achievements of the first series of projects under EURATOM FP-7 for nuclear research and training activities (2007 to 2011) were discussed. Approximately 500 participants were registered at FISA 2009 and at the 7 post-conference workshops, representing a wide audience of nuclear scientists and decision makers coming from 32 countries worldwide. The focus of the conference was on scientific and technological research in the following areas: nuclear plant life management for existing reactors (Generation II), severe accident management (Generation III), assessment of future nuclear fission systems (Generation IV), partitioning and transmutation systems (innovative fuels), access to large research infrastructures, and nuclear education and training. Special attention was devoted to the societal and industrial goals of GIF: sustainability, industrial competitiveness, safety and reliability, proliferation resistance. (orig.)

  3. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIM tm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  4. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  5. RA reactor operation and maintenance in 1990 with comparative evaluation from 1986-1990, Part 1; Deo 1 - Pogon i odrzavanje nuklearnog reaktora RA u 1990. godini, uz uporedni pregled za period 1986-1990. godina

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Cupac, S; Sulem, B; Zivotic, Z; Vasovic, B; Sanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1990-12-15

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The new emergency cooling system and the reconstruction of the existing ventilation system were finished in 1989, the conditions for further reactor operation were fulfilled. In the meantime new licensing regulations adopted in 1988 were not demanding the mentioned conditions for reactors operated at power less than 10MW, RA reactor power being 6.5 MW. But the reactor could not be restarted due to planned renewal of the reactor instrumentation. It is planned to exchange the complete instrumentation by the end of 1991. Training program for the staff operating and maintaining the reactor components was prepared in 1985. Reconstruction, modification and construction of components demanded new documentation needed for further safe reactor operation. New version of RA reactor safety report was finished in 1986 according to the recommendations of IAEA and licensing regulations of Yugoslavia. In 1989, new documents were written covering regulations and instructions for reactor operation. The new reactor experimental loop was designed in 1986, and constructed and tested in 1990. All the reactor components were maintained by specific reactor services. Financing of the reactor remains a permanent problem. [Serbo-Croat] U proteklom periodu reaktor RA nije bio u pogonu zato sto je 30. jula 1984. godine Republicki komitet za zdravlje i socijalnu politiku republike Srbije, zabranio njegov rad zbog toga sto reaktor ne poseduje sistem za udesno hladjenje i ne poseduje odgovarajuce filtere u sistemu specijalne ventilacije. Radovi na izgradnji sistema za udesno hladjenje i rekonstrukciji postojeceg sistema specijalne ventilacije zavrseni su 1989. godine. Uslovi za nastavak rada reaktora

  6. RA reactor operation in 1991, Part 1; Deo 1 - Pogon i odrzavanje nuklearnog reaktora RA u 1991. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Cupac, S; Sulem, B; Zivotic, Z; Majstorovic, D; Sanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1992-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. In order to enable future reliable operation of the RA reactor, according to new licensing regulations, during 1991, three major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. Renewal of the reactor instrumentation was started but but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA for political reasons. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Training of the existing personnel was done regularly, but lack of financial support prevented employment of new workers that would be needed for operation in shifts and regular maintenance. [Serbo-Croat] U proteklom periodu reaktor RA nije bio u pogonu zato sto je 30. jula Republicki komitet za zdravlje i socijalnu politiku republike Srbije, zabranio njegov rad zbog toga sto reaktor ne poseduje sistem za udesno hladjenje i ne poseduje odgovarajuce filtere u sistemu specijalne ventilacije. Kako bi se ubuduce mogao obezbediti

  7. Artificial intelligence and training of nuclear reactor personnel

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Buenaflor, M.T.

    1987-01-01

    Expert computer systems offer an excellent and effective means to reduce the potential for operator error, and improve plant safety and reliability. For the training field the benefits are twofold. First, the inclusion of advisory expert systems in the control environments (the physical control room and its simulator) offer a continuous source of on-the-job diagnostic training. Second, expert systems specifically designed for training are feasible for specialized license/requalification training in higher order analytical skills. This paper consists of two parts. In the first section, the improvements for on-the-job training are examined. In the second section, the benefits for the overall training program are explored in terms of technical and educational rationales

  8. Thermohydraulics of reactors

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    2008-01-01

    This scientific and technical handbook about PWR reactors thermohydraulics is the result of many years of teaching in the framework of the CEA-INSTN's atomic engineering training courses, in engineering schools and during continuing training activities. Its main goal is to present in a rigorous and pedagogical way the basic knowledge necessary for the understanding and modeling of single phase and two-phase thermohydraulic phenomena encountered during the design and operation of nuclear reactors. In particular, heat transfers in two-phase flows are presented in a detailed way. Most chapters include some nuclear engineering examples of application of the studied concepts, and some exercises aiming at mastering these concepts. Each example or exercise is accompanied by its detailed solution. Content: - thermohydraulic characteristics of reactors; - design and thermal dimensioning of reactors; - thermal engineering of the fuel element; - two-phase flow configurations in ducts; - recalls about single-phase flow equations; - basic equations for two-phase flows; - modeling of two-phase flows inside ducts; - pressure drops in ducts; - boiling and vapor condensation heat transfers; - two-phase flow instabilities in ducts; - two-phase flow blocking; thermohydraulics of naval propulsion reactors

  9. Innovations and enhancements in neutronic analysis of the Big-10 university research and training reactors based on the AGENT code system

    International Nuclear Information System (INIS)

    Hursin, M.; Shanjie, X.; Burns, A.; Hopkins, J.; Satvat, N.; Gert, G.; Tsoukalas, L. H.; Jevremovic, T.

    2006-01-01

    Introduction. This paper summarizes salient aspects of the 'virtual' reactor system developed at Purdue Univ. emphasizing efficient neutronic modeling through AGENT (Arbitrary Geometry Neutron Transport) a deterministic neutron transport code. DOE's Big-10 Innovations in Nuclear Infrastructure and Education (INIE) Consortium was launched in 2002 to enhance scholarship activities pertaining to university research and training reactors (URTRs). Existing and next generation URTRs are powerful campus tools for nuclear engineering as well as a number of disciplines that include, but are not limited to, medicine, biology, material science, and food science. Advancing new computational environments for the analysis and configuration of URTRs is an important Big-10 INIE aim. Specifically, Big-10 INIE has pursued development of a 'virtual' reactor, an advanced computational environment to serve as a platform on which to build operations, utilization (research and education), and systemic analysis of URTRs physics. The 'virtual' reactor computational system will integrate computational tools addressing the URTR core and near core physics (transport, dynamics, fuel management and fuel configuration); thermal-hydraulics; beam line, in-core and near-core experiments; instrumentation and controls; confinement/containment and security issues. Such integrated computational environment does not currently exist. The 'virtual' reactor is designed to allow researchers and educators to configure and analyze their systems to optimize experiments, fuel locations for flux shaping, as well as detector selection and configuration. (authors)

  10. Determination of the tritium content in the reactor heavy water, Phase II; Odredjivanje porasta kolicine tritijuma u reaktorskoj teskoj vodi, II faza

    Energy Technology Data Exchange (ETDEWEB)

    Ribnikar, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-07-15

    Measurement results of the {sup 3}H activity in non-irradiated water and after reactor operation are presented. Methods were developed for sampling and radiochemical water purification by ion exchange and multiple distillation. Methods for absolute measurement of soft beta radiation of tritium were established. Migration of tritium through the heavy water RA reactor system was monitored. Results were compared with other measured reactor parameters. Prikazani su rezultati merenja aktivnosti {sup 3}H u nezracenoj vodi i posle rada reaktora; razradjeni su metodi za uzimanje i radiohemijsko preciscavanje vode putem jonske izmene i visestepene destilacije; postavljeni metodi za apsolutno merenje mekog beta-zracenja tritijuma; pracene su migracije tritijuma kroz teskovodni sistem reaktora; takodje su interpretirani i poredjeni rezultati sa drugim merenim parametrima reaktora.

  11. IV Training program for the staff of the laboratory for the RA reactor exploitation; IV Programi obuke osoblja Laboratorije za eksploataciju reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    All the staff members of the laboratory for RA reactor exploitation are obliged to learn the following: fundamental properties of the RA reactor, the role and functionality of the reactor components, basic and auxiliary reactor systems, basics of radioactivity, measures for preventing contamination. The personnel working in shifts must be acquainted with the regulations and instructions for reactor operation. Training programs for reactor operators, mechanics, electricians, instrumentators and dosimetrysts are described separately. Svi saradnici Laboratorije za eksploataciju reaktora RA moraju poznavati sledece oblasti: Osnovne karakeristike reaktora RA, princip rada, ulogu i funkcionisanje komponenti reaktora, osnovnih i pomocnih sistema reaktora; osnovne pojmove o radioaktivnom zracenju, mere za sprecavanje kontaminacije. Osoblje koje radi u smenama mora dodatno poznavati propise i uputstva za rad reaktora. Posebno je naveden program obuke operatora reaktora, mehanicara, electricara, instrumentatora, dozimetrista.

  12. Simulating Neutronic Core Parameters in a Research and Test Reactor

    International Nuclear Information System (INIS)

    Selim, H.K.; Amin, E.A.; Koutb, M.E.

    2011-01-01

    The present study proposes an Artificial Neural Network (ANN) modeling technique that predicts the control rods positions in a nuclear research reactor. The neutron, flux in the core of the reactor is used as the training data for the neural network model. The data used to train and validate the network are obtained by modeling the reactor core with the neutronic calculation code: CITVAP. The type of the network used in this study is the feed forward multilayer neural network with the backpropagation algorithm. The results show that the proposed ANN has good generalization capability to estimate the control rods positions knowing neutron flux for a research and test reactor. This method can be used to predict critical control rods positions to be used for reactor operation after reload

  13. U.S. Department of Energy University Reactor Instrumentation Program Final Report for 1992-94 Grant for the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Vernetson, William G.

    1999-01-01

    Overall, the instrumentation obtained under the first year 1992-93 University Reactor Instrumentation Program grant assured that the goals of the program were well understood and met as well as possible at the level of support provided for the University of Florida Training Reactor facility. Though the initial grant support of $21,000 provided toward the purchase of $23,865 of proposed instrumentation certainly did not meet many of the facility's needs, the instrumentation items obtained and implemented did meet some critical needs and hence the goals of the Program to support modernization and improvement of reactor facilities such as the UFTR within the academic community. Similarly, the instrumentation obtained under the second year 1993-94 University Reactor Instrumentation Program grant again met some of the critical needs for instrumentation support at the UFTR facility. Again, though the grant support of $32,799 for proposed instrumentation at the same cost projection does not need all of the facility's needs, it does assure continued facility viability and improvement in operations. Certainly, reduction of forced unavailability of the reactor is the most obvious achievement of the University Reactor Instrumentation Program to date at the UFTR. Nevertheless, the ability to close out several expressed-inspection concerns of the Nuclear Regulatory Commission with acquisition of the low level survey meter and the area radiation monitoring system is also very important. Most importantly, with modest cost sharing the facility has been able to continue and even accelerate the improvement and modernization of a facility, especially in the Neutron Activation Analysis Laboratory, that is used by nearly every post-secondary school in the State of Florida and several in other states, by dozens of departments within the University of Florida, and by several dozen high schools around the State of Florida on a regular basis. Better, more reliable service to such a broad

  14. Pressurized water reactor simulator. Workshop material. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development. And the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21, 2nd edition, 'WWER-1000 Reactor Simulator' (2005). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23, 2nd edition, 'Boiling Water Reactor Simulator' (2005). This report consists of course material for workshops using a pressurized water reactor simulator

  15. TRIGA reactor characteristics

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the general design, characteristics and parameters of TRIGA reactors and fuels. It is recommended that most of this information should be incorporated into any reactor operator training program and, in many cases, the facility Safety Analysis Report. It is oriented to teach the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and the differences between TRIGA fuels and others more traditional reactor fuels. (nevyjel)

  16. Simulation of the behaviour of small and medium nuclear reactors on PCs

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. One of the simulation programs distributed by the IAEA is the the Advanced Reactor Simulator which simulates the behaviour of BWR, PWR and HWR reactor types. For this package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer program. (author)

  17. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  18. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    Haskin, F.E.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  19. The determination of the thermal neutron and gamma fluxes at the Maryland University Training Reactor using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Karceski, Jeffrey David; Ebert, David D.; Munno, Frank J.

    1988-01-01

    Determination of the dose received by a material in a mixed gamma and neutron field is of paramount concern to any research reactor owner. This dose can be separated into three distinguishable parts using standard thermoluminescent dosimetry (TLD) responses: 1) thermal neutron dose, 2) fission gamma dose, and 3) fission product gamma dose. For the Maryland University Training Reactor (MUTR), these respective fluences were determined for each of the associated experimental facilities. Quantifying the magnitude of the gamma and thermal neutron exposures at various reactor power levels was accomplished using Li-6F and Li-7F TLDs, respectively. These two types of dosimetry were chosen given the following considerations: 1) there is no existing standard established for fluence determination in a mixed field, 2) the LiF TLDs have a wide range of sensitivity to radiation, from 0.01 mR to 10,000 R, and 3) LiF TLDs are easy to read given the proper equipment. Standardization of the gamma/neutron doses was accomplished using the 500,000 Rad/hr Co-60 gamma source also located at the University of Maryland. (author)

  20. Guidance for training program evaluation

    International Nuclear Information System (INIS)

    1984-01-01

    An increased concern about the training of nuclear reactor operators resulted from the incident at TMI-2 in 1979. Purpose of this guide is to provide a general framework for the systematic evaluation of training programs for DOE Category-A reactors. The primary goal of such evaluations is to promote continuing quality improvements in the selection, training and qualification programs

  1. La digestión anaerobia y los reactores UASB. Generalidades

    OpenAIRE

    Yaniris Lorenzo; Ma. Cristina Obaya

    2006-01-01

    Se muestran las generalidades de los reactores, se da a conocer su concepto, se enumeran las aguas residuales que pueden ser tratadas en los mismos, se comentan los parámetros a tener en cuenta para que funcione adecuadamente y se enumeran las ventajas y desventajas de este proceso, así como su aplicabilidad.

  2. Guide to good practices for training and qualification of instructors. DOE handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this guide is to provide contractor training organizations with information that can be used to verify the adquacy and/or modify existing instructor training programs, or to develop new training programs. It contains good practices for the training and qualification of technical instructors and instructional technologists at DOE reactor and non-reactor nuclear facilities. It addresses the content of initial and continuing instructor training programs, evaluation of instructor training programs, and maintenance of instructor training records.

  3. Impact of proposed research reactor standards on reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, J C; Johnson, A G; Anderson, T V [Oregon State University (United States)

    1974-07-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  4. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    Ringle, J.C.; Johnson, A.G.; Anderson, T.V.

    1974-01-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  5. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  6. Over Twenty Years Of Experience In ITU TRIGA MARK-II Reactor

    International Nuclear Information System (INIS)

    Yavuz, Hasbi

    2008-01-01

    I.T.U. TRIGA MARK-II Training and Research Reactor, rated at 250 kW steady-state and 1200 MW pulsing power is the only research and training reactor owned and operated by a university in Turkey. Reactor has been operating since March 11, 1979; therefore the reactor has been operating successfully for more than twenty years. Over the twenty years of operation: - The tangential beam tube was equipped with a neutron radiography facility, which consists of a divergent collimator and exposure room; - A computerized data acquisition system was designed and installed such that all parameters of the reactor, which are observed from the console, could be monitored both in normal and pulse operations; - An electrical power calibration system was built for the thermal power calibration of the reactor; - Publications related with I.T.U. TRIGA MARK-II Training and Research Reactor are listed in Appendix; - Two majors undesired shutdown occurred; - The I.T.U. TRIGA MARK-II Training and Research Reactor is still in operation at the moment. (authors)

  7. RA research reactor - properties and experimental capabilities; Istrazivacki reaktor RA - Tehnicke karakteristike i eksploatacione mogucnosti

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M; Martinc, R [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1978-05-15

    The brief survey of the Reactor RA exploitation experience, as well as the reactor equipment state, after 18 years of operation is presented. The results of efforts spent on reactor characteristics improvement in order to ensure safe and reliable reactor operation for next 15-20 years, are described. Prikazani su fragmenti iz eksploatacije reaktora kao i stanje opreme, posle 18 godina rada. Na kraju je dat prikaz sta je preduzeto i sta se preduzima da se poboljsaju karakteristike i poveca sigurnost i bezbednost rada za sledecih 15-20 godina.

  8. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won

    2014-01-01

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  9. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  10. IAEA activities in nuclear reactors simulation for educational purposes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1998-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Currently, the IAEA has two simulation programs: the Classroom-based Advanced Reactor Demonstrators package, and the Advanced Reactor Simulator. Both packages simulate the behaviour of BWR, PWR and HWR reactor types. For each package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer programs. (author)

  11. Training and education

    International Nuclear Information System (INIS)

    Bauer, E.; Oria, M.

    1977-01-01

    The paper deals essentially with problems of training and education in a developing country that has made the decision to launch a nuclear programme. All teaching has a double aim: to transfer knowledge, and to form responsible individuals. In a state each pedagogic action has a relatively definite aim. In the nuclear field this aim can be construction of a research or power reactor (or participation in its construction) or the operation of these reactors. There are no well-defined borders between these various aims and for each aim the overall needs should be defined. The personnel needs can be expressed by a series of desired outlines for each function. The starting point should be the students or the active population (in particular those who have already been employed in a conventional power station). The means to proceed from the original state to the desired situation will be sought. The number of people trained should be at least twice that needed (accidents, holidays, resignations). For technicians and engineers a good basic knowledge of fundamental science is necessary in every case. It should be kept in mind that the government ought to be informed beforehand on the alternate choices by advisers trained in specialized courses, i.e. IAEA courses for decision-makers. First, the local educational means shall be used. For very specialized functions the supplier of the power station will provide an adequate training. Specialized teaching centres abroad will provide additional knowledge to those who already have the required fundamental education. Theoretical learning can be useful only after a long period of training in a reactor department in the country itself or abroad. This training should tend to actual integration in a team. A certain amount of information should be given preferably in situ, in particular in the field of health physics, as each member of the staff must be fully aware of its importance. (author)

  12. Development of an educational nuclear research reactor simulator

    International Nuclear Information System (INIS)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim; Ashoub, Nagieb

    2014-01-01

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  13. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  14. RA reactor operation and maintenance in 1994, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1994-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. The spent fuel elements used from the very beginning of reactor operation are stored in the existing pools. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988 and was fulfilled in 1990. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  15. Operation and maintenance of the RB reactor, Annual report for 1977

    International Nuclear Information System (INIS)

    Sotic, O.; Vranic, S.

    1977-01-01

    The annual report for 1977 includes the following: utilization of the RB reactor; new regulations and instructions for reactor operation; improvement of experimental possibilities of the RB reactor; state of the reactor equipment; dosimetry and radiation protection; reactor staff. Five annexes are concerned with: testing the properties of preamplifiers for linear and logarithmic experimental channels; properties of the neutron converter; maintenance of the reactor equipment; purchase of new equipment; and the program for training reactor operators

  16. Pilot program: NRC severe reactor accident incident response training manual: Public protective actions: Predetermined criteria and initial actions

    International Nuclear Information System (INIS)

    Martin, J.A. Jr.; McKenna, T.J.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Giitter, J.G.; Watkins, R.M.

    1987-02-01

    This pilot training manual has been written to fill the need for a general text on NRC response to reactor accidents. The manual is intended to be the foundation for a course for all NRC response personnel. Public Protective Actions - Predetermined Criteria and Initial Actions is the fourth in a series of volumes that collectively summarize the US Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume reviews public protective action criteria and objectives, their bases and implementation, and the expected public response. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. Each volume is accompanied by an appendix of slides that can be used to present this material. The slides are called out in the text

  17. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  18. Reactor operator screening test experiences

    International Nuclear Information System (INIS)

    O'Brien, W.J.; Penkala, J.L.; Witzig, W.F.

    1976-01-01

    When it became apparent to Duquesne Light Company of Pittsburgh, Pennsylvania, that the throughput of their candidate selection-Phase I training-reactor operator certification sequence was something short of acceptable, the utility decided to ask consultants to make recommendations with respect to candidate selection procedures. The recommendation implemented was to create a Nuclear Training Test that would predict the success of a candidate in completing Phase I training and subsequently qualify for reactor operator certification. The mechanics involved in developing and calibrating the Nuclear Training Test are described. An arbitration decision that resulted when a number of International Brotherhood of Electrical Workers union employees filed a grievance alleging that the selection examination was unfair, invalid, not job related, inappropriate, and discriminatorily evaluated is also discussed. The arbitration decision favored the use of the Nuclear Training Test

  19. The zero power reactor SUR and its application

    International Nuclear Information System (INIS)

    Wesser, U.

    1986-01-01

    This low-power reactor, rated nominally at 100 milliwatts, has a cylindrical core of 26 cm in diameter and 24 cm high consisting of U 3 O 8 powder in a polyethylene matrix. The fuel is 20 percent enriched and the critical mass about 700 g. The excess reactivity is about 3 mk. The reactivity is controlled by two cadmium sheets in addition to a back-up system that drops the inner reflector. The reactor has no active cooling system. Personnel costs include a supervisor and an operator. The reactor is used for training in Reactor Theory (including use of a neutron chopper), reactor kinetics, nuclear technology, reactor operations and for doctoral thesis research. (author)

  20. Development of technologies for nuclear reactors of small and medium sized; Desarrollo de Tecnologias para Reactores Nucleares de pequeno y medio tamano

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  1. RA reactor kinetic parameters - Progress report; Kineticki parametri reaktora RA - Izvestaj o napredovanju -

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Obradovic, D; Jevtovic, V; Velickovic, Lj [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    The objective of nuclear reactor kinetics study is to analyze the stability of reactor operation in practice. The obtained parameters should define the needed properties of automatic control system relevant for the stability of the designed reactor system. Refining the analytical models is done by using the analysis and interpretation of experimental data. Results of measured the reactor response obtained by using the reactor oscillator ROB-1 are explained by using the space independent model of the zero power reactor, by power reactor model with one feedback circuit, and by a complex model. It was assumed that the perturbations of the system are small and that linearized kinetic equations could be used. Linearized kinetic equation of the reactor system are transformed into the frequency region in order to analyze the measured values directly. The objective of this paper is to measure the RA reactor kinetics parameters, and analyze the stability of reactor operation at power levels high than nominal. Istrazivanja u oblasti kinetike nuklearnih reaktora imaju za cilj da dovedu analizu stabilnosti rada reaktora na nivo 'radne tehnologije'. Dobijeni pararametri treba da specificiraju potrebne karakteristike sistema automatske kontrole za odgovarajucu stabilnost projektovanog reaktorskog sistema. Doterivanjem analitickih modela do takvog nivoa da se zapazeni fenomeni mogu anailitcki predvideti ide preko analize i interpretacije eksperimentalnih podataka. Eksperimentalni rezultati merenja odziva reaktora, izvedeni reaktorskim oscilatorom ROB-1, interpretirani su na osnovu prostorno nezavisnog modela za reaktor nulte snage, modelom reaktora snage sa jednim kolom povratne sprege, kao i kompleksnim modelom. U ovom radu se poslo od toga da su perturbacije parametara sistema male, pa se mogu upotrebiti linearizovane kineticke jednacine. Linearizovane kineticke jednacine reaktorskog sistema transformirane su u frekventno podrucje s ciljem direktne analize mernih rezultata

  2. The Text of the Instrument Concerning the Agency's Assistance to Argentina for the Establishment of a Training Reactor Project

    International Nuclear Information System (INIS)

    1971-01-01

    The text of the Agreement between the Agency and the Governments of Argentina and the Federal Republic of Germany concerning the Agency's assistance for the establishment of a training reactor project in Argentina is reproduced herein for the information of all Members. The Agreement entered into force on 13 March 1970.

