WorldWideScience

Sample records for vp16 transcriptional complex

  1. Improved long-term expression from helper virus-free HSV-1 vectors packaged using combinations of mutated HSV-1 proteins that include the UL13 protein kinase and specific components of the VP16 transcriptional complex

    Directory of Open Access Journals (Sweden)

    Geller Alfred I

    2009-06-01

    Full Text Available Abstract Background Herpes Simplex Virus (HSV-1 gene expression is thought to shut off recombinant gene expression from HSV-1 vectors; however, in a helper virus-free HSV-1 vector system, a number of promoters support only short-term expression. These results raise the paradox that recombinant gene expression remains short-term even in the absence of almost all (~99% of the HSV-1 genome, HSV-1 genes, and HSV-1 gene expression. To resolve this paradox, we hypothesized that specific proteins in the HSV-1 virus particle shut off recombinant gene expression. In two earlier studies, we examined the effects on recombinant gene expression of packaging vectors using specific mutated HSV-1 proteins. We found that vectors packaged using mutated UL13 (a protein kinase, or VP16, or UL46 and/or UL47 (components of the VP16 transcriptional complex supported improved long-term expression, and vectors packaged using mutated UL46 and/or UL47 also supported improved gene transfer (numbers of cells at 4 days. These results suggested the hypothesis that specific proteins in the HSV-1 particle act by multiple pathways to reduce recombinant gene expression. To test this hypothesis, we examined combinations of mutated proteins that included both UL13 and specific components of the VP16 transcriptional complex. Results A HSV-1 vector containing a neuronal-specific promoter was packaged using specific combinations of mutated proteins, and the resulting vector stocks were tested in the rat striatum. For supporting long-term expression, the preferred combination of mutated HSV-1 proteins was mutated UL13, UL46, and UL47. Vectors packaged using this combination of mutated proteins supported a higher efficiency of gene transfer and high levels expression for 3 months, the longest time examined. Conclusion Vector particles containing this combination of mutated HSV-1 proteins improve recombinant gene expression. Implications of these results for strategies to further improve

  2. Improved long-term expression from helper virus-free HSV-1 vectors packaged using combinations of mutated HSV-1 proteins that include the UL13 protein kinase and specific components of the VP16 transcriptional complex.

    Science.gov (United States)

    Liu, Meng; Wang, Xiaodan; Geller, Alfred I

    2009-06-16

    Herpes Simplex Virus (HSV-1) gene expression is thought to shut off recombinant gene expression from HSV-1 vectors; however, in a helper virus-free HSV-1 vector system, a number of promoters support only short-term expression. These results raise the paradox that recombinant gene expression remains short-term even in the absence of almost all (approximately 99%) of the HSV-1 genome, HSV-1 genes, and HSV-1 gene expression. To resolve this paradox, we hypothesized that specific proteins in the HSV-1 virus particle shut off recombinant gene expression. In two earlier studies, we examined the effects on recombinant gene expression of packaging vectors using specific mutated HSV-1 proteins. We found that vectors packaged using mutated UL13 (a protein kinase), or VP16, or UL46 and/or UL47 (components of the VP16 transcriptional complex) supported improved long-term expression, and vectors packaged using mutated UL46 and/or UL47 also supported improved gene transfer (numbers of cells at 4 days). These results suggested the hypothesis that specific proteins in the HSV-1 particle act by multiple pathways to reduce recombinant gene expression. To test this hypothesis, we examined combinations of mutated proteins that included both UL13 and specific components of the VP16 transcriptional complex. A HSV-1 vector containing a neuronal-specific promoter was packaged using specific combinations of mutated proteins, and the resulting vector stocks were tested in the rat striatum. For supporting long-term expression, the preferred combination of mutated HSV-1 proteins was mutated UL13, UL46, and UL47. Vectors packaged using this combination of mutated proteins supported a higher efficiency of gene transfer and high levels expression for 3 months, the longest time examined. Vector particles containing this combination of mutated HSV-1 proteins improve recombinant gene expression. Implications of these results for strategies to further improve long-term expression are discussed

  3. Mammalian transcription activation domains of VP16, AP2 and CTF activate transcription in a whole cell extract from Schizosaccharomyces pombe through the SRB/mediator.

    Science.gov (United States)

    Tamayo, Evelyn; Bernal, Giuliano; Maldonado, Edio

    2005-05-01

    The acidic-rich activation domain of VP16 and the proline-rich activation domains of human AP2 and human CTF are able to activate transcription in a whole cell extract from Schizosaccharomyces pombe, whereas the glutamine-rich domains of Sp1 and Oct2 are unable to activate transcription in this system. Immunodepletion experiments of the whole cell extracts using specific antibodies against pombe TAF110, pombe TAF 72, pombe TBP and Srb4 shows that the activation of transcription by VP16, AP2 and CTF is through the mediator, since depletion of Srb4 inhibits activated transcription but does not inhibit basal transcription. Immunodepletion of TBP causes inhibition of both activated and basal transcription. On the other hand, immunodepletion of TAFs does not have an effect on either activated or basal transcription. Purified RNA polymerase holoenzyme is able to rescue the transcriptional activation activity of the anti-Srb4 immunodepleted extract. Moreover, we demonstrate that the mediator is needed for basal transcription of a TATA-less promoter.

  4. Structural properties of the promiscuous VP16 activation domain

    NARCIS (Netherlands)

    Jonker, H.R.A.; Wechselberger, R.W.|info:eu-repo/dai/nl/304829005; Folkers, G.E.|info:eu-repo/dai/nl/162277202; Kaptein, R.|info:eu-repo/dai/nl/074334603

    2005-01-01

    Herpes simplex virion protein 16 (VP16) contains two strong activation regions that can independently and cooperatively activate transcription in vivo. We have identified the regions and residues involved in the interaction with the human transcriptional coactivator positive cofactor 4 (PC4) and the

  5. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Spang-Thomsen, Mogens

    2003-01-01

    Etoposide (VP16) is a potent inducer of DNA double-strand breaks (DSBs) and is efficiently used in small cell lung cancer (SCLC) therapy. However, acquired VP16 resistance remains an important barrier to effective treatment. To understand the underlying mechanisms for VP16 resistance in SCLC, we...... investigated DSB repair and cellular VP16 sensitivity of SCLC cells. VP16 sensitivity and RAD51, DNA-PK(cs), topoisomerase IIalpha and P-glycoprotein protein levels were determined in 17 SCLC cell lines. In order to unravel the role of RAD51 in VP16 resistance, we cloned the human RAD51 gene, transfected SCLC...... cells with RAD51 sense or antisense constructs and measured the VP16 resistance. Finally, we measured VP16-induced DSBs in the 17 SCLC cell lines. Two cell lines exhibited a multidrug-resistant phenotype. In the other SCLC cell lines, the cellular VP16 resistance was positively correlated with the RAD51...

  6. Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Amélie Sevin-Pujol

    Full Text Available Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to "classical" promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.

  7. Postincubation with aclarubicin reverses topoisomerase II mediated DNA cleavage, strand breaks, and cytotoxicity induced by VP-16

    DEFF Research Database (Denmark)

    Petersen, L N; Jensen, P B; Sørensen, B S

    1994-01-01

    In previous studies, we found that VP-16 (etoposide) induced cytotoxicity and protein-concealed strand break formation was prevented in a small cell lung cancer (SCLC) cell line, when the cells were incubated with aclarubicin prior to treatment with VP-16. In the present work, we studied the effect...... of adding aclarubicin to the cell suspension after VP-16. In a clonogenic assay, we found that the cytotoxicity induced by VP-16 in SCLC cells was inhibited when cells were postincubated with aclarubicin. The addition of aclarubicin at any time in relation to VP-16 was able to stop further cytotoxicity...... induced by the topoisomerase II (topo-II) targeting drug. Aclarubicin was also found to antagonize the cytotoxicity induced by VM-26 (teniposide), and m-AMSA. With the alkaline elution technique we found that postincubating the cells with aclarubicin inhibited VP-16-induced DNA strand break formation...

  8. DNA repair rate and etoposide (VP16) resistance of tumor cell subpopulations derived from a single human small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Helleday, Thomas

    2003-01-01

    being VP16 resistant. In order to explain the VP16 resistant phenotype several mechanisms where considered. The p53 status, P-glycoprotein, MRP, topoisomerase IIalpha, and Mre11 protein levels, as well as growth kinetics, provided no explanations of the observed VP16 resistance. In contrast...

  9. Cyclosporin A inhibits HTLV-I tax expression and shows anti-tumor effects in combination with VP-16.

    Science.gov (United States)

    Ozaki, Atsuo; Arima, Naomichi; Matsushita, Kakushi; Uozumi, Kimiharu; Akimoto, Masaki; Hamada, Heiichiro; Kawada, Hideaki; Horai, Sawako; Tanaka, Yuetsu; Tei, Chuwa

    2007-12-01

    Adult T cell leukemia (ATL) is one of the most refractory malignant hematological diseases. Our previous studies demonstrated HTLV-1Tax protein involvement in clinical manifestation of the aggressive type of ATL and suggested the potential application of agents to inhibit Tax expression for ATL treatment. In the present study, we first examined Tax involvement in the resistance to VP-16-induced apoptosis using four HTLV-1 infected T cell clones and cTax DNA-transfected cells. Next, we examined whether cyclosporin A reduced expression of Tax and its related transfer factors on Western blot and CAT assay. We further investigated whether cyclosporin A in combination with VP-16 can induce apoptosis in HTLV-1 infected T cells. Tax-producing T cells, K3T and F6T, were resistant to VP-16 induced growth inhibition compared with that of the nonproducing cells, S1T and Su9T01. Experiments using S1T and Tax-expressing cDNA-transfected S1T demonstrated Tax-induced resistance to VP-16 induction of apoptosis by DNA ladder formation. Cyclosporin A reduced Tax expression in K3T by Western blot analysis and on CAT assay, showing maximal reduction of 61% and 60% compared to control culture using LTR CAT transfected Jurkat cells and K3T cells, respectively. Cyclosporin A also reduced the nuclear expression of two Tax-related transfer factors, ATF-1 and ATF-2 on Western blot. Cyclosporin A alone did not show any cytotoxicity by itself, but sensitized cells to VP-16 when combined with VP-16. Cyclosporin A may be a useful anti-ATL agent when combined with other anti-cancer agents possibly related to Tax inhibition. (c) 2007 Wiley-Liss, Inc.

  10. Decreased LRIG1 in Human Ovarian Cancer Cell SKOV3 Upregulates MRP-1 and Contributes to the Chemoresistance of VP16.

    Science.gov (United States)

    Yang, Hua; Yao, Jun; Yin, Jiangpin; Wei, Xuan

    2016-05-01

    The leucine-rich repeats and immunoglobulin-like domains (LRIG) are used as tumor suppressors in clinical applications. Although the LRIG has been identified to manipulate the cell proliferation via various oncogenic receptor tyrosine kinases in diverse cancers, its role in multidrug resistance needs to be further elucidated, especially in human ovarian cancer. We herein established that the etoposide (VP16)-resistant SKOV3 human ovarian cancer cell clones (SKOV3/VP16 cells) and mRNA expression of LRIG1 were significantly reduced by the treatment of VP16 in a concentration-dependent manner. Moreover, downregulated LRIG1 in SKOV3 could enhance the colony formation and resist the inhibition of proliferation by VP16, leading to the elevated expression of Bcl-2 and decreased apoptosis of SKOV3. Interestingly, our results uncovered that the multidrug resistance-associated protein 1 (MRP-1) was upregulated for the chemoresistance of VP16. To overcome the chemoresistance of SKOV3, SKOV3/VP16 was ectopically expressed of LRIG1. We found that the inhibition of VP16 on colony formation and proliferation was remarkably enhanced with increased apoptosis in SKOV3/VP16. Furthermore, the expression of MRP-1 and Bcl-2 was also inhibited, suggesting that the LRIG1could negatively control MRP-1 and the apoptosis to improve the sensitivity of VP16-related chemotherapy.

  11. Antitumor activity of the two epipodophyllotoxin derivatives VP-16 and VM-26 in preclinical systems: a comparison of in vitro and in vivo drug evaluation

    DEFF Research Database (Denmark)

    Jensen, P B; Roed, H; Skovsgaard, T

    1990-01-01

    The epipodophyllotoxines VP-16 and VM-26 are chemically closely related. VM-26 has been found to be considerably more potent than VP-16 in vitro in a number of investigations. Although the drugs have been known for greater than 20 years, they have not been compared at clearly defined equitoxic....../kg daily (95% confidence limits, 7.4-11.8) for VP-16 and 3.4 (2.5-4.5) mg/kg daily for VM-26. In vitro, we found VM-26 to be 6-10 times more potent than VP-16 in a clonogenic assay on murine tumors P388 and L1210 leukemia and Ehrlich ascites. This pattern was also demonstrated in a multidrug......-resistant subline of Ehrlich selected for resistance to daunorubicin (Ehrlich/DNR+), as it was 30 times less sensitive than Ehrlich cells to both VP-16 and VM-26. Using 90%, 45%, and 22% of the LD10 on the same murine tumors in vivo, we found that the effect of the two drugs was equal as evaluated by both...

  12. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  13. De Novo Herpes Simplex Virus VP16 Expression Gates a Dynamic Programmatic Transition and Sets the Latent/Lytic Balance during Acute Infection in Trigeminal Ganglia.

    Science.gov (United States)

    Sawtell, Nancy M; Thompson, Richard L

    2016-09-01

    The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system.

  14. The yeast protein Xtc1 functions as a direct transcriptional repressor

    OpenAIRE

    Traven, Ana; Starešinčić, Lidija; Arnerić, Milica; Sopta, Mary

    2002-01-01

    The yeast protein Xtc1 was identified as a protein that binds directly and specifically to the activation domains of acidic activators such as E2F-1, Gal4 and VP16. Additionally, it was shown to co-purify with the RNA polymerase II holoenzyme complex and it was suggested that Xtc1 functions as a regulator of transcription that modulates the response of RNA polymerase II to transcriptional activators. We have further analyzed the transcription function of Xtc1 and show that its fusion to a het...

  15. Zinc finger artificial transcription factor-based nearest inactive analogue/nearest active analogue strategy used for the identification of plant genes controlling homologous recombination

    NARCIS (Netherlands)

    Jia, Qi; van Verk, Marcel C.|info:eu-repo/dai/nl/327618671; Pinas, Johan E.; Lindhout, Beatrice I.; Hooykaas, Paul J.J.; Van der Zaal, Bert J.

    2013-01-01

    In previous work, we selected a particular transcription factor, designated VP16-HRU, from a pool of zinc finger artificial transcription factors (ZF-ATFs) used for genome interrogation. When expressed in Arabidopsis thaliana under control of the ribosomal protein S5A promoter, the RPS5A::VP16-HRU

  16. The C-terminal residue of phage Vp16 PDF, the smallest peptide deformylase, acts as an offset element locking the active conformation.

    Science.gov (United States)

    Grzela, Renata; Nusbaum, Julien; Fieulaine, Sonia; Lavecchia, Francesco; Bienvenut, Willy V; Dian, Cyril; Meinnel, Thierry; Giglione, Carmela

    2017-09-08

    Prokaryotic proteins must be deformylated before the removal of their first methionine. Peptide deformylase (PDF) is indispensable and guarantees this mechanism. Recent metagenomics studies revealed new idiosyncratic PDF forms as the most abundant family of viral sequences. Little is known regarding these viral PDFs, including the capacity of the corresponding encoded proteins to ensure deformylase activity. We provide here the first evidence that viral PDFs, including the shortest PDF identified to date, Vp16 PDF, display deformylase activity in vivo, despite the absence of the key ribosome-interacting C-terminal region. Moreover, characterization of phage Vp16 PDF underscores unexpected structural and molecular features with the C-terminal Isoleucine residue significantly contributing to deformylase activity both in vitro and in vivo. This residue fully compensates for the absence of the usual long C-domain. Taken together, these data elucidate an unexpected mechanism of enzyme natural evolution and adaptation within viral sequences.

  17. Genome-wide expression analysis of transcription regulatory complexes

    NARCIS (Netherlands)

    Lenstra, T.L.

    2012-01-01

    Transcription regulation is important for nearly all cellular processes. To understand how transcription is regulated by different regulatory complexes, DNA microarray expression analysis is used to determine the genome-wide changes in mRNA levels upon deletion of individual factors that belong to

  18. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification.

    Science.gov (United States)

    Moon, Kyung; Six, David A; Lee, Hyun-Jung; Raetz, Christian R H; Gottesman, Susan

    2013-07-01

    The PhoQ/PhoP two-component system activates many genes for lipopolysaccharide (LPS) modification when cells are grown at low Mg(2+) concentrations. An additional target of PhoQ and PhoP is MgrR, an Hfq-dependent small RNA that negatively regulates expression of eptB, also encoding a protein that carries out LPS modification. Examination of LPS confirmed that MgrR effectively silences EptB; the phosphoethanolamine modification associated with EptB is found in ΔmgrR::kan but not mgrR(+) cells. Sigma E has been reported to positively regulate eptB, although the eptB promoter does not have the expected Sigma E recognition motifs. The effects of Sigma E and deletion of mgrR on levels of eptB mRNA were independent, and the same 5' end was found in both cases. In vitro transcription and the behaviour of transcriptional and translational fusions demonstrate that Sigma E acts directly at the level of transcription initiation for eptB, from the same start point as Sigma 70. The results suggest that when Sigma E is active, synthesis of eptB transcript outstrips MgrR-dependent degradation; presumably the modification of LPS is important under these conditions. Adding to the complexity of eptB regulation is a second sRNA, ArcZ, which also directly and negatively regulates eptB. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  19. Cocaine and the AP-1 transcription factor complex.

    Science.gov (United States)

    Hope, B T

    1998-05-30

    Cocaine addition in humans develops gradually with repeated administrations and persists long after cocaine has cleared the body. The mechanisms underlying this persistent form of neuroplasticity are not understood and can involve both structural and biochemical mechanisms. The long time course for cocaine addiction in humans and for development of cocaine self-administration in animal models suggest the involvement of alterations in gene expression leading to altered signaling in the brain. In the striatum (Str) and nucleus accumbens (NAc) of rats. Pretreatment with repeated cocaine administrations downregulates the induction of various immediate early genes (IEGs) by a subsequent acute challenge with cocaine. Some of these downregulated IEGs encode Fos-related components of the activator protein-1 (AP-1) complex, which is likely re regulate a number of genes important for neuronal function. Interestingly, repeated cocaine administration induces novel delta FosB-related proteins (called chronic Fos-related antigens (Fras)) in the NAc and Str that replace the downregulated isoforms of Fos. Unlike the acutely induced, short-lasting isoforms of Fos and FosB, the chronic Fras persist long after the last cocaine administration. The known form of delta FosB per se lacks the domain required to activate transcription. If the chronic Fras are similar in structure to delta FosB, then the induction of chronic Fras likely leads to a blockade of AP-1-dependent transcription resulting in altered gene expression. We presently purifying the chronic Fras to obtain amino acid sequence in order to directly examine our hypothesis about the effects of repeated cocaine administration on AP-1 dependent transcription and gene expression in the brain

  20. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription.

    Science.gov (United States)

    Rösl, F; Das, B C; Lengert, M; Geletneky, K; zur Hausen, H

    1997-01-01

    Considering the involvement of a redox-regulatory pathway in the expression of human papillomaviruses (HPVs), HPV type 16 (HPV-16)-immortalized human keratinocytes were treated with the antioxidant pyrrolidine-dithiocarbamate (PDTC). PDTC induces elevated binding of the transcription factor AP-1 to its cognate recognition site within the viral regulatory region. Despite of increased AP-1 binding, normally indispensable for efficient HPV-16 transcription, viral gene expression was selectively suppressed at the level of initiation of transcription. Electrophoretic mobility supershift assays showed that the composition of the AP-1 complex, predominantly consisting of Jun homodimers in untreated cells, was altered. Irrespective of enhanced c-fos expression, c-jun was phosphorylated and became primarily heterodimerized with fra-1, which was also induced after PDTC incubation. Additionally, there was also an increased complex formation between c-jun and junB. Because both fra-1 and junB overexpression negatively interferes with c-jun/c-fos trans-activation of AP-1-responsive genes, our results suggest that the observed block in viral transcription is mainly the consequence of an antioxidant-induced reconstitution of the AP-1 transcription complex. Since expression of the c-jun/c-fos gene family is tightly regulated during cellular differentiation, defined reorganization of a central viral transcription factor may represent a novel mechanism controlling the transcription of pathogenic HPVs during keratinocyte differentiation and in the progression to cervical cancer.

  1. Role of the semi-quinone free radical of the anti-tumour agent etoposide (VP-16-213) in the inactivation of single- and double-stranded phi X174 DNA.

    OpenAIRE

    Mans, D. R.; Ret?l, J.; van Maanen, J M; Lafleur, M. V.; van Schaik, M. A.; Pinedo, H M; Lankelma, J.

    1990-01-01

    The mechanism of action of the anti-tumour agent etoposide (VP-16-213) could involve its bioactivation to metabolites which can damage DNA. Active metabolites of etoposide, generated in vitro, are the 3',4'-dihydroxy-derivative (catechol) and its oxidation product, the ortho-quinone. The conversion of the catechol into the ortho-quinone (and vice versa) proceeds via formation of a semi-quinone free radical. We investigated the role of this radical species in the inactivation of biologically a...

  2. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien

    2006-01-01

    Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA polymerase II, facilitating transcriptional elongation. In addition to its participation in general transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c...... with and phosphorylation of peroxisome proliferator-activated receptor gamma (PPARgamma), which is the master regulator of this process, on the promoter of PPARgamma target genes. PPARgamma-cdk9 interaction results in increased transcriptional activity of PPARgamma and therefore increased adipogenesis.......-Myc or MyoD. The P-TEFb complex is composed of a cyclin-dependent kinase (cdk9) subunit and a regulatory partner (cyclin T1, cyclin T2, or cyclin K). Because cdk9 has been shown to participate in differentiation processes, such as muscle cell differentiation, we studied a possible role of cdk9...

  3. Human mediator subunit MED15 promotes transcriptional activation.

    Science.gov (United States)

    Nakatsubo, Takuya; Nishitani, Saori; Kikuchi, Yuko; Iida, Satoshi; Yamada, Kana; Tanaka, Aki; Ohkuma, Yoshiaki

    2014-10-01

    In eukaryotes, the Mediator complex is an essential transcriptional cofactor of RNA polymerase II (Pol II). In humans, it contains up to 30 subunits and consists of four modules: head, middle, tail, and CDK/Cyclin. One of the subunits, MED15, is located in the tail module, and was initially identified as Gal11 in budding yeast, where it plays an essential role in the transcriptional regulation of galactose metabolism with the potent transcriptional activator Gal4. For this reason, we investigated the function of the human MED15 subunit (hMED15) in transcriptional activation. First, we measured the effect of hMED15 knockdown on cell growth in HeLa cells. The growth rate was greatly reduced. By immunostaining, we observed the colocalization of hMED15 with the general transcription factors TFIIE and TFIIH in the nucleus. We measured the effects of siRNA-mediated knockdown of hMED15 on transcriptional activation using two different transcriptional activators, VP16 and SREBP1a. Treatment with siRNAs reduced transcriptional activation, and this reduction could be rescued by overexpression of HA/Flag-tagged, wild-type hMED15. To investigate hMED15 localization, we treated human MCF-7 cells with the MDM2 inhibitor Nutlin-3, thus inducing p21 transcription. We found that hMED15 localized to both the p53 binding site and the p21 promoter region, along with TFIIE and TFIIH. These results indicate that hMED15 promotes transcriptional activation.

