WorldWideScience

Sample records for vpi and su training reactor

  1. 11TH VPI&SU Symposium on Structural Dynamics and Control

    Science.gov (United States)

    2007-11-02

    This grant was in support of the conference entitled, ൓th VPI&SU Symposium on Structural Dynamics and Control." The symposium was held on the campus of Virginia Polytechnic Institute and State University (Virginia Tech) in Blacksburg, Virginia, on May 12 - 14, 1997. The symposium consisted of 65 papers presented over a three-day period. The results of the conference have been published in a bound volume entitled, Structural Dynamics and Control.

  2. Factors determining cost and quality of the electrical insulation in the VPI-process

    Energy Technology Data Exchange (ETDEWEB)

    Bruetsch, R.; Allison, J.; Thaler, T. [Von Roll Isola, Breitenbach (Switzerland)

    1996-12-31

    The construction of the electrical insulation and the carrying out of the VPI-process are critical steps in the production of rotating high voltage machines. On the other hand the manufacture of the insulation and the VPI-process are cost factors. It is therefore important to know the factors influencing cost and quality of the insulation in the VPI-process in order to determine the optimal production parameters and to achieve a high reliability of the resulting machine. This article gives an overview of the relevant factors and some considerations regarding costs.

  3. VPI - VIBRATION PATTERN IMAGER: A CONTROL AND DATA ACQUISITION SYSTEM FOR SCANNING LASER VIBROMETERS

    Science.gov (United States)

    Rizzi, S. A.

    1994-01-01

    The Vibration Pattern Imager (VPI) system was designed to control and acquire data from laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor (Ometron Limited, Kelvin House, Worsley Bridge Road, London, SE26 5BX, England), but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. VPI's graphical user interface allows the operation of the program to be controlled interactively through keyboard and mouse-selected menu options. The main menu controls all functions for setup, data acquisition, display, file operations, and exiting the program. Two types of data may be acquired with the VPI system: single point or "full field". In the single point mode, time series data is sampled by the A/D converter on the I/O board at a user-defined rate for the selected number of samples. The position of the measuring point, adjusted by mirrors in the sensor, is controlled via a mouse input. In the "full field" mode, the measurement point is moved over a user-selected rectangular area with up to 256 positions in both x and y directions. The time series data is sampled by the A/D converter on the I/O board and converted to a root-mean-square (rms) value by the DSP board. The rms "full field" velocity distribution is then uploaded for display and storage. VPI is written in C language and Texas Instruments' TMS320C30 assembly language for IBM PC series and compatible computers running MS-DOS. The program requires 640K of RAM for execution, and a hard disk with 10Mb or more of disk space is recommended. The program also requires a mouse, a VGA graphics display, a Four Channel analog I/O board (Spectrum Signal Processing, Inc.; Westborough, MA), a break-out box and a Spirit-30 board (Sonitech

  4. Experimental and numerical investigation of voids distribution in VPI for ITER correction coil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juping, E-mail: ljping@ipp.ac.cn; Wu, Jiefeng; Yu, Xiaowu

    2015-06-15

    Highlights: • A sample of correction coil was treated by vacuum pressure impregnation. • The voids in sample were observed by computed tomography. • The voids distributions were simulated in 2-D and 3-D model. • The calculated voids locations had a good agreement with experiment. • The simulation was not accurate in calculating the voids content. - Abstract: The experimental and numerical investigations were conducted to study the voids distribution in VPI (Vacuum Pressure Impregnation) process for correction coil. A sample of correction coil was manufactured by VPI. The voids in sample were observed with computed tomography and the average voids content was tested. The voids content is closely related to infiltration velocity and fluid properties. In former researches, the parameters affecting voids content were combined into a single parameter, namely capillary number. By calculating the capillary numbers in different areas of the sample, the voids distribution could be acquired. The corresponding numerical analyses based on Darcy law were conducted in 2-D and 3-D models. The 2-D case was used to simulate the voids distribution on the section as a simplified model, while the 3-D case demonstrated the spatial distribution of voids. The voids locations were similar in 2-D and 3-D cases, but the voids contents were different. The numerical results were compared with the actual voids distribution in sample. It was found the voids locations were close in numerical and experimental results, but the voids content did not match. The numerical simulations are available for predicting the voids locations in VPI, but not accurate in calculating the voids content.

  5. Interaction between active ruthenium complex [RuCl3(dppb)(VPy)] and phospholipid Langmuir monolayers: Effects on membrane electrical properties

    Science.gov (United States)

    Sandrino, B.; Wrobel, E. C.; Nobre, T. M.; Caseli, L.; Lazaro, S. R.; Júnior, A. C.; Garcia, J. R.; Oliveira, O. N.; Wohnrath, K.

    2016-04-01

    We report on the interaction between mer-[RuCl3(dppb)(VPy)] (dppb = 1,4-bis(diphenylphosphine)butane and VPy = 4-vinylpyridine) (RuVPy) and dipalmitoyl phosphatidyl serine (DPPS), in Langmuir and Langmuir-Blodgett (LB) films. Interaction of RuVPy with DPPS, which predominates in cancer cell membranes, should be weaker than for other phospholipids since RuVPy is less toxic to cancer cells than to healthy cells. Incorporation of RuVPy induced smaller changes in electrochemical properties of LB films of DPPS than for other phospholipids, but the same did not apply to surface pressure isotherms. This calls for caution in establishing correlations between effects from a single property and phenomena on cell membranes.

  6. The Synthesis and Characterization of Zincosilicate VPI-7%锌硅分子筛VPI-7的合成及表征

    Institute of Scientific and Technical Information of China (English)

    荆学珍; 徐红; 樊明明; 董晋湘

    2002-01-01

    本文在Na2O-ZnO-SiO2-H2O水热体系中研究了温度、Na2O/SiO2、SiO2/ZnO对合成锌硅分子筛VPI-7的影响,并以XRD、SEM、FT-IR等手段对晶化产物进行表征.实验表明:(1)SiO2/ZnO比在3.5~10的范围内,可以合成VPI-7的纯相,且随着SiO2/ZnO比的增加,产物的相对结晶度增大;(2)合成产物中SiO2/ZnO比的变化不随反应物中SiO2/ZnO比的变化而线性变化,证明Zn在VPI-7中是有序排列的.参考硅铝沸石的红外光谱研究结果,对VPI-7的FT-IR谱图进行了简要的归属.

  7. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin [University of Illinois, Urbana (United States)

    2014-08-15

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor.

  8. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    Energy Technology Data Exchange (ETDEWEB)

    Lescop, B.; Badeau, G.; Ivanovic, S.; Foulon, F. [National Institute for Nuclear science and Technology French Atomic Energy and Alternative Energies Commission (CEA), Saclay Research Center, 91191 Gif-sur-Yvette (France)

    2015-07-01

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. The facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10{sup 12} n/cm{sup 2}.s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also

  9. Modern design and safety analysis of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kjordan@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Springfels, D., E-mail: dspringfels@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Schubring, D., E-mail: dlschubring@ufl.edu [University of Florida, 202 Nuclear Science Building, PO Box 118300, Gainesville, FL 32611-8300 (United States)

    2015-05-15

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed.

  10. Setting-up of remote reactor LAB and tapping into CARRN for distance education and training in nuclear field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eugene [The Nelson Mandeal African Institute of Science and Technology, Arusha (Tanzania, United Republic of)

    2013-07-01

    For a developing country embarking on a research reactor project, building adequate human resource capacity is one of the biggest challenges. Tanzania has been considering a research reactor for some time. The success of future research reactor project impinges on vigorous education and training of necessary personnel to operate and fully utilize the facility. In Africa, underutilization of research reactors is a chronic issue. It is not only misuse of valuable resources but also poses potential safety and security concerns. To mitigate such concerns and to promote education and training, Central African Research Reactor Network (CARRN) was formed in June of 2011. Borrowing from Jordan's success, this paper presents customised curricula to take advantage of CARRN for distance education and training in nuclear field.

  11. 纯环氧VPI浸渍树脂的研制及性能测试%Research and Properties Test of Epoxy VPI Impregnation Resin

    Institute of Scientific and Technical Information of China (English)

    郭胜智; 吴梦艳; 徐雄鹰; 刘艳婷; 施德俊; 夏宇

    2014-01-01

    介绍了一种无酸酐无易挥发性稀释剂的纯环氧VPI浸渍树脂。通过优选环氧活性稀释剂及自制固化剂,制备一种黏度适中、不易吸潮、储存稳定,且具有优异的电气性能和机械性能的纯环氧VPI浸渍树脂。该树脂性能与环氧酸酐树脂性能相当,是环氧酸酐VPI浸渍树脂理想的替代品。%An epoxy VPI resin without anhydride and volatile thinner was introduced. By optimally selecting active epoxy diluting agent and self-made curing agent, the epoxy VPI resin with moderate viscosity, moisture resistance, good storage stability, excellent electrical and mechanical properties was prepared. The performance of the resin as mentioned is equal to that of epoxy anhydride resin, it is an ideal substitute of epoxy anhydride VPI resin.

  12. Virtual Partner Interaction (VPI: exploring novel behaviors via coordination dynamics.

    Directory of Open Access Journals (Sweden)

    J A Scott Kelso

    Full Text Available Inspired by the dynamic clamp of cellular neuroscience, this paper introduces VPI -- Virtual Partner Interaction -- a coupled dynamical system for studying real time interaction between a human and a machine. In this proof of concept study, human subjects coordinate hand movements with a virtual partner, an avatar of a hand whose movements are driven by a computerized version of the Haken-Kelso-Bunz (HKB equations that have been shown to govern basic forms of human coordination. As a surrogate system for human social coordination, VPI allows one to examine regions of the parameter space not typically explored during live interactions. A number of novel behaviors never previously observed are uncovered and accounted for. Having its basis in an empirically derived theory of human coordination, VPI offers a principled approach to human-machine interaction and opens up new ways to understand how humans interact with human-like machines including identification of underlying neural mechanisms.

  13. Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B. [Sredne-Nevskiy Shipyard (SNSZ), 10 Zavodskaya str., c. Pontonniy, Saint-Petersburg (Russian Federation); Bursikov, A. S.; Klimchenko, Y. A.; Marushin, E. L.; Mednikov, A. A.; Rodin, I. Y.; Stepanov, D. B. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint-Petersburg (Russian Federation)

    2014-01-29

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests at room and cryogenic temperatures. Some results of the tests are also given in this paper.

  14. Equipment for neutron measurements at VR-1 Sparrow training reactor.

    Science.gov (United States)

    Kolros, Antonin; Huml, Ondrej; Kríz, Martin; Kos, Josef

    2010-01-01

    The VR-1 sparrow reactor is an experimental nuclear facility for training, student education and teaching purposes. The sparrow reactor is an educational platform for the basic experiments at the reactor physic and dosimetry. The aim of this article is to describe the new experimental equipment EMK310 features and possibilities for neutron detection by different gas filled detectors at VR-1 reactor. Among the EMK310 equipment typical attributes belong precise set-up, simple control, resistance to electromagnetic interference, high throughput (counting rate), versatility and remote controllability. The methods for non-linearity correction of pulse neutron detection system and reactimeter application are presented.

  15. New Development of VPI Process for Large Superconducting Coils

    Institute of Scientific and Technical Information of China (English)

    潘皖江; 武松涛; 崔益民

    2003-01-01

    High vacuum is required for Vacuum Pressure Impregnation (VPI) process of largecoils used in cryogenic. The defects such as dry spots and over rich resins should be minimized inlarge superconducting coils used. Both sealing problems associated with the mold and over richresin problems are eliminated by using vacuum bag mold method with which we can simplify thedesign of vacuum mold.

  16. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.

  17. Assessment of the implementation of a neutron measurement system during the commissioning of the Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Hoon; Suh, Sang Mun [Division of Research Reactor System Design, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cha, Han Ju [Dept. of Electrical Engineering, Intelligent Power Conversion Laboratory, Chungnam National University, Daejeon (Korea, Republic of)

    2017-04-15

    The Jordan Research and Training Reactor (JRTR) is the first research reactor in Jordan, the commissioning of which is ongoing. The reactor is a 5-MWth, open-pool type, light-water-moderated, and cooled reactor with a heavy water reflector system. The neutron measurement system (NMS) applied to the JRTR employs a wide-range fission chamber that can cover from source range to power range. A high-sensitivity boron trifluoride counter was added to obtain more accurate measurements of the neutron signals and to calibrate the log power signals; the NMS has a major role in the entire commissioning stage. However, few case studies exist concerning the application of the NMS to a research reactor. This study introduces the features of the NMS and the boron trifluoride counter in the JRTR and shares valuable experiences from lessons learned from the system installation to its early commissioning. In particular, the background noise relative to the signal-to-noise ratio and the NMS signal interlock are elaborated. The results of the count rates with the neutron source and the effects of the discriminator threshold are summarized.

  18. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  19. Design of Seismic Test Rig for Control Rod Drive Mechanism of Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jongoh; Kim, Gyeongho; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The reactor assembly is submerged in a reactor pool filled with water and its reactivity is controlled by locations of four control absorber rods(CARs) inside the reactor assembly. Each CAR is driven by a stepping motor installed at the top of the reactor pool and they are connected to each other by a tie rod and an electromagnet. The CARs scram the reactor by de-energizing the electromagnet in the event of a safe shutdown earthquake(SSE). Therefore, the safety function of the control rod drive mechanism(CRDM) which consists of a drive assembly, tie rod and CARs is to drop the CAR into the core within an appropriate time in case of the SSE. As well known, the operability for complex equipment such as the CRDM during an earthquake is very hard to be demonstrated by analysis and should be verified through tests. One of them simulates the reactor assembly and the guide tube of the CAR, and the other one does the pool wall where the drive assembly is installed. In this paper, design of the latter test rig and how the test is performed are presented. Initial design of the seismic test rig and excitation table had its first natural frequency at 16.3Hz and could not represent the environment where the CRDM was installed. Therefore, experimental modal analyses were performed and an FE model for the test rig and table was obtained and tuned based on the experimental results. Using the FE model, the design of the test rig and table was modified in order to have higher natural frequency than the cutoff frequency. The goal was achieved by changing its center of gravity and the stiffness of its sliding bearings.

  20. Radiation protection personnel training in Research Reactors; Capacitacion en proteccion radiologica para reactores de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos Dario; Lorenzo, Nestor Pedro de [Comision Nacional de Energia Atomica, Rio Negro (Argentina). Centro Atomico Bariloche. Instituto Balseiro

    1996-07-01

    The RA-6 research reactor is considering the main laboratory in the training of different groups related with radiological protection. The methodology applied to several courses over 15 years of experience is shown in this work. The reactor is also involved in the construction, design, start-up and sell of different installation outside Argentina for this reason several theoretical and practical courses had been developed. The acquired experience obtained is shown in this paper and the main purpose is to show the requirements to be taken into account for every group (subjects, goals, on-job training, etc) (author)

  1. SuPer-Homogenization (SPH) Corrected Cross Section Generation for High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hiruta, Hikaru [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    The deterministic full core simulators require homogenized group constants covering the operating and transient conditions over the entire lifetime. Traditionally, the homogenized group constants are generated using lattice physics code over an assembly or block in the case of prismatic high temperature reactors (HTR). For the case of strong absorbers that causes strong local depressions on the flux profile require special techniques during homogenization over a large volume. Fuel blocks with burnable poisons or control rod blocks are example of such cases. Over past several decades, there have been a tremendous number of studies performed for improving the accuracy of full-core calculations through the homogenization procedure. However, those studies were mostly performed for light water reactor (LWR) analyses, thus, may not be directly applicable to advanced thermal reactors such as HTRs. This report presents the application of SuPer-Homogenization correction method to a hypothetical HTR core.

  2. Nuclear renaissance in the reactor training of Areva

    Energy Technology Data Exchange (ETDEWEB)

    De Braquilanges, Bertrand [Reactor Training Center/France Manager, La Tour Areva - 1, place Jean Millier - 92084 Paris - La Defense (France); Napior, Amy [Reactor Training Center/USA Manager, 1300 Old Graves Mill Road - Lynchburg VA, 2450 (United States); Schoenfelder, Christian [Reactor Training Center/Germany Manager, Kaiserleistrasse 29 - 63067 Offenbach (Germany)

    2010-07-01

    Because of the perspectives of new builds, a significant increase in the number of design, construction and management personnel working in AREVA, their clients and sub-contractors has been estimated for the next future. In order to cope with the challenge to integrate newly hired people quickly and effectively into the AREVA workforce, a project - 'Training Task Force (TTF)' - was launched in 2008. The objective was to develop introductory and advanced courses and related tools harmonized between AREVA Training Centers in France, Germany and USA. First, a Global Plants Introductory Session (GPIS) was developed for newly hired employees. GPIS is a two weeks training course introducing in a modular way AREVA and specifically the activities and the reactors technical basics. As an example, design and operation of a nuclear power plant is illustrated on EPRTM. Since January 2009, these GPIS are held regularly in France, Germany and the US with a mixing of employees from these 3 regions. Next, advanced courses for more experienced employees were developed: - Advanced EPR{sup TM}, giving a detailed presentation of the EPR{sup TM} reactor design; - Codes and Standards; - Technical Nuclear Safety. Finally, feasibility studies on a Training Material Management (TMM) system, able to manage the training documentation, and on a worldwide training administration tool, were performed. The TTF project was completed mid of 2009; it transferred their recurrent activities to a new AREVA training department. This unit now consists of the French, German and US Reactors Training Centers. In particular, all courses developed by the TTF are now implemented worldwide with an opening to external trainees. The current worldwide course catalogue includes training courses for operation and maintenance personnel as well as for managers, engineers and non technical personnel of nuclear operators, suppliers, safety authorities and expert organizations. Training delivery is supported

  3. Experimental and analytical investigations of primary coolant pump coastdown phenomena for the Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alatrash, Yazan [Advanced Nuclear Engineering System Department, Korea University of Science and Technology (UST), 217 Gajeong-ro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kang, Han-ok; Yoon, Hyun-gi; Seo, Kyoungwoo; Chi, Dae-Young [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Yoon, Juhyeon, E-mail: yoonj@kaeri.re.kr [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon (Korea, Republic of)

    2015-05-15

    Highlights: • Core flow coastdown phenomena of a research reactor are investigated experimentally. • The experimental dataset is well predicted by a simulation software package, MMS. • The validity and consistency of the experimental dataset are confirmed. • The designed coastdown half time is confirmed to be well above the design requirement. - Abstract: Many low-power research reactors including the Jordan Research and Training Reactor (JRTR) are designed to have a downward core flow during a normal operation mode for many convenient operating features. This design feature requires maintaining the downward core flow for a short period of time right after a loss of off-site power (LOOP) accident to guarantee nuclear fuel integrity. In the JRTR, a big flywheel is installed on a primary cooling system (PCS) pump shaft to passively provide the inertial downward core flow at an initial stage of the LOOP accident. The inertial pumping capability during the coastdown period is experimentally investigated to confirm whether the coastdown half time requirement given by safety analyses is being satisfied. The validity and consistency of the experimental dataset are evaluated using a simulation software package, modular modeling system (MMS). In the MMS simulation model, all of the design data that affect the pump coastdown behavior are reflected. The experimental dataset is well predicted by the MMS model, and is confirmed to be valid and consistent. The designed coastdown half time is confirmed to be well above the value required by safety analysis results. (wwwyoon@gmail.com)

  4. 国内外真空压力浸渍树脂的发展现状%Development of VPI Impregnating Resin at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    吴丹; 虞鑫海; 徐永芬

    2008-01-01

    叙述了目前国内外高压电机真空压力浸渍(VPI)树脂发展状况以及用于VPI浸渍树脂的种类.分别比较了国内外几家公司的VPI浸渍树脂的性能,分析了VPI浸渍树脂存在的问题,指出了我国VPI绝缘树脂的发展方向.

  5. Research on Feasibility of Matching Use of Internal and Import Material in Few Glue VPI Insulation System%少胶VPI绝缘体系国产与进口材料匹配使用可行性研究

    Institute of Scientific and Technical Information of China (English)

    卢启杰; 王兴波; 欧金斋

    2000-01-01

    简要介绍高压电机少胶VPI绝缘结构的性能评定方法及部分测试结果,阐明国产与进口材料匹配使用的可行性方案。%This text briefly introduces capability assess methods and some test results of few glue VPI in sulation structure in high voltage electromotor. It also clarifies a feasibility project of matching use of internal and import material at present.

  6. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  7. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH; Desarrollo de modelos de radiacion de un reactor tipo BWR y su instalacion en el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Barron A, I. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: isbarron@yahoo.com.mx

    2005-07-01

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  8. 75 FR 54657 - University of Florida; University of Florida Training Reactor; Environmental Assessment and...

    Science.gov (United States)

    2010-09-08

    ... carrier or waste processor. The waste consists of irradiated samples, packaging materials, contaminated... research activities. The reactor is fueled with low-enriched uranium-aluminum fuel contained in MTR-type...). The major modification since 1981 was the conversion from high enriched uranium fuel to...

  9. Advanced Examination Techniques Applied to the Assessment of Vacuum Pressure Impregnation (VPI) of ITER Correction Coils

    CERN Document Server

    Sgobba, Stefano; Samain, Valerie; Libeyre, Paul; Cecillon, Alexandre; Dawid, J

    2014-01-01

    The ITER Magnet System includes a set of 18 superconducting correction coils (CC) which are used to compensate the error field modes arising from geometrical deviations caused by manufacturing and assembly tolerances. The turn and ground insulation are electrically insulated with a multi-layer fiberglass polyimide interleaved composite, impregnated with epoxy resin using vacuum pressure impregnation (VPI). Adequate high voltage insulation (5 kV), mechanical strength and rigidity of the winding pack should be achieved after impregnation and curing of the insulation system. VPI is an effective process to avoid defects such dry spots and incomplete wet out. This insulation technology has also been developed since several years for application to large superconducting coils and more recently to ITER CC. It allows the coils to be impregnated without impacting on their functional characteristics. One of the critical challenges associated with the construction of the CC is the qualification of the VPI insulation. Se...

  10. Application of MCNP for neutronic calculations at VR-1 training reactor

    Science.gov (United States)

    Huml, Ondřej; Rataj, Jan; Bílý, Tomáš

    2014-06-01

    The paper presents utilization of Monte Carlo MCNP transport code for neutronic calculations of training reactor VR-1. Results of calculations are compared with results of measurements realized during last few critical experiments with various reactor core configurations. Very good agreement between calculations and measurements is observed.

  11. Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate.

    Science.gov (United States)

    Villemur, Richard; Juteau, Pierre; Bougie, Veronique; Ménard, Julie; Déziel, Eric

    2015-04-01

    Two trains (A and B) of four-stage moving bed biofilm reactors (MBBRs) were developed for the degradation of thiocyanate (SCN(-)), cyanate (OCN(-)) and ammonia (NH3). A pre-denitrification configuration was established in the first-stage reactor of the B train using SCN(-) and OCN(-) as the sole carbon source. SCN(-), OCN(-) and NH3 were completely removed in both trains. The highest removal of total nitrogen equivalent (total-N) occurred at a loading rate of 5.6 mg-N L(-1) h(-1). The pre-denitrification configuration resulted in increased total-N removal in the B train (62.6%) compared to the A train (38.5%). Thiobacillus spp. were the predominant bacteria in all MBBRs. Bacteria related to bioprocesses involving anaerobic ammonium oxidation were present in the B train, suggesting that part of nitrogen removal occurs via this pathway. Our results showed that the pre-denitrification configuration increases the efficiency of removal of total-N compounds in the SCN(-)/OCN(-)-degrading MBBR process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. SU-E-E-05: Improving Contouring Precision and Consistency for Physicians-In-Training with Simple Lab Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L; Larson, D A [University of California School of Medicine, San Francisco, CA (United States)

    2015-06-15

    Purpose: Target contouring for high-dose treatments such as radiosurgery of brain metastases is highly critical in eliminating marginal failure and reducing complications as shown by recent clinical studies. In order to improve contouring accuracy and practice consistency for the procedure, we introduced a self-assessed physics lab practice for the physicians-in-training. Methods: A set of commercially acquired high-precision PMMA plastic spheres were randomly embedded in a Styrofoam block and then scanned with the CT/MR via the clinical procedural imaging protocol. A group of first-year physicians-in-training (n=6) from either neurosurgery or radiation oncology department were asked to contour the scanned objects (diameter ranged from 0.4 cm to 3.8 cm). These user-defined contours were then compared with the ideal contour sets of object shape for self assessments to determine the maximum areas of the observed discrepancies and method of improvements. Results: The largest discrepancies from initial practice were consistently found to be located near the extreme longitudinal portions of the target for all the residents. Discrepancy was especially prominent when contouring small objects < 1.0 cm in diameters. For example, the mean volumes rendered from the initial contour data set differed from the ideal data set by 7.7%±6.6% for the participants (p> 0.23 suggesting agreement cannot be established). However, when incorporating a secondary imaging scan such as reconstructed coronal or sagittal images in a repeat practice, the agreement was dramatically improved yielding p<0.02 in agreement with the reference data set for all the participants. Conclusion: A simple physics lab revealed a common pitfall in contouring small metastatic brain tumors for radiosurgical procedures and provided a systematic tool for physicians-in-training in improving their clinical contouring skills. Dr Ma is current a board member of international stereotactic radiosurgical society.

  13. VPI与模压的发电机定子线棒之性价比%Comparison of Cost Effectiveness of Model Press and VPI for Generator Stator Bar

    Institute of Scientific and Technical Information of China (English)

    袁晓红; 王玉田

    2011-01-01

    本文对模压及VPI工艺方式制造线棒的过程进行了理论分析,对相应产品线棒的试验数据及性价比进行了讨论.笔者认为,采用两种不同工艺方式制造的线棒,各有优势,综合性能均能满足定子制造及电机运行要求,达到国际同等水平.VPI线棒的制造成本较高,使用的材料及工艺过程需加强环保.笔者倡导采用模压线棒做精品,VPI兼顾的战略.%On the basis of analyzing manufacture process of model press or VPItype generator stator bars, cost effectiveness of both processes is discussed. Either of them has its advantage, and can meet the demand for stator manufacture and generator long term operation. Their performance can reach world wide level. But the manufacture cost of VPI bar is relatively high compared with model press one.

  14. Difference in F-Actin Depolymerization Induced by Toxin B from the Clostridium difficile Strain VPI 10463 and Toxin B from the Variant Clostridium difficile Serotype F Strain 1470

    Directory of Open Access Journals (Sweden)

    Harald Genth

    2013-01-01

    Full Text Available Clostridium difficile toxin A (TcdA and toxin B (TcdB are the causative agent of the C. difficile-associated diarrhea (CDAD and its severe form, the pseudomembranous colitis (PMC. TcdB from the C. difficile strain VPI10463 mono-glucosylates (thereby inactivates the small GTPases Rho, Rac, and Cdc42, while Toxin B from the variant C. difficile strain serotype F 1470 (TcdBF specifically mono-glucosylates Rac but not Rho(A/B/C. TcdBF is related to lethal toxin from C. sordellii (TcsL that glucosylates Rac1 but not Rho(A/B/C. In this study, the effects of Rho-inactivating toxins on the concentrations of cellular F-actin were investigated using the rhodamine-phalloidin-based F-actin ELISA. TcdB induces F-actin depolymerization comparable to the RhoA-inactivating exoenzyme C3 from C. limosum (C3-lim. In contrast, the Rac-glucosylating toxins TcdBF and TcsL did not cause F-actin depolymerization. These observations led to the conclusion that F-actin depolymerization depends on the toxin’s capability of glucosylating RhoA. Furthermore, the integrity of focal adhesions (FAs was analyzed using paxillin and p21-activated kinase (PAK as FA marker proteins. Paxillin dephosphorylation was observed upon treatment of cells with TcdB, TcdBF, or C3-lim. In conclusion, the Rho-inactivating toxins induce loss of cell shape by either F-actin depolymerization (upon RhoA inactivation or the disassembly of FAs (upon Rac1 inactivation.

  15. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  16. The Operator Training Simulator System for the Pebble Bed Modular Reactor (PBMR) Plant

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Trevor [Pebble Bed Modular Reactor (Proprietary) Limited, Pebble House, Centurion (South Africa)], E-mail: trevor.dudley@pbmr.co.za; Villiers, Piet de; Bouwer, Werner [Pebble Bed Modular Reactor (Proprietary) Limited, Pebble House, Centurion (South Africa); Luh, Robert [GSE Systems, Inc., 7133 Rutherford Suite 200, Baltimore, MD 21244 (United States)

    2008-11-15

    The Pebble Bed Modular Reactor (PBMR) is a First of a Kind Engineering with respect to the over 200 new innovations used in the design. The PBMR technical design is an inherited modified design from an earlier design such as the German 15 MWe AVR (Arbeitsgemeinschaft Versuchs Reaktor) and the THTR-300 MWe Thorium High Temperature Reactor (THTR), which ran in Germany as a test and research facility for 20 years. This paper discusses the Operator Training Simulator System for the PBMR Demonstration Power Plant. The Operator Training Simulator System will be used for operator training and licensing of plant operators. Included in the discussion is an overview of the major elements of the Operator Training Simulator System, including some of the main functional areas.

  17. Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems: Method Development for Multi-Physics in Reactors

    NARCIS (Netherlands)

    Perkó, Z.

    2015-01-01

    This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well establish

  18. Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems: Method Development for Multi-Physics in Reactors

    NARCIS (Netherlands)

    Perkó, Z.

    2015-01-01

    This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well

  19. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  20. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  1. Chromatographic and Related Reactors.

    Science.gov (United States)

    1988-01-07

    special information about effects of surface heteroge- neity in the methanation reaction. Studies of an efficient multicolumn assembly for measuring...of organic basic catalysts such as pyridine and 4-methylpicoline. It was demonstrated that the chromatographic reactor gave special information about...Programmed Reaction to obtain special information about surface heterogeneity in the methanation reaction. Advantages of stopped flow over steady state

  2. An improved process for the synthesis of VPI-5 molecular sieve

    Indian Academy of Sciences (India)

    N Venkatathri

    2003-04-01

    VPI-5 was synthesized with lesser time duration. The synthesized sample was characterized by XRD, SEM, FT-IR, TG/DTA, 27Al and 31P MASNMR techniques, which shows that the synthesized sample was highly crystalline. Carbon and nitrogen analyses reveal that the sample contains no template molecules, however, TG/DTA analysis shows the presence of physisorbed template molecules. MASNMR results show the presence of three different types of aluminium and phosphorous. Two of them were present as in tetrahedral and the remaining one is present in octahedral environment.

  3. The SAM software system for modeling severe accidents at nuclear power plants equipped with VVER reactors on full-scale and analytic training simulators

    Science.gov (United States)

    Osadchaya, D. Yu.; Fuks, R. L.

    2014-04-01

    The architecture of the SAM software package intended for modeling beyond-design-basis accidents at nuclear power plants equipped with VVER reactors evolving into a severe stage with core melting and failure of the reactor pressure vessel is presented. By using the SAM software package it is possible to perform comprehensive modeling of the entire emergency process from the failure initiating event to the stage of severe accident involving meltdown of nuclear fuel, failure of the reactor pressure vessel, and escape of corium onto the concrete basement or into the corium catcher with retention of molten products in it.

  4. 血管紧张素转换酶抑制剂和血管肽酶抑制剂研究进展%Investigate of angiotensin-converting enzyme inhibitors (ACEI) and vasopeptidas inhibitors (VPI)

    Institute of Scientific and Technical Information of China (English)

    张小平

    2006-01-01

    目的介绍治疗高血压和心衰的新方法.通过对国外血管紧张素转换酶抑制剂(ACEI)研究进展的介绍,对照国内此类药物的开发情况,使国内企业对ACEI的开发有较客观的认识.方法根据文献,综述ACEI和血管肽酶抑制剂(VPI)的研究进展.结果VPI同时具有双重抑制中性内肽酶(ACE)和血管紧张素转换酶(NEP)的作用.结论VPI治疗高血压和心衰优于ACEI.