  3. The Text of the Instrument Concerning the Agency's Assistance to Argentina for the Establishment of a Training Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1971-02-23

    The text of the Agreement between the Agency and the Governments of Argentina and the Federal Republic of Germany concerning the Agency's assistance for the establishment of a training reactor project in Argentina is reproduced herein for the information of all Members. The Agreement entered into force on 13 March 1970.

  4. Experience in reactor research and development programs as educational system for thermohydraulic engineering

    International Nuclear Information System (INIS)

    Zaki, G.M.; Fikry, M.M.

    1977-01-01

    A reactor development program within a research reactor facility can be used for personnel training on the operation of power reactors and research in the different fields of nuclear science and engineering. A training program is proposed where reactor maintenance and operation, in addition to conducting development programs and executing projects, are utilized for forming specialized groups. The paper gives a short survey of a heat transfer program where out of pile and in-core studies are conducted along with two-phase flow investigations. This program covers the main requirements for WWR (water cooled and moderated reactor) power uprating and furnishes basic knowledge on power reactor thermal parameters. The major facilities for conducting similar programs devoted to education are mentioned

  5. Pilot program: NRC severe reactor accident incident response training manual: US Nuclear Regulatory Commission response

    International Nuclear Information System (INIS)

    Sakenas, C.A.; McKenna, T.J.; Perkins, K.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Giitter, J.G.; Watkins, R.M.

    1987-02-01

    This pilot training manual has been written to fill the need for a general text on NRC response to reactor accidents. The manual is intended to be the foundation for a course for all NRC response personnel. US Nuclear Regulatory Commission Response is the fifth in a series of volumes that collectively summarize the US Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes NRC response modes, organizations, and official positions; roles of other federal agencies are also described briefly. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. Each volume is accompanied by an appendix of slides that can be used to present this material. The slides are called out in the text

  6. IAEA activities in nuclear reactor simulation for educational purposes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Two simulation programs are presented at this workshop: the Classroom-based Advanced Reactor Demonstrators package, and the Advanced Reactor Simulator. Both packages simulate the behaviour of BWR, PWR and HWR reactor types. For each package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer programs. (author)

  7. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  8. RA reactor operation and maintenance in 1989, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Sanovic, V.

    1989-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in July 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The following major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the power supply system. Project concerned with renewal of RA reactor complete instrumentation was started at the end of 1988. Contract was signed between the IAEA and Soviet Atomenergoexport for supplying the new instrumentation for the RA reactor. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988. In 1989, device for water purification designed by the reactor staff started operation and spent fuel handling equipment is being mounted. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  9. Computer training aids for nuclear operator training

    International Nuclear Information System (INIS)

    Phillips, J.G.P.; Binns, J.B.H.

    1983-01-01

    The Royal Navy's Nuclear Propulsion School at HMS SULTAN which is responsible for training all ratings and officers who operate Submarine Pressurised Water Reactor plants, has available a varied selection of classroom simulator training aids as well as purpose built Submarine Manoeuvring Room simulators. The use of these classroom training aids in the twelve months prior to Autumn 1981 is discussed. The advantages and disadvantages of using relatively expensive computer based aids to support classroom instruction for students who do not investigate mathematically the dynamics of the Reactor Plant are identified. The conclusions drawn indicate that for students of limited academic ability the classroom simulators are disproportionately expensive in cost, maintenance load, and instructional time. Secondly, the experience gained in the use of the Manoeuvring Room Simulators to train future operators who have just finished the academic phase of their training is outlined. The possible pitfalls for the instructor are discussed and the lessons learnt, concluding that these simulators provide a valuable substitute for the live plant enabling trainees to be brought up to a common standard and reducing their on job training time to an acceptable level. (author)

  10. Construction of a graphic interface for a nuclear reactor modelling and simulation

    International Nuclear Information System (INIS)

    Cadrdenas C, Carlos Roberto; Riquelme R, Raul Antonio.

    1995-01-01

    A graphic interface is presented for real time transient analysis under reactivity insertion, reactor operators training, and the RECH-1 reactor licensing, using the Paret (Program for Analysis of Reactor Transients) computer code. 17 refs., 29 figs

  11. University of Florida Training Reactor: Annual progress report, September 1, 1986-August 31, 1987

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1987-11-01

    The University of Florida Training Reactor's overall utilization for the past reporting year (September 1986 through August 1987) has returned to the increased levels of quality usage characteristic of the two years prior to the last reporting year when the maintenance outage to repair sticking control blades reduced availability for the year to near 50%. Indeed, the 91.5% availability factor for this reporting year is the highest in the last five years and probably in the 27 year history of the facility. As a final statement on the effectiveness of the corrective maintenance last year, the overall availability factor has been over 94% since returning to normal operations. The UFTR continues to experience a high rate of utilization in a broad spectrum of areas with total utilization continuing near the highest levels recorded in the early 1970's. This increase has been supported by a variety of usages ranging from research and educational utilization by users within the University of Florida as well as other researchers and educators around the state of Florida through the support of the DOE Reactor Sharing Program and several externally supported usages. Significant usage has also been devoted to facility enhancement where a key ingredient for this usage has been a stable management staff. Uses, reactor operation, maintenance, technical specifications, radioactive releases, and research programs are described in this report

  12. Research Project 'RB research nuclear reactor' (operation and maintenance), Final report

    International Nuclear Information System (INIS)

    1985-01-01

    This final report covers operation and maintenance activities at the RB reactor during period from 1981-1985. First part covers the RB reactor operation, detailed description of reactor components, fuel, heavy water, reactor vessel, cooling system, equipment and instrumentation, auxiliary systems. It contains data concerned with dosimetry and radiation protection, reactor staff, and financial data. Second part deals maintenance, regular control and testing of reactor equipment and instrumentation. Third part is devoted to basic experimental options and utilization of the RB reactor including training

  13. URI Program Final Report FY 2001 Grant for the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    2004-01-01

    The purpose of the URI program is to upgrade and improve university nuclear research and training reactors and to contribute to strengthening the academic community's nuclear engineering infrastructure. It should be noted that the proposed UFTR facility instrumentation and equipment can generally be subdivided into three categories: (1) to improve reactor operations, (2) to improve existing facility/NAA Laboratory operations, and (3) to expand facility capability. All of these items were selected recognizing the objectives of the University Reactor Instrumentation Program to respond to the widespread needs in the academic reactor community for modernization and improvement of research and training reactor facilities, especially at large and diverse institutions such as the University of Florida. These needs have been particularly pressing at the UFTR which is the only such research and training reactor in the State of Florida which is undergoing rapid growth in a variety of technical areas. As indicated in Table 2, the first item is a security system control panel with associated wiring and detectors. The existing system is over 30 years old and has been the subject of repeated maintenance over the past 5 years. Some of its detection devices are no longer replaceable from stock. Modifications made many years ago make troubleshooting some parts of the system such as the backup battery charging subsystem essentially impossible, further increasing maintenance frequency to replace batteries. Currently, various parts of the system cable trays remain open for maintenance access further degrading facility appearance. In light of relicensing plans, this item is also a key consideration for housekeeping appearance considerations. The cost of a replacement ADEMCO Vista 20 security system including turnkey installation by a certified vendor was to be $2,206. Replacement of this system was expected to save up to 5 days of maintenance per year, decrease security alarm response

  14. Digital innovations for teaching and nuclear training

    International Nuclear Information System (INIS)

    Fanjas, Y.; Schoevaerts, D.; Beliazi, L.

    2017-01-01

    The article reviews various digital tools that have been developed for nuclear training. The 'internet virtual laboratory' has been developed by the IAEA, it allows the live broadcasting through the web of experiments and practical exercises performed on the ISIS reactor located in France at Saclay. Virtual reality is booming and allows professionals to move in a nuclear facility virtually. For instance the SecureVI tool is based on 360 degrees photographs of the facility that are associated with goggles to get the immersive effect. The last generation of full-scale reactor simulators are based on 3-dimensional calculations made by the latest version of neutron transport codes and thermal-hydraulic codes. The EPR-FA3 simulator represents the control room of the Flamanville EPR, it is used for the training of reactor operators. The X1300 simulator replicates PWR operations and the SOFIA tool allows the trainees to understand how a nuclear reactor works. The CAVE tool was first developed to be used as an help to engineers and now it has been adapted to training purposes: CAVE allows a complete immersion in a nuclear facility. (A.C.)

  15. IAEA activities in nuclear reactor simulation for educational purposes

    International Nuclear Information System (INIS)

    Badulescu, A.; Lyon, R.

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Currently, the IAEA has simulation programs available for distribution that simulate the behaviour of BWR, PWR and HWR reactor types. (authors)

  16. The qualification of reactor operators

    International Nuclear Information System (INIS)

    Lima, J.M. de; Soares, H.V.

    1981-01-01

    The qualification and performance of nuclear power personnel have an important influence on the availability and safety operation of these plants. This paper describes the Brazilian rules and norms established by the CNEN-Brazilian Atomic Energy Comission, as well as policy of other countries concerning training requirements and experiences of nuclear power reactor operators. Some coments are made about the im pact of the march 1979 Three Mile Island accident on upgrading the reactor training requirements in U.S.A. and its international implication. (Author) [pt

  17. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  18. Training methods, tools and aids

    International Nuclear Information System (INIS)

    Martin, H.D.

    1980-01-01

    The training programme, training methods, tools and aids necessary for staffing nuclear power plants depend very much on the overall contractual provisions. The basis for training programmes and methods is the definition of the plant organization and the prequalification of the personnel. Preselection tests are tailored to the different educational levels and precede the training programme, where emphasis is put on practical on-the-job training. Technical basic and introductory courses follow language training and give a broad but basic spectrum of power plant technology. Plant-related theoretical training consists of reactor technology training combined with practical work in laboratories, on a test reactor and of the nuclear power plant course on design philosophy and operation. Classroom instruction together with video tapes and other audiovisual material which are used during this phase are described; as well as the various special courses for the different specialists. The first step of on-the-job training is a practical observation phase in an operating nuclear power plant, where the participants are assigned to shift work or to the different special departments, depending on their future assignment. Training in manufacturers' workshops, in laboratories or in engineering departments necessitate other training methods. The simulator training for operating personnel, for key personnel and, to some extent, also for maintenance personnel and specialists gives the practical feeling for nuclear power plant behaviour during normal and abnormal conditions. During the commissioning phase of the own nuclear power plant, which is the most important practical training, the participants are integrated into the commissioning staff and are assisted during their process of practical learning on-the-job by special instructors. Personnel training also includes performance of training of instructors and assistance in building up special training programmes and material as well

  19. Present status of nuclear education and training in Japan

    International Nuclear Information System (INIS)

    Kiyose, R.; Sumita, K.; Moriya, F.

    1994-01-01

    In Japan, where about 30% of electricity is supplied by nuclear actives require a good number of able and ambitious young scientists and engineers especially in the future. On the other hand, almost all Japanese electric power companies, which operate nuclear power plants, are striving to keep expertise of reactor operators as high as possible. Present status in Japan of education at universities, research and training reactors, training courses at governmental institutions and nonprofit organizations, and operator training centers of electric power companies, are reviewed. 3 tabs

  20. Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)

  1. 2012 review of French research reactors

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2013-01-01

    Proposed by the French Reactor Operators' Club (CER), the meeting and discussion forum for operators of French research reactors, this report first gives a brief presentation of these reactors and of their scope of application, and a summary of highlights in 2012 for each of them. Then, it proposes more detailed presentations and reviews of characteristics, activities, highlights, objectives and results for the different types of reactors: neutron beam reactors (Orphee, High flux reactor-Laue-Langevin Institute or HFR-ILL), technological irradiation reactors (Osiris and Phenix), training reactors (Isis and Azur), reactors for safety research purposes (Cabri and Phebus), reactors for neutronic studies (Caliban, Prospero, Eole, Minerve and Masurca), and new research reactors (the RES facility and the Jules Horowitz reactor or JHR)

  2. Utilisation of research and training reactors in the study programme of students at the Slovak University of Technology

    International Nuclear Information System (INIS)

    Slugen, V.; Lipka, J.; Hascik, J.; Miglierini, M.

    2004-01-01

    Preparing operating staff for the nuclear industry is and also will be one of the most serious education processes, mainly in the Central-European countries where about 40-50% of the electricity is produced in nuclear power plants. In the Central-European region there exists a very extensive and also effective international collaboration in nuclear industry and education. Similarly, the level of education in universities and technical high schools of this area is also good. Slovak University of Technology Bratislava has established contacts with many universities abroad for utilisation of research and training reactors. (author)

  3. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  4. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  5. Review of the status of low power research reactors and considerations for its development

    International Nuclear Information System (INIS)

    Lim, In Cheol; Wu, Sang Ik; Lee, Byung Chul; Ha, Jae Joo

    2012-01-01

    At present, 232 research reactors in the world are in operation and two thirds of them have a power less than 1 MW. Many countries have used research reactors as the tools for educating and training students or engineers and for scientific service such as neutron activation analysis. As the introduction of a research reactor is considered a stepping stone for a nuclear power development program, many newcomers are considering having a low power research reactor. The IAEA has continued to provide forums for the exchange of information and experiences regarding low power research reactors. Considering these, the Agency is recently working on the preparation of a guide for the preparation of technical specification possibly for a member state to use when wanting to purchase a low power research reactor. In addition, ANS has stated that special consideration should be given to the continued national support to maintain and expand research and test reactor programs and to the efforts in identifying and addressing the future needs by working toward the development and deployment of next generation nuclear research and training facilities. Thus, more interest will be given to low power research reactors and its role as a facility for education and training. Considering these, the status of low power research reactors was reviewed, and some aspects to be considered in developing a low power research reactor were studied

  6. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    Baptista, Vinicius Damas

    1996-01-01

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  7. Simulation and computation in health physics training

    International Nuclear Information System (INIS)

    Lakey, S.R.A.; Gibbs, D.C.C.; Marchant, C.P.

    1980-01-01

    The Royal Naval College has devised a number of computer aided learning programmes applicable to health physics which include radiation shield design and optimisation, environmental impact of a reactor accident, exposure levels produced by an inert radioactive gas cloud, and the prediction of radiation detector response in various radiation field conditions. Analogue computers are used on reduced or fast time scales because time dependent phenomenon are not always easily assimilated in real time. The build-up and decay of fission products, the dynamics of intake of radioactive material and reactor accident dynamics can be effectively simulated. It is essential to relate these simulations to real time and the College applies a research reactor and analytical phantom to this end. A special feature of the reactor is a chamber which can be supplied with Argon-41 from reactor exhaust gases to create a realistic gaseous contamination environment. Reactor accident situations are also taught by using role playing sequences carried out in real time in the emergency facilities associated with the research reactor. These facilities are outlined and the training technique illustrated with examples of the calculations and simulations. The training needs of the future are discussed, with emphasis on optimisation and cost-benefit analysis. (H.K.)

  8. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  9. Human Resources Training Requirement on NPP Operation and Maintenance

    International Nuclear Information System (INIS)

    Nurlaila; Yuliastuti

    2009-01-01

    This paper discussed the human resources requirement on Nuclear Power Plant (NPP) operation and maintenance (O&M) phase related with the training required for O&M personnel. In addition, this paper also briefly discussed the availability of training facilities domestically include with some suggestion to develop the training facilities intended for the near future time in Indonesia. This paper was developed under the assumptions that Indonesia will build twin unit of NPP with capacity 1000 MWe for each using the turnkey contract method. The total of NPP O&M personnel were predicted about 692 peoples which consists of 42 personnel located in the head quarter and the rest 650 people work at NPP site. Up until now, Indonesia had the experience on operating and maintaining the nonnuclear power plant and several research reactors namely Kartini Reactor Yogyakarta, Triga Mark II Reactor Bandung, and GA Siwabessy Reactor Serpong. Beside that, experience on operating and maintaining the NPP in other countries would act as one of the reference to Indonesia in formulating an appropriate strategy to develop NPP human resources particularly in O&M phases. Education and training development program could be done trough the cooperation with vendor candidates. (author)

  10. Unconstrained SU(2) and SU(3) Yang-Mills clasical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of constraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with vanishing spatial angular momenta they turn out to be non-holonomic. Using Dirac's constraint formalism we achieve a complete elimination of the unphysical gauge and rotational degrees of freedom. This leads to an effective unconstrained formulation both for the full SU(2) Yang-Mills classical mechanics and for the SU(3) case in the subspace of vanishing spatial angular momenta. We believe that our results are well suited for further explicit dynamical investigations. (orig.)

  11. The development of NPP operational safety training courses

    International Nuclear Information System (INIS)

    Lee, Chang Kun; Lee, Duk Sun; Lee, Byung Sun; Lee, Won Koo; Juhn, Heng Run; Moon, Byung Soo; Cho, Min Sik; Lee, Han Young; Moon, Hak Won; Seo, Yeon Ho

    1987-12-01

    The objective of the project is to develop a training course text for the betterment of reactor operation and assurance of its safety in general by providing training materials of the advanced compact nuclear simulator which will become operation in September 1988. Main scope and contents of the project are as follows: - compilation of basic data related to simulator operation and maintenance as well as the comparative analysis with respect to simulator materials in foreign countries - method of training by simulator - review the training status by simulator in foreign countries - development of training course in the field of reactor safety It is expected that the results will be reflected to the actual training and retraining of the reactor operating crew so as to improve and update their capabilities in training fashion. (Author)

  12. Progress report of Cekmece Nuclear Research and Training Center for 1980

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1980 in Physics, Chemistry, Nuclear engineering, Radiobiology, Reactor operation and reactor enlargement, Health physics, Radioisotope production, Electronic, Industrial application of radioisotopes, Nuclear fuel technology, Technical services, Construction control, Publication and documentation, Training division of Cekmece Nuclear Research and Training Center

  13. Development of technologies for nuclear reactors of small and medium sized

    International Nuclear Information System (INIS)

    2011-08-01

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  14. Statistical analysis in the design of nuclear fuel cells and training of a neural network to predict safety parameters for reactors BWR

    International Nuclear Information System (INIS)

    Jauregui Ch, V.

    2013-01-01

    In this work the obtained results for a statistical analysis are shown, with the purpose of studying the performance of the fuel lattice, taking into account the frequency of the pins that were used. For this objective, different statistical distributions were used; one approximately to normal, another type X 2 but in an inverse form and a random distribution. Also, the prediction of some parameters of the nuclear reactor in a fuel reload was made through a neuronal network, which was trained. The statistical analysis was made using the parameters of the fuel lattice, which was generated through three heuristic techniques: Ant Colony Optimization System, Neuronal Networks and a hybrid among Scatter Search and Path Re linking. The behavior of the local power peak factor was revised in the fuel lattice with the use of different frequencies of enrichment uranium pines, using the three techniques mentioned before, in the same way the infinite multiplication factor of neutrons was analyzed (k..), to determine within what range this factor in the reactor is. Taking into account all the information, which was obtained through the statistical analysis, a neuronal network was trained; that will help to predict the behavior of some parameters of the nuclear reactor, considering a fixed fuel reload with their respective control rods pattern. In the same way, the quality of the training was evaluated using different fuel lattices. The neuronal network learned to predict the next parameters: Shutdown Margin (SDM), the pin burn peaks for two different fuel batches, Thermal Limits and the Effective Neutron Multiplication Factor (k eff ). The results show that the fuel lattices in which the frequency, which the inverted form of the X 2 distribution, was used revealed the best values of local power peak factor. Additionally it is shown that the performance of a fuel lattice could be enhanced controlling the frequency of the uranium enrichment rods and the variety of the gadolinium

  15. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  16. Reactor operations at SAFARI-1

    International Nuclear Information System (INIS)

    Vlok, J.W.H.

    2003-01-01

    A vigorous commercial programme of isotope production and other radiation services has been followed by the SAFARI-1 research reactor over the past ten years - superimposed on the original purpose of the reactor to provide a basic tool for nuclear research, development and education to the country at an institutional level. A combination of the binding nature of the resulting contractual obligations and tighter regulatory control has demanded an equally vigorous programme of upgrading, replacement and renovation of many systems in order to improve the safety and reliability of the reactor. Not least among these changes is the more effective training and deployment of operations personnel that has been necessitated as the operational demands on the reactor evolved from five days per week to twenty four hours per day, seven days per week, with more than 300 days per year at full power. This paper briefly sketches the operational history of SAFARI-1 and then focuses on the training and structuring currently in place to meet the operational needs. There is a detailed step-by-step look at the operator?s career plan and pre-defined milestones. Shift work, especially the shift cycle, has a negative influence on the operator's career path development, especially due to his unavailability for training. Methods utilised to minimise this influence are presented. The increase of responsibilities regarding the operation of the reactor, ancillaries and experimental facilities as the operator progresses with his career are discussed. (author)

  17. Safety evaluation report related to the renewal of the operating license for the Worcester Polytechnic Institute open-pool training reactor, Docket No. 50-134

    International Nuclear Information System (INIS)

    1982-12-01

    This Safety Evaluation Report for the application filed by the Worcester Polytechnic Institute (WPI) for a renewal of Operating License R-61 to continue to operate the WPI 10-kW open-pool training reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Worcester Polytechnic Institute and is located on the WPI campus in Worcester, Worcester County, Massachusetts. The staff concludes that the reactor facility can continue to be operated by WPI without endangering the health and safety of the public

  18. PUSPATI Triga Reactor - First year in operation

    International Nuclear Information System (INIS)

    Nahrul Khair Rashid.

    1983-01-01

    First year operation of RTP reactor was mostly devoted to making in house training, setting up and testing the facilities in preparation for more routine operations. Generally the operations are categorized into 4 main purposes; experiment of research, teaching and training, demonstration, and testing and maintenance. These four purposes are elaborated in detail. Additions and modifications were performed in order to improve the safety of reactor operation. (A.J.)

  19. Integrated training support system for PWR operator training simulator

    International Nuclear Information System (INIS)

    Sakaguchi, Junichi; Komatsu, Yasuki

    1999-01-01

    The importance of operator training using operator training simulator has been recognized intensively. Since 1986, we have been developing and providing many PWR simulators in Japan. We also have developed some training support systems connected with the simulator and the integrated training support system to improve training effect and to reduce instructor's workload. This paper describes the concept and the effect of the integrated training support system and of the following sub-systems. We have PES (Performance Enhancement System) that evaluates training performance automatically by analyzing many plant parameters and operation data. It can reduce the deviation of training performance evaluation between instructors. PEL (Parameter and Event data Logging system), that is the subset of PES, has some data-logging functions. And we also have TPES (Team Performance Enhancement System) that is used aiming to improve trainees' ability for communication between operators. Trainee can have conversation with virtual trainees that TPES plays automatically. After that, TPES automatically display some advice to be improved. RVD (Reactor coolant system Visual Display) displays the distributed hydraulic-thermal condition of the reactor coolant system in real-time graphically. It can make trainees understand the inside plant condition in more detail. These sub-systems have been used in a training center and have contributed the improvement of operator training and have gained in popularity. (author)

  20. The training and qualification of nuclear power plant operations personnel in Canada. A regulatory overview

    International Nuclear Information System (INIS)

    Thomas, R.