  4. The Maize Transcription Factor KNOTTED1 Directly Regulates the Gibberellin Catabolism Gene ga2ox1

    Science.gov (United States)

    ga2oxl mRNA level is elevated in immature leaves of dominant KNOX mutants and down-regulated in reproductive meristems of the null allele knl-el. KNl binds in vivo to an intron of ga2oxl through a cw-regulatory element containing two TGAC motifs. VP16-KN1 activates transcription inplanta from a chim...

  5. The prolactin gene: a paradigm of tissue-specific gene regulation with complex temporal transcription dynamics.

    Science.gov (United States)

    Featherstone, K; White, M R H; Davis, J R E

    2012-07-01

    Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or 'noisy' expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell. © 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd.

  6. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb.

    Science.gov (United States)

    Kuzmina, Alona; Krasnopolsky, Simona; Taube, Ran

    2017-05-27

    Early work on the control of transcription of the human immunodeficiency virus (HIV) laid the foundation for our current knowledge of how RNA Polymerase II is released from promoter-proximal pausing sites and transcription elongation is enhanced. The viral Tat activator recruits Positive Transcription Elongation Factor b (P-TEFb) and Super Elongation Complex (SEC) that jointly drive transcription elongation. While substantial progress in understanding the role of SEC in HIV gene transcription elongation has been obtained, defining of the mechanisms that govern SEC functions is still limited, and the role of SEC in controlling HIV transcription in the absence of Tat is less clear. Here we revisit the contribution of SEC in early steps of HIV gene transcription. In the absence of Tat, the AF4/FMR2 Family member 4 (AFF4) of SEC efficiently activates HIV transcription, while gene activation by its homolog AFF1 is substantially lower. Differential recruitment to the HIV promoter and association with Human Polymerase-Associated Factor complex (PAFc) play key role in this functional distinction between AFF4 and AFF1. Moreover, while depletion of cyclin T1 expression has subtle effects on HIV gene transcription in the absence of Tat, knockout (KO) of AFF1, AFF4, or both proteins slightly repress this early step of viral transcription. Upon Tat expression, HIV transcription reaches optimal levels despite KO of AFF1 or AFF4 expression. However, double AFF1/AFF4 KO completely diminishes Tat trans-activation. Significantly, our results show that P-TEFb phosphorylates AFF4 and modulates SEC assembly, AFF1/4 dimerization and recruitment to the viral promoter. We conclude that SEC promotes both early steps of HIV transcription in the absence of Tat, as well as elongation of transcription, when Tat is expressed. Significantly, SEC functions are modulated by P-TEFb.

  7. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  8. Characterization of Hematopoietic Transcription Factor Complexes in Erythroid Cells

    NARCIS (Netherlands)

    P.J.F. Rodriguez

    2006-01-01

    textabstractEfficient tagging methodologies are an integral aspect of protein complex characterization by proteomic approaches. Due to biotin’s very high affinity for avidin and streptavidin, biotinylation tagging offers an attractive approach for the efficient purification of protein

  9. The Saccharomyces cerevisiae Srb8-Srb11 Complex Functions with the SAGA Complex during Gal4-Activated Transcription

    OpenAIRE

    Larschan, Erica; Winston, Fred

    2005-01-01

    The Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex functions as a coactivator during Gal4-activated transcription. A functional interaction between the SAGA component Spt3 and TATA-binding protein (TBP) is important for TBP binding at Gal4-activated promoters. To better understand the role of SAGA and other factors in Gal4-activated transcription, we selected for suppressors that bypass the requirement for SAGA. We obtained eight complementation groups and identified t...

  10. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.

    Science.gov (United States)

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-12-12

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Lela Lackey

    Full Text Available Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer's, Parkinson's and Chronic Obstructive Pulmonary Disease (COPD are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer's, Parkinson's and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer's and Parkinson's disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40% that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are

  12. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently

  13. Regulation of Transcription Elongation by the XPG-TFIIH Complex Is Implicated in Cockayne Syndrome.

    Science.gov (United States)

    Narita, Takashi; Narita, Keiko; Takedachi, Arato; Saijo, Masafumi; Tanaka, Kiyoji

    2015-09-01

    XPG is a causative gene underlying the photosensitive disorder xeroderma pigmentosum group G (XP-G) and is involved in nucleotide excision repair. Here, we show that XPG knockdown represses epidermal growth factor (EGF)-induced FOS transcription at the level of transcription elongation with little effect on EGF signal transduction. XPG interacted with transcription elongation factors in concert with TFIIH, suggesting that the XPG-TFIIH complex serves as a transcription elongation factor. The XPG-TFIIH complex was recruited to promoter and coding regions of both EGF-induced (FOS) and housekeeping (EEF1A1) genes. Further, EGF-induced recruitment of RNA polymerase II and TFIIH to FOS was reduced by XPG knockdown. Importantly, EGF-induced FOS transcription was markedly lower in XP-G/Cockayne syndrome (CS) cells expressing truncated XPG than in control cells expressing wild-type (WT) XPG, with less significant decreases in XP-G cells with XPG nuclease domain mutations. In corroboration of this finding, both WT XPG and a missense XPG mutant from an XP-G patient were recruited to FOS upon EGF stimulation, but an XPG mutant mimicking a C-terminal truncation from an XP-G/CS patient was not. These results suggest that the XPG-TFIIH complex is involved in transcription elongation and that defects in this association may partly account for Cockayne syndrome in XP-G/CS patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.

    Directory of Open Access Journals (Sweden)

    Jesse R Raab

    2015-12-01

    Full Text Available Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer.

  15. Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex

    Directory of Open Access Journals (Sweden)

    Ishaan Gupta

    2016-05-01

    Full Text Available The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.

  16. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex

    Directory of Open Access Journals (Sweden)

    Antonio Federico

    2017-04-01

    Full Text Available The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.

  17. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation

    DEFF Research Database (Denmark)

    Close, Pierre; East, Philip; Dirac-Svejstrup, A Barbara

    2012-01-01

    and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD......)) as subunits of a novel protein complex--named DBIRD--that binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in (A + T)-rich DNA, and is present at the affected exons. RNA-interference-mediated DBIRD depletion results in region-specific decreases in transcript...... elongation, particularly across areas encompassing affected exons. Together, these data indicate that the DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with the regulation of alternative splicing....

  18. DNA complexed structure of the key transcription factor initiating development in sporulating bacteria.

    Science.gov (United States)

    Zhao, Haiyan; Msadek, Tarek; Zapf, James; Madhusudan; Hoch, James A; Varughese, Kottayil I

    2002-08-01

    Sporulation in Bacillus species, the ultimate bacterial adaptive response, requires the precisely coordinated expression of a complex genetic pathway, and is initiated through the accumulation of the phosphorylated form of Spo0A, a pleiotropic response regulator transcription factor. Spo0A controls the transcription of several hundred genes in all spore-forming Bacilli including genes for sporulation and toxin regulation in pathogens such as Bacillus anthracis. The crystal structure of the effector domain of Spo0A from Bacillus subtilis in complex with its DNA target was determined. In the crystal lattice, two molecules form a tandem dimer upon binding to adjacent sites on DNA. The protein:protein and protein:DNA interfaces revealed in the crystal provide a basis for interpreting the transcription activation process and for the design of drugs to counter infections by these bacteria.

  19. The complex transcription regulatory landscape of our genome: control in three dimensions

    NARCIS (Netherlands)

    Splinter, E.; de Laat, W.

    2011-01-01

    The non-coding part of our genome contains sequence motifs that can control gene transcription over distance. Here, we discuss functional genomics studies that uncover and characterize these sequences across the mammalian genome. The picture emerging is of a genome being a complex regulatory

  20. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine; Bean, James M.; Saecker, Ruth M.; Glickman, Michael S.; Darst, Seth A.; Campbell, Elizabeth A. (Rockefeller); (SKI)

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  1. Complex SUMO-1 regulation of cardiac transcription factor Nkx2-5.

    Directory of Open Access Journals (Sweden)

    Mauro W Costa

    Full Text Available Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51 of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a "shifting" site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity.

  2. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  3. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan; Jiang, Yanwen; Kost, Nils; Soong, T. David; Chen, Wei-Yi; Tang, Zhanyun; Nakadai, Tomoyoshi; Elemento, Olivier; Fischle, Wolfgang; Melnick, Ari; Patel, Dinshaw J.; Nimer, Stephen D.; Roeder, Robert G.

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

  4. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  5. Transcriptional complexes engaged by apo-estrogen receptor-alpha isoforms have divergent outcomes.

    Science.gov (United States)

    Métivier, Raphaël; Penot, Graziella; Carmouche, Richard P; Hübner, Michael R; Reid, George; Denger, Stefanie; Manu, Dominique; Brand, Heike; Kos, Martin; Benes, Vladimir; Gannon, Frank

    2004-09-15

    Unliganded (apo-) estrogen receptor alpha (ERalpha, NR3A1) is classically considered as transcriptionally unproductive. Reassessing this paradigm demonstrated that apo-human ERalpha (ERalpha66) and its N-terminally truncated isoform (ERalpha46) are both predominantly nuclear transcription factors that cycle on the endogenous estrogen-responsive pS2 gene promoter in vivo. Importantly, isoform-specific consequences occur in terms of poising the promoter for transcription, as evaluated by determining (i) the engagement of several cofactors and the resulting nucleosomal organization; and (ii) the CpG methylation state of the pS2 promoter. Although transcriptionally unproductive, cycling of apo-ERalpha66 prepares the promoter to respond to ligand, through sequentially targeting chromatin remodeling complexes and general transcription factors. Additionally, apo-ERalpha46 recruits corepressors, following engagement of cofactors identical to those recruited by apo-ERalpha66. Together, these data describe differential activities of ERalpha isoforms. Furthermore, they depict the maintenance of a promoter in a repressed state as a cyclical process that is intrinsically dependent on initial poising of the promoter.

  6. Transcriptional complexes engaged by apo-estrogen receptor-α isoforms have divergent outcomes

    Science.gov (United States)

    Métivier, Raphaël; Penot, Graziella; Carmouche, Richard P; Hübner, Michael R; Reid, George; Denger, Stefanie; Manu, Dominique; Brand, Heike; Koš, Martin; Benes, Vladimir; Gannon, Frank

    2004-01-01

    Unliganded (apo-) estrogen receptor α (ERα, NR3A1) is classically considered as transcriptionally unproductive. Reassessing this paradigm demonstrated that apo-human ERα (ERα66) and its N-terminally truncated isoform (ERα46) are both predominantly nuclear transcription factors that cycle on the endogenous estrogen-responsive pS2 gene promoter in vivo. Importantly, isoform-specific consequences occur in terms of poising the promoter for transcription, as evaluated by determining (i) the engagement of several cofactors and the resulting nucleosomal organization; and (ii) the CpG methylation state of the pS2 promoter. Although transcriptionally unproductive, cycling of apo-ERα66 prepares the promoter to respond to ligand, through sequentially targeting chromatin remodeling complexes and general transcription factors. Additionally, apo-ERα46 recruits corepressors, following engagement of cofactors identical to those recruited by apo-ERα66. Together, these data describe differential activities of ERα isoforms. Furthermore, they depict the maintenance of a promoter in a repressed state as a cyclical process that is intrinsically dependent on initial poising of the promoter. PMID:15343269

  7. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  8. The herpes viral transcription factor ICP4 forms a novel DNA recognition complex

    Science.gov (United States)

    Tunnicliffe, Richard B.; Lockhart-Cairns, Michael P.; Levy, Colin; Mould, A. Paul; Jowitt, Thomas A.; Sito, Hilary; Baldock, Clair; Sandri-Goldin, Rozanne M.

    2017-01-01

    Abstract The transcription factor ICP4 from herpes simplex virus has a central role in regulating the gene expression cascade which controls viral infection. Here we present the crystal structure of the functionally essential ICP4 DNA binding domain in complex with a segment from its own promoter, revealing a novel homo-dimeric fold. We also studied the complex in solution by small angle X-Ray scattering, nuclear magnetic resonance and surface-plasmon resonance which indicated that, in addition to the globular domain, a flanking intrinsically disordered region also recognizes DNA. Together the data provides a rationale for the bi-partite nature of the ICP4 DNA recognition consensus sequence as the globular and disordered regions bind synergistically to adjacent DNA motifs. Therefore in common with its eukaryotic host, the viral transcription factor ICP4 utilizes disordered regions to enhance the affinity and tune the specificity of DNA interactions in tandem with a globular domain. PMID:28505309

  9. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly.

    Science.gov (United States)

    Lyska, Dagmar; Meierhoff, Karin; Westhoff, Peter

    2013-02-01

    Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.

  10. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements

    KAUST Repository

    Guturu, H.

    2013-11-11

    Mapping the DNA-binding preferences of transcription factor (TF) complexes is critical for deciphering the functions of cis-regulatory elements. Here, we developed a computational method that compares co-occurring motif spacings in conserved versus unconserved regions of the human genome to detect evolutionarily constrained binding sites of rigid TF complexes. Structural data were used to estimate TF complex physical plausibility, explore overlapping motif arrangements seldom tackled by non-structure-aware methods, and generate and analyse three-dimensional models of the predicted complexes bound to DNA. Using this approach, we predicted 422 physically realistic TF complex motifs at 18% false discovery rate, the majority of which (326, 77%) contain some sequence overlap between binding sites. The set of mostly novel complexes is enriched in known composite motifs, predictive of binding site configurations in TF-TF-DNA crystal structures, and supported by ChIP-seq datasets. Structural modelling revealed three cooperativity mechanisms: direct protein-protein interactions, potentially indirect interactions and \\'through-DNA\\' interactions. Indeed, 38% of the predicted complexes were found to contain four or more bases in which TF pairs appear to synergize through overlapping binding to the same DNA base pairs in opposite grooves or strands. Our TF complex and associated binding site predictions are available as a web resource at http://bejerano.stanford.edu/complex.

  11. LMX1B is part of a transcriptional complex with PSPC1 and PSF.

    Directory of Open Access Journals (Sweden)

    Elisa J Hoekstra

    Full Text Available The LIM homeodomain transcription factor Lmx1b is essential for the development of the isthmic organizer and mesodiencephalic dopaminergic neurons. The uncoupling of Pitx3 and Th expression, in the Lmx1b null mutant, suggests that Lmx1b may act as a positional activator of the mdDA domain, eventually leading to properly differentiating mdDA neurons. In this study, we aimed to elucidate how Lmx1b functions mechanistically in this developmental process, by searching for molecular interactors of Lmx1b at the protein level. Initially, affinity-purification of LMX1B-HIS overexpressed protein in MN9D dopaminergic cells followed by mass-spectrometry analysis, resulted in the identification of PSPC1 protein as a possible binding partner of LMX1B. Subsequent immunoprecipitation experiments revealed an interaction between LMX1B and PSPC1 in a larger protein complex also containing PSF. This complex was observed in vitro and in vivo, and we hypothesize that, via PSF and PSPC1, LMX1B may be part of the previously identified Nurr1 transcriptional complex wherein interaction with the co-repressor PSF and the transcription factor Pitx3 is needed to drive expression of Nurr1 target genes in specifying the dopaminergic phenotype. Furthermore, we identified GRLF1, DHX9, MYO1C, HSP70 and TMPO as potential LMX1B interactors. DHX9 and GRLF1 are highly expressed in the developing mdDA neuronal field, and GRLF1 and MYO1C have both been linked to neurite outgrowth. The identification of these proteins suggests that Lmx1b may act directly in the transcriptional activation of Nurr1 target genes and be involved in other processes like neurite outgrowth as well.

  12. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.

    2013-06-13

    Background:Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated.Principal Findings:Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins.Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  13. Leading role of TBP in the Establishment of Complexity in Eukaryotic Transcription Initiation Systems

    Directory of Open Access Journals (Sweden)

    Eiryo Kawakami

    2017-12-01

    Full Text Available While both archaeal and eukaryotic transcription initiation systems utilize TBP (TATA box-binding protein and TFIIB (transcription factor IIB, eukaryotic systems include larger numbers of initiation factors. It remains uncertain how eukaryotic transcription initiation systems have evolved. Here, we investigate the evolutionary development of TBP and TFIIB, each of which has an intramolecular direct repeat, using two evolutionary indicators. Inter-repeat sequence dissimilarity (dDR, distance between direct repeats indicates that the asymmetry of two repeats in TBP and TFIIB has gradually increased during evolution. Interspecies sequence diversity (PD, phylogenetic diversity indicates that the resultant asymmetric structure, which is related to the ability to interact with multiple factors, diverged in archaeal TBP and archaeal/eukaryotic TFIIB during evolution. Our findings suggest that eukaryotic TBP initially acquired multiple Eukarya-specific interactors through asymmetric evolution of the two repeats. After the asymmetric TBP generated the complexity of the eukaryotic transcription initiation systems, its diversification halted and its asymmetric structure spread throughout eukaryotic species.

  14. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  15. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  16. Promoter-bound p300 complexes facilitate post-mitotic transmission of transcriptional memory.

    Science.gov (United States)

    Wong, Madeline M; Byun, Jung S; Sacta, Maria; Jin, Qihuang; Baek, SongJoon; Gardner, Kevin

    2014-01-01

    A central hallmark of epigenetic inheritance is the parental transmission of changes in patterns of gene expression to progeny without modification of DNA sequence. Although, the trans-generational conveyance of this molecular memory has been traditionally linked to covalent modification of histone and/or DNA, recent studies suggest a role for proteins that persist or remain bound within chromatin to "bookmark" specific loci for enhanced or potentiated responses in daughter cells immediately following cell division. In this report we describe a role for p300 in enabling gene bookmarking by pre-initiation complexes (PICs) containing RNA polymerase II (pol II), Mediator and TBP. Once formed these complexes require p300 to enable reacquisition of protein complex assemblies, chromatin modifications and long range chromatin interactions that facilitate post-mitotic transmission of transcriptional memory of prior environmental stimuli.

  17. Promoter-bound p300 complexes facilitate post-mitotic transmission of transcriptional memory.

    Directory of Open Access Journals (Sweden)

    Madeline M Wong

    Full Text Available A central hallmark of epigenetic inheritance is the parental transmission of changes in patterns of gene expression to progeny without modification of DNA sequence. Although, the trans-generational conveyance of this molecular memory has been traditionally linked to covalent modification of histone and/or DNA, recent studies suggest a role for proteins that persist or remain bound within chromatin to "bookmark" specific loci for enhanced or potentiated responses in daughter cells immediately following cell division. In this report we describe a role for p300 in enabling gene bookmarking by pre-initiation complexes (PICs containing RNA polymerase II (pol II, Mediator and TBP. Once formed these complexes require p300 to enable reacquisition of protein complex assemblies, chromatin modifications and long range chromatin interactions that facilitate post-mitotic transmission of transcriptional memory of prior environmental stimuli.

  18. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jacqueline G. Miller

    2016-03-01

    Full Text Available Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  19. Elongator: An Ancestral Complex Driving Transcription and Migration through Protein Acetylation

    Directory of Open Access Journals (Sweden)

    Catherine Creppe

    2011-01-01

    Full Text Available Elongator is an evolutionary highly conserved complex. At least two of its cellular functions rely on the intrinsic lysine acetyl-transferase activity of the Elongator complex. Its two known substrates—Histone H3 and α-Tubulin—reflect the different roles of Elongator in the cytosol and the nucleus. A picture seems to emerge in which nuclear Elongator could regulate the transcriptional elongation of a subset of stress-inducible genes through acetylation of Histone H3 in the promoter-distal gene body. In the cytosol, Elongator-mediated acetylation of α-Tubulin contributes to intracellular trafficking and cell migration. Defects in both functions of Elongator have been implicated in neurodegenerative disorders.

  20. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  1. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna (UW)

    2017-04-10

    he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.

  2. Mammalian Rrn3 is required for the formation of a transcription competent preinitiation complex containing RNA polymerase I.

    Science.gov (United States)

    Cavanaugh, Alice H; Evans, Ann; Rothblum, Lawrence I

    2008-01-01

    Mammalian Rrn3, an essential, polymerase-associated protein, is inactivated when cells are treated with cycloheximide, resulting in the inhibition of transcription by RNA polymerase I. Although Rrn3 is essential for transcription, its function in rDNA transcription has not been determined. For example, it is unclear whether Rrn3 is required for initiation or elongation by RNA polymerase I. Rrn3 has been shown to interact with the 43-kDa subunit of RNA polymerase I and with two of the subunits of SL1. In the current model for transcription, Rrn3 functions to recruit RNA polymerase I to the committed complex formed by SL1 and the rDNA promoter. To examine the question as to whether Rrn3 is required for the recruitment of RNA polymerase I to the template, we developed a novel assay similar to chromatin immunoprecipitation assays. We found that RNA polymerase I can be recruited to a template in the absence of active Rrn3. However, that complex will not initiate transcription, even after Rrn3 is added to the reaction. Interestingly, the complex that forms in the presence of active Rrn3 is biochemically distinguishable from that which forms in the absence of active Rrn3. For example, the functional complex is fivefold more resistant to heparin than that which forms in the absence of Rrn3. Our data demonstrate that Rrn3 must be present when the committed template complex is forming for transcription to occur.

  3. VP-16のヒト膀胱癌由来培養細胞KK-47,KW-103,RT4およびヒト腎癌由来培養細胞KN-41に対するin vitroの殺細胞効果

    OpenAIRE

    久住, 治男; 中嶋, 和喜; 黒田, 恭一

    1981-01-01

    Using a colony formation technique and KK-47, KW-103 and RT4 cell lines established from human bladder transitional cell carcinomas and KN-41 cell line from a human renal cell carcinoma, the drug sensitivity of VP-16 was determined. The survival curves of the cell lines showed that this agent has a concentration dependent cell killing effect. From the drug sensitivity at 50 per cent and 90 per cent inhibitions (ID50 and ID90) determined from the survival curves in these cell lines at 2-and 24...

  4. The chromatin remodeling complex Swi/Snf regulates splicing of meiotic transcripts in Saccharomyces cerevisiae.

    Science.gov (United States)

    Venkataramanan, Srivats; Douglass, Stephen; Galivanche, Anoop R; Johnson, Tracy L

    2017-07-27

    Despite its relatively streamlined genome, there are important examples of regulated RNA splicing in Saccharomyces cerevisiae, such as splicing of meiotic transcripts. Like other eukaryotes, S. cerevisiae undergoes a dramatic reprogramming of gene expression during meiosis, including regulated splicing of a number of crucial meiosis-specific RNAs. Splicing of a subset of these is dependent upon the splicing activator Mer1. Here we show a crucial role for the chromatin remodeler Swi/Snf in regulation of splicing of meiotic genes and find that the complex affects meiotic splicing in two ways. First, we show that Swi/Snf regulates nutrient-dependent downregulation of ribosomal protein encoding RNAs, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs (the ribosomal protein genes) to Mer1-regulated transcripts. We also demonstrate that Mer1 expression is dependent on Snf2, its acetylation state and histone H3 lysine 9 acetylation at the MER1 locus. Hence, Snf2 exerts systems level control of meiotic gene expression through two temporally distinct mechanisms, demonstrating that it is a key regulator of meiotic splicing in S. cerevisiae. We also reveal an evolutionarily conserved mechanism whereby the cell redirects its energy from maintaining its translational capacity to the process of meiosis. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses

    Directory of Open Access Journals (Sweden)

    Alejandra Urrutia

    2016-09-01

    Full Text Available Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes.

  6. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai

    2010-08-04

    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  7. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum. Copyright © 2015. Published by Elsevier B.V.