  5. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  6. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  7. Thermochemical reactor systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  8. Thermochemical reactor systems and methods

    Science.gov (United States)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  9. Reactor and method of operation

    Science.gov (United States)

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  10. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  11. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  12. TLD personnel dosimetry and its relationship with the radiodiagnostic training; Dosimetria personal TLD y su relacion con la capacitacion en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [DEHA, Universidad Autonoma Metropolitana-Xochimilco, Mexico D.F. (Mexico); Gaona C, E. [Universidad Tecnologica de Mexico, Mexico D.F. (Mexico)

    2002-07-01

    The personnel dosimetry and the training in radiological protection in radiodiagnostic in Mexico before 1997 were almost nonexistent except few services of public and private radiology, we can to say that the personnel dosimetry and the obligatory training was born in the year 1997, together with the present Mexican Official Standards in radiology. This study has the purpose to make an evaluation of the personnel dosimetry of 110 radiology services distributed in the Mexican Republic for the year 2001 and to estimate the annual and bimonthly mean doses, as well as its trust intervals and its relationships with the personnel training in radiological protection by means of a sampling that was realized in two stages (1997 and 2000) in the metropolitan area of Mexico City. The results show that the received doses by the medical and technical personnel in the participating radiology services are in the 0.03 mSv and 0.94 mSv interval and the mean is 0.25 mSv. The estimated annual personnel dose would be in the 0.18 mSv to 5.64 mSv interval, which are values very lower to the annual dose limit that is 50 mSv and its magnitude is similar to the effective annual dose by natural background radiation. In the first stage in training was found that there is not a significant difference in the response frequencies among the medical and technical personnel with a p < 0.05. The 52% of the occupational exposure personnel of radiology uses dosemeter, but only 17% of them know the dose reports. the 15.8% of personnel considers that dosemeter protects against radiation and only 16.5% knows the annual maximum permissible dose for stochastic effects. The second stage, the results shown that there is a significant difference in the response of frequencies among medical and technical personnel, the same results which are obtained for members and non members of a professional association with a p < 0.05. The 38% has personnel dosimetry, the 19% knows the principles of radiological

  13. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  14. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  15. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, L [Centre Hospitalier Universityde Quebec, Quebec, QC (Canada); Universite Laval, Quebec, Quebec (Canada); Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D [Universite Laval, Quebec, Quebec (Canada)

    2014-06-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  16. U.S. Department of Energy University Reactor Instrumentation Program Final Report for 1992-94 Grant for the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vernetson, William G.

    1999-04-01

    Overall, the instrumentation obtained under the first year 1992-93 University Reactor Instrumentation Program grant assured that the goals of the program were well understood and met as well as possible at the level of support provided for the University of Florida Training Reactor facility. Though the initial grant support of $21,000 provided toward the purchase of $23,865 of proposed instrumentation certainly did not meet many of the facility's needs, the instrumentation items obtained and implemented did meet some critical needs and hence the goals of the Program to support modernization and improvement of reactor facilities such as the UFTR within the academic community. Similarly, the instrumentation obtained under the second year 1993-94 University Reactor Instrumentation Program grant again met some of the critical needs for instrumentation support at the UFTR facility. Again, though the grant support of $32,799 for proposed instrumentation at the same cost projection does not need all of the facility's needs, it does assure continued facility viability and improvement in operations. Certainly, reduction of forced unavailability of the reactor is the most obvious achievement of the University Reactor Instrumentation Program to date at the UFTR. Nevertheless, the ability to close out several expressed-inspection concerns of the Nuclear Regulatory Commission with acquisition of the low level survey meter and the area radiation monitoring system is also very important. Most importantly, with modest cost sharing the facility has been able to continue and even accelerate the improvement and modernization of a facility, especially in the Neutron Activation Analysis Laboratory, that is used by nearly every post-secondary school in the State of Florida and several in other states, by dozens of departments within the University of Florida, and by several dozen high schools around the State of Florida on a regular basis. Better, more reliable service to such

  17. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  18. Coupled SU(3)-structures and Supersymmetry

    CERN Document Server

    Fino, Anna

    2015-01-01

    We review coupled ${\\rm SU}(3)$-structures, also known in the literature as restricted half-flat structures, in relation to supersymmetry. In particular, we study special classes of examples admitting such structures and the behaviour of flows of ${\\rm SU}(3)$-structures with respect to the coupled condition.

  19. su

    African Journals Online (AJOL)

    based planning to planning broadly based on integrated programmes (for example, health systems; communicable diseases .... activity per expected result. Resources/budget: This is ... planning elements (including costing of activities); and.

  20. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  1. SU(5) and New Departures in Unification

    Science.gov (United States)

    Pakvasa, S.; Tuan, S. F.

    1982-01-01

    "Just as today, most of us are certain of the validity of SU(2) × U(l) even though we have not seen a W or Z, so also if proton decay is seen at the expected rate, we can presume that unification involves SU(S). Indeed, our faith in SU(2) × U(l) is not based entirely on hard experimental evidence. There is an infinite class of theories which give the same neutral current structure. But compared to SU(2) × U(l), the alternatives are complicated, unnatural and ugly. My faith in SU(5) is likewise based on my belief that the world is simple and beautiful." --Howard Georgi

  2. Dispositivo de posicionamiento de muestras biológicas para su irradiación en un canal radial de un reactor nuclear // Biological samples positioning device for irradiations on a radial channel at the nuclear research reactor

    Directory of Open Access Journals (Sweden)

    Maritza Rodríguez - Gual

    2010-05-01

    Full Text Available ResumenPor la demanda de un dispositivo experimental para el posicionamiento de las muestras biológicaspara su irradiación en un canal radial de un reactor nuclear de investigaciones en funcionamiento, seconstruyó y se puso en marcha un dispositivo para la colocación y retirada de las muestras en laposición de irradiación de dicho canal. Se efectuaron las valoraciones económicas comparando conotro tipo de dispositivo con las mismas funciones. Este trabajo formó parte de un proyectointernacional entre Cuba y Brasil que abarcó el estudio de los daños inducidos por diferentes tipos deradiación ionizante en moléculas de ADN. La solución propuesta es comprobada experimentalmente,lo que demuestra la validez práctica del dispositivo. Como resultado del trabajo, el dispositivoexperimental para la irradiación de las muestras biológicas se encuentra instalado y funcionando yapor 5 años en el canal radial # 3(BH#3 Palabras claves: reactor nuclear de investigaciones, dispositivo para posicionamiento de muestras,___________________________________________________________________________AbstractFor the demand of an experimental device for biological samples positioning system for irradiationson a radial channel at the nuclear research reactor in operation was constructed and started up adevice for the place and remove of the biological samples from the irradiation channels withoutinterrupting the operation of the reactor. The economical valuations are effected comparing withanother type of device with the same functions. This work formed part of an international projectbetween Cuba and Brazil that undertook the study of the induced damages by various types ofionizing radiation in DNA molecules. Was experimentally tested the proposed solution, whichdemonstrates the practical validity of the device. As a result of the work, the experimental device forbiological samples irradiations are installed and operating in the radial beam hole #3(BH#3

  3. Hanford reactor and separations facility advantages

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-27

    This document describes the advantages and limitations of Hanford production facilities. In addition to summarizing the technical parameters of the reactors and separations plants and their mechanical features, the unique aspects of these facilities to the production of special materials in which the Commission may be interested have been discussed. As the primary difference between the B-C-D-DR-F-H reactors and the K reactors and the K reactors is in the number and length of process channels. This report is addressed primarily to the 2000-tube reactors. K reactor characteristics are within the range of lattice and flexibility parameters described.

  4. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  5. Reactor Antineutrino Signals at Morton and Boulby

    CERN Document Server

    Dye, Steve

    2016-01-01

    Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This report presents calculations of reactor antineutrino interactions, from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering, in a water-based detector operated >10 km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are interaction rates and kinetic energy distributions of charged leptons scattered from quasi-elastic and elastic processes. Comparing signal and background distributions evaluates reactor monitoring capability. Scaling the results to detectors of different sizes, target media, and standoff distances is straightforward. Calculations are for two examples of a commercial reactor (P_th~3 GW) operating nearby (L~20 km) an underground facil...

  6. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  7. Statistical analysis in the design of nuclear fuel cells and training of a neural network to predict safety parameters for reactors BWR; Analisis estadistico en el diseno de celdas de combustible nuclear y entrenamiento de una red neuronal para predecir parametros de seguridad para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui Ch, V.

    2013-07-01

    In this work the obtained results for a statistical analysis are shown, with the purpose of studying the performance of the fuel lattice, taking into account the frequency of the pins that were used. For this objective, different statistical distributions were used; one approximately to normal, another type X{sup 2} but in an inverse form and a random distribution. Also, the prediction of some parameters of the nuclear reactor in a fuel reload was made through a neuronal network, which was trained. The statistical analysis was made using the parameters of the fuel lattice, which was generated through three heuristic techniques: Ant Colony Optimization System, Neuronal Networks and a hybrid among Scatter Search and Path Re linking. The behavior of the local power peak factor was revised in the fuel lattice with the use of different frequencies of enrichment uranium pines, using the three techniques mentioned before, in the same way the infinite multiplication factor of neutrons was analyzed (k..), to determine within what range this factor in the reactor is. Taking into account all the information, which was obtained through the statistical analysis, a neuronal network was trained; that will help to predict the behavior of some parameters of the nuclear reactor, considering a fixed fuel reload with their respective control rods pattern. In the same way, the quality of the training was evaluated using different fuel lattices. The neuronal network learned to predict the next parameters: Shutdown Margin (SDM), the pin burn peaks for two different fuel batches, Thermal Limits and the Effective Neutron Multiplication Factor (k{sup eff}). The results show that the fuel lattices in which the frequency, which the inverted form of the X{sup 2} distribution, was used revealed the best values of local power peak factor. Additionally it is shown that the performance of a fuel lattice could be enhanced controlling the frequency of the uranium enrichment rods and the variety of

  8. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor; Analisis para el acoplamiento del codigo NESTLE para la cinetica tridimensional del nucleo al codigo avanzado de sistemas termo-hidraulicos, RELAP5/SCDAPSIM y su aplicacion al reactor de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Salazar C, J.H.; Nunez C, A. [CNSNS, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D.F. (Mexico); Chavez M, C. [UNAM, Facultad de Ingenieria, DEPFI Campus Morelos (Mexico)]. E-mail: hsalazar22@prodigy.net.mx

    2004-07-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  9. Safe operation and maintenance of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  10. Design of an analytical aggregation of rules of a diffuse controller and its application in the model of a nuclear research reactor; Diseno de una agregacion analitica de reglas de un controlador difuso y su aplicacion en el modelo de un reactor nuclear de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Najera H, M.C

    2003-07-01

    As they have gone being managed complex systems that fulfill tasks inside industrial or nuclear processes, it becomes necessary the development of technical novel of control, in which can incorporate heuristic knowledge of operation without to necessarily use the theories of classic control based mainly in mathematical models. One of the control techniques that allows to carry out this is the control based on diffuse logic. For the case of a model of the nuclear research reactor Triga Mark III of the National Institute of Nuclear Research have been developed diverse algorithms of diffuse control that have as objective the regulation of the neutron power in the nucleus. The aggregation stages and desdifussification in these algorithms discretize the universe of values of the control variable, being required a high number of operations for their execution. With the purpose of reducing this number of operations and to obtain results more exact in the generation of the aggregated group in each cycle of control and in the determination of the center of gravity of this added group, it is presented the development of an analytical method for these calculations. The main objectives outlined in this entitled thesis {sup D}esign of an analytical aggregate of a diffuse controller rules and their application in the pattern of a nuclear research reactor{sup ,} they are: to improve the behavior of control systems in closed knot based on diffuse logic by means of the development of an analytical method that determines an aggregated group resultant of the activation of rules in the diffuse controller and the obtaining of the exit variable using an exact solution of the technique of the center of gravity; and to compare the operation of these methods with those traditionally used ones that consider the discretization of the universe of the exit variable so much for the aggregation like for the desdiffusification. The chapters 1 and 2 present an introduction at two fundamental

  11. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  12. Review of the status of low power research reactors and considerations for its development

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Cheol; Wu, Sang Ik; Lee, Byung Chul; Ha, Jae Joo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    At present, 232 research reactors in the world are in operation and two thirds of them have a power less than 1 MW. Many countries have used research reactors as the tools for educating and training students or engineers and for scientific service such as neutron activation analysis. As the introduction of a research reactor is considered a stepping stone for a nuclear power development program, many newcomers are considering having a low power research reactor. The IAEA has continued to provide forums for the exchange of information and experiences regarding low power research reactors. Considering these, the Agency is recently working on the preparation of a guide for the preparation of technical specification possibly for a member state to use when wanting to purchase a low power research reactor. In addition, ANS has stated that special consideration should be given to the continued national support to maintain and expand research and test reactor programs and to the efforts in identifying and addressing the future needs by working toward the development and deployment of next generation nuclear research and training facilities. Thus, more interest will be given to low power research reactors and its role as a facility for education and training. Considering these, the status of low power research reactors was reviewed, and some aspects to be considered in developing a low power research reactor were studied.

  13. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Science.gov (United States)

    Mavrommatis, Konstantinos; Gronow, Sabine; Saunders, Elizabeth; Land, Miriam; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Brettin, Thomas; Detter, John C.; Han, Cliff; Bristow, James; Göker, Markus; Rohde, Manfred; Eisen, Jonathan A.; Markowitz, Victor; Kyrpides, Nikos C.; Klenk, Hans-Peter; Hugenholtz, Philip

    2009-01-01

    Capnocytophaga ochracea (Prévot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically not yet charted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic (CO2-requiring) organism with the ability to grow under anaerobic as well as aerobic conditions (oxygen concentration larger than 15%), here only in the presence of 5% CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304645

  14. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Capnocytophaga ochracea (Pr vot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically not yet charted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic (CO2-requiring) organism with the ability to grow under anaerobic as well as aerobic conditions (oxygen concentration larger than 15%), here only in the presence of 5% CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome se-quence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Gronow, Sabine; Saunders, Elizabeth; Land, Miriam; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice1, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Brettin, Thomas; Detter, John C.; Han, Cliff; Bristow, James; Goker, Markus; Rohde, Manfred; Eisen, Jonathan A.; Markowitz, Victor; Kyrpides, Nikos C.; Klenk, Hans-Peter; Hugenholtz, Philip

    2009-05-20

    Capnocytophaga ochracea (Prevot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically yet uncharted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic organism with the ability to grow under anaerobic as well as under aerobic conditions (oxygen concentration larger than 15percent), here only in the presence of 5percent CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Guide to good practices for training and qualification of instructors. DOE handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this guide is to provide contractor training organizations with information that can be used to verify the adquacy and/or modify existing instructor training programs, or to develop new training programs. It contains good practices for the training and qualification of technical instructors and instructional technologists at DOE reactor and non-reactor nuclear facilities. It addresses the content of initial and continuing instructor training programs, evaluation of instructor training programs, and maintenance of instructor training records.

  17. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  18. Report on Thermal Neutron Diffusion Length Measurement in Reactor Grade Graphite Using MCNP and COMSOL Multiphysics

    OpenAIRE

    2013-01-01

    Neutron diffusion length in reactor grade graphite is measured both experimentally and theoretically. The experimental work includes Monte Carlo (MC) coding using 'MCNP' and Finite Element Analysis (FEA) coding suing 'COMSOL Multiphysics' and Matlab. The MCNP code is adopted to simulate the thermal neutron diffusion length in a reactor moderator of 2m x 2m with slightly enriched uranium ($^{235}U$), accompanied with a model designed for thermal hydraulic analysis using point kinetic equations...

  19. Lattice study for conformal windows of SU(2) and SU(3) gauge theories with fundamental fermions

    CERN Document Server

    Huang, Cynthia Y -H; Lin, C.-J. David; Ogawa, Kenji; Ohki, Hiroshi; Ramos, Alberto; Rinaldi, Enrico

    2016-01-01

    We present our investigation of SU(2) gauge theory with 8 flavours, and SU(3) gauge theory with 12 flavours. For the SU(2) case, at strong bare coupling, $\\beta \\lesssim 1.45$, the distribution of the lowest eigenvalue of the Dirac operator can be described by chiral random matrix theory for the Gaussian symplectic ensemble. Our preliminary result indicates that the chiral phase transition in this theory is of bulk nature. For the SU(3) theory, we use high-precision lattice data to perform the step-scaling study of the coupling, $g_{{\\rm GF}}$, in the Gradient Flow scheme. We carefully examine the reliability of the continuum extrapolation in the analysis, and conclude that the scaling behaviour of this SU(3) theory is not governed by possible infrared conformality at $g_{{\\rm GF}}^{2} \\lesssim 6$.

  20. Lattice study for conformal windows of SU(2) and SU(3) gauge theories with fundamental fermions

    CERN Document Server

    Huang, Cynthia Y.-H.; Lin, C.-J. David; Ogawa, Kenji; Ohki, Hiroshi; Ramos, Alberto; Rinaldi, Enrico

    2015-10-30

    We present our investigation of SU(2) gauge theory with 8 flavours, and SU(3) gauge theory with 12 flavours. For the SU(2) case, at strong bare coupling, $\\beta \\lesssim 1.45$, the distribution of the lowest eigenvalue of the Dirac operator can be described by chiral random matrix theory for the Gaussian symplectic ensemble. Our preliminary result indicates that the chiral phase transition in this theory is of bulk nature. For the SU(3) theory, we use high-precision lattice data to perform the step-scaling study of the coupling, $g_{{\\rm GF}}$, in the Gradient Flow scheme. We carefully examine the reliability of the continuum extrapolation in the analysis, and conclude that the scaling behaviour of this SU(3) theory is not governed by possible infrared conformality at $g_{{\\rm GF}}^{2} \\lesssim 6$.

  1. Plant maintenance and advanced reactors, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  2. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  3. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  4. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    Science.gov (United States)

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  5. Plasma spark discharge reactor and durable electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  6. Optimization of a Chemical Reaction Train

    Directory of Open Access Journals (Sweden)

    Bahar Sansar

    2010-01-01

    Full Text Available This project consists of the optimization of a chemical reactor train. The reactor considered here is the continuous stirred tank reactor (CSTR, one of the reactor models used in engineering. Given the design equation for the CSTR and the cost function for a reactor, the following values are determined; the optimum number of reactors in the reaction train, the volume of each reactor and the total cost.

  7. The Thermal-Hydraulic model for the pebble bed modular reactor (PBMR) plant operator training simulator system

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Trevor [Pebble Bed Modular Reactor (Proprietary) Limited, Die Anker Building, Centurion 0046 (South Africa)], E-mail: trevor.dudley@pbmr.co.za; Bouwer, Werner; Villiers, Piet de [Pebble Bed Modular Reactor (Proprietary) Limited, Die Anker Building, Centurion 0046 (South Africa); Wang Zen [GSE Systems, Inc., 7133 Rutherford Suite 200, Baltimore, MD 21244 (United States)

    2008-11-15

    This paper provides a discussion of the model development status and verification efforts for the Reactor Core Thermal-Hydraulic model developed for the full-scope plant Operator Training Simulator System of the Pebble Bed Modular Reactor (PBMR). Due to the First of a Kind Engineering nature and lack of reference plant data, model verification has mainly been focused on benchmarking the model configurations against test cases performed by PBMR design analysis codes, i.e. TINTE, VSOP and FLOWNEX. As a first step, due to the symmetrical physical nature of the PBMR core, a two-dimensional (2D) model configuration in radial and axial directions (axial-symmetry) was developed. The design was subsequently extended to a three-dimensional (3D) configuration. Through the use of cross-flow and cross-conduction links, three nearly identical 2D configurations were glued together to form this 3D model configuration. To date, the 3D configuration represents the most comprehensive model to simulate the PBMR core thermo-hydraulics. This paper concludes with the verification of thermodynamic and heat-transfer properties of two steady state (100% and 40% power) conditions between the 3D Reactor Core Thermal-Hydraulic model and the available FLOWNEX and TINTE design code analysis. The transient operations between these two power levels are also discussed.

  8. Parametric sensitivity and runaway in tubular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Varma, A.

    1982-09-01

    Parametric sensitivity of tubular reactors is analyzed to provide critical values of the heat of reaction and heat transfer parameters defining runaway and stable operations for all positive-order exothermic reactions with finite activation energies, and for all reactor inlet temperatures. Evaluation of the critical values does not involve any trial and error.

  9. Ageing investigation and upgrading of components/systems of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip; Widi Setiawan [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia)

    1998-10-01

    Kartini research reactor has been operated in good condition and has demonstrated successful operation for the past 18 years, utilized for: reactor kinetic and control studies, instrumentation tests, neutronic and thermohydraulic studies, routine neutron activation analysis, reactor safety studies, training for research reactor operators and supervisors, and reactor physics experiments. Several components of Kartini reactor use components from the abandoned IRT-2000 Project at Serpong and from Bandung Reactor Centre such as: reactor tank, reactor core, heat exchanger, motor blower for ventilation system, fuel elements, etc. To maintain a good operating performance and also for aging investigation purposes, the component failure data collection has been done. The method used is based on the Manual on Reliability Data Collection For Research Reactor PSAs, IAEA TECDOC 636, and analyzed by using Data Entry System (DES) computer code. Analysis result shows that the components/systems failure rate of Kartini reactor is around 1,5.10{sup -4} up to 2,8.10{sup -4} per hour, these values are within the ranges of the values indicated in IAEA TECDOC 478. Whereas from the analysis of irradiation history shows that the neutron fluence of fuel element with highest burn-up (2,05 gram U-235 in average) is around 1.04.10{sup 16} n Cm{sup -2} and this value is still far below its limiting value. Some reactor components/systems have been replaced and upgraded such as heat exchanger, instrumentation and control system (ICS), etc. The new reactor ICS was installed in 1994 which is designed as a distributed structure by using microprocessor based systems and bus system technology. The characteristic and operating performance of the new reactor ICS, as well as the operation history and improvement of the Kartini research reactor is presented. (J.P.N.)

  10. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  11. UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation

    Science.gov (United States)

    Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.

    2015-08-01

    There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five

  12. Monopole Condensation and Confinement in SU(2) QCD (2)

    CERN Document Server

    Shiba, H; Shiba, Hiroshi; Suzuki, Tsuneo

    1993-01-01

    Monopole and photon contributions to Wilson loops are calculated using Monte-Carlo simulations of SU(2) QCD in the maximally abelian gauge. The string tensions of SU(2) QCD are well reproduced by extended monopole contributions alone.

  13. Triplets, Static SU(6), and Spontaneously Broken Chiral SU(3) Symmetry

    Science.gov (United States)

    Nambu, Y.

    1966-01-01

    I would like to present here my view of the current problems of elementary particle theory. It is largely inspired by the recent successes of SU(3) and SU(6) symmetries, and more or less summarizes what I have been pursuing lately. For the details of individual problems I must refer to the original papers. However, what is emphasized here is not the details, but a coherent overall picture plus some speculations which cannot yet be formulated precisely.

  14. K-East and K-West Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — Hanford's "sister reactors", the K-East and the K-West Reactors, were built side-by-side in the early 1950's. The two reactors went operational within four months of...

  15. Athletic training. Personal performance development and training.

    OpenAIRE

    Broda, Michal

    2011-01-01

    Athletic training. Personal performance development and training. Objectives: The aim of this study was to analyze performance development and training of Michal Broda during his existing athletic career with focus on training after year 2004. We investigated the use of heart rate monitoring for training optimization. We also discussed training adequacy in terms of annual training cycle. Methods: In our work we used empirical methods of pedagogical research. We obtained different qualitative ...

  16. Just how different are SU(2) and SU(3) Landau propagators in the IR regime?

    CERN Document Server

    Cucchieri, A; Oliveira, O; Silva, P J

    2007-01-01

    The infrared behavior of gluon and ghost propagators in Yang-Mills theories is of central importance for understanding quark and gluon confinement in QCD. While simulations of pure SU(3) gauge theory correspond to the physical case in the limit of infinite quark mass, the SU(2) case (i.e. pure two-color QCD) is usually employed as a simplification, in the hope that qualitative features be the same as for the SU(3) case. Here we carry out the first comparative study of lattice (Landau) propagators for these two gauge groups. Our data were especially produced with equivalent lattice parameters in order to allow a careful comparison of the two cases. We find very good agreement between SU(2) ans SU(3) propagators, showing that in the IR limit the equivalence of the two cases is quantitative. Our results seem to confirm the prediction from Schwinger-Dyson equations that the infrared exponents are independent of the gauge group SU(N_c).

  17. Reactor antineutrinos and nuclear physics

    Science.gov (United States)

    Balantekin, A. B.

    2016-11-01

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states.

  18. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  19. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  20. Application of the unsaturated polyester-imide resin /dry mica tape insulation system and VPI process to high-voltage motors%不饱和聚酯亚胺/少胶粉云母带绝缘及VPI工艺在高压电机中的应用

    Institute of Scientific and Technical Information of China (English)

    周勋; 刘坚; 田建忠; 王建和

    2003-01-01

    论文介绍了不饱和聚酯亚胺/少胶粉云母带绝缘体系及真空压力浸渍(VPI)电机工艺技术,对模拟线棒进行了常规电气性能、电热老化试验,检测结果和模拟线圈的检测在电机上应用的结果表明绝缘完全可以满足电机的绝缘性能要求.

  1. VPI FOR LONG MODEL OF SUPERCONDUCTING MAGNETS COIL AND ITS CRYOGENIC MECHANICAL PROPERTY%超导托卡马克HT-7U磁体线圈模拟长样真空压力浸渍及低温力学性能

    Institute of Scientific and Technical Information of China (English)

    崔益民; 潘皖江; 武松涛

    2002-01-01

    主要通过与低温超导托卡马克HT-7U中磁体线圈同截面的长样的真空压力浸渍(VPI)实验,探索线圈进行一次成形VPI工艺的可行性,掌握压力对浸渍的影响,为真实线圈的VPI工艺提供经验,并对固化后的绝缘层取样进行低温力学性能测试.

  2. Design and performance of subgrade biogeochemical reactors.

    Science.gov (United States)

    Gamlin, Jeff; Downey, Doug; Shearer, Brad; Favara, Paul

    2017-02-18

    Subgrade biogeochemical reactors (SBGRs), also commonly referred to as in situ bioreactors, are a unique technology for treatment of contaminant source areas and groundwater plume hot spots. SBGRs have most commonly been configured for enhanced reductive dechlorination (ERD) applications for chlorinated solvent treatment. However, they have also been designed for other contaminant classes using alternative treatment media. The SBGR technology typically consists of removal of contaminated soil via excavation or large-diameter augers, and backfill of the soil void with gravel and treatment amendments tailored to the target contaminant(s). In most cases SBGRs include installation of infiltration piping and a low-flow pumping system (typically solar-powered) to recirculate contaminated groundwater through the SBGR for treatment. SBGRs have been constructed in multiple configurations, including designs capable of meeting limited access restrictions at heavily industrialized sites, and at sites with restrictions on surface disturbance due to sensitive species or habitat issues. Typical performance results for ERD applications include 85 to 90 percent total molar reduction of chlorinated volatile organic compounds (CVOCs) near the SBGR and rapid clean-up of adjacent dissolved contaminant source areas. Based on a review of the literature and CH2M's field-scale results from over a dozen SBGRs with a least one year of performance data, important site-specific design considerations include: 1) hydraulic residence time should be long enough for sufficient treatment but not too long to create depressed pH and stagnant conditions (e.g., typically between 10 and 60 days), 2) reactor material should balance appropriate organic mulch as optimal bacterial growth media along with other organic additives that provide bioavailable organic carbon, 3) a variety of native bacteria are important to the treatment process, and 4) biologically mediated generation of iron sulfides along with

  3. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  4. Vector-like quarks and leptons, SU(5) ⊗ SU(5) grand unification, and proton decay

    Science.gov (United States)

    Lee, Chang-Hun; Mohapatra, Rabindra N.

    2017-02-01

    SU(5) ⊗ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a central role in suppressing proton decay. We find that in this model, the familiar decay mode p → e +π0 may have a partial lifetime within the reach of currently planned experiments.

  5. Vector-Like Quarks and Leptons, SU(5) $\\otimes$ SU(5) Grand Unification, and Proton Decay

    CERN Document Server

    Lee, Chang-Hun

    2016-01-01

    SU(5) $\\otimes$ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a central role in suppressing proton decay. We find that in this model, the familiar decay mode $p \\to e^+ \\pi^0$ may have a partial lifetime within the reach of currently planned experiments.

  6. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  7. Reactor and method for production of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  8. Job task and functional analysis of the Division of Reactor Projects, office of Nuclear Reactor Regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morzinski, J.A.; Gilmore, W.; Hahn, H.A.

    1998-07-10

    A job task and functional analysis was recently completed for the positions that make up the regional Divisions of Reactor Projects. Among the conclusions of that analysis was a recommendation to clarify roles and responsibilities among site, regional, and headquarters personnel. As that analysis did not cover headquarters personnel, a similar analysis was undertaken of three headquarters positions within the Division of Reactor Projects: Licensing Assistants, Project Managers, and Project Directors. The goals of this analysis were to systematically evaluate the tasks performed by these headquarters personnel to determine job training requirements, to account for variations due to division/regional assignment or differences in several experience categories, and to determine how, and by which positions, certain functions are best performed. The results of this analysis include recommendations for training and for job design. Data to support this analysis was collected by a survey instrument and through several sets of focus group meetings with representatives from each position.

  9. Reactor Simulator Integration and Testing

    Science.gov (United States)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  10. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks.......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  11. SU(6) symmetry and the quark forces

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Namyslowski, J.M.

    1984-06-21

    The short distance forces between 3 valence quarks in the proton are investigated in perturbative QCD formulated on the light cone. These forces are the driving terms in the Brodsky-Lepage type evolution equation for the partially decomposed distribution amplitudes. The one-gluon exchange force, which is the lowest order force in the running coupling constant ..cap alpha..sub(s) retains the SU(6) symmetry, while the ..cap alpha..sub(s)/sup 2/-order force, corresponding to one Coulomb gluon and one transverse gluon, breaks the SU(6) symmetry. The latter force contributes to the deviation from 1/2 of the d/u ratio for the proton, observed experimentally. In the kinematical domain of one fast quark, the ..cap alpha..sub(s)/sup 2/-order force gives the leading (1-x)/sup 3/ behaviour of the deep inelastic structure function F/sub 2/(x), in contrast to the ..cap alpha..sub(s)-order force, which gives (1-x)/sup 5/, for xapprox.=1.

  12. Teaching Sodium Fast Reactor Technology and Operation for the Present and Future Generations of SFR Users

    OpenAIRE

    Christian, Latge; Rodriguez, Gilles; Baque, Francois; Leclerc, Arnaud; Martin, Laurent; Vray, Bernard; Romanetti, Pascale

    2011-01-01

    International audience; This paper provides a description of the education and training activities related to sodium fast reactors, carried out respectively in the French Sodium and Liquid Metal School (ESML) created in 1975 and located in France (at the CEA Cadarache Research Centre), in the Fast Reactor Operation and Safety School (FROSS) created in 2005 at the Phenix plant, and in the Institut National des Sciences et Techniques Nucle'aires (INSTN). It presents their recent developments an...

  13. BCS Ground State and XXZ Antiferromagnetic Model as SU(2), SU(1,1) Coherent States: An Algebraic Diagonalization Method

    Institute of Scientific and Technical Information of China (English)

    XIE Bing-Hao; ZHANG Hong-Biao; CHEN Jing-Ling

    2002-01-01

    An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.

  14. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  15. Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri

    2005-09-27

    The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

  16. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Science.gov (United States)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  17. MOX in reactors: present and future

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Marc; Gros, Jean Pierre [AREVA NC - 33 rue La Fayette, 75009 Paris (France); Niquille, Aurelie; Marincic, Alexis [AREVA NP - Tour AREVA, 1 Place Jean Millier 92084 Paris La Defense (France)

    2010-07-01

    In Europe, MOX fuel has been supplied by AREVA for more than 30 years, to 36 reactors: 21 in France, 10 in Germany, 3 in Switzerland, 2 in Belgium. For the present and future, recycling is compulsory in the frame of sustainable development of nuclear energy. By 2030 the overall volume of used fuel will reach about 400 000 t worldwide. Their plutonium and uranium content represents a huge resource of energy to recycle. That is the reason why, the European Utilities issued an EUR (European Utilities Requirement) demanding new builds reactors to be able of using MOX Fuel Assemblies in up to 50 % of the core. AREVA GEN3+ reactors, like EPR{sup TM} or ATMEA{sup TM} designed with MHI partnership, are designed to answer any utility need of MOX recycling. The example of the EPR{sup TM} reactor operated with 100 % MOX core optimized for MOX recycling will be presented. A standard EPR{sup TM} can be operated with 100 % MOX core using an advanced homogeneous MOX (single Pu content) with highly improved performances (burn-up and Cycle length). The adaptations needed and the main operating and safety reactor features will be presented. AREVA offers the utilities throughout the world, fuel supply (UO{sub 2}, ERU, MOX), and reactors designed with all the needed capability for recycling. For each country and each utility, an adapted global solution, competitive and non proliferant can be proposed. (authors)

  18. Comparing Pure Yang-Mills SU(2) and SU(3) Propagators

    CERN Document Server

    Cucchieri, Attilio; Silva, Paulo J

    2007-01-01

    The infrared behavior of gluon and ghost propagators in Yang-Mills gauge theories is of central importance for the understanding of confinement in QCD. While analytic studies using Schwinger-Dyson equations predict the same infrared exponents for the SU(2) and SU(3) gauge groups, lattice simulations usually assume that the two cases are different, although their qualitative infrared features may be the same. We carry out a comparative study of lattice (Landau) propagators for both gauge groups. Our data were especially produced with equivalent lattice parameters to allow a careful comparison of the two cases.