    1993-01-01

    This report gives the history of training programmes for reactor operation personnel in Canada. With increased experience in reactor operation and awareness of reactor safety, more importance is given to the selection of a candidate and his training as control room operator or shift supervisor

  1. Operation and maintenance of the RB reactor, Annual report for 1979

    International Nuclear Information System (INIS)

    Sotic, O.; Vranic, S.; Petronijevic, M.

    1979-01-01

    The annual report for 1979 includes the following: utilization of the RB reactor; accident analysis; dosimetry and radiation protection; description of the reactor equipment status; reactor staff; financial data. Six Annexes to this report are concerned with: scientific program orientation; producing the new safety report; maintenance of the reactor components and equipment; purchase of new equipment; financial report; and program for training the staff of the Krsko NPP

  2. The JASON reactor at the Royal Naval College: Silver Jubilee 6th November 1987

    International Nuclear Information System (INIS)

    Lakey, J.R.A.; Roust, C.B.

    1988-01-01

    The 10 kW Research and Training Reactor Jason has been used at the Royal Naval College for 25 years in support of the Naval Nuclear Submarine Propulsion Programme. The principal features of Jason, relevant to its training role are given, along with the specifications of Jason, instrumentation, maintenance and operational experience. The educational role of the reactor is described with respect to the Nuclear Reactor Course, Nuclear Advanced Course, and the Nuclear Radiation Protection Course. Future developments in operator training, advantages of the low power reactor, quality control of education and training, and research and development, are also discussed. (U.K.)

  3. CER. Research reactors in France

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2012-01-01

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  4. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  5. RA reactor operation and maintenance in 1989, Part 1; Deo 1 - Pogon i odrzavanje nuklearnog reaktora RA u 1989. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Martinc, R; Cupac, S; Sulem, B; Zivotic, Z; Majstorovic, D; Sanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-12-15

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in July 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The following major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the power supply system. Project concerned with renewal of RA reactor complete instrumentation was started at the end of 1988. Contract was signed between the IAEA and Soviet Atomenergoexport for supplying the new instrumentation for the RA reactor. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988. In 1989, device for water purification designed by the reactor staff started operation and spent fuel handling equipment is being mounted. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor. [Serbo-Croat] U proteklom periodu reaktor RA nije bio u pogonu zato sto je 30. jula 1984. Republicki komitet za zdravlje i socijalnu politiku republike Srbije, zabranio njegov rad zbog toga sto reaktor ne poseduje sistem za udesno hladjenje i ne poseduje odgovarajuce filtere u sistemu specijalne ventilacije. Zavrseni su radovi na izgradnji sistema za udesno hladjenje, rekonstrukciji postojeceg sistema specijalne ventilacije i rekonstrukciji sistema za napajanje elektricnom energijom. Krajem 1988, medjunarodna agencija za atomsku energiju potpisala je ugovor sa sovjetskom firmom Atomergexport za izradu novog sistema instrumentacije. Sa ciljem da se poveca i efikasnije koristi prostor za skladistenje ozracenog goriva, 1987. godine zapoceta je realizacija projekata preciscavanja vode u bazenima za odlezavanje

  6. SSC RIAR is the largest centre of research reactors

    International Nuclear Information System (INIS)

    Kalygin, V.V.

    1997-01-01

    The State Scientific Centre (SSC) ''Research Institute of Atomic Reactors'' (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs

  7. SSC RIAR is the largest centre of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalygin, V V [State Scientific Centre, Research Inst. of Atomic Reactors (Russian Federation)

    1997-10-01

    The State Scientific Centre (SSC) ``Research Institute of Atomic Reactors`` (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs.

  8. Diagnosis of electric equipment at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Truong Sinh

    1999-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type of its kind in the world: Soviet-designed core and control system harmoniously integrated into the left-over infrastructure of the former American-made TRIGA MARK II reactor, which includes the reactor tank and shielding, graphite reflector, beam tubes and thermal column. The reactor is mainly used for radioisotope and radiopharmaceutical production, elemental analysis using neutron activation techniques, neutron beam exploitation, silicon doping, and reactor physics experimentation. For safe operation of the reactor maintenance work has been carried out for the reactor control and instrumentation, reactor cooling, ventilation, radiomonitoring, mechanical, normal electric supply systems as well as emergency electric diesel generators and the water treatment station. Technical management of the reactor includes periodical maintenance as required by technical specifications, training, re-training and control of knowledge for reactor staff. During recent years, periodic preventive maintenance (PPM) has been carried out for the electric machines of the technological systems. (author)

  9. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  10. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  11. History, Development and Future of TRIGA Research Reactors

    International Nuclear Information System (INIS)

    2016-01-01

    Due to its particular fuel design and resulting enhanced inherent safety features, TRIGA reactors (Training, Research, Isotopes, General Atomics) constitute a ‘class of their own’ among the large variety of research reactors built world-wide. This publication summarizes in a single document the information on the past and present of TRIGA research reactors and presents an outlook in view of potential issues to be solved by TRIGA operating organizations in the near future. It covers the historical development and basic TRIGA characteristics, followed by utilization, fuel conversion and ageing management of TRIGA research reactors. It continues with issues and challenges, introduction to the global TRIGA research reactor network and concludes with future perspectives. The publication is complemented with a CD-ROM to illustrate the historical developments of TRIGA research reactors through individual facility examples and experiences

  12. Training experience at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report

  13. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  14. Reactor handbook. 2. rev. ed.

    International Nuclear Information System (INIS)

    Lederer, B.J.; Wildberg, D.W.

    1992-01-01

    On the basis of the guidelines on expert knowledge, the book discusses the subjects of atomic physics, heat transfer, nuclear power plants, reactor materials, radiation protection, reactor safety, reactor instrumentation, and reactor operation, with special regard to nuclear power plants with LWR-type reactors. The book is intended for shift personnel, especially gang bosses, reactor operators, and control station operators: for this reason a practical and rather popular style has been chosen. However, the book will also be a manual for other operating personnel, personnel of producer companies, expert organisations, authorities, and students. It can be used as a textbook for staff training, a manual for the practice, and as accompanying book for teaching at nuclear engineering schools. (orig.) With 173 figs [de

  15. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  16. Irrigação do nó sinoatrial em suínos da raça Piètrain

    Directory of Open Access Journals (Sweden)

    Renato Souto Severino

    2000-01-01

    Full Text Available Estudou-se, em 30 (trinta corações de suínos da raça Piètrain, adultos e de ambos os sexos, a irrigação do nó sinoatrial, visando conhecer a origem, trajeto e distribuição dos vasos responsáveis pela nutrição deste tecido, bem como eventuais anastomoses que pudessem ocorrer entre estes colaterais. Para tanto, os corações tiveram seus sistemas coronarianos canulados e injetados com uma solução corada de Neoprene látex 450, fixados em solução aquosa de formol a 10% e dissecados os ramos atriais das artérias coronárias esquerda e direita. Constatou-se que em 27 (90% ± 5,47 corações o tecido nodal é irrigado por colaterais provenientes da A. coronária direita, mais precisamente pelo ramo atrial proximal direito, isoladamente em 18 (60% ± 8,94 órgãos ou associado: ao ramo atrial intermédio direito em 7 (23,33% ± 7,72 ou ao ramo atrial distal direito em 2 (6,66% ± 4,55. Em 3 (10% ± 5,47 órgãos, o nó sinoatrial é vascularizado por colaterais provenientes das Aa. coronárias direita e esquerda, sempre por meio do ramo atrial proximal direito, associado ao ramo atrial proximal esquerdo em 2 (6,66% ± 4,55 ou aos ramos atriais intermédio direito e proximal esquerdo em 1 (3,33% ± 3,27 órgão. Evidenciaram-se, ainda, anastomoses travadas entre os diferentes vasos que participam da irrigação do nó sinoatrial em suínos da raça Piètrain.

  17. Coherent states related with SU(N) and SU(N,1) groups

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shelepin, A.L.

    1990-01-01

    The basis of coherent state (CS) for symmetric presentations of groups SU(N) and SU(N,1) is plotted, its properties being investigated. Evolution of CS is considered. Relation between CS of groups SU(N) and Glauber is ascertained

  18. Perspectives on reactor safety. Revision 1

    International Nuclear Information System (INIS)

    Haskin, F.E.; Hodge, S.A.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  19. Perspectives on reactor safety. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  20. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the TH Amphitheatre New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to su...

  1. Path integrals and coherent states of SU(2) and SU(1,1)

    CERN Document Server

    Inomata, Akira; Kuratsuji, Hiroshi

    1992-01-01

    The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta

  2. On the utilization of neutron beams of research reactors in research and applications

    International Nuclear Information System (INIS)

    FAYEK, M.K.

    2000-01-01

    Nuclear research reactors are the most widely available neutron sources, and they are capable of producing very high fluxes of neutrons having a considerable range of energies, from a few MeV to 10 MeV. Therefore, these neutrons can be used in many fields of basic research and for applications in physics, chemistry, medicine, biology, etc. Experiments with research reactors over the last 50 years have laid the foundations of today's nuclear technology. In addition, research reactors continue to be utilized as facilities for testing materials and in training manpower for nuclear programs, because basic training on a research reactor provides an essential understanding of the nuclear process, and personnel become accustomed to work under the special conditions resulting from irradiation and contamination risks

  3. New narrow boson resonances and SU(4) symmetry: Selection rules, SU(4) mixing, and mass formulas

    International Nuclear Information System (INIS)

    Takasugi, E.; Oneda, S.

    1975-01-01

    General SU(4) sum rules are obtained for bosons in the theoretical framework of asymptotic SU(4), chiral SU(4) direct-product SU(4) charge algebra, and a simple mechanism of SU(4) and chiral SU(4) direct-product SU(4) breaking. The sum rules exhibit a remarkable interplay of the masses, SU(4) mixing angles, and axial-vector matrix elements of 16-plet boson multiplets. Under a particular circumstance (i.e., in the ''ideal'' limit) this interplay produces selection rules which may explain the remarkable stability of the newly found narrow boson resonances. General SU(4) mass formulas and inter-SU(4) -multiplet mass relations are derived and SU(4) mixing parameters are completely determined. Ground state 1 -- and 0 -+ 16-plets are especially discussed and the masses of charmed and uncharmed new members of these multiplets are predicted

  4. Overcoming the effects of stress on reactor operator performance

    International Nuclear Information System (INIS)

    He Xuhong; Wei Li; Zhao Bingquan

    2003-01-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  5. Overcoming the effects of stress on reactor operator performance

    Energy Technology Data Exchange (ETDEWEB)

    He Xuhong; Wei Li; Zhao Bingquan [Tsinghua Univ., Nuclear Power Plant Simulation Training Center, Beijing (China)

    2003-03-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  6. TRIGA reactor main systems

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  7. 3D virtual facilities with interactive instructions for nuclear education and training

    International Nuclear Information System (INIS)

    Satoh, Yoshinori; Li, Ye; Zhu, Yuefeng; Rizwan-uddin

    2015-01-01

    Efficient and effective education and training of nuclear engineering students and future operators are critical for the safe operation and maintenance of nuclear power plants. Students and future operators used to receive some of the education and training at university laboratories and research reactors. With many university research reactors now shutdown, both students and future operators are deprived of this valuable training source. With an eye toward this need and to take advantage of recent developments in human machine interface technologies, we have focused on the development of 3D virtual laboratories for nuclear engineering education and training as well as to conduct virtual experiments. These virtual laboratories are expected to supplement currently available resources and education and training experiences. Resent focus is on adding interactivity and physics model to allow trainees to conduct virtual experiments. This paper reports some recent extensions to our virtual nuclear education laboratory and research reactor laboratory. These include head mounted display as well as hand tracking devices for virtual operations. (author)

  8. Arkansas Tech University TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Sankoorikal, J.; Culp, R.; Hamm, J.; Elliott, D.; Hodgson, L.; Apple, S.

    1990-01-01

    This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience gained in dismantling and transporting some of the components from Michigan State University, and the storage of these components will be presented. The reactor will be used for education, training, and research. (author)

  9. Research reactor utilization, safety, decommissioning, fuel and waste management. Posters of an international conference

    International Nuclear Information System (INIS)

    2005-01-01

    For more than 50 years research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines as well as to the educational and research programmes of about 70 countries world wide. About 675 research reactors have been built to date, of which some 278 are now operating in 59 countries (86 of them in 38 developing Member States). Altogether over 13,000 reactor-years of cumulative operational experience has been gained during this remarkable period. The objective of this conference was to foster the exchange of information on current research reactor concerns related to safety, operation, utilization, decommissioning and to provide a forum for reactor operators, designers, managers, users and regulators to share experience, exchange opinions and to discuss options and priorities. The topical areas covered were: a) Utilization, including new trends and directions for utilization of research reactors. Effective management of research reactors and associated facilities. Engineering considerations and experience related to refurbishment and modifications. Strategic planning and marketing. Classical applications (nuclear activation analysis, isotope production, neutron beam applications, industrial irradiations, medical applications). Training for operators. Educational programmes using a reactor. Current developments in design and fabrication of experimental facilities. Irradiation facilities. Projects for regional uses of facilities. Core management and calculation tools. Future trends for reactors. Use of simulators for training and educational programmes. b) Safety, including experience with the preparation and review of safety analysis reports. Human factors in safety analysis. Management of extended shutdown periods. Modifications: safety analysis, regulatory aspects, commissioning programmes. Engineering safety features. Safety culture. Safety peer reviews and

  10. Broken SU(5) x SU(5) chiral symmetry and the classification of B mesons

    International Nuclear Information System (INIS)

    Hatzis, M.

    1984-01-01

    We consider broken SU(5) x SU(5) chiral summetry and we assume that the vacuum is SU(5)-symmetric. Using the observed mass spectrum of pseudoscalar mesons, and setting the bu mass in the range 5.2 +- 0.06 GeV, we predict the masses of bs, bc, and etasub(b) states as well as axial current couplings fsub(i)/fsub(π). SU(5) x SU(5) is found to be consistent with SU(4) x SU(4) breaking. The problem of eta - eta' - eta sub(c) - eta sub(b) mixing is also discussed

  11. Zirconium-hydride solid zero power reactor and its application research

    International Nuclear Information System (INIS)

    Lin Shenghuo; Luo Zhanglin; Su Zhuting

    1994-10-01

    The Zirconium Hydride Solid Zero Power Reactor built at China Institute of Atomic Energy is introduced. In the reactor Zirconium-hydride is used as moderator, plexiglass as reflector and U 3 O 8 with enrichment of 20% as the fuel, Since its initial criticality, the physical characteristics and safety features have been measured with the result showing that the reactor has sound stability and high sensitivity, etc. It has been successfully used for the personnel training and for the testing of reactor control instruments and experiment devices. It also presents the special advantage for the pre-research of some applications

  12. Education and training for nuclear scientists and engineers at NuTEC/JAEA

    International Nuclear Information System (INIS)

    Kushita, Kouhei; Sugimoto, Jun; Sakamoto, Ryuichi; Arai, Nobuyoshi; Hattori, Takamitsu; Matsuda, Kenji; Ikuta, Yuko; Sato, K.

    2009-01-01

    Because of the increasing demand of nuclear engineers in recent years, which is sometimes called as the age of nuclear Renaissance, while nuclear engineers have been decreasing and technical knowledge and expertise have not necessarily been transferred to the younger generations, human resources development (HRD) has been regarded as one of the most important issues in the nuclear field in Japan as well as in the world. Nuclear Technology and Education Center (NuTEC) at Japan Atomic Energy Agency (JAEA) have conducted comprehensive nuclear education and training activities in the past half century, which cover; 1) education and training for domestic nuclear engineers, 2) cooperation with universities, and 3) international cooperation. The main feature of NuTEC's training programs is that emphasis is placed on the laboratory exercise with well-equipped training facilities and expertise of lecturers mostly from JAEA. The wide spectrum of cooperative activities have been pursued with universities, which includes newly developed remote-education system, and also with international organizations, such as with FNCA countries and IAEA. For the nuclear education and trainings, utilization of nuclear reactors is of special importance. Examples of training programs using nuclear reactors are reported. Future plan to use nuclear reactors such as JMTR for the nuclear educations is also introduced. (author)

  13. Service to the Electric Utility Industry by the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.; Simpson, P.A.; Cook, G.M.

    1993-01-01

    Since 1977, the staff of the University of Michigan's Ford Nuclear Reactor has been providing irradiation, testing, analytical, and training services to electric utilities and to suppliers of the nuclear electric utility industry. This paper discusses the reactor's irradiation facilities; reactor programs and utilization; materials testing programs; neutron activation analysis activities; and training programs conducted

  14. Duality between SU(N)k and SU(k)N WZW models

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    We exhibit a duality of the SU(N) k WZW model under interchange of the group parameter N and the level k. The primary fields of SU(N) k and SU(k) N are related by transposition of their associated Young tableaux. The holomorphic blocks of the four-point functions of the primary fields are in one-to-one correspondence, and satisfy orthogonality and completeness relations with respect to one another. We derive these relations through a path integral realization of the SU(N) k WZW model in terms of a theory of constrained Dirac fermions. (orig.)

  15. Proceedings of the symposium on the physics and technology of reactors

    International Nuclear Information System (INIS)

    1993-01-01

    The symposium aimed at providing the opportunity for promoting the subject and for developing the human resources in this important field in the Arab States. The symposium included 32 lectures on the following topics related to research reactors: design and development, training and operation, calculations of reactor parameters, nuclear reactions dynamics and control, reactor physics, neutron pyhsics, neutron activation analysis, in-core reactor radiation protection and shielding calculations. The lectures of the symposium were distributed over 7 sessions. An additional session was held by all participants for open discussion and recommendations

  16. Results of Operation and Utilization of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Le Vinh Vinh; Duong Van Dong; Nguyen Xuan Hai; Pham Ngoc Son; Cao Dong Vu

    2014-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kW was reconstructed and upgraded from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The renovated reactor was put into operation on 20 March 1984. It was designed for the purposes of radioisotope production (RI), neutron activation analysis (NAA), basic and applied researches, and nuclear education and training. During the last 30 years of operation, the DNRR was efficiently utilized for producing many kinds of radioisotopes and radiopharmaceuticals used in nuclear medicine centers and other users in industry, agriculture, hydrology and scientific research; developing a combination of nuclear analysis techniques (INAA, RNAA, PGNAA) and physic-chemical methods for quantitative analysis of about 70 elements and constituents in various samples; carrying out experiments on the reactor horizontal beam tubes for nuclear data measurement, neutron radiography and nuclear structure study; and establishing nuclear training and education programs for human resource development. This paper presents the results of operation and utilization of the DNRR. In addition, some main reactor renovation projects carried out during the last 10 years are also mentioned in the paper. (author)

  17. The Text of the Instrument concerning the Agency's Assistance to Mexico for the Establishment of a Training Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-05

    The texts of the Agreement between the Agency the the Governments of the Federal Republic of Germany and Mexico concerning the Agency's assistance for the establishment of a training reactor project in Mexico, and of a letter relating thereto which the Resident Representative of the Federal Republic of Germany addressed to the Director General, are reproduced herein for the information of all Members. The Agreement entered into force on 21 December 1971.

  18. Regulations for RA reactor operation; Propisi nuklearnog reaktora 'RA'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-09-15

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions. [Serbo-Croat] Propisi o radu nuklearnog reaktora RA pisani su tako da svi zakonski propisi definisani 'Zakonom o zastiti od jonizujuceg zracenja' i pratecim propisima (devet pravilnika) kao i tehnicke norme prema preporukama MAAE budu postovani u punoj meri pri radu reaktora. Sadrzaj ove knjige obuhvata: osnovne podatke o reaktoru; zakonske propise; organizaciju rada reaktora RA; opste propise o rezimu rada, kretanju u zgradi reaktora, izvodjenju eksperimenata; pogonske propise za rad u normalnom rezimu i u slucaju udesa.

  19. Training of maintenance personnel

    International Nuclear Information System (INIS)

    Rabouhams, J.

    1986-01-01

    This lecture precises the method and means developed by EDF to ensure the training of maintenance personnel according to their initial educational background and their experience. The following points are treated: General organization of the training for maintenance personnel in PWR and GCR nuclear power stations and in Creys Malville fast breeder reactor; Basic nuclear training and pedagogical aids developed for this purpose; Specific training and training provided by contractors; complementary training taking into account the operation experience and feedback; Improvement of velocity, competence and safety during shut-down operations by adapted training. (orig.)

  20. Lead-cooled flexible conversion ratio fast reactor

    International Nuclear Information System (INIS)

    Nikiforova, Anna; Hejzlar, Pavel; Todreas, Neil E.

    2009-01-01

    Lead-cooled reactor systems capable of accepting either zero or unity conversion ratio cores depending on the need to burn actinides or operate in a sustained cycle are presented. This flexible conversion ratio reactor is a pool-type 2400 MWt reactor coupled to four 600 MWt supercritical CO 2 (S-CO 2 ) power conversion system (PCS) trains through intermediate heat exchangers. The cores which achieve a power density of 112 kW/l adopt transuranic metallic fuel and reactivity feedbacks to achieve inherent shutdown in anticipated transients without scram, and lead coolant in a pool vessel arrangement. Decay heat removal is accomplished using a reactor vessel auxiliary cooling system (RVACS) complemented by a passive secondary auxiliary cooling system (PSACS). The transient simulation of station blackout (SBO) using the RELAP5-3D/ATHENA code shows that inherent shutdown without scram can be accommodated within the cladding temperature limit by the enhanced RVACS and a minimum (two) number of PSACS trains. The design of the passive safety systems also prevents coolant freezing in case all four of the PSACS trains are in operation. Both cores are also shown able to accommodate unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP) accidents using the S-CO 2 PCS.

  1. RB Research nuclear reactor, 30 years of operation; Istrazivacki nuclearni reaktor RB, povodom 30 godina rada

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Stefanovic, D [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1988-06-15

    Paper describes utilization, modifications and changes of construction and control-safety systems done at the RB reactor during 30 years of operation. Experiments performed at the reactor are summarized, new reactor equipment is described and the future plans are shown. Rad prikazuje eksploataciju reaktora RB tokom 30 godina rada, modifikacije i izmene u konstruktivnim i upravljacko-sigurnosnim sistemima. Sumirani su eksperimenti izvedeni na njemu, prikazana je nova oprema i planovi za buduci rad.