  8. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites

    Directory of Open Access Journals (Sweden)

    Knezevich Anna

    2007-05-01

    Full Text Available Abstract HIV-1 transcription is tightly regulated: silent in long-term latency and highly active in acutely-infected cells. Transcription is activated by the viral protein Tat, which recruits the elongation factor P-TEFb by binding the TAR sequence present in nascent HIV-1 RNAs. In this study, we analyzed the dynamic of the TAR:Tat:P-TEFb complex in living cells, by performing FRAP experiments at HIV-1 transcription sites. Our results indicate that a large fraction of Tat present at these sites is recruited by Cyclin T1. We found that in the presence of Tat, Cdk9 remained bound to nascent HIV-1 RNAs for 71s. In contrast, when transcription was activated by PMA/ionomycin, in the absence of Tat, Cdk9 turned-over rapidly and resided on the HIV-1 promoter for only 11s. Thus, the mechanism of trans-activation determines the residency time of P-TEFb at the HIV-1 gene, possibly explaining why Tat is such a potent transcriptional activator. In addition, we observed that Tat occupied HIV-1 transcription sites for 55s, suggesting that the TAR:Tat:P-TEFb complex dissociates from the polymerase following transcription initiation, and undergoes subsequent cycles of association/dissociation.

  9. Coupled RNA polymerase II transcription and 3′ end formation with yeast whole-cell extracts

    OpenAIRE

    Mariconti, Luisa; Loll, Bernhard; Schlinkmann, Karola; Wengi, Agnieszka; Meinhart, Anton; Dichtl, Bernhard

    2010-01-01

    RNA polymerase II (RNAP II) transcription and pre-mRNA 3′ end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3′ end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of trans...

  10. Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin

    Directory of Open Access Journals (Sweden)

    Kashanchi Fatah

    2006-01-01

    Full Text Available Abstract Background The early events of the HIV-1 life cycle include entry of the viral core into target cell, assembly of the reverse transcription complex (RTCs performing reverse transcription, its transformation into integration-competent complexes called pre-integration complexes (PICs, trafficking of complexes into the nucleus, and finally integration of the viral DNA into chromatin. Molecular details and temporal organization of these processes remain among the least investigated and most controversial problems in the biology of HIV. Results To quantitatively evaluate maturation and nuclear translocation of the HIV-1 RTCs, nucleoprotein complexes isolated from the nucleus (nRTC and cytoplasm (cRTC of HeLa cells infected with MLV Env-pseudotyped HIV-1 were analyzed by real-time PCR. While most complexes completed reverse transcription in the cytoplasm, some got into the nucleus before completing DNA synthesis. The HIV-specific RNA complexes could get into the nucleus when reverse transcription was blocked by reverse transcriptase inhibitor, although nuclear import of RNA complexes was less efficient than of DNA-containing RTCs. Analysis of the RTC nuclear import in synchronized cells infected in the G2/M phase of the cell cycle showed enrichment in the nuclei of RTCs containing incomplete HIV-1 DNA compared to non-synchronized cells, where RTCs with complete reverse transcripts prevailed. Immunoprecipitation assays identified viral proteins IN, Vpr, MA, and cellular Ini1 and PML associated with both cRTCs and nRTCs, whereas CA was detected only in cRTCs and RT was diminished in nRTCs. Cytoplasmic maturation of the complexes was associated with increased immunoreactivity with anti-Vpr and anti-IN antibodies, and decreased reactivity with antibodies to RT. Both cRTCs and nRTCs carried out endogenous reverse transcription reaction in vitro. In contrast to cRTCs, in vitro completion of reverse transcription in nRTCs did not increase their

  11. Transcription of the Schizosaccharomyces pombe gene cdc18+: roles of MCB elements and the DSC1 complex.

    Science.gov (United States)

    Jackson, William T; Martin, G Steven

    2006-03-15

    In Schizosaccharomyces pombe, commitment to a round of DNA synthesis and entry into the cell cycle are dependent on the function of genes that are transcribed periodically during the cell cycle. Activation of these genes prior to S phase is primarily controlled through cis-acting elements known as MluI Cell-cycle Boxes, or MCBs, and by a family of transcription factors, including Cdc10, Res1, Res2 and Rep2. These transcription factors are also known to be present in a complex, DSC1, that binds to the promoters of pre-S genes. We have demonstrated that within the promoter of cdc18+, a representative pre-S gene, the orientation and spacing of MCBs are crucial for activation and cell-cycle dependence. To our surprise, electrophoretic mobility shift assays showed a highly active mutant form of the promoter, which alters the spacing of the MCB elements, does not bind DSC1 but does bind a higher mobility complex. The binding of this second complex is not dependent on Cdc10 or the Res/Rep proteins. We conclude that, DSC1 binding does not correlate with cell-cycle dependent transcriptional activation, and the higher mobility species may represent a novel transcriptional activation complex that is also likely to function in pre-S transcription.

  12. Dissecting complex transcriptional responses using pathway-level scores based on prior information

    Directory of Open Access Journals (Sweden)

    Ward Lucas D

    2007-09-01

    Full Text Available Abstract Background The genomewide pattern of changes in mRNA expression measured using DNA microarrays is typically a complex superposition of the response of multiple regulatory pathways to changes in the environment of the cells. The use of prior information, either about the function of the protein encoded by each gene, or about the physical interactions between regulatory factors and the sequences controlling its expression, has emerged as a powerful approach for dissecting complex transcriptional responses. Results We review two different approaches for combining the noisy expression levels of multiple individual genes into robust pathway-level differential expression scores. The first is based on a comparison between the distribution of expression levels of genes within a predefined gene set and those of all other genes in the genome. The second starts from an estimate of the strength of genomewide regulatory network connectivities based on sequence information or direct measurements of protein-DNA interactions, and uses regression analysis to estimate the activity of gene regulatory pathways. The statistical methods used are explained in detail. Conclusion By avoiding the thresholding of individual genes, pathway-level analysis of differential expression based on prior information can be considerably more sensitive to subtle changes in gene expression than gene-level analysis. The methods are technically straightforward and yield results that are easily interpretable, both biologically and statistically.

  13. Further developmental roles of the Vestigial/Scalloped transcription complex during wing development in Drosophila melanogaster.

    Science.gov (United States)

    Srivastava, Ajay; Bell, John B

    2003-05-01

    The Drosophila homologue of the human TEF-1 gene, scalloped (sd), is required for wing development. The SD protein forms part of a transcriptional activation complex with the protein encoded by vestigial (vg) that, in turn, activates target genes important for wing formation. One sd function involves a regulatory feedback loop with vg and wingless (wg) that is essential in this process. The dorsal-ventral (D/V) margin-specific expression of wg is lost in sd mutant wing discs while the hinge-specific expression appears normal. In the context of wing development, a VG::sdTEA domain fusion produces a protein that mimics the wild-type SD/VG complex and restores the D/V boundary-specific expression of wg in a sd mutant background. Further, targeted expression of wg at the D/V boundary in the wing disc was able to partially rescue the sd mutant phenotype. This infers that sd could function in either the maintenance or induction of wg at the D/V border. Another functional role for sd is the establishment of sensory organ precursors (SOP) of the peripheral nervous system at the wing margin. Thus, the relationship between sd and senseless (sens) in the development of these cells is also examined, and it appears that sd must be functional for proper sens expression, and ultimately, for sensory organ precursor development.

  14. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Pappas, T.; Brace, J.; Miller, P.; Oulmassov, T.; Molyneaux, J.; Anderson, J.; Bashkin, J.; Winans, S.; Joachimiak, A.; Biosciences Division; Cornell Univ.; Monsanto Co.

    2002-06-27

    Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis1. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 A as a complex with the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an {alpha}/{beta}/{alpha} sandwich that binds OOHL, whereas the carboxy-terminal domain contains a helix-turn-helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90 degree angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.

  15. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  16. Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Directory of Open Access Journals (Sweden)

    King Benjamin L

    2011-08-01

    Full Text Available Abstract Background We introduce Glaucoma Discovery Platform (GDP, an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets. Description Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-Gpnmb+ strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM. Conclusion Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages

  17. Yeast NC2 Associates with the RNA Polymerase II Preinitiation Complex and Selectively Affects Transcription In Vivo

    Science.gov (United States)

    Geisberg, Joseph V.; Holstege, Frank C.; Young, Richard A.; Struhl, Kevin

    2001-01-01

    NC2 (Dr1-Drap1 or Bur6-Ydr1) has been characterized in vitro as a general negative regulator of RNA polymerase II (Pol II) transcription that interacts with TATA-binding protein (TBP) and inhibits its function. Here, we show that NC2 associates with promoters in vivo in a manner that correlates with transcriptional activity and with occupancy by basal transcription factors. NC2 rapidly associates with promoters in response to transcriptional activation, and it remains associated under conditions in which transcription is blocked after assembly of the Pol II preinitiation complex. NC2 positively and negatively affects approximately 17% of Saccharomyces cerevisiae genes in a pattern that resembles the response to general environmental stress. Relative to TBP, NC2 occupancy is high at promoters where NC2 is positively required for normal levels of transcription. Thus, NC2 is associated with the Pol II preinitiation complex, and it can play a direct and positive role at certain promoters in vivo. PMID:11283253

  18. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics

    Directory of Open Access Journals (Sweden)

    Xin Nie

    2014-08-01

    Full Text Available In animals, replication-independent incorporation of nucleosomes containing the histone variant H3.3 enables global reprogramming of histone modifications and transcriptional profiles. H3.3 enrichment over gene bodies correlates with gene transcription in animals and plants. In animals, H3.3 is deposited into chromatin by specific protein complexes, including the HIRA complex. H3.3 variants evolved independently and acquired similar properties in animals and plants, questioning how the H3.3 deposition machinery evolved in plants and what are its biological functions. We performed phylogenetic analyses in the plant kingdom and identified in Arabidopsis all orthologs of human genes encoding members of the HIRA complex. Genetic analyses, biochemical data and protein localisation suggest that these proteins form a complex able to interact with H3.3 in Arabidopsis in a manner similar to that described in mammals. In contrast to animals, where HIRA is required for fertilization and early development, loss of function of HIRA in Arabidopsis causes mild phenotypes in the adult plant and does not perturb sexual reproduction and embryogenesis. Rather, HIRA function is required for transcriptional reprogramming during dedifferentiation of plant cells that precedes vegetative propagation and for the appropriate transcription of genes responsive to biotic and abiotic factors. We conclude that the molecular function of the HIRA complex is conserved between plants and animals. Yet plants diversified HIRA functions to enable asexual reproduction and responsiveness to the environment in response to the plant sessile lifestyle.

  19. The IKAROS interaction with a complex including chromatin remodeling and transcription elongation activities is required for hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Stefania Bottardi

    2014-12-01

    Full Text Available IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α, an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of Ik(NULL hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation.

  20. Characterization of a multiprotein complex involved in excitation-transcription coupling of skeletal muscle.

    Science.gov (United States)

    Arias-Calderón, Manuel; Almarza, Gonzalo; Díaz-Vegas, Alexis; Contreras-Ferrat, Ariel; Valladares, Denisse; Casas, Mariana; Toledo, Héctor; Jaimovich, Enrique; Buvinic, Sonja

    2016-01-01

    Electrical activity regulates the expression of skeletal muscle genes by a process known as "excitation-transcription" (E-T) coupling. We have demonstrated that release of adenosine 5'-triphosphate (ATP) during depolarization activates membrane P2X/P2Y receptors, being the fundamental mediators between electrical stimulation, slow intracellular calcium transients, and gene expression. We propose that this signaling pathway would require the proper coordination between the voltage sensor (dihydropyridine receptor, DHPR), pannexin 1 channels (Panx1, ATP release conduit), nucleotide receptors, and other signaling molecules. The goal of this study was to assess protein-protein interactions within the E-T machinery and to look for novel constituents in order to characterize the signaling complex. Newborn derived myotubes, adult fibers, or triad fractions from rat or mouse skeletal muscles were used. Co-immunoprecipitation, 2D blue native SDS/PAGE, confocal microscopy z-axis reconstruction, and proximity ligation assays were combined to assess the physical proximity of the putative complex interactors. An L6 cell line overexpressing Panx1 (L6-Panx1) was developed to study the influence of some of the complex interactors in modulation of gene expression. Panx1, DHPR, P2Y2 receptor (P2Y2R), and dystrophin co-immunoprecipitated in the different preparations assessed. 2D blue native SDS/PAGE showed that DHPR, Panx1, P2Y2R and caveolin-3 (Cav3) belong to the same multiprotein complex. We observed co-localization and protein-protein proximity between DHPR, Panx1, P2Y2R, and Cav3 in adult fibers and in the L6-Panx1 cell line. We found a very restricted location of Panx1 and Cav3 in a putative T-tubule zone near the sarcolemma, while DHPR was highly expressed all along the transverse (T)-tubule. By Panx1 overexpression, extracellular ATP levels were increased both at rest and after electrical stimulation. Basal mRNA levels of the early gene cfos and the oxidative metabolism

  1. The Daughterless N-terminus directly mediates synergistic interactions with Notch transcription complexes via the SPS+A DNA transcription code

    Directory of Open Access Journals (Sweden)

    Xia Li

    2009-04-01

    Full Text Available Abstract Background Cell-specific expression of a subset of Enhancer of split (E(spl-C genes in proneural clusters is mediated by synergistic interactions between bHLH A (basic Helix-Loop-Helix Activator and Notch-signalling transcription complex (NTC proteins. For a some of these E(spl-C genes, such as m8, these synergistic interactions are programmed by an "SPS+A" transcription code in the cis-regulatory regions. However, the molecular mechanisms underlying this synergistic interaction between NTCs and proneural bHLH A proteins are not fully understood. Findings Using cell transcription assays, we show that the N-terminal region of the Daughterless (Da bHLH A protein is critical for synergistic interactions with NTCs that activate the E(spl-C m8 promoter. These assays also show that this interaction is dependent on the specific inverted repeat architecture of Suppressor of Hairless (Su(H binding sites in the SPS+A transcription code. Using protein-protein interaction assays, we show that two distinct regions within the Da N-terminus make a direct physical interaction with the NTC protein Su(H. Deletion of these interaction domains in Da creates a dominant negative protein that eliminates NTC-bHLH A transcriptional synergy on the m8 promoter. In addition, over-expression of this dominant negative Da protein disrupts Notch-mediated lateral inhibition during mechanosensory bristle neurogenesis in vivo. Conclusion These findings indicate that direct physical interactions between Da-N and Su(H are critical for the transcriptional synergy between NTC and bHLH A proteins on the m8 promoter. Our results also indicate that the orientation of the Su(H binding sites in the SPS+A transcription code are critical for programming the interaction between Da-N and Su(H proteins. Together, these findings provide insight into the molecular mechanisms by which the NTC synergistically interacts with bHLH A proteins to mediate Notch target gene expression in

  2. Quantitative Analysis of the DNA Methylation Sensitivity of Transcription Factor Complexes

    Directory of Open Access Journals (Sweden)

    Judith F. Kribelbauer

    2017-06-01

    Full Text Available Although DNA modifications play an important role in gene regulation, the underlying mechanisms remain elusive. We developed EpiSELEX-seq to probe the sensitivity of transcription factor binding to DNA modification in vitro using massively parallel sequencing. Feature-based modeling quantifies the effect of cytosine methylation (5mC on binding free energy in a position-specific manner. Application to the human bZIP proteins ATF4 and C/EBPβ and three different Pbx-Hox complexes shows that 5mCpG can both increase and decrease affinity, depending on where the modification occurs within the protein-DNA interface. The TF paralogs tested vary in their methylation sensitivity, for which we provide a structural rationale. We show that 5mCpG can also enhance in vitro p53 binding and provide evidence for increased in vivo p53 occupancy at methylated binding sites, correlating with primed enhancer histone marks. Our results establish a powerful strategy for dissecting the epigenomic modulation of protein-DNA interactions and their role in gene regulation.

  3. Structure of human heat-shock transcription factor 1 in complex with DNA.

    Science.gov (United States)

    Neudegger, Tobias; Verghese, Jacob; Hayer-Hartl, Manajit; Hartl, F Ulrich; Bracher, Andreas

    2016-02-01

    Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA.

  4. Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection.

    Science.gov (United States)

    Wang, Anyou; Al-Kuhlani, Mufadhal; Johnston, S Claiborne; Ojcius, David M; Chou, Joyce; Dean, Deborah

    2013-05-01

    Chlamydia pneumoniae is responsible for a high prevalence of respiratory infections worldwide and has been implicated in atherosclerosis. Inflammation is regulated by transcription factor (TF) networks. Yet, the core TF network triggered by chlamydiae remains largely unknown. Primary human coronary artery endothelial cells were mock-infected or infected with C. pneumoniae to generate human transcriptome data throughout the chlamydial developmental cycle. Using systems network analysis, the predominant TF network involved receptor, binding and adhesion and immune response complexes. Cells transfected with interfering RNA against activator protein-1 (AP-1) members FOS, FOSB, JUN and JUNB had significantly decreased expression and protein levels of inflammatory mediators interleukin (IL)6, IL8, CD38 and tumour necrosis factor compared with controls. These mediators have been shown to be associated with C. pneumoniae disease. Expression of AP-1 components was regulated by MAPK3K8, a MAPK pathway component. Additionally, knock-down of JUN and FOS showed significantly decreased expression of Toll-like receptor (TLR)3 during infection, implicating JUN and FOS in TLR3 regulation. TLR3 stimulation led to elevated IL8. These findings suggest that C. pneumoniae initiates signalling via TLR3 and MAPK that activate AP-1, a known immune activator in other bacteria not previously shown for chlamydiae, triggering inflammation linked to C. pneumoniae disease. © 2012 Blackwell Publishing Ltd.

  5. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor

    DEFF Research Database (Denmark)

    Herranz, Nicolás; Pasini, Diego; Díaz, Víctor M

    2008-01-01

    The transcriptional factor Snail1 is a repressor of E-cadherin gene (CDH1) expression essential for triggering epithelial-mesenchymal transition (EMT). Snail1 represses CDH1 directly binding its promoter and inducing the synthesis of Zeb1 repressor. In this article we show that repression of CDH1...... by Snail1, but not by Zeb1, is dependent on the activity of the Polycomb repressive complex 2 (PRC2). ES cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumour cells, interference of PRC2 activity prevents the ability of Snail1 to down......-regulate CDH1 and partially de-represses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to CDH1 promoter and the tri-methylation of lysine 27 in the histone 3. Moreover, Snail1 interacts with Suz12 and Ezh2 as shown by coimmunoprecipitation experiments...

  6. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  7. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1999-01-01

    In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukar...

  8. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes.

    Science.gov (United States)

    Mekler, Vladimir; Minakhin, Leonid; Kuznedelov, Konstantin; Mukhamedyarov, Damir; Severinov, Konstantin

    2012-12-01

    Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the -10, -35 and UP promoter elements; the TG motif of the extended -10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP-DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.

  9. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex.

    Science.gov (United States)

    Sen, Sabyasachi; Sanyal, Sulagna; Srivastava, Dushyant Kumar; Dasgupta, Dipak; Roy, Siddhartha; Das, Chandrima

    2017-12-15

    Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic β cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2

    DEFF Research Database (Denmark)

    Pasini, Diego; Hansen, Klaus H; Christensen, Jesper

    2008-01-01

    Polycomb group (PcG) proteins regulate important cellular processes such as embryogenesis, cell proliferation, and stem cell self-renewal through the transcriptional repression of genes determining cell fate decisions. The Polycomb-Repressive Complex 2 (PRC2) is highly conserved during evolution......, and its intrinsic histone H3 Lys 27 (K27) trimethylation (me3) activity is essential for PcG-mediated transcriptional repression. Here, we show a functional interplay between the PRC2 complex and the H3K4me3 demethylase Rbp2 (Jarid1a) in mouse embryonic stem (ES) cells. By genome-wide location analysis we...... found that Rbp2 is associated with a large number of PcG target genes in mouse ES cells. We show that the PRC2 complex recruits Rbp2 to its target genes, and that this interaction is required for PRC2-mediated repressive activity during ES cell differentiation. Taken together, these results demonstrate...

  11. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  12. Functional diversification of FD transcription factors in rice, components of florigen activation complexes.

    Science.gov (United States)

    Tsuji, Hiroyuki; Nakamura, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-03-01

    Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function.

  13. Self-consistent theory of transcriptional control in complex regulatory architectures.

    Science.gov (United States)

    Landman, Jasper; Brewster, Robert C; Weinert, Franz M; Phillips, Rob; Kegel, Willem K

    2017-01-01

    Individual regulatory proteins are typically charged with the simultaneous regulation of a battery of different genes. As a result, when one of these proteins is limiting, competitive effects have a significant impact on the transcriptional response of the regulated genes. Here we present a general framework for the analysis of any generic regulatory architecture that accounts for the competitive effects of the regulatory environment by isolating these effects into an effective concentration parameter. These predictions are formulated using the grand-canonical ensemble of statistical mechanics and the fold-change in gene expression is predicted as a function of the number of transcription factors, the strength of interactions between the transcription factors and their DNA binding sites, and the effective concentration of the transcription factor. The effective concentration is set by the transcription factor interactions with competing binding sites within the cell and is determined self-consistently. Using this approach, we analyze regulatory architectures in the grand-canonical ensemble ranging from simple repression and simple activation to scenarios that include repression mediated by DNA looping of distal regulatory sites. It is demonstrated that all the canonical expressions previously derived in the case of an isolated, non-competing gene, can be generalised by a simple substitution to their grand canonical counterpart, which allows for simple intuitive incorporation of the influence of multiple competing transcription factor binding sites. As an example of the strength of this approach, we build on these results to present an analytical description of transcriptional regulation of the lac operon.

  14. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator.

    Science.gov (United States)

    Natarajan, K; Jackson, B M; Zhou, H; Winston, F; Hinnebusch, A G

    1999-10-01

    Mutations in three subunits of the SWI/SNF complex and in the Med2p subunit of the SRB/mediator of pol II holoenzyme impaired Gcn4p-activated transcription of HIS3 without reducing Gcn4p-independent transcription of this gene. Recombinant Gcn4p interacted with SWI/SNF and SRB/mediator subunits in cell extracts in a manner dependent on the same hydrophobic clusters in the Gcn4p activation domain; however, higher concentrations of Gcn4p were required for binding to SWI/SNF versus SRB/mediator subunits. In addition, SRB/mediator and SWI/SNF subunits did not coimmunopreciptate from the extracts. These findings, together with the fact that Gcn4p specifically interacted with purified SWI/SNF, strongly suggest that Gcn4p independently recruits SWI/SNF and holoenzyme to its target promoters in the course of activating transcription.

  15. Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes.

    Science.gov (United States)

    Boulanger, Alice; Moon, Kyung; Decker, Kimberly B; Chen, Qing; Knipling, Leslie; Stibitz, Scott; Hinton, Deborah M

    2015-02-10

    Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed.

  16. Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq1[W

    National Research Council Canada - National Science Library

    Sara Zenoni; Alberto Ferrarini; Enrico Giacomelli; Luciano Xumerle; Marianna Fasoli; Giovanni Malerba; Diana Bellin; Mario Pezzotti; Massimo Delledonne

    2010-01-01

    ... of transcriptomes can be studied. Here we report on the first use of RNA-Seq to gain insight into the wide range of transcriptional responses that are associated with berry development in Vitis vinifera 'Corvina...

  17. Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq

    National Research Council Canada - National Science Library

    Sara Zenoni; Alberto Ferrarini; Enrico Giacomelli; Luciano Xumerle; Marianna Fasoli; Giovanni Malerba; Diana Bellin; Mario Pezzotti; Massimo Delledonne

    2010-01-01

    ... of transcriptomes can be studied. Here we report on the first use of RNA-Seq to gain insight into the wide range of transcriptional responses that are associated with berry development in Vitis vinifera 'Corvina...