  19. Twin-unified SU(5) × SU(5)′ GUT and phenomenology

    Indian Academy of Sciences (India)

    Zurab Tavartkiladze

    2016-02-01

    In this article, after a short introduction, grand unified SU(5) × SU(5)′ model augmented by 2 parity has been discussed. The latter turns out to be important for phenomenology. Specific pattern of the GUT symmetry breaking causes new strong dynamics at low energies. Consequently, the Standard Model leptons, along with right-handed/sterile neutrinos, come out as composite states. Issues of the gauge coupling unification, generation of the charged fermion and neutrino masses will be presented. Also, various phenomenological implications and constraints will be discussed.

  20. FBR and RBR particle bed space reactors

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10/sup 0/K), high coolant-outlet temperatures (1500 to 3000/sup 0/K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H/sub 2/-cooled mode. The RBR will operate only in the open-cycle H/sub 2/-cooled mode.

  1. SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem

    Science.gov (United States)

    Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.

    2017-06-01

    The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by - , becomes finite. Although the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg, where - =0 . Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between g μBh , the energy gain by the Zeeman-split polarized state and the Kondo temperature TKS U (4 ), the gain provided by the SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover by Vgmax, the value of Vg where reaches a maximum, one finds that the function f relating the Zeeman splitting, Bmax, which corresponds to Vgmax, i.e., Bmax=f (Vgmax) , has a similar universal behavior to that of the function relating the Kondo temperature to Vg. In addition, our numerical results show that near the SU(4) Kondo temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient spin

  2. SELECTING AND TRAINING THE TRAINING OFFICER.

    Science.gov (United States)

    TAYLOR, NANCY

    TO ACHIEVE THE OBJECTIVES OF TRAINING IN INDUSTRY--TECHNICAL AND LIBERAL EDUCATION, SPECIFIC JOB SKILLS, AND THE DEVELOPMENT OF ATTITUDES--THE TRAINING OFFICER MUST KNOW THE COMPANY WITHIN WHICH HE IS WORKING, AS WELL AS MANAGEMENT THEORY AND TRAINING METHODS. THE SELECTION OF TRAINING OFFICERS IS BASED ON A JOB SPECIFICATION, AN OUTGROWTH OF A…

  3. Little Higgs and Custodial SU(2)

    CERN Document Server

    Chang, S; Chang, Spencer; Wacker, Jay G.

    2004-01-01

    In this note we present a little Higgs model that has custodial SU(2) as an approximate symmetry. This theory is a simple modification of the ``Minimal Moose'' with SO(5) global symmetries protecting the Higgs mass. This allows for a simple limit where TeV physics makes small contributions to precision electroweak observables. The spectrum of particles and their couplings to Standard Model fields are studied in detail. At low energies this model has two Higgs doublets and it favours a light Higgs from precision electroweak bounds, though for different reasons than in the Standard Model. The limit on the breaking scale, f, is roughly 700 GeV, with a top partner of 2 TeV, W' and $B'$ of 2.5 TeV, and heavy Higgs partners of 2 TeV. These particles are easily accessible at hadron colliders.

  4. Minimal flavour violation and SU(5)-unification

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Riccardo, E-mail: barbieri@sns.it; Senia, Fabrizio, E-mail: fabrizio.senia@sns.it [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126, Pisa (Italy)

    2015-12-17

    Minimal flavour violation in its strong or weak versions, based on U(3){sup 3} and U(2){sup 3}, respectively, allows suitable extensions of the standard model at the TeV scale to comply with current flavour constraints in the quark sector. Here we discuss considerations analogous to minimal flavour violation (MFV) in the context of SU(5)-unification, showing the new effects/constraints that arise both in the quark and in the lepton sector, where quantitative statements can be made controlled by the CKM matrix elements. The case of supersymmetry is examined in detail as a particularly motivated example. Third generation sleptons and neutralinos in the few hundred GeV range are shown to be compatible with current constraints.

  5. CONDUCTA BULLYING Y SU RELACIÓN CON LA EDAD, GENERO Y NIVEL DE FORMACIÓN EN ADOLESCENTES - BULLYING BEHAVIOR AND ITS RELATIONSHIP WITH AGE, GENDER AND ADOLESCENT TRAINING LEVEL

    Directory of Open Access Journals (Sweden)

    NAILET COGOLLO FUENTES

    2010-06-01

    Full Text Available The aim of this investigation was not only to identify the prevalence of bullying behavior whithin a group of teenagers from primary and secondary education, but to establish relationships between the type of actor (perpetrator, victim, witness and perpetrator-victim with gender, age and the level of educational training as well. 120 students were evaluated in a public educational institution by a correlational design, by using a questionnaire for the detection of violence prepared by the Ombudsman of Spain. The data were analyzed with SPSS 17.0 using the chi-square (x2 and the Spearman correlation coefficients. The prevalence of abuse was 69,2%, mainly verbal and social forms of violence. It stands out the direct and indirect physical abuse perpetrated by women and a large number of students with mixed role of aggression and victimization. Gender and age did not show relationships with bullying, but abusive behavior is significantly associated to the training level.

  6. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    OpenAIRE

    Matjaž Leskovar; Mitja Uršič

    2016-01-01

    A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In ...

  7. Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions

    CERN Document Server

    Hoffman, M D; Porter, W J; Drut, J E

    2016-01-01

    Motivated by advances in the manipulation and detection of ultracold atoms with multiple internal degrees of freedom, we present a finite-temperature lattice Monte Carlo calculation of the density and pressure equations of state, as well as Tan's contact, of attractively interacting SU(4)- and SU(6)-symmetric fermion systems in one spatial dimension. We also furnish a non-perturbative proof of a universal relation whereby the dynamics of the SU(2) case completely determines the virial coefficients of the SU($N_f$) case. These one-dimensional systems are appealing because they can be experimentally realized in highly constrained traps and because of the dominant role played by correlations. The latter are typically non-perturbative and are crucial for understanding ground states and quantum phase transitions. While quantum fluctuations are typically overpowered by thermal ones in 1D and 2D at any finite temperature, we find that quantum effects do leave their imprint in thermodynamic quantities. Our calculatio...

  8. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  9. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  10. Combining Total Monte Carlo and Benchmarks for Nuclear Data Uncertainty Propagation on a Lead Fast Reactor's Safety Parameters

    OpenAIRE

    Alhassan, Erwin; Sjöstrand, Henrik; Duan, Junfeng; Gustavsson, Cecilia; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri; Österlund, Michael

    2014-01-01

    Analyses are carried out to assess the impact of nuclear data uncertainties on some reactor safety parameters for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-format libraries, generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo code to obtain distribution in reactor safety parameters. The distribution in keff obtained was compar...

  11. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  12. PHYSICAL FIDELITY CONSIDERATIONS FOR NRC ADVANCED REACTOR CONTROL ROOM TRAINING SIMULATORS USED FOR INSPECTOR/EXAMINER TRAINING

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Kristi M.; Mitchell, Mark R.; Miller, Mark; Cochrum, Steven

    2010-11-07

    This paper describes research into the physical fidelity requirements of control room simulators to train U.S. Nuclear Regulatory Commission (NRC) staff for their duties as inspectors and license examiners for next-generation nuclear power plants. The control rooms of these power plants are expected to utilize digital instrumentation and controls to a much greater extent than do current plants. The NRC is assessing training facility needs, particularly for control room simulators, which play a central role in NRC training. Simulator fidelity affects both training effectiveness and cost. Research has shown high simulation fidelity sometimes positively affects transfer to the operational environment but sometimes makes no significant difference or actually impedes learning. The conditions in which these different effects occur are often unclear, especially for regulators (as opposed to operators) about whom research is particularly sparse. This project developed an inventory of the tasks and knowledges, skills, and abilities that NRC regulators need to fulfill job duties and used expert panels to characterize the inventory items by type and level of cognitive/behavioral capability needed, difficulty to perform, importance to safety, frequency of performance, and the importance of simulator training for learning these capabilities. A survey of current NRC staff provides information about the physical fidelity of the simulator on which the student trained to the control room to which the student was assigned and the effect lack of fidelity had on learning and job performance. The study concludes that a high level of physical fidelity is not required for effective training of NRC staff.

  13. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  14. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  15. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  16. Oklo reactors and implications for nuclear science

    CERN Document Server

    Davis, E D; Sharapov, E I

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross sections are input to all Oklo modeling and we discuss a parameter, the $^{175}$Lu ground state cross section for thermal neutron capture leading to the isomer $^{176\\mathrm{m}}$ Lu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant $\\alpha$ and the ratio $X_q=m_q/\\Lambda$ (where $m_...

  17. "Training Floors" and "Training Ceilings": Metonyms for Understanding Training Trends

    Science.gov (United States)

    Felstead, Alan; Jewson, Nick

    2014-01-01

    This article outlines a conceptual framework for mapping and understanding training trends. It uses the metonyms of floors and ceilings to distinguish between different types of training configurations. The argument is made that the ups and downs of employer reports of training activity are a crude basis on which to make judgements about the…

  18. Geoneutrinos and reactor antineutrinos at SNO+

    CERN Document Server

    Baldoncini, M; Wipperfurth, S A; Fiorentini, G; Mantovani, F; McDonough, W F; Ricci, B

    2016-01-01

    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores ($\\sim$55\\% of the total reactor signal), which generally burn natural uranium. Approximately 18\\% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60\\% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.

  19. The Traveling Wave Reactor: Design and Development

    Directory of Open Access Journals (Sweden)

    John Gilleland

    2016-03-01

    Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.

  20. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  1. Study on VPI Insulation System of Single Generator Stator Bar in HEC%发电机单只定子线棒VPI绝缘系统研究

    Institute of Scientific and Technical Information of China (English)

    胡春秀; 卢春莲

    2013-01-01

    Study and application of the single generator stator bar VPI insulation system in HEC are introduced in this paper. Insulation materials and manufacture process, electrical properties of the bars made by VPI technology are studied. By now the system has been successfully applied on air-cooled turbo-generator stator bar products which the rated voltage is 18kV and insulation design field is 3.15kV/mm.%  本文介绍了哈电机单只定子线棒VPI绝缘体系的开发情况.对VPI体系所使用的绝缘材料、生产工艺等进行了系统的试验研究,使得该体系成功地应用在绝缘设计场强为3.15kV/mm,额定电压为18kV的空冷汽轮发电机真机定子线棒上,并取得良好效果.

  2. Drinfeld Doubles for Finite Subgroups of SU(2 and SU(3 Lie Groups

    Directory of Open Access Journals (Sweden)

    Robert Coquereaux

    2013-05-01

    Full Text Available Drinfeld doubles of finite subgroups of SU(2 and SU(3 are investigated in detail. Their modular data – S, T and fusion matrices – are computed explicitly, and illustrated by means of fusion graphs. This allows us to reexamine certain identities on these tensor product or fusion multiplicities under conjugation of representations that had been discussed in our recent paper [J. Phys. A: Math. Theor. 44 (2011, 295208, 26 pages], proved to hold for simple and affine Lie algebras, and found to be generally wrong for finite groups. It is shown here that these identities fail also in general for Drinfeld doubles, indicating that modularity of the fusion category is not the decisive feature. Along the way, we collect many data on these Drinfeld doubles which are interesting for their own sake and maybe also in a relation with the theory of orbifolds in conformal field theory.

  3. REVIEW OF REACTOR SAFETY ANALYSES OF FAST AND LIQUID METAL COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, R. E.; Wittenbrock, N. G.

    1967-11-01

    Safety analysis reports on United States fast and liquid metal cooled reactors were reviewed to gain a better understanding of the safety philosophy applied to the design of these facilities. This information was compiled to help guide the design and safety analysis of the Fast Flux Test Facility. No attempt was made to draw conclusions concerning the relative merit of different approaches and philosophies used by different reactor design teams. The facilities reviewed were; Enrico Fermi Atomic Power Plant (FERMI) Hallam Nuclear Power Facility (HALLAM) Southwest Experimental Fast Oxide Reactor (SEFOR) Fast Reactor Test Facility (FARET) Experimental Breeder Reactor No. 1 (EBR-I) Experimental Breeder Reactor No. 2 (EBR-II) Fast Reactor Zero Power Experiment (ZPR - III). The information gathered from the safety analysis reports is tabulated under these headings: Control and Safety Systems; Reactor Protection Systems; Backup Systems; Containment or Confinement Systems; Inherent Reactivity Effects and Important Physics Parameters; Fuel and Fuel Handling; Accidents Considered and Chemical Problems; Site; Exhaust Ventilation System; and Waste Effluents.

  4. Superconductivity in Restricted Chromo-Dynamics (RCD) in SU(2) and SU(3) Gauge Theories

    Science.gov (United States)

    Kumar, Sandeep

    2010-03-01

    Characterizing the dyonically condensed vacuum by the presence of two massive modes (one determining how fast the perturbative vacuum around a colour source reaches the condensation and the other giving the penetration length of colored flux) in SU(2) theory, it has been shown that due to the dynamical breaking of magnetic symmetry the vacuum of RCD acquires the properties similar to those of relativistic superconductor. Analysing the behaviour of dyons around RCD string, the solutions of classical field equations have been obtained and it has been shown that magnetic constituent of dyonic current is zero at centre of the string and also at the points far away from the string. Extending RCD in the realistic color gauge group SU(3), it has been shown that the resulting Lagrangian leads to dyonic condensation, color confinement and the superconductivity with the presence of two scalar modes and two vector modes.

  5. 331 Models and Grand Unification: From Minimal SU(5) to Minimal SU(6)

    CERN Document Server

    Deppisch, Frank F; Patra, Sudhanwa; Sarkar, Utpal; Valle, Josè W F

    2016-01-01

    We consider the possibility of grand unification of the $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ model in an SU(6) gauge unification group. Two possibilities arise. Unlike other conventional grand unified theories, in SU(6) one can embed the $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ model as a subgroup such that different multiplets appear with different multiplicities. Such a scenario may emerge from the flux breaking of the unified group in an E(6) F-theory GUT. This provides new ways of achieving gauge coupling unification in $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ models while providing the radiative origin of neutrino masses. Alternatively, a sequential variant of the $\\mathrm{ SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ model can fit within a minimal SU(6) grand unification, which in turn can be a natural E(6) subgroup. This minimal SU(6) embedding does not require any bulk exotics to account for the chiral families while allowing for a TeV scale $\\mathrm{ SU(3)_c \\otimes SU(3...

  6. SYNTHESIS OF HIGH-SILICA ZINCOSILICATE MOLECULAR SIEVE VPI-8 USING TEABr AS THE TEMPLATE%使用 TEABr 模板剂合成高硅锌硅分子筛 VPI-8

    Institute of Scientific and Technical Information of China (English)

    薛春峰; 厉学武; 赵哲军; 刘光焕; 董晋湘

    2004-01-01

    在 ZnO-SiO2-Li2O-H2O 反应体系中添加四乙基溴化铵(TEABr)水热合成锌硅分子筛 VPI-8, 考察了反应条件和化学组成对合成过程的影响,并用 XRD、SEM 和化学分析法表征了合成的 VPI-8样品.结果表明, 添加有机物 TEABr 可以水热合成锌硅分子筛 VPI-8,其适宜的溶胶组成为 n(ZnO):n(SiO2):n(Li2O):n(TEABr):n(H2O)=(0.02~0.1):1:(0.1~0.3):(0.1~1.0):30; 随着反应溶胶中 n(ZnO)/n(SiO2)的降低, 分子筛 VPI-8骨架中 n(ZnO)/n(SiO2)也降低, 而且其形貌特征也发生了明显的变化.

  7. Jordan's First Research Reactor Project: Driving Forces, Present Status and the Way Ahead

    Energy Technology Data Exchange (ETDEWEB)

    Xoubi, Ned, E-mail: Ned@Xoubi.co [Jordan Atomic Energy Commission (JAEC), P.O.Box 70, Shafa Badran, 11934 Amman (Jordan)

    2011-07-01

    In a gigantic step towards establishing Jordan's nuclear power program, Jordan Atomic Energy Commission (JAEC) is building the first nuclear research and test reactor in the Kingdom. The new reactor will serve as the focal point for Jordan Center for Nuclear Research (JCNR), a comprehensive state of the art nuclear center not only for Jordan but for the whole region, the center will include in addition to the reactor a radioisotopes production plant, a nuclear fuel fabrication plant, a cold neutron source (CNS), a radioactive waste treatment facility, and education and training center. The JRTR reactor is the only research reactor new build worldwide in 2010, it is a 5 MW light water open pool multipurpose reactor, The reactor core is composed of 18 fuel assemblies, MTR plate type, with 19.75% enriched uranium silicide (U{sub 3}Si{sub 2}) in an aluminum matrix. It is reflected on all sides by beryllium and graphite blocks. Reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45x10{sup 14} cm{sup -2}s{sup -1}. The reactor reactivity is controlled by four Hafnium Control Absorber Rods (CAR). Jordan Center for Nuclear Research is located in Ramtha city, it is owned by Jordan Atomic Energy Commission (JAEC), and is contracted to Korea Atomic Energy Research Institute (KAERI) and Daewoo E and C. The JCNR project is a 56 months EPC fixed price contract for the design engineering, construction, and commissioning the JCNR reactor, and other nuclear facilities. The project presents many challenges for both the owner and the contractor, being the first nuclear reactor for Jordan, and the first nuclear export for Korea. The driving forces, present status and the way ahead will be presented in this paper. (author)

  8. Non-anomalous flavor symmetries and SU(6) x SU(2) sub R model

    CERN Document Server

    Abe, Y; Hattori, C; Hayashi, T; Ito, M; Matsuda, M; Matsuoka, T

    2002-01-01

    We introduce the flavor symmetry Z sub M x Z sub N x D4 into the SU(6) x SU(2) sub R string-inspired model. The cyclic group Z sub M and the dihedral group D sub 4 are R symmetries, while Z sub N is a non-R symmetry. By imposing the anomaly-free conditions on the model, we obtain a viable solution under many phenomenological constraints coming from the particle spectra. For the neutrino sector, we find a LMA-MSW solution but no SMA-MSW solution. The solution includes phenomenologically acceptable results concerning fermion masses and mixings and also concerning hierarchical energy scales including the GUT scale, the mu scale and the Majorana mass scale of R-handed neutrinos. (author)

  9. Effective actions and N=1 vacuum conditions from SU(3) x SU(3) compactifications

    CERN Document Server

    Cassani, Davide

    2007-01-01

    We consider compactifications of type II string theory on general SU(3) x SU(3) structure backgrounds allowing for a very large set of fluxes, possibly nongeometric ones. We study the effective 4d low energy theory which is a gauged N=2 supergravity, and discuss how its data are obtained from the formalism of the generalized geometry on T+T*. In particular we relate Hitchin's special Kaehler metrics on the spaces of even and odd pure spinors to the metric on the supergravity moduli space of internal metric and B-field fluctuations. We derive the N=1 vacuum conditions from this N=2 effective action, as well as from its N=1 truncation. We prove a direct correspondence between these conditions and an integrated version of the pure spinor equations characterizing the N=1 backgrounds at the ten dimensional level.

  10. Qualitative and quantitative characterization of outgassing from SU-8

    NARCIS (Netherlands)

    Melai, J.; Salm, Cora; Wolters, Robertus A.M.; Schmitz, Jurriaan

    2009-01-01

    SU-8 is often used as a structural material in Microsystems. In this work, the outgassing characteristics from such cross-linked SU-8 layers are studied using mass spectrometry and gas-chromatography techniques. With these methods the composition of the released matter can be identified, also the ou

  11. Design guide for category II reactors light and heavy water cooled reactors. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Lobner, P R; Powell, R W; Straker, E A

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems.

  12. 高压电机真空压力浸漆(VPI)设备研制

    Institute of Scientific and Technical Information of China (English)

    匡伟栋

    2010-01-01

    为了提高本公司高压电机产品的质量,2010年初引入新一代真空压力浸溃(VPI),该设备的使用对电机的绝缘质量起到了关键性的作用,由于VPI设备的关键部件浸渍罐是压力容器,因此,而且直径达到5米,强度及稳定性是其关键指标,本文对VPI设备进行较为论述外,对浸渍罐进行了强度分析.

  13. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  14. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    CERN Document Server

    Ren, Xiu-Lei; Geng, Li-Sheng; Ledwig, T; Meng, Jie; Vacas, M J Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~\\cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~\\cite{Alvarez-Ruso:2013fza}.

  15. Lepton flavour violating decays of $\\mu$ and $\\tau$ lepton in a gauge group $SU_L(2)\\times SU_R(2)\\times SU_l(2)$

    CERN Document Server

    Fayyazuddin,

    2016-01-01

    A model for electroweak unification based on gauge group $ SU_L(2)\\times SU_R(2)\\times SU_l(2) $ for leptons is formulated. The group $SU_l(2)$ is in the lepton space.The left handed leptons and anti-leptons are assigned to the fundamental representation $(2,2,\\bar{2})$ of the group.The left- right symmetric gauge group $ SU_L(2)\\times SU_R(2)\\times U_{Y_1}(1) $ is contained in the above group for leptons. Out of three vector bossons $ Y_\\mu^\\pm $,$Y_{3\\mu}$ of $SU_l(2)$,the charged vector bosons $Y_\\mu^\\pm$ mediate the lepton number violating $ \\mu$ and $\\tau$ decays. The neutral vector bosson $ Y_{3\\mu}$ with coupling constant $ g_{Y}$ plays the same role as the vector bosson $B_{1\\mu}$ with coupling constant $g_1$ associated with Abelian part $ U_{Y_1}(1)$ with $Y_1=\\mp1$ for leptons and anti leptons. The left handed quarks and anti quarks are assigned to representations (2,1) and (1,2) with $Y_1=\\pm \\frac{1}{3}$ of the left-right symmetric gauge group. The lepton number violating $\\mu~and~\\tau$ decays sim...

  16. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  17. Optimized plasma-deposited fluorocarbon coating for dry release and passivation of thin SU-8 cantilevers

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Häfliger, Daniel; Boisen, Anja

    2008-01-01

    Plasma-deposited fluorocarbon coatings are introduced as a convenient method for the dry release of polymer structures. In this method, the passivation process in a deep reactive ion etch reactor was used to deposit hydrophobic fluorocarbon films. Standard photolithography with the negative epoxy......-based photoresist SU-8 was used to fabricate polymer structures such as cantilevers and membranes on top of the nonadhesive release layer. The authors identify the plasma density as the main parameter determining the surface properties of the deposited fluorocarbon films. They show that by modifying the pressure...

  18. SU-8 photoresist and SU-8 based nanocomposites for broadband acoustical matching at 1 GHz

    Science.gov (United States)

    Ndieguene, A.; Campistron, P.; Carlier, J.; Wang, S.; Callens-Debavelaere, D.; Nongaillard, B.

    2009-11-01

    So as to integrate acoustic functions in BioMEMS using 1 GHz ZnO transducers deposited on silicon substrates, acoustic waves propagation through the silicon substrate and its transmission in water needs to be maximized (the insertion losses at the Si / water interface are about 6dB). In the context of integration, it is interesting for mechanical impedance matching to use photosensitive materials such as SU-8 so that patterns may be obtained. Nanocomposite materials based on SU-8 mixed with nanoparticles having adequate impedances were fabricated. These new materials are characterized in terms of their acoustic velocity, impedance and attenuation. For this, the nanocomposite layers are deposited on the substrate by spin coating to obtain a thickness of about 10 μm, in order to separate acoustic echoes from the material (even if λ/4 layer thickness is lower than 1 μm). The insertion losses of the device immersed in water can be simulated as a function of frequency for a given reflection coefficient between the silicon substrate and the photoresist. The characteristics of some nanocomposites made with SU-8 and various concentrations of nanoparticles like Ti02, SrTiO3 or W have been determined.

  19. Main configurations of the reactor core TRIGA Mark III of the ININ, during their operation; Principales configuraciones del nucleo del reactor TRIGA Mark III del ININ, durante su operacion

    Energy Technology Data Exchange (ETDEWEB)

    Nava S, W.; Raya A, R., E-mail: Wenceslao.nava@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The Reactor TRIGA Mark III is 43 years old since was put lay critical on November 8 of 1968 for the first time, along their operative life there have been 18 different configurations of the core, being three those more important: the first configuration with elements standard with an enrichment lightly minor than 20% in U-235, the second configuration that deserves out attention is when a mixed core was charged, composite of two different fuels as for their enrichment, the core consisted of 26 fuel elements Flip (of high enrichment approximately of 70%) more 3 control bars with follower of fuel Flip and 59 standard fuel elements, as those mentioned previously, finally is necessary to consider the recent reload of the reactor, with a compound core by fuel elements of low enrichment LEU 30/20. In this work the characteristics more important of the reactor are presented as well as of each one of the described cores. (Author)

  20. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  1. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  2. Clean development mechanisms in a sugar vinasse treatment plant with UASB reactors. Technical and consideration regarding the use of such mechanisms; Mecanismos de desarrollo limpio en una planta de tratamiento de vinazas de azucar con reactores UASB. Consideraciones tecnicas y economicas sobre su aplicacion

    Energy Technology Data Exchange (ETDEWEB)

    Obaya Abreu, M. C.; Valdes Jimenez, E.; Lorenzo Acosta, Y.; Gallardo Capote, M.; Leon Perez, O. L.; Diez Perez, K.; Morales Carmouse, M.

    2005-07-01

    Presently work two options of Clean Development Mechanisms (CDM) are applied, for which were carried out the researchers at pilot plant level with the purpose of eliminating all the dilution water, being the distillery wastewater to the concentrations from the COD that are produced in the distillation columns and as second option, eliminating the macro nutrients. Using the COMFAR III tool to carry out financial analyses, are compared, at opportunity level studies, the two new operation methodologies, with the realized opportunity study for the original project. (Author) 16 refs.

  3. 水轮发电机组 VPI 定子线圈制造工艺研究

    Institute of Scientific and Technical Information of China (English)

    梁锐; 徐学强; 吴威

    2013-01-01

      水轮发电机组 VPI 型定子线圈为哈电公司首台厂内下线的水电 VPI 定子线圈,为波绕式结构,其额定电压为13.8kV,由于本产品采用 VPI 少胶整浸结构与常规水电产品在生产制造上存在差异,不能采用常规产品使用的成型模、热压模,经研究在工具和工艺方面做出调整:采用了专门针对 VPI 定子线圈的成型胶化模、烘压模具,改进铲头封焊结构,以保证生产出符合要求的线圈.

  4. Reactor antineutrino fluxes - status and challenges

    CERN Document Server

    Huber, Patrick

    2016-01-01

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  5. Reactor antineutrino fluxes – Status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick, E-mail: pahuber@vt.edu

    2016-07-15

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  6. Consistency between SU(3) and SU(2) covariant baryon chiral perturbation theory for the nucleon mass

    Science.gov (United States)

    Ren, Xiu-Lei; Alvarez-Ruso, L.; Geng, Li-Sheng; Ledwig, Tim; Meng, Jie; Vicente Vacas, M. J.

    2017-03-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the 19 low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order [1] is supported by comparing the effective parameters (the combinations of the 19 couplings) with the corresponding low-energy constants in the SU(2) sector [2]. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref. [2] that the SU(2) baryon chiral perturbation theory can be applied to study nf = 2 + 1 lattice QCD simulations as long as the strange quark mass is close to its physical value.

  7. Status and problems of fusion reactor development.

    Science.gov (United States)

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  8. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  9. Double Chooz and Reactor Theta13 Experiments

    CERN Document Server

    ,

    2016-01-01

    This is a contribution paper from the Double Chooz experiment to the special issue of NPB on neutrino oscillations. The physics and history of the reactor theta13 experiments, as well as Double Chooz experiment and its neutrino oscillation analyses are reviewed.

  10. Research reactor de-fueling and fuel shipment

    Energy Technology Data Exchange (ETDEWEB)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  11. Reactor dosimetry and RPV life management

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, S.; Ilieva, K.; Mitev, M. [Inst. for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko 72, 1784 Sofia (Bulgaria)

    2011-07-01

    Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)

  12. Membrane assisted fluidized bed reactors: Potentials and hurdles

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Heinrich, S.; Mörl, L.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Recent advances in the development of more stable membranes with increased permeance have significantly enhanced the possibilities for integrating membranes into catalytic reactors in order to achieve a major increase in reactor performance by process integration and process intensification. Several

  13. Inherently safe reactors and a second nuclear era.

    Science.gov (United States)

    Weinberg, A M; Spiewak, I

    1984-06-29

    The Swedish PIUS reactor and the German-American small modular high-temperature gas-cooled reactor are inherently safe-that is, their safety relies not upon intervention of humans or of electromechanical devices but on immutable principles of physics and chemistry. A second nuclear era may require commercialization and deployment of such inherently safe reactors, even though existing light-water reactors appear to be as safe as other well-accepted sources of central electricity, particularly hydroelectric dams.

  14. Reactor inspection and maintenance machine senses and homes in on reactor end fittings

    Energy Technology Data Exchange (ETDEWEB)

    Fell, R.G. [GE Canada Nuclear Products, Instrumentation and Control Engineering, Peterborough, Ontario (Canada)]. E-mail: bob.fell@cdnnuc.ge.com; Brown, R. [Ontario Power Generation, Inspection Services Div., Bowmanville, Ontario (Canada)

    2003-07-01

    The Universal Delivery Machine (UDM) is a new CANDU reactor maintenance tool that allows safe, timely, and cost-effective inspection and maintenance of fuel channels. The UDM must align precisely with reactor end-fittings in order to clamp onto fuel channels without applying excessive force. This alignment process is called fine homing. This paper describes the UDM instrumentation and control design features used in the fine homing process. (author)

  15. String Corrected Spacetimes and SU(N)-Structure Manifolds

    CERN Document Server

    Becker, Katrin; Robbins, Daniel

    2015-01-01

    Using an effective field theory approach and the language of SU(N)-structures, we study higher derivative corrections to the supersymmetry constraints for compactifications of string or M-theory to Minkowski space. Our analysis is done entirely in the target space and is thus very general, and does not rely on theory-dependent details such as the amount of worldsheet supersymmetry. For manifolds of real dimension n<4 we show that the internal geometry remains flat and uncorrected. For n=4, 6, Kahler manifolds with SU(N)-holonomy can become corrected to SU(N)-structure, while preserving supersymmetry, once corrections are included.

  16. String corrected spacetimes and SU(N-structure manifolds

    Directory of Open Access Journals (Sweden)

    Katrin Becker

    2015-09-01

    Full Text Available Using an effective field theory approach and the language of SU(N-structures, we study higher derivative corrections to the supersymmetry constraints for compactifications of string or M-theory to Minkowski space. Our analysis is done entirely in the target space and is thus very general, and does not rely on theory-dependent details such as the amount of worldsheet supersymmetry. For manifolds of real dimension n<4 we show that internal geometry remains flat and uncorrected. For n=4,6, Kähler manifolds with SU(N-holonomy can become corrected to SU(N-structure, while preserving supersymmetry, once corrections are included.

  17. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Matjaž Leskovar

    2016-02-01

    Full Text Available A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

  18. SU(5) monopoles and the dual standard model

    CERN Document Server

    Liu, H; Liu, Hong; Vachaspati, Tanmay

    1997-01-01

    We find the spectrum of magnetic monopoles produced in the symmetry breaking SU(5) \\rightarrow [SU(3)\\times SU(2)\\times U(1)']/Z_6 by constructing classical bound states of the fundamental monopoles. The spectrum of monopoles is found to correspond to the spectrum of one family of standard model fermions and hence, is a starting point for constructing the dual standard model. At this level, however, there is an extra monopole state - the ``diquark'' monopole - with no corresponding standard model fermion. If the SU(3) factor now breaks down to Z_3, the monopoles with non-trivial SU(3) charge get confined by strings in SU(3) singlets. Another outcome of this symmetry breaking is that the diquark monopole becomes unstable (metastable) to fragmentation into fundamental monopoles and the one-one correspondence with the standard model fermions is restored. We discuss the fate of the monopoles if the [SU(2)\\times U(1)']/Z_2 factor breaks down to U(1)_Q by a Higgs mechanism as in the electroweak model. Here we find ...