  2. Development of the supporting system of the Monju advanced reactor simulator (MARS)

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto

    2002-10-01

    The MARS has been operating for operator training and operation procedure's verification of the prototype fast breeder reactor 'Monju' since April 1991. In order to carry out the above results more effectively, the MARS supporting system which consists of several computer system has being developed. This report covers the following three supporting systems developed from 1994 to 2001 and study on evaluation method of Monju operator training data. Expanded Monju visual animation system. The Monju visual animation system was developed to visualize the inner structure of equipments and the parameters without measuring points. This system is used for training form 1993. And then, the training limits of the system has been extended. Development of the Monju min simulator for reactor core analysis. Development of the Monju min simulator which analyzes thermo-hydraulic behavior in the Monju reactor in detail is proceeding with the aims; of upgrading Monju operator training effect. The obtained results will be reflected to remodeling of MARS's reactor core analysis mode. Development of the severe accident CAI (Computer Assisted Instruction) system. The prototype system which supports study on accident management was developed. This system will be converted when the severe accident procedure of Monju is fixed, and it will be used for training. Study on evaluation method of Monju operate training data. In order to reconstruct the operator training system, the evaluation method of training data was considered. The availability has been checked as a result of evaluating crew communication using this method. (author)

  3. Nuclear Reactor RA Safety Report, Vol. 15, Analysis of significant accidents; Izvestaj o sigurnosti nuklearnog reaktora RA, Knjiga 15, Analiza znacajnih akcidenata

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-01

    Power excursions of the RA reactor a mathematical model of reactor kinetic behaviour was formulated to describe power and temperature coefficients for both reactor fuel and moderator. Computer code TM-1 was written for analysis of possible reactor accidents. Power excursions caused by uncontrolled control rod removal and heavy water flow into the central vertical experimental channel were analyzed. Accidents caused by fuel elements handling were discussed including possible fuel element damage. Although the probability for uncontrolled radioactive materials release into the environment is very low, this type of accidents are analyzed as well including the impact on the personnel and the environment. A separate chapter describes analysis of the loss of flow accident. Safety analysis covers the possible damage of the outer steel Ra reactor vessel and the water screens which are part of the water biological shield. [Serbo-Croat] Radi analize dinamickog ponasanja reaktora RA u toku ekskurzije snage formulisan je matematicki model koji opisuje promene snage i temperature goriva i moderatora. Za analizu predpostavljenih akcidenata realizovan je racunarski program TM-1. Analizirane su ekskurzije snage usled nekontrolisanog izvlacenja kontrolnih sipki i punjenja centralnog vertikalnog eksperimentalnog kanala teskom vodom. Analizirani su akcidenti pri rukovanju nuklearnim gorivom ukljucujuci ostecenje nuklearnog goriva. Iako je verovatnoca za nekontrolisano rasturanje radioaktivnog materijala mala, analizirani su i ovakvi moguci akcidenti koji mogu uticati kako na osoblje reaktora tako i na okolinu. Posebno poglavlje obuhvata analizu akcidenta u slucaju prestanka cirkulacije primarnog hladioca. Analiza sigurnosti reaktora obuhvata i moguce ostecenje spoljasnjeg celicnog suda reaktora RA kao i vodenih ekrana koji su deo vodenog bioloskog stita.

  4. RB research nuclear reactor, Annual report for 1981

    International Nuclear Information System (INIS)

    Markovic, H.; Sotic, O.; Pesic, M.; Vranic, S.; Zivkovic, B.; Bogdanovic, M.; Petronijevic, M.

    1981-01-01

    The annual report for 1981 includes the following: utilization of the RB reactor; accident and incidents analysis; description of the reactor equipment status; dosimetry and radiation protection; RB reactor staff; financial data. Seven Annexes to this report are concerned with: maintenance of the reactor components and equipment, including nuclear fuel, heavy water, reactor vessel, heavy water coolant circuit, experimental platforms, absorption rods; maintenance of the electric power supply system, neutron source equipment, crane; control and maintenance of ventilation and heating systems, gas and comprised gas systems, fire protection system; plan for renewal of the reactor components; contents of the RB reactor safety report; reactor staff; review of measured radiation doses; experimental methods; training of the staff; and financial report

  5. Report of the reactor Operators Service - Annex F

    International Nuclear Information System (INIS)

    Zivotic, Z.

    1992-01-01

    RA reactor operators service is organized in two groups: permanent staff (chief operator, chief shift operators and operators) and changeable group which is formed according to the particular operation needs for working in shifts. For continuous training of the existing operator staff the Service has prepared and published eleven booklets: Nuclear reactor; RA reactor primary coolant loop; System for purification of heavy water; reactor helium system; system for technical water; electric power system; control and operation; ventilation system in the reactor building; special sewage system; construction properties of the reactor core; reactor building and installations. During the reporting period there have been no accidents nor incidents that could affect the reactor personnel [sr

  6. Training of nuclear facility personnel: boon or boondoggle

    International Nuclear Information System (INIS)

    Remick, F.J.

    1975-01-01

    The training of nuclear facility personnel has been a requirement of the reactor licensing process for over two decades. However, the training of nuclear facility personnel remains a combination of boon and boondoggle. The opportunity to develop elite, well trained, professionally aggressive reactor operation staffs is not being realized to its full potential. Improvements in the selection of personnel, training programs, operational tools and professional pride can result in improved plant operation and contribute to improved plant capacity factors. Industry, regulatory agencies, professional societies and universities can do much to improve standards and quality of the training of nuclear facility personnel and to improve the professional level of plant operation

  7. DOE University Reactor Sharing Program. Final technical report for 1996--1997

    International Nuclear Information System (INIS)

    Chappas, W.J.; Adams, V.G.

    1998-01-01

    The Department of Energy University Reactor Sharing Program at University of Maryland, College Park (UMCP) has, once again, stimulated a broad use of the reactor and radiation facilities by undergraduate and graduate students, visitors, and professionals. Participants are exposed to topics such as nuclear engineering, radiation safety, and nuclear reactor operations. This information is presented through various means including tours, slide presentations, experiments, and discussions. Student research using the MUTR is also encouraged. In addition, the Reactor Sharing Program here at the University of Maryland does not limit itself to the confines of the TRIGA reactor facility. Incorporated in the program are the Maryland University Radiation Effects Laboratory, and the UMCP 2 x 4 Thermal Hydraulic Loop. These facilities enhance and give an added dimension to the tours and experiments. The Maryland University Training Reactor (MUTR) and the associated laboratories are made available to any interested institution six days a week on a scheduled basis. Most institutions are scheduled at the time of their first request--a reflection of their commitment to the Reactor Sharing Program. The success of the past years by no means guarantees future success. Therefore, the reactor staff is more aggressively pursuing its outreach program, especially with junior colleges and universities without reactor or radiation facilities; more aggressively developing demonstration and training programs for students interested in careers in nuclear power and radiation technology; and more aggressively up-grading the reactor facilities--not only to provide a better training facility but to prepare for relicensing in the year 2000

  8. TAP 1, Training Program Manual

    International Nuclear Information System (INIS)

    1991-01-01

    Training programs at DOE nuclear facilities should provide well-trained, qualified personnel to safely and efficiently operate the facilities in accordance with DOE requirements. A need has been identified for guidance regarding analysis, design, development, implementation, and evaluation of consistent and reliable performance-based training programs. Accreditation of training programs at Category A reactors and high-hazard and selected moderate-hazard nonreactor nuclear facilities will assure consistent, appropriate, and cost-effective training of personnel responsible for the operation, maintenance, and technical support of these facilities. Training programs that are designed and based on systematically determined job requirements, instead of subjective estimation of trainee needs, yield training activities that are consistent and develop or improve knowledge, skills, and abilities that can be directly related to the work setting. Because the training is job-related, the content of these programs more efficiently meets the needs of the employee. Besides a better trained work force, a greater level of operational reactor safety can be realized. This manual is intended to provide an overview of the accreditation process and a brief description of the elements necessary to construct and maintain training programs that are based on the requirements of the job. Two companion manuals provide additional information to assist contractors in their efforts to accredit training programs

  9. Overview of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Nguyen Thai Sinh; Luong Ba Vien

    2016-01-01

    The present reactor called Dalat Nuclear Research Reactor (DNRR) has been reconstructed from the former TRIGA Mark II reactor which was designed by General Atomic (GA, San Diego, California, USA), started building in early 1960s, put into operation in 1963 and operated until 1968 at nominal power of 250 kW. In 1975, all fuel elements of the reactor were unloaded and shipped back to the USA. The DNRR is a 500-kW pool-type research reactor using light water as both moderator and coolant. The reactor is used as a neutron source for the purposes of: (1) radioactive isotope production; (2) neutron activation analysis; and (3) research and training

  10. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  11. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  12. Duality relations between SU(N)k and SU(k)NWZW models and their braid matrices

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    Dual relations are found between the primary fields, correlators, and conformal blocks of SU(N) k and SU(k) N WZW models, which in turn imply dual relations between the braid matrices of the two theories. These results are a consequence of the fact that the spaces of conformal blocks of SU(N) k and SU(k) N correlation functions are dual. (orig.)

  13. Training of operating personnel for nuclear ships

    International Nuclear Information System (INIS)

    Lakey, J.R.A.; Gibbs, D.C.C.

    1983-01-01

    Training for Nuclear Power Plant Operators is provided by the Royal Navy in support of the Nuclear Submarine Programme which is based on the Pressurised Water Reactor. The Royal naval college has 21 years of experience in this training field in which the core is the preparation of graduate electro-mechanical engineers to assume the duties of marine engineer in command of a team of supporting Engineer Officers of the Watch and Fleet Chief Petty Officers. The paper describes the training programme and shows how it is monitored by academic, professional and naval authorities and indicates the use of feedback from the user. The lynch pin of the programme is a post-graduate diploma course in Nuclear Reactor Technology attended by graduates after gaining some practical experience at sea. The course which is described in detail makes use of simplified simulators and models to develop the principles, these are applied on the JASON Training Reactor with the emphasis on in-core experiments demonstrating reactivity effects and instrumentation interpretation. The training programme provides for interaction between academic education, practical experience, applied education, full plant simulation training and on-the-job training in which boards or examinations have to be successfully passed at each stage. (author)

  14. A midsize reactor facility - A regional resource for research and education

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1991-01-01

    The mission of the University of Florida Training Reactor (UFTR) is to serve the regional needs of Florida and the Southeast for access to quality reactor usage. Well-advertised capabilities of the facility support diversified usages that include education, training, research, service, and public information programs to address the needs of a broad spectrum of users ranging from high school students and teachers, to university researchers, and even the occasional service user. Despite the midsize power of the facility, the UFTR's status as the only nonpower reactor within 350 miles in one of our largest states means that it is uniquely situated to contribute in these various areas in ways usually reserved for larger facilities. Nine state universities and a well-developed community college system in addition to private schools and a growing complement of progressive high schools assure a broad-based user community. The key to accomplishing mission objectives is to continue diversification and improvement of both the reactor and associated experimental capabilities to meet the needs of this user community

  15. Final Stage Development of Reactor Console Simulator

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Nurfarhana Ayuni Joha

    2013-01-01

    The Reactor Console Simulator PUSPATI TRIGA Reactor was developed since end of 2011 and now in the final stage of development. It is will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behavior and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of human system interface (HSI) is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate and estimated reactor console parameters. The capabilities in user interface, reactor physics and thermal-hydraulics can be expanded and explored to simulation as well as modeling for New Reactor Console, Research Reactor and Nuclear Power Plant. (author)

  16. RA Research nuclear reactor, Part 1, RA reactor operation and maintenance in 1993, with comparative review for the period 1991 - 1993, Annex 3; Projekat Istrazivacki nuklearni reaktor RA - 1 Deo Pogon i odrzavanje nuklearnog reaktora RA u 1993. godini, uz uporedni pregled za period 1991 - 1993. - prilog 3

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Cupac, S; Sulem, B; Zivotic, Z; Mikic, N; Tanaskovic, M [Vinca Institute of Nuclear Sciences, Beograd (Serbia and Montenegro)

    1993-12-15

    RA reactor was not operated during 1993 because of the complete instrumentation exchange. Although it has been planned to exchange the complete instrumentation until the end of 1993, and to start reactor operation in the first half of 1993 this was not fulfilled because the instrumentation was not delivered until the end of 1993. Main activities during past seven years were related to construction of the emergency cooling system; repair and reconstruction of the system for handling the spent fuel and improvement of spent fuel storage conditions; exchange of the aged instrumentation. Other reactor components and systems, reactor core, primary coolant loop and gas circulation system are in good condition concerning future start-up. [Serbo-Croat] U 1993. godini reaktor nije bio u pogonu zbog zamene njegove celokupne instrumentacije. Iako je bilo planirano da se celokupna instrumentacija zameni do kraja 1993. te da reaktor pocne sa radom u prvoj polovini 1993. Ovo nije ispunjeno jer celokupna oprema nije isporucena ni do kraja 1993. godine. Osnovni zahvati koji su u proteklih sedma godina izvrseni, odnosili su se na izgradnju sistema za udesno hladjenje, rekonstrukciju sistema za rukovanje ozracenim gorivom i poboljsanje uslova za stokiranje ovog goriva, zamenu instrumentacije. Ostali sistemi reaktora, reaktorsko jezgro, primarno kolo hladjenja i sistem za cirkulaciju gasa su u dobrom stanju i mogu se nesmetano koristiti u buducem radu.

  17. Regulations and instructions for RB reactor operation; Propisi i uputstva za rad reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    This document includes regulations for reactor RB operation, behaviour and presence of staff in the reactor building; regulations for performing experiments at the RB reactor, regulations and int ructions for the reactor operators and other staff on duty. A chapter is devoted to instruction for reactor operation with the operating documentation and special duties of the operators. Regulations and instruction concerned with accidents are described with classification of accidents and evacuation plan. Annexes to this document include: the present status of the reactor; program for training the reactor operators; forms which are obligatory to be signed for any operating activity, and the certificate of the RB reactor lattice.

  18. Planning and management support for NPP personnel SAT-based training programmes

    International Nuclear Information System (INIS)

    Ziakova, M.

    1998-01-01

    Planning and management support for NPP personnel SAT-based training programmes is described for the following job positions: reactor operator; turbine operator; reactor maintenance worker; pump maintenance worker; chemistry foreman; health physics foreman; electric maintenance worker

  19. The VPI program package adapted to microcomputer for in-core fuel-management

    International Nuclear Information System (INIS)

    Sumitra, T.; Bhongsuwan, T.

    1988-01-01

    The neutron shielding analysis and design program was developed for microcomputer, by modifying the SABINE-3 shielding code which was written for mainframe computers. The program is based on removal-diffusion method and was modified from the SABINE-3 code. The program could be used to calculate shielding for nuclear reactors and neutron source. The accuracy of the program was tested by determining the neutron and gamma dose rate of a test case of Cf-252 source. The results were nearly identical with those obtained from original SABINE-3 which was computed on PRIME 9750 super minicomputer. Computing time was about 65 minutes

  20. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Sugaya, Naoto; Ohtsuka, Kaoru; Hanakawa, Hiroki; Onuma, Yuichi; Hosokawa, Jinsaku; Hori, Naohiko; Kaminaga, Masanori; Tamura, Kazuo; Hotta, Kohji; Ishitsuka, Tatsuo

    2013-06-01

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  1. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Hampel, G.; Eberhardt, K.; Trautmann, N.

    2006-01-01

    The TRIGA Mark II reactor at the Institut fuer Kernchemie became first critical on August 3 rd , 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. A survey of the research programmes performed at the TRIGA Mainz is given covering applications in basic research as well as applied science in nuclear chemistry and nuclear physics. Furthermore, the reactor is used for neutron activation analysis and for education and training of scientists, teachers, students and technical personal. Important projects for the future of the TRIGA Mainz are the UCN (ultra cold neutrons) experiment, fast chemical separation, medical applications and the use of the NAA as well as the use of the reactor facility for the training of students in the fields of nuclear chemistry, nuclear physics and radiation protection. Taking into account the past and future operation schedule and the typically low burn-up of TRIGA fuel elements (∝4 g U-235/a), the reactor can be operated for at least the next decade taking into account the fresh fuel elements on stock and without changing spent fuels. (orig.)

  2. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  3. Nuclear education and training related issues: Needs and lessons learned in national and international context

    International Nuclear Information System (INIS)

    Lubomir, Sklenka

    2010-01-01

    The paper is focused on nuclear education and training at research reactors and universities. Lack of experts and high educated and skilled professionals in nuclear engineering in the world caused by fast aging of the NPPs and research reactors staff and expected ''nuclear renaissance'' brings a new needs to the universities and research reactors. During the last few years some new trends in nuclear education became visible. Customers expect high quality nuclear education in wide range of knowledge and the complex services, which forces universities and research reactors to bring new challenges in the domain of education and training. State-of-the-art experimental equipment and methodologies specifically developed for the education, networking and dose cooperation between universities and research reactors at national and international levels, and sharing the experimental facilities are the trends which can be noticed today all over the world. Research reactors are suitable for education of students at all academic levels (BSc, MSc and PhD) not only in nuclear engineering, but also in various non-nuclear engineering studies (power engineering, electrical engineering, natural sciences, medical sciences, physical sciences, etc.). An effective way on how to provide the education and training at the research reactor should be started by evaluation of the initial students' background and then adaptation of the educational methodology to that level. Networking and closer co-operation between universities at national and international level in nuclear education started in late nineties in Europe and within a few years several networks were establish. The European Nuclear Education Network (ENEN) as an European regional network with more than 40 European universities was inspiration for creating national networks in Europe (e.g. Belgium, UK, Czech Republic, etc.) and Non-European regional networks (Asia, North America, etc.). Research reactors play an important role in all

  4. Operation and maintenance of the RB reactor, Annual report for 1976

    International Nuclear Information System (INIS)

    Sotic, O.; Vranic, S.

    1976-01-01

    Due to its flexibility and relatively simple construction the RB reactor enabled direct measurements of a series of physical parameters. During 1976 the reactor operation exceeded the plan due to preparation of special experiments planned for the next period. It is planned to operate the reactor at higher power levels (50 W - 10 kw). A need for increasing the neutron flux a neutron converter was built in 1976. preliminary measurements showed that placing the neutron converter next to the reactor vessel enables achievement of irradiation and dosimetry measurements in the fast neutron flux. It is planned to purchase highly enriched fuel for the neutron converter. This annual report includes 5 Annexes with data concerning: operation, irradiation field around the RB reactor, maintenance of reactor components and instrumentation, purchase of new equipment, and the program for training reactor operators

  5. Simulation development for TRIGA reactor

    International Nuclear Information System (INIS)

    Handoyo, D.

    1997-01-01

    A simulator of the dynamic of TRIGA reactor has been made. this simulator is meant to study the reactor kinetic behavior and for operator training to more assure the safety and the reliability of the real operation of TRIGA reactor. the simulator consists of PC (Personal Computer) for processing the calculation of reactivity, neutron flux, period, ect and control panel for regulating the input data such as the change of power range, control rod position as well as cooling flow rate. the result will be displayed on screen monitor of personal computer as given in the real control room of TRIGA reactor. the output of simulator will be verified by comparing with measurement result in the real TRIGA MARK II reactor of Musashi institute of technology. for the change of reactivity of 0.3, 0.5 and 0.7 the reactor power and fuel temperature between the simulator and measurements are comparable

  6. Study on personnel qualification for non-destructive tests in the field of reactor safety

    International Nuclear Information System (INIS)

    Trusch, K.; Wuestenberg, H.

    1977-01-01

    The training system for non-destructive testing is described, and the available and necessary personnel is analyzed; the personnel required for reactor safety problems is treated separately. On this basis, the subjects discussed in the study - available personnel, personnel requirements, training, training requirements, and suggestions for realisation - are treated in a general manner to begin with and afterwards with a view to specific problems of reactor safety. The methods employed are adapted to this situation. To obtain the necessary empirical data, questionnaires were set up and distributed, and experts in selected business companies and institutions were interviewed who work in the field of reactor safety or do same training in non-destructive testing. (orig.) [de

  7. Practical course on reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-06-01

    This course is based on the description of the instrumentation of the TRIGA-reactor Vienna, which is used for training research and isotope production. It comprises the following chapters: 1. instrumentation, 2. calibration of the nuclear channels, 3. rod drop time of the control rods, 4. neutron flux density measurements using compensated ionization, 5. neutron flux density measurement with fission chambers (FC), 6. neutron flux density measurement with self-powered neutron detectors (SPND), 7. pressurized water reactor simulator, 8. verification of the radiation level during reactor operation. There is one appendix about neutron-sensitive thermocouples. (nevyjel)

  8. Standards for safe operation of research reactors

    International Nuclear Information System (INIS)

    1996-01-01

    The safety of research reactors is based on many factors such as suitable choice of location, design and construction according to the international standards, it also depends on well trained and qualified operational staff. These standards determine the responsibilities of all who are concerned with the research reactors safe operation, and who are responsible of all related activities in all the administrative and technical stages in a way that insures the safe operation of the reactor

  9. History, Development and Future of TRIGA Research Reactors. Companion CD-ROM

    International Nuclear Information System (INIS)

    2016-01-01

    Due to its particular fuel design and resulting enhanced inherent safety features, TRIGA reactors (Training, Research, Isotopes, General Atomics) constitute a ‘class of their own’ among the large variety of research reactors built world-wide. This publication summarizes in a single document the information on the past and present of TRIGA research reactors and presents an outlook in view of potential issues to be solved by TRIGA operating organizations in the near future. It covers the historical development and basic TRIGA characteristics, followed by utilization, fuel conversion and ageing management of TRIGA research reactors. It continues with issues and challenges, introduction to the global TRIGA research reactor network and concludes with future perspectives. This CD-ROM illustrates the historical developments of TRIGA research reactors through individual facility examples and experiences

  10. Baryon spectroscopy and SU(6)

    International Nuclear Information System (INIS)

    Litchfield, P.

    1977-09-01

    An elementary account of the SU(6) formalism for baryons is given. The assignment of the known resonances to SU(6) multiplets is discussed and an experimental scheme given for the spectrum of SU(6) x 0(2) multiplets. (author)

  11. SU(4)

    Indian Academy of Sciences (India)

    Abstract. We introduce in this paper embedded Gaussian unitary ensemble of random matrices, for m fermions in Ω number of single particle orbits, generated by random two- body interactions that are SU(4) scalar, called EGUE(2)-SU(4). Here the SU(4) algebra corresponds to Wigner's supermultiplet SU(4) symmetry in ...

  12. The future role of research reactors

    International Nuclear Information System (INIS)

    Glaeser, W.

    2001-01-01

    The decline of neutron source capacity in the next decades urges for the planning and construction of new neutron sources for basic and applied research with neutrons. Modern safety precautions of research reactors make them competitive with other ways of neutron production using non-chain reactions for many applications. Research reactors consequently optimized offer a very broad range of possible applications in basic and applied research. Research reactors at universities also in the future have to play an important role in education and training in basic and applied nuclear science. (orig.)

  13. The role of nuclear education and training in Korea

    International Nuclear Information System (INIS)

    Min, B.J.; Han, K.W.; Lee, E.J.

    2007-01-01

    Since the commercial operation of the first nuclear power plant in April 1978, Korea has achieved a rapid growth in nuclear power. In 2004, 19 nuclear power plants are currently in operation and 8 nuclear power plants are under construction. The installed nuclear capacity is 16,716MW. Also nuclear power generation reached 129,672GWh which are about 40% of the total electricity generation. Nuclear energy has been a backbone for Korea's economic growth over the past decades, and will continue to play role for the prosperity of next generation in this century. In this context, Korean Standard Nuclear Power Plant and Advanced Power Reactor-1400 have been developed, and System-Integrated Modular Advanced Reactor for desalination of seawater, Advanced Liquid Metal Reactor and Direct Use of Spent PWR Fuel in CANDU are being developed. In parallel, a Radiation Technology R and D Center and a High Power Proton Accelerator Center are being established. Along with the progress of the nuclear energy program, the nuclear education and training has been progressed stepwise, i.e. overseas training, basic training, domestic nuclear human resource development, IAEA regional training, and global nuclear human resource development. Nuclear engineering education program started at Universities from 1958. In order to provide training courses for nuclear personnel, the Nuclear Training Center was established at KAERI in 1967. During the construction of the first nuclear power plant, basic training courses were conducted at NTC/KAERI. And specific training courses were conducted by the reactor suppliers in Korea and the supplier's countries. During this period, reactor operation license laws and the national technical qualification system (engineer, technician, craftsman) with a linkage to the national education system were established in 1970, 1975, respectively. When the utility (now the Korea Hydro and Nuclear Company) started operation of the first nuclear power plant in 1978, the

  14. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  15. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  16. Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Luong Ba Vien; Nguyen Minh Tuan; Nguyen Kien Cuong; Pham Quang Huy; Tran Tri Vien

    2015-01-01

    The project Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education performed by Dalat Nuclear Research Institute and financed by Ministry of Science and Technology aimed at strengthening the training capability of nuclear human resources. The content of this work includes: i) Improvement of experimental equipment; ii) Compilation of training material for experiments with the improved equipment systems on the reactor; iii) Compilation of training material for reactor calculations includes the following areas: neutronics, hydrothermal, safety analysis and accident consequence analysis. Results of the project provide important conditions to support practical educational and training curriculums in nuclear science and technology. (author)

  17. Ageing management of the BR2 research reactor

    International Nuclear Information System (INIS)

    Verpoortem, J. R.; Van Dyck, S.