  18. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription.

    Science.gov (United States)

    Fufa, Temesgen D; Byun, Jung S; Wakano, Clay; Fernandez, Alfonso G; Pise-Masison, Cynthia A; Gardner, Kevin

    2015-09-11

    The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL. Published by Elsevier Inc.

  19. Self-consistent theory of transcriptional control in complex regulatory architectures.

    Directory of Open Access Journals (Sweden)

    Jasper Landman

    Full Text Available Individual regulatory proteins are typically charged with the simultaneous regulation of a battery of different genes. As a result, when one of these proteins is limiting, competitive effects have a significant impact on the transcriptional response of the regulated genes. Here we present a general framework for the analysis of any generic regulatory architecture that accounts for the competitive effects of the regulatory environment by isolating these effects into an effective concentration parameter. These predictions are formulated using the grand-canonical ensemble of statistical mechanics and the fold-change in gene expression is predicted as a function of the number of transcription factors, the strength of interactions between the transcription factors and their DNA binding sites, and the effective concentration of the transcription factor. The effective concentration is set by the transcription factor interactions with competing binding sites within the cell and is determined self-consistently. Using this approach, we analyze regulatory architectures in the grand-canonical ensemble ranging from simple repression and simple activation to scenarios that include repression mediated by DNA looping of distal regulatory sites. It is demonstrated that all the canonical expressions previously derived in the case of an isolated, non-competing gene, can be generalised by a simple substitution to their grand canonical counterpart, which allows for simple intuitive incorporation of the influence of multiple competing transcription factor binding sites. As an example of the strength of this approach, we build on these results to present an analytical description of transcriptional regulation of the lac operon.

  20. Elk3 from hamster--a ternary complex factor with strong transcriptional repressor activity

    DEFF Research Database (Denmark)

    Hjortoe, Gertrud Malene; Weilguny, Dietmar; Willumsen, Berthe Marie

    2005-01-01

    the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c......-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3...

  1. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex.

    Science.gov (United States)

    Shapira, Suzanne N; Lim, Hee-Woong; Rajakumari, Sona; Sakers, Alexander P; Ishibashi, Jeff; Harms, Matthew J; Won, Kyoung-Jae; Seale, Patrick

    2017-04-01

    The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in brown adipose tissue showed that EBF2 binds and regulates the activity of lineage-specific enhancers. Mechanistically, EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. We identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. Loss of DPF3 in brown adipocytes reduced chromatin accessibility at EBF2-bound enhancers and led to a decrease in basal and catecholamine-stimulated expression of brown fat-selective genes. Notably, Dpf3 is a direct transcriptional target of EBF2 in brown adipocytes, thereby establishing a regulatory module through which EBF2 activates and also recruits DPF3-anchored BAF complexes to chromatin. Together, these results reveal a novel mechanism by which EBF2 cooperates with a tissue-specific chromatin remodeling complex to activate brown fat identity genes. © 2017 Shapira et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma.

    Science.gov (United States)

    Herquel, Benjamin; Ouararhni, Khalid; Khetchoumian, Konstantin; Ignat, Mihaela; Teletin, Marius; Mark, Manuel; Béchade, Guillaume; Van Dorsselaer, Alain; Sanglier-Cianférani, Sarah; Hamiche, Ali; Cammas, Florence; Davidson, Irwin; Losson, Régine

    2011-05-17

    TRIM24 (TIF1α), TRIM28 (TIF1β), and TRIM33 (TIF1γ) are three related cofactors belonging to the tripartite motif superfamily that interact with distinct transcription factors. TRIM24 interacts with the liganded retinoic acid (RA) receptor to repress its transcriptional activity. Germ line inactivation of TRIM24 in mice deregulates RA-signaling in hepatocytes leading to the development of hepatocellular carcinoma (HCC). Here we show that TRIM24 can be purified as at least two macromolecular complexes comprising either TRIM33 or TRIM33 and TRIM28. Somatic hepatocyte-specific inactivation of TRIM24, TRIM28, or TRIM33 all promote HCC in a cell-autonomous manner in mice. Moreover, HCC formation upon TRIM24 inactivation is strongly potentiated by further loss of TRIM33. These results demonstrate that the TIF1-related subfamily of TRIM proteins interact both physically and functionally to modulate HCC formation in mice.

  3. Transcriptional intermediary factor 1γ binds to the anaphase-promoting complex/cyclosome and promotes mitosis

    DEFF Research Database (Denmark)

    Sedgwick, G.G.; Townsend, K.; Martin, A.

    2013-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is an ubiquitin ligase that functions during mitosis. Here we identify the transcriptional regulator, transcriptional intermediary factor 1γ, TIF1γ, as an APC/C-interacting protein that regulates APC/C function. TIF1γ is not a substrate for APC....../C-dependent ubiquitylation but instead, associates specifically with the APC/C holoenzyme and Cdc20 to affect APC/C activity and progression through mitosis. RNA interference studies indicate that TIF1γ knockdown results in a specific reduction in APC/C ubiquitin ligase activity, the stabilization of APC/C substrates......, and an increase in the time taken for cells to progress through mitosis from nuclear envelope breakdown to anaphase. TIF1γ knockdown cells are also characterized by the inappropriate presence of cyclin A at metaphase, and an increase in the number of cells that fail to undergo metaphase-to-anaphase transition...

  4. DNA Damage-Binding Complex Recruits HDAC1 to Repress Bcl-2 Transcription in Human Ovarian Cancer Cells

    Science.gov (United States)

    Zhao, Ran; Han, Chunhua; Eisenhauer, Eric; Kroger, John; Zhao, Weiqiang; Yu, Jianhua; Selvendiran, Karuppaiyah; Liu, Xingluo; Wani, Altaf A.; Wang, Qi-En

    2013-01-01

    Elevated expression of the anti-apoptotic factor Bcl-2 is believed to be one of the contributing factors to an increased relapse rate associated with multiple cisplatin-resistant cancers. DNA damage-binding protein complex subunit 2 (DDB2) has recently been revealed to play an important role in sensitizing human ovarian cancer cells to cisplatin-induced apoptosis through the down-regulation of Bcl-2, but the underlying molecular mechanism remains poorly defined. Here, we report that DDB2 functions as a transcriptional repressor for Bcl-2 in combination with DDB1. Quantitative ChIP and EMSA analysis revealed that DDB2 binds to a specific cis-acting element at the 5′-end of bcl-2 P1 promoter. Overexpression of DDB2 resulted in marked losses of histone H3K9,14 acetylation along the bcl-2 promoter and enhancer regions, concomitant with a local enrichment of HDAC1 to the bcl-2 P1 core promoter in ovarian cancer cells. Co-immunoprecipitation analysis and in vitro binding assay identified a physical interaction between DDB1 and HDAC1, while downregulation of HDAC1 significantly enhanced bcl-2 promoter activity. Finally, in comparison to wild-type DDB2, mutated DDB2, which is unable to repress Bcl-2 transcription, mediates a compromised apoptosis upon cisplatin treatment. Taken together, our data support a model wherein DDB1 and DDB2 cooperate with each other to repress bcl-2 transcription. DDB2 recognizes and binds to the bcl-2 P1 promoter, and HDAC1 is recruited through the DDB1 subunit associated with DDB2, to deacetylate histone H3K9,14 across bcl-2 regulatory regions, resulting in suppressed bcl-2 transcription. Thus, increasing the expression of DDB complex may provide a molecular strategy for cancer therapy. PMID:24249678

  5. Unexpected complexity of the reef-building coral Acropora millepora transcription factor network.

    KAUST Repository

    Ryu, Tae Woo

    2011-04-28

    Coral reefs are disturbed on a global scale by environmental changes including rising sea surface temperatures and ocean acidification. Little is known about how corals respond or adapt to these environmental changes especially at the molecular level. This is mostly because of the paucity of genome-wide studies on corals and the application of systems approaches that incorporate the latter. Like in any other organism, the response of corals to stress is tightly controlled by the coordinated interplay of many transcription factors.

  6. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex.

    Science.gov (United States)

    van Gool, A J; Citterio, E; Rademakers, S; van Os, R; Vermeulen, W; Constantinou, A; Egly, J M; Bootsma, D; Hoeijmakers, J H

    1997-10-01

    Transcription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) defective in Cockayne syndrome A and B (CSA and CSB), is responsible for the preferential removal of DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. Here we demonstrate by microinjection of antibodies against CSB and CSA gene products into living primary fibroblasts, that both proteins are required for TCR and for recovery of RNA synthesis after UV damage in vivo but not for basal transcription itself. Furthermore, immunodepletion showed that CSB is not required for in vitro NER or transcription. Its central role in TCR suggests that CSB interacts with other repair and transcription proteins. Gel filtration of repair- and transcription-competent whole cell extracts provided evidence that CSB and CSA are part of large complexes of different sizes. Unexpectedly, there was no detectable association of CSB with several candidate NER and transcription proteins. However, a minor but significant portion (10-15%) of RNA polymerase II was found to be tightly associated with CSB. We conclude that within cell-free extracts, CSB is not stably associated with the majority of core NER or transcription components, but is part of a distinct complex involving RNA polymerase II. These findings suggest that CSB is implicated in, but not essential for, transcription, and support the idea that Cockayne syndrome is due to a combined repair and transcription deficiency.

  7. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    LENUS (Irish Health Repository)

    Whan, Vicki

    2010-11-23

    Abstract Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified

  8. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID.

    Science.gov (United States)

    Gupta, Kapil; Watson, Aleksandra A; Baptista, Tiago; Scheer, Elisabeth; Chambers, Anna L; Koehler, Christine; Zou, Juan; Obong-Ebong, Ima; Kandiah, Eaazhisai; Temblador, Arturo; Round, Adam; Forest, Eric; Man, Petr; Bieniossek, Christoph; Laue, Ernest D; Lemke, Edward A; Rappsilber, Juri; Robinson, Carol V; Devys, Didier; Tora, Làszlò; Berger, Imre

    2017-11-07

    General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.

  9. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    Science.gov (United States)

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  10. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex

    NARCIS (Netherlands)

    G.E. Chalkley (Gillian); Y.M. Moshkin (Yuri); K. Langenberg (Karin); K. Bezstarosti (Karel); A. Blastyak (Andras); H. Gyurkovics (Henrik); J.A.A. Demmers (Jeroen); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractSWI/SNF ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in eukaryotic gene expression control. BAP and PBAP are the fly representatives of the two evolutionarily conserved major subclasses of SWI/SNF remodelers. Both complexes share seven core

  11. Footprinting and missing nucleoside analysis of transcription factor-DNA complexes.

    Science.gov (United States)

    Viola, Ivana L; Gonzalez, Daniel H

    2011-01-01

    In the following chapter we describe methods and protocols to analyze the interaction of proteins with DNA using footprinting and related techniques based on the modification of DNA with either hydroxyl radicals or methylating agents. Footprinting, based on the protection from chemical modification of DNA through the specific binding of a protein, gives information about the nucleotides that are in close contact with the protein upon binding. The derived missing nucleoside and interference techniques identify nucleotides that are energetically important for protein binding. These methods are highly valuable to study in detail the interaction of a transcription factor with nucleotides on both strands of its target DNA sequence.

  12. The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila.

    Science.gov (United States)

    Mohn, Fabio; Sienski, Grzegorz; Handler, Dominik; Brennecke, Julius

    2014-06-05

    Argonaute proteins of the PIWI clade are central to transposon silencing in animal gonads. Their target specificity is defined by 23-30 nt PIWI interacting RNAs (piRNAs), which mostly originate from discrete genomic loci termed piRNA clusters. Here, we show that a complex composed of Rhino, Deadlock, and Cutoff (RDC) defines dual-strand piRNA clusters genome-wide in Drosophila ovaries. The RDC is anchored to H3K9me3-marked chromatin in part via Rhino's chromodomain. Depletion of Piwi results in loss of the RDC and small RNAs at a subset of piRNA clusters, demonstrating a feedback loop between Piwi and piRNA source loci. Intriguingly, profiles of RNA polymerase II occupancy, nascent transcription, and steady-state RNA levels reveal that the RDC licenses noncanonical transcription of dual-strand piRNA clusters. Likely, this process involves 5' end protection of nascent RNAs and suppression of transcription termination. Our data provide key insight into the regulation and evolution of piRNA clusters. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Barbara eKupr

    2015-11-01

    Full Text Available Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease.

  14. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus.

    Science.gov (United States)

    Derjuga, Anna; Gourley, Tania S; Holm, Teresa M; Heng, Henry H Q; Shivdasani, Ramesh A; Ahmed, Rafi; Andrews, Nancy C; Blank, Volker

    2004-04-01

    Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.

  15. Structural characterization of a noncovalent complex between ubiquitin and the transactivation domain of the erythroid-specific factor EKLF.

    Science.gov (United States)

    Raiola, Luca; Lussier-Price, Mathieu; Gagnon, David; Lafrance-Vanasse, Julien; Mascle, Xavier; Arseneault, Genevieve; Legault, Pascale; Archambault, Jacques; Omichinski, James G

    2013-11-05

    Like other acidic transactivation domains (TAD), the minimal TAD from the erythroid-specific transcription factor EKLF (EKLFTAD) has been shown to contribute both to its transcriptional activity as well as to its ubiquitin(UBI)-mediated degradation. In this article, we examine the activation-degradation role of the acidic TAD of EKLF and demonstrate that the first 40 residues (EKLFTAD1) within this region form a noncovalent interaction with UBI. Nuclear magnetic resonance (NMR) structural studies of an EKLFTAD1-UBI complex show that EKLFTAD1 adopts a 14-residue α helix that forms the recognition interface with UBI in a similar manner as the UBI-interacting helix of Rabex5. We also identify a similar interaction between UBI and the activation-degradation region of SREBP1a, but not with the activation-degradation regions of p53, GAL4, and VP16. These results suggest that select activation-degradation regions like the ones found in EKLF and SREBP1a function in part through their ability to form noncovalent interactions with UBI. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62.

    Science.gov (United States)

    Tantin, D

    1998-10-23

    Transcription factor IIH (TFIIH) is involved both in transcription initiation by RNA polymerase II and in nucleotide excision-repair. Nucleotide excision-repair occurs at higher rates in transcriptionally active regions of the genome. Genetic studies indicate that this transcription-coupled repair is dependent on the Cockayne syndrome group A and B proteins, as well as TFIIH subunits. Previous work indicated that Cockayne syndrome group B interacts with RNA polymerase II molecules engaged in ternary complexes containing DNA and RNA. Evidence presented here indicates that this complex can interact with a factor containing the TFIIH core subunits p62 and xeroderma pigmentosum subunit B/excision repair cross-complementing 3. The targeting of TFIIH or a TFIIH-like repair factor to transcriptionally active DNA indicates a potential mechanism for transcription-coupled repair in human cells.

  17. Inactivation and destruction by KMnO4 of Escherichia coli RNA polymerase open transcription complex: recommendations for footprinting experiments.

    Science.gov (United States)

    Loziński, Tomasz; Wierzchowski, Kazimierz L

    2003-09-15

    Potassium permanganate oxidation of pyrimidine residues in single-stranded DNA is commonly used in footprinting studies on formation of open transcription complex (RPo) by RNA polymerases (RNAP) at cognate promoters. Our own experience and literature search led us to conclude that KMnO4 doses often used in such studies might cause multiple-hit oxidation of promoter DNA and oxidative damage to RNAP in RPo and lead to false interpretation of footprints. We have therefore studied as a function of KMnO4 dose (i) transcription activity of RPo formed by Escherichia coli RNAP at a model cognate promoter Pa and (ii) RPo's structural integrity, by gel electrophoresis and footprinting assays. Kinetics of formation of this complex and melting of DNA in the transcription bubble region were thoroughly characterized by us previously. Here we show that (i) RPo becomes completely inactivated at oxidant doses much lower than those needed to cause a detectable footprint of the melted DNA region, (ii) footprinting patterns of the melted promoter region remain practically unaffected by RNAP oxidation within a range of low oxidant doses causing single-hit oxidation of DNA, and (iii) at higher oxidant doses, corresponding to multiple-hit DNA oxidation, the gross structure of RPo changes progressively until its complete collapse and dissociation into constituent components, so that only approximate interpretation of the footprinting data for the melted DNA region is possible. A protocol for accurate RPo footprinting with low single-hit KMnO4 doses and interpretation of the footprinting data in terms of kinetics of oxidation of pyrimidine residues in promoter DNA is recommended.

  18. Purification of human transcription factors Nanog and Sox2, each in complex with Skp, an Escherichia coli periplasmic chaperone.

    Science.gov (United States)

    Ha, Sung Chul; Pereira, Jose Henrique; Jeong, Jin Hee; Huh, Jin Hoe; Kim, Sung-Hou

    2009-10-01

    Nanog and Sox2 are key transcriptional factors involved in self-renewal and pluripotency of stem cells in human and other mammals. Nanog and Sox2 contain homeodomain (HD) and high-mobility group (HMG) DNA-binding domain, respectively, for targeting them to their regulatory regions and the other regions with transactivation function by providing sites for recruiting other transcriptional regulators. To gain insights in the biochemical and biophysical characteristics of the other regions of Nanog and Sox2, we have tried to overproduce and purify full length wild-type human Nanog and Sox2 expressed in Escherichia coli. Interestingly, we found that Nanog and Sox2 were individually stabilized by tight interaction with Skp, an E. coli periplasmic chaperone, thereby enabling stable over-expression and purification of Nanog and Sox2, each in complex with Skp. Purified Skp complexes of Nanog and Sox maintained DNA-binding activity toward its cognate DNA sequence. A similar approach may be applicable for some other mammalian proteins that are unstable or difficult to over-express in E. coli.

  19. Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex

    Science.gov (United States)

    Chmiest, Daniela; Sharma, Nanaocha; Zanin, Natacha; Viaris de Lesegno, Christine; Shafaq-Zadah, Massiullah; Sibut, Vonick; Dingli, Florent; Hupé, Philippe; Wilmes, Stephan; Piehler, Jacob; Loew, Damarys; Johannes, Ludger; Schreiber, Gideon; Lamaze, Christophe

    2016-01-01

    Type-I interferons (IFNs) play a key role in the immune defences against viral and bacterial infections, and in cancer immunosurveillance. We have established that clathrin-dependent endocytosis of the type-I interferon (IFN-α/β) receptor (IFNAR) is required for JAK/STAT signalling. Here we show that the internalized IFNAR1 and IFNAR2 subunits of the IFNAR complex are differentially sorted by the retromer at the early endosome. Binding of the retromer VPS35 subunit to IFNAR2 results in IFNAR2 recycling to the plasma membrane, whereas IFNAR1 is sorted to the lysosome for degradation. Depletion of VPS35 leads to abnormally prolonged residency and association of the IFNAR subunits at the early endosome, resulting in increased activation of STAT1- and IFN-dependent gene transcription. These experimental data establish the retromer complex as a key spatiotemporal regulator of IFNAR endosomal sorting and a new factor in type-I IFN-induced JAK/STAT signalling and gene transcription. PMID:27917878

  20. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast.

    Science.gov (United States)

    Mbogning, Jean; Nagy, Stephen; Pagé, Viviane; Schwer, Beate; Shuman, Stewart; Fisher, Robert P; Tanny, Jason C

    2013-01-01

    Cyclin-dependent kinase 9 (Cdk9) promotes elongation by RNA polymerase II (RNAPII), mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF) complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.

  1. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Jean Mbogning

    Full Text Available Cyclin-dependent kinase 9 (Cdk9 promotes elongation by RNA polymerase II (RNAPII, mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.

  2. Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex.

    Science.gov (United States)

    Chmiest, Daniela; Sharma, Nanaocha; Zanin, Natacha; Viaris de Lesegno, Christine; Shafaq-Zadah, Massiullah; Sibut, Vonick; Dingli, Florent; Hupé, Philippe; Wilmes, Stephan; Piehler, Jacob; Loew, Damarys; Johannes, Ludger; Schreiber, Gideon; Lamaze, Christophe

    2016-12-05

    Type-I interferons (IFNs) play a key role in the immune defences against viral and bacterial infections, and in cancer immunosurveillance. We have established that clathrin-dependent endocytosis of the type-I interferon (IFN-α/β) receptor (IFNAR) is required for JAK/STAT signalling. Here we show that the internalized IFNAR1 and IFNAR2 subunits of the IFNAR complex are differentially sorted by the retromer at the early endosome. Binding of the retromer VPS35 subunit to IFNAR2 results in IFNAR2 recycling to the plasma membrane, whereas IFNAR1 is sorted to the lysosome for degradation. Depletion of VPS35 leads to abnormally prolonged residency and association of the IFNAR subunits at the early endosome, resulting in increased activation of STAT1- and IFN-dependent gene transcription. These experimental data establish the retromer complex as a key spatiotemporal regulator of IFNAR endosomal sorting and a new factor in type-I IFN-induced JAK/STAT signalling and gene transcription.

  3. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A

    2014-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient...... recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1......, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks....

  4. Determining physical constraints in transcriptional initiation complexes using DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Ryan K Shultzaberger

    2007-11-01

    Full Text Available Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the "rules" that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.

  5. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    Science.gov (United States)

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  6. Fgfr3 is a transcriptional target of Ap2delta and Ash2l-containing histone methyltransferase complexes.

    Directory of Open Access Journals (Sweden)

    Cheryl C Tan

    2009-12-01

    Full Text Available Polycomb (PcG and trithorax (trxG proteins play important roles in establishing lineage-specific genetic programs through induction of chromatin modifications that lead to gene silencing or activation. Previously, we described an association between the MLL/SET1 complexes and a highly restricted, gene-specific DNA-binding protein Ap2delta that is required for recruitment of the MLL/SET1 complex to target Hoxc8 specifically. Here, we reduced levels of Ap2delta and Ash2l in the neuroblastoma cell line, Neuro2A, and analyzed their gene expression profiles using whole-genome mouse cDNA microarrays. This analysis yielded 42 genes that are potentially co-regulated by Ap2delta and Ash2l, and we have identified evolutionarily conserved Ap2-binding sites in 20 of them. To determine whether some of these were direct targets of the Ap2delta-Ash2l complex, we analyzed several promoters for the presence of Ap2delta and Ash2l by chromatin immunoprecipitation (ChIP. Among the targets we screened, we identified Fgfr3 as a direct transcriptional target of the Ap2delta-Ash2l complex. Additionally, we found that Ap2delta is necessary for the recruitment of Ash2l-containing complexes to this promoter and that this recruitment leads to trimethylation of lysine 4 of histone H3 (H3K4me3. Thus, we have identified several candidate targets of complexes containing Ap2delta and Ash2l that can be used to further elucidate their roles during development and showed that Fgfr3 is a novel direct target of these complexes.

  7. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription

    Science.gov (United States)

    Torreira, Eva; Louro, Jaime Alegrio; Pazos, Irene; González-Polo, Noelia; Gil-Carton, David; Duran, Ana Garcia; Tosi, Sébastien; Gallego, Oriol; Calvo, Olga; Fernández-Tornero, Carlos

    2017-01-01

    Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I–Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association. DOI: http://dx.doi.org/10.7554/eLife.20832.001 PMID:28262097

  8. Zinc finger artificial transcription factor-based nearest inactive analogue/nearest active analogue strategy used for the identification of plant genes controlling homologous recombination.