  19. Evolution patterns and family relations in G-S reactors

    NARCIS (Netherlands)

    van Swaaij, Willibrordus Petrus Maria; van der Ham, Aloysius G.J.; Kronberg, Alexandre E.

    2002-01-01

    Reactor selection strategies for gas–solid (G–S) heterogeneously catalysed processes can be based on the requirements of the desired process and the properties of the reactions and catalysts involved. Ultimately a reactor selection will nearly always be grounded on existing or emerging reactor types

  20. R- AND P- REACTOR BUILDING IN-SITU DECOMISSIONING VISUALIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, J.; Vrettos, N.; Howard, M.

    2010-06-15

    During the early 1950s, five production reactor facilities were built at the Savannah River Site. These facilities were built to produce materials to support the building of the nation's nuclear weapons stockpile in response to the Cold War. R-Reactor and P-Reactor were the first two facilities completed in 1953 and 1954.

  1. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  2. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  3. Development and application of reactor noise diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Joakim K.H

    1999-04-01

    A number of problems in reactor noise diagnostics have been investigated within the framework of the present thesis. The six papers presented cover three relatively different areas, namely the use of analytical calculations of the neutron noise in simple reactor models, some aspects of boiling water reactor (BWR) stability and diagnostics of core barrel motion in pressurized water reactors (PWRs). The noise induced by small vibrations of a strong absorber has been the subject of several previous investigations. For a conventional {delta}-function source model, the equations can not be linearized in the traditional manner. Thus, a new source model, which is called the {epsilon}/d model, was developed. The correct solution has been derived in the {epsilon}/d model for both 1-D and 2-D reactor models. Recently, several reactor diagnostic problems have occurred which include a control rod partially inserted into the reactor core. In order to study such problems, we have developed an analytically solvable, axially non-homogenous, 2-D reactor model. This model has also been used to study the noise induced by a rod maneuvering experiment. Comparisons of the noise with the results of different reactor kinetic approximations have yielded information on the validity of the approximations in this relatively realistic model. In case of an instability event in a BWR, the noise may consist of one or several co-existing modes of oscillation and besides the fundamental mode, a regional first azimuthal mode has been observed in e.g. the Swedish BWR Ringhals-1. In order to determine the different stability characteristics of the different modes separately, it is important to be able to decompose the noise into its mode constituents. A separation method based on factorisation of the flux has been attempted previously, but without success. The reason for the failure of the factorisation method is the presence of the local component of the noise and its axial correlation properties. In

  4. Development and application of reactor noise diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Joakim K.H

    1999-04-01

    A number of problems in reactor noise diagnostics have been investigated within the framework of the present thesis. The six papers presented cover three relatively different areas, namely the use of analytical calculations of the neutron noise in simple reactor models, some aspects of boiling water reactor (BWR) stability and diagnostics of core barrel motion in pressurized water reactors (PWRs). The noise induced by small vibrations of a strong absorber has been the subject of several previous investigations. For a conventional {delta}-function source model, the equations can not be linearized in the traditional manner. Thus, a new source model, which is called the {epsilon}/d model, was developed. The correct solution has been derived in the {epsilon}/d model for both 1-D and 2-D reactor models. Recently, several reactor diagnostic problems have occurred which include a control rod partially inserted into the reactor core. In order to study such problems, we have developed an analytically solvable, axially non-homogenous, 2-D reactor model. This model has also been used to study the noise induced by a rod maneuvering experiment. Comparisons of the noise with the results of different reactor kinetic approximations have yielded information on the validity of the approximations in this relatively realistic model. In case of an instability event in a BWR, the noise may consist of one or several co-existing modes of oscillation and besides the fundamental mode, a regional first azimuthal mode has been observed in e.g. the Swedish BWR Ringhals-1. In order to determine the different stability characteristics of the different modes separately, it is important to be able to decompose the noise into its mode constituents. A separation method based on factorisation of the flux has been attempted previously, but without success. The reason for the failure of the factorisation method is the presence of the local component of the noise and its axial correlation properties. In

  5. Simulation of Reactor Transient and Design Criteria of Sodium-cooled Fast Reactors

    OpenAIRE

    Gottfridsson, Filip

    2010-01-01

    The need for energy is growing in the world and the market of nuclear power is now once more expanding. Some issues of the current light-water reactors can be solved by the next generation of nuclear power, Generation IV, where sodium-cooled reactors are one of the candidates. Phénix was a French prototype sodium-cooled reactor, which is seen as a success. Although it did encounter an earlier unexperienced phenomenon, A.U.R.N., in which a negative reactivity transient followed by an oscillati...

  6. The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors.

    Science.gov (United States)

    Agrawal, Shelesh; Karst, Søren M; Gilbert, Eva M; Horn, Harald; Nielsen, Per H; Lackner, Susanne

    2017-03-10

    Implementation of partial nitritation anammox (PNA) in the mainstream (municipal wastewater treatment) is still under investigation. Microbial community structure and reactor type can influence the performance of PNA reactor; yet, little is known about the role of the community composition of the inoculum and the reactor configuration under mainstream conditions. Therefore, this study investigated the community structure of inocula of different origin and their consecutive community dynamics in four different lab-scale PNA reactors with 16S rRNA gene amplicon sequencing. These reactors were operated for almost 1 year and subjected to realistic seasonal temperature fluctuations as in moderate climate regions, that is, from 20°C in summer to 10°C in winter. The sequencing analysis revealed that the bacterial community in the reactors comprised: (1) a nitrifying community (consisting of anaerobic ammonium-oxidizing bacteria (AnAOB), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB)); (2) different heterotrophic denitrifying bacteria and other putative heterotrophic bacteria (HB). The nitrifying community was the same in all four reactors at the genus level, although the biomasses were of different origin. Community dynamics revealed a stable community in the moving bed biofilm reactors (MBBR) in contrast to the sequencing batch reactors (SBR) at the genus level. Moreover, the reactor design seemed to influence the community dynamics, and reactor operation significantly influenced the overall community composition. The MBBR seems to be the reactor type of choice for mainstream wastewater treatment.

  7. Employment and Training Programs.

    Science.gov (United States)

    Minnesota State Office of the Legislative Auditor, St. Paul. Program Evaluation Div.

    This report examines the effectiveness of employment and training programs in Minnesota and discusses the impact of the 1985 Jobs Bill state legislation. Chapter 1 provides an introduction to Minnesota's programs and to studies of employment and training programs conducted nationwide. Chapter 2 studies the use of Job Training Partnership Act funds…

  8. La obstrucción de trayectorias de lanzamiento en balonmano: aproximación conceptual y orientaciones metodológicas para su entrenamiento. [The obstruction of throwing trayectories in handball: conceptual aproach and methodology for its training

    Directory of Open Access Journals (Sweden)

    Antonio Pozo Sánchez

    2009-12-01

    Full Text Available Resumen Por lo general, el entrenamiento defensivo se ha orientado más a la ejecución de patrones técnicos que a la intencionalidad de esas ejecuciones (García, 2003. Un claro ejemplo de ese mecanicismo defensivo lo hallamos en el predomino del trabajo reactivo (entendido éste como un comportamiento a la espera de la actuación del atacante en el entrenamiento de los elementos y medios defensivos. Sin embargo, en los últimos años han ido apareciendo publicaciones sobre un comportamiento más activo (entendido éste como la toma de iniciativa defensiva provocando reacciones en los atacantes de los defensores.  En el presente artículo se realiza una delimitación conceptual de la obstrucción de trayectorias de  lanzamiento a portería en balonmano, como intención táctica individual que pretende cumplir el principio general del juego en defensa de proteger la portería, a la vez que se analizan los diferentes elementos técnico-tácticos individuales y medios tácticos colectivos que se emplean en el juego para desarrollar esta intención táctica del juego en defensa. Por otro lado, se plantean algunas orientaciones metodológicas generales a la hora de diseñar tareas de entrenamiento y sistematizar el trabajo de la obstrucción de trayectorias de lanzamiento en balonmano desde un punto de vista reactivo y anticipativo. Palabras clave: balonmano, intenciones tácticas, obstrucción de trayectorias de lanzamiento y metodología de entrenamiento. Abstract Generally speaking, defensive training has been directed mostly toward the performance of technique models than to the intentionality of those performances (García, 2003. An evident example of this mechanical way of defense is found in the predominance of the reactive work (responding to a stimuli of the attacker or acting in return in the training of the defensive elements and means. However, in the last years several articles have been published about a more active behavior in

  9. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M. [ed.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  10. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M. (ed.); Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  11. Reactor Simulation for Antineutrino Experiments using DRAGON and MURE

    CERN Document Server

    Jones, C L; Conrad, J M; Djurcic, Z; Fallot, M; Giot, L; Keefer, G; Onillon, A; Winslow, L

    2011-01-01

    Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare them to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.

  12. Status and Prospects of Reactor Neutrino Experiments

    CERN Document Server

    Kim, Soo-Bong

    2015-01-01

    New generation of three reactor neutrino experiments have made definitive measurements of the smallest neutrino mixing angle theta13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements of the mixing angle have been made as well as the squared mass difference between electron neutrinos. A rather large value of theta13 has opened a new window to find the CP violation phase and to determine the neutrino mass hierarchy. Future reactor experiments, JUNO and RENO50, are proposed to determine the neutrino mass hierarchy and to make highly precise measurements of theta12, the squared mass difference between neutrino masses 2 and 1, and the squared mass difference between electron neutrinos.

  13. Space reactor assessment and validation study

    Science.gov (United States)

    Gedeon, Stephen; Morey, Dennis

    The present difficulties experienced by the United States in launching payloads into space has suggested a number of problems which are associated with the handling of hazardous materials in spacecraft. The question has arisen as to the safety of launching highly radioactive material such as plutonium-238, related to the possibility of its dispersion into the atmosphere during a launch vehicle explosion. An alternative is the use of a small nuclear reactor which is not started until it is in space and contains little or no radioactivity at launch. A first order assessment of six small reactor concepts with power levels up to 100 MWe was performed. Both the nuclear feasibility of these concepts to operate at their rated power levels between 7 and 10 years and the capability of these concepts to remain subcritical both before and during launch and also in the case of water immersion during a potential launch failure or abort were investigated.

  14. LBB application in the US operating and advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  15. Oklo reactors and implications for nuclear science

    Science.gov (United States)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  16. Training and Learning

    Science.gov (United States)

    Luntley, Michael

    2008-01-01

    Some philosophers of education think that there is a pedagogically informative concept of training that can be gleaned from Wittgenstein's later writings: training as initiation into a form of life. Stickney, in "Training and Mastery of Techniques in Wittgenstein's Later Philosophy: A response to Michael Luntley" takes me to task for ignoring this…

  17. Training and Learning

    Science.gov (United States)

    Luntley, Michael

    2008-01-01

    Some philosophers of education think that there is a pedagogically informative concept of training that can be gleaned from Wittgenstein's later writings: training as initiation into a form of life. Stickney, in "Training and Mastery of Techniques in Wittgenstein's Later Philosophy: A response to Michael Luntley" takes me to task for ignoring this…

  18. Animal Guts as Ideal Reactors: An Open-Ended Project for a Course in Kinetics and Reactor Design.

    Science.gov (United States)

    Carlson, Eric D.; Gast, Alice P.

    1998-01-01

    Presents an open-ended project tailored for a senior kinetics and reactor design course in which basic reactor design equations are used to model the digestive systems of several animals. Describes the assignment as well as the results. (DDR)

  19. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  20. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.

    1965-11-03

    Considerable technology has developed for production of tritium in metallic target systems. At normal N-Reactor temperatures ({approximately} 300{degrees}C), aluminum-lithium alloys appear to offer a satisfactory system for tritium production. However, reactor safety requirements have generated interest in a target system which will hold the lithium in place at temperatures to 1200{degrees}C. At the same time, gas retention at irradiation temperatures ({approximately}300{degrees}C) must be acceptable, and extraction of the product must be practical. To determine in-reactor gas release characteristics of the silicate and aluminate materials, targets were irradiated in quartz and aluminum capsules. Following irradiation, the gas (condensible and noncondensible fractions) released in-reactor was recovered by drilling the capsules. Subsequently, the targets were recovered and heated in a laboratory vacuum system to investigate characteristics of tritium and helium evolution as a function of temperature. The experimental procedures are discussed briefly, with details in the Appendix. The results of the study are discussed in terms of in-reactor release and later in terms of laboratory extractions.

  1. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  2. 江苏女足裁判员的培养与发展研究%Study on the Training and Development of Women Soccer Referees in JiangSu Province

    Institute of Scientific and Technical Information of China (English)

    周国庆

    2015-01-01

    This paper uses SWOT method to analysis the present situation and problems of jiangsu women 's football referees, learned that the current women's football referee number less , age is small, the business ability is weak , personal development position is not clear , easy to exit and so on and so forth .Dominated by association is put for-ward, and create a good environment for training , personal as the main body of the self scaled model of develop-ment strategy.%运用swot法对江苏女足裁判员现状进行分析,得知当前女足裁判数量少,年龄小,业务能力较弱,个人发展定位不清晰,易于退出等情况。提出以协会为主导,营造良好培养环境,个人为主体的自我攀登发展模式的策略。

  3. Guidance for training program evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    An increased concern about the training of nuclear reactor operators resulted from the incident at TMI-2 in 1979. Purpose of this guide is to provide a general framework for the systematic evaluation of training programs for DOE Category-A reactors. The primary goal of such evaluations is to promote continuing quality improvements in the selection, training and qualification programs.

  4. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  5. The role of nuclear reactors in space exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  6. Strength Training and Your Child

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Strength Training and Your Child KidsHealth > For Parents > Strength Training ... prevent injuries and speed up recovery. About Strength Training Strength training is the practice of using free ...

  7. Optimized transition from the reactors of second and third generations to the thorium molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Merle-Lucotte, E.; Heuer, D.; Allibert, M.; Ghetta, V.; Le Brun, C.; Mathieu, L.; Brissot, R.; Liatard, E. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC/IN2P3/CNRS), 38 - Grenoble (France)

    2007-07-01

    We present in this article a very promising, simple and feasible concept of Molten Salt Reactor with no moderator in the core, operated in the Th/U{sup 233} fuel cycle with fluoride salts and called non-moderated Thorium Molten Salt Reactor (TMSR). We have detailed in this article some parametric studies, related to the system reprocessing constraints, and the heavy nuclei composition of the salt which modifies the neutron spectrum of the reactor. Since U{sup 233} does not exist on earth and is not being produced today, we aim at designing a critical MSR able to burn the Plutonium and the Minor Actinides produced in the current operating reactors, and consequently to convert this Plutonium into U{sup 233}. This leads to closing the current fuel cycle thanks to TMSRs started with transuranic elements on a Thorium base, i.e. started in the Th/Pu fuel cycle, similarly to fast neutron reactors operated in the U/Pu fuel cycle. The burning of transuranic elements in these Pu-started TMSRs results in high waste reduction rates, up to 95-97% for all TMSR configurations assessed. We particularly point out in our analyses the excellent level of deterministic safety of all the TMSR configurations studied, for the U{sup 233}-started TMSRs as well as for the Pu-started TMSRs. We will detail optimizations of this transition between the reactors of second and third generations to the Thorium cycle. Such a transition is based on a fleet of TMSRs with no moderator in the core, including TMSRs started with Plutonium and TMSRs directly started with U{sup 233}. We have analyzed the characteristics of each reactor configuration, in terms of deterministic safety parameters, fissile matter inventory, salt reprocessing, radiotoxicity and waste production, and finally deployment capacities.

  8. $SU(2)_k\\times SU(2)_l/SU(2)_{k+l}$ Coset Conformal Field Theory and Topological Minimal Model on Higher Genus Riemann Surface

    CERN Document Server

    Konno, H

    1993-01-01

    We consider the Feigin-Fuchs-Felder formalism of the $SU(2)_k\\times SU(2)_l/SU(2)_{k+l}$ coset minimal conformal field theory and extend it to higher genus. We investigate a double BRST complex with respect to two compatible BRST charges, one associated with the parafermion sector and the other associated with the minimal sector in the theory. The usual screened vertex operator is extended to the BRST invariant screened three string vertex. We carry out a sewing operation of these string vertices and derive the BRST invariant screened $g$-loop operator. The latter operator characterizes the higher genus structure of the theory. An analogous operator formalism for the topological minimal model is obtained as the limit $ l=0$ of the coset theory. We give some calculations of correlation functions on higher genus.

  9. LMFBR type reactor and power generation system using the same

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira.

    1994-02-25

    A reactor core void reactivity of a reactor main body is set to negative or zero. A heat insulation structure is disposed on the inner wall surface of a reactor container. Oxide fuels or nitride fuels are used. A fuel pin cladding tube has a double walled structure having an outer side of stainless steel and an inner side of niobium alloy. Upon imaginary event, boiling is allowed. Even if boiling of coolants should occur by temperature elevation of fuels upon imaginary event, since reactor core fuels comprises oxides or nitrides, they have a heat resistance, further, and since the fuel pin cladding tube has super heat resistance, it has a high temperature strength, so that it is not ruptured and durable to the coolant boiling temperature. Since the reactor core void reactivity is negative or zero, the reactor core is in a subcritical state by the boiling, and the reactor core power is reduced to several % of the rated power. Accordingly, boiling and non-boiling are repeated substantially permanently in the reactor core, during which safety can be kept with no operator's handling. Further, heat generated in the reactor core is gradually removed by an air cooling system for the reactor container. (N.H.).

  10. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  11. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  12. SU(2|1) mechanics and harmonic superspace

    CERN Document Server

    Ivanov, E

    2015-01-01

    We define the worldline harmonic SU(2|1) superspace and its analytic subspace as a deformation of the flat N=4, d=1 harmonic superspace. The harmonic superfield description of the two mutually mirror off-shell (4,4,0) SU(2|1) supermultiplets is developed and the corresponding invariant actions are presented, as well as the relevant classical and quantum supercharges. Whereas the \\sigma-model actions exist for both types of the (4,4,0) multiplet, the invariant Wess-Zumino term can be defined only for one of them, thus demonstrating non-equivalence of these multiplets in the SU(2|1) case as opposed to the flat N=4, d=1 supersymmetry. A superconformal subclass of general SU(2|1) actions invariant under the trigonometric-type realizations of the supergroup D(2,1;\\alpha) is singled out. The superconformal Wess-Zumino actions possess an infinite-dimensional supersymmetry forming the centerless N=4 super Virasoro algebra. We solve a few simple instructive examples of the SU(2|1) supersymmetric quantum mechanics of t...

  13. The present situations and perspectives on utilization of research reactors in Thailand

    Science.gov (United States)

    Chongkum, Somporn

    2002-01-01

    The Thai Research Reactor 1/Modification 1, a TRIGA Mark III reactor, went critical on November 7, 1977. It has been playing a central role in the development of both Office of Atomic Energy for Peace (OAEP) and nuclear application in Thailand. It has a maximum power of 2 MW (thermal) at steady state and a pulsing capacity of 2000 MW. The highest thermal neutron flux at a central thimber is 1×10 13 n/cm 2/s, which is extensively utilized for radioisotope production, neutron activation analysis and neutron beam experiments, i.e. neutron scattering, prompt gamma analysis and neutron radiography. Following the nuclear technological development, the OAEP is in the process of establishing the Ongkharak Nuclear Research Center (ONRC). The center is being built in Nakhon Nayok province, 60 km northeast of Bangkok. The centerpiece of the ONRC is a multipurpose 10 MW TRIGA research reactor. Facilities are included for the production of radioisotopes for medicine, industry and agriculture, neutron transmutation doping of silicon, and neutron capture therapy. The neutron beam facilities will also be utilized for applied research and technology development as well as training in reactor operations, performance of experiments and reactor physics. This paper describes a recent program of utilization as well as a new research reactor for enlarging the perspectives of its utilization in the future.

  14. Computer Based Training Authors' and Designers' training

    Directory of Open Access Journals (Sweden)

    Frédéric GODET

    2016-03-01

    Full Text Available This communication, through couple of studies driven since 10 years, tries to show how important is the training of authors in Computer Based Training (CBT. We submit here an approach to prepare designers mastering Interactive Multimedia modules in this domain. Which institutions are really dedicating their efforts in training authors and designers in this area of CBTs? Television devices and broadcast organisations offered since year 60s' a first support for Distance Learning. New media, New Information and Communication Technologies (NICT allowed several public and private organisations to start Distance Learning projects. As usual some of them met their training objectives, other of them failed. Did their really failed? Currently, nobody has the right answer. Today, we do not have enough efficient tools allowing us to evaluate trainees' acquisition in a short term view. Training evaluation needs more than 10 to 20 years of elapsed time to bring reliable measures. Nevertheless, given the high investments already done in this area, we cannot wait until the final results of the pedagogical evaluation. A lot of analyses showed relevant issues which can be used as directions for CBTs authors and designers training. Warning - Our studies and the derived conclusions are mainly based on projects driven in the field. We additionally bring our several years experience in the training of movie film authors in the design of interactive multimedia products. Some of our examples are extracting from vocational training projects where we were involved in all development phases from the analysis of needs to the evaluation of the acquisition within the trainee's / employee job's. Obviously, we cannot bring and exhaustive approach in this domain where a lot of parameters are involved as frame for the CBT interactive multimedia modules authors' and designers' training.

  15. The Jules Horowitz Reactor - A new High Performance European Material Testing Reactor open to International Users Present Status and Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Iracane, Daniel; Bignan, Gilles [CEA Atomic Energy Commission Saclay Batiment 121- 91191 Gif Sur Yvette (France); Lindbaeck, Jan-Erik; Blomgren, Jan [VATTENFALL AB Nuclear Power Jaemtlandsgatan 99 SE-16287 Stockholm (Sweden)

    2010-07-01

    infrastructure to perform screening, qualification and safety experiments on material and fuel behaviour under irradiation. It is a water-cooled reactor to provide the necessary flexibility and accessibility for managing several highly instrumented experiments, reproducing different reactor environments (water, gas or liquid-metal loops), generating transient regimes (of key importance for safety). The design work of the JHR experimental capacity is driven by identified and expected future experimental needs. Since a few years CEA has started building up a comprehensive scientific workforce with the help of domestic and international partners in order to prepare an up-to-date experimental capacity for JHR. This workforce, gathering a scientist community (young and seniors) is also of primary importance for education and training. One of the way to deal with this topic is to build an International Joint Program as requested by the JHR consortium agreement addressing priorities common to a large community sharing the produced information within a Joint Data Basis. This joint program is called the Jules Horowitz International Programme (JHIP), and has been conceived with the strategic scope to address fuel and materials issues of common interest that are keys for operating plants and future NPP (mainly focused on LWR) and will be implemented with the support of OECD/NEA as a secretariat. The overall objective of the proposed program is to increase the understanding of the mechanisms that govern fuel reliability and safety throughout the entire fuel service time and to assess design improvements aimed at enhancing the flexible, reliable and safe operation of nuclear fuel. Vattenfall decided to join the JHR Consortium in 2008. The strategy Vattenfall has for using the JHR Consortium membership has the ultimate target to mainly support long-term operation of the existing Gen-II reactors and those Gen-III reactors replacing the ageing fleet and meeting a growing energy demand. (authors)

  16. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    Science.gov (United States)

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system.

  17. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories

    CERN Document Server

    Caselle, Michele; Panero, Marco

    2015-01-01

    We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.

  18. Innovative SU-8 Lithography Techniques and Their Applications

    Directory of Open Access Journals (Sweden)

    Jeong Bong Lee

    2014-12-01

    Full Text Available SU-8 has been widely used in a variety of applications for creating structures in micro-scale as well as sub-micron scales for more than 15 years. One of the most common structures made of SU-8 is tall (up to millimeters high-aspect-ratio (up to 100:1 3D microstructure, which is far better than that made of any other photoresists. There has been a great deal of efforts in developing innovative unconventional lithography techniques to fully utilize the thick high aspect ratio nature of the SU-8 photoresist. Those unconventional lithography techniques include inclined ultraviolet (UV exposure, back-side UV exposure, drawing lithography, and moving-mask UV lithography. In addition, since SU-8 is a negative-tone photoresist, it has been a popular choice of material for multiple-photon interference lithography for the periodic structure in scales down to deep sub-microns such as photonic crystals. These innovative lithography techniques for SU-8 have led to a lot of unprecedented capabilities for creating unique micro- and nano-structures. This paper reviews such innovative lithography techniques developed in the past 15 years or so.

  19. Indian fast reactor technology: Current status and future programme

    Indian Academy of Sciences (India)

    S C Chetal; P Chellapandi

    2013-10-01

    The paper brings out the advantages of fast breeder reactor and importance of developing closed nuclear fuel cycle for the large scale energy production, which is followed by its salient safety features. Further, the current status and future strategy of the fast reactor programme since the inception through 40 MWt/13 MWe Fast Breeder Test Reactor (FBTR), is highlighted. The challenges and achievements in science and technology of FBRs focusing on safety are described with the particular reference to 500 MWe capacity Prototype Fast Breeder Reactor (PFBR), being commissioned at Kalpakkam. Roadmap with comprehensive R&D for the large scale deployment of Sodium Cooled Fast Reactor (SFRs) and timely introduction of metallic fuel reactors with emphasis on breeding gain and enhanced safety are being brought out in this paper.

  20. $\\varepsilon_{b}$ constraints on the minimal SU(5) and SU(5) x U(1) supergravity models

    CERN Document Server

    Kim, J E; Jihn E Kim; Gye T Park

    1994-01-01

    We have performed a systematic analysis to compute the one-loop electroweak corrections to the Z->b b-bar vertex in terms of \\epsilon_b and R_b in the context of the minimal SU(5) and no-scale SU(5)\\times U(1) supergravity models. With the measured top mass, m_t=174\\pm 10^{+13}_{-12} \\GeV recently announced by CDF, we use the latest LEP data on \\epsilon_b and R_b (\\equiv{\\Gamma(Z->b b-bar)/{\\Gamma(Z->hadrons)}}) in order to constrain further the two models. We find that the present LEP data on \\epsilon_b and R_b constrain the two models rather severely. Especially, the low-\\tan\\beta region is constrained more severely. \\tan\\beta\\lsim 2.5 (4.0) is excluded by \\epsilon_b at 90\\% C.~L. for m_t\\gsim 170 (180) \\GeV in the minimal SU(5) (no-scale SU(5)\\times U(1)) supergravity. Even more stringent constraint comes from R_b. It excludes \\tan\\beta\\lsim 4.0 at 90\\% C.~L. for m_t\\gsim 160 (170) \\GeV in the minimal SU(5) (no-scale SU(5)\\times U(1)) supergravity. We also find that the sign on \\mu in the two models can be...

  1. Comparison of SO(3) and SU(2) lattice gauge theory

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Jahn, Oliver

    2003-01-01

    The Villain form of SO(3) lattice gauge theory is studied and compared to Wilson's SU(2) theory. The topological invariants in SO(3) which correspond to twisted boundary conditions in SU(2) are discussed and lattice observables are introduced for them. An apparent SO(3) phase with negative adjoint Polyakov loop is explained in terms of these observables. The electric twist free energy, an order parameter for the confinement-deconfinement transition, is measured in both theories to calibrate the temperature. The results indicate that lattices with about 700^4 sites or larger will be needed to study the SO(3) confined phase. Alternative actions are discussed and an analytic path connecting SO(3) and SU(2) lattice gauge theory at weak coupling is exhibited. The relevance for confinement of the centre of the gauge group is discussed.

  2. Comments on Flipped SU(5) (and F-theory)

    CERN Document Server

    Kuflik, Eric

    2010-01-01

    We study the impact of nonrenormalizable operators in flipped SU(5) that can generate a large mu term, R-parity violation, and rapid proton decay. While our motivation is to determine whether F-theory can naturally realize flipped SU(5), this analysis is general and leads to a characterization of symmetries capable of controlling such operators and should be independent of F-theory. We then discuss some specific implications for F-theory model building, where a significant mu problem is unavoidable. Finally, we mention previously noted difficulties associated to engineering GUT-Higgs fields in F-theory, suggest a direct engineering of SU(5) \\times U(1)_{\\chi} as an alternative, and present a sample construction of this type.

  3. Jules Horowitz Reactor: Organisation for the Preparation of the Commissioning Phase and Normal Operation

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, J.; Fabre, J. L.; Marcille, O. [French Alternative Energies end Atomic Energy Commission, Provence (France)

    2013-07-01

    The Jules Horowitz Reactor (JHR) is a new modern Material Testing Reactor (MTR) currently under construction at CEA Cadarache research centre in the south of France. It will be a major research facility in support to the development and the qualification of materials and fuels under irradiation with sizes and environment conditions relevant for nuclear power plants in order to optimise and demonstrate safe operations of existing power reactors as well as to support future reactors design. It will represent also an important research infrastructure for scientific studies dealing with material and fuel behaviour under irradiation. The JHR will contribute also to secure the production of radioisotope for medical application. This is a key public health stake. The construction of JHR which started in 2007 is going-on with target of commissioning by the end of 2017. The design of the reactor provides modern experimental capacity in support to R and D programs for the nuclear energy for the next 60 years. In parallel to the facility construction, the preparation of the future staff and of the organisation to operate the reactor safely, reliably and efficiently is an important issue. In this framework, many actions are in progress to elaborate: Ο the staffing and the organisational structure for the commissioning test phases and also for normal operation, Ο the documentation in support to the reactor operation (safety analysis report, general operating rules, procedures, instructions, ···), Ο the maintenance, in service and periodic test programs, Ο staff training programs by using dedicated facilities (simulator, ···) Ο commissioning test programs for ensuring that the layout of systems and subcomponents is completed in accordance with the design requirements, the specification performances and the safety criteria. These commissioning tests will also be helpful for transferring the knowledge on the installed systems to the operating group. This paper gives the

  4. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  5. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  6. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  7. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  8. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  9. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  10. Reactor core design and characteristics of the Fugen

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Mitsuo; Kowata, Yasuki; Sugawara, Satoru; Deshimaru, Takehide

    1988-03-01

    The heavy water moderated, boiling light water cooled pressure tube type reactor Fugen uses plutonium-uranium mixed oxide as a fuel. Heavy water as the moderator and the light water of coolant are separated by the pressure tubes and calandria tubes. Thereby, the reactor core is heterogenes compared with that of LWRs. This paper describes the development of reactor core design procedure based on the feature of the Fugen type reactor, the feasibility test and the validity of nuclear and thermalhydraulic design based on the operating experience.

  11. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    冀春俊; 张英姿; 马腾才

    2003-01-01

    This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.

  12. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    Science.gov (United States)

    Ji, Chunjun; Zhang, Yingzi; Ma, Tengcai

    2003-10-01

    This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

  13. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    OpenAIRE

    Zhang, Guanheng

    2015-01-01

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the 200 Displacements per Atom (DPA) radiation damage constraint of presently verified cladding materials. The S&B core is designed to have an elongated seed (or “driver”) to maximize the fraction of neutrons that radially leak into the su...

  14. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  15. Noncleft Velopharyngeal Insufficiency: Etiology and Need For Surgical Treatment

    Directory of Open Access Journals (Sweden)

    Steven Goudy

    2012-01-01

    Full Text Available Objective. Velopharyngeal insufficiency (VPI occurs frequently in cleft palate patients. VPI also occurs in patients without cleft palate, but little is known about this patient population and this presents a diagnostic dilemma. Our goal is to review the etiology of noncleft VPI and the surgical treatment involved. Design/Patients. A retrospective review of VPI patients from 1990 to 2005. Demographic, genetic, speech, and surgical data were collected. We compared the need for surgery and outcomes data between noncleft and cleft VPI patients using a Student’s -test. Results. We identified 43 patients with noncleft VPI, of which 24 were females and 19 were males. The average age at presentation of noncleft VPI was 9.6 years (range 4.5–21. The average patient age at the time of study was 13.4 years. The etiology of VPI in these noncleft patients was neurologic dysfunction 44%, syndrome-associated 35%, postadenotonsillectomy 7%, and multiple causes 14%. The need for surgical intervention in the noncleft VPI group was 37% (15/43 compared to the cleft palate controls, which was 27% (12/43. There was not a statistical difference between these two groups (>0.5. Conclusion. Noncleft VPI often occurs in patients who have underlying neurologic disorders or have syndromes. The rate of speech surgery to address VPI is similar to that of cleft palate patients. We propose that newly diagnosed noncleft VPI patients should undergo a thorough neurologic and genetic evaluation prior to surgery.