    2014-01-01

    At the Belgian nuclear research centre (SCK.CEN) several test reactors are operated. Among these, Belgian Reactor 2 (BR2) is the largest Material Test Reactor (MTR). This water-cooled, beryllium moderated reactor with a maximum thermal power of 100 MW became operational in 1962. Except for two major refurbishment campaigns of one year each, this reactor has been operated continuously over the past 50 years, with a frequency of 5-12 cycles per year. At present, BR2 is used for different research activities, the production of medical isotopes, the production of n-doped silicon and various training and education activities. (Author)

  18. PBF task and training requirements analysis

    International Nuclear Information System (INIS)

    Blackman, H.S.; Gertman, D.I.; Petersen, R.J.

    1983-05-01

    Task analyses were used to assist in identifying improvements needed in the training curriculum for selected positions at the Power Burst Facility (PBF). Four positions were examined: Experiment Power Reactor Operator, Experiment (EPRO-Ex); Experiment Power Reactor Operator, Plant (EPRO-P); Experiment Power Reactor Operator, Console (EPRO-Co), and Shift Supervisor (SS). A complete position task listing and core of tasks defined in terms of (a) level of difficulty to perform, (b) severity of consequence if performed improperly, and (c) associated error probability were identified by each position. The systems, academic, and administrative knowledge needed by job incumbents to perform each task was noted. Strategies for teaching the knowledge associated with these tasks are presented

  19. Outlines of JAEA's instructor training program and future prospects

    International Nuclear Information System (INIS)

    Hidaka, Akihide; Nakamura, Kazuyuki; Watanabe, Yoko; Yabuuchi, Yukiko; Arai, Nobuyoshi; Sawada, Makoto; Yamashita, Kiyonobu; Sawai, Tomotsugu; Murakami, Hiroyuki

    2015-01-01

    Nuclear Human Resource Development Center (NuHRDeC) of JAEA has conducted nuclear human resource development for more than 50 years since its establishment in 1958. NuHRDeC conducts international nuclear human resource development, so called “Instructor Training Program (ITP)”, which is a training scheme launched in 1996 in order to support Asian countries seeking peaceful use of nuclear energy. The ITP consists of 1) Instructor Training Course (ITC) in Japan, 2) Follow-up Training Course (FTC) in own countries organized by instructors trained at ITC in Japan, and 3) Nuclear Technology Seminar for bringing up nuclear trainers and leaders in Asian countries. The purpose of ITP is to develop a self-sustainable training system in Asian countries, which disseminates the knowledge and technology in their countries. After completing ITC trainings at NuHRDeC, the trainees are obliged to set up FTC in each country. They create own 1 or 2 weeks course curricula and allocate local lecturers including themselves. Two or three Japanese experts join the FTC to give technical advices and support to local lecturers. The present specialized fields of ITC are 1) Reactor engineering such as reactor physics, thermal engineering and reactor safety, 2) Environmental radioactivity monitoring, and 3) Nuclear emergency preparedness. The main feature of ITC is that the curricula places emphasis on the practical exercise with well-equipped training facilities, experimental laboratories utilizing the simulators of research reactor, and the expertise of lecturers mostly from JAEA. As of FY2014, ITC is applied to 8 countries; Indonesia, Thailand, Vietnam, Bangladesh, Kazakhstan, Malaysia, Philippines and Mongolia. The total number of participants at ITC since 1996 is approximately 300 and the participation of FTC has been increased significantly year after year with more than 3,000 in total. This result indicates that the ITP system has been effectively contributed to fostering local

  20. Study on Pressure drop for Ion Exchanger in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki-jung; Choi, Jungwoon; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Jordan Research and Training Reactor (JRTR) is currently being constructed and commissioned in the JUST (Jordan University of Science and Technology) site. The main fluid systems relevant to the JRTR have been proceeding at the Korea Atomic Energy Research Institute. In order to achieve the purpose of the pool water purification, two filters and two ion exchangers which can be to remove suspended solids and ionic impurities in the in-taken pool water have been designed. For the reliable design of this system pump, it is important to predict the pressure drop of the system equipment including the ion exchanger. In this study, the pressure drop in the ion exchanger of PWMS is predicted by using the well-known model and the results provided from manufacturing company. And, the calculated results are compared to the actual data which is measured from the ion exchanger during the PWMS commissioning. The predicted pressure drop is dominated by the resin bed as a portion of about 85% for total pressure drop. The predicted pressure drop is compared to the measured pressure drop of the ion exchanger which is installed in the JRTR, the data above 5 kg/s agree within 5% in the entire range.

  1. UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation

    Science.gov (United States)

    Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.

    2015-08-01

    There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five

  2. Optimized plasma-deposited fluorocarbon coating for dry release and passivation of thin SU-8 cantilevers

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Häfliger, Daniel; Boisen, Anja

    2008-01-01

    during fluorocarbon deposition, the surface free energy of the coating can be tuned to allow for uniform wetting during spin coating of arbitrary thin SU-8 films. Further, they define an optimal pressure regime for the release of thin polymer structures at high yield. They demonstrate the successful......Plasma-deposited fluorocarbon coatings are introduced as a convenient method for the dry release of polymer structures. In this method, the passivation process in a deep reactive ion etch reactor was used to deposit hydrophobic fluorocarbon films. Standard photolithography with the negative epoxy......-based photoresist SU-8 was used to fabricate polymer structures such as cantilevers and membranes on top of the nonadhesive release layer. The authors identify the plasma density as the main parameter determining the surface properties of the deposited fluorocarbon films. They show that by modifying the pressure...

  3. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murthy, G.S.

    1999-01-01

    At low power research reactor is being set up in Andhra University to cater to the needs of researchers and isotope users by the Department of Atomic Energy in collaboration with Andhra University. This reactor is expected to be commissioned by 2001-02. Departments like Chemistry, Earth Sciences, Physics, Life Sciences, Pharmacy, Medicine and Engineering would be the beneficiaries of the availability of this reactor. In this paper, details of the envisaged research programme and training activities are discussed. (author)

  4. Nuclear Reactor Laboratory annual report, fiscal year 1981-1982

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1982-01-01

    Information related to the use of the UWNR reactor is presented concerning instructional use by the Nuclear Engineering Department; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis services; changes in personnel, facility, and procedures; and results of surveillance tests

  5. Research and development into power reactor fuel performance

    International Nuclear Information System (INIS)

    Notley, M.J.F.

    1983-07-01

    The nuclear fuel in a power reactor must perform reliably during normal operation, and the consequences of abnormal events must be researched and assessed. The present highly reliable operation of the natural UO 2 in the CANDU power reactors has reduced the need for further work in this area; however a core of expertise must be retained for purposes such as training of new staff, retaining the capability of reacting to unforeseen circumstances, and participating in the commercial development of new ideas. The assessment of fuel performance during accidents requires research into many aspects of materials, fuel and fission product behaviour, and the consolidation of that knowledge into computer codes used to evaluate the consequences of any particular accident. This work is growing in scope, much is known from out-reactor work at temperatures up to about 1500 degreesC, but the need for in-reactor verification and investigation of higher-temperature accidents has necessitated the construction of a major new in-reactor test loop and the initiation of the associated out-reactor support programs. Since many of the programs on normal and accident-related performance are generic in nature, they will be applicable to advanced fuel cycles. Work will therefore be gradually transferred from the present, committed power reactor system to support the next generation of thorium-based reactor cycles

  6. Entropy of entangled states and SU(1,1) and SU(2) symmetries

    International Nuclear Information System (INIS)

    Santana, A.E.; Khanna, F.C.; Revzen, M.

    2002-01-01

    Based on a recent definition of a measure for entanglement [Plenio and Vedral, Contemp. Phys. 39, 431 (1998)], examples of maximum entangled states are presented. The construction of such states, which have symmetry SU(1,1) and SU(2), follows the guidance of thermofield dynamics formalism

  7. Netherlands Interuniversity Reactor Institut

    International Nuclear Information System (INIS)

    1978-01-01

    This is the annual report of the Interuniversity Reactor Institute in the Netherlands for the Academic Year 1977-78. Activities of the general committee, the daily committee and the scientific advice board are presented. Detailed reports of the scientific studies performed are given under five subjects - radiation physics, reactor physics, radiation chemistry, radiochemistry and radiation hygiene and dosimetry. Summarised reports of the various industrial groups are also presented. Training and education, publications and reports, courses, visits and cooperation with other institutes in the area of scientific research are mentioned. (C.F.)

  8. TAP 2, Performance-Based Training Manual

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    Training programs at DOE nuclear facilities should provide well- trained, qualified personnel to safely and efficiently operate the facilities in accordance with DOE requirements. A need has been identified for guidance regarding analysis, design, development, implementation, and evaluation of consistent and reliable performance-based training programs. Accreditation of training programs at Category A reactors and high-hazard and selected moderate-hazard nonreactor facilities will assure consistent, appropriate, and cost-effective training of personnel responsible for the operation, maintenance, and technical support of these facilities. Training programs that are designed and based on systematically job requirements, instead of subjective estimation of trainee needs, yield training activities that are consistent and develop or improve knowledge, skills, and abilities that can be directly related to the work setting. Because the training is job-related, the content of these programs more efficiently and effectively meets the needs of the employee. Besides a better trained work force, a greater level of operational reactor safety can be realized. This manual is intended to provide an overview of the accreditation process and a brief description of the elements necessary to construct and maintain training programs that are based on the requirements of the job. Two comparison manuals provide additional information to assist contractors in their efforts to accredit training programs.

  9. TAP 3, Training Program Support Manual

    International Nuclear Information System (INIS)

    1991-07-01

    Training programs at DOE facilities should provide well-trained, qualified personnel to safely and efficiently operate the facilities in accordance with DOE requirements. A need has been identified for guidance regarding analysis, design, development, implementation, and evaluation of consistent and reliable performance-based training programs. Accreditation of training programs at Category A reactors and high-hazard and selected moderate-hazard nonreactor nuclear facilities will assure consistent, appropriate, and cost-effective training of personnel responsible for the operation, maintenance, and technical support of these facilities. Training programs that are designed and based on systematically determined job requirements, instead of subjective estimation of trainee needs, yield training activities that are consistent and develop or improve knowledge, skills, and abilities that can be directly related to the work setting. Because the training is job-related, the content of these programs more efficiently and effectively meets the needs of the employee. Besides a better trained work force, a greater level of operational reactor safety can be realized. This manual is intended to provide an overview of the accreditation process and a brief description of the elements necessary to construct and maintain training programs that are based on the requirements of the job. Two companion manuals provide additional information to assist contractors in their efforts to accredit training programs

  10. TAP 2, Performance-Based Training Manual

    International Nuclear Information System (INIS)

    1991-07-01

    Training programs at DOE nuclear facilities should provide well- trained, qualified personnel to safely and efficiently operate the facilities in accordance with DOE requirements. A need has been identified for guidance regarding analysis, design, development, implementation, and evaluation of consistent and reliable performance-based training programs. Accreditation of training programs at Category A reactors and high-hazard and selected moderate-hazard nonreactor facilities will assure consistent, appropriate, and cost-effective training of personnel responsible for the operation, maintenance, and technical support of these facilities. Training programs that are designed and based on systematically job requirements, instead of subjective estimation of trainee needs, yield training activities that are consistent and develop or improve knowledge, skills, and abilities that can be directly related to the work setting. Because the training is job-related, the content of these programs more efficiently and effectively meets the needs of the employee. Besides a better trained work force, a greater level of operational reactor safety can be realized. This manual is intended to provide an overview of the accreditation process and a brief description of the elements necessary to construct and maintain training programs that are based on the requirements of the job. Two comparison manuals provide additional information to assist contractors in their efforts to accredit training programs

  11. RA Research reactor Annual report 1981 - Part 1, Operation, maintenance and utilization of the RA reactor; Istrazivacki nuklearni reaktor RA, Deo 1 - Pogon, odrzavanje i eksploatacija reaktora u 1981. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Milosevic, M; Martinc, R; Kozomara-Maic, S; Cupac, S; Radivojevic, J; Stamenkovic, D; Skoric, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1981-12-15

    biggest difficulty was maintenance of reactor instrumentation. During 1981 the reactor was operated safely, there was no accident nor incident that would affect the safety of reactor personnel or the environment. The testing operation will be continued in 1982,and the experience so far shows that the program would be successfully fulfilled on the whole. [Serbo-Croat] Nuklearni reaktor RA prestao je sa radom nakon martovske kampanje 1979. godine usled pojave talozenja oksihidrata aluminijuma na kosuljicama gorivnih elemenata. Odgovarajucim resenjima Sanitarnog inspektorata Republickog sekretarijata za zdravje i socijalnu politiku SR Srbije i generalnog direktora Instituta za nuklearne nauke 'Boris Kidric', Vinca zabranjen je dalji rad reaktora sve dok se ne utvrde uzroci stvaranja oksihidrata aluminijuma i njihovog talozenja, preduzmu mere za njihovo uklanjanje i ne obezbede potrebni uslovi za normalan nastavak rada reaktora. Do kraja 1979. i tokom 1980. godine, nakon niza izvrsenih analiza i utvrdjivanja uzroka koji su doveli do zaustavljanja rada reaktora, izvrsene su sve neophodne pripreme za ponovno pustanje reaktora u rad. Polazeci od cinjenice da na reaktoru RA ne postoji sistem za hladjenje jezgra u slucaju udesa i da ne postoji adekvatan sistem za filtriranje potencijalno zagadjenog vazduha, a saglasno sa novim propisima o pustanju u rad i probnom radu nuklearnih objekata, Sanitarni inspektorat je doneo privremeno resenje kojim se dozvoljava pustanje reaktora u rad, tj. izvodjenje tzv. 'nultog eksperimenta' uz ogranicenje snage na 1% od vrednosti nominalne snage. Na osnovu dobijene dozvole, reaktor RA je ponovo pusten u rad 21. januara 1981. godine, kada je dostignuta kriticnost sa jezgrom sastavljenim iskljucivo od gorivnih elemenata od 80% obogacenog uranijuma. Eksperiment je zavrsen krajem marta, nakon cega je zatrazena dozvola za probni rad na vecim snagama i potom za rad na punoj snazi. Uzimajuci postojece stanje reaktora RA doneto je resenje kojim se

  12. Nuclear research reactors in the world. June 1988 ed.

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third edition of Reference Data Series No. 3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of June 1988, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the IAEA Research Reactor Data Base (RRDB) system. This system contains all the information and data previously published in the Agency's publication Power and Research Reactors in Member States as well as additional information. 12 figs, 19 tabs

  13. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  14. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces

  15. Control Rod Malfunction at the NRAD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  16. Interaction between users of large and small research reactors

    International Nuclear Information System (INIS)

    Moon, R.M.

    1983-10-01

    An attitude of cooperation rather than competition should and does exist between large and small reactor centers with regard to neutron scattering. Two areas of clear mutual interest are the development of user communities and the development of improved instrumentation. The current situation in Europe and the United States is examined and contrasted for these two areas. A recommendation is advanced for increased cooperation in the US between large and small reactor centers in the education and training of neutron scattering users

  17. Training implementation matrix. Spent Nuclear Fuel Project (SNFP)

    International Nuclear Information System (INIS)

    EATON, G.L.

    2000-01-01

    This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently

  18. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.

    Science.gov (United States)

    Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P

    2015-12-01

    Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.

  19. Site security personnel training manual

    International Nuclear Information System (INIS)

    1978-10-01

    As required by 10 CFR Part 73, this training manual provides guidance to assist licensees in the development of security personnel training and qualifications programs. The information contained in the manual typifies the level and scope of training for personnel assigned to perform security related tasks and job duties associated with the protection of nuclear fuel cycle facilities and nuclear power reactors

  20. Fessenheim simulator for OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    Oudot, G.; Bonnissent, B.

    1998-01-01

    A full scope NPP simulator is presently under manufacture by THOMSON TRAINING and SIMULATION (TTandS) in Cergy (France) for the OECD HALDEN REACTOR PROJECT. The reference plant of this simulator is the Fessenheim CP0 PWR power plant operated by the French utility EDF, for which TTandS has delivered a full scope training simulator in mid 1997. The simulator for HALDEN Reactor Project is based on a software duplication of the Fessenheim simulator delivered to EDF, ported on the most recent computers and O.S. available. This paper outlines the main features of this new simulator generation which reaps benefit of the advanced technologies of the SIPA design simulator introduced inside a full scope simulator. This kind of simulator is in fact the synthesis between training and design simulators and offers therefore added technical capabilities well suited to HALDEN needs. (author)

  1. Keeping research reactors relevant: A pro-active approach for SLOWPOKE-2

    International Nuclear Information System (INIS)

    Cosby, L.R.; Bennett, L.G.I.; Nielsen, K.; Weir, R.

    2010-01-01

    The SLOWPOKE is a small, inherently safe, pool-type research reactor that was engineered and marketed by Atomic Energy of Canada Limited (AECL) in the 1970s and 80s. The original reactor, SLOWPOKE-1, was moved from Chalk River to the University of Toronto in 1970 and was operated until upgraded to the SLOWPOKE-2 reactor in 1973. In all, eight reactors in the two versions were produced and five are still in operation today, three having been decommissioned. All of the remaining reactors are designated as SLOWPOKE-2 reactors. These research reactors are prone to two major issues: aging components and lack of relevance to a younger audience. In order to combat these problems, one SLOWPOKE -2 facility has embraced a strategy that involves modernizing their reactor in order to keep the reactor up to date and relevant. In 2001, this facility replaced its aging analogue reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. The digital control system provides a better interface and allows flexibility in data storage and retrieval that was never possible with the analogue control system. This facility has started work on another upgrade to the digital control and instrumentation system that will be installed in 2010. The upgrade includes new computer hardware, updated software and a web-based simulation and training system that will allow licensed operators, students and researchers to use an online simulation tool for training, education and research. The tool consists of: 1) A dynamic simulation for reactor kinetics (e.g., core flux, power, core temperatures, etc). This tool is useful for operator training and student education; 2) Dynamic mapping of the reactor and pool container gamma and neutron fluxes as well as the vertical neutron beam tube flux. This research planning tool is used for various researchers who wish to do irradiations (e.g., neutron

  2. Job task and functional analysis of the Division of Reactor Projects, office of Nuclear Reactor Regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morzinski, J.A.; Gilmore, W.; Hahn, H.A.

    1998-07-10

    A job task and functional analysis was recently completed for the positions that make up the regional Divisions of Reactor Projects. Among the conclusions of that analysis was a recommendation to clarify roles and responsibilities among site, regional, and headquarters personnel. As that analysis did not cover headquarters personnel, a similar analysis was undertaken of three headquarters positions within the Division of Reactor Projects: Licensing Assistants, Project Managers, and Project Directors. The goals of this analysis were to systematically evaluate the tasks performed by these headquarters personnel to determine job training requirements, to account for variations due to division/regional assignment or differences in several experience categories, and to determine how, and by which positions, certain functions are best performed. The results of this analysis include recommendations for training and for job design. Data to support this analysis was collected by a survey instrument and through several sets of focus group meetings with representatives from each position.

  3. A customized digital monitoring and display system for nonpower reactors

    International Nuclear Information System (INIS)

    Ficaro, E.P.; Wehe, D.K.

    1989-01-01

    A digital data acquisition system for monitoring plant variables has been designed and implemented at the University of Michigan's Ford Nuclear Reactor (FNR), a 2-MW open-pool research reactor. The digital data provided by this system will be useful for: improved operator training, real-time experimental calculations, noise analysis, closed-loop control, and expert system applications. This paper describes the analog-to-digital (A/D) transitions and the associated applications and benefits experienced

  4. Nuclear power plant operating personnel training for normal and accident situations

    International Nuclear Information System (INIS)

    Dufrene, C.

    1995-01-01

    Training system of reactor operating staff in France for maximum safety is discussed. The structure of the training program consists of three levels, initial training in each aspect of operations job functions, with systematic refresher training sessions; the principles at global team skills; the range of skills required for unit operation. (N.T.). 1 fig

  5. Improvement of quality with Nuclear Power Training Center (NTC) operator training

    International Nuclear Information System (INIS)

    Matsumoto, Y.

    2005-01-01

    Nuclear Power Training Center (NTC) was established in 1972 for PWR operator training. As the result of introduction of quality assurance management into NTC operator training, it became possible to confirm each step of systematic approach to training (SAT) process and then feedback process became clearer. Simulation models were modified based on domestic or overseas accidents cases and so training was improved using simulators closer to actual plants. Also a new multipurpose simulator with modified reactor coolant system (RCS) visual display device (RVD) and parameter-event-log (PEL) device was introduced in 2003 to provide more information so as to upgrade knowledge level of operators. (T. Tanaka)

  6. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  7. The low power miniature neutron source reactors: Design, safety and applications

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, M.; Bezboruah, T.; Johri, M.; Akaho, E.H.K.

    2006-04-01

    The Chinese Miniature Neutron Source Reactor (MNSR) is a low power research reactor with maximum thermal neutron flux of 1 x 10 12 n.cm -2 .s -1 in one of its inner irradiation channels and thermal power of approximately 30kW. The MNSR is designed based on the Canadian SLOWPOKE reactor and is one of the smallest commercial research reactors presently available in the world. Its commercial versions currently in operation in China, Ghana, Iran, Nigeria, Pakistan and Syria, is considered as an excellent tool for Neutron Activation Analysis (NAA), training of Scientist, and Engineers in nuclear science and technology and small scale radioisotope production. The paper highlights the basic design and theory of the commercial MNSR, its safety features, applications and advantages over the Chinese Prototype. The experimental flux characteristics determined in this work and in similar studies by other authors reveal that the commercial MNSR has more flux stability, longer life span, higher negative temperature coefficient of reactivity and low under-moderation compared to its prototype in China. The result shows that the facility is safe for reactor physics experiments, teaching and training of students and also ideal for application of NAA for the determination of elemental composition of biological and environmental samples. It can also be a useful tool for geochemical and soil fertility mapping. (author)

  8. Guide to good practices for the selection, training, and qualification of shift technical advisors

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The DOE Guide to Good Practices For The Selection, Training, and Qualification of Shift Technical Advisors can be used by any DOE nuclear facility that has implemented the shift technical advisor position. DOE Order 5480-20, ``Personnel Selection, Qualification, Training, and Staffing Requirements at DOE Reactor and Non-Reactor Nuclear Facilities,`` states that only Category A reactors must use shift technical advisor position. However, many DOE nuclear facilities have implemented the shift technical advisor position to provide independent on-shift technical advice and counsel to the shift operating personnel to help determine cause and mitigation of facility accidents. Those DOE nuclear facilities that have implemented or are going to implement the shift technical advisor position will find this guide useful. This guide addresses areas that may be covered by other training programs. In these cases, it is unnecessary (and undesirable) to duplicate these areas in the STA training program as long as the specific skills and knowledge essential for STAs are addressed. The guide is presented based on the premise that the trainee has not completed any facility-specific training other than general employee training.