    Science.gov (United States)

    Jia, Qi; van Verk, Marcel C; Pinas, Johan E; Lindhout, Beatrice I; Hooykaas, Paul J J; van der Zaal, Bert J

    2013-12-01

    In previous work, we selected a particular transcription factor, designated VP16-HRU, from a pool of zinc finger artificial transcription factors (ZF-ATFs) used for genome interrogation. When expressed in Arabidopsis thaliana under control of the ribosomal protein S5A promoter, the RPS5A::VP16-HRU construct led to a 200- to 300-fold increase in the frequency of somatic intrachromosomal homologous recombination (iHR). Because the expression of each ZF-ATF leads to a large number of transcriptional changes, we designed a strategy employing a collection of structurally similar ZF-ATFs to filter out the transcriptional changes relevant to the phenotype by deep sequencing. In that manner, 30 transcripts were found to be consistently induced in plants with enhanced homologous recombination (HR). For 25 of the cognate genes, their effect on the HR process was assessed using cDNA/gDNA expression constructs. For three genes, ectopic expression indeed led to enhanced iHR frequencies, albeit much lower than the frequency observed when a HR-inducing ZF-ATF was present. Altogether, our data demonstrate that despite the large number of transcriptional changes brought about by individual ZF-ATFs, causal changes can be identified. In our case, the picture emerged that a natural regulatory switch for iHR does not exist but that ZF-ATFs-like VP16-HRU act as an ectopic master switch, orchestrating the timely expression of a set of plant genes that each by themselves only have modest effects, but when acting together support an extremely high iHR frequency. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Enhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors.

    Science.gov (United States)

    Tol, Niels van; Rolloos, Martijn; Pinas, Johan E; Henkel, Christiaan V; Augustijn, Dieuwertje; Hooykaas, Paul J J; van der Zaal, Bert J

    2017-01-01

    The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics and biomass of Arabidopsis plants. We describe the construction of two collections of Arabidopsis lines expressing fusions of three zinc fingers (3F) to the transcriptional repressor motif EAR (3F-EAR) or the transcriptional activator VP16 (3F-VP16), and the characterization of their growth characteristics. In total, six different 3F-ATF lines with a consistent increase in rosette surface area (RSA) of up to 55% were isolated. For two lines we demonstrated that 3F-ATF constructs function as dominant in trans acting causative agents for an increase in RSA and biomass, and for five larger plant lines we have investigated 3F-ATF induced transcriptomic changes. Our results indicate that genome interrogation can be used as a powerful tool for the manipulation of plant growth and biomass and that it might supply novel cues for the discovery of genes and pathways involved in these properties.

  10. Enhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors

    Science.gov (United States)

    Pinas, Johan E.; Henkel, Christiaan V.; Augustijn, Dieuwertje; Hooykaas, Paul J. J.; van der Zaal, Bert J.

    2017-01-01

    The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics and biomass of Arabidopsis plants. We describe the construction of two collections of Arabidopsis lines expressing fusions of three zinc fingers (3F) to the transcriptional repressor motif EAR (3F-EAR) or the transcriptional activator VP16 (3F-VP16), and the characterization of their growth characteristics. In total, six different 3F-ATF lines with a consistent increase in rosette surface area (RSA) of up to 55% were isolated. For two lines we demonstrated that 3F-ATF constructs function as dominant in trans acting causative agents for an increase in RSA and biomass, and for five larger plant lines we have investigated 3F-ATF induced transcriptomic changes. Our results indicate that genome interrogation can be used as a powerful tool for the manipulation of plant growth and biomass and that it might supply novel cues for the discovery of genes and pathways involved in these properties. PMID:28358915

  11. TERRA transcripts are bound by a complex array of RNA-binding proteins.

    Science.gov (United States)

    López de Silanes, Isabel; Stagno d'Alcontres, Martina; Blasco, Maria A

    2010-06-29

    Telomeres are transcribed from the telomeric C-rich strand, giving rise to UUAGGG repeat-containing telomeric transcripts or TERRA, which are novel structural components of telomeres. TERRA abundance is highly dependent on developmental status (including nuclear reprogramming), telomere length, cellular stresses, tumour stage and chromatin structure. However, the molecular mechanisms and factors controlling TERRA levels are still largely unknown. In this study, we identify a set of RNA-binding proteins, which endogenously bind and regulate TERRA in the context of primary mouse embryonic fibroblasts. The identification was carried out by biotin pull-down assays followed by LC-MALDI TOF/TOF mass spectrometry. Different members of the heterogeneous nuclear ribonucleoprotein family are among the ribonucleoprotein family that bind more abundantly to TERRA. Downregulation of TERRA-bound RBPs by small interfering RNA further shows that they can impact on TERRA abundance, their location and telomere lengthening. These findings anticipate an impact of TERRA-associated RBPs on telomere biology and telomeres diseases, such as cancer and aging.

  12. PRC2 regulates RNA polymerase III transcribed non-translated RNA gene transcription through EZH2 and SUZ12 interaction with TFIIIC complex

    Science.gov (United States)

    Liu, Chang; Li, Shuai; Dai, Xiaoyan; Ma, Ji; Wan, Junhu; Jiang, Hao; Wang, Peng; Liu, Zhaoli; Zhang, Hongquan

    2015-01-01

    Polycomb repression complex 2 (PRC2) component EZH2 tri-methylates H3K27 and exerts epigenetic repression on target gene expression. EZH2-mediated epigenetic control of RNA polymerase II (Pol II) transcribed coding gene transcription has been well established. However, little is known about EZH2-mediated epigenetic regulation of RNA polymerase III (Pol III) transcription. Here we present a paradigm that EZH2 is involved in the repression of Pol III transcription via interaction with transcriptional factor complex IIIC (TFIIIC). EZH2 and H3K27me3 co-occupy the promoter of tRNATyr, 5S rRNA and 7SL RNA genes. Depletion of EZH2 or inhibition of EZH2 methyltransferase activity led to upregulation of Pol III target gene transcription. EZH2-mediated repression of Pol III transcribed gene expression requires presence of SUZ12. SUZ12 was able to interact with TFIIIC complex and knockdown of SUZ12 decreased occupancy of EZH2 and H3K27me3 at the promoter of Pol III target genes. Our findings pointed out a previously unidentified role of PRC2 complex in suppressing transcription of Pol III transcribed non-translated RNA genes, putting Pol III on a new layer of epigenetic regulation. PMID:26038315

  13. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance.

    Science.gov (United States)

    Waterfield, Michael; Khan, Imran S; Cortez, Jessica T; Fan, Una; Metzger, Todd; Greer, Alexandra; Fasano, Kayla; Martinez-Llordella, Marc; Pollack, Joshua L; Erle, David J; Su, Maureen; Anderson, Mark S

    2014-03-01

    The maintenance of immunological tolerance requires the deletion of self-reactive T cells in the thymus. The expression of genes encoding tissue-specific antigens (TSAs) by thymic epithelial cells is critical for this process and depends on activity of the transcriptional regulator Aire; however, the molecular mechanisms Aire uses to target loci encoding TSAs are unknown. Here we identified two Aire-interacting proteins known to be involved in gene repression, ATF7ip and MBD1, that were required for Aire's targeting of loci encoding TSAs. Moreover, Mbd1(-/-) mice developed pathological autoimmunity and had a defect in Aire-dependent thymic expression of genes encoding TSAs, which underscores the importance of Aire's interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance.

  14. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger.

    Science.gov (United States)

    Pullan, Steven T; Daly, Paul; Delmas, Stéphane; Ibbett, Roger; Kokolski, Matthew; Neiteler, Almar; van Munster, Jolanda M; Wilson, Raymond; Blythe, Martin J; Gaddipati, Sanyasi; Tucker, Gregory A; Archer, David B

    2014-01-01

    than willow. Genes not encoding CAZymes were also induced on willow such as hydrophobins as well as genes of unknown function. Several genes were identified as promising targets for future study. By comparing this first study of the global transcriptional response of a fungus to willow with the response to straw, we have shown that the inducing lignocellulosic substrate has a marked effect upon the range of transcripts and enzymes expressed by A. niger. The use by industry of complex substrates such as wheat straw or willow could benefit efficient biofuel production.

  15. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis

    Science.gov (United States)

    Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  16. Transcription activator-like effector-mediated regulation of gene expression based on the inducible packaging and delivery via designed extracellular vesicles.

    Science.gov (United States)

    Lainšček, Duško; Lebar, Tina; Jerala, Roman

    2017-02-26

    Transcription activator-like effector (TALE) proteins present a powerful tool for genome editing and engineering, enabling introduction of site-specific mutations, gene knockouts or regulation of the transcription levels of selected genes. TALE nucleases or TALE-based transcription regulators are introduced into mammalian cells mainly via delivery of the coding genes. Here we report an extracellular vesicle-mediated delivery of TALE transcription regulators and their ability to upregulate the reporter gene in target cells. Designed transcriptional activator TALE-VP16 fused to the appropriate dimerization domain was enriched as a cargo protein within extracellular vesicles produced by mammalian HEK293 cells stimulated by Ca-ionophore and using blue light- or rapamycin-inducible dimerization systems. Blue light illumination or rapamycin increased the amount of the TALE-VP16 activator in extracellular vesicles and their addition to the target cells resulted in an increased expression of the reporter gene upon addition of extracellular vesicles to the target cells. This technology therefore represents an efficient delivery for the TALE-based transcriptional regulators. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil.

    Science.gov (United States)

    Lamar, R T; Schoenike, B; Vanden Wymelenberg, A; Stewart, P; Dietrich, D M; Cullen, D

    1995-06-01

    Thorough analysis of fungi in complex substrates has been hampered by inadequate experimental tools for assessing physiological activity and estimating biomass. We report a method for the quantitative assessment of specific fungal mRNAs in soil. The method was applied to complex gene families of Phanerochaete chrysosporium, a white-rot fungus widely used in studies of organopollutant degradation. Among the genes implicated in pollutant degradation, two closely related lignin peroxidase transcripts were detected in soil. The pattern of lignin peroxidase gene expression was unexpected; certain transcripts abundant in defined cultures were not detected in soil cultures. Transcripts encoding cellobiohydrolases and beta-tubulin were also detected. The method will aid in defining the roles of specific genes in complex biological processes such as organopollutant degradation, developing strategies for strain improvement, and identifying specific fungi in environmental samples.

  18. Insights into the Recruitment of Class IIa Histone Deacetylases (HDACs) to the SMRT/NCoR Transcriptional Repression Complex.

    Science.gov (United States)

    Hudson, Gregg M; Watson, Peter J; Fairall, Louise; Jamieson, Andrew G; Schwabe, John W R

    2015-07-17

    Class IIa histone deacetylases repress transcription of target genes. However, their mechanism of action is poorly understood because they exhibit very low levels of deacetylase activity. The class IIa HDACs are associated with the SMRT/NCoR repression complexes and this may, at least in part, account for their repressive activity. However, the molecular mechanism of recruitment to co-repressor proteins has yet to be established. Here we show that a repeated peptide motif present in both SMRT and NCoR is sufficient to mediate specific interaction, with micromolar affinity, with all the class IIa HDACs (HDACs 4, 5, 7, and 9). Mutations in the consensus motif abrogate binding. Mutational analysis of HDAC4 suggests that the peptide interacts in the vicinity of the active site of the enzyme and requires the "closed" conformation of the zinc-binding loop on the surface of the enzyme. Together these findings represent the first insights into the molecular mechanism of recruitment of class IIa HDACs to the SMRT/NCoR repression complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Transcripts involved in hemostasis: Exploring salivary complexes from Haementeria vizottoi leeches through transcriptomics, phylogenetic studies and structural features.

    Science.gov (United States)

    Amorim, Adriane Michele Xavier Prado; de Oliveira, Ursula Castro; Faria, Fernanda; Pasqualoto, Kerly Fernanda Mesquita; Junqueira-de-Azevedo, Inácio de L M; Chudzinski-Tavassi, Ana Marisa

    2015-11-01

    Throughout evolution, parasites have adapted in order to successfully intervene in the host defense, producing specific peptides and proteins. Interestingly, these peptides and proteins have been exploited as potential drug candidates against several diseases. Furthermore, biotechnology studies and cDNA libraries have remarkably contributed to identify potentially bioactive molecules. In this regard, herein, a cDNA library of salivary complexes from Haementeria vizottoi leeches was constructed, the transcriptome was characterized and a phylogenetic analysis was performed considering antistasin-like and antiplatelet-like proteins. Hundred twenty three transcripts were identified coding for putative proteins involved in animal feeding (representing about 10% of the expression level). These sequences showed similarities with myohemerythrins, carbonic anhydrases, anticoagulants, antimicrobials, proteases and protease inhibitors. The phylogenetic analysis, regarding antistasin-like and antiplatetlet-like proteins, revealed two main clades in the Rhynchobdellida leeches. As expected, the sequences from H. vizottoi have presented high similarities with those types of proteins. Thus, our findings could be helpful not only to identify new coagulation inhibitors, but also to better understand the biological composition of the salivary complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors.

    Science.gov (United States)

    Antosz, Wojciech; Pfab, Alexander; Ehrnsberger, Hans F; Holzinger, Philipp; Köllen, Karin; Mortensen, Simon A; Bruckmann, Astrid; Schubert, Thomas; Längst, Gernot; Griesenbeck, Joachim; Schubert, Veit; Grasser, Marion; Grasser, Klaus D

    2017-04-01

    Transcript elongation factors (TEFs) are a heterogeneous group of proteins that control the efficiency of transcript elongation of subsets of genes by RNA polymerase II (RNAPII) in the chromatin context. Using reciprocal tagging in combination with affinity purification and mass spectrometry, we demonstrate that in Arabidopsis thaliana , the TEFs SPT4/SPT5, SPT6, FACT, PAF1-C, and TFIIS copurified with each other and with elongating RNAPII, while P-TEFb was not among the interactors. Additionally, NAP1 histone chaperones, ATP-dependent chromatin remodeling factors, and some histone-modifying enzymes including Elongator were repeatedly found associated with TEFs. Analysis of double mutant plants defective in different combinations of TEFs revealed genetic interactions between genes encoding subunits of PAF1-C, FACT, and TFIIS, resulting in synergistic/epistatic effects on plant growth/development. Analysis of subnuclear localization, gene expression, and chromatin association did not provide evidence for an involvement of the TEFs in transcription by RNAPI (or RNAPIII). Proteomics analyses also revealed multiple interactions between the transcript elongation complex and factors involved in mRNA splicing and polyadenylation, including an association of PAF1-C with the polyadenylation factor CstF. Therefore, the RNAPII transcript elongation complex represents a platform for interactions among different TEFs, as well as for coordinating ongoing transcription with mRNA processing. © 2017 American Society of Plant Biologists. All rights reserved.

  1. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b

    DEFF Research Database (Denmark)

    He, Fei; Vestergaard, Gisle; Peng, Wenfang

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little...... is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally...... to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection....

  2. LRP16 integrates into NF-κB transcriptional complex and is required for its functional activation.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Wu

    Full Text Available BACKGROUND: Nuclear factor κB (NF-κB-mediated pathways have been widely implicated in cell survival, development and tumor progression. Although the molecular events of determining NF-κB translocation from cytoplasm to nucleus have been extensively documented, the regulatory mechanisms of NF-κB activity inside the nucleus are still poorly understood. Being a special member of macro domain proteins, LRP16 was previously identified as a coactivator of both estrogen receptor and androgen receptor, and as an interactor of NF-κB coactivator UXT. Here, we investigated the regulatory role of LRP16 on NF-κB activation. METHODOLOGY: GST pull-down and coimmunoprecipitation (CoIP assays assessed protein-protein interactions. The functional activity of NF-κB was assessed by luciferase assays, changes in expression of its target genes, and its DNA binding ability. Annexin V staining and flow cytometry analysis were used to evaluate cell apoptosis. Immunohistochemical staining of LRP16 and enzyme-linked immunosorbent assay-based evaluation of active NF-κB were performed on primary human gastric carcinoma samples. RESULTS: We demonstrate that LRP16 integrates into NF-κB transcriptional complex through associating with its p65 component. RNA interference knockdown of the endogenous LRP16 in cells leads to impaired NF-κB activity and significantly attenuated NF-κB-dependent gene expression. Mechanistic analysis revealed that knockdown of LRP16 did not affect tumor necrosis factor α (TNF-α-induced nuclear translocation of NF-κB, but blunted the formation or stabilization of functional NF-κB/p300/CREB-binding protein transcription complex in the nucleus. In addition, knockdown of LRP16 also sensitizes cells to apoptosis induced by TNF-α. Finally, a positive link between LRP16 expression intensity in nuclei of tumor cells and NF-κB activity was preliminarily established in human gastric carcinoma specimens. CONCLUSIONS: Our findings not only

  3. The Broad Complex isoform 2 (BrC-Z2) transcriptional factor plays a critical role in vitellogenin transcription in the silkworm Bombyx mori.

    Science.gov (United States)

    Yang, Congwen; Lin, Ying; Liu, Hongling; Shen, Guanwang; Luo, Juan; Zhang, Haiyan; Peng, Zhixin; Chen, Enxiang; Xing, Runmiao; Han, Chaoshan; Xia, Qingyou

    2014-09-01

    Vitellogenin (Vg) is synthesized in the fat body of the female silkworm Bombyx mori and transported to the oocyte as a source of nutrition for embryo development. It is well known that ecdysone regulates physiological, developmental and behavioral events in silkworm. However, it is still not clear how the ecdysone regulates B. mori Vg (BmVg) transcription. Electrophoretic mobility shift assay (EMSA) and cell transfection assay were used to reveal whether BmBrC-Z2 is involved in regulating BmVg transcription. RNAi was employed to illustrate the function of BmBrC-Z2 in the silkworm egg formation and development. (1) The transcription of BmVg can be induced by ecdysone in the female fat body. (2) Three putative BrC-Z2 cis-response elements were mapped to regions flanking the BmVg gene. (3) BmBrC-Z2 required direct binding to the cis-response elements on the BmVg promoter. (4) Over-expression of three BmBrC isoforms in the cell line showed that only BmBrC-Z2 could induce the BmVg promoter activity. (5) RNA interference (RNAi) of BmBrC-Z2 in female remarkably reduced BmVg synthesis and led to destructive affection on egg formation. The dsRNA of BmBrC-Z2 treated moths laid fewer and whiter eggs compared to the control. BmBrC-Z2 transported the ecdysone signal then regulated BmVg transcription directly to control vitellogenesis and egg formation in the silkworm. The results of this study revealed that BmBrC-Z2 as a key factor to mediate ecdysone regulates reproduction in the silkworm. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. NMR assignments of SPOC domain of the human transcriptional corepressor SHARP in complex with a C-terminal SMRT peptide.

    Science.gov (United States)

    Mikami, Suzuka; Kanaba, Teppei; Ito, Yutaka; Mishima, Masaki

    2013-10-01

    The transcriptional corepressor SMRT/HDAC1-associated repressor protein (SHARP) recruits histone deacetylases. Human SHARP protein is thought to function in processes involving steroid hormone responses and the Notch signaling pathway. SHARP consists of RNA recognition motifs (RRMs) in the N-terminal region and the spen paralog and ortholog C-terminal (SPOC) domain in the C-terminal region. It is known that the SPOC domain binds the LSD motif in the C-terminal tail of corepressors silencing mediator for retinoid and thyroid receptor (SMRT)/nuclear receptor corepressor (NcoR). We are interested in delineating the mechanism by which the SPOC domain recognizes the LSD motif of the C-terminal tail of SMRT/NcoR. To this end, we are investigating the tertiary structure of the SPOC/SMRT peptide using NMR. Herein, we report on the (1)H, (13)C and (15)N resonance assignments of the SPOC domain in complex with a SMRT peptide, which contributes towards a structural understanding of the SPOC/SMRT peptide and its molecular recognition.

  5. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells.

    Science.gov (United States)

    Severson, Eric; Arnett, Kelly L; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S; Shirley Liu, X; Blacklow, Stephen C; Aster, Jon C

    2017-05-02

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. Copyright © 2017, American Association for the Advancement of Science.

  6. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick

    2007-01-01

    The glial fibrillary acidic protein, GFAP, forms the intermediate cytoskeleton in cells of the glial lineage. Besides the common GFAP alpha transcript, the GFAP epsilon and GFAP kappa transcripts are generated by alternative mRNA 3'-end processing. Here we use a GFAP minigene to characterize...... molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model...

  7. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    Science.gov (United States)

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA

  8. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter.

    Science.gov (United States)

    Hasan, Uzma A; Zannetti, Claudia; Parroche, Peggy; Goutagny, Nadège; Malfroy, Marine; Roblot, Guillaume; Carreira, Christine; Hussain, Ishraq; Müller, Martin; Taylor-Papadimitriou, Joyce; Picard, Didier; Sylla, Bakary S; Trinchieri, Giorgio; Medzhitov, Ruslan; Tommasino, Massimo

    2013-07-01

    Human papillomavirus type 16 (HPV16) and other oncogenic viruses have been reported to deregulate immunity by suppressing the function of the double-stranded DNA innate sensor TLR9. However, the mechanisms leading to these events remain to be elucidated. We show that infection of human epithelial cells with HPV16 promotes the formation of an inhibitory transcriptional complex containing NF-κBp50-p65 and ERα induced by the E7 oncoprotein. The E7-mediated transcriptional complex also recruited the histone demethylase JARID1B and histone deacetylase HDAC1. The entire complex bound to a specific region on the TLR9 promoter, which resulted in decreased methylation and acetylation of histones upstream of the TLR9 transcriptional start site. The involvement of NF-κB and ERα in the TLR9 down-regulation by HPV16 E7 was fully confirmed in cervical tissues from human patients. Importantly, we present evidence that the HPV16-induced TLR9 down-regulation affects the interferon response which negatively regulates viral infection. Our studies highlight a novel HPV16-mediated mechanism that combines epigenetic and transcriptional events to suppress a key innate immune sensor.

  9. Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes.

    Science.gov (United States)

    Howell, M; Itoh, F; Pierreux, C E; Valgeirsdottir, S; Itoh, S; ten Dijke, P; Hill, C S

    1999-10-15

    Smad4 is defined as the common-mediator Smad (co-Smad) required for transducing signals for all TGF-beta superfamily members. This paper describes two Smad4s in Xenopus: XSmad4alpha, which is probably the Xenopus orthologue of human Smad4, and a distinct family member, XSmad4beta, which differs primarily at the extreme N-terminus and in the linker region. Both XSmad4s act as co-Smads, forming ligand-dependent complexes with receptor-regulated Smads 1 and 2 and synergizing with them to activate transcription of mesodermal genes in Xenopus embryos. The two XSmad4 genes have reciprocal temporal expression patterns in Xenopus embryos and are expressed in varying ratios in adult tissues, suggesting distinct functional roles in vivo. XSmad4beta is the predominant maternal co-Smad and we go on to demonstrate its role in the transcriptional regulation of early mesodermal genes. We have identified two distinct nuclear complexes that bind the activin-responsive element of the Xenopus Mix.2 promoter: one formed in response to high levels of activin signaling and the other activated by endogenous signaling pathways. Using specific antisera we demonstrate the presence of endogenous XSmad4beta and also XSmad2 in both of these complexes, and our data indicate that the DNA-binding components of the complexes are different. Furthermore, we show that the presence of these complexes in the nucleus perfectly correlates with the transcriptional activity of the target gene, Mix.2, and we show that one of the XSmad4beta-containing transcription factor complexes undergoes a developmentally regulated nuclear translocation. Copyright 1999 Academic Press.

  10. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity

    Science.gov (United States)

    Wyman, Stacia K.; Knouf, Emily C.; Parkin, Rachael K.; Fritz, Brian R.; Lin, Daniel W.; Dennis, Lucas M.; Krouse, Michael A.; Webster, Philippa J.; Tewari, Muneesh

    2011-01-01

    Modification of microRNA sequences by the 3′ addition of nucleotides to generate so-called “isomiRs” adds to the complexity of miRNA function, with recent reports showing that 3′ modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3′ modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3′ nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3′ modification is a biologically regulated process. To investigate the mechanism of 3′ nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3′ miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3′ nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes–MTPAP, ZCCHC6, and TUT1–have not previously been known to modify miRNAs. Collectively, our results indicate that 3′ modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo. PMID:21813625

  11. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription.