  16. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  17. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...

  18. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  19. RSMASS-D models: An improved method for estimating reactor and shield mass for space reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1997-10-01

    Three relatively simple mathematical models have been developed to estimate minimum reactor and radiation shield masses for liquid-metal-cooled reactors (LMRs), in-core thermionic fuel element (TFE) reactors, and out-of-core thermionic reactors (OTRs). The approach was based on much of the methodology developed for the Reactor/Shield Mass (RSMASS) model. Like the original RSMASS models, the new RSMASS-derivative (RSMASS-D) models use a combination of simple equations derived from reactor physics and other fundamental considerations, along with tabulations of data from more detailed neutron and gamma transport theory computations. All three models vary basic design parameters within a range specified by the user to achieve a parameter choice that yields a minimum mass for the power level and operational time of interest. The impact of critical mass, fuel damage, and thermal limitations are accounted for to determine the required fuel mass. The effect of thermionic limitations are also taken into account for the thermionic reactor models. All major reactor component masses are estimated, as well as instrumentation and control (I&C), boom, and safety system masses. A new shield model was developed and incorporated into all three reactor concept models. The new shield model is more accurate and simpler to use than the approach used in the original RSMASS model. The estimated reactor and shield masses agree with the mass predictions from separate detailed calculations within 15 percent for all three models.

  20. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    Science.gov (United States)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  1. Ludwig: A Training Simulator of the Safety Operation of a CANDU Reactor

    Directory of Open Access Journals (Sweden)

    Gustavo Boroni

    2011-01-01

    Full Text Available This paper presents the application Ludwig designed to train operators of a CANDU Nuclear Power Plant (NPP by means of a computer control panel that simulates the response of the evolution of the physical variables of the plant under normal transients. The model includes a close set of equations representing the principal components of a CANDU NPP plant, a nodalized primary circuit, core, pressurizer, and steam generators. The design of the application was performed using the object-oriented programming paradigm, incorporating an event-driven process to reflect the action of the human operators and the automatic control system. A comprehensive set of online graphical displays are provided giving an in-depth understanding of transient neutronic and thermal hydraulic response of the power plant. The model was validated against data from a real transient occurring in the Argentine NPP Embalse Río Tercero, showing good agreement. However, it should be stressed that the aim of the simulator is in the training of operators and engineering students.

  2. Spontaneous mass generation and the small dimensions of the Standard Model gauge groups U(1), SU(2) and SU(3)

    Science.gov (United States)

    García Fernández, Guillermo; Guerrero Rojas, Jesús; Llanes-Estrada, Felipe J.

    2017-02-01

    The gauge symmetry of the Standard Model is SU(3)c × SU(2)L × U(1)Y for unknown reasons. One aspect that can be addressed is the low dimensionality of all its subgroups. Why not much larger groups like SU (7), or for that matter, SP (38) or E7? We observe that fermions charged under large groups acquire much bigger dynamical masses, all things being equal at a high e.g. GUT scale, than ordinary quarks. Should such multicharged fermions exist, they are too heavy to be observed today and have either decayed early on (if they couple to the rest of the Standard Model) or become reliquial dark matter (if they don't). The result follows from strong antiscreening of the running coupling for those larger groups (with an appropriately small number of flavors) together with scaling properties of the Dyson-Schwinger equation for the fermion mass.

  3. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Caselle, Michele; Nada, Alessandro; Panero, Marco [Department of Physics, University of Turin & INFN,Via Pietro Giuria 1, I-10125 Turin (Italy)

    2015-07-27

    We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Borsányi et al. in http://dx.doi.org/10.1007/JHEP07(2012)056.

  4. Mixing Characteristics and Bubble Behavior in an Airlift Internal Loop Reactor with Low Aspect Ratio

    Institute of Scientific and Technical Information of China (English)

    张伟鹏; 雍玉梅; 张广积; 杨超; 毛在砂

    2014-01-01

    The present study summarizes the results of macro-and micro-mixing characteristics in an airlift inter-nal loop reactor with low aspect ratio (H/D≤5) using the electrolytic tracer response technique and the method of parallel competing reactions respectively. The micro-mixing has never been investigated in airlift loop reactors. The dual-tip electrical conductivity probe technique is used for measurement of local bubble behavior in the reactor. The effects of several operating parameters and geometric variables are investigated. It is found that the increase in su-perficial gas velocity corresponds to the increase in energy input, liquid circulation velocity and shear rate, decreas-ing the macro-mixing time and segregation index. Moreover, it is shown that top clearance and draft diameter affect flow resistance. However, the bubble redistribution with a screen mesh on the perforated plate distributor for macro-mixing is insignificant. The top region with a high energy dissipation rate is a suitable location for feeding reactants. The analysis of present experimental data provides a valuable insight into the interaction between gas and liquid phases for mixing and improves the understanding of intrinsic roles of hydrodynamics upon the reactor de-sign and operating parameter selection.

  5. Report on Thermal Neutron Diffusion Length Measurement in Reactor Grade Graphite Using MCNP and COMSOL Multiphysics

    CERN Document Server

    Mirfayzi, S R

    2013-01-01

    Neutron diffusion length in reactor grade graphite is measured both experimentally and theoretically. The experimental work includes Monte Carlo (MC) coding using 'MCNP' and Finite Element Analysis (FEA) coding suing 'COMSOL Multiphysics' and Matlab. The MCNP code is adopted to simulate the thermal neutron diffusion length in a reactor moderator of 2m x 2m with slightly enriched uranium ($^{235}U$), accompanied with a model designed for thermal hydraulic analysis using point kinetic equations, based on partial and ordinary differential equation. The theoretical work includes numerical approximation methods including transcendental technique to illustrate the iteration process with the FEA method. Finally collision density of thermal neutron in graphite is measured, also specific heat relation dependability of collision density is also calculated theoretically, the thermal neutron diffusion length in graphite is evaluated at $50.85 \\pm 0.3cm$ using COMSOL Multiphysics and $50.95 \\pm 0.5cm$ using MCNP. Finally ...

  6. Computer modeling and simulators as part of university training for NPP operating personnel

    Science.gov (United States)

    Volman, M.

    2017-01-01

    This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.

  7. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response.

  8. Monopoles and string tension in SU(2) QCD

    CERN Document Server

    Shiba, H; Hiroshi Shiba; Tsuneo Suzuki

    1994-01-01

    Monopole and photon contributions to abelian Wilson loops are calculated using Monte-Carlo simulations of SU(2) QCD in the maximally abelian gauge. The string tension is well reproduced only by monopole contributions, whereas photons alone are responsible for the Coulomb coefficient of the abelian static potential.

  9. Advanced tokamak concepts and reactor designs

    NARCIS (Netherlands)

    Oomens, A. A. M.

    2000-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples

  10. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  11. Small reactors in the Canadian context: opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This presentation discusses the opportunities and challenges for small reactors in Canada. It concludes by suggesting that the success of small reactors in Canada will depend on a number of factors including private sector investment, access to international markets, stable, equitable and adaptable regulatory regime, public trust and technology.

  12. Analysis of Reactor Deployment Scenarios with Introduction of SFR Breakeven Reactors and Burners Using DANESS Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2008-01-15

    Using the DANESS code newly employed for future scenario analysis, reactor deployment scenarios with the introduction of sodium cooled fast reactors(SFRs) having different conversion ratios in the existing PWRs dominant nuclear fleet have been analyzed to find the SFR deployment strategy for replacing PWRs with the view of a spent fuel reduction and an efficient uranium utilization through its reuse in a closed nuclear fuel cycle. Descriptions of the DANESS code and how to use are briefly given from the viewpoint of its first application. The use of SFRs and recycling of TRUs by reusing PWR spent fuel leads to the substantial reduction of the amount of PWR spent fuel and environmental burden by decreasing radiotoxicity of high level waste, and a significant improvement on the natural uranium resources utilization. A continuous deployment of burners effectively decreases the amount of PWR spent fuel accumulation, thus lightening the burden for PWR spent fuel management. An introduction of breakeven reactors effectively reduces the uranium demand through producing excess TRU during the operation, thus contributing to a sustainable nuclear power development. With SFR introduction starting in 2040, PWRs will remain as a main power reactor type till 2100 and SFRs will be in support of waste minimization and fuel utilization.

  13. Current and future trends for biofilm reactors for fermentation processes.

    Science.gov (United States)

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  14. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  15. Pacific Northwest Laboratory Monthly Activities Report APRIL 1966 on AEC Division of Reactor Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Fawcett

    1966-05-01

    This report has the following sections: Summary of Activities; Civilian Power Reactors; Applied and Reactor Physics; Reactor Fuels and Materials; Engineering Development; Plutonium Recycle Program; Advanced Systems; and Nuclear Safety.

  16. Pacific Northwest Laboratory Monthly Activities Report March 1966 On AEC Division of Reactor Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Fawcett

    1966-04-01

    This report has the following sections: Summary of Activities; Civilian Power Reactors; Applied and Reactor Physics; Reactor Fuels and Materials; Engineering Development; Plutonium Recycle Program; Advanced Systems; and Nuclear Safety.

  17. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  18. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  19. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  20. Physical Training and Cardioprotection

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Keith L. March; Dongming Hou

    2003-01-01

    Experimental, clinical and epidemiologic studies have provided strong evidence that physical training has beneficial effects on cardiovascular health. Numerous investigations have demonstrated that exercise increases coronary blood flow and myocardial perfusion. Importantly, training also can stimulate angiogenesis and accelerate collateral vessel growth in animal models with coronary artery occlusion. Cardiac adaptation such as increased vascularity or capillary density has been evidenced after regular endurance exercises. More recently, several studies indicate that physical training induces high levels of myocardial heat shock protein and antioxidant protein expression, which may play an important role in myocardial protection against ischemia-reperfusion injury.

  1. Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    Science.gov (United States)

    Ramos, A.; Filtvedt, W. O.; Lindholm, D.; Ramachandran, P. A.; Rodríguez, A.; del Cañizo, C.

    2015-12-01

    Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

  2. Electro-catalytic membrane reactors and the development of bipolar membrane technology

    NARCIS (Netherlands)

    Balster, J.; Stamatialis, D.F.; Wessling, M.

    2004-01-01

    Membrane reactors are currently under extensive research and development. Hardly any concept, however, is realized yet in practice. Frequently, forgotten as membrane reactors are electro-catalytic membrane reactors where electrodes perform chemical conversations and membranes separate the locations

  3. High-temperature membrane reactors: potential and problems

    NARCIS (Netherlands)

    Saracco, G.; Neomagus, H.W.J.P.; Versteeg, G.F.; Swaaij, van W.P.M.

    1999-01-01

    The most recent literature in the field of membrane reactors is reviewed, four years after an analogous effort of ours (Saracco et al., 1994), describing shortly the potentials of these reactors, which now seem to be well established, and focusing mostly on problems towards practical exploitation. S

  4. High-temperature membrane reactors : potential and problems

    NARCIS (Netherlands)

    Saracco, G.; Neomagus, H.W.J.P.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    The most recent literature in the field of membrane reactors is reviewed, four years after an analogous effort of ours, describing shortly the potentials of these reactors, which now seem to be well established, and focusing mostly on problems towards practical exploitation. Since then, progress has

  5. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    Science.gov (United States)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  6. Research and development on next generation reactor (phase I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyoon; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1994-10-01

    The objective of the study is to improve the volume of nuclear power plant which adopts passive safety system concept. The passive safety system reactor is characterized by excellent safety and reliability. But the volume of NSSS (Nuclear Steam Supply System) of the passive safety system reactor is so small that it should be upgraded for commercial operation. For volume upgrade, detailed analyses are performed as follows; core design, hydraulics, design and mechnical structures, and safety analysis. In addition to above analysis, some investigations must be supplied as follows: power density vs. DNB margin decrease, outlet temperature vs. EPRI-URD, additional tests for upgraded reactor, dynamic analysis of mechanical vibration according to expanded reactor vessel and expanded in-core structures, and Merit loss of passive safety system reactor according to design margin decrease. (Author).

  7. Study on VPI Process of Epoxy Impregnating Resin for Cryogenic Superconducting Magnets in TOKAMAK%TOKAMAK超导磁体用VPI浸渍树脂应用性能研究

    Institute of Scientific and Technical Information of China (English)

    崔益民; 潘皖江; 武松涛; 王珏; 王先锋; 白小庆

    2001-01-01

    This article investigated a epoxy impregnating resin for cryogenic superconducting magnet coils in TOKAMAK.The viscosities at processing temperatures and the volatilities in high vacuums were measured to select the optimum VPI process.The dielectric and mechanical properties of the solified impregnating resin was tested at low and high temperatures.%本文测试了一种低温超导磁体绝缘胶在常温下的性能,研究了该低温胶进行VPI工艺的可行性,为低温超导磁体的VPI工艺提供参数和依据。

  8. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  9. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Norasalwa, E-mail: norasalwa@nuclearmalaysia.gov.my; Mustafa, Muhammad Khairul Ariff, E-mail: norasalwa@nuclearmalaysia.gov.my; Anuar, Abul Adli, E-mail: norasalwa@nuclearmalaysia.gov.my; Idris, Hairul Nizam, E-mail: norasalwa@nuclearmalaysia.gov.my; Ba' an, Rohyiza, E-mail: norasalwa@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  10. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    Science.gov (United States)

    Zakaria, Norasalwa; Mustafa, Muhammad Khairul Ariff; Anuar, Abul Adli; Idris, Hairul Nizam; Ba'an, Rohyiza

    2014-02-01

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  11. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    Science.gov (United States)

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  12. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bassin, Joao P. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Dezotti, Marcia, E-mail: mdezotti@peq.coppe.ufrj.br [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Sant' Anna, Geraldo L. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil)

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl{sup -}/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  13. Altitude and endurance training.

    Science.gov (United States)

    Rusko, Heikki K; Tikkanen, Heikki O; Peltonen, Juha E

    2004-10-01

    The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.

  14. Probabilistic safety assessment of WWER440 reactors prediction, quantification and management of the risk

    CERN Document Server

    Kovacs, Zoltan

    2014-01-01

    The aim of this book is to summarize probabilistic safety assessment (PSA) of nuclear power plants with WWER440 reactors and  demonstrate that the plants are safe enough for producing energy even in light of the Fukushima accident. The book examines level 1 and 2 full power, low power and shutdown PSA, and summarizes the author's experience gained during the last 35 years in this area. It provides useful examples taken from PSA training courses the author has lectured and organized by the International Atomic Energy Agency. Such training courses were organised in Argonne National Laboratory (

  15. SU(3) flavour breaking and baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration

    2013-11-15

    We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.

  16. Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modeling using multilayer perceptron neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.

  17. Neutron imaging on the VR-1 reactor

    Science.gov (United States)

    Crha, J.; Sklenka, L.; Soltes, J.

    2016-09-01

    Training reactor VR-1 is a low power research reactor with maximal thermal power of 1 kW. The reactor is operated by the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. Due to its low power it suits as a tool for education of university students and training of professionals. In 2015, as part of student research project, neutron imaging was introduced as another type of reactor utilization. The low available neutron flux and the limiting spatial and construction capabilities of the reactor's radial channel led to the development of a special filter/collimator insertion inside the channel and choosing a nonstandard approach by placing a neutron imaging plate inside the channel. The paper describes preliminary experiments carried out on the VR-1 reactor which led to first radiographic images. It seems, that due to the reactor construction and low reactor power, the neutron imaging technique on the VR-1 reactor is feasible mainly for demonstration or educational and training purposes.

  18. Photochemical modification and patterning of SU-8 using anthraquinone photolinkers.

    Science.gov (United States)

    Blagoi, Gabriela; Keller, Stephan; Persson, Fredrik; Boisen, Anja; Jakobsen, Mogens Havsteen

    2008-09-16

    Bioactive protein patterns and microarrays achieved by selective localization of biomolecules find various applications in biosensors, bio-microelectromechanical systems (bio-MEMS), and in basic protein studies. In this paper we describe simple photochemical methods to fabricate two-dimensional patterns on a Novolac A derivative polymer (SU-8) and, subsequently, their functionalization with biomolecules. Anthraquinone (AQ) derivatives are used to chemically modify and pattern SU-8 surfaces. Features as small as 20 mum are obtained when using uncollimated light. The X-Y spatial resolution of micropatterned AQ molecules is improved to 1.5 mum when a collimated light source is used. This micropatterning process will be important for the functionalization of MEMS-based biosensors. The method saves several processing steps and can be integrated in cleanroom fabrication thus avoiding contamination of the sensor surfaces.

  19. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  20. SU(5) orientifolds, Yukawa couplings, Stringy Instantons and Proton Decay

    CERN Document Server

    Kiritsis, Elias; Schellekens, Bert; 10.1016

    2009-01-01

    We construct a large class of SU(5) orientifold vacua with tadpole cancellation both for the standard and the flipped case. We give a general analysis of superpotential couplings up to quartic order in orientifold vacua and identify the properties of needed Yukawa couplings as well as the baryon number violating couplings. We point out that successful generation of the perturbatively forbidden Yukawa couplings entails a generically disastrous rate for proton decay from an associated quartic term in the superpotential, generated from the same instanton effects. This problem seems generic and may appear in F-theory vacua as well. We search for the appropriate instanton effects that generate the missing Yukawa couplings in the SU(5) vacua we constructed and find them in a small subset of them.

  1. Charmed hadrons in matter and SU(4 flavor symmetry

    Directory of Open Access Journals (Sweden)

    Krein Gastão

    2014-06-01

    Full Text Available There is great recent interest in the study of bound states of charmed hadrons with atomic nuclei. The studies rely on effective interactions expressed through couplings between charmed and light-flavored hadrons whose values are fixed using SU(4 flavor symmetry. In the present communication we present results of recent studies examining the accuracy of SU(4-flavor symmetry relations between hadron-hadron couplings with particular interest in the couplings of charmed D mesons to light mesons and nucleons. We discuss results obtained from a 3P0 quark-pair creation model and from a framework based on Dyson-Schwinger equations in QCD that incorporates a consistent, direct and simultaneous description of light- and heavy-quarks. We focus on the three-meson couplings ρππ, ρKK, and ρDD and meson-baryon-brayon couplings πNN, KΛsN, and DΛcN. While the 3P0 model predicts that the SU(4 breaking is at most 40% in the charm sector, the relativistic Dyson-Schwinger framework predicts a breaking 10 times bigger. Consequences of these findings for the predictions of DN cross sections, formation of bound states of D-mesons and J/Ψ, and the formation of charmed hypernuclei are discussed.

  2. DOE handbook: Guide to good practices for training and qualification of chemical operators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of this Handbook is to provide contractor training organizations with information that can be used as a reference to refine existing chemical operator training programs, or develop new training programs where no program exists. This guide, used in conjunction with facility-specific job analyses, will provide a framework for training and qualification programs for chemical operators at DOE reactor and nonreactor facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. Contents include: initial qualification; administrative training; industrial safety training; specialized skills training; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Two appendices describe Fundamentals training and Process operations. This handbook covers chemical operators in transportation of fuels and wastes, spent fuel receiving and storage, fuel disassembly, fuel reprocessing, and both liquid and solid low-level waste processing.

  3. Skyrmions, multi-instantons and $SU(\\infty)$-Toda equation

    CERN Document Server

    Plansangkate, Prim

    2016-01-01

    We construct Skyrmions from holonomy of the spin connection of multi-Taub-NUT instantons with the centres positioned along a line in $\\mathbb{R}^3.$ Our family of Skyrmions includes the Taub-NUT Skyrmion previously constructed by Dunajski. However, we demonstrate that different gauges of the spin connection can result in Skyrmions with different topological degrees. As a by-product, we present a method to compute the degrees of the Taub-NUT and Atiyah-Hitchin Skyrmions analytically; these degrees are well defined as a preferred gauge is fixed by the $SU(2)$ symmetry of the two metrics. Regardless of the gauge, the domain of our Skyrmions is the space of orbits of the axial symmetry of the multi-Taub-NUT instantons. We obtain an expression for the induced metric on the space and its associated solution to the $SU(\\infty)$-Toda equation.

  4. Training brain networks and states.

    Science.gov (United States)

    Tang, Yi-Yuan; Posner, Michael I

    2014-07-01

    Brain training refers to practices that alter the brain in a way that improves cognition, and performance in domains beyond those involved in the training. We argue that brain training includes network training through repetitive practice that exercises specific brain networks and state training, which changes the brain state in a way that influences many networks. This opinion article considers two widely used methods - working memory training (WMT) and meditation training (MT) - to demonstrate the similarities and differences between network and state training. These two forms of training involve different areas of the brain and different forms of generalization. We propose a distinction between network and state training methods to improve understanding of the most effective brain training.

  5. Tritium Formation and Mitigation in High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  6. Distribution of plaque and gingivitis and associated factors in 3- to 5-year-old Brazilian children.

    Science.gov (United States)

    Feldens, Eliane Gerson; Kramer, Paulo Floriani; Feldens, Carlos Alberto; Ferreira, Simone Helena

    2006-01-01

    This cross-sectional study investigated the distribution of plaque and gingivitis and its association with demographic, socioeconomic, and orthodontic variables (spacing in anterior teeth, anterior open bite, and crossbite), and visible plaque level (low, medium, high) in Brazilian preschoolers. The sample comprised 490 3- to 5-year-old children from nursery schools in Canoas, a city in southern Brazil. One single, trained observer examined children's oral cavities and determined visible plaque index (VPI) and gingival bleeding index (GBI). Results showed that 99% of the children had visible plaque and 77% had gingivitis (GBI>0). A positive (r(s)=0.32) and significant correlation was found between VPI and GBI. VPI and GBI were significantly higher in posterior teeth and buccal and lingual surfaces. VPI was significantly higher in boys, children of low-income families, and without spacing in maxillary anterior teeth. Gingivitis was associated with absence of spacing in maxillary anterior teeth and plaque level. The most prevalent areas of plaque and gingivitis identified in this study should be taken in consideration during oral hygiene instructions, which should be given to children and mothers-particularly those with a low socioeconomic status--to motivate self-care and prevent gingivitis.

  7. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages; Instalacion de un nuevo tipo de reactor nuclear en Mexico: ventajas y desventajas

    Energy Technology Data Exchange (ETDEWEB)

    Jurado P, M.; Martin del Campo M, C. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: mjp_green@hotmail.com

    2005-07-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  8. Sensitivity and Uncertainty Study for Thermal Molten Salt Reactors

    Science.gov (United States)

    Bidaud, Adrien; Ivanona, Tatiana; Mastrangelo, Victor; Kodeli, Ivo

    2006-04-01

    The Thermal Molten Salt Reactor (TMSR) using the thorium cycle can achieve the GEN IV objectives of economy, safety, non-proliferation and durability. Its low production of higher actinides, coupled with its breeding capabilities - even with a thermal spectrum - are very valuable characteristics for an innovative reactor. Furthermore, the thorium cycle is more flexible than the uranium cycle since only a small fissile inventory (reactor. The potential of these reactors is currently being extensively studied at the CNRS and EdF /1,2/. A simplified chemical reprocessing is envisaged compared to that used for the former Molten Salt Breeder Reactor (MSBR). The MSBR concept was developed at Oak Ridge National Laboratory (ORNL) in the 1970's based on the Molten Salt Reactor Experiment (MSRE). The main goals of our current studies are to achieve a reactor concept that enables breeding, improved safety and having chemical reprocessing needs reduced and simplified as much as reasonably possible. The neutronic properties of the new TMSR concept are presented in this paper. As the temperature coefficient is close to zero, we will see that the moderation ratio cannot be chosen to simultaneously achieve a high breeding ratio, long graphite lifetime and low uranium inventory. It is clear that any safety margin taken due to uncertainty in the nuclear data will significantly reduce the capability of this concept, thus a sensitivity analysis is vital to propose measurements which would allow to reduce at present high uncertainties in the design parameters of this reactor. Two methodologies, one based on OECD/NEA deterministic codes and one on IPPE (Obninsk) stochastic code, are compared for keff sensitivity analysis. The uncertainty analysis of keff using covariance matrices available in evaluated files has been performed. Furthermore, a comparison of temperature coefficient sensitivity profiles is presented for the most important reactions. These results are used to review the

  9. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  10. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  11. Comparison of simulated and measured quantities of a duplex reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, M.; Kajava, M. [ABB Marine, Helsinki (Finland)

    1997-12-31

    The purpose of this article is to illustrate the use of an analog simulator as a design tool when designing new power electric equipment. The purpose of simulation is to predict the functionality of electrical equipment to be constructed. Duplex reactor is an electromagnetic device designed to reduce voltage harmonics and short circuit currents in the ship electrical network. In this report a comparison between simulated and measured electrical quantities of a duplex reactor has been made. The purpose of the measurements was to show the correct functioning of the reactor. The simulation results and the measured waveforms corresponds well to each other. (orig.) 4 refs.

  12. Training on the experiences that have shaped the nuclear industry. His knowledge and implications; Formacion en las experiencias que han dado forma a la industria nuclear. su conocimiento e implicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, A. B.; Bilbao Llamas, C.; Gonzalez Anez, F. J.

    2012-07-01

    The transmission of knowledge gained in the development of the nuclear industry is essential for lasting solutions introduced over time effectively, ensuring the safety and reliability of the sector. People.

  13. Isotopic composition and neutronics of the Okelobondo natural reactor

    Science.gov (United States)

    Palenik, Christopher Samuel

    The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve

  14. Increasing Fuel Utilization of Breed and Burn Reactors

    Science.gov (United States)

    Di Sanzo, Christian Diego

    Breed and Burn reactors (B&B), also referred to Traveling Wave Reactors, are fast spectrum reactors that can be fed indefinitely with depleted uranium only, once criticality is achieved without the need for fuel reprocessing. Radiation damage to the fuel cladding limits the fuel utilization of B&B reactors to ˜ 18-20% FIMA (Fissions of Initial Metal Atoms) -- the minimum burnup required for sustaining the B&B mode of operation. The fuel discharged from this type of cores contain ˜ 10% fissile plutonium. Such a high plutonium content poses environmental and proliferation concerns, but makes it possible to utilize the fuel for further energy production. The objectives of the research reported in this dissertation are to analyze the fuel cycle of B&B reactors and study new strategies to extend the fuel utilization beyond ˜ 18-20% FIMA. First, the B&B reactor physics is examined while recycling the fuel every 20% FIMA via a limited separation processing, using either the melt refining or AIROX dry processes. It was found that the maximum attainable burnup varies from 54% to 58% FIMA -- depending on the recycling process and on the fraction of neutrons lost via leakage and reactivity control. In Chapter 3 the discharge fuel characteristics of B&B reactors operating at 20% FIMA and 55% FIMA is analyzed and compared. It is found that the 20% FIMA reactor discharges a fuel with about ˜ 80% fissile plutonium over total plutonium content. Subsequently a new strategy of minimal reconditioning, called double cladding is proposed to extend the fuel utilization in specifically designed second-tier reactors. It is found that with this strategy it is possible to increase fuel utilization to 30% in a sodium fast reactor and up to 40% when a subcritical B&B core is driven by an accelerator-driven spallation neutron source. Lastly, a fuel cycle using Pressurized Water Reactors (PWR) to reduce the plutonium content of discharged B&B reactors is analyzed. It was found that it is

  15. Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor.

    Science.gov (United States)

    Sultan, Tipu

    2016-07-01

    This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor.

  16. Decision making in fencing training and its relationship with reaction time LA TOMA DE DECISIÓN EN TAREAS DE ENTRENAMIENTO DE LA ESGRIMA Y SU RELACIÓN CON EL TIEMPO DE REACCIÓN

    Directory of Open Access Journals (Sweden)

    F. Saucedo

    2011-03-01

    Full Text Available In fencing, certain tasks are designed to develop the mechanism of perception, decision and/ or execution. One way to know the effect to one or another is to measure the Reaction Time, making inferences about the effect of the manipulated variables in the research about the mechanisms. On the other hand, Reaction Time can help us to determine the level of perceptual ability and decision making of a fencer.The objectives of this study were, test the differences in perception and decision making depending on the weapon, and determine what actions are more difficult to perception and decision making in fencing. The subjects were 18 members of the spanish national fencing team. Fencers were placed facing a screen in which videos were projecting appearing the coach of each weapon launching actions to which the fencers had to react quickly.The results showed significant differences between the epeeists and the foil and sabre fencers. On the other hand, it was found more time is required to make the decision is to distinguish if the opponent´s attack had a good or bad execution.Key words: Combat Sports, Fencing, Decision Making, Reaction TimeResumenEn la esgrima, se plantean tareas orientadas a desarrollar el mecanismo de percepción, el de decisión y/o el de ejecución. Una forma de saber en qué medida se incide  más en uno u otro es medir el Tiempo de Reacción, y a partir de él hacer inferencias sobre el efecto de las variables manipuladas en la investigación sobre cada uno de los mecanismos. Por otro lado, nos puede ayudar a determinar el nivel de capacidad perceptiva y de toma de decisiones de un esgrimista.Los objetivos planteados en este estudio fueron, conocer si existen diferencias en cuanto a la percepción y toma de decisiones en función del arma practicada y determinar con qué acciones se dificulta la percepción y la toma de decisiones en esgrima. Los sujetos fueron 18 miembros del equipo nacional de esgrima, que se colocaron

  17. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...... metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure...

  18. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  19. A novel reverse flow reactor coupling endothermic and exothermic reactions. Part I: comparison of reactor configurations for irreversible endothermic reactions

    NARCIS (Netherlands)

    van Sint Annaland, M.; Scholts, H.A.R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2002-01-01

    A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by

  20. Applications, progress, and the business of small, mini, and modular nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, F. [Hyperion Power Generation, Santa Fe, NM (United States)

    2010-07-01

    This presentation discussed the activities of Hyperion Power Generation, a privately-owned company that is currently commercialized a small civilian nuclear reactor developed in the Los Alamos National Laboratory. The company is developing small, mini, and modular nuclear reactors ranging in cost from $75 million to $500 million. Nuclear power currently accounts for 18 percent of the total electricity produced by the United States, and large-scale nuclear power plants (NPP) typically cost between $6 billion to $9 billion. Smaller-scale nuclear plants can be used with smaller electricity grids and can be added as demand for electricity increases. The average cost per kWh for a mini-NPP is $0.04487 compared with $0.05072 for a large-scale NPP. The widespread use of smaller and modular reactors will lead to increased employment. The reactors have been designed to ensure a high level of safety and security. Issues related to training, operations, and maintenance were also reviewed. tabs., figs.

  1. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  2. Training Needs Analysis. A Resource for Identifying Training Needs, Selecting Training Strategies, and Developing Training Plans.

    Science.gov (United States)

    Bartram, Sharon; Gibson, Brenda

    Designed as a practical tool for trainers, this manual contains 22 instruments and documents for gathering and processing information about training and development issues within an organization. Part one of the two-part manual examines the process of identifying and analyzing training needs. It reviews the different types of information the…

  3. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    OpenAIRE

    2011-01-01

    Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR) and sequencing batch reactors (SBR) were investigated. During all experiments, the efficiency of SBR ...

  4. Decontamination and decommissioning of Shippingport commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, J. [Dept. of Energy, Pittsburgh, PA (United States)

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  5. Advanced gas cooled nuclear reactor materials evaluation and development program

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  6. Simulators and endourological training.

    Science.gov (United States)

    Laguna, M Pilar; Hatzinger, Martin; Rassweiler, Jens

    2002-05-01

    Acquisition of skills laboratory training seems to be of importance in the training of surgeons, and is intended to cover the gap between theoretical learning and real practice. Economic and ethical reasons limit the use of animals during the learning process, while trends in medical change have severely restricted the available time to teach and to learn. With the incorporation of laparoscopy and the blossoming of minimally invasive techniques, mainly endoscopy, simulators have gained wide acceptance as an important tool in the surgeon's learning process. Two types of simulators are currently available: inanimates or mannequins and virtual reality simulators. A review of the recent literature shows that there is generally a significant improvement in dexterity after using simulators, whichever type is used. It is still unknown whether training simulation influences the patient's outcome positively.

  7. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  8. Investigation of the bond strength between the photo-sensitive polymer SU-8 and Au

    DEFF Research Database (Denmark)

    Nordstrom, Maria; Johansson, Alicia; Sanches-Noguerón, E.