  9. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  10. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  11. Nuclear Business Acumen Training for Executives

    International Nuclear Information System (INIS)

    Blomgren, Jan

    2014-01-01

    The presentation is structured as follows: Failure in large technology projects; Simulations in industry; Training in reactor simulators; Business simulation; NPP business simulation Nuclear Inc.; Knowledge retention; Boosting the effect of training; Contact

  12. Physical protection design and analysis training for the former Soviet Union

    International Nuclear Information System (INIS)

    Soo Hoo, M.S.; Chapek, J.F.; Ebel, P.E.

    1996-01-01

    Since 1978, Sandia National Laboratories has provided training courses in the systematic design of Physical Protection Systems (PPS). One such course, the International Training Course (TC) on the Physical Protection of Nuclear Facilities and Materials, is sponsored by the Department of Energy's International Safeguards Division , the International Atomic Energy Agency, and the Department of State. Since 1978, twelve 3- and 4-week classes have been conducted by Sandia for these sponsors. One- and two-week adaptations of this course have been developed for other customers, and, since 1994, nine of these abbreviated courses have been presented in the Russian language to participants from the Former Soviet Union (SU). These courses have been performed in support of the Department of Energy's program on Material Protection, Control and Accounting (MPC ampersand A) for the Russian Federation and the Newly Independent States. MPC ampersand A physical protection training assumes participants have more narrowly defined backgrounds. In using affective approaches, the overall goal of training in the context of the MPC ampersand A Program is to develop modern and effective, indigenous capabilities for physical protection system design and analysis within the SU. This paper contrasts the cognitive and affective approaches to training and indicates why different approaches are required for the ITC and the MPC ampersand A Programs

  13. String threshold corrections and flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. (Ecole Polytechnique, Centre de Physique Theorique, 91 - Palaiseau (France) Theory Div., CERN, Geneva (Switzerland)); Ellis, J. (Theory Div., CERN, Geneva (Switzerland)); Lacaze, R. (Service de Physique Theorique, CEN-Saclay, 91 - Gif-sur-Yvette (France)); Nanopoulos, D.V. (Center for Theoretical Physics, Dept. of Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, HARC, The Woodlands, TX (United States) Theory Div., CERN, Geneva (Switzerland))

    1991-10-10

    We revise previous calculations of the effective unification scale m{sub SU} at which the extrapolated low-energy gauge couplings should appear to become equal, and we show explicitly how to calculate m{sub SU} in the fermionic construction of four-dimensional strings. In the case of the flipped SU(5) GUT derived from the string, the SU(5) and U(1) couplings defined in the anti Danti R scheme become equal to g{sub SU} at m{sub SU} {approx equal} 1.76 x g{sub SU} x 10{sup 18} GeV. This scale is significantly larger than m{sub GUT}, the scale at which the low-energy SU(3) and SU(2) couplings become equal if extrapolated using the renormalization group equations of the minimal supersymmetric extension of the standard model. The existence of an intermediate SU(5) x U(1) phase could have an observable effect on the calculated value of sin{sup 2}{theta}{sub w}. (orig.).

  14. The text of the instrument concerning the Agency's assistance to Argentina for the establishment of a training reactor project

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of the Protocol of 30 August 1996 suspending the application of safeguards under the Agreement between the Agency and the Government of Argentina and the Federal Republic of Germany concerning the Agency's assistance for the establishment of a training reactor project in Argentina, which entered into force on 13 March 1970, in light of the provisions for the application of safeguards pursuant to the quadripartite safeguards agreement between Argentina, Brazil, the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials and the IAEA

  15. Twenty years of health physics research reactor operation

    International Nuclear Information System (INIS)

    Sims, C.S.; Gilley, L.W.

    1983-01-01

    The Health Physics Research Reactor at the Oak Ridge National Laboratory has been in regular use for more than two decades. Safe operation of this fast reactor over this extended period indicates that (1) fundamental design, (2) operational procedures, (3) operator training and performance, (4) maintenance activites, and (5) management have all been eminently satisfactory. The reactor and its uses are described, the operational history and significant events are reviewed, and operational improvements and maintenance are discussed

  16. SU(2) and SU(1,1) squeezing of interacting radiation modes

    International Nuclear Information System (INIS)

    Abdalla Sebawe, M.; Faisal El-Orany, A.A.; Perina, J.

    2000-01-01

    In this communication we discuss SU(1,1) and SU(2) squeezing of an interacting system of radiation modes in a quadratic medium in the framework of Lie algebra. We show that regardless of which state being initially considered, squeezing can be periodically generated. (authors)

  17. Training and qualification of nuclear power plant operators

    International Nuclear Information System (INIS)

    Ohsuga, Y.

    2008-01-01

    Based on training experiences of the nuclear power plant operators of pressurized water reactors (PWR) at the Nuclear Power Training Center Ltd. (NTC) in Japan, training programs were reviewed referring to US training programs. A systematic approach is deployed to them, which mainly consist of on-the-job training and the NTC training courses to meet the needs of all operators from beginners to experienced veterans according to their experiences and objectives. The NTC training is conducted using the simulators that simulate the nuclear power plant dynamics through the use of computers. The operators trained at the NTC work in the central control room of every PWR power plant. The NTC also carries out the qualification examinations for the shift managers. (T. Tanaka)

  18. Brief overview of American Nuclear Society's research reactor standards

    International Nuclear Information System (INIS)

    Richards, Wade J.

    1984-01-01

    The American Nuclear Society (ANS) established the research reactor standards group in 1968. The standards group, known as ANS-15, was established for the purpose of developing, preparing, and maintaining standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training

  19. Measurement of graphite and aluminium absorption cross sections via reactor period by danger coefficient method; Merenje apsorpcionih preseka grafita i aluminijuma preko periode reaktora metodom koeficijenta opasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Velickovic, Lj [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1963-07-01

    Full text: This activity is a logical continuation of the experiment at the RA reactor during 1962 which was based on compensating the effect by means of control rod. Since results are given with significant errors, new method for measuring the absorption cross sections via reactor period. Experiment was done at the RB reactor which was particularly prepared for this type of experiments. Reactor power was from 50 mW to 2 W. Absorption cross sections were measured for two types of material: domestic graphite No.3 and French graphite 'Pachiney', and two types of aluminium. Total errors in applying this method are {+-} 5%, where the source of major part of error comes from uncertainty of the standard absorption power (previous method gave {+-} 10 do 55% ). Comparison of French graphite absorption cross section obtained via reactor period and via control rod showed approximate agreement with discrepancy of 5.4% which is considered within the precision of this method. Considering the accuracy of measurement results and reactor economy it is concluded that measuring absorption cross sections of samples via period of RB reactor is more favourable than measurements by control rod at the RA reactor. Pun tekst: Ovaj rad predstavlja logican nastavak eksperimenta na reaktoru RA u toku 1962. godine, koji je bazirao na kompenzaciji efekta pomocu kontrolne sipke. Kako su rezultati dati sa velikim greskama, to se prislo novom nacinu merenja apsorpsionih preseka preko periode reaktora. Eksperiment je radjen na reaktoru RB koji je specijalno pripremljen za ovu vrstu eksperimenta. Snaga reaktora se kretala od 50 mW do 2 W. Preko periode reaktora RB odredjeni su apsorpcioni preseci za dve vrste materijala i to: domaci grafit No.3 i francuski 'Pachiney', i dve vrste aluminijuma. Ukupne greske pri ovom nacimu merenja iznose oko {+-} 5%, gde glavni deo greske nosi neodredjenost apsorpcione moci standarda (ranija metoda je dala {+-} 10 do 55% ). Poredjenjem vrednosti apsorpcionih preseka

  20. Modeling the PUSPATI TRIGA Reactor using MCNP code

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  1. Education for university students, high school teachers and the general public using the Kinki University Reactor

    International Nuclear Information System (INIS)

    Tsuruta, T.

    2007-01-01

    Atomic Energy Research Institute of Kinki University is equipped with a nuclear reactor which is called UTR-KINKI. UTR is the abbreviation for University Teaching and Research Reactor. The reactor is the first one installed in Japanese universities. Though the reactor is owned and operated by Kinki University, its use is widely open to scientists and students from other universities and research institutions. The reactor is made the best of teaching instrument for the training of high school teachers. In addition, the reactor is utilized for general public education concerning atomic energy. (author)

  2. Pakistan research reactor and its utilization

    International Nuclear Information System (INIS)

    Iqbal Hussain Qureshi; Naeem Ahmad Khan.

    1983-01-01

    The 5 MW enriched uranium fuelled, light water moderated and cooled Pakistan Research reactor became critical on 21st December, 1965 and was taken to full power on 22nd June, 1966. Since then is has been operated for about 23000 hours till 30th June, 1983 without any major break down. It has been used for the studies of neutron cross-sections, nuclear structure, fission physics, structure of material, radiation damage in crystals and semiconductors, studies of geological, biological and environmental samples by neutron activation techniques, radioisotope production, neutron radiography and for training of scientists, engineers and technicians. In the paper we have described briefly the facility of Pakistan Research Reactor and the major work carried around it during the last decade. (author)

  3. Dark revelations of the [SU(3)]3 and [SU(3)]4 gauge extensions of the standard model

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    Two theoretically well-motivated gauge extensions of the standard model are SU(3)C × SU(3)L × SU(3)R and SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q is the same as SU(3)C and SU(3)l is its color leptonic counterpart. Each has three variations, according to how SU(3)R is broken. It is shown here for the first time that a built-in dark U(1)D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2‧ symmetry is defined, so that U(1)D ×Z2‧ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  4. Dark revelations of the [SU(3]3 and [SU(3]4 gauge extensions of the standard model

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2018-02-01

    Full Text Available Two theoretically well-motivated gauge extensions of the standard model are SU(3C×SU(3L×SU(3R and SU(3q×SU(3L×SU(3l×SU(3R, where SU(3q is the same as SU(3C and SU(3l is its color leptonic counterpart. Each has three variations, according to how SU(3R is broken. It is shown here for the first time that a built-in dark U(1D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2′ symmetry is defined, so that U(1D×Z2′ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  5. Self locking drive system for rotating plug of a nuclear reactor

    International Nuclear Information System (INIS)

    Brubaker, J.E.

    1979-01-01

    A self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event whould occur during reactor refueling is described. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm

  6. US Department of Energy 1992--1993 Reactor Sharing Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1994-04-01

    The University of Florida Training Reactor serves as a host institution to support various educational institutions which are located primarily within the state of Florida. All users and uses were carefully screened to assure the usage was for educational institutions eligible for participation in the Reactor Sharing Program. Three tables are included that provide basic information about the 1992--1993 program and utilization of the reactor facilities by user institutions

  7. Distinguishing between SU(5) and flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Dorsner, Ilja [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Fileviez Perez, Pavel [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy) and Pontificia Universidad Catolica de Chile, Facultad de Fisica, Casilla 306, Santiago 22 (Chile)]. E-mail: fileviez@higgs.fis.puc.cl

    2005-01-13

    We study in detail the d=6 operators for proton decay in the two possible matter unification scenarios based on SU(5) gauge symmetry. We investigate the way to distinguish between these two scenarios. The dependence of the branching ratios for the two body decays on the fermion mixing is presented in both cases. We point out the possibility to make a clear test of flipped SU(5) through the decay channel p->{pi}{sup +}{nu}-bar , and the ratio {tau}(p->K{sup 0}e{sub {alpha}}{sup +})/{tau}(p->{pi}{sup 0}e{sub {alpha}}{sup +})

  8. Muscle Damage Indicators after Land and Aquatic Plyometric Training Programmes

    Directory of Open Access Journals (Sweden)

    Vlatka Wertheimer

    2018-03-01

    Full Text Available Plyometric training is an important part of athletic conditioning with many significant benefits, including improved motor abilities and performance, but it can also increase the serum indices of muscle damage, collagen breakdown, muscle swelling, and soreness. Due to the physical characteristics of water, plyometric training in water presents less eccentric contraction, facilitates faster transition from the eccentric to concentric phase of a jump and offers greater resistance during concentric contraction with acute lower indices of muscle damage. To advance our understanding of the long-term effects of an eight-week plyometric training programme on land and in water on muscle damage indicators (lactate dehydrogenase (LDH, creatine kinase (CK and serum urea (SU, two experimental groups of physically active men (a group on land (EG1 and a group in water (EG2 were tested before and after the first and the last plyometric training to monitor muscle damage indicators and adaptations. The results showed changes in CK activity after both plyometric trainings for EG1 and only after the first training for EG2. Moreover, after the eight-week programme, significant difference was observed in CK activity in comparison with EG2. There were no observed changes in LDH activity while SU showed greater changes for the group on land. The plyometric training programme in water resulted in smaller levels of muscle damage indicators. Although both experimental groups conducted the same plyometric training with the same jump volume, the eccentric and concentric loads were not the same, so it can be concluded that adaptations in muscle damage processes are faster with smaller eccentric loads.

  9. Experience and prospects for developing research reactors of different types

    International Nuclear Information System (INIS)

    Kuatbekov, R.P.; Tretyakov, I.T.; Romanov, N.V.; Lukasevich, I.B.

    2015-01-01

    NIKIET has a 60-year experience in the development of research reactors. Altogether, there have been more than 25 NIKIET-designed plants of different types built in Russia and 20 more in other countries, including pool-type water-cooled and water moderated research reactors, tank-type and pressure-tube research reactors, pressurized high-flux, heavy-water, pulsed and other research reactors. Most of the research reactors were designed as multipurpose plants for operation at research centers in a broad range of applications. Besides, unique research reactors were developed for specific application fields. Apart from the experience in the development of research reactor designs and the participation in the reactor construction, a unique amount of knowledge has been gained on the operation of research reactors. This makes it possible to use highly reliable technical solutions in the designs of new research reactors to ensure increased safety, greater economic efficiency and maintainability of the reactor systems. A multipurpose pool-type research reactor of a new generation is planned to be built at the Center for Nuclear Energy Science & Technology (CNEST) in the Socialist Republic of Vietnam to be used to support a spectrum of research activities, training of skilled personnel for Vietnam nuclear industry and efficient production of isotopes. It is exactly the applications a research reactor is designed for that defines the reactor type, design and capacity, and the selection of fuel and components subject to all requirements of industry regulations. The design of the new research reactor has a great potential in terms of upgrading and installation of extra experimental devices. (author)

  10. Problems of space-time behaviour of nuclear reactors; Problemi prostorno-vremenskog ponasanja nuklearnih reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics. Dat je pregled literature i matematickih metoda koje se koriste prilikom tretiranja prostorno-vremenskog ponasanja nuklearnih reaktora. Pregled literature ogranicen je na jos neresene probleme i pravce u kojima su danas usmerena istrazivanja u ovoj oblasti fizike nuklearnih reaktora (author)

  11. Approach to team skills training

    International Nuclear Information System (INIS)

    Koontz, J.L.; Roe, M.L.; Gaddy, C.D.

    1987-01-01

    The US commercial nuclear power industry has recognized the importance of team skills in control room operation. The desire to combine training of team interaction skills, like communications, with technical knowledge of reactor operations requires a unique approach to training. An NRC-sponsored study identified a five-phase approach to team skills training designed to be consistent with the systems approach to training currently endorsed by the NRC Policy Statement on Training and Qualification. This paper describes an approach to team skills training with emphasis on the nuclear power plant control room crew. An approach to team skills training

  12. Instruction texts and problems for the training and examination of selected personnel at research nuclear facilities

    International Nuclear Information System (INIS)

    Matejka, K.; Fleischhans, J.; Hejzlar, R.

    1994-01-01

    The publication comprises 6 separate brochures: (1) Selected chapters in reactor theory; (2) Experimental education methods; (3) Research and experimental reactors; (4.1) Technical description of the LVR-15 reactor; (4.2) Technical description of the LR-0 reactor; (4.3) Technical description of the VR-1 reactor; (5) Research reactor safety and operation; and (6) Database of problems for qualification examinations. Brochure No. 4 consists of 3 separate parts. The publication is intended for the training and examination of the following research reactor staff: reactor operator, shift engineer, control physicist, and start-up group head. (J.B.)

  13. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  14. Design of first reactor protection system prototype for C A R E M reactor

    International Nuclear Information System (INIS)

    Azcona, A; Lorenzo, G.; Maciel, F.; Fittipaldi, A

    2006-01-01

    In this paper we present the design of a prototype of the C A R E M Reactor Protection System, which is implemented on a basis of the digital platform T E L E P E R M X S.The proposed architecture for the Reactor Protection System (R P S) has 4 redundant trains composed by a complete set of sensors, a data acquisition computer and a processing computer.The information from the 4 processing computers goes into to a two voting units with a two out of four (2004) logic and its outputs are combined by a final actuation logic with a voting scheme of one out of two (1002).The prototype is implemented with a unique train.The train inputs are simulated by an Automatic Testing Unit.The pre-established test case or procedure results are fed back into the A T U.The choice of the digital platform T E L E P E R M X S for the R P S implementation allows versatility in the design stage and permits the prototype expansion due to its modular characteristic and the software tools flexibility [es

  15. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    Science.gov (United States)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  16. Inflation and monopoles in supersymmetric SU(4)c x SU(2)L x SU(2)R

    International Nuclear Information System (INIS)

    Jeannerot, R.; Khalil, S.; Lazarides, G.; Shafi, Q.

    2000-02-01

    We show how hybrid inflation can be successfully realized in a supersymmetric model with gauge group G PS = SU(4) c x SU(2) L x SU(2) R . By including a non-renormalizable superpotential term, we generate an inflationary valley along which G PS is broken to the standard model gauge group. Thus, catastrophic production of the doubly charged magnetic monopoles, which are predicted by the model, cannot occur at the end of inflation. The results of the cosmic background explorer can be reproduced with natural values (of order 10 -3 ) of the relevant coupling constant, and symmetry breaking scale of G PS close to 10 16 GeV. The spectral index of density perturbations lies between unity and 0.94. Moreover, the μ-term is generated via a Peccei-Quinn symmetry and proton is practically stable. Baryogenesis in the universe takes place via leptogenesis. The low deuterium abundance constraint on the baryon asymmetry, the gravitino limit on the reheat temperature and the requirement of almost maximal ν μ - ν τ mixing from SuperKamiokande can be simultaneously met with m νμ , m ντ and heaviest Dirac neutrino mass determined from the large angle MSW resolution of the solar neutrino problem, the SuperKamiokande results and SU(4) c symmetry respectively. (author)

  17. A nuclear training simulator implementing a capability for multiple, concurrent-training sessions

    International Nuclear Information System (INIS)

    Groeneveld, B.J.; Nannister, D.G.; Estes, K.R.; Johnsen, M.R.

    1996-01-01

    The Advanced Test Reactor (ATR) Simulator at the Test Reactor Area of the Idaho National Engineering Laboratory (INEL) has recently been upgraded to reflect plant installation of a distributed control system (DCS). The ATR Simulator re-design implements traditional needs for software extensibility and plant installation prototyping, but the driving force behind its new design was an instruction requirement for multiple, concurrent-training sessions. Support is provided for up to three concurrent, independent or interacting, training sessions of reactor, balance of plant, and experiment loop operators. This capability has been achieved by modifying the existing design to consistently apply client-server, parent-child, and peer-to-peer processing technologies, and then to encapsulate concurrency software into all interfaces. When the resulting component-oriented design is linked with build and runtime flexibility in a distributed computing environment, traditional needs for extensibility and parallel software and scenario development are satisfied with minimal additional effort. Sensible configuration management practices coupled with the ability to perform piecewise system builds also greatly facilitate prototyping of plant changes prior to installation

  18. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  19. Safety considerations concerning light water reactors in Sweden

    International Nuclear Information System (INIS)

    Nilsson, T.

    1977-01-01

    In 1975 the Swedish Nuclear Power Inspectorate was commissioned by the Government to perform a Reactor Safety Study concerning commercial light water reactors. The study will contain an account of: - rules and regulations for reactor designs; - operation experience of the Swedish nuclear power plants with international comparisons; - the development of reactor designs during the last 10 years; - demands and conditions for inspection and inspection methods; - nuclear power plant operation organization; - training of operators; and - the results of research into nuclear safety. The study is scheduled for completion by July 1st, 1977, however, this paper gives a summary of the results of the Reactor Safety Study already available. The paper contains detailed statistics concerning safety related occurrences and reactor scrams in Sweden from July 1st, 1974 until the beginning of 1977

  20. Acoustic analysis of voice in children with cleft palate and velopharyngeal insufficiency.

    Science.gov (United States)

    Villafuerte-Gonzalez, Rocio; Valadez-Jimenez, Victor M; Hernandez-Lopez, Xochiquetzal; Ysunza, Pablo Antonio

    2015-07-01

    Acoustic analysis of voice can provide instrumental data concerning vocal abnormalities. These findings can be used for monitoring clinical course in cases of voice disorders. Cleft palate severely affects the structure of the vocal tract. Hence, voice quality can also be also affected. To study whether the main acoustic parameters of voice, including fundamental frequency, shimmer and jitter are significantly different in patients with a repaired cleft palate, as compared with normal children without speech, language and voice disorders. Fourteen patients with repaired unilateral cleft lip and palate and persistent or residual velopharyngeal insufficiency (VPI) were studied. A control group was assembled with healthy volunteer subjects matched by age and gender. Hypernasality and nasal emission were perceptually assessed in patients with VPI. Size of the gap as assessed by videonasopharyngoscopy was classified in patients with VPI. Acoustic analysis of voice including Fundamental frequency (F0), shimmer and jitter were compared between patients with VPI and control subjects. F0 was significantly higher in male patients as compared with male controls. Shimmer was significantly higher in patients with VPI regardless of gender. Moreover, patients with moderate VPI showed a significantly higher shimmer perturbation, regardless of gender. Although future research regarding voice disorders in patients with VPI is needed, at the present time it seems reasonable to include strategies for voice therapy in the speech and language pathology intervention plan for patients with VPI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. An Open Source-based Approach to the Development of Research Reactor Simulator

    International Nuclear Information System (INIS)

    Joo, Sung Moon; Suh, Yong Suk; Park, Cheol Park

    2016-01-01

    In reactor design, operator training, safety analysis, or research using a reactor, it is essential to simulate time dependent reactor behaviors such as neutron population, fluid flow, and heat transfer. Furthermore, in order to use the simulator to train and educate operators, a mockup of the reactor user interface is required. There are commercial software tools available for reactor simulator development. However, it is costly to use those commercial software tools. Especially for research reactors, it is difficult to justify the high cost as regulations on research reactor simulators are not as strict as those for commercial Nuclear Power Plants(NPPs). An open source-based simulator for a research reactor is configured as a distributed control system based on EPICS framework. To demonstrate the use of the simulation framework proposed in this work, we consider a toy example. This example approximates a 1-second impulse reactivity insertion in a reactor, which represents the instantaneous removal and reinsertion of a control rod. The change in reactivity results in a slightly delayed change in power and corresponding increases in temperatures throughout the system. We proposed an approach for developing research reactor simulator using open source software tools, and showed preliminary results. The results demonstrate that the approach presented in this work can provide economical and viable way of developing research reactor simulators

  2. String derived exophobic SU(6)×SU(2) GUTs

    International Nuclear Information System (INIS)

    Bernard, Laura; Faraggi, Alon E.; Glasser, Ivan; Rizos, John; Sonmez, Hasan

    2013-01-01

    With the apparent discovery of the Higgs boson, the Standard Model has been confirmed as the theory accounting for all sub-atomic phenomena. This observation lends further credence to the perturbative unification in Grand Unified Theories (GUTs) and string theories. The free fermionic formalism yielded fertile ground for the construction of quasi-realistic heterotic-string models, which correspond to toroidal Z 2 ×Z 2 orbifold compactifications. In this paper we study a new class of heterotic-string models in which the GUT group is SU(6)×SU(2) at the string level. We use our recently developed fishing algorithm to extract an example of a three generation SU(6)×SU(2) GUT model. We explore the phenomenology of the model and show that it contains the required symmetry breaking Higgs representations. We show that the model admits flat directions that produce a Yukawa coupling for a single family. The novel feature of the SU(6)×SU(2) string GUT models is that they produce an additional family universal anomaly free U(1) symmetry, and may remain unbroken below the string scale. The massless spectrum of the model is free of exotic states.