    Science.gov (United States)

    Groussaud, Damien; Khair, Mostafa; Tollenaere, Armelle I; Waast, Laetitia; Kuo, Mei-Shiue; Mangeney, Marianne; Martella, Christophe; Fardini, Yann; Coste, Solène; Souidi, Mouloud; Benit, Laurence; Pique, Claudine; Issad, Tarik

    2017-07-01

    The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway

  12. Ménage à trois: The complex relationships between mitogen-activated protein kinases, WRKY transcription factors and VQ-motif-containing proteins.

    Science.gov (United States)

    Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin

    2014-01-01

    Out of the 34 members of the VQ-motif-containing protein (VQP) family, ten are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defence gene transcription.

  13. Scanning mutagenesis reveals roles for helix n of the bacteriophage T7 RNA polymerase thumb subdomain in transcription complex stability, pausing, and termination.

    Science.gov (United States)

    Brieba, L G; Gopal, V; Sousa, R

    2001-03-30

    Deletions within the thumb subdomain (residues 335-408) of T7 RNA polymerase decrease elongation complex stability and processivity, but the structure of a T7RNAP initial transcription complex containing a 3-nucleotide RNA reveals no interactions between the thumb and the RNA or DNA. Modeling of a longer RNA in this structure, using a T7DNAP-primer-template structure as a guide, suggests that the phosphate ribose backbone of the RNA contacts a stretch of mostly positively charged side chains between residues 385 and 395 of helix N of the thumb. Scanning mutagenesis of this region reveals that alanine substitutions of Arg(391), Ser(393), and Arg(394) destabilize elongation complexes and that substitutions at 393 and 394 increase termination of transcripts 5 or more bases in length. The alpha-carbons of all 3 of these residues lie on the side of helix N, which faces into the template-binding cleft of the RNA polymerase, and modeling suggests that they can contact the RNA 4-5 bases away from the 3'-end. Alanine substitutions of other residues within 385-395 do not have marked effects on transcription complex stability, but alanine substitutions of Asp(388) and Tyr(385) reduce pausing and termination at the T7 concatemer junction. Both of these side chains lie on the outer side of helix N, pointing away from the template binding cleft. The thumb subdomain of T7RNAP therefore has roles both in transcription complex stabilization and in pausing and termination at the T7 concatemer junction.

  14. Structure and Function of the Ankyrin Repeats in the Sw14/Sw16 Transcription Complex of Budding Yeast

    National Research Council Canada - National Science Library

    Breeden, Linda

    1998-01-01

    ANK repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins, including oncogenes and tumor suppressors We have previously...

  15. Transcription factor NF-kappaB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Ilja Mikenberg

    2007-07-01

    Full Text Available Long-term changes in synaptic plasticity require gene transcription, indicating that signals generated at the synapse must be transported to the nucleus. Synaptic activation of hippocampal neurons is known to trigger retrograde transport of transcription factor NF-kappaB. Transcription factors of the NF-kappaB family are widely expressed in the nervous system and regulate expression of several genes involved in neuroplasticity, cell survival, learning and memory.In this study, we examine the role of the dynein/dynactin motor complex in the cellular mechanism targeting and transporting activated NF-kappaB to the nucleus in response to synaptic stimulation. We demonstrate that overexpression of dynamitin, which is known to dissociate dynein from microtubules, and treatment with microtubule-disrupting drugs inhibits nuclear accumulation of NF-kappaB p65 and reduces NF-kappaB-dependent transcription activity. In this line, we show that p65 is associated with components of the dynein/dynactin complex in vivo and in vitro and that the nuclear localization sequence (NLS within NF-kappaB p65 is essential for this binding.This study shows the molecular mechanism for the retrograde transport of activated NF-kappaB from distant synaptic sites towards the nucleus.

  16. Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex.

    Science.gov (United States)

    Cao, Qing-Fu; Yamamoto, Junichi; Isobe, Tomoyasu; Tateno, Shumpei; Murase, Yuki; Chen, Yexi; Handa, Hiroshi; Yamaguchi, Yuki

    2015-10-01

    Restores TBP function 1 (Rtf1) is generally considered to be a subunit of the Paf1 complex (PAF1C), a multifunctional protein complex involved in histone modification and transcriptional or posttranscriptional regulation. Rtf1, however, is not stably associated with the PAF1C in most species except Saccharomyces cerevisiae, and its biochemical functions are not well understood. Here, we show that human Rtf1 is a transcription elongation factor that may function independently of the PAF1C. Rtf1 requires "Rtf1 coactivator" activity, which is most likely unrelated to the PAF1C or DSIF, for transcriptional activation in vitro. A mutational study revealed that the Plus3 domain of human Rtf1 is critical for its coactivator-dependent function. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation studies in HeLa cells showed that Rtf1 and the PAF1C play distinct roles in regulating the expression of a subset of genes. Moreover, contrary to the finding in S. cerevisiae, the PAF1C was apparently recruited to the genes examined in an Rtf1-independent manner. The present study establishes a role for human Rtf1 as a transcription elongation factor and highlights the similarities and differences between the S. cerevisiae and human Rtf1 proteins. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b

    Science.gov (United States)

    He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin

    2017-01-01

    Abstract CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. PMID:27980065

  18. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex.

    Science.gov (United States)

    Hussain, Tabish; Saha, Dhurjhoti; Purohit, Gunjan; Kar, Anirban; Kishore Mukherjee, Anand; Sharma, Shalu; Sengupta, Suman; Dhapola, Parashar; Maji, Basudeb; Vedagopuram, Sreekanth; Horikoshi, Nobuko T; Horikoshi, Nobuo; Pandita, Raj K; Bhattacharya, Santanu; Bajaj, Avinash; Riou, Jean-François; Pandita, Tej K; Chowdhury, Shantanu

    2017-09-14

    We observed extra-telomeric binding of the telomere repeat binding factor TRF2 within the promoter of the cyclin-dependent kinase CDKNIA (p21/CIP1/WAF1). This result in TRF2 induced transcription repression of p21. Interestingly, p21 repression was through engagement of the REST-coREST-LSD1-repressor complex and altered histone marks at the p21 promoter in a TRF2-dependent fashion. Furthermore, mutational analysis shows p21 repression requires interaction of TRF2 with a p21 promoter G-quadruplex. Physiologically, TRF2-mediated p21 repression attenuated drug-induced activation of cellular DNA damage response by evading G2/M arrest in cancer cells. Together these reveal for the first time role of TRF2 in REST- repressor complex mediated transcription repression.

  19. The MDS and EVI1 complex locus (MECOM) isoforms regulate their own transcription and have different roles in the transformation of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Maicas, Miren; Vázquez, Iria; Alis, Rafael; Marcotegui, Nerea; Urquiza, Leire; Cortés-Lavaud, Xabier; Cristóbal, Ion; García-Sánchez, María A; Odero, María D

    2017-06-01

    Transcriptional activation of the EVI1 oncogene (3q26) leads to aggressive forms of human acute myeloid leukemia (AML). However, the mechanism of EVI1-mediated leukemogenesis has not been fully elucidated. Previously, by characterizing the EVI1 promoter, we have shown that RUNX1 and ELK1 directly regulate EVI1 transcription. Intriguingly, bioinformatic analysis of the EVI1 promoter region identified the presence of several EVI1 potential binding sites. Thus, we hypothesized that EVI1 could bind to these sites regulating its own transcription. In this study, we show that there is a functional interaction between EVI1 and its promoter, and that the different EVI1 isoforms (EVI1-145kDa, EVI1-Δ324 and MDS1-EVI1) regulate the transcription of EVI1 transcripts through distinct promoter regions. Moreover, we determine that the EVI1-145kDa isoform activates EVI1 transcription, whereas EVI1-Δ324 and MDS1-EVI1 act as repressors. Finally, we demonstrate that these EVI1 isoforms are involved in cell transformation; functional experiments show that EVI1-145kDa prolongs the maintenance of hematopoietic stem and progenitor cells; conversely, MDS1-EVI1 repressed hematopoietic stem and progenitor colony replating capacity. We demonstrate for the first time that EVI1 acts as a regulator of its own expression, highlighting the complex regulation of EVI1, and open new directions to better understand the mechanisms of EVI1 overexpressing leukemias. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiuyi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Giroux-Leprieur, Etienne [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt (France); Wislez, Marie [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Hu, Mu; Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Shi, Huaiyin [Department of Pathology, Chinese PLA General Hospital, Fu-xing Road #28, Beijing, 100853 (China); Du, Kaiqi, E-mail: kaiqidu_zhejiang@163.com [Department of Cardiothoracic Surgery, Chinese People' s Armed Police Force, Zhejiang Corps Hospital, Jiaxing, Zhejiang Province (China); Wang, Lei, E-mail: leiwang_hebei@163.com [Department of Human Anatomy, Hebei Medical University, Hebei Province (China)

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  1. The Cockayne syndrome B protein, involved in transcription-coupled repair resides in a RNA polymerase II-containing complex.

    NARCIS (Netherlands)

    A.J. van Gool (Alain); E. Citterio (Elisabetta); S. Rademakers (Suzanne); R. van Os; W. Vermeulen (Wim); A. Constantinou; J-M. Egly (Jean-Marc); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1997-01-01

    textabstractTranscription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) defective in Cockayne syndrome A and B (CSA and CSB), is responsible for the preferential removal of DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked

  2. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Science.gov (United States)

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Plant chloroplast genes are usually co-transcribed while its posttranscriptional splicing is fairly complex and remains largely unsolved. On basis of sequencing the three complete Camellia (Theaceae chloroplast genomes for the first time, we comprehensively analyzed the evolutionary patterns of ycf15, a plastid gene quite paradoxical in terms of its function and evolution, along the inferred angiosperm phylogeny. Although many species in separate lineages including the three species reported here contained an intact ycf15 gene in their chloroplast genomes, the phylogenetic mixture of both intact and obviously disabled ycf15 genes imply that they are all non-functional. Both intracellular gene transfer (IGT and horizontal gene transfer (HGT failed to explain such distributional anomalies. While, transcriptome analyses revealed that ycf15 was transcribed as precursor polycistronic transcript which contained ycf2, ycf15 and antisense trnL-CAA. The transcriptome assembly was surprisingly found to cover near the complete Camellia chloroplast genome. Many non-coding regions including pseudogenes were mapped by multiple transcripts, indicating the generality of pseudogene transcriptions. Our results suggest that plastid DNA posttranscriptional splicing may involve complex cleavage of non-functional genes.

  4. Conversion of HPV 18 positive non-tumorigenic HeLa-fibroblast hybrids to invasive growth involves loss of TNF-alpha mediated repression of viral transcription and modification of the AP-1 transcription complex.

    Science.gov (United States)

    Soto, U; Das, B C; Lengert, M; Finzer, P; zur Hausen, H; Rösl, F

    1999-05-27

    AP-1 represents a transcription factor, which plays a pivotal role in initiating and maintaining the expression of human papillomavirus (HPV) oncoproteins E6 and E7 during HPV-linked carcinogenesis of the uterine cervix. AP-1 stands as a synonym for different proteins such as c-Jun, JunB, JunD, c-Fos, FosB as well as the Fos-related antigens Fra-1 and Fra-2, which can either homo- or heterodimerize to build up a functional transcription complex. AP-1 is mainly considered as a positive regulator, which binds to cognate DNA sequences within the viral upstream regulatory region. By using non-tumorigenic HeLa-fibroblast hybrids ('444'), their tumorigenic segregants ('CGL3') as well as HPV 18 positive HeLa cells as a experimental model system, evidence is provided that AP-1 composition differs considerably between these cell lines. In nuclear extracts obtained from non-tumorigenic cells, Jun-family members (in the order c-Jun>JunD>JunB) were mainly heterodimerized with Fra-1, a protein, known to be involved in the abrogation of AP-1 activity under certain experimental conditions. In contrast, Fra-1 concentration is low in extracts from tumorigenic cells. Conversely, c-Fos, the canonical dimerization partner of Jun proteins is expressed in substantial quantity in HeLa- and 'CGL3' cells, but it is completely absent in AP-1 complexes from non-tumorigenic '444' cells. Ectopical expression of c-fos under a heterologous promoter in '444'-cells induces tumorigenicity and a change of the Jun/Fra-1 ratio towards a constellation initially detected in 'CGL3'-and HeLa cells. Furthermore, conversion to tumorigenicity is accompanied with a resistance against TNF-alpha, a cytokine, capable to selectively suppress HPV 18 transcription in formerly non-malignant cells. These data propose a novel role for AP-1 as an essential component of an inter- and intracellular surveillance mechanism negatively controlling HPV transcription in non-tumorigenic cells.

  5. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis.

    Science.gov (United States)

    Saecker, Ruth M; Record, M Thomas; Dehaseth, Pieter L

    2011-10-07

    Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site. Subsequently, the nontemplate strand is repositioned and a clamp is assembled on duplex DNA downstream of the open region to form the highly stable open complex, RP(o). The transcription initiation factor, σ(70), plays critical roles in promoter recognition and RP(o) formation as well as in early steps of RNA synthesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula

    Science.gov (United States)

    2014-01-01

    Background Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions. Results We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti. Conclusion The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from

  7. Coupled RNA polymerase II transcription and 3' end formation with yeast whole-cell extracts.

    Science.gov (United States)

    Mariconti, Luisa; Loll, Bernhard; Schlinkmann, Karola; Wengi, Agnieszka; Meinhart, Anton; Dichtl, Bernhard

    2010-11-01

    RNA polymerase II (RNAP II) transcription and pre-mRNA 3' end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3' end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3' end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m⁷G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3' end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5'-3' exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling.

  8. Coupled RNA polymerase II transcription and 3′ end formation with yeast whole-cell extracts

    Science.gov (United States)

    Mariconti, Luisa; Loll, Bernhard; Schlinkmann, Karola; Wengi, Agnieszka; Meinhart, Anton; Dichtl, Bernhard

    2010-01-01

    RNA polymerase II (RNAP II) transcription and pre-mRNA 3′ end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3′ end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3′ end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m7G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3′ end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5′-3′ exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling. PMID:20810619

  9. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells.

    Science.gov (United States)

    Hutchins, Andrew Paul; Choo, Siew Hua; Mistri, Tapan Kumar; Rahmani, Mehran; Woon, Chow Thai; Ng, Calista Keow Leng; Jauch, Ralf; Robson, Paul

    2013-02-01

    Transcription factors (TF) often bind in heterodimeric complexes with each TF recognizing a specific neighboring cis element in the regulatory region of the genome. Comprehension of this DNA motif grammar is opaque, yet recent developments have allowed the interrogation of genome-wide TF binding sites. We reasoned that within this data novel motif grammars could be identified that controlled distinct biological programs. For this purpose, we developed a novel motif-discovery tool termed fexcom that systematically interrogates ChIP-seq data to discover spatially constrained TF-TF composite motifs occurring over short DNA distances. We applied this to the extensive ChIP-seq data available from mouse embryonic stem cells (ESCs). In addition to the well-known and most prevalent sox-oct motif, we also discovered a novel constrained spacer motif for Esrrb and Sox2 with a gap of between 2 and 8 bps that Essrb and Sox2 cobind in a selective fashion. Through the use of knockdown experiments, we argue that the Esrrb-Sox2 complex is an arbiter of gene expression differences between ESCs and epiblast stem cells (EpiSC). A number of genes downregulated upon dual Esrrb/Sox2 knockdown (e.g., Klf4, Klf5, Jam2, Pecam1) are similarly downregulated in the ESC to EpiSC transition and contain the esrrb-sox motif. The prototypical Esrrb-Sox2 target gene, containing an esrrb-sox element conserved throughout eutherian and metatherian mammals, is Nr0b1. Through positive regulation of this transcriptional repressor, we argue the Esrrb-Sox2 complex promotes the ESC state through inhibition of the EpiSC transcriptional program and the same trio may also function to maintain trophoblast stem cells. Copyright © 2012 AlphaMed Press.

  10. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system.

    Science.gov (United States)

    Hao, Juan; Tu, Lili; Hu, Haiyan; Tan, Jiafu; Deng, Fenglin; Tang, Wenxin; Nie, Yichun; Zhang, Xianlong

    2012-10-01

    As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA library of sea-island cotton fibre (from -2 to 25 days post anthesis). GbTCP was preferentially expressed in the elongating cotton fibre from 5 to 15 days post anthesis. Some expression was also observed in stems, apical buds, and petals. RNAi silencing of GbTCP produced shorter fibre, a reduced lint percentage, and a lower fibre quality than the wild-type plants. Overexpression of GbTCP enhanced root hair initiation and elongation in Arabidopsis and regulated branching. Solexa sequencing and Affymetrix GeneChip analysis indicated that GbTCP positively regulates the level of jasmonic acid (JA) and, as a result, activates downstream genes (reactive oxygen species, calcium signalling, ethylene biosynthesis and response, and several NAC and WRKY transcription factors) necessary for elongation of fibres and root hairs. JA content analysis in cotton also confirmed that GbTCP has a profound effect on JA biosynthesis. In vitro ovule culture showed that an appropriate concentration of JA promoted fibre elongation. The results suggest that GbTCP is an important transcription factor for fibre and root hair development by regulating JA biosynthesis and response and other pathways, including reactive oxygen species, calcium channel and ethylene signalling.

  11. Activation of the Anti-Aging and Cognition-Enhancing Gene Klotho by CRISPR-dCas9 Transcriptional Effector Complex.

    Science.gov (United States)

    Chen, Ci-Di; Zeldich, Ella; Li, Yuexuan; Yuste, Andrea; Abraham, Carmela R

    2018-02-01

    Multiple lines of evidence show that the anti-aging and cognition-enhancing protein Klotho fosters neuronal survival, increases the anti-oxidative stress defense, and promotes remyelination of demyelinated axons. Thus, upregulation of the Klotho gene can potentially alleviate the symptoms and/or prevent the progression of age-associated neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases such as multiple sclerosis. Here we used a CRISPR-dCas9 complex to investigate single-guide RNA (sgRNA) targeting the Klotho promoter region for efficient transcriptional activation of the Klotho gene. We tested the sgRNAs within the - 1 to - 300 bp of the Klotho promoter region and identified two sgRNAs that can effectively enhance Klotho gene transcription. We examined the transcriptional activation of the Klotho gene using three different systems: a Firefly luciferase (FLuc) and NanoLuc luciferase (NLuc) coincidence reporter system, a NLuc knock-in in Klotho 3'-UTR using CRISPR genomic editing, and two human cell lines: neuronal SY5Y cells and kidney HK-2 cells that express Klotho endogenously. The two sgRNAs enhanced Klotho expression at both the gene and protein levels. Our results show the feasibility of gene therapy for targeting Klotho using CRISPR technology. Enhancing Klotho levels has a therapeutic potential for increasing cognition and treating age-associated neurodegenerative, demyelinating and other diseases, such as chronic kidney disease and cancer.

  12. Replication and transcription activities of ribonucleoprotein complexes reconstituted from avian H5N1, H1N1pdm09 and H3N2 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Karry L K Ngai

    Full Text Available Avian influenza viruses pose a serious pandemic threat to humans. Better knowledge on cross-species adaptation is important. This study examined the replication and transcription efficiency of ribonucleoprotein complexes reconstituted by plasmid co-transfection between H5N1, H1N1pdm09 and H3N2 influenza A viruses, and to identify mutations in the RNA polymerase subunit that affect human adaptation. Viral RNA polymerase subunits PB1, PB2, PA and NP derived from influenza viruses were co-expressed with pPolI-vNP-Luc in human cells, and with its function evaluated by luciferase reporter assay. A quantitative RT-PCR was used to measure vRNA, cRNA, and mRNA levels for assessing the replication and transcription efficiency. Mutations in polymerase subunit were created to identify signature of increased human adaptability. H5N1 ribonucleoprotein complexes incorporated with PB2 derived from H1N1pdm09 and H3N2 viruses increased the polymerase activity in human cells. Furthermore, single amino acid substitutions at PB2 of H5N1 could affect polymerase activity in a temperature-dependent manner. By using a highly sensitive quantitative reverse transcription-polymerase chain reaction, an obvious enhancement in replication and transcription activities of ribonucleoproteins was observed by the introduction of lysine at residue 627 in the H5N1 PB2 subunit. Although less strongly in polymerase activity, E158G mutation appeared to alter the accumulation of H5N1 RNA levels in a temperature-dependent manner, suggesting a temperature-dependent mechanism in regulating transcription and replication exists. H5N1 viruses can adapt to humans either by acquisition of PB2 from circulating human-adapted viruses through reassortment, or by mutations at critical sites in PB2. This information may help to predict the pandemic potential of newly emerged influenza strains, and provide a scientific basis for stepping up surveillance measures and vaccine production.

  13. Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2.

    Science.gov (United States)

    van der Kammen, Rob; Song, Ji-Ying; de Rink, Iris; Janssen, Hans; Madonna, Stefania; Scarponi, Claudia; Albanesi, Cristina; Brugman, Wim; Innocenti, Metello

    2017-12-15

    The Arp2/3 complex assembles branched actin filaments, which are key to many cellular processes, but its organismal roles remain poorly understood. Here, we employed conditional Arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis. We found that depletion of the Arp2/3 complex by knockout of Arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of Arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2 target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistent with this, we revealed that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocyte shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis. © 2017. Published by The Company of Biologists Ltd.

  14. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation.

    Science.gov (United States)

    Mascle, Xavier H; Lussier-Price, Mathieu; Cappadocia, Laurent; Estephan, Patricia; Raiola, Luca; Omichinski, James G; Aubry, Muriel

    2013-12-20

    Post-translational modifications with ubiquitin-like proteins require three sequentially acting enzymes (E1, E2, and E3) that must unambiguously recognize each other in a coordinated fashion to achieve their functions. Although a single E2 (UBC9) and few RING-type E3s (PIAS) operate in the SUMOylation system, the molecular determinants regulating the interactions between UBC9 and the RING-type E3 enzymes are still not well defined. In this study we use biochemical and functional experiments to characterize the interactions between PIAS1 and UBC9. Our results reveal that UBC9 and PIAS1 are engaged both in a canonical E2·E3 interaction as well as assembled into a previously unidentified non-covalent ternary complex with SUMO as evidenced by bioluminescence resonance energy transfer, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry studies. In this ternary complex, SUMO functions as a bridge by forming non-overlapping interfaces with UBC9 and PIAS1. Moreover, our data suggest that phosphorylation of serine residues adjacent to the PIAS1 SUMO-interacting motif favors formation of the non covalent PIAS1·SUMO·UBC9 ternary complex. Finally, our results also indicate that the non-covalent ternary complex is required for the known transcriptional repression activities mediated by UBC9 and SUMO1. Taken together, the data enhance our knowledge concerning the mode of interaction of enzymes of the SUMOylation machinery as well as their role in transcriptional regulation and establishes a framework for investigations of other ubiquitin-like protein systems.