    2004-01-01

    between a 7.5 micr.- layer of SU-8 and Au without any adhesion promoter. This value increases to 11.7 +/- 2.1 MPa for a 30 micr.- layer of SU-8. The value of the bond strength can be increased by up to 75% using an adhesion promoter and fully optimising the processing conditions of the SU-8....

  9. Modeling of Reactor Kinetics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  10. Canonical transformations and loop formulation of SU(N) lattice gauge theories

    Science.gov (United States)

    Mathur, Manu; Sreeraj, T. P.

    2015-12-01

    We construct canonical transformations to reformulate SU(N) Kogut-Susskind lattice gauge theory in terms of a set of fundamental loop and string flux operators along with their canonically conjugate loop and string electric fields. The canonical relations between the initial SU(N) link operators and the final SU(N) loop and string operators, consistent with SU(N) gauge transformations, are explicitly constructed over the entire lattice. We show that as a consequence of SU(N) Gauss laws all SU(N) string degrees of freedom become cyclic and decouple from the physical Hilbert space Hp. The Kogut-Susskind Hamiltonian rewritten in terms of the fundamental physical loop operators has global SU(N) invariance. There are no gauge fields. We further show that the (1 /g2 ) magnetic field terms on plaquettes create and annihilate the fundamental plaquette loop fluxes while the (g2 ) electric field terms describe all their interactions. In the weak coupling (g2→0 ) continuum limit the SU(N) loop dynamics is described by SU(N) spin Hamiltonian with nearest neighbor interactions. In the simplest SU(2) case, where the canonical transformations map the SU(2) loop Hilbert space into the Hilbert spaces of hydrogen atoms, we analyze the special role of the hydrogen atom dynamical symmetry group S O (4 ,2 ) in the loop dynamics and the spectrum. A simple tensor network ansatz in the SU(2) gauge invariant hydrogen atom loop basis is discussed.

  11. Nuclear education and training

    CERN Document Server

    2012-01-01

    The OECD Nuclear Energy Agency (NEA) first published in 2000 Nuclear Education and Training: Cause for Concern? , which highlighted significant issues in the availability of human resources for the nuclear industry. Ten years on, Nuclear Education and Training: From Concern to Capability considers what has changed in that time and finds that, while some countries have taken positive actions, in a number of others human resources could soon be facing serious challenges in coping with existing and potential new nuclear facilities. This is exacerbated by the increasing rate of retirement as the w

  12. Training and natural immunity

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund; Helge, Jørn Wulff; Richter, Erik

    2000-01-01

    The purpose of the study was to investigate whether a carbohydrate-rich versus fat-rich diet influenced the effect of training on the immune system. Ten untrained young men ingested a carbohydrate-rich diet [65 energy percent (E%) carbohydrate] and ten subjects a fat-rich diet (62E% fat) while...... endurance training was performed 3-4 times a week for 7 weeks. Maximal oxygen uptake increased by 11% in both groups. Blood samples for immune monitoring were collected before and at the end of the study. Blood samples were also collected, in parallel, from 20 age-matched subjects, and data from...... these subjects were used to eliminate day-to-day variation in the immunological tests. Independently of diet, training increased the percentage of CD3-CD16+ CD56+ natural killer (NK) cells from [mean (SEM)] 14 (1) % to 20 (3) % (P = 0.05), whereas the NK-cell activity, either unstimulated or stimulated...

  13. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  14. Some Movement Mechanisms and Characteristics in Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available The pebblebed-type high temperature gas-cooled reactor is considered to be one of the promising solutions for generation IV advanced reactors, and the two-region arranged reactor core can enhance its advantages by flattening neutron flux. However, this application is held back by the existence of mixing zone between central and peripheral regions, which results from pebbles’ dispersion motions. In this study, experiments have been carried out to study the dispersion phenomenon, and the variation of dispersion region and radial distribution of pebbles in the specifically shaped flow field are shown. Most importantly, the standard deviation of pebbles’ radial positions in dispersion region, as a quantitative index to describe the size of dispersion region, is gotten through statistical analysis. Besides, discrete element method has been utilized to analyze the parameter influence on dispersion region, and this practice offers some strategies to eliminate or reduce mixing zone in practical reactors.

  15. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  16. Flow simulation and optimization of plasma reactors for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Ji, C.J.; Zhang, Y.Z.; Ma, T.C. [Dalian University of Technology, Dalian (China). Power Engineering Dept.

    2003-10-01

    This paper reports a 3-D numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

  17. Radioprotection and training

    Energy Technology Data Exchange (ETDEWEB)

    Nolibe, D. [Institut National des Sciences et Techniques Nucleaires (INSTN), Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Zackova, H.

    1994-12-31

    In a country where 75% of its electric power production is nuclear-based and where the health industry is making more and more use of ionizing radiation, Radioprotection education in France is necessarily characterized by a wide diversity in the trainings delivered and a significant increase in the number of actors providing these training programs. From the isolated worker using an industrial gammagraphy device to the thousands of persons working in major nuclear installations, it is estimated that more than 100,000 workers are exposed to ionizing radiation. Due to the seriousness of the pathological consequences resulting from overexposure to ionizing radiation, the volume of population concerned ant the media impact generated by the problem, one of the basic requirements formulated at the very early stages of the legislation is the obligation of informing workers of the hazards of exposure and the preventive measures to be taken. Employers are legally required to inform their personnel of the risks taken when handling equipment generating ionizing radiation of when using radio-nuclides. This obligation translates concretely by the need for the employer to name a qualified Radioprotection Department. The Qualified Officer or the Radioprotection Department are responsible for, among other tasks, ensuring training of workers. Two training orientations can be distinguished, each having different goals: - the first consists in training a body of highly-skilled Radioprotection professionals or managers (Qualified Officers), - the second consists in training all workers having any contact with ionizing radiation; each person should be capable of ensuring his own Radioprotection regardless of the presence of Qualified Officers. (authors).

  18. Radioactive target needs for nuclear reactor physics and nuclear astrophysics

    OpenAIRE

    Jurado, B.; Barreau, G.; Bacri, C. O.

    2010-01-01

    Nuclear Instruments and Methods in Physics Research Section A - In press.; Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models describing the nucleosynthesis of elements. After discussing various topics of nuclear astrophysics and reactor physics where the demand of nuclear data on unstable nuclei is strong, we describe the general characteristics of the targets needed to measure the requested data. In some cases t...

  19. The need and prospects for improved fusion reactors

    Science.gov (United States)

    Krakowski, R. A.; Miller, R. L.; Hagenson, R. L.

    1986-09-01

    Conceptual fusion reactor studies over the past 10-15 yr have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points toward smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. The results of a number of recent conceptual designs of reversed-field pinch, spheromak, and tokamak fusion reactors are summarized as examples of more compact approaches. While a focus has been placed on increasing the fusion-power-core mass power density beyond the minimum economic threshold of 100-200 kWe/tonne, other means by which the overall attractiveness of fusion as a long-term energy source are also addressed.

  20. Nuclear Data and the Oklo Natural Nuclear Reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2014-04-01

    Data from the Oklo natural nuclear reactors have enabled some of the most sensitive terrestrial tests of time variation of dimensionless fundamental constants. The constraints on variation of αEM, the fine structure constant are particular good, but depend on the reliability of the nuclear data, and on the reliability of the modeling of the reactor environment. We briefly review the history of these tests and discuss our recent work in 1) attempting to better bound the temperatures at which the reactors operated, 2) investigating whether the γ-ray fluxes in the reactors could have contributed to changing lutetium isotopic abundances and 3) determining whether lanthanum isotopic data could provide an alternate estimate of the neutron fluence.

  1. Conceptual Design of I and C Architecture for a New Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Suk; Park, Jae Kwan; Kim, Taek Kyu; Bae, Sang Hoon; Baang, Dane; Kim, Young Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    NRR) by 2016 was launched by KAERI in 2012. The purposes of the project are to meet domestic industrial needs of a research reactor and to secure an internationally competitive NRR. For instrumentation and control (I and C) systems of the NRR, it shall also be designed to secure the competition of the NRR. The I and C should account for the competition in terms of three aspects: safety, performance and cost. A I and C conceptual design activity should be carried out at the early stage of the project to figure out the I and C on the high level. Constructing I and C architecture is to accomplish the high level design. During the I and C architecture construction, the three aspects should be taken into account. This paper conceptually constructs the I and C architecture for the NRR by comparing to the cases of a Jordan training and research reactor (JRTR) project and a RA-10 multipurpose research reactor. The JRTR is an on-going project launched by KAERI and DAEWOO consortium in 2011. The I and C of the JRTR was digitalized based on the I and C functions of the HANARO research reactor, as shown in Fig. 1. The RA-10 was launched by INVAP of Argentina in 2011. The digital I and C developed by INVAP was built in an OPAL of Australia, as shown in Fig. 2

  2. Combined electron beam and UV lithography in SU-8

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Thamdrup, Lasse Højlund; Mironov, Andrej;

    2007-01-01

    We present combined electron beam and UV lithography (CEUL) in SU-8 as a fast and flexible lithographic technique for prototyping of functional polymer devices and pattern transfer applications. CEUL is a lithographic technique suitable for defining both micrometer and nanometer scale features...... in a single polymer film on the wafer scale. The height of the micrometer and nanometer scale features is matched within 30 nm. As a pattern transfer application, we demonstrate stamp fabrication and thermal nanoimprint of a 2-dimensional array of 100 nm wide lines with a pitch of 380 nm in connection...

  3. Combined electron beam and UV lithography in SU-8

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Thamdrup, Lasse Højlund; Mironov, Andrej

    2007-01-01

    We present combined electron beam and UV lithography (CEUL) in SU-8 as a fast and flexible lithographic technique for prototyping of functional polymer devices and pattern transfer applications. CEUL is a lithographic technique suitable for defining both micrometer and nanometer scale features...... in a single polymer film on the wafer scale. The height of the micrometer and nanometer scale features is matched within 30 nm. As a pattern transfer application, we demonstrate stamp fabrication and thermal nanoimprint of a 2-dimensional array of 100 nm wide lines with a pitch of 380 nm in connection...... with micrometer scale features....

  4. Reactor Antineutrino Flux and Spectrum Shape from Daya Bay

    Science.gov (United States)

    Napolitano, Jim; Daya Bay Collaboration

    2017-01-01

    The Daya Bay Reactor Neutrino Experiment has collected very large samples of νe p ->e+ n events, where the νe are from the cores of six power plant reactors that undergo regular refueling. With 621 days of data, more than 1.2 million events of this type were detected. The collaboration has analyzed these data in terms of the absolute flux (addressing the ``Reactor Neutrino Anomaly''), the spectrum shape (including the excess in the region of 5 MeV prompt energy), and other effects. This talk will summarize the results from our most recent analyses, and discuss new initiatives aimed at continuing to understand the fine detail of the reactor νe spectrum.

  5. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-Yan; Pan, Shi-Wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  6. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  7. Study and Analysis on Naphtha Catalytic Reforming Reactor Simulation

    Institute of Scientific and Technical Information of China (English)

    Liang Ke min; Song Yongji; Pan Shiwei

    2004-01-01

    A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reaction characteristics based on idealizing the complex naphtha mixture to represent the paraffin, naphthene, and aromatic groups with individual compounds. The simulation results based on above models agree very well with actual operating data of process unit.

  8. A study on naphtha catalytic reforming reactor simulation and analysis

    Institute of Scientific and Technical Information of China (English)

    LIANG Ke-min; GUO Hai-yan; PAN Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  9. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  10. EVALUATION OF ACTIVATION PRODUCTS IN REMAINING IN REMAINING K-, L- AND C-REACTOR STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.; Webb, R.

    2010-09-30

    An analytic model and calculational methodology was previously developed for P-reactor and R-reactor to quantify the radioisotopes present in Savannah River Site (SRS) reactor tanks and the surrounding structural materials as a result of neutron activation of the materials during reactor operation. That methodology has been extended to K-reactor, L-reactor, and C-reactor. The analysis was performed to provide a best-estimate source term input to the Performance Assessment for an in-situ disposition strategy by Site Decommissioning and Demolition (SDD). The reactor structure model developed earlier for the P-reactor and R-reactor analyses was also used for the K-reactor and L-reactor. The model was suitably modified to handle the larger Creactor tank and associated structures. For all reactors, the structure model consisted of 3 annular zones, homogenized by the amount of structural materials in the zone, and 5 horizontal layers. The curie content on an individual radioisotope basis and total basis for each of the regions was determined. A summary of these results are provided herein. The efficacy of this methodology to accurately predict the radioisotopic content of the reactor systems in question has been demonstrated and is documented in Reference 1. As noted in that report, results for one reactor facility cannot be directly extrapolated to other SRS reactors.

  11. Design and development of small and medium integral reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR`s, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs.

  12. SU(3) flavour symmetry breaking and charmed states

    CERN Document Server

    Horsley, R; Nakamura, Y; Perlt, H; Pleiter, D; Rakow, P E L; Schierholz, G; Schiller, A; Stüben, H; Zanotti, J M

    2013-01-01

    By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.

  13. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  14. R- AND P- REACTOR VESSEL IN-SITU DECOMISSIONING VISUALIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Vrettos, N.; Bobbitt, J.; Howard, M.

    2010-06-07

    The R- & P- Reactor facilities were constructed in the early 1950's in response to Cold War efforts. The mission of the facilities was to produce materials for use in the nation's nuclear weapons stockpile. R-Reactor was removed from service in 1964 when President Johnson announced a slowdown of he nuclear arms race. PReactor continued operation until 1988 until the facility was taken off-line to modernize the facility with new safeguards. Efforts to restart the reactor ended in 1990 at the end of the Cold War. Both facilities have sat idle since their closure and have been identified as the first two reactors for closure at SRS.

  15. Reactor technology assessment and selection utilizing systems engineering approach

    Science.gov (United States)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  16. Vocational Training Today: The Changing Relationship between Training and Employment.

    Science.gov (United States)

    Ducray, Gabriel

    1979-01-01

    Focusing on the changing relationship between training and employment, this article discusses (1) limitations of traditional vocational training policies, (2) the relationship between training and employment today, (3) changes in skills and the effects of structural factors on the employment situation, and (4) a modern vocational training policy.…

  17. Inverse-square law violation and reactor antineutrino anomaly

    Science.gov (United States)

    Naumov, D. V.; Naumov, V. A.; Shkirmanov, D. S.

    2017-01-01

    We discuss a possibility that the so-called reactor antineutrino anomaly can be, at least in part, explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical inverse-square law at short but macroscopic distances between the neutrino source and detector. An extensive statistical analysis of the reactor data is performed to examine this speculation.

  18. Inverse-square law violation and reactor antineutrino anomaly

    CERN Document Server

    Naumov, D V; Shkirmanov, D S

    2015-01-01

    We discuss a possibility that the so-called reactor antineutrino anomaly can be, at least in part, explained by applying a quantum field-theoretical approach to neutrino oscillations, which in particular predicts a small deviation from the classical inverse-square law at short but macroscopic distances between the neutrino source and detector. An extensive statistical analysis of the reactor data is performed to examine this speculation.

  19. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  20. Vocational Education and Training.

    Science.gov (United States)

    van Leeuwen, Fred, Ed.

    2000-01-01

    This issue of the quarterly Education International focuses on vocational education and training (VET). The editorial, "Education and the Wealth of Nations" (Fred van Leeuwen), focuses on provision of quality education for all. "Education International's (EI's) First Joint Worldwide Action on Education Issues" (Elie Jouen) describes the Global…

  1. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  2. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H., E-mail: songm@dgu.edu [Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2015-03-15

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  3. Core melt progression and consequence analysis methodology development in support of the Savannah River Reactor PSA

    Energy Technology Data Exchange (ETDEWEB)

    O' Kula, K.R.; Sharp, D.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Amos, C.N.; Wagner, K.C.; Bradley, D.R. (Science Applications International Corp., Albuquerque, NM (United States))

    1992-01-01

    A three-level Probabilistic Safety Assessment (PSA) of production reactor operation has been underway since 1985 at the US Department of Energy's Savannah River Site (SRS). The goals of this analysis are to: Analyze existing margins of safety provided by the heavy-water reactor (HWR) design challenged by postulated severe accidents; Compare measures of risk to the general public and onsite workers to guideline values, as well as to those posed by commercial reactor operation; and Develop the methodology and database necessary to prioritize improvements to engineering safety systems and components, operator training, and engineering projects that contribute significantly to improving plant safety. PSA technical staff from the Westinghouse Savannah River Company (WSRC) and Science Applications International Corporation (SAIC) have performed the assessment despite two obstacles: A variable baseline plant configuration and power level; and a lack of technically applicable code methodology to model the SRS reactor conditions. This paper discusses the detailed effort necessary to modify the requisite codes before accident analysis insights for the risk assessment were obtained.

  4. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  5. Neutron Capture and the Antineutrino Yield from Nuclear Reactors

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ˜0.9 % of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  6. Fermion masses and proton decay in string-inspired SU(4)xSU(2){sup 2}xU(1){sub X}

    Energy Technology Data Exchange (ETDEWEB)

    Dent, Thomas [Theoretical Physics, University of Ioannina, Ioannina 45110 (Greece); Leontaris, George [Theoretical Physics, University of Ioannina, Ioannina 45110 (Greece)]. E-mail: george.leontaris@cern.ch; Rizos, John [Theoretical Physics, University of Ioannina, Ioannina 45110 (Greece)

    2005-01-13

    We present a supersymmetric model of fermion masses with SU(4)xSU(2){sup 2}xU(1){sub X} gauge group with matter in fundamental and antisymmetric tensor representations only. The up, down, charged lepton and neutrino Yukawa matrices are distinguished by different Clebsch-Gordan coefficients due to contracting over SU(4) and SU(2){sub R} indices. We obtain a hierarchical light neutrino mass spectrum with bi-large mixing. The condition that anomalies be cancelled by a Green-Schwarz mechanism leads to fractional U(1){sub X} charges which exclude B violation through dimension-4 and -5 operators.

  7. Programs for generating Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases

    Science.gov (United States)

    Bahri, C.; Rowe, D. J.; Draayer, J. P.

    2004-05-01

    Computer codes are developed to calculate Clebsch-Gordan coefficients of SU(3) in both SU(2)- and SO(3)-coupled bases. The efficiency of this code derives from the use of vector coherent state theory to evaluate the required coefficients directly without recursion relations. The approach extends to other compact semi-simple Lie groups. The codes are given in subroutine form so that users can incorporate the codes into other programs. Program summaryTitle of program: SU3CGVCS Catalogue identifier: ADTN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC non-profit use license Computers for which the program is designed and others on which it is operable: SGI Origin 2000, HP Apollo 9000, Sun, IBM SP, Pentium Operating systems under which the program has been tested: IRIX 6.5, HP UX 10.01, SunOS, AIX, Linux Programming language used: FORTRAN 77 Memory required to execute with typical data: On the HP system, it requires about 732 KBytes. Disk space used for output: 2100+2460 bytes No. of bits in a word: 32 bit integer and 64 bit floating point numbers. No. of processors used: 1 Has the code been vectorized: No No. of bytes in distributed program, including test data, etc.: 26 309 No. of lines in distributed program, including test data, etc.: 3969 Distribution format: tar gzip file Nature of physical problem: The group SU(3) and its Lie algebra su(3) have important applications, for example, in elementary particle physics, nuclear physics, and quantum optics [1-3]. The code presented is particularly relevant for the last two fields. Clebsch-Gordan (CG) coefficients are required whenever the symmetries of many-body systems are used for the evaluation of matrix elements of tensor operators. Moreover, the construction of CG coefficients for SU(3) serves as a nontrivial prototype for larger compact

  8. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  9. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  10. Radiological controls and worker and public health and safety: An independent safety assessment of Department of Energy nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tew, J.L.; Miles, M.E.; Knuth, D.; Boyd, R.

    1981-02-01

    DOE has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the Report of the President's Commission on the Accident at Three Mile Island that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors were reviewed by the Committee. This report was prepared to provide a measure of how the radiological control and environmental practices at the 13 individual DOE reactor facilities measure up to (1) the recommendations contained in the Report of the President's Commission on the Accident at Three Mile Island, (2) the requirements and guidelines contained, and (3) the requirements of the applicable Title and Part of the Code of Federal Regulations.

  11. Optimized Design and Discussion on Middle and Large CANDLE Reactors

    Directory of Open Access Journals (Sweden)

    Xiaoming Chai

    2012-08-01

    Full Text Available CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scale fission nuclear energy utilization for thousands of years, benefitting the whole of society. For many developing countries with a large population and high energy demands, such as China and India, middle (1000 MWth and large (2000 MWth CANDLE fast reactors are obviously more suitable than small reactors [2]. In this paper, the middle and large CANDLE reactors are investigated with U-Pu and combined ThU-UPu fuel cycles, aiming to utilize the abundant thorium resources and optimize the radial power distribution. To achieve these design purposes, the present designs were utilized, simply dividing the core into two fuel regions in the radial direction. The less active fuel, such as thorium or natural uranium, was loaded in the inner core region and the fuel with low-level enrichment, e.g. 2.0% enriched uranium, was loaded in the outer core region. By this simple core configuration and fuel setting, rather than using a complicated method, we can obtain the desired middle and large CANDLE fast cores with reasonable core geometry and thermal hydraulic parameters that perform safely and economically; as is to be expected from CANDLE. To assist in understanding the CANDLE reactor’s attributes, analysis and discussion of the calculation results achieved are provided.

  12. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.

    Science.gov (United States)

    Andrić, Pavle; Meyer, Anne S; Jensen, Peter A; Dam-Johansen, Kim

    2010-01-01

    Product inhibition of cellulolytic enzymes affects the efficiency of the biocatalytic conversion of lignocellulosic biomass to ethanol and other valuable products. New strategies that focus on reactor designs encompassing product removal, notably glucose removal, during enzymatic cellulose conversion are required for alleviation of glucose product inhibition. Supported by numerous calculations this review assesses the quantitative aspects of glucose product inhibition on enzyme-catalyzed cellulose degradation rates. The significance of glucose product inhibition on dimensioning of different ideal reactor types, i.e. batch, continuous stirred, and plug-flow, is illustrated quantitatively by modeling different extents of cellulose conversion at different reaction conditions. The main operational challenges of membrane reactors for lignocellulose conversion are highlighted. Key membrane reactor features, including system set-up, dilution rate, glucose output profile, and the problem of cellobiose are examined to illustrate the quantitative significance of the glucose product inhibition and the total glucose concentration on the cellulolytic conversion rate. Comprehensive overviews of the available literature data for glucose removal by membranes and for cellulose enzyme stability in membrane reactors are given. The treatise clearly shows that membrane reactors allowing continuous, complete, glucose removal during enzymatic cellulose hydrolysis, can provide for both higher cellulose hydrolysis rates and higher enzyme usage efficiency (kg(product)/kg(enzyme)). Current membrane reactor designs are however not feasible for large scale operations. The report emphasizes that the industrial realization of cellulosic ethanol requires more focus on the operational feasibility within the different hydrolysis reactor designs, notably for membrane reactors, to achieve efficient enzyme-catalyzed cellulose degradation. (c) 2010 Elsevier Inc. All rights reserved.

  13. System and method for temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  14. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  15. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  16. Thermodynamic study of residual heat from a high temperature nuclear reactor to analyze its viability in cogeneration processes; Estudio termodinamico del calor residual de un reactor nuclear de alta temperatura para analizar su viabilidad en procesos de cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Santillan R, A.; Valle H, J.; Escalante, J. A., E-mail: santillanaura@gmail.com [Universidad Politecnica Metropolitana de Hidalgo, Boulevard acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2015-09-15

    In this paper the thermodynamic study of a nuclear power plant of high temperature at gas turbine (GTHTR300) is presented for estimating the exploitable waste heat in a process of desalination of seawater. One of the most studied and viable sustainable energy for the production of electricity, without the emission of greenhouse gases, is the nuclear energy. The fourth generation nuclear power plants have greater advantages than those currently installed plants; these advantages have to do with security, increased efficiencies and feasibility to be coupled to electrical cogeneration processes. In this paper the thermodynamic study of a nuclear power plant type GTHTR300 is realized, which is selected by greater efficiencies and have optimal conditions for use in electrical cogeneration processes due to high operating temperatures, which are between 700 and 950 degrees Celsius. The aim of the study is to determine the heat losses and the work done at each stage of the system, determining where they are the greatest losses and analyzing in that processes can be taken advantage. Based on the study was appointed that most of the energy losses are in form of heat in the coolers and usually this is emitted into the atmosphere without being used. From the results a process of desalination of seawater as electrical cogeneration process is proposed. This paper contains a brief description of the operation of the nuclear power plant, focusing on operation conditions and thermodynamic characteristics for the implementation of electrical cogeneration process, a thermodynamic analysis based on mass and energy balance was developed. The results allow quantifying the losses of thermal energy and determining the optimal section for coupling of the reactor with the desalination process, seeking to have a great overall efficiency. (Author)

  17. Alessi 95 and the short period Cepheid SU Cassiopeiae

    CERN Document Server

    Turner, David G; Lane, David J; Balam, David D; Gieren, Wolfgang P; Storm, Jesper; Forbes, Doug W; Havlen, Robert J; Alessi, Bruno

    2012-01-01

    The parameters for the newly-discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically-observed B and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04 s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V)=0.33+-0.02 and a luminosity of =-3.15+-0.07 s.e., consistent with overtone pulsation (P_FM=2.75 d), as also implied by the Cepheid's light curve parameters, rate of period increase, and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimat...

  18. Nuclear power plant operation and training

    Energy Technology Data Exchange (ETDEWEB)

    Sanae, Katsushige [Tokyo Electric Power Co., Inc. (Japan); Mitsumori, Kojiro

    1997-07-01

    In this report, the system for operation of a nuclear power plant and the qualities required for its operators were summarized. In Kashiwazaki-Kariwa Atomic Power Plant of the Tokyo Electric Power Co., Inc. operation is continuously made by 6 groups containing each 10 workers on three shifts. A group including the person in charge participates in the operation through cooperation of the control center and the respective spots. The group leaders are chosen from those approved as a person responsible to its operation. The conditions for the person responsible were as follows: to receive simulator training for senior operator, to have more than 7 years experience of operating a nuclear power plant, to pass a practical examination on the ordinary operation and the emergency one, to receive a training course to master the knowledge and techniques for operating an atomic reactor and to success the oral examination on practical knowledge required to perform the duty. Further, the simulators for ABWR training produced by Toshiba Corp. and Hitachi Ltd. were introduced as an example. And the practical training procedures to manipulate the simulator were presented. (M.N.)

  19. Design of a Compact and Versatile Bench Scale Tubular Reactor

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2009-06-01

    Full Text Available A compact and versatile laboratory tubular reactor has been designed and fabricated keeping in view of reducing capital cost and minimising energy consumption for gas/vapor-phase heterogeneous catalytic reactions. The reactor is consisted of two coaxial corning glass tubes with a helical coil of glass tube in between the coaxial tubes serving as vaporiser and pre-heater, the catalyst bed is in the inner tube. A schematic diagram of the reactor with detailed dimensions and working principles are described. The attractive feature of the reactor is that the vaporiser, pre-heater and fixed bed reactor are merged in a single compact unit. Thus, the unit minimises separate vaporiser and pre-heater, also avoids separate furnaces used for them and eliminate auxiliary instrumentation such as temperature controller etc. To demonstrate the system operation and illustrate the key features, catalyst screening data and the efficient collection of complete, and accurate intrinsic kinetic data are provided for oxidation of CO over copper chromite catalyst. CO oxidation is an important reaction for auto-exhaust pollution control. The suitability of the versatile nature of the reactor has been ascertained for catalytic reactions where either volatile or vaporizable feeds can be introduced to the reaction zone, e.g. oxidation of iso-octane, reduction of nitric oxide, dehydrogenation of methanol, ethanol and iso-propanol, hydrogenation of nitrobenzene to aniline, etc. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 February 2009, Accepted: 9 May 2009][How to Cite: R. Prasad, G. Rattan. (2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 5-9.  doi:10.9767/bcrec.4.1.1250.5-9][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.1250.5-9

  20. SU-E-E-07: When the Old Ways Are the Best Ways: In Defense of Didactic Training

    Energy Technology Data Exchange (ETDEWEB)

    Sensakovic, W [Florida Hospital, Orlando, FL (United States)

    2014-06-01

    Purpose: Physics education for residents has taken on a more prominent role due to the new ABR examination format. We present a curriculum for a new radiology residency entering its second year. This curriculum favors an extensive traditional didactic teaching approach. The curriculum is designed to minimize the amount of independent learning that is necessary outside the classroom Methods and Materials: idactic training repeats yearly for all four years of residency and consists of two 1-hour lectures per week and several in-class tests. The impact of physics on clinical practice is introduced gradually throughout the residency using specific clinical cases. The extensive time spent with the residents allows lectures to be taught at a deep (almost physicist) level and reduces the necessity of learning base concepts outside of lecture. This frees the resident to use resources (e.g., AAPM/RSNA physics modules) to cement concepts through repetition or to learn a slightly confusing concept from a different teaching perspective. Consistent testing reduces the traditional resident studying technique of physics “cramming.” Results: On average, the first year residents scored in the 98th percentile on the American College of Radiology Diagnostic Radiology In-Service Training Exam (ACR DXIT). Feedback from the new first year residents was very positive and suggestions are constantly solicited and incorporated. For example, based on resident feedback, short-format quizzes each lecture were eliminated and replaced interactive questions during lecture. Residents felt they have advanced rapidly and have a better understanding of radiologic physics, though they have expressed concern that the 1-hour lecture block may not be optimal for learning physics. Conclusion: An extensive, physicist-led series of didactic lectures is effective in the teaching of physics to residents.

  1. Optimizing Reactors Selection and Sequencing:Minimum Cost versus Minimum Volume

    Institute of Scientific and Technical Information of China (English)

    Rachid Chebbi

    2014-01-01

    The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie’s cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.

  2. Conformado macroscópico de óxidos metálicos para su aplicación en reactores solares de producción de hidrógeno

    OpenAIRE

    García Benito, Inés

    2011-01-01

    Proyecto Fin de Carrera leído en la Universidad Rey Juan Carlos en el curso académico 2010/2011. Directores del Proyecto: Juan Ángel Botas Echevarría y Raúl Molina Gil Colaborador: Carolina Herradón Hernández Esta memoria, recoge la labor realizada durante el Proyecto Fin de Carrera titulado ¿Conformado macroscópico de óxidos metálicos para su aplicación en reactores solares de producción de hidrógeno¿ que se engloba dentro de una de las líneas de investigación desarrollada por el Grupo...

  3. Flow-based method for epinephrine determination using a solid reactor based on molecularly imprinted poly(FePP-MAA-EGDMA)

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Lucas Rossi [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal de Alfenas (Unifal-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas/MG (Brazil); Santos, Wilney de Jesus Rodrigues [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria Zeferino Vaz s/n,13083-970, Campinas/SP (Brazil); Kubota, Lauro Tatsuo [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria Zeferino Vaz s/n,13083-970, Campinas/SP (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (Unicamp), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino Vaz s/n, 13083-970, Campinas/SP (Brazil); Segatelli, Mariana Gava [Departamento de Quimica, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia PR 445 Km 380, 86051-990, Londrina/PR (Brazil); Tarley, Cesar Ricardo Teixeira, E-mail: tarley@uel.br [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal de Alfenas (Unifal-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas/MG (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (Unicamp), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino Vaz s/n, 13083-970, Campinas/SP (Brazil)

    2011-03-12

    A solid phase reactor based on molecularly imprinted poly(iron (III) protoporphyrin-methacrylic acid-ethylene glycol dimethacrylate) (MIP-MAA) has been synthesized by bulk method and applied as an selective material for the epinephrine determination in the presence of hydrogen peroxide. In order to prove the selective behaviour of MIP, two blank polymers named non-imprinted polymer (NIP1), non-imprinted polymer in the absence of hemin (NIP2) as well as a poly(iron (III) protoporphyrin-4-vynilpyridine-ethylene glycol dimethacrylate) (MIP-4VPy) were synthesized. The epinephrine-selective MIP-MAA reactor was used in a flow injection system, in which an epinephrine solution (120 {mu}L) at pH 8.0 percolates in the presence of hydrogen peroxide (300 {mu}mol L{sup -1}) through MIP-MAA. The oxidation of epinephrine by hydrogen peroxide is increased by using MIP-MAA, being the product formed monitored by amperometry at 0.0 V vs. Ag/AgCl. The MIP-MAA showed better selective behaviour than NIP1, NIP2 and MIP-4VPy, demonstrating the effectiveness of molecular imprinting effect. Highly improved response was observed for epinephrine in detriment of similar substances (phenol, ascorbic acid, methyl-L-DOPA, p-aminophenol, catechol, L-DOPA and guaiacol). The method provided a calibration curve ranging from 10 to 500 {mu}mol L{sup -1} and a limit of detection of 5.2 {mu}mol L{sup -1}. Kinetic data indicated a value of maximum rate V{sub max} (0.993 {mu}A) and apparent Michaelis-Menten constant of K{sub m}{sup app}(725.6 {mu}mol L{sup -1}). The feasibility of biomimetic solid reactor was attested by its successful application for epinephrine determination in pharmaceutical formulation.