  3. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  4. RIAR training center, Dimitrovgrad, Russia

    International Nuclear Information System (INIS)

    Makin, R.

    1998-01-01

    The presentation describes activities and history of the training Center for NPP personnel at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad, Russian Federation since its beginnings in 1993. The courses held for training instructors and specialists as well as Russian NPPs were organised in cooperation with American and German organisations

  5. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  6. Establishment of the International Nuclear Education/Training and its Cooperation Framework for Nuclear Transparency

    International Nuclear Information System (INIS)

    Min, B. J.; Han, K. W.; Lee, E. J.

    2009-02-01

    This project covered development and implementation of international nuclear education/training programs, cooperation for nuclear human resource development and education/training. provision of MS and PhD courses for qualified students from developing countries, and strengthening of infrastructure for the nuclear education/training. The WNU one week summer course was held for domestic future generation in nuclear field. NTC operated the ANENT web portal and cyber platform, supported training on their use, and prepared a KAERI-IAEA Practical Arrangement for the promotion of web-base nuclear education/training. For FNCA, an analysis was conducted on the need of nuclear education/training in South East Asian countries. The bilateral cooperation included cooperation with Vietnam. provision of Korean experience for nuclear power personnel from Egypt, and commencing of cooperation with South Africa. Also, NTC participated in GENEP for sharing Korean experience in the nuclear human resource development project. KAERI-UST MA and PhD courses with 3 foreign students started in spring 2008 and implemented. The courses were advance nuclear reactor system engineering, accelerator and nano-beam engineering, and radiation measurement science. 13 international nuclear education/training courses (IAEA, KOICA, RCARO and bilateral) were implemented for 226 foreign trainees. A reference education/training program was developed, which consisted of 15 courses that can be customized to learner levels and project stages of countries in question (e.g. Middle East. Africa). A textbook entitled 'Research Reactor Design, Management and Utilization' was developed presenting Korean experience with research reactors

  7. Neutronics modeling of TRIGA reactor at the University of Utah using agent, KENO6 and MCNP5 codes

    International Nuclear Information System (INIS)

    Yang, X.; Xiao, S.; Choe, D.; Jevremovic, T.

    2010-01-01

    The TRIGA reactor at the University of Utah is modelled in 2D using the AGENT state-of-the-art methodology based on the Method of Characteristics (MOC) and R-function theory supporting detailed reactor analysis of reactor geometries of any type. The TRIGA reactor is also modelled using KENO6 and MCNP5 for comparison. The spatial flux and reaction rates distribution are visualized by AGENT graphics support. All methodologies are in use in to study the effect of different fuel configurations in developing practical educational exercises for students studying reactor physics. At the University of Utah we train graduate and undergraduate students in obtaining the Nuclear Regulatory Commission license in operating the TRIGA reactor. The computational models as developed are in support of these extensive training classes and in helping students visualize the reactor core characteristics in regard to neutron transport under various operational conditions. Additionally, the TRIGA reactor is under the consideration for power uprate; this fleet of computational tools once benchmarked against real measurements will provide us with validated 3D simulation models for simulating operating conditions of TRIGA. (author)

  8. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  9. An independent safety assessment of Department of Energy nuclear reactor facilities: Safety overview and management function

    International Nuclear Information System (INIS)

    Booth, M.; Brodsky, R.S.; Frankhouser, W.L.

    1981-02-01

    The Under Secretary of Energy established the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee in October, 1979, in the aftermath of the Three Mile Island (TMI) nuclear accident, to assess the adequacy of training of personnel at DOE nuclear facilities. Subsequently, in February, 1980, the charge to this Committee was modified to assess all implications of the Kemeny Commission report on TMI with regard to DOE nuclear reactors, excluding those in the Division of Naval Reactors. The modified charge was also limited, for the time being, to reactor facilities instead of all nuclear facilities. This report describes the portion of the revised assessment activities that was assigned to the Assessment Support Team

  10. Making better use of research reactors

    International Nuclear Information System (INIS)

    1964-01-01

    Some 250 research reactors are in operation in the world today, and there are problems in putting them to the most fruitful use. The difficulties - of trained manpower, of auxiliary equipment, of satisfactory research programmes, of co-ordination, between the various disciplines - are common to all users. But as is only to be expected, they press more heavily on the newly-established centres, particularly those in the developing countries which are lacking in long experience in research and usually severely limited as to technical manpower and money. The IAEA has been turning its attention to this question for the past three or four years - ever since, in fact, its early assistance missions and other field operations brought it into close contact with the operations of numerous Member States. The task of providing assistance and advice in this matter is growing. Many centres have been building research reactors under bilateral arrangements; with the completion of their projects this form of aid usually ends, and they look to IAEA for help in operating the reactors. Although some critics consider that difficulties have been caused by premature construction of research reactors, before well-founded programmes of nuclear research had been developed in the countries concerned, several valid motives have led to the establishment of some of these centres at an early stage. A research reactor often provides an effective stimulant for scientific research in the country. It is a remarkably versatile tool for workers in many fields of science and technology. There have been instances where the establishment of a research reactor has had a great impact on the scientific education of a country and has led to a salutary reappraisal and reforms. A reactor is sometimes considered to be a particularly effective means of retaining in the country men trained in the nuclear field. This particular problem is common to most countries. In fact, it is a feature of the present age that

  11. University of Wisconsin, Nuclear Reactor Laboratory. Annual report, 1985-1986

    International Nuclear Information System (INIS)

    Cashwell, R.J.

    1986-01-01

    Operational activities for the reactor are described concerning nuclear engineering classes from the University of Wisconsin; reactor sharing program; utility personnel training; sample irradiations and neutron activation analysis; and changes in personnel, facility, and procedures. Results of surveillance tests are presented for operating statistics and fuel exposure; emergency shutdowns and inadvertent scrams; maintenance; radioactive waste disposal; radiation exposures; environmental surveys; and publications and presentations on work based on reactor use

  12. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  13. Future plans for the Imperial College CONSORT research reactor

    International Nuclear Information System (INIS)

    Franklin, S.J.

    1999-01-01

    The Imperial College (IC) research reactor was designed jointly by GEC and the IC Mechanical Engineering Department. It first went critical on 9 April 1965 and has been operating successfully for over 33 years. The reactor provides a service to both academia and industry for neutron activation analysis, reactor and applied nuclear physics training, neutron detector calibration, isotope production and irradiations. The reactor has strategic importance for the UK, as it is now the only remaining research reactor in the country. It is therefore important to put in place refurbishment programmes and to maintain and upgrade the safety case. This paper describes the current facilities, applications and users of the research reactor and outlines both the recent and the planned developments. (author)

  14. Safety classification of systems, structures, and components for pool-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

  15. Educational use of research reactor (KUR) and critical assembly (KUCA) at Kyoto University

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon, Cheol Ho; Shiroya, Seiji

    2005-01-01

    At Kyoto University Research Reactor Institute, a research reactor of 5MW (KUR) and a critical assembly (KUCA) have been used for educational purpose to train undergraduate or graduate students. Using KUR, basic experiments for neutron applications have been carried out, and KUCA has been used for the education of nuclear engineering and technology. Especially, using KUCA, a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities, and more than 2200 students attended this course

  16. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  17. Teaching Sodium Fast Reactors in CEA-INSTN

    International Nuclear Information System (INIS)

    Dufour, Ph.; Latgé, C.; Gicquel, L.

    2013-01-01

    Conclusion: Education and Training: - a key element for the future of the development of Sodium Fast Reactors, and more particularly ASTRID project. - a tool to create a new generation of skilled nuclear engineers in the field. - a unique mean to share basic knowledge, operational feedback, safety approaches. The two entities aimed to deliver Training sessions, i.e. Sodium School in Cadarache, and INSTN-Cadarache, are ready: - to conceive and propose tailored sessions, - to collaborate with other foreign Education and Training Entities

  18. 14th Biennial conference on reactor operating experience plant operations: The human element

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Separate abstracts were prepared for the papers presented in the following areas of interest: enhancing operator performance; structured approaches to maintenance standards and reliability-centered maintenance; human issues in plant operations and management; test, research, and training reactor utilization; methods and applications of root-cause analysis; emergency operating procedure enhancement programs; test, research, and training reactor upgrades; valve maintenance and diagnostics; recent operating experiences; and current maintenance issues

  19. Plan for Moata reactor decommissioning, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    'Moata' is an Argonaut type 100 kW reactor that was operated by Australian Nuclear Science and Technology Organisation for 34 years from 1961 to 1995. It was initially used as a reactor-physics research tool and a training reactor but the scope of operations was extended to include activation analysis and neutron radiography from the mid 1970s. In 1995, the Moata reactor was shutdown on the grounds that its continued operation could no longer be economically justified. All the fuel (HEU) was unloaded to temporary storage and secured in 1995, followed by drainage of the demineralised water (primary coolant) from the reactor in 1996 and complete removal of electrical cables in 1998. The Reactor Control Room has been renovated into a modern laboratory. The reactor structure is still intact and kept under safe storage. Various options for decommissioning strategies have been considered and evaluated. So far, 'Immediate Dismantling' is considered to be the most desirable option, however, the timescale for actual dismantling needs to take account of the establishment of the national radioactive repository. This paper describes the dismantling options and techniques considered along with examples of other dismantling projects overseas. (author)

  20. Self-teaching neural network learns difficult reactor control problem

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits

  1. Education and vocational training

    International Nuclear Information System (INIS)

    Fair, M.F.; Turner, J.E.

    1976-01-01

    The Faculty Institute in Applied Health Physics started in the summer of 1974 in response to the nation's needs for persons trained at the bachelor's level in health physics technology. Surveys indicate that between 3300 and 6000 new trained technologists will be needed by 1985. They will be required for nuclear power reactors, fuel-cycle operations, nuclear medicine, regulatory activities, and as replacements for currently employed workers. The Faculty Institute program provides support for contacting college officials to make them aware of these forecasts and interest them in instituting undergraduate health physics course work at their institutions. In addition, the program provides support for ten faculty participants from different universities to spend ten weeks during the summer in the Health Physics Division. These participants have access to the staff and the diverse research and field facilities of the Division. They also utilize the facilities of the Special Training Division at ORAU

  2. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  3. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  4. Computer based training for NPP personnel (interactive communication systems and functional trainers)

    International Nuclear Information System (INIS)

    Martin, H.D.

    1987-01-01

    KWU as a manufacturer of thermal and nuclear power plants has extensive customer training obligations within its power plant contracts. In this respect KWU has gained large experience in training of personnel, in the production of training material including video tapes an in the design of simulators. KWU developed interactive communication systems (ICS) for training and retraining purposes with a personal computer operating a video disc player on which video instruction is stored. The training program is edited with the help of a self developed editing system which enables the author to easily enter his instructions into the computer. ICS enables the plant management to better monitor the performance of its personnel through computerized training results and helps to save training manpower. German NPPs differ very much from other designs with respect to a more complex and integrated reactor control system and an additional reactor limitation system. Simulators for such plants therefore have also to simulate these systems. KWU developed a Functional Trainer (FT) which is a replica of the primary system, the auxiliary systems linked to it and the associated control, limitation and protection systems including the influences of the turbine operation and control

  5. TRIGA 14 MW Research Reactor Status and Utilization

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.

    2016-01-01

    Institute for Nuclear Research is the owner of the largest family TRIGA research reactor, TRIGA14 MW research reactor. TRIGA14 MW reactor was designed to be operated with HEU nuclear fuel but now the reactor core was fully converted to LEU nuclear fuel. The full conversion of the core was a necessary step to ensure the continuous operation of the reactor. The core conversion took place gradually, using fuel manufactured in different batches by two qualified suppliers based on the same well qualified technology for TRIGA fuel, including some variability which might lead to a peculiar behaviour under specific conditions of reactor utilization. After the completion of the conversion a modernization program for the reactor systems was initiated in order to achieve two main objectives: safe operation of the reactor and reactor utilization in a competitive environment to satisfy the current and future demands and requirements. The 14 MW TRIGA research reactor operated by the Institute for Nuclear Research in Pitesti, Romania, is a relatively new reactor, commissioned 37 years ago. It is expected to operate for another 15-20 years, sustaining new fuel and testing of materials for future generations of power reactors, supporting radioisotopes production through the development of more efficient new technologies, sustaining research or enhanced safety, extended burn up and verification of new developments concerning nuclear power plants life extension, to sustain neutron application in physics research, thus becoming a centre for instruction and training in the near future. A main objective of the TRIGA14MW research reactor is the testing of nuclear fuel and nuclear material. The TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir etc.) and a method for 99 Mo- 99 Tc production from fission is under development. For nuclear materials properties investigation, neutron radiography methods have been developed in the INR. The

  6. Overview of EU research activities in transmutation and innovative reactor systems within the Euratom framework programmes

    International Nuclear Information System (INIS)

    Bhatnagar, V.

    2009-01-01

    European Community (EC) (currently 27 Member States) shared-cost research has been organised in Framework Programmes (FP) of durations of 4 - 5 years since 1984. The 6th European Atomic Energy Community (EURATOM) Framework Programme (2002 - 06) and the current 7th FP (2007 - 11) have been allocated a fission research budget respectively of 209 and 287 Million Euro from the EC. There are 10 projects (total budget 70 M Euro, EC contribution 38 M Euro) in all aspects of transmutation ranging from road-mapping exercise to large integrated projects on accelerator driven systems, lead-cooled fast critical systems for waste transmutation, technology, fuel, accelerator facilities for nuclear data etc. In Innovative Reactor concepts, there are about half-a-dozen projects (total budget 30 M Euro, EC contribution 16 M Euro) including High Temperature Reactors, Gas-cooled Fast reactors, road-mapping exercise on sodium fast reactors etc. The main research and training activities in FP7 are: management of radioactive waste, reactor systems, radiation protection, infrastructures, human resources and mobility and training. In the two call for proposals (2007 and 2008) in FP7, 8 projects have been accepted in transmutation and innovative reactor concepts (total budget 53 M Euro, EC contribution 32 M Euro). These research projects cover activities ranging from materials, fuels, treatment of irradiated graphite waste, European sodium fast reactor to the establishment of a Central Design Team of a fast-spectrum transmutation device in Europe. The third call for proposals is underway requesting proposals on nuclear data, thermal hydraulics, gas and lead-cooled fast reactor systems with a total EC budget of 20 M Euro. International collaboration is an important element of the EU research policy. This overview paper will present elements of the strategy of EURATOM research and training in waste management including accelerator driven transmutation systems and Innovative reactor concepts

  7. Supervisory and managerial aspects on the safe operation of the Egyptian second research reactor

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.; Shokr, A.M.

    2000-01-01

    ETRR-2 is a multipurpose reactor for radioisotopes production, neutron beam experiments, basic and applied research in physics and engineering, fuels and material tests, and for training. The reactor is an open pool type, 22 MW power, with average thermal neutron flux of 1.4x10 14 n/cm 2 sec, cooled and moderated by light water and with beryllium reflectors. Various experimental devices and irradiation facilities are integrated with the reactor. The reactor has been licensed for operation in November 1998. Several principles and regulations have been applied to all the reactor project stages to achieve safety. Moreover, other several principals, regulations, and aspects are enforced by the AEA, National Center for Nuclear Safety and Radiation Control, NCNSRC, and reactor management to achieve safety during reactor operation and utilization. Responsibility on Safety and Supervision Aspects AEA chairman has the ultimate responsibility on the reactor safety during operation and utilization. The primary responsible on the safety is the ETRR-2 supervisor, who is supervising the ETRR-2 site that includes the ETRR-2 reactor, Fuel Manufacturing Plant, and other two projects (under execution): Radioisotopes Production Plant and Dry Fuel Storage Facility. ETRR-2 supervisor is responsible to ensure that: the reactor is operated in accordance with the safety requirements by qualified and trained personnel, updating and enforcement of the reactor mandatory documentation, and the services are adequate for the reactor operation. He is responsible, also, to guarantee that: the reactor manager has enough authority and resources to carry out his function effectively and the reactor is kept operated in agreement with established procedures. A Technical Revision Committee, TRC, is formed to advice the ETRR-2 supervisor on the safety of the reactor and experiments. The committee members are from AEA experts with no direct relation to the reactor and experiments being performed. Members

  8. Utilization of Slovenian TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Smodis, B.

    2010-01-01

    TRIGA Mark II research reactor at the Jozef Stefan Institute [JSI] is extensively used for various applications, such as: irradiation of various samples, training and education, verification and validation of nuclear data and computer codes, testing and development of experimental equipment used for core physics tests at a nuclear power plant. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  9. An independent safety assessment of Department of Energy nuclear reactor facilities: Procedures, operations and maintenance

    International Nuclear Information System (INIS)

    Toto, G.; Lindgren, A.J.

    1981-02-01

    The 1979 accident at the Three Mile Island commercial nuclear power plant has led to a number of studies of nuclear reactors, in both the public and private sectors. One of these is that of the Department of Energy's (DOE) Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, which has outlined tasks for assessment of 13 reactors owned by DOE and operated by contractors. This report covers one of the tasks, the assessment of procedures, operations, and maintenance at the DOE reactor facilities, based on a review of actual documents used at the reactor sites

  10. Factors affecting nuclear research reactor utilization across countries

    International Nuclear Information System (INIS)

    Hien, P.D.

    2000-01-01

    In view of the worldwide declining trend of research reactor utilization and the fact that many reactors in developing countries are under-utilised, a question naturally arises as to whether the investment in a research reactor is justifiable. Statistical analyses were applied to reveal relationships between the status of reactor utilization and socio-economic conditions among countries, that may provide a guidance for reactor planning and cost benefit assessment. The reactor power has significant regression relationships with size indicators such as GNP, electricity consumption and R and D expenditure. Concerning the effectiveness of investment in research reactors, the number of reactor operation days per year only weakly correlates with electricity consumption and R and D expenditure, implying that there are controlling factors specific of each group of countries. In the case of less developed countries, the low customer demands on reactor operation may be associated with the failure in achieving quality assurance for the reactor products and services, inadequate investment in the infrastructure for reactor exploitation, the shortage of R and D funding and well trained manpower and the lack of measures to get the scientific community involved in the application of nuclear techniques. (author)

  11. Future directions of small research reactors

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1986-01-01

    In prognosticating future perspectives, it is important to realize that the current number of small reactors throughout the world is not overly large and will undoubtedly decrease or at best remain constant in future generations. To survive and remain productive, small reactor facilities must concentrate on work that is unique and that cannot be performed as well by other instruments. Wherever possible, these facilities should develop some form of collaboration with universities and medical center investigators. Future development will continue and will flourish in neutron activation analysis and its applications for a diversity of fields. Fundamental research such as hot atom chemistry will continue to use neutrons from small research reactors. Finally, training of power reactor operators can be an important source of revenue for the small facility in addition to performing an important service to the nuclear power industry

  12. Strategy for Sustainable Utilization of IRT-Sofia Research Reactor

    International Nuclear Information System (INIS)

    Mitev, M.; Apostolov, T.; Ilieva, K.; Belousov, S.; Nonova, T.

    2013-01-01

    The Research Reactor IRT-2000 in Sofia is in process of reconstruction into a low-power reactor of 200 kW under the decision of the Council of Ministers of Republic of Bulgaria from 2001. The reactor will be utilized for development and preservation of nuclear science, skills, and knowledge; implementation of applied methods and research; education of students and training of graduated physicists and engineers in the field of nuclear science and nuclear energy; development of radiation therapy facility. Nuclear energy has a strategic place within the structure of the country’s energy system. In that aspect, the research reactor as a material base, and its scientific and technical personnel, represent a solid basis for the development of nuclear energy in our country. The acquired scientific experience and qualification in reactor operation are a precondition for the equal in rights participation of the country in the international cooperation and the approaching to the European structures, and assurance of the national interests. Therefore, the operation and use of the research reactor brings significant economic benefits for the country. For education of students in nuclear energy, reactor physics experiments for measurements of static and kinetic reactor parameters will be carried out on the research reactor. The research reactor as a national base will support training and applied research, keep up the good practice and the preparation of specialists who are able to monitor radioactivity sources, to develop new methods for detection of low quantities of radioactive isotopes which are hard to find, for deactivation and personal protection. The reactor will be used for production of isotopes needed for medical therapy and diagnostics; it will be the neutron source in element activation analysis having a number of applications in industrial production, medicine, chemistry, criminology, etc. The reactor operation will increase the public understanding, confidence

  13. Broken SU(8) symmetry and the new particles

    International Nuclear Information System (INIS)

    Kramer, G.; Schiller, D.H.

    1976-05-01

    We study the mass spectra and wave functions for vector and pseudoscalar mesons in broken SU(8) (SU(8) is contained in SU(4)F * SU(2)J), where F stands for flavour and J for usual spin. The connection with the standard mass breaking in SU(4)F is worked out. We find that even in the presence of strong SU(8) breaking the ideal mixing scheme for the vector mesons can be approximately retained. For the pseudoscalar mesons the mixing of the singlet with the 63-plet representation of SU(8) turns out to be essential and stongly nonideal. (orig.) [de

  14. Development of training simulator for LWR

    International Nuclear Information System (INIS)

    Sureshbabu, R.M.

    2009-01-01

    A full-scope training simulator was developed for a light water reactor (LWR). This paper describes how the development evolved from a desktop simulator to the full-scope training simulator. It also describes the architecture and features of the simulator including the large number of failures that it simulates. The paper also explains the three-level validation tests that were used to qualify the training simulator. (author)

  15. Operational Experience with the TRIGA Mark II Reactor of the University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Tigliole, A. Borio Di; Alloni, D.; Cagnazzo, M.; Coniglio, M.; Lana, F.; Losi, A.; Magrotti, G.; Manera, S.; Marchetti, F.; Pappalardo, P.; Prata, M.; Provasi, M.C.; Salvini, A.; Scian, G.; Vinciguerra, G. [University of Pavia, Laboratory of Applied Nuclear Energy (L.E.N.A), Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    The Laboratory of Applied Nuclear Energy (LENA) is an Interdepartmental Research Centre of the University of Pavia which operates a 250 kW TRIGA Mark II Research Nuclear Reactor, a Cyclotron for the production of radioisotopes and other irradiation facilities. The reactor is in operation since 1965 and many home-made upgrading were realized in the past years in order to assure a continuous operation of the reactor for the future. The annual reactor operational time at nominal power is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities, BNCT research, samples irradiation and training. In specific, few tens of hours of reactor operation per year are dedicated to training courses for University students and for professionals. Besides, the LENA Centre hosts every year more than one thousand high school students in visit. Lately, LENA was certified ISO 9001:2008 for the ''operation and maintenance of the reactor'' and for the ''design and delivery of the irradiation service''. Nowadays the reactor shows a good technical state and, at the moment, there are no political or economical reason to consider the reactor shut-down. (author)

  16. Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions

    International Nuclear Information System (INIS)

    Shigemitsu, J.; Kogut, J.B.