  15. Identification of a Non-covalent Ternary Complex Formed by PIAS1, SUMO1, and UBC9 Proteins Involved in Transcriptional Regulation*

    Science.gov (United States)

    Mascle, Xavier H.; Lussier-Price, Mathieu; Cappadocia, Laurent; Estephan, Patricia; Raiola, Luca; Omichinski, James G.; Aubry, Muriel

    2013-01-01

    Post-translational modifications with ubiquitin-like proteins require three sequentially acting enzymes (E1, E2, and E3) that must unambiguously recognize each other in a coordinated fashion to achieve their functions. Although a single E2 (UBC9) and few RING-type E3s (PIAS) operate in the SUMOylation system, the molecular determinants regulating the interactions between UBC9 and the RING-type E3 enzymes are still not well defined. In this study we use biochemical and functional experiments to characterize the interactions between PIAS1 and UBC9. Our results reveal that UBC9 and PIAS1 are engaged both in a canonical E2·E3 interaction as well as assembled into a previously unidentified non-covalent ternary complex with SUMO as evidenced by bioluminescence resonance energy transfer, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry studies. In this ternary complex, SUMO functions as a bridge by forming non-overlapping interfaces with UBC9 and PIAS1. Moreover, our data suggest that phosphorylation of serine residues adjacent to the PIAS1 SUMO-interacting motif favors formation of the non covalent PIAS1·SUMO·UBC9 ternary complex. Finally, our results also indicate that the non-covalent ternary complex is required for the known transcriptional repression activities mediated by UBC9 and SUMO1. Taken together, the data enhance our knowledge concerning the mode of interaction of enzymes of the SUMOylation machinery as well as their role in transcriptional regulation and establishes a framework for investigations of other ubiquitin-like protein systems. PMID:24174529

  16. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    Elongation. Residual Promoter Complex. Elongation complex. Figure 2. Assembly of Transcription initiation complex on a TATA containing promoter: The single line with boxes represent promoter DNA and the +1 indicates the transcription start ...

  17. Human INO80/YY1 chromatin remodeling complex transcriptionally regulates the BRCA2- and CDKN1A-interacting protein (BCCIP in cells

    Directory of Open Access Journals (Sweden)

    Jiaming Su

    2016-08-01

    Full Text Available Abstract The BCCIP (BRCA2- and CDKN1A-interacting protein is an important cofactor for BRCA2 in tumor suppression. Although the low expression of BCCIP is observed in multiple clinically diagnosed primary tumor tissues such as ovarian cancer, renal cell carcinoma and colorectal carcinoma, the mechanism of how BCCIP is regulated in cells is still unclear. The human INO80/YY1 chromatin remodeling complex composed of 15 subunits catalyzes ATP-dependent sliding of nucleosomes along DNA. Here, we first report that BCCIP is a novel target gene of the INO80/YY1 complex by presenting a series of experimental evidence. Gene expression studies combined with siRNA knockdown data locked candidate genes including BCCIP of the INO80/YY1 complex. Silencing or over-expressing the subunits of the INO80/YY1 complex regulates the expression level of BCCIP both in mRNA and proteins in cells. Also, the functions of INO80/YY1 complex in regulating the transactivation of BCCIP were confirmed by luciferase reporter assays. Chromatin immunoprecipitation (ChIP experiments clarify the enrichment of INO80 and YY1 at +0.17 kb downstream of the BCCIP transcriptional start site. However, this enrichment is significantly inhibited by either knocking down INO80 or YY1, suggesting the existence of both INO80 and YY1 is required for recruiting the INO80/YY1 complex to BCCIP promoter region. Our findings strongly indicate that BCCIP is a potential target gene of the INO80/YY1 complex.

  18. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation.

    Science.gov (United States)

    Kawamoto, Nozomi; Sasabe, Michiko; Endo, Motomu; Machida, Yasunori; Araki, Takashi

    2015-02-09

    Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype.

  19. Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress.

    Science.gov (United States)

    Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling

    2016-11-28

    Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut.

  20. Transcriptional networks controlling adipocyte differentiation

    DEFF Research Database (Denmark)

    Siersbæk, R; Mandrup, Susanne

    2011-01-01

    Adipocyte differentiation is regulated by a complex cascade of signals that drive the transcriptional reprogramming of the fibroblastic precursors. Genome-wide analyses of chromatin accessibility and binding of adipogenic transcription factors make it possible to generate "snapshots" of the trans......Adipocyte differentiation is regulated by a complex cascade of signals that drive the transcriptional reprogramming of the fibroblastic precursors. Genome-wide analyses of chromatin accessibility and binding of adipogenic transcription factors make it possible to generate "snapshots...

  1. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    Science.gov (United States)

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  2. Cooperation of Sox4 with β-catenin/p300 complex in transcriptional regulation of the Slug gene during divergent sarcomatous differentiation in uterine carcinosarcoma.

    Science.gov (United States)

    Inoue, Hisako; Takahashi, Hiroyuki; Hashimura, Miki; Eshima, Koji; Akiya, Masashi; Matsumoto, Toshihide; Saegusa, Makoto

    2016-02-03

    Uterine carcinosarcoma (UCS) represents a true example of cancer associated with epithelial-mesenchymal transition (EMT), which exhibits cancer stem cell (CSC)-like traits. Both Sox and β-catenin signal transductions play key roles in the regulation of EMT/CSC properties, but little is known about their involvement in UCS tumorigenesis. Herein, we focused on the functional roles of the Sox/β-catenin pathway in UCSs. EMT/CSC tests and transfection experiments were carried out using three endometrial carcinoma (Em Ca) cell lines. Immunohistochemical investigation was also applied for a total of 32 UCSs. Em Ca cells cultured in STK2, a serum-free medium for mesenchymal stem cells, underwent changes in morphology toward an EMT appearance through downregulation of E-cadherin, along with upregulation of Slug, known as a target gene of β-catenin. The cells also showed CSC properties with an increase in the aldehyde dehydrogenase (ALDH) 1(high) activity population and spheroid formation, as well as upregulation of Sox4, Sox7, and Sox9. Of these Sox factors, overexpression of Sox4 dramatically led to transactivation of the Slug promoter, and the effects were further enhanced by cotransfection of Sox7 or Sox9. Sox4 was also able to promote β-catenin-mediated transcription of the Slug gene through formation of transcriptional complexes with β-catenin and p300, independent of TCF4 status. In clinical samples, both nuclear β-catenin and Slug scores were significantly higher in the sarcomatous elements as compared to carcinomatous components in UCSs, and were positively correlated with Sox4, Sox7, and Sox9 scores. These findings suggested that Sox4, as well as Sox7 and Sox9, may contribute to regulation of EMT/CSC properties to promote development of sarcomatous components in UCSs through transcriptional regulation of the Slug gene by cooperating with the β-catenin/p300 signal pathway.

  3. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion.

    Science.gov (United States)

    Russo, Monia Teresa; Annunziata, Rossella; Sanges, Remo; Ferrante, Maria Immacolata; Falciatore, Angela

    2015-12-01

    Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex.

    Science.gov (United States)

    Kusov, Yuri; Tan, Jinzhi; Alvarez, Enrique; Enjuanes, Luis; Hilgenfeld, Rolf

    2015-10-01

    The multi-domain non-structural protein 3 of SARS-coronavirus is a component of the viral replication/transcription complex (RTC). Among other domains, it contains three sequentially arranged macrodomains: the X domain and subdomains SUD-N as well as SUD-M within the "SARS-unique domain". The X domain was proposed to be an ADP-ribose-1"-phosphatase or a poly(ADP-ribose)-binding protein, whereas SUD-NM binds oligo(G)-nucleotides capable of forming G-quadruplexes. Here, we describe the application of a reverse genetic approach to assess the importance of these macrodomains for the activity of the SARS-CoV RTC. To this end, Renilla luciferase-encoding SARS-CoV replicons with selectively deleted macrodomains were constructed and their ability to modulate the RTC activity was examined. While the SUD-N and the X domains were found to be dispensable, the SUD-M domain was crucial for viral genome replication/transcription. Moreover, alanine replacement of charged amino-acid residues of the SUD-M domain, which are likely involved in G-quadruplex-binding, caused abrogation of RTC activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein.

    Science.gov (United States)

    Iyer, N; Reagan, M S; Wu, K J; Canagarajah, B; Friedberg, E C

    1996-02-20

    The human basal transcription factor TFIIH plays a central role in two distinct processes. TFIIH is an obligatory component of the RNA polymerase II (RNAP II) transcription initiation complex. Additionally, it is believed to be the core structure around which some if not all the components of the nucleotide excision repair (NER) machinery assemble to constitute a nucleotide excision repairosome. At least two of the subunits of TFIIH (XPB and XPD proteins) are implicated in the disease xeroderma pigmentosum (XP). We have exploited the availability of the cloned XPB, XPD, p62, p44, and p34 genes (all of which encode polypeptide subunits of TFIIH) to examine interactions between in vitro-translated polypeptides by co-immunoprecipitation. Additionally we have examined interactions between TFIIH components, the human NER protein XPG, and the CSB protein which is implicated in Cockayne syndrome (CS). Our analyses demonstrate that the XPB, XPD, p44, and p62 proteins interact with each other. XPG protein interacts with multiple subunits of TFIIH and with CSB protein.

  6. Altered RNA processing and export lead to retention of mRNAs near transcription sites and nuclear pore complexes or within the nucleolus.

    Science.gov (United States)

    Paul, Biplab; Montpetit, Ben

    2016-09-01

    Many protein factors are required for mRNA biogenesis and nuclear export, which are central to the eukaryotic gene expression program. It is unclear, however, whether all factors have been identified. Here we report on a screen of >1000 essential gene mutants in Saccharomyces cerevisiae for defects in mRNA processing and export, identifying 26 mutants with defects in this process. Single-molecule FISH data showed that the majority of these mutants accumulated mRNA within specific regions of the nucleus, which included 1) mRNAs within the nucleolus when nucleocytoplasmic transport, rRNA biogenesis, or RNA processing and surveillance was disrupted, 2) the buildup of mRNAs near transcription sites in 3'-end processing and chromosome segregation mutants, and 3) transcripts being enriched near nuclear pore complexes when components of the mRNA export machinery were mutated. These data show that alterations to various nuclear processes lead to the retention of mRNAs at discrete locations within the nucleus. © 2016 Paul and Montpetit. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex

    OpenAIRE

    Chmiest, Daniela; Sharma, Nanaocha; Zanin, Natacha; Viaris De Lesegno, Christine; Shafaq-Zadah, Massiullah; Sibut, Vonick; Dingli, Florent; Hup?, Philippe; Wilmes, Stephan; Piehler, Jacob; Loew, Damarys; Johannes, Ludger; Schreiber, Gideon; Lamaze, Christophe

    2016-01-01

    Type-I interferons (IFNs) play a key role in the immune defences against viral and bacterial infections, and in cancer immunosurveillance. We have established that clathrin-dependent endocytosis of the type-I interferon (IFN-?/?) receptor (IFNAR) is required for JAK/STAT signalling. Here we show that the internalized IFNAR1 and IFNAR2 subunits of the IFNAR complex are differentially sorted by the retromer at the early endosome. Binding of the retromer VPS35 subunit to IFNAR2 results in IFNAR2...

  8. Mammalian target of rapamycin complex 1 and FoxO1 in the transcriptional control of lipolysis and de novo lipogenesis.

    Science.gov (United States)

    Kandror, Konstantin V

    2017-10-01

    Postprandial suppression of lipolysis in adipose tissue and stimulation of de novo lipogenesis (DNL) in the liver by insulin are essential for the metabolic homeostasis in the mammalian organism. The mechanism of coregulation of lipolysis and DNL is not clear. Insulin controls both lipolysis and DNL at the level of transcription via the same mammalian target of rapamycin complex 1 (mTORC1) and FoxO1-mediated signaling pathways. mTORC1 suppresses lipolysis in adipose tissue and activates DNL in the liver, whereas FoxO1 has the opposite effect. Individual inputs of either mTORC1 or FoxO1 in the regulation of lipid metabolism may be difficult to evaluate because of the cross talk between these pathways.

  9. Activation of 12/23-RSS-dependent RAG cleavage by hSWI/SNF complex in the absence of transcription.

    Science.gov (United States)

    Du, Hansen; Ishii, Haruhiko; Pazin, Michael J; Sen, Ranjan

    2008-09-05

    Maintenance of genomic integrity during antigen receptor gene rearrangements requires (1) regulated access of the V(D)J recombinase to specific loci and (2) generation of double-strand DNA breaks only after recognition of a pair of matched recombination signal sequences (RSSs). Here we recapitulate both key aspects of regulated recombinase accessibility in a cell-free system using plasmid substrates assembled into chromatin. We show that recruitment of the SWI/SNF chromatin-remodeling complex to both RSSs increases coupled cleavage by RAG1 and RAG2 proteins. SWI/SNF functions by altering local chromatin structure in the absence of RNA polymerase II-dependent transcription or histone modifications. These observations demonstrate a direct role for cis-sequence-regulated local chromatin remodeling in RAG1/2-dependent initiation of V(D)J recombination.

  10. The transcriptional regulator Aire co-opts the repressive ATF7ip-MBD1 complex for induction of immune tolerance

    Science.gov (United States)

    Waterfield, Michael; Khan, Imran S.; Cortez, Jessica T.; Fan, Una; Metzger, Todd; Greer, Alexandra; Fasano, Kayla; Martinez-Llordella, Marc; Pollack, Joshua L.; Erle, David J.; Su, Maureen; Anderson, Mark S.

    2014-01-01

    The maintenance of immune tolerance requires the deletion of self-reactive T cells in the thymus. The expression of tissue-specific antigen genes (TSAs) by thymic epithelial cells is critical for this process and depends on the activity of the Autoimmune Regulator (Aire) protein, however, the molecular mechanism(s) Aire uses to target TSA gene loci are unknown. Here we identified two Aire-interacting proteins – activating transcription factor 7 interacting protein (ATF7ip) and methyl CpG binding protein 1 (MBD1) –that are required for Aire’s targeting of TSA geneloci. Moreover, Mbd1−/− mice developed pathological autoimmunity and had a defect in Aire-dependent thymic TSA gene expression underscoring the critical importance of Aire’s interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance. PMID:24464130

  11. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  12. TRE5-A retrotransposition profiling reveals putative RNA polymerase III transcription complex binding sites on the Dictyostelium extrachromosomal rDNA element.

    Directory of Open Access Journals (Sweden)

    Thomas Spaller

    Full Text Available The amoeba Dictyostelium discoideum has a haploid genome in which two thirds of the DNA encodes proteins. Consequently, the space available for selfish mobile elements to expand without excess damage to the host genome is limited. The non-long terminal repeat retrotransposon TRE5-A maintains an active population in the D. discoideum genome and apparently adapted to this gene-dense environment by targeting positions ~47 bp upstream of tRNA genes that are devoid of protein-coding regions. Because only ~24% of tRNA genes are associated with a TRE5-A element in the reference genome, we evaluated whether TRE5-A retrotransposition is limited to this subset of tRNA genes. We determined that a tagged TRE5-A element (TRE5-Absr integrated at 384 of 405 tRNA genes, suggesting that expansion of the current natural TRE5-A population is not limited by the availability of targets. We further observed that TRE5-Absr targets the ribosomal 5S gene on the multicopy extrachromosomal DNA element that carries the ribosomal RNA genes, indicating that TRE5-A integration may extend to the entire RNA polymerase III (Pol III transcriptome. We determined that both natural TRE5-A and cloned TRE5-Absr retrotranspose to locations on the extrachromosomal rDNA element that contain tRNA gene-typical A/B box promoter motifs without displaying any other tRNA gene context. Based on previous data suggesting that TRE5-A targets tRNA genes by locating Pol III transcription complexes, we propose that A/B box loci reflect Pol III transcription complex assembly sites that possess a function in the biology of the extrachromosomal rDNA element.

  13. Activation of EVI1 transcription by the LEF1/β-catenin complex with p53-alteration in myeloid blast crisis of chronic myeloid leukemia.

    Science.gov (United States)

    Manachai, Nawin; Saito, Yusuke; Nakahata, Shingo; Bahirvani, Avinash Govind; Osato, Motomi; Morishita, Kazuhiro

    2017-01-22

    The presence of a BCR-ABL1 fusion gene is necessary for the pathogenesis of chronic myeloid leukemia (CML) through t(9;22)(q34;q11) translocation. Imatinib, an ABL tyrosine kinase inhibitor, is dramatically effective in CML patients; however, 30% of CML patients will need further treatment due to progression of CML to blast crisis (BC). Aberrant high expression of ecotropic viral integration site 1 (EVI1) is frequently observed in CML during myeloid-BC as a potent driver with a CML stem cell signature; however, the precise molecular mechanism of EVI1 transcriptional regulation during CML progression is poorly defined. Here, we demonstrate the transcriptional activity of EVI1 is dependent on activation of lymphoid enhancer-binding factor 1 (LEF1)/β-catenin complex by BCR-ABL with loss of p53 function during CML-BC. The activation of β-catenin is partly dependent on BCR-ABL expression through enhanced GSK3β phosphorylation, and EVI1 expression is directly enhanced by the LEF1/β-catenin complex bound to the EVI1 promoter region. Moreover, the loss of p53 expression is inversely correlated with high expression of EVI1 in CML leukemia cells with an aggressive phase of CML, and a portion of the activation mechanism of EVI1 expression is dependent on β-catenin activation through GSK3β phosphorylation by loss of p53. Therefore, we found that the EVI1 activation in CML-BC is dependent on LEF1/β-catenin activation by BCR-ABL expression with loss of p53 function, representing a novel selective therapeutic approach targeting myeloid blast crisis progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1.

    Directory of Open Access Journals (Sweden)

    Masamitsu Negishi

    2010-08-01

    Full Text Available Polycomb group (PcG proteins play a crucial role in cellular senescence as key transcriptional regulators of the Ink4a/Arf tumor suppressor gene locus. However, how PcG complexes target and contribute to stable gene silencing of the Ink4a/Arf locus remains little understood.We examined the function of Zinc finger domain-containing protein 277 (Zfp277, a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC 1 through direct interaction with Bmi1. Loss of Zfp277 in mouse embryonic fibroblasts (MEFs caused dissociation of PcG proteins from the Ink4a/Arf locus, resulting in premature senescence associated with derepressed p16(Ink4a and p19(Arf expression. Levels of both Zfp277 and PcG proteins inversely correlated with those of reactive oxygen species (ROS in senescing MEFs, but the treatment of Zfp277(-/- MEFs with an antioxidant restored the binding of PRC2 but not PRC1 to the Ink4a/Arf locus. Notably, forced expression of Bmi1 in Zfp277(-/- MEFs did not restore the binding of Bmi1 to the Ink4a/Arf locus and failed to bypass cellular senescence. A Zfp277 mutant that could not bind Bmi1 did not rescue Zfp277(-/- MEFs from premature senescence.Our findings implicate Zfp277 in the transcriptional regulation of the Ink4a/Arf locus and suggest that the interaction of Zfp277 with Bmi1 is essential for the recruitment of PRC1 to the Ink4a/Arf locus. Our findings also highlight dynamic regulation of both Zfp277 and PcG proteins by the oxidative stress pathways.

  15. The POU homeodomain transcription factor POUM2 and broad complex isoform 2 transcription factor induced by 20-hydroxyecdysone collaboratively regulate vitellogenin gene expression and egg formation in the silkworm Bombyx mori.

    Science.gov (United States)

    Lin, Y; Liu, H; Yang, C; Gu, J; Shen, G; Zhang, H; Chen, E; Han, C; Zhang, Y; Xu, Y; Wu, J; Xia, Q

    2017-10-01

    Vitellogenin (Vg) is a source of nutrition for embryo development. Our previous study showed that the silkworm (Bombyx mori) transcription factor broad complex isoform 2 (BmBrC-Z2) regulates gene expression of the Vg gene (BmVg) by induction with 20-hydroxyecdysone (20E). However, the mechanism by which 20E regulates BmVg expression was not clarified. In this study, cell transfection experiments showed that the BmVg promoter containing the POU homeodomain transcription factor POUM2 (POUM2) and BrC-Z2 cis-response elements (CREs) showed a more significant response to 20E than that harbouring only the BrC-Z2 or POUM2 CRE. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that BmPOUM2 could bind to the POUM2 CRE of the BmVg promoter. Over-expression of BmPOUM2 and BmBrC-Z2 in B. mori embryo-derived cell line (BmE) could enhance the activity of the BmVg promoter carrying both the POUM2 and BrC-Z2 CREs following 20E induction. Quantitative PCR and immunofluorescence histochemistry showed that the expression pattern and tissue localization of BmPOUM2 correspond to those of BmVg. Glutathione S-transferase pull-down and co-immunoprecipitation assays confirmed that BmPOUM2 interacts only with BmBrC-Z2 to regulate BmVg expression. Down-regulation of BmPOUM2 in female silkworm by RNA interference significantly reduced BmVg expression, leading to abnormal egg formation. In summary, these results indicate that BmPOUM2 binds only to BmBrC-Z2 to collaboratively regulate BmVg expression by 20E induction to control vitellogenesis and egg formation in the silkworm. Moreover, these findings suggest that homeodomain protein POUM2 plays a novel role in regulating insect vitellogenesis. © 2017 The Royal Entomological Society.

  16. SDHB deficiency promotes TGFβ-mediated invasion and metastasis of colorectal cancer through transcriptional repression complex SNAIL1-SMAD3/4

    Directory of Open Access Journals (Sweden)

    Haiyu Wang

    2016-12-01

    Full Text Available Succinate dehydrogenase (SDH is a heterotetrameric complex, among which the catalytic core SDHB loss-of-function mutations lead to mitochondrial enzyme SDH dysfunction and are associated with cancer formation. However, the impact of SDHB loss on colorectal carcinoma and the underlying mechanisms are largely unknown. In this study, we found a coherent decreased SDHB expression both in human colorectal cancer (CRC samples and CRC cell lines. Combined clinical analysis in a cohort of 43 CRC patients demonstrated a correlation between reduced SDHB activity and a more advanced clinical phenotype regarding lymphatic and distant metastasis. Applying genetic interference and cellular function approaches, we found that knocking down SDHB promoted cell migration and invasion through enabling epithelial-mesenchymal transition (EMT, and inverse results of SDHB overexpression further confirmed our theory. Mechanical exploration revealed that SDHB knockdown could activate TGFβ signaling pathway, more precisely through up-regulation of a tight-junction transcriptional repression complex SNAIL1-SMAD3/SMAD4, thus contributed to the increase in metastasis. In conclusion by identifying SNAIL1-SMAD3/SMAD4 as essential for the TGFβ-mediated tumorigenic capacity in SDHB-deficient CRC cells, this study revealed a critical mechanical vulnerability for potential future therapeutic target of SDHB-associated CRC.

  17. A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1

    DEFF Research Database (Denmark)

    Negishi, Masamitsu; Saraya, Atsunori; Mochizuki, Shinobu

    2010-01-01

    BACKGROUND: Polycomb group (PcG) proteins play a crucial role in cellular senescence as key transcriptional regulators of the Ink4a/Arf tumor suppressor gene locus. However, how PcG complexes target and contribute to stable gene silencing of the Ink4a/Arf locus remains little understood....... METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through...... direct interaction with Bmi1. Loss of Zfp277 in mouse embryonic fibroblasts (MEFs) caused dissociation of PcG proteins from the Ink4a/Arf locus, resulting in premature senescence associated with derepressed p16(Ink4a) and p19(Arf) expression. Levels of both Zfp277 and PcG proteins inversely correlated...

  18. Human p53 interacts with the elongating RNAPII complex and is required for the release of actinomycin D induced transcription blockage

    NARCIS (Netherlands)

    Borsos, B.N. (Barbara N.); Huliák, I. (Ildikó); Majoros, H. (Hajnalka); Ujfaludi, Z. (Zsuzsanna); Gyenis, A. (Ákos); Pukler, P. (Peter); Boros, I.M. (Imre M.); Pankotai, T. (Tibor)

    2017-01-01

    textabstractThe p53 tumour suppressor regulates the transcription initiation of selected genes by binding to specific DNA sequences at their promoters. Here we report a novel role of p53 in transcription elongation in human cells. Our data demonstrate that upon transcription elongation blockage, p53

  19. RNA helicase DEAD box protein 5 regulates Polycomb repressive complex 2/Hox transcript antisense intergenic RNA function in hepatitis B virus infection and hepatocarcinogenesis.