  4. HELIAS stellarator reactor studies and related European technology studies

    Energy Technology Data Exchange (ETDEWEB)

    Grieger, G. (Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany)); Nuehrenberg, J. (Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany)); Renner, H. (Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany)); Sapper, J. (Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany)); Wobig, H. (Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany))

    1994-08-01

    Research on stellarators has been carried out in Europe since the early years of the fusion programme. Early studies of this reactor concept were done at the Culham Laboratory of the UK Atomic Energy Authority. Such classical stellarators, however, have poor reactor prospects in spite of the significant advantage of not needing a large toroidal plasma current. It seemed to be just this large toroidal plasma current which has led to intrinsic deficiencies with respect to reactor potential of the tokamak. Expecting that these deficiencies would disappear for a concept without such a current, the Institut fuer Plasmaphysik developed, in a roll-back fashion, i.e. by starting from reactor considerations, the concept of the helical axis advanced stellarator (HELIAS). The results achieved look very promising indeed. Since tokamaks and stellarators show many similarities, there appeared no need as yet for a new stand-alone stellarator reactor study. The work was rather concentrated on the few but decisive differences between the two concepts and on evaluation of their relative importance. Studies on the coil system, the stress distribution in the supporting material, the space needed for an efficient blanket system, the properties of the exhaust system, etc. have been done. Applying contemporary scaling laws, it turns out that although the aspect ratio of such advanced stellarators is larger than that of tokamaks, the plasma volume is about the same. The magnetic energy needed for plasma confinement is considerably lower and the mass utilization tends to be larger than for comparable tokamaks. It also follows that a number of reactor components needed for tokamak operation (e.g. current drive, feedback stabilization, disruption prevention) are not needed in stellarators, making this type of reactor and its operation simpler. Such results would have a large influence on selection of the final concept and the further evolution of the fusion programme.

  5. La formació permanent del professorat a Suïssa. Entre les reformes del sistema i la professionalització de l’ofici Continuing training for teachers in Switzerland. Between reforming the system and professionalising teaching La formación permanente del profesorado en Suiza. Entre las reformas del sistema y la profesionalización del oficio

    Directory of Open Access Journals (Sweden)

    Monica Gather Thurler

    2011-09-01

    permanente s’inscrit dans une conception globale qui (a considère comme un objectif primordial le développement durable des compétences professionnelles individuelles et collectives, (b se donne à elle-même les moyens pour identifier, prendre en compte et gérer les niveaux de connaissances ainsi que les ressources humaines et matérielles existantes, et (c parvienne à engager l’ensemble des agents impliqués dans une recherche collective et coopérative fondée sur l’analyse réflexive des pratiques. Finalement, dans la troisième partie, l’article ébauche un modèle de développement professionnel qui situe les stratégies actuelles de la formation permanente dans un cadre de complémentarité constructive, et il donne quelques exemples de réalisations concrètesThe article contains a critical description of the Swiss teacher training system. The first part presents a résumé of the institutional situation in Switzerland in the area of teacher training. This situation is the result of a reform, begun in the 1990’s, which has led in most cantons to the setting up of teacher training universities. The second part argues that the problems currently faced by the education systems can only be solved if continuing training is part of an overall approach which (a considers as a primary aim the development of individual and group professional skills; (b provides itself with the means to identify, take into consideration and manage existing levels of knowledge and human and material resources, and (c manages to commit all the stakeholders involved to cooperative joint research based on reflective analysis of practices. Finally, the third part outlines a model for professional development which places current in-service training strategies on a constructively complementary basis, giving some examples of actual casesEl artículo describe de manera crítica el sistema de formación docente suizo. En la primera parte se presenta de forma sintética la realidad

  6. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  7. Financing Training: Issues and Options.

    Science.gov (United States)

    Dougherty, Christopher; Tan, Jee-Peng

    1999-01-01

    Economic changes and retrenchment have led to reconsideration of the role of government and the private sector in financing training. When private sector-sponsored training displays inadequacies, government intervention may be necessary. (SK)

  8. Training Results and Information Network

    Data.gov (United States)

    US Agency for International Development — TraiNet is USAID's official training data management system that is accessed from a web browser and the entry point for data about training programs and participants...

  9. Performance of an Anaerobic Baffled Filter Reactor in the Treatment of Algae-Laden Water and the Contribution of Granular Sludge

    OpenAIRE

    Yaqin Yu; Xiwu Lu; Yifeng Wu

    2014-01-01

    This study investigated the performance and stability of an anaerobic baffled filter reactor in the treatment of algae-laden water from Taihu Lake at several organic loading rates. The study also evaluated the capability of soft filler to train granule sludge and improve the anaerobic environment and sludge activity in the anaerobic baffled reactor (ABR), thereby enhancing the treatment efficiency. The ABR consisted of five rectangular compartments, each of which was 120 cm long, 80 cm wide, ...

  10. 3D computer visualization and animation of CANDU reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Qian, T.; Echlin, M.; Tonner, P.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1999-07-01

    Three-dimensional (3D) computer visualization and animation models of typical CANDU reactor cores (Darlington, Point Lepreau) have been developed using world-wide-web (WWW) browser based tools: JavaScript, hyper-text-markup language (HTML) and virtual reality modeling language (VRML). The 3D models provide three-dimensional views of internal control and monitoring structures in the reactor core, such as fuel channels, flux detectors, liquid zone controllers, zone boundaries, shutoff rods, poison injection tubes, ion chambers. Animations have been developed based on real in-core flux detector responses and rod position data from reactor shutdown. The animations show flux changing inside the reactor core with the drop of shutoff rods and/or the injection of liquid poison. The 3D models also provide hypertext links to documents giving specifications and historical data for particular components. Data in HTML format (or other format such as PDF, etc.) can be shown in text, tables, plots, drawings, etc., and further links to other sources of data can also be embedded. This paper summarizes the use of these WWW browser based tools, and describes the resulting 3D reactor core static and dynamic models. Potential applications of the models are discussed. (author)

  11. Thermohydraulic and nuclear modeling of natural fission reactors

    Science.gov (United States)

    Viggato, Jason Charles

    Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium. Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors. The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients

  12. Heavy resistance training and lymphedema

    DEFF Research Database (Denmark)

    Bloomquist, Kira; Karlsmark, Tonny; Christensen, Karl Bang

    2014-01-01

    BACKGROUND: There is limited knowledge regarding progressive resistance training during adjuvant chemotherapy and the risk of developing breast cancer-related lymphedema (BCRL). Furthermore, no studies have investigated the safety of resistance training with heavy loads (> 80% 1 repetition maximum...

  13. Transportation Conformity Training and Presentations

    Science.gov (United States)

    EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.

  14. Payload IVA training and simulation

    Science.gov (United States)

    Monsees, J. H.

    1982-01-01

    The development of a training program for the intravehicular operation of space shuttle payloads is discussed. The priorities for the program are compliance with established training standards, and accommodating changes. Simulation devices are also reviewed.

  15. Radioactive waste management and disposal scenario for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tabara, Takashi; Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao

    1997-10-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a light water reactor (LWR) have been evaluated and compared. At first, the amount and the radioactive level of the radwaste generated in five fusion reactors ware evaluated by an activation calculation code. Next, a possible radwaste disposal scenario applicable to fusion radwaste in Japan is considered and the disposal cost evaluated under certain assumptions. The exposure doses are evaluated for the skyshine of gamma-rays during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical LWR was estimated based on a literature survey and the disposal cost was evaluated using the same assumptions as for the fusion reactors. It is found that the relative cost of disposal is strongly dependent on the cost for interim storage of medium level waste of fusion reactors and the cost of high level waste for the LWR. (author)

  16. Migration and retention of elements at the Oklo natural reactor

    Science.gov (United States)

    Brookins, Douglas G.

    1982-09-01

    The Oklo natural reactor, Gabon, permits study of fission-produced elemental behavior in a natural geologic environment. The uranium ore that sustained fission reactions formed about 2 billion years before present (BYBP), and the reactor was operative for about 5 × 105 yrs between about 1.95 to 2 BYBP. The many tons of fission products can, for the most part, be studied for their abundance and distribution today. Since reactor shutdown, many fissiogenic elements have not migrated from host pitchblende, and several others have migrated only a few tens of meters from the reactor ore. Only Xe and Kr have apparently been largely removed from the reactor zones. An element by element assessment of the Oklo rocks' ability to retain the fission products, and actinides and radiogenic Pb and Bi as well, leads to the conclusion that no widespread migration of the elements occurred. This suggests that rocks with more favorable geologic characteristics are indeed well suited for consideration for the storage of radioactive waste.

  17. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  18. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor.

    Science.gov (United States)

    Chen, Pin-Chuan; Park, Daniel S; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C

    2010-08-06

    Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow

  19. Strength training and aerobic exercise training for muscle disease (Review)

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise trainin

  20. Strength training and aerobic exercise training for muscle disease (Review)

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise trainin

  1. Alpha-clustered hypernuclei and chiral SU(3) dynamics

    CERN Document Server

    Hiyama, Emiko; Kaiser, Norbert; Weise, Wolfram

    2013-01-01

    Light hypernuclei with an $\\alpha$ cluster substructure of the core nucleus are studied using an accurate cluster approach (the Hyper-THSR wave function) in combination with a density-dependent $\\Lambda$ hyperon-nuclear interaction derived from chiral SU(3) effective field theory. This interaction includes important two-pion exchange processes involving $\\Sigma N$ intermediate states and associated three-body mechanisms as well as effective mass and surface terms arising in a derivative expansion of the in-medium $\\Lambda$ self-energy. Applications and calculated results are presented and discussed for $_\\Lambda^9$Be and $^{13}_\\Lambda$C. Furthermore, the result of the lightest $\\alpha$ clustered hypernucleus, $^5_{\\Lambda}$He using realistic $ab initio$ four nucleon density is shown.

  2. The Sukhoi Su-24 Incident between Russia and Turkey

    Directory of Open Access Journals (Sweden)

    Etienne Henry

    2016-01-01

    Full Text Available This note presents an analysis from the viewpoint of public international law of the event that occurred on November 24, 2015, when a Russian Sukhoi Su-24 bomber jet was downed by the Turkish Air Force over the border region between Syria and Turkey. While some of the basic circumstances of the case remain controversial, enough elements have emerged from media coverage to permit for the identification of the main legal issues, if not also to assess the legality of the Russian behavior and of the Turkish reaction in all its details. The known facts warrant the conclusion that the attack and the downing of the Russian jet can be seen as a disproportionate reaction on the part of the Turkish Government and, therefore, as a violation of the prohibition of the use of military force under Art. 2(4 of the UN Charter and under the corresponding customary rule of international law.

  3. Present status and future perspectives of research and test reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yoshihiko [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan); Kaieda, Keisuke [Department of Research Reactor, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-10-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  4. The DOE advanced gas reactor fuel development and qualification program

    Science.gov (United States)

    Petti, David; Maki, John; Hunn, John; Pappano, Pete; Barnes, Charles; Saurwein, John; Nagley, Scott; Kendall, Jim; Hobbins, Richard

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular high-temperature gas-cooled reactors (HTGRs) enable an efficient and cost-effective integration of the reactor system with non-electricity-generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The U.S. Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. An overview of the program and recent progress is presented.

  5. The Virtual Environment for Reactor Applications (VERA). Design and architecture☆

    Science.gov (United States)

    Turner, John A.; Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin; Pawlowski, Roger; Schmidt, Rodney; Summers, Randall

    2016-12-01

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goals and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.

  6. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Turner, John A., E-mail: turnerja@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pawlowski, Roger; Schmidt, Rodney; Summers, Randall [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2016-12-01

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goals and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.

  7. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  8. Neutron capture and the antineutrino yield from nuclear reactors

    CERN Document Server

    Huber, Patrick

    2015-01-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low-energies below 3.2MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach 0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the non-equilibrium correction...

  9. Helium desorption in EFDA iron materials for use in nuclear fusion reactors; Desorcion de helio en materiales de fierro EFDA para su aplicacion en los reactores de fusion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Salazar R, A. R.; Pinedo V, J. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Sanchez, F. J.; Ibarra, A.; Vila, R., E-mail: arsr2707@hotmail.com [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense No. 40, 28040 Madrid (Spain)

    2015-09-15

    In this paper the implantation with monoenergetic ions (He{sup +}) was realized with an energy of 5 KeV in iron samples (99.9999 %) EFDA (European Fusion Development Agreement) using a collimated beam, after this a Thermal Desorption Spectrometry of Helium (THeDS) was made using a leak meter that detects amounts of helium of up to 10{sup -}- {sup 12} mbar l/s. Doses with which the implantation was carried out were 2 x 10{sup 15} He{sup +} /cm{sup 2}, 1 x 10{sup 16} He{sup +} /cm{sup 2}, 2 x 10{sup 16} He{sup +} /cm{sup 2}, 1 x 10{sup 17} He{sup +} /cm{sup 2} during times of 90 s, 450 s, 900 s and 4500 s, respectively. Also, using the SRIM program was calculated the depth at which the helium ions penetrate the sample of pure ion, finding that the maximum distance is 0.025μm in the sample. For this study, 11 samples of Fe EFDA were prepared to find defects that are caused after implantation of helium in order to provide valuable information to the manufacture of materials for future fusion reactors. However understand the effects of helium in the micro structural evolution and mechanical properties of structural materials are some of the most difficult questions to answer in materials research for nuclear fusion. When analyzing the spectra of THeDS was found that five different groups of desorption peaks existed, which are attributed to defects of He caused in the material, these defects are He{sub n} V (2≤n≤6), He{sub n} V{sub m}, He V for the groups I, II and IV respectively. These results are due to the comparison of the peaks presented in the desorption spectrum of He, with those of other authors who have made theoretical calculations. Is important to note that the thermal desorption spectrum of helium was different depending on the dose with which the implantation of He{sup +} was performed. (Author)

  10. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  11. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, Stephen Rhead [Idaho National Lab. (INL), Idaho Falls, ID (United States); Medvedev, Pavel G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  12. Reactor modeling in heterogeneous photocatalysis: toxicity and biodegradability assessment.

    Science.gov (United States)

    Satuf, M L; José, S; Paggi, J C; Brandi, R J; Cassano, A E; Alfano, O M

    2010-01-01

    Photocatalysis employing titanium dioxide is a useful method to degrade a wide variety of organic and inorganic pollutants from water and air. However, the application of this advanced oxidation process at industrial scale requires the development of mathematical models to design and scale-up photocatalytic reactors. In the present work, intrinsic kinetic expressions previously obtained in a laboratory reactor are employed to predict the performance of a bench scale reactor of different configuration and operating conditions. 4-Chlorophenol was chosen as the model pollutant. The toxicity and biodegradability of the irradiated mixture in the bench photoreactor was also assessed. Good agreement was found between simulation and experimental data. The root mean square error of the estimations was 9.9%. The photocatalytic process clearly enhances the biodegradability of the reacting mixture, and the initial toxicity of the pollutant was significantly reduced by the treatment.

  13. Training and Simulation in Otolaryngology

    Science.gov (United States)

    Wiet, Gregory J.; Stredney, Don; Wan, Dinah

    2011-01-01

    This article focuses on key issues surrounding the needs and application of simulation technologies for technical skills training in otolaryngology. The discussion includes an overview of key topics in training and learning, the application of these issues in simulation environments, and the subsequent applications of these simulation environments to the field of otolaryngology. Examples of past applications are presented, with discussion of how the interplay of cultural changes in surgical training in general, along with the rapid advancements in technology have shaped and influenced their adoption and adaptation. The authors conclude with emerging trends and potential influences advanced simulation and training will have on technical skills training in otolaryngology. PMID:22032486

  14. Strength Training and Children's Health.

    Science.gov (United States)

    Faigenbaum, Avery D.

    2001-01-01

    Provides an overview of the potential health benefits of strength training for children, discussing the role of strength training in preventing sports-related injuries and highlighting design considerations for such programs. The focus is on musculoskeletal adaptations to strength training that are observable in healthy children. Guidelines for…

  15. Novice supervisors' tasks and training

    DEFF Research Database (Denmark)

    Nielsen, Jan; Jacobsen, Claus Haugaard; Mathiesen, Birgit Bork

    2012-01-01

    were confronted with complicated jobs, e.g., group, internal and interdisciplinary supervision, but were not prepared, i.e. trained, prior to these tasks. These findings imply that more training is needed for novice supervisors. Preferably, this training should be introduced before, or at least...... parallel to, the first supervisor tasks, preparing the novice supervisors for the often complicated tasks they are meeting....

  16. Strength Training and Children's Health.

    Science.gov (United States)

    Faigenbaum, Avery D.

    2001-01-01

    Provides an overview of the potential health benefits of strength training for children, discussing the role of strength training in preventing sports-related injuries and highlighting design considerations for such programs. The focus is on musculoskeletal adaptations to strength training that are observable in healthy children. Guidelines for…

  17. Software reliability and safety in nuclear reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  18. Minimal supersymmetric hybrid inflation, flipped SU(5) and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Mansoor Ur; Shafi, Qaisar [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Wickman, Joshua R., E-mail: jwickman@udel.ed [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2010-04-26

    Minimal supersymmetric hybrid inflation utilizes a canonical Kaehler potential and a renormalizable superpotential which is uniquely determined by imposing a U(1) R-symmetry. In computing the scalar spectral index n{sub s} we take into account modifications of the tree level potential caused by radiative and supergravity corrections, as well as contributions from the soft supersymmetry breaking terms with a negative soft mass-squared term allowed for the inflaton. All of these contributions play a role in realizing n{sub s} values in the range 0.96-0.97 preferred by WMAP. The U(1) R-symmetry plays an important role in flipped SU(5) by eliminating the troublesome dimension five proton decay. The proton decays into e{sup +}pi{sup 0} via dimension six operators arising from the exchange of superheavy gauge bosons with a lifetime of order 10{sup 34}-10{sup 36} years.

  19. SU(2) x U(1) vacuum and the Centauro events

    Science.gov (United States)

    Kazanas, D.; Balasubrahmanyan, V. K.; Streitmatter, R. E.

    1985-01-01

    It is proposed that the fireballs invoked to explain the Centauro events are bubbles of a metastable superdense state of nuclear matter, created in high energy (E approximately 10 to the 15th power eV) cosmic ray collisions at the top of the atmosphere. If these bubbles are created with a Lorentz factor gamma approximately equals 10 at their CM frame, the objections against the origin of these events in cosmic ray interactions are overcome. A relationship then between their lifetime, tau, and the threshold energy for bubble formation, E sub th, appears to be insensitive to the value of tau and always close to E sub th approximately 10 to 15th power eV. Finally it is speculated that these bubbles might be manifestations of the SU(2) x U(1) false vacuum excited in these collisions. The absence of in the Centauro events is then explained by the decay modes of these excitations.

  20. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  1. Trainee and training issues.

    Science.gov (United States)

    Redfern, Nancy; Bartley, Catherine

    2006-12-01

    This chapter deals with the obligations of trainers and trainees to each other, the responsibilities of the programme and the conflicts of providing a service while training. Management of trainees with differing needs, such as those working part-time or returning to training after sickness, is reviewed. Assessment of performance and the obligation of consultants to identify, manage and support struggling trainees are discussed. Ethical discussion is based on the principles of autonomy, non-maleficence, beneficence, and justice to which fidelity is added. Case studies illustrating the application of ethical principles to work and decision-making are presented to stimulate debate. Opinions vary as to which principle carries more weight in individual cases, and how best to balance the conflicting requirements of the parties involved (patient, trainee,.trainer, employer, society). For all healthcare practitioners, the needs of patients remain our first concern. Acting in a consequentialist way, we must "maximise the good" and minimise the attendant harms in training. However, deontology states that certain sacrosanct rules and principles should never be breached. Doctors must abide by the duties of a doctor described in Good Medical Practice, maintaining standards in a way that ensures professional qualifications are respected. For the patient, there are advantages and disadvantages to receiving care in an educational setting. A 'teaching environment' tends to encourage and maintain high standards of practice from senior clinicians, but it also exposes patients to new learners, who are less efficient and polished and perhaps more prone to make errors. Learning has to fit round and complement the clinical and emotional needs of patients.

  2. Safety status of space radioisotope and reactor power sources

    Science.gov (United States)

    Bennett, Gary L.

    1990-01-01

    The current overall safety criterion for both radioisotope and reactor power sources is containment or immobilization in the case of a reentry accident. In addition, reactors are designed to remain subcritical under conditions of land impact or water immersion. A very extensive safety test and analysis program was completed on the radioisotope thermoelectric generators (RTGs) in use on the Galileo spacecraft and planned for use on the Ulysses spacecraft. The results of this work show that the RTGs will pose little or no risk for any credible accident. The SP-100 space nuclear reactor program has begun addressing its safety criteria, and the design is planned to be such as to ensure meeting the various safety criteria. Preliminary mission risk analyses on SP-100 show the expected value population dose from postulated accidents on the reference mission to be very small. It is concluded that the current US nuclear power sources are the safest flown.

  3. Double Chooz and a history of reactor θ13 experiments

    Science.gov (United States)

    Suekane, Fumihiko; Junqueira de Castro Bezerra, Thiago

    2016-07-01

    This is a contribution paper from the Double Chooz (DC) experiment to the special issue of Nuclear Physics B on the topics of neutrino oscillations, celebrating the recent Nobel prize to Profs. T. Kajita and A.B. McDonald. DC is a reactor neutrino experiment which measures the last neutrino mixing angle θ13. The DC group presented an indication of disappearance of the reactor neutrinos at a baseline of ∼1 km for the first time in 2011 and is improving the measurement of θ13. DC is a pioneering experiment of this research field. In accordance with the nature of this special issue, physics and history of the reactor-θ13 experiments, as well as the Double Chooz experiment and its neutrino oscillation analyses, are reviewed.

  4. Enzymatic reactors for biodiesel synthesis: Present status and future prospects.

    Science.gov (United States)

    Poppe, Jakeline Kathiele; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Ayub, Marco Antônio Záchia

    2015-01-01

    Lipases are being extensively researched for the production of biodiesel as a "silver bullet" in order to avoid the drawbacks of the traditional alkaline transesterification. In this review, we analyzed the main factors involved in the enzymatic synthesis of biodiesel, focusing in the choice of the immobilization protocol, and the parameters involved in the choice and configuration of the reactors. An extensive discussion is presented about the advantages and disadvantages of each type of reactor and their mode of operation. The current scenario of the market for enzymatic biodiesel and some future prospects and necessary developments are also briefly presented.

  5. The diversity and unit of reactor noise theory

    Science.gov (United States)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the

  6. Hierarchical neutrino masses and mixing in flipped-SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Rizos, J. [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Tamvakis, K., E-mail: tamvakis@uoi.g [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Physics Department, CERN, CH-1211, Geneva 23 (Switzerland)

    2010-02-22

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansaetze for the singlet couplings for which hierarchical neutrino masses emerge naturally as lambda{sup n}:lambda:1 or lambda{sup n}:lambda{sup 2}:1, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta{sub 13} is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  7. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  8. A Pebble-Bed Breed-and-Burn Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2016-03-31

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  9. Corrosion and Corrosion Control in Light Water Reactors

    Science.gov (United States)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  10. Axial and Radial Gas Holdup in Bubble Column Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Sameer M.; Ansari, Mohashin E Alan; Kene, Pragati T. [RTMNU Nagpur, Nagpur (India)

    2014-06-15

    Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path.

  11. Nonlinear analysis and prediction of time series in multiphase reactors

    CERN Document Server

    Liu, Mingyan

    2014-01-01

    This book reports on important nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors. The reactors treated in the book include gas-liquid bubble columns, gas-liquid-solid fluidized beds and gas-liquid-solid magnetized fluidized beds. The authors take pressure fluctuations in the bubble columns  as time series for nonlinear analysis, modeling and forecasting. They present qualitative and quantitative non-linear analysis tools which include attractor phase plane plot, correlation dimension, Kolmogorov entropy and largest Lyapunov exponent calculations and local non-linear short-term prediction.

  12. Advancement in research of anti-cancer effects of toad venom (ChanSu) and perspectives

    Institute of Scientific and Technical Information of China (English)

    Miao Liu; Li-Xing Feng; Li-Hong Hu; Xuan Liu; De-An Guo

    2015-01-01

    Toad venom, called as ChanSu in China, is a widely used traditional Chinese medicine (TCM) whose active components are mainly bufadienolides. ChanSu could exhibit cardiotonic, anti-microbial, anti-inflammatory and, most importantly, anti-cancer effects. In the present review, reports about the in vitro, in vivo and clinical anti-cancer effects of ChanSu or its representative component, bufalin, were summarized. And, reported anti-cancer mechanisms of cardenolides, structure analogues of bufadienolides, were also introduced. Based on the results got from research of ChanSu/bufalin and the results from cardenolides, possible signal network related to the anti-cancer effects of ChanSu/bufalin was predicted. Furthermore, future potential use of ChanSu in anti-cancer therapy was discussed.

  13. Vector and Spinor Decomposition of SU(2) Gauge Potential, Their Equivalence, and Knot Structure in SU(2) Chern-Simons Theory

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; REN Ji-Rong; LI Ran

    2007-01-01

    In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear O(3) sigma model from the SU(2)massive gauge field theory, which is proposed according to the gauge invariant principle. At last, the knot structure in SU(2) Chern-Simons filed theory is discussed in terms of the φ-mapping topological current theory. The topological charge of the knot is characterized by the Hopf indices and the Brouwer degrees of φ-mapping.

  14. Repairing method and device for reactor incore structures

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Arata; Shimizu, Mitsuko; Aoki, Nobutada; Mukai, Naruhiko; Obata, Minoru; Sato, Katsuhiko

    1995-09-26

    The present invention concerns repair for structural components in a reactor pressure vessel of an LMFBR-type reactor, in which stresses on the surface of a metal are changed without recover of shots, not worsening operation circumstances due to generation of powdery dusts and without requiring compensation for reaction force. Namely, a vertically movable and rotatable arm is opposed to the structural components of the reactor pressure vessel. A mounting table is disposed to the top end of the arm. A laser irradiation device is disposed to the mounting table. The structural components are subjected to laser fabrication using the laser irradiation device by irradiating visible pulse laser beams while scanning on every predetermined range. According to the present invention, the stress on the surface of the metal can be changed to a predetermined value. The structural components are not injured by stress corrosion. As a result, the service life of the structural components can be extended. (I.S.).

  15. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  16. Reactivity worth measurements with Caliban and Silene experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA Valduc, 21 - Is-sur-Tille (France)

    2008-07-01

    Reactivity worth measurements of material samples put in the central cavities of nuclear reactors allow to test cross section nuclear databases or to extract information about the critical masses of fissile elements. Such experiments have already been completed on the CALIBAN and SILENE experimental reactors operated by the Criticality and Neutronics Research Laboratory of Valduc (Cea, France), using the perturbation measurement technique. Feasibility studies have been performed to prepare future experiments on new materials (beryllium, copper, tantalum, {sup 237}Np) and results show that the obtained values for most materials are clearly above the measurement limits and then the perturbation technique can be used even with smaller size samples.

  17. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  18. Transportation and storage of foreign spent power reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage.

  19. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  20. Tritium Formation and Mitigation in High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  1. Recent Advances on Carbon Molecular Sieve Membranes (CMSMs and Reactors

    Directory of Open Access Journals (Sweden)

    Margot A. Llosa Tanco

    2016-08-01

    Full Text Available Carbon molecular sieve membranes (CMSMs are an important alternative for gas separation because of their ease of manufacture, high selectivity due to molecular sieve separation, and high permeance. The integration of separation by membranes and reaction in only one unit lead to a high degree of process integration/intensification, with associated benefits of increased energy, production efficiencies and reduced reactor or catalyst volume. This review focuses on recent advances in carbon molecular sieve membranes and their applications in membrane reactors.

  2. Modelling of gas-liquid reactors - stability and dynamic behaviour of a hydroformylation reactor, influence of mass transfer in the kinetics controlled regime

    NARCIS (Netherlands)

    Elk, E.P. van; Borman, P.C.; Kuipers, J.A.M.; Versteeg, G.F.

    2001-01-01

    On behalf of the development of new hydroformylation reactors, a research project was initiated to examine the dynamics of hydroformylation processes. The current paper presents the results of applying the rigorous reactor model and the approximate reactor model on a new, to be developed, hydroformy

  3. Moessbauer study of EUROFER and VVER steel reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E., E-mail: kuzmann@ludens.elte.hu [Eoetvoes University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Horvath, A. [Hungarian Academy of Sciences, Centre for Energy Research (Hungary); Alves, L.; Silva, J. F.; Gomes, U.; Souza, C. [Universidade Federal do Rio Grande do Norte (University) (Brazil); Homonnay, Z. [Eoetvoes University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary)

    2013-04-15

    {sup 57}Fe Moessbauer spectroscopy and X-ray diffractometry were used to study EUROFER or VVER ferritic reactor steels mechanically alloyed with TaC or NbC. Significant changes were found in the Moessbauer spectra and in the corresponding hyperfine field distributions between the ball milled pure steel and that alloyed with TaC or NbC. Spectral differences were also found in the case of use of same carbides with different origin, too. The observed spectral changes as an effect of ball milling of the reactor material steels with carbides can be associated with change in short range order of the constituents of steel.

  4. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO/sub 2/ from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide (Ba(OH)/sub 2/) or calcium hydroxide (Ca(OH)/sub 2/). Such a process would be applied to scrub /sup 14/CO/sub 2/ from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH)/sub 2/ slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH)/sub 2/. Overall reaction mechanisms are postulated.

  5. Alloying of steel and graphite by hydrogen in nuclear reactor

    Science.gov (United States)

    Krasikov, E.

    2017-02-01

    In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.

  6. Results and Prospects from the Daya Bay Reactor Neutrino Experiment

    CERN Document Server

    Higuera, A

    2016-01-01

    The Daya Bay reactor experiment has reported the most precise measurement of sin$^{2}2\\theta_{13}$ and $\\Delta m^{2}_{ee}$ by using a data set with the fully constructed design of 8 antineutrino detectors (ADs). We also report on a new independent measurement of sin$^{2}2\\theta_{13}$ from neutron capture on hydrogen, which confirms the results using gadolinium caputres. Several other analyses are also performed, including a measurements on the absolute reactor antineutrino flux and a search for light sterile neutrinos. Prospects for new analyses such as searching for CPT/LI violation at Daya Bay are ongoing.

  7. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  8. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    provide color-enhanced gemstones but is operated infrequently for radioisotope production. Because the two irradiation programs compete by utilizing the same core locations, the issues should be resolved at a high level. (c) Cobalt-60 production uses the most valuable irradiation location in the ETRR-2 (the high neutron density flux-trap), but there seems to be no potential customer for the Co-60. Further, the low number of hours the reactor is operated per week precludes ever producing a marketable specific activity of Co-60. Accordingly, Co-60 production should be reevaluated. (d) ETRR-2 staff would benefit from additional training to successfully design new experiment facilities and utilize existing facilities more effectively. This training can include IAEA Fellowships, as well as topical DOE Sister Laboratory visits to gain experience using equipment and research tools at other research reactor facilities.

  9. SU(2N_F) symmetry of QCD at high temperature and its implications

    CERN Document Server

    Glozman, L Ya

    2016-01-01

    If above a critical temperature not only the SU(N_F)_L \\times SU(N_F)_R chiral symmetry of QCD but also the U(1)_A symmetry is restored, then the actual symmetry of the QCD correlation functions and observables is SU(2N_F). Such a symmetry prohibits existence of deconfined quarks and gluons. Hence QCD at high temperature is also in the confining regime and elementary objects are SU(2N_F) symmetric "hadrons" with not yet known properties.