    1981-01-01

    The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models

  17. Response of thermal multi zone reactors to local perturbation of reactivity; Odziv termalnih multizonih reaktora na lokalnu perturbaciju reaktivnosti

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Jevtovic, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-01-15

    A modal analysis method, spatial eigenfunctions expansion, was applied for solving the time dependent diffusion equation in two-group approximation. The absorption cross section in the thermal neutron range was time dependent. The response functions for radially multi-zone reactor systems and homogeneous reactors were obtained as solutions of the time dependent diffusion equation. Some numerical results obtained by this method are included. U radu je primenjena modalna analiza, razvoj po prostornim svojstvenim funkcijama, za resavanje vremenski zavisne difuzione jednacine u dvogrupnoj aproksimaciji, kada je presek za apsorpciju u termalnoj grupi funkcija vremena. Kao rezultat resavanja vremenski zavisne difuzione jednacine dobijeni su izrazi za prenosne funkcije radijalno multizonih reaktorskih sistema i homogenih reaktorskih sistema. Dati su i neki numericki rezultati primene ove metode (author)

  18. Safety aspects of pressurised water reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This submission to the Health and Safety Executive has been prepared by the Institution of Professional Civil Servants (IPCS) as a contribution to the debate on safety aspects associated with Pressurized Water Reactors (PWRs). Although supporting an energy policy which includes the development of nuclear power, assurances are sought on a number of safety issues if it is decided that this should be generated by a PWR-type reactor. These issues are listed. In particular the following are mentioned: the wider publication of design information, the use of elastic-plastic fracture mechanics as the basis for determining pressure vessel integrity, the failure rate of steam generating units, water coolant quality control, greater investigation of two-phase flow accident conditions, the components of the reactor cooling system and training of reactor personnel in the understanding of LOCA effects. (U.K.)

  19. Infiltration SuDS Map

    OpenAIRE

    Dearden, Rachel

    2012-01-01

    Infiltration SuDS are sustainable drainage systems (SuDS) that allow surface water to infiltrate to the ground. Examples include soakaways, infiltration basins, infiltration trenches and permeable pavements. Before planning to install Infiltration SuDS, the suitability of the ground should be assessed. The British Geological Survey has developed a bespoke Infiltration SuDS Map that enables a preliminary assessment of the suitability of the ground for infiltration SuDS. Th...

  20. Design and fabrication of irradiation testing capsule for research reactor materials

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu

    2012-01-01

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed

  1. Design and fabrication of irradiation testing capsule for research reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed.

  2. SU(2)xSU(2) coupling rule and a tensor glueball candidate

    International Nuclear Information System (INIS)

    Lanik, J.

    1984-01-01

    The data on the decay of THETA(1640) particles are considered. It is shown that the SU(2)xSU(2) mechanism for coupling of theta(1640) tensor glueball candidate to pseudoscalar Gold-stone mesons is in a remarkable agreement with existing experimental data

  3. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  4. Distinctive safety aspects of the CANDU-PHW reactor design

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. They were prepared in response to a request from IAEA to provide information on the 'Special characteristics of the safety analysis of heavy water reactors' to delegates from member states attending the Interregional Training Course on Safety Analysis Review, held at Karlsruhe, November 19 to December 20, 1979. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (auth)

  5. Integrated initial training program for a CEGB operations engineer

    International Nuclear Information System (INIS)

    Tompsett, P.A.

    1987-01-01

    This paper considers the overall training programs undertaken by a newly appointed Operations Engineer at one of the Central Electricity Generating Board's (CEGB) Advanced Gas Cooled Reactor (AGR) nuclear power stations. The training program is designed to equip him with the skills and knowledge necessary for him to discharge his duties safely and effectively. In order to assist the learning process and achieve and integrated program, aspects of reactor technology and operation, initially the subject of theoretical presentations at the CEGB's Nuclear Power Training Center (NPTC) are reinforced by either simulation and/or practical experience on site. In the later stages plant-specific simulators, operated by trained tutors, are incorporated into the training program to provide the trainee with practical experience of plant operation. The trainee's performance is assessed throughout the program to provide feedback to the trainee, the trainers and station management

  6. Determination of the transfer function of a reactor

    International Nuclear Information System (INIS)

    Dencs, B.

    1976-01-01

    The theoretical and experimental methods of the determination of reactor transfer functions are reviewed. Preliminary measurements were made on the experimental and final core of the training reactor of the Budapest Technical University. The rod-drop curves, the hole effect of the reactor and the control rod worths were determined. The effect of Cd ring and Cd profile was studied, too. The neutron flux distribution in the core was determined in several geometries. The oscillatory method is treated in detail. After the zero measurements of the core the oscillatory determination of the transfer function has been made on some frequency. The simplified model of the reactor transfer function was reconstructed from the measurement data. (R.J.)

  7. Present status and future program of YAYOI as a fast pulse reactor

    International Nuclear Information System (INIS)

    An, S.; Oka, Y.; Saito, I.

    1978-01-01

    Fast neutron source reactor YAYOI was constructed in 1971 and has been operated by the Faculty of Engineering of the University of Tokyo. The reactor is a development of AFSR and HARMONIE and is air cooled, modified to enhance flexibility for research and training, using 93% enriched uranium metal fuel. The YAYOI is principally used for LMFBR development work. The new features of YAYOI include pulsation with or without an electron linac. (author)

  8. Upgrading BWR training simulators for annual outage operation training

    International Nuclear Information System (INIS)

    Yamakabe, K.; Nakajima, A.; Shiyama, H.; Noji, K.; Okabe, N.; Murata, F.

    2006-01-01

    Based upon the recently developed quality assurance program by the Japanese electric companies, BWR Operator Training Center (BTC) identified the needs to enhance operators' knowledge and skills for operations tasks during annual outage, and started to develop a dedicated operator training course specialized for them. In this paper, we present the total framework of the training course for annual outage operations and the associated typical three functions of our full-scope simulators specially developed and upgraded to conduct the training; namely, (1) Simulation model upgrade for the flow and temperature behavior concerning residual heat removal (RHR) system with shutdown cooling mode, (2) Addition of malfunctions for DC power supply equipment, (3) Simulation model upgrade for water filling operation for reactor pressurization (future development). We have implemented a trial of the training course by using the upgraded 800MW full-scope training simulator with functions (1) and (2) above. As the result of this trial, we are confident that the developed training course is effective for enhancing operators' knowledge and skills for operations tasks during annual outage. (author)

  9. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1983-01-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  10. Licensing procedures and safety criteria for research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J L; Lerouge, B [Centre d' Etudes Nucleaires de Saclay (France)

    1983-08-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon.

  11. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  12. Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Cecen, Y.

    2001-01-01

    In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)

  13. Computer-based training at Sellafield

    International Nuclear Information System (INIS)

    Cartmell, A.; Evans, M.C.

    1986-01-01

    British Nuclear Fuel Limited (BNFL) operate the United Kingdom's spent-fuel receipt, storage, and reprocessing complex at Sellafield. Spent fuel from graphite-moderated CO 2 -cooled Magnox reactors has been reprocessed at Sellafield for 22 yr. Spent fuel from light water and advanced gas reactors is stored pending reprocessing in the Thermal Oxide Reprocessing Plant currently being constructed. The range of knowledge and skills needed for plant operation, construction, and commissioning represents a formidable training requirement. In addition, employees need to be acquainted with company practices and procedures. Computer-based training (CBT) is expected to play a significant role in this process. In this paper, current applications of CBT to the filed of nuclear criticality safety are described and plans for the immediate future are outlined

  14. Nuclear power reactor security personnel training and qualification plan reviewer workbook

    International Nuclear Information System (INIS)

    1979-06-01

    The Training and Qualification Plan Reviewer Workbook has been developed to provide the information required for evaluating the adequacy of the Training and Qualification (T and Q) Plans developed to meet the requirements of 10 CFR 73.55(b)(4) and 10 CFR 73, Appendix B

  15. SU(5) monopoles, magnetic symmetry and confinement

    International Nuclear Information System (INIS)

    Daniel, M.; Lazarides, G.; Shafi, Q.

    1980-01-01

    The monopoles of the unified SU(5) gauge theory broken down to Hsub(E) = SU(3)sub(c) x U(1)sub(EM) [or to Ksub(E) = SU(3)sub(c) x SU(2) x U(1)sub(γ)], are classified. They belong to representations of a magnetic group Hsub(M)(Ksub(M)), which is found to be isomorphic to Hsub(E)(Ksub(E)). For SU(5) broken down to Hsub(E), there exists a regular and stable monopole which is a colour magnetic triplet, and carries a non-zero abelian magnetic charge. It is suggested that composite operators made out of this monopole and its antiparticle fields develop a non-zero vacuum expectation value, and so lead to a squeezing of the colour electric flux. Finally, we comment on the cosmological production of SU(5) monopoles. (orig.)

  16. Activities and cooperation opportunities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the 'peaceful uses of nuclear energy'. In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  17. Activities and cooperation opportunities at Cekmece nuclear research and training center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Full text: Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the p eaceful uses of nuclear energy . In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  18. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  19. Use of radiation maps in a virtual training environment for NPP field operators

    Energy Technology Data Exchange (ETDEWEB)

    Nystad, Espen; Droeivoldsmo, Asgeir; Sebok, Angelia

    2002-08-15

    Virtual reality (VR) provides a useful tool for training because it offers the student direct experience with the material to be learned. In the nuclear industry, VR provides a safe method of training workers on tasks to be performed in radiation-exposed areas. VR training may be used for planning operations so they can be performed quickly and efficiently, thus reducing worker radiation doses. This study evaluated three types of radiation distribution training for the Halden Boiling Water Reactor (HBWR) hall. Two training types were presented using VR models and computerized radiation maps; the third type of training used a paper map showing the reactor hall and the radiation distribution. Participants were instructed to learn the radiation layout and practice walking along a route in the reactor hall. They were also instructed to learn to identify the location of points that they would later measure. Following training, participants in the three training groups participated in the same experimental session. During the experimental session, participants applied the skills they had acquired in training by walking through the reactor hall and performing the measuring tasks they had learned about in the training session. The VR training included a guided condition, where users were shown the path they would need to learn, and a non-guided condition, where users were relatively free to explore. These two conditions provided active (non-guided) and passive (guided) training conditions. A number of performance measures were collected, including radiation awareness, presence, usability, and objective performance measures. Participants in the VR non-guided (active learning) condition demonstrated higher radiation awareness, reported higher transfer of training, and recognized more measure points than subjects in the VR guided (passive learning) and/or map conditions. The results of this study indicate that VR can provide a useful medium for training spatial skills. The

  20. Application of Nuclear Power Plant Simulator for High School Student Training

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant.

  1. Application of Nuclear Power Plant Simulator for High School Student Training

    International Nuclear Information System (INIS)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung

    2014-01-01

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant

  2. Advanced methods in teaching reactor physics

    International Nuclear Information System (INIS)

    Snoj, Luka; Kromar, Marjan; Zerovnik, Gasper; Ravnik, Matjaz

    2011-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  3. Advanced methods in teaching reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kromar, Marjan, E-mail: marjan.kromar@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Zerovnik, Gasper, E-mail: gasper.zerovnik@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ravnik, Matjaz [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  4. The SU(4), SU(2)xSU(2) chain

    International Nuclear Information System (INIS)

    Partensky, A.; Maguin, C.

    1976-11-01

    The main results of a work concerning the calculation of the matrices of the generators of SU(4) in a given (p,p',p'') irreducible representation, in which the states are labelled by the spin quantum numbers, S, MS, are given. Then the SU(4) algebra is defined, the labelling problem of the states is discussed and the Racah formula transformed, which facilitates the calculation. The semi-reduced matrix elements of the Q, Vsup(Q) and Wsup(Q) vectors are defined. Finally an explicit formulation of the matrix elements of Q is given, in the particular case T=p for any S, or S=p for any T; the example of the (3 2 0) irreducible representation is treated

  5. Noise analysis method for monitoring the moderator temperature coefficient of pressurized water reactors: Neural network calibration

    International Nuclear Information System (INIS)

    Thomas, J.R. Jr.; Adams, J.T.

    1994-01-01

    A neural network was trained with data for the frequency response function between in-core neutron noise and core-exit thermocouple noise in a pressurized water reactor, with the moderator temperature coefficient (MTC) as target. The trained network was subsequently used to predict the MTC at other points in the same fuel cycle. Results support use of the method for operating pressurized water reactors provided noise data can be accumulated for several fuel cycles to provide a training base

  6. Status report of Indonesian research reactor

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1992-01-01

    A general description of three Indonesian research reactor, its irradiation facilities and its future prospect are described. Since 1965 Triga Mark II 250 KW Bandung, has been in operation and in 1972 the design powers were increased to 1000 KW. Using core grid form Triga 250 KW BATAN has designed and constructed Kartini Reactor in Yogyakarta which started its operation in 1979. Both of this Triga type reactors have served a wide spectrum of utilization such as training manpower in nuclear engineering, radiochemistry, isotope production and beam research in solid state physics. Each of this reactor have strong cooperation with Bandung Institute of Technology at Bandung and Gajah Mada University at Yogyakarta which has a faculty of Nuclear Engineering. Since 1976 the idea to have high flux reactor has been foreseen appropriate to Indonesian intention to prepare infrastructure for nuclear industry for both energy and non-energy related activities. The idea come to realization with the first criticality of RSG-GAS (Multipurpose Reactor G.A. Siwabessy) in July 1987 at PUSPIPTEK Serpong area. It is expected that by early 1992 the reactor will reached its full power of 30 MW and by end 1992 its expected that irradiation facilities will be utilized in the future for nuclear scientific and engineering work. (author)

  7. Remarks on broken chiral SU(5) x SU(5) symmetry and B mesons

    International Nuclear Information System (INIS)

    Kim, D.Y.; Sinha, S.N.

    1985-01-01

    In a recent paper, Hatzis has estimated the masses and weak decay constants of b-flavored pseudoscalar mesons in a broken chiral SU(5) x SU(5) symmetry method. The estimated weak decay constant of B meson, f sub(B) f sub(K)(f sub(B)/f sub(K) approximately equal to 1.4) evaluated by Mathur et al. with the quantum chromodynamics (QCD) sum-rule model. We re-examined the problem applying the broken chiral SU(5) x SU(5) symmetry approach using a set of mass formulae. With this method we estimate the symmetry-breaking parameters and decay constants of pseudoscalar mesons. We found a consistent result for the decay constant: f sub(K) < or approximately equal to f sub(D) < or approximately equal to f sub(B). The explicit numerical value of these constants, however, are lower than that of the QCD sum rule. This may be due to the limited validity of the broken chiral symmetry approach for heavy mesons

  8. Ergonomics design and operator training as contributors to human reliability

    International Nuclear Information System (INIS)

    Jackson, A.R.G.; Madden, V.J.; Umbers, I.G.; Williams, J.C.

    1987-01-01

    The safe operation of nuclear reactors depends not only on good physical safety engineering but on the human operators as well. The Central Electricity Generating Board's approach to human reliability includes the following aspects: ergonomics design (task analysis and the development of man-machine interfaces), analysis of human reliability, operational feedback, staff training and assessment, maintenance management, research programmes and management. This paper describes how these combine to achieve the highest practicable level of human reliability, not only for the Sizewell-B pressurized water reactor, but also for the Board's gas-cooled reactors. Examples are used to illustrate the topics considered. (UK)

  9. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  10. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  11. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    Energy Technology Data Exchange (ETDEWEB)

    Vins, M. [Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)], E-mail: vinsmiro@seznam.cz

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  12. Preliminary accident analysis of Flexblue® underwater reactor

    Directory of Open Access Journals (Sweden)

    Haratyk Geoffrey

    2015-01-01

    Full Text Available Flexblue® is a subsea-based, transportable, small modular reactor delivering 160 MWe. Immersion provides the reactor with an infinite heat sink – the ocean – around the metallic hull. The reference design includes a loop-type PWR with two horizontal steam generators. The safety systems are designed to operate passively; safety functions are fulfilled without operator action and external electrical input. Residual heat is removed through four natural circulation loops: two primary heat exchangers immersed in safety tanks cooled by seawater and two emergency condensers immersed in seawater. In case of a primary piping break, a two-train safety injection system is actuated. Each train includes a core makeup tank, an accumulator and a safety tank at low pressure. To assess the capability of these features to remove residual heat, the reactor and its safety systems have been modelled using thermal-hydraulics code ATHLET with conservative assumptions. The results of simulated transients for three typical PWR accidents are presented: a turbine trip with station blackout, a large break loss of coolant accident and a small break loss of coolant accident. The analyses show that the safety criteria are respected and that the reactor quickly reaches a safe shutdown state without operator action and external power.

  13. Operation and maintenance of the RB reactor, Annual report for 1977; Pogon i odrzavanje reaktora RB, Izvestaj o radu u 1977. godini

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Vranic, S [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1977-07-01

    The annual report for 1977 includes the following: utilization of the RB reactor; new regulations and instructions for reactor operation; improvement of experimental possibilities of the RB reactor; state of the reactor equipment; dosimetry and radiation protection; reactor staff. Five annexes are concerned with: testing the properties of preamplifiers for linear and logarithmic experimental channels; properties of the neutron converter; maintenance of the reactor equipment; purchase of new equipment; and the program for training reactor operators.

  14. Activities for extending the lifetime of MINT research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bokhari, Adnan; Kassim, Mohammad Suhaimi [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1998-10-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear reactor commissioned in June 1982. Since then, it has been used for research, isotope production, neutron activation, neutron radiography and manpower training. The total operating time till the end on September 1997 is 16968 hours with cumulative total energy release of 11188 MW-hours. After more than fifteen years of successful operation, some deterioration in components and associated systems has been observed. This paper describes some of the activities carried out to increase the lifetime and to reduce the shutdown time of the reactor. (author)

  15. Operation experience with the TRIGA reactor Wien 2004

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-01-01

    The TRIGA Mark-II reactor in Vienna is now in operation for more than 42 years. The average operation time is about 230 days per year with 90 % of this time at nominal power of 250 kW. The remaining 10 % operation time is used for students' training courses at low power level. Pulse operation is rather infrequent with about 5 to 10 pulses per year. The utilization of this facility is excellent, the number of students participating in practical exercises has strongly increased, and also training courses for outside groups such as the IAEA or for the 2004 Eugene Wigner Course are using the reactor, because it is the only TRIGA reactor remaining in Austria. Therefore, there is no need for decommissioning and it is intended to operate it as long as possible into the next decade. Nevertheless, in early 2004 it was decided to prepare a report on a decommissioning procedure for a typical TRIGA Mark II reactor which lists the volumes, the activity and the weight of individual materials such as concrete, aluminium, stainless steel, graphite and others which will accumulate during this process (a summary of possible activated and contaminated materials and the activity of a single TRIGA fuel element as a function of fuel type and decay time in Bq is presented). The status of the reactor (instrumentation, fuel elements, cooling circuit, ventilation system, re-inspection and maintenance program, cost/benefit) is outlined. (nevyjel)

  16. Preliminary Analysis of Severe Accident Progression Initiated from Small Break LOCA of a SMART Reactor

    International Nuclear Information System (INIS)

    Jin, Young Ho; Park, Jong Hwa; Kim, Dong Ha; Cho, Seong Won

    2010-01-01

    SMART (System integrated Modular Advanced ReacTor), is under the development at Korea Atomic Energy Research Institute (KAERI). SMART is an integral type pressurized water reactor which contains a pressurizer, 4 reactor coolant pumps (RCPs), and 8 steam generator cassettes(S/Gs) in a single reactor vessel. This reactor has substantially enhanced its safety with an integral layout of its major components, 4 trains of safety injection systems (SISs), and an adoption of 4 trains of passive residual heat removal systems (PRHRS) instead of an active auxiliary feedwater system . The thermal power is 330 MWth. During the conceptual design stage, a preliminary PSA was performed. PSA results identified that a small break loss of coolant accident (SLOCA) with all safety injections unavailable is one of important severe core damage sequences. Clear understanding of this sequence helps in the developing accident mitigation strategies. MIDAS/SMR computer code is used to simulate the severe accident progression initiated from a small break LOCA in SMART reactor. This code has capability to model a helical steam generator which is adopted in SMART reactor. The important accident progression results for SMART reactor are then compared with the typical pressurized water reactor (PWR) result

  17. Reactor physics in support of the naval nuclear propulsion programme

    International Nuclear Information System (INIS)

    Lisley, P.G.; Beeley, P.A.

    1994-01-01

    Reactor physics is a core component of all courses but in particular two postgraduate courses taught at the department in support of the naval nuclear propulsion programme. All of the courses include the following elements: lectures and problem solving exercises, laboratory work, experiments on the Jason zero power Argonaut reactor, demonstration of PWR behavior on a digital computer simulator and project work. This paper will highlight the emphasis on reactor physics in all elements of the education and training programme. (authors). 9 refs

  18. Transient analysis for PWR reactor core using neural networks predictors

    International Nuclear Information System (INIS)

    Gueray, B.S.

    2001-01-01

    In this study, transient analysis for a Pressurized Water Reactor core has been performed. A lumped parameter approximation is preferred for that purpose, to describe the reactor core together with mechanism which play an important role in dynamic analysis. The dynamic behavior of the reactor core during transients is analyzed considering the transient initiating events, wich are an essential part of Safety Analysis Reports. several transients are simulated based on the employed core model. Simulation results are in accord the physical expectations. A neural network is developed to predict the future response of the reactor core, in advance. The neural network is trained using the simulation results of a number of representative transients. Structure of the neural network is optimized by proper selection of transfer functions for the neurons. Trained neural network is used to predict the future responses following an early observation of the changes in system variables. Estimated behaviour using the neural network is in good agreement with the simulation results for various for types of transients. Results of this study indicate that the designed neural network can be used as an estimator of the time dependent behavior of the reactor core under transient conditions

  19. Strengthening Technical Specialist Training for an Expanding Nuclear Power Programme in the UK

    International Nuclear Information System (INIS)

    Robertson, John L.

    2014-01-01

    NTSTS: Future Plans: • Introduce new pathway in Nuclear Reactor Operations into FD/BEng (Plant Engineering) programmes. • Outline curriculum based on INPOs Nuclear Uniform Curriculum for Power Plant Technician, Maintenance and Non-licensed Operations Personnel. • Procurement of generic Pressurised Water Reactor Simulation Suite – due for delivery/commissioning by Sep 2014 • Gen 2 has established a partnership with Tecnatom SA of Spain – experienced in operator training for PWR and BWR. • Proposals to establish a bespoke Reactor Operations Training Centre (ROTC) close to NuGen’s planned AP1000 new build at Moorside, West Cumbria. • In longer term, ROTC could house full scope AP1000 simulator for licensed operator training

  20. Energies and media nr 26. Conditions for the nuclear sector. Nuclear reactors for developing countries? Fast reactors: why not to make a fuss about sodium. Depleted uranium: a godsend, not a waste

    International Nuclear Information System (INIS)

    2008-06-01

    After a brief article of the actuality in the nuclear sector (commissioning of new reactors in the USA, investments allowed in the UK for the construction of nuclear reactors, boost on the Chinese program, perspectives in South Africa), this issue proposes a discussion of the problems raised by providing nuclear reactors to developing countries (problems of safety and security, risk of proliferation, important issues on expertise development and personnel training, international controls, regulations and cooperation). Other topics are briefly addressed: the risk associated with the use of sodium in fast neutron reactors, the use and interest of depleted uranium as a resource