  10. SuPAR Predicts Cardiovascular Events and Mortality in Patients With Asymptomatic Aortic Stenosis

    DEFF Research Database (Denmark)

    Hodges, Gethin W; Bang, Casper N; Eugen-Olsen, Jesper

    2016-01-01

    BACKGROUND: Soluble urokinase plasminogen activator receptor (suPAR) is an inflammatory marker associated with subclinical cardiovascular damage and cardiovascular events. Whether suPAR is of prognostic value in asymptomatic patients with aortic stenosis (AS) remains unknown. METHODS: Plasma su......PAR levels were measured in 1503 patients with a mean age of 68 years who were recruited in the Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) study. Cox regression analysis was performed to evaluate associations between suPAR and the composite end points of ischemic cardiovascular events (ICEs), aortic...

  11. Nonlinear dynamics and control of a recycle fixed bed reactor

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1997-01-01

    The purpose of this paper is twofold. Primarily to describe the dynamic behaviour that can be observed in a fixed bed reactor with recycle of unconverted reactant. Secondly to describe the possibilities of model reduction in order to facilitate control design. Reactant recycle has been shown...... to introduce periodic solution to the fixed bed reactor, a phenomenon which is not seen for the system without the recycle, at least not within the Peclet number range investigated in the present work. The possibility of model reduction by the methods of modal decomposition, and by characteristics...

  12. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Korecka, Lucie [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic)]. E-mail: lucie.korecka@upce.cz; Jezova, Jana [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Bilkova, Zuzana [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Benes, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Hradcova, Olga [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Slovakova, Marcela [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France); Viovy, Jean-Louis [Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France)

    2005-05-15

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized.

  13. Surface Modification of Photoresist SU-8 for Low Autofluorescence and Bioanalytical Applications

    DEFF Research Database (Denmark)

    Cao, Cuong; Birtwell, Sam W.; Høgberg, Jonas;

    2011-01-01

    This paper reports a surface modification of epoxy-based negative photoresist SU-8 for reducing its autofluorescence while enhancing its biofunctionality. By covalently depositing a thin layer of 20 nm Au nanoparticles (AuNPs) onto the SU-8 surface, we found that the AuNPs-coated SU-8 surface...... is much less fluorescent than the untreated SU-8. Moreover, DNA probes can easily be immobilized on the Au surface and are thermally stable over a wide range of temperature. These improvements will benefit bioanalytical applications such as DNA hybridization and solid-phase PCR (SP-PCR)....

  14. Challenges for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: traskd@aecl.ca [Atomic Energy of Canada Limited, Fredericton, New Brunswick (Canada)

    2013-07-01

    This paper considers a model for small, unmanned, remotely located reactors and discusses the ensuing cyber security and operational challenges for monitoring and control and how these challenges might be overcome through some of AECL's research initiatives and experience. (author)

  15. Methods and strategies for future reactor safety goals

    Science.gov (United States)

    Arndt, Steven Andrew

    There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk

  16. Center vortices and the quark propagator in SU(2) gauge theory

    OpenAIRE

    2008-01-01

    We study the behavior of the AsqTad quark propagator in Landau gauge on quenched SU(2) gauge configurations under the removal of center vortices. In contrast to recent results in SU(3), we clearly see the infrared enhancement of the mass function disappear if center vortices are removed, a sign of the intimate relation between center vortices and chiral symmetry breaking in SU(2) gauge-field theory. These results provide a benchmark with which to interpret the SU(3) results. In addition, we c...

  17. Training Guide for Identifying, Meeting, and Evaluating Training Needs.

    Science.gov (United States)

    Federal Highway Administration (DOT), Washington, DC. National Highway Inst.

    This manual is a guide for the training supervisor, specialist, or other official who has to plan, develop, and carry through a training program for improving the effectiveness of the employee development program, particularly in a governmental department of highways. The content is in three chapters: (1) Identifying Training Needs briefly…

  18. The Application of MVC Design Pattern in Daya Bay Reactor Neutrino Experiment's Online Safety Trainning System%MVC框架在大亚湾中微子实验在线安全培训系统中的应用

    Institute of Scientific and Technical Information of China (English)

    刘冠川; 初元萍

    2011-01-01

    The article made an introduction to MVC, which is an architectural pattern used in software engineering. It specified the advantages and disadvantages of MVC and also the application of MVC in Daya Bay nuclear reactor neutrino experiment online safety trainning system.%主要阐述了MVC设计模式的原理、优点、不足,以及MVC在中国科学院高能物理研究所大亚湾反应堆中微子实验在线安全知识培训系统中的具体应用.

  19. Factors of success and implementation. Results compiled by the SU:GRE project; Alternative Antriebstechniken fuer Busse in der Praxis. Erfolgsfaktoren und Ergebnisse aus dem Projekt SU:GRE

    Energy Technology Data Exchange (ETDEWEB)

    Cebrat, G. [Forschungsgesellschaft Mobilitaet, Graz (Austria); Arias, D. [Besel, Madrid (Spain); Jeuring, R. [ECORYS - AVM, Amsterdam (Netherlands); Birath, K. [WSP Analysis and Strategy, Stockholm (Sweden)

    2007-07-01

    Public transport suffers from claims for cost cutting because of declining public budgets. On the other hand air quality in most European cities is affected by heavy vehicle exhaust. Transport operators are subject to increased pressure by the local administration to act. Often technological innovations are characterised by high development costs and unsure promises about benefits. In this paper we want to figure out trends: Furthermore a tool is presented to develop individual scenarios where both PT-operators and the environment may profit using new propulsion technologies and or bio fuels. We analysed the good/best cases in Europe which are also presented in the best case directory of the EU-funded SU:GRE project at www.greenfleet.info. Based on the experience implementing a bus fleets running on B100 the tool supporting the decision, procurement and operation process was developed. SU:GRE will support stakeholders with training and information activities till end of 2008. (orig.)

  20. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  1. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...

  2. 秘鲁马丘比丘水轮发电机VPI定子线棒研制%The Research of Peru Machu Picchu Hydrogenerator's VPI Stator Bar Manufacturing

    Institute of Scientific and Technical Information of China (English)

    郑伟; 卢春莲

    2012-01-01

    秘鲁马丘比丘水轮发电机定子线棒采用少胶VPI绝缘体系.本文从主绝缘体系、主绝缘结构、防晕结构、制造工艺方面进行研究和试验,试验结果满足各项合同要求,可进行批量投产制造,满足电机长期安全有效的运行.%The stator bar insulation system of Peru Machu Picchu Hydrogenerator is based on VPI. This paper focused on the insulation system, insulation structure, corona protection structure and manufacturing technology research and eventually fabricated the experimental stator bar. All the test results of the experimental bar can meet the contract requirement; the bar can be batch processed and ensure the machine long-term run in safety and efficiency.

  3. Instrumentation, Monitoring and NDE for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J.; Doctor, Steven R.; Bunch, Kyle J.; Good, Morris S.; Waltar, Alan E.

    2007-07-28

    The Global Nuclear Energy Partnership (GNEP) has been proposed as a viable system in which to close the fuel cycle in a manner consistent with markedly expanding the global role of nuclear power while significantly reducing proliferation risks. A key part of this system relies on the development of actinide transmutation, which can only be effectively accomplished in a fast-spectrum reactor. The fundamental physics for fast reactors is well established. However, to achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required--during both fabrication and operation. Since the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor – II (EBR-II) reactors were operational in the USA, there have been major advances in instrumentation, not the least being the move to digital systems. Some specific capabilities have been developed outside the USA, but new or at least re-established capabilities will be required. In many cases the only available information is in reports and papers. New and improved sensors and instrumentation will be required. Advanced instrumentation has been developed for high-temperature/high-flux conditions in some cases, but most of the original researchers and manufacturers are retired or no longer in business.

  4. Biological processing in oscillatory baffled reactors: operation, advantages and potential

    Science.gov (United States)

    Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.

    2013-01-01

    The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509

  5. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  6. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  7. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  8. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  9. Planned reactor and beam experiments on Neutrino Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Maury [Argonne National Lab, Argonne IL 60439 (United States)

    2009-08-15

    Current and future neutrino oscillation experiments are discussed with an emphasis on those that will measure or further limit the neutrino oscillation parameter {theta}{sub 13}. Some {nu}{sub e} disappearance experiments are being planned at nuclear reactors, and more ambitious {nu}{sub {mu}}{yields}{nu}{sub e} appearance experiments are being planned using accelerator beams.

  10. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    Science.gov (United States)

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  11. Economics and utilization of thorium in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers.

  12. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  13. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  14. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    Science.gov (United States)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-04-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  15. An earthquake transient method for pebble-bed reactors and a fuel temperature model for TRISO fueled reactors

    Science.gov (United States)

    Ortensi, Javier

    This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included

  16. Pressure drop and axial dispersion in industrial millistructured heat exchange reactors

    OpenAIRE

    Moreau, Maxime; Di Miceli Raimondi, Nathalie; Le Sauze, Nathalie; Cabassud, Michel; Gourdon, Christophe

    2015-01-01

    International audience; Hydrodynamic characterization by means of pressure drop and residence time distribution (RTD)experiments is performed in three millistructured heat exchange reactors: two Corning reactors (further referred to as Corning HP and Corning RT) and a Chart reactor. Pressure drop is measured for different flow rates and fluids. Fanning friction factor is then calculated and its evolution versus Reynolds number is plotted for each reactor, showing the influence of the geometri...

  17. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treated separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s

  18. Commercial US nuclear reactors and waste: the current status

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Robinson, J.V.

    1980-09-01

    Between March 1 and June 15, 1980, the declared size of the commercial light waste reactor (LWR) nuclear power industry in the US has decreased another 9 GWe. For the presently declared size: the 165 declared reactors will peak at a capacity of 153 GWe in 2001 and will consume about 870,000 MTU as enrichment feed; the theoretical rate of enrichment requirements will peak at about 19,000,000 SWUs/y in the year 2014; as few as two repositories each with capacity equivalent to 100,000 MTU would hold the waste; and predisposal storage reactor basins and AFRs (away-from-reactor basins) would peak at <85,000 MTU in the year 2020 if the two respositories were commissioned in the years 1997 and 2020. It should be noted that the number of declared LWRs has dropped from 226 on December 31, 1974 to 165 as of this writing. The oil equivalent of the energy loss, assuming a 50% efficiency in use as in cars, is 17,000 million barrels. This is about 10 years of the current rate of US consumption of OPEC oil.

  19. Environment, Training and the Workforce

    DEFF Research Database (Denmark)

    Madsen, Henning; Ulhøi, John Parm

    It has long been realised that education and training are essential factors in promoting environmental management in business organisations. So far, however, there has been little information about environmental management practice and related educational and training requirements in even leading...... companies. Therefore, a research project has been initiated aimed at identifying general trends in the introduction of environmental management in leading European companies and the educational and training needs this will require in future. Similarly, initiatives related to environmental issues carried out...

  20. Severe Accidents and New Reactors. Twenty Years of Research; Accidents severos y nuevos reactores. Veinte anos de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.

    2008-07-01

    A review was done on the main activities performed by the Programme for Nuclear Safety of CIEMAT in the field of nuclear reactor safety from 1985 to 2005. It covers the areas of severe accident and source term, advanced and passive reactors, containments analyses and plant applications. It is emphasized CIEMATs participation in national and international projects mainly in those supported by CSN, OECD and the EU. At the same time, experimental and analytical capabilities set up at CIEMAT, as PECA, RECA and GIRS for simulating aerosol pool scrubbing phenomena, hydrogen catalytic recombiner and sprays are been presented, together with an Annex on Generation IV. Two chapters were added, one on the nuclear power reactors in the world and another about the safety systems and principles. (Author)

  1. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  2. REACTOR FILLED WITH CATALYST MATERIAL, AND CATALYST THEREFOR

    NARCIS (Netherlands)

    Sie, S.T.

    1995-01-01

    Abstract of WO 9521691 (A1) Described is a reactor (1) at least partially filled with catalyst granules (11), which is intended for catalytically reacting at least one gas and at least one liquid with each other. According to the invention the catalyst granules (11) are collected in agglomerates

  3. FBR for catalytic propylene polymerization: Controlled mixing and reactor modeling

    NARCIS (Netherlands)

    Meier, G.B.; Weickert, G.; Swaaij, van W.P.M.

    2002-01-01

    Particle mixing and segregation have been studied in a small-scale fluidized-bed reactor (FBR) under pressure. The solids mixing is relatively faster than the residence time of catalyst particles in the case of a polymerization process, but smaller particles accumulate in the upper zone. Semibatch p

  4. Acrylic acid and electric power cogeneration in an SOFC reactor.

    Science.gov (United States)

    Ji, Baofeng; Wang, Jibo; Chu, Wenling; Yang, Weishen; Lin, Liwu

    2009-04-21

    A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

  5. Historical events: Single pass reactors and fuels fabrication

    Energy Technology Data Exchange (ETDEWEB)

    DeNeal, D.L.

    1970-04-10

    The intent of this report is to record, in one place, the significant historical events associated with the Single Pass Reactors from initial startup through December 1969. Significant events are chronologically listed in Section 1 and specific programs are summarized in Section 2.

  6. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    Science.gov (United States)

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  7. Development and Assessment of Advanced Reactor Core Protection System

    Science.gov (United States)

    in, Wang-Kee; Park, Young-Ho; Baeg, Seung-Yeob

    An advanced core protection system for a pressurized water reactor, Reactor Core Protection System(RCOPS), was developed by adopting a high performance hardware platform and optimal system configuration. The functional algorithms of the core protection system were also improved to enhance the plant availability by reducing unnecessary reactor trips and increasing operational margin. The RCOPS consists of four independent safety channels providing a two-out-of-four trip logic. The reliability analysis using the reliability block diagram method showed the unavailability of the RCOPS to be lower than the conventional system. The failure mode and effects analysis demonstrated that the RCOPS does not lose its intended safety functions for most failures. New algorithms for the RCOPS functional design were implemented in order to avoid unnecessary reactor trips by providing auxiliary pre-trip alarms and signal validation logic for the control rod position. The new algorithms in the RCOPS were verified by comparing the RCOPS calculations with reference results. The new thermal margin algorithm for the RCOPS was expected to increase the operational margin to the limit for Departure from Nucleate Boiling Ratio (DNBR) by approximately 1%.

  8. DESIGN AND APPLICATION OF FLUIDIZED BED PHOTOCATALYTIC REACTOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Photocatalytic degradation of organic pollutant is a new and potential method to transform it to harmless inorganic material, such as CO2 and H2O. So far, most of photocatalytic reactors were cylinder or tabulate photoreactor. The relevant photocatalyst was TiO2 nanometer powder. Although a few investigators had aimed their research field to fluidized bed reactor, their reaction systems were of biphase, such as solid-liquid or solid-gas. Few people focused their research on the triphasic fluidized bed photocatalytic reactor[1]. Compared with traditional photoreactors, a triphasic fluidized bed photoreactor has more advantages[2]: (1) The solid photocatalyst can be separated easily. (2) Its configuration meets the requirement of higher surface area-to-volume ratio of photocatalytic, which is much lower in a fixed bed or a plate photoreactor. (3) The UV light can be used more efficiently. (4) The mass transfer conditions can be controlled and improved easily. (5) It suited to pilot-scale or large-scale operations. For the UV light penetration and photon efficiency should be considered, the photocatalytic reactor differed greatly from a typical fluidized bed reactor.

  9. Microbial diversity and dynamicity of biogas reactors due to radical changes of feedstock composition

    DEFF Research Database (Denmark)

    De Francisci, Davide; Kougias, Panagiotis; Treu, Laura;

    2015-01-01

    substrate change. The greatest increase in diversity was observed in the reactor supplemented with carbohydrates and the microbial community became dominated by lactobacilli, while the lowest corresponded to the reactor overfed with proteins, where only Desulfotomaculum showed significant increase...

  10. Reactor Engineering

    Science.gov (United States)

    Lema, Juan M.; López, Carmen; Eibes, Gemma; Taboada-Puig, Roberto; Moreira, M. Teresa; Feijoo, Gumersindo

    In this chapter, the engineering aspects of processes catalyzed by peroxidases will be presented. In particular, a discussion of the existing technologies that utilize peroxidases for different purposes, such as the removal of recalcitrant compounds or the synthesis of polymers, is analyzed. In the first section, the essential variables controlling the process will be investigated, not only those that are common in any enzymatic system but also those specific to peroxidative reactions. Next, different reactor configurations and operational modes will be proposed, emphasizing their suitability and unsuitability for different systems. Finally, two specific reactors will be described in detail: enzymatic membrane reactors and biphasic reactors. These configurations are especially valuable for the treatment of xenobiotics with high and poor water solubility, respectively.

  11. Contribution of CAD and PLM Research Reactors Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnetain, Xavier [AREVA TA, Paris (France)

    2013-07-01

    As all the reactors, the main stakes in the engineering of design and construction of the research reactors consist of the management and sharing of the technical data, the functional, physical and contractual interfaces data between the various contributors on the whole designs and construction cycle project. For 40 years, AREVA TA designs and builds reactors. Computer Aided Design (CAD) tools were introduced for 30 years into the engineering processes of AREVA TA, completed for 15 years by Product Lifecycle Management (PLM) tools. For 15 years AREVA TA pursues the integration since the feasibility of its newest Information Technologies (IT). In the first part, the paper presents IN the second part, the paper presents how the schematics and CAD tools support the engineering processes during the different phases of the project. CAD was used during the studies and now supports the management of the layout and design studies, including interfaces between suppliers, up to the constitution of the as built CAD mock-up. In the third part, the paper presents the relations between the various tools and the PLM solution implemented by AREVA TA to ensure the consistency between all tools and data for the benefit of the project.

  12. Application of Novel Anti-corona Tape in 18 kV VPI Stator Bar%新型防晕带在18 kV电机VPI定子线棒上的应用

    Institute of Scientific and Technical Information of China (English)

    李振海

    2013-01-01

    The effect of solid-state thin HR-x series of anti-corona tape on the solventless impregnating varnish was tested by infrared analysis, and the nonlinear parameters of the tapes were tested, then the anti-corona structure suitable for high voltage motor stator bar was determined. The test bars were pre-pared by one-step forming VPI process of main insulation and anti-corona structure and the process of main insulation first undergo anti-corona treatment then curing respectively. The application results show that HR-x series of anti-corona tape is fully applicable to the stator bars formed by one-step VPI pro-cess, and the anti-corona performance can reach the advanced level at home and abroad.%对全固化薄型HR-x系列防晕带与无溶剂浸渍漆的影响进行了分析,测试了防晕带的非线性参数,确定了适合高压电机定子线棒的防晕结构。分别采用线棒主绝缘和防晕结构一次VPI成型的工艺和线棒主绝缘VPI后进行防晕处理,然后固化成型的工艺,制备了试验线棒。应用结果表明:HR-x防晕带适用线棒主绝缘一次VPI成型工艺,防晕性能指标达到国内先进水平。

  13. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  14. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  15. Analysis of fluid mixing characteristics in reactor vessel downcomer using Theofanous and Wallis` mixing model. (DVI Case)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hyun; Kim, Hwan Yeol; Kang, Hyung Seok; Bae, Yoon Young

    1997-05-01

    Direct injection of emergency core cooling water into the reactor vessel downcomer annulus (DVI) is an unique feature of the four-train safety injection system of Korean Next Generation Reactor(KNGR). In this study, in order to evaluate the fluid mixing characteristics of the injected water for DVI case, we have suggested for application to DVI, Theofanous` regional mixing model and Wallis` experiments of flow regimes for injection water to the annulus. Theofanous`model was developed as a fluid mixing model in reactor vessel downcomer for the case of Cold Leg Injection(CLI). We have established a procedure for calculating fluid mixing temperature, calculated the mixing temperature for SBLOCA and MSLB, and compared them to those of CLI. In general, the fluid temperatures across the reactor vessel beltline are higher than 110 deg F, the RT{sub NDT} of EOL for reactor vessel material, and the values are within the acceptable limits of PTS concern. (author). 6 tabs., 21 figs., 11 refs.

  16. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  17. Parallelization and automatic data distribution for nuclear reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liebrock, L.M. [Liebrock-Hicks Research, Calumet, MI (United States)

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  18. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  19. Flow Reactor Studies with Nanosecond Pulsed Discharges at Atmospheric Pressure and Higher

    Science.gov (United States)

    2013-10-01

    Image of Discharge Reactor with Viewport Inlet Cap • Modular plasma discharge reactor can be interchanged with redesigned pressure shell to perform...Flow Reactor Studies with Nanosecond Pulsed Discharges at Atmospheric Pressure and Higher Nicholas Tsolas, Kuni Togai and Richard Yetter...Department of Mechanical and Nuclear Engineering The Pennsylvania State University University Park, PA, 16801 Fourth Annual Review Meeting of the

  20. The experimental and technological developments reactor; Le reacteur d'etudes et de developpements technologiques

    Energy Technology Data Exchange (ETDEWEB)

    Carbonnier, J.L. [CEA Cadarache, Dept. d' Etudes des Reacteurs (DEN/DER), 13 - Saint-Paul-lez-Durance (France)

    2003-07-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  1. 75 FR 27368 - Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of...

    Science.gov (United States)

    2010-05-14

    ... COMMISSION Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of... INFORMATION CONTACT: Cindy Montgomery, Project Manager, Research and Test Reactors Licensing Branch, Division... Operating License No. R-98 for the Aerotest Radiography and Research Reactor (ARRR), currently held by...

  2. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  3. Neutrinoless double beta decay and chiral SU(3)

    Science.gov (United States)

    Cirigliano, V.; Dekens, W.; Graesser, M.; Mereghetti, E.

    2017-06-01

    TeV-scale lepton number violation can affect neutrinoless double beta decay through dimension-9 ΔL = ΔI = 2 operators involving two electrons and four quarks. Since the dominant effects within a nucleus are expected to arise from pion exchange, the π- →π+ ee matrix elements of the dimension-9 operators are a key hadronic input. In this letter we provide estimates for the π- →π+ matrix elements of all Lorentz scalar ΔI = 2 four-quark operators relevant to the study of TeV-scale lepton number violation. The analysis is based on chiral SU (3) symmetry, which relates the π- →π+ matrix elements of the ΔI = 2 operators to the K0 →Kbar0 and K → ππ matrix elements of their ΔS = 2 and ΔS = 1 chiral partners, for which lattice QCD input is available. The inclusion of next-to-leading order chiral loop corrections to all symmetry relations used in the analysis makes our results robust at the 30% level or better, depending on the operator.

  4. Neutrinoless double beta decay and chiral SU(3

    Directory of Open Access Journals (Sweden)

    V. Cirigliano

    2017-06-01

    Full Text Available TeV-scale lepton number violation can affect neutrinoless double beta decay through dimension-9 ΔL=ΔI=2 operators involving two electrons and four quarks. Since the dominant effects within a nucleus are expected to arise from pion exchange, the π−→π+ee matrix elements of the dimension-9 operators are a key hadronic input. In this letter we provide estimates for the π−→π+ matrix elements of all Lorentz scalar ΔI=2 four-quark operators relevant to the study of TeV-scale lepton number violation. The analysis is based on chiral SU(3 symmetry, which relates the π−→π+ matrix elements of the ΔI=2 operators to the K0→K¯0 and K→ππ matrix elements of their ΔS=2 and ΔS=1 chiral partners, for which lattice QCD input is available. The inclusion of next-to-leading order chiral loop corrections to all symmetry relations used in the analysis makes our results robust at the 30% level or better, depending on the operator.

  5. Unification of Non-Abelian SU(N) Gauge Theory and Gravitational Gauge Theory

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2002-01-01

    In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar basisand are unified in a semi-direct product group GSU(N). Based on this model, we can discuss unification of fundamentalinteractions of Nature.

  6. Thermal and hydraulic characteristics of the JEN-1 Reactor; Caracteristicas hidraulicas y termicas del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Otra Otra, F.; Leira Rey, G.

    1971-07-01

    In this report an analysis is made of the thermal and hydraulic performances of the JEN-1 reactor operating steadily at 3 Mw of thermal power. The analysis is made separately for the core, main heat exchanger and cooling tower. A portion of the report is devoted to predict the performances of these three main components when and if the reactor was going to operate at a power higher than the maximum 3 Mw attainable today. Finally an study is made of the unsteady operation of the reactor, focusing the attention towards the pumping characteristics and the temperatures obtained in the fuel elements. Reference is made to several digital calculation programmes that nave been developed for such purpose. (Author) 21 refs.

  7. Scaledown of a methanol reactor

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.

    1983-07-01

    This article shows how it is possible to define operating conditions for pilot plants and development labs by scaling down a commercial reactor. Points out that scaledown consideration and experiment planning can be done in a similar manner for the boiling water-cooled, Lurgi-type reactor. Explains that although the design of large, single-train plants to produce methanol for fuel use has different economic objectives, product specifications, and technical constraints from the traditional commercial methanol plants, the same fundamental laws of thermodynamics and reaction kinetics apply to both types of operation.

  8. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  9. Application of a new operating license for the Finnish FiR 1 reactor and the change of generation of the reactor personnel

    Energy Technology Data Exchange (ETDEWEB)

    Salmenhaara, Seppo; Auterinen, Iiro [VTT Technical Research Centre of Finland, Otaniemi, Espoo (Finland)

    2008-10-29

    The FiR 1 epithermal BNCT facility is a TRIGA Mark II reactor: 250 kW; 15 kg U containing 3 kg {sup 235}U (20% enrichment) in the special TRIGA uranium-zirconium hydride fuel (8-12 w% U, 91% Zr, 1% H); epithermal neutrons are created by the FLUENTAL{sup TM} neutron moderator; Neutron collimation: Bi + Li-Poly cone; epithermal neutron flux: 1.1 10{sup 9} /cm{sup 2}s; fast neutron dose: 2 Gy/10{sup 13} cm{sup -2}. The schedule of the Operating License Application is as follows: - 2009 decision to apply a new license; - 2010 preparation of the documents needed for the application; - 2011 the documents will be checked by the authorities and at the end of the year the new license should be granted by the Government; - 2012-2016 probable period of the new license The supplementary documents to the application for an operating license are: 1. Details of the site; 2. The quality and maximum amounts of the nuclear material 3. An outline of the technical operating principles and arrangements whereby the safety has been ensured; 4. A description of the safety principles that have been observed, and an evaluation of the fulfillment of the principles; 5. A description of the measures to restrict the burden caused by the nuclear facility on the environment; 6. The expertise available to the applicant and the operating organization; 7. Plans for arranging nuclear waste management. The applicant submits to the Radiation and Nuclear Safety Authority: 1. The final safety analysis report; 2. A probabilistic safety analysis; 3. A quality assurance programme for the operation of the nuclear facility; 4. Technical specifications; 5. A summary programme for periodic inspections; 6. A description of the arrangements for physical protection and emergencies; 7. A description on how to arrange the safeguards that are necessary to prevent the proliferation of nuclear weapons; 8. Administrative rules; 9. A programme for radiation monitoring in the environment. Reactor key persons and the

  10. 77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment

    Science.gov (United States)

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components and Equipment Pursuant to 10... Reactor internals, Components and For use in Braka nuclear power Company LLC reactor coolant equipment...

  11. Conception of high safety reactor MAVR, technical and economical fuel cycle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, V.M.; Cherepnin, Yu.S.

    1993-12-31

    Operation safety of reactor MAVR under nominal and emergency situations is based on creation of conditions for the minimum time of fuel operation in the core at the minimum quantity of the fissionable material. The variants of core elements construction, of the reactor control systems, and the possible scheme of fuel cycles of the reactor MAVR are considered.

  12. Hybrid Adsorption-Membrane Biological Reactors for Improved Performance and Reliability of Perchlorate Removal Processes

    Science.gov (United States)

    2008-12-01

    carbon supply for the autotrophic perchlorate reducing bacteria. The membrane used in the reactor is a hollow-fiber microfiltration membrane made from...1 HYBRID ADSORPTION- MEMBRANE BIOLOGICAL REACTORS FOR IMPROVED PERFORMANCE AND RELIABILITY OF PERCHLORATE REMOVAL PROCESSES L.C. Schideman...Center Champaign, IL 61826, USA ABSTRACT This study introduces the novel HAMBgR process (Hybrid Adsorption Membrane Biological Reactor) and

  13. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  14. Design of micro-reactors and solar photocatalytic prototypes; Diseno de micro-reactores y prototipos fotocataliticos solares

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M.; Hernandez H, M.; Perusquia del Cueto, M.R.; Bonifacio M, J.; Jimenez B, J.; Ortiz O, H.B.; Castaneda J, G.; Lugo H, M. [ININ, Km. 36.5 Carr. Mexico-Toluca, 52750 La Marquesa, Ocoyoacac (Mexico)]. e-mail: rmfe@nuclear.inin.mx

    2007-07-01

    In the ININ is carried out research in heterogeneous photocatalysis using artificial light for to degrade organic compounds. In this context, it is sought to use the solar radiation as energy source to knock down costs. Of equal form it requires to link the basic and applied research. For it, a methodology that allows to design and to build micro-reactors and plants pilot has been developed, like previous step, to request external supports and to a future commercialization. The beginning of these works gave place to the partial construction of a prototype of photocatalytic reactor of the cylinder-parabolic composed type (CPC)

  15. Current status, research progress and future plan of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sardjono, Y.; Syarip; Tjiptono, T.W. [Yogyakarta Nuclear Research Center, Batan (Indonesia)

    1999-10-01

    The current status, research progress and future plan of the Kartini Research Reactor (KRR) is presented. The measurements of axial burn-up distributions for each fuel element by gamma scanning techniques, core axial power distribution display, fuel management for safeguards purpose as well as some research progress activities i.e.; utilization of beamport for: neutron radiography, application neutron activation analysis and history record of KRR power operations is also presented. The KRR is 100 kW pool water reactor type which uses natural circulation and provided by: five beamports in which one of them already coupled with natural uranium subcritical assembly, two thermalizing columns in which one of them is prepared for developing Boron Neutron Capture Therapy (BNCT), two rabbit systems utilized for special analysis uranium ore by delayed neutron counting techniques, one center timbre and 40 irradiation rack (lazy susan) for neutron activation analysis. The KRR was constructed as a second research reactor in Indonesia with special purpose for training and education, high safety margin with involve in high negative temperature coefficient which achieved its first criticality on January 25, 1979. The maximum power level on first criticality is 50 kW and since August 1981 up to now is operating 100 kW. Base on the KRR design limit, it is planned to increase the power level up to 250 kW in the future plan. The preliminary activities such as Non Destructive Testing (NDT) for some reactor components especially water tank and thermal column should be done before decided to increase power level. (author)

  16. Handbook of nuclear engineering: vol 1: nuclear engineering fundamentals; vol 2: reactor design; vol 3: reactor analysis; vol 4: reactors of waste disposal and safeguards

    CERN Document Server

    2013-01-01

    The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.

  17. Functional Fit Approach (FFA) for Density of States method: SU(3) spin system and SU(3) lattice gauge theory with static quarks

    CERN Document Server

    Giuliani, Mario

    2016-01-01

    We apply a recently developed variant of the Density of States (DoS) method, the so-called Functional Fit Approach (FFA) to two different models: the SU(3) spin model and SU(3) lattice gauge theory with static quarks. Both models can be derived from QCD and inherit the complex action problem at finite density. We discuss the implementation of DoS FFA in the two models and compute observables related to the particle density. For the SU(3) spin model we show that the results are in good agreement with the results from a Monte Carlo simulation in the dual formulation, which is free of the complex action problem. For the case of SU(3) lattice gauge theory with static quarks we present first results for the particle number as a function of the coupling for different values of the chemical potential.

  18. Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Sastry, P.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Pandey, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)]. E-mail: manmohan@iitg.ac.in; Dixit, U.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Gupta, S.K. [Atomic Energy Regulatory Board, Mumbai 400085 (India)

    2007-02-15

    Numerical simulation of natural circulation boiling water reactor is important in order to study its performance for different designs and under various off-design conditions. Numerical simulations can be performed by using thermal-hydraulic codes. Very fast numerical simulations, useful for extensive parametric studies and for solving design optimization problems, can be achieved by using an artificial neural network (ANN) model of the system. In the present work, numerical simulations of natural circulation boiling water reactor have been performed with RELAP5 code for different values of design parameters and operational conditions. Parametric trends observed have been discussed. The data obtained from these simulations have been used to train artificial neural networks, which in turn have been used for further parametric studies and design optimization. The ANN models showed error within {+-}5% for all the simulated data. Two most popular methods, multilayer perceptron (MLP) and radial basis function (RBF) networks, have been used for the training of ANN model. Sequential quadratic programming (SQP) has been used for optimization.

  19. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  20. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",