    Science.gov (United States)

    Zhang, Hao; Xing, Zheng; Mani, Saravana Kumar Kailasam; Bancel, Brigitte; Durantel, David; Zoulim, Fabien; Tran, Elizabeth J; Merle, Philippe; Andrisani, Ourania

    2016-10-01

    Chronic hepatitis B virus (HBV) infection is a major factor in hepatocellular carcinoma (HCC) pathogenesis by a mechanism not yet understood. Elucidating mechanisms of HBV-mediated hepatocarcinogenesis is needed to gain insights into classification and treatment of HCC. In HBV replicating cells, including virus-associated HCCs, suppressor of zeste 12 homolog (SUZ12), a core subunit of Polycomb repressive complex2 (PRC2), undergoes proteasomal degradation. This process requires the long noncoding RNA, Hox transcript antisense intergenic RNA (HOTAIR). Intriguingly, HOTAIR interacts with PRC2 and also binds RNA-binding E3 ligases, serving as a ubiquitination scaffold. Herein, we identified the RNA helicase, DEAD box protein 5 (DDX5), as a regulator of SUZ12 stability and PRC2-mediated gene repression, acting by regulating RNA-protein complexes formed with HOTAIR. Specifically, knockdown of DDX5 and/or HOTAIR enabled reexpression of PRC2-repressed genes epithelial cell adhesion molecule (EpCAM) and pluripotency genes. Also, knockdown of DDX5 enhanced transcription from the HBV minichromosome. The helicase activity of DDX5 stabilized SUZ12- and PRC2-mediated gene silencing, by displacing the RNA-binding E3 ligase, Mex-3 RNA-binding family member B (Mex3b), from HOTAIR. Conversely, ectopic expression of Mex3b ubiquitinated SUZ12, displaced DDX5 from HOTAIR, and induced SUZ12 down-regulation. In G2 phase of cells expressing the HBV X protein (HBx), SUZ12 preferentially associated with Mex3b, but not DDX5, resulting in de-repression of PRC2 targets, including EpCAM and pluripotency genes. Significantly, liver tumors from HBx/c-myc bitransgenic mice and chronically HBV-infected patients exhibited a strong negative correlation between DDX5 messenger RNA levels, pluripotency gene expression, and liver tumor differentiation. Notably, chronically infected HBV patients with HCC expressing reduced DDX5 exhibited poor prognosis after tumor resection, identifying DDX5 as an

  20. Actinomycin and DNA transcription.

    OpenAIRE

    Sobell, H M

    1985-01-01

    Recent advances in understanding how actinomycin binds to DNA have suggested its mechanism of action. Actinomycin binds to a premelted DNA conformation present within the transcriptional complex. This immobilizes the complex, interfering with the elongation of growing RNA chains. The model has a number of implications for understanding RNA synthesis.

  1. Actinomycin and DNA transcription.

    Science.gov (United States)

    Sobell, H M

    1985-01-01

    Recent advances in understanding how actinomycin binds to DNA have suggested its mechanism of action. Actinomycin binds to a premelted DNA conformation present within the transcriptional complex. This immobilizes the complex, interfering with the elongation of growing RNA chains. The model has a number of implications for understanding RNA synthesis. Images PMID:2410919

  2. Actinomycin and DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Sobell, H.M.

    1985-08-01

    Recent advances in understanding how actinomycin binds to DNA have suggested its mechanism of action. Actinomycin binds to a premelted DNA conformation present within the transcriptional complex. This immobilizes the complex, interfering with the elongation of growing RNA chains. The model has a number of implications for understanding RNA synthesis.

  3. Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of the E2F-1/DP-1 transcription factor complex

    DEFF Research Database (Denmark)

    Hofland, K; Petersen, B O; Falck, J

    2000-01-01

    The transcription factor complex E2F-1/DP-1 regulates the G1-to-S-phase transition and has been associated with sensitivity to the S-phase-specific anticancer agents camptothecin and etoposide, which poison DNA topoisomerase I and II, respectively. To investigate the relationship between E2F-1...... and drug sensitivity in detail, we established human osteosarcoma U-20S-TA cells expressing full-length E2F-1/ DP-1 under the control of a tetracycline-responsive promoter, designated UE1DP-1 cells. Topoisomerase I levels and activity as well as the number of camptothecin-induced DNA single- and double......-strand breaks were unchanged in UEIDP-1/tc- cells with >10-fold E2F-1/DP-1 overexpression. However, UE1DP-1/tc- cells were hypersensitive to camptothecin in both a clonogenic assay and four different apoptotic assays. This indicates that camptothecin-induced toxicity in this model is due to the activation...

  4. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  5. Nipah and Hendra Virus Nucleoproteins Inhibit Nuclear Accumulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT2 by Interfering with Their Complex Formation.

    Science.gov (United States)

    Sugai, Akihiro; Sato, Hiroki; Takayama, Ikuyo; Yoneda, Misako; Kai, Chieko

    2017-11-01

    Henipaviruses, such as Nipah (NiV) and Hendra (HeV) viruses, are highly pathogenic zoonotic agents within the Paramyxoviridae family. The phosphoprotein (P) gene products of the paramyxoviruses have been well characterized for their interferon (IFN) antagonist activity and their contribution to viral pathogenicity. In this study, we demonstrated that the nucleoprotein (N) of henipaviruses also prevents the host IFN signaling response. Reporter assays demonstrated that the NiV and HeV N proteins (NiV-N and HeV-N, respectively) dose-dependently suppressed both type I and type II IFN responses and that the inhibitory effect was mediated by their core domains. Additionally, NiV-N prevented the nuclear transport of signal transducer and activator of transcription 1 (STAT1) and STAT2. However, NiV-N did not associate with Impα5, Impβ1, or Ran, which are members of the nuclear transport system for STATs. Although P protein is known as a binding partner of N protein and actively retains N protein in the cytoplasm, the IFN antagonist activity of N protein was not abolished by the coexpression of P protein. This suggests that the IFN inhibition by N protein occurs in the cytoplasm. Furthermore, we demonstrated that the complex formation of STATs was hampered in the N protein-expressing cells. As a result, STAT nuclear accumulation was reduced, causing a subsequent downregulation of interferon-stimulated genes (ISGs) due to low promoter occupancy by STAT complexes. This novel route for preventing host IFN responses by henipavirus N proteins provides new insight into the pathogenesis of these viruses. IMPORTANCE Paramyxoviruses are well known for suppressing interferon (IFN)-mediated innate immunity with their phosphoprotein (P) gene products, and the henipaviruses also possess P, V, W, and C proteins for evading host antiviral responses. There are numerous studies providing evidence for the relationship between viral pathogenicity and antagonistic activities against IFN

  6. Technical advance: transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression

    Science.gov (United States)

    Bohner; Lenk; Rieping; Herold; Gatz

    1999-07-01

    A chemically regulated gene expression system that can be switched on with dexamethasone and switched off with tetracycline was constructed. It is based on a transcriptional activator (TGV) that consists of the Tn10 encoded Tet repressor, the rat glucocorticoid receptor hormone binding domain and the transcriptional activation domain of Herpes simplex virion protein VP16. When stably expressed in transgenic tobacco plants, it mediates dexamethasone-inducible transcription from a synthetic promoter (PTop10) consisting of seven tet operators upstream of a TATA-box. Tetracycline interferes with induction by negatively regulating the DNA-binding activity of the TetR moiety of TGV. The boundaries of the expression window of the TGV-driven PTop10 reach from undetectable levels of the reporter enzyme beta-glucuronidase in the absence of dexa- methasone to induced levels reaching 15-20% of the Cauliflower Mosaic Virus 35S promoter (PCaMV35S). By modifying the sequence of PTop10, we generated a new target promoter (PTax) that is stably expressed over several generations and that can be activated to levels comparable to PCaMV35S, while yielding only slightly elevated background activities.

  7. Complexity

    Indian Academy of Sciences (India)

    Rahul Pandit

    2008-10-31

    Oct 31, 2008 ... ”The more complex a thing is, the more you can talk about it.” - attributed to Giorgio Parisi. ▻ ”C'est magnifique, mais ce n'est pas de la science.” (It is magnificent, but not all of it is science.) - attributed ... Earliest examples: theoretical computer science, algorithmic complexity, etc. ▻ Rapid progress after the ...

  8. Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30·mSin3·HDAC transcriptional repressor complex.

    Science.gov (United States)

    Suryadinata, Randy; Sadowski, Martin; Steel, Rohan; Sarcevic, Boris

    2011-02-18

    Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G(1)-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G(1)-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G(1) into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.

  9. Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene.

    Science.gov (United States)

    Caruso, Maria Louise; Litzka, Olivier; Martic, Goran; Lottspeich, Friedrich; Brakhage, Axel A

    2002-10-25

    Cis-acting CCAAT elements are found frequently in eukaryotic promoter regions. Many of the genes containing such elements in their promoters are regulated by a conserved multimeric CCAAT-binding complex. In the fungus Emericella (Aspergillus) nidulans, this complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF regulates several genes, including the penicillin biosynthesis genes ipnA and aatA. Since it is estimated that the CCAAT-binding complex regulates more than 200 genes, an important question concerns the regulation mechanism that allows so many genes to be regulated by a single complex in a gene-specific manner. One of the answers to this question appears to lie in the interaction of AnCF with other transcription factors. Here, a novel transcription factor designated AnBH1 was isolated. The corresponding anbH1 gene was cloned and found to be located on chromosome IV. The deduced AnBH1 protein belongs to the family of basic-region helix-loop-helix (bHLH) transcription factors. AnBH1 binds in vitro as a homodimer to an, not previously described, asymmetric E-box within the aatA promoter that overlaps with the AnCF-binding site. This is the first report demonstrating that the CCAAT-binding complex and a bHLH transcription factor bind to overlapping sites. Since deletion of anbH1 appears to be lethal, the anbH1 gene was replaced by a regulatable alcAp-anbH1 gene fusion. The analysis of aatAp-lacZ expression in such a strain indicated that AnBH1 acts as a repressor of aatA gene expression and therefore counteracts the positive action of AnCF.

  10. Activity of the Bacillus thuringiensis NprR-NprX cell-cell communication system is co-ordinated to the physiological stage through a complex transcriptional regulation.

    Science.gov (United States)

    Dubois, Thomas; Perchat, Stéphane; Verplaetse, Emilie; Gominet, Myriam; Lemy, Christelle; Aumont-Nicaise, Magali; Grenha, Rosa; Nessler, Sylvie; Lereclus, Didier

    2013-04-01

    NprR is a quorum sensor of the RNPP family found in bacteria of the Bacillus cereus group. In association with its cognate peptide NprX, NprR controls the expression of genes essential for survival and sporulation of Bacillus thuringiensis during its necrotrophic development in insects. Here, we report that the nprR-nprX genes are not autoregulated and are co-transcribed from a σ(A) -dependent promoter (PA ) located upstream from nprR. The transcription from PA starts at the onset of the stationary phase and is controlled by two transcriptional regulators: CodY and PlcR. The nutritional repressor CodY represses nprR-nprX transcription during the exponential growth phase and the quorum sensor PlcR activates nprR-nprX transcription at the onset of stationary phase. We show that nprX is also transcribed independently of nprR from two promoters, PH and PE , dependent on the sporulation-specific sigma factors, σ(H) and σ(E) respectively. Both promoters ensure nprX transcription during late stationary phase while transcription from PA has decreased. These results show that the activity of the NprR-NprX quorum sensing system is tightly co-ordinated to the physiological stage throughout the developmental process of the Bacillus. © 2013 Blackwell Publishing Ltd.

  11. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development

    KAUST Repository

    Park, Myoungryoul

    2010-09-28

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  12. Transcriptional regulation of metabolism.

    Science.gov (United States)

    Desvergne, Béatrice; Michalik, Liliane; Wahli, Walter

    2006-04-01

    Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.

  13. Detection of aberrant transcription of major histocompatibility complex class II antigen presentation genes in chronic lymphocytic leukaemia identifies HLA-DOA mRNA as a prognostic factor for survival.

    Science.gov (United States)

    Souwer, Yuri; Chamuleau, Martine E D; van de Loosdrecht, Arjan A; Tolosa, Eva; Jorritsma, Tineke; Muris, Jettie J F; Dinnissen-van Poppel, Marion J; Snel, Sander N; van de Corput, Lisette; Ossenkoppele, Gert J; Meijer, Chris J L M; Neefjes, Jacques J; Marieke van Ham, S

    2009-05-01

    In human B cells, effective major histocompatibility complex (MHC) class II-antigen presentation depends not only on MHC class II, but also on the invariant chain (CD74 or Ii), HLA-DM (DM) and HLA-DO (DO), the chaperones regulating the antigen loading process of MHC class II molecules. We analysed immediate ex vivo expression of HLA-DR (DR), CD74, DM and DO in B cell chronic lymphocytic leukaemia (B-CLL). Real-time reverse transcription polymerase chain reaction demonstrated a highly significant upregulation of DRA, CD74, DMB, DOA and DOB mRNA in purified malignant cells compared to B cells from healthy donors. The increased mRNA levels were not translated into enhanced protein levels but could reflect aberrant transcriptional regulation. Indeed, upregulation of DRA, DMB, DOA and DOB mRNA correlated with enhanced expression of class II transactivator (CIITA). In-depth analysis of the various CIITA transcripts demonstrated a significant increased activity of the interferon-gamma-inducible promoter CIITA-PIV in B-CLL. Comparison of the aberrant mRNA levels with clinical outcome identified DOA mRNA as a prognostic indicator for survival. Multivariate analysis revealed that the prognostic value of DOA mRNA was independent of the mutational status of the IGHV genes. Thus, aberrant transcription of DOA forms a novel and additional prognostic indicator for survival in B-CLL.

  14. Oct-2 forms a complex with Oct-1 on the iNOS promoter and represses transcription by interfering with recruitment of RNA PolII by Oct-1

    Science.gov (United States)

    Bentrari, Fatima; Chantôme, Aurelie; Knights, Andrew; Jeannin, Jean-François; Pance, Alena

    2015-01-01

    Oct-1 (POU2f1) and Oct-2 (POU2f2) are members of the POU family of transcription factors. They recognize the same DNA sequence but fulfil distinct functions: Oct-1 is ubiquitous and regulates a variety of genes while Oct-2 is restricted to B-cells and neurones. Here we examine the interplay and regulatory mechanisms of these factors to control the inducible nitric oxide synthase (iNOS, NOS2). Using two breast cancer cell lines as a comparative model, we found that MCF-7 express iNOS upon cytokine stimulation while MDA-MB-231 do not. Oct-1 is present in both cell lines but MDA-MB-231also express high levels of Oct-2. Manipulation of Oct-2 expression in these cell lines demonstrates that it is directly responsible for the repression of iNOS in MDA-MB-231. In MCF-7 cells Oct-1 binds the iNOS promoter, recruits RNA PolII and triggers initiation of transcription. In MDA-MB-231 cells, both Oct-1 and Oct-2 bind the iNOS promoter, forming a higher-order complex which fails to recruit RNA PolII, and as a consequence iNOS transcription does not proceed. Unravelling the mechanisms of transcription factor activity is paramount to the understanding of gene expression patterns that determine cell behaviour. PMID:26271992

  15. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  16. A PTIP-PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex

    DEFF Research Database (Denmark)

    Starnes, Linda M; Su, Dan; Pikkupeura, Laura M

    2016-01-01

    Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transacti...

  17. Human variants in the neuronal basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS transcription factor complex NPAS4/ARNT2 disrupt function.

    Directory of Open Access Journals (Sweden)

    David C Bersten

    Full Text Available Neuronal Per-Arnt-Sim homology (PAS Factor 4 (NPAS4 is a neuronal activity-dependent transcription factor which heterodimerises with ARNT2 to regulate genes involved in inhibitory synapse formation. NPAS4 functions to maintain excitatory/inhibitory balance in neurons, while mouse models have shown it to play roles in memory formation, social interaction and neurodegeneration. NPAS4 has therefore been implicated in a number of neuropsychiatric or neurodegenerative diseases which are underpinned by defects in excitatory/inhibitory balance. Here we have explored a broad set of non-synonymous human variants in NPAS4 and ARNT2 for disruption of NPAS4 function. We found two variants in NPAS4 (F147S and E257K and two variants in ARNT2 (R46W and R107H which significantly reduced transcriptional activity of the heterodimer on a luciferase reporter gene. Furthermore, we found that NPAS4.F147S was unable to activate expression of the NPAS4 target gene BDNF due to reduced dimerisation with ARNT2. Homology modelling predicts F147 in NPAS4 to lie at the dimer interface, where it appears to directly contribute to protein/protein interaction. We also found that reduced transcriptional activation by ARNT2 R46W was due to disruption of nuclear localisation. These results provide insight into the mechanisms of NPAS4/ARNT dimerisation and transcriptional activation and have potential implications for cognitive phenotypic variation and diseases such as autism, schizophrenia and dementia.

  18. Promoter-mediated transcriptional dynamics.

    Science.gov (United States)

    Zhang, Jiajun; Zhou, Tianshou

    2014-01-21

    Genes in eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors, but how promoter dynamics affect transcriptional dynamics has remained poorly understood. In this study, we analyze gene models at the transcriptional regulation level, which incorporate the complexity of promoter structure (PS) defined as transcriptional exits (i.e., ON states of the promoter) and the transition pattern (described by a matrix consisting of transition rates among promoter activity states). We show that multiple exits of transcription are the essential origin of generating multimodal distributions of mRNA, but promoters with the same transition pattern can lead to multimodality of different modes, depending on the regulation of transcriptional factors. In turn, for similar mRNA distributions in the models, the mean ON or OFF time distributions may exhibit different characteristics, thus providing the supplemental information on PS. In addition, we demonstrate that the transcriptional noise can be characterized by a nonlinear function of mean ON and OFF times. These results not only reveal essential characteristics of promoter-mediated transcriptional dynamics but also provide signatures useful for inferring PS based on characteristics of transcriptional outputs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Comparison of transcript levels and mRNA half-lives for the subunits of the branched-chain {alpha}-keto acid dehydrogenase (BCKD) complex in two human cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, B.A.; Danner, D.J. [Emory Univ., Atlanta, GA (United States)

    1994-09-01

    BCKD is a mitochondrial multienzyme complex that catalyzes the committed step in catabolism of the keto acid derivatives of leucine, isoleucine and valine. Three subunits, El{alpha}, E1{beta} and E2 are specific to the complex. The subunits are nuclearly encoded from genes located on separate chromosomes, and it is not yet understood how gene expression of the components is regulated to maintain proper stoichiometry of the complex. The focus of the present study is to establish mRNA half-lives for the BCKD subunits in two human cell lines and to examine whether expression of transcripts for the subunits is similar in different cell types. HepG2 cells, a hepatocarcinoma cell line, and DG75 cells, a Burkitt`s lymphoma cell line, express comparable levels of BCKD complex based on total enzyme activity. Half-lives of the mRNAs for each subunit have been determined in HepG2 cells and are presently being defined in DG75 cells. mRNA half-lives were calculated by quantifying message levels over a 24 hour period following an actinomycin D block. Transcripts for the BCKD subunits are relatively stable in HepG2 cells with mRNA half-lives for the E1{alpha} of 11 hours, E1{beta}, 24 hours and E2, 22 hours. Steady-state message levels have been analyzed in both cell lines by RNase protection and quantified as a percentage of total RNA. mRNA levels for all three subunits are higher in DG75 cells than in HepG2 cells (E1{alpha}, 4-fold; E1{beta}, 1.9-fold; E2, 1.8-fold). Preliminary data indicates that the half-life of the E1{alpha} transcript in DG75 cells is approximately 29 hours, and it is possible that differences in steady-state levels of the mRNAs are achieved through different half-lives of the transcripts. The relationship between transcript levels and protein levels for the three subunits is being examined in both cell types.

  20. Regulation of Transcript Elongation

    Science.gov (United States)

    Belogurov, Georgiy A.; Artsimovitch, Irina

    2015-01-01

    Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections. PMID:26132790

  1. The Fos-Related Antigen 1–JUNB/Activator Protein 1 Transcription Complex, a Downstream Target of Signal Transducer and Activator of Transcription 3, Induces T Helper 17 Differentiation and Promotes Experimental Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Young-Mee Moon

    2017-12-01

    Full Text Available Dysfunction of T helper 17 (Th17 cells leads to chronic inflammatory disorders. Signal transducer and activator of transcription 3 (STAT3 orchestrates the expression of proinflammatory cytokines and pathogenic cell differentiation from interleukin (IL-17-producing Th17 cells. However, the pathways mediated by STAT3 signaling are not fully understood. Here, we observed that Fos-related antigen 1 (FRA1 and JUNB are directly involved in STAT3 binding to sites in the promoters of Fosl1 and Junb. Promoter binding increased expression of IL-17 and the development of Th17 cells. Overexpression of Fra1 and Junb in mice resulted in susceptibility to collagen-induced arthritis and an increase in Th17 cell numbers and inflammatory cytokine production. In patients with rheumatoid arthritis, FRA1 and JUNB were colocalized with STAT3 in the inflamed synovium. These observations suggest that FRA1 and JUNB are associated closely with STAT3 activation, and that this activation leads to Th17 cell differentiation in autoimmune diseases and inflammation.

  2. Quantitative Analysis of Dynamic Protein Interactions during Transcription Reveals a Role for Casein Kinase II in Polymerase-associated Factor (PAF) Complex Phosphorylation and Regulation of Histone H2B Monoubiquitylation.

    Science.gov (United States)

    Bedard, Lynn Glowczewski; Dronamraju, Raghuvar; Kerschner, Jenny L; Hunter, Gerald O; Axley, Elizabeth DeVlieger; Boyd, Asha K; Strahl, Brian D; Mosley, Amber L

    2016-06-24

    Using affinity purification MS approaches, we have identified a novel role for casein kinase II (CKII) in the modification of the polymerase associated factor complex (PAF-C). Our data indicate that the facilitates chromatin transcription complex (FACT) interacts with CKII and may facilitate PAF complex phosphorylation. Posttranslational modification analysis of affinity-isolated PAF-C shows extensive CKII phosphorylation of all five subunits of PAF-C, although CKII subunits were not detected as interacting partners. Consistent with this, recombinant CKII or FACT-associated CKII isolated from cells can phosphorylate PAF-C in vitro, whereas no intrinsic kinase activity was detected in PAF-C samples. Significantly, PAF-C purifications combined with stable isotope labeling in cells (SILAC) quantitation for PAF-C phosphorylation from wild-type and CKII temperature-sensitive strains (cka1Δ cka2-8) showed that PAF-C phosphorylation at consensus CKII sites is significantly reduced in cka1Δ cka2-8 strains. Consistent with a role of CKII in FACT and PAF-C function, we show that decreased CKII function in vivo results in decreased levels of histone H2B lysine 123 monoubiquitylation, a modification dependent on FACT and PAF-C. Taken together, our results define a coordinated role of CKII and FACT in the regulation of RNA polymerase II transcription through chromatin via phosphorylation of PAF-C. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley

    DEFF Research Database (Denmark)

    Hansen, Michael; Friis, Carsten; Bowra, Steve

    2009-01-01

    The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of stora....... The study described here should provide a strong complement to existing knowledge assisting further understanding of grain development and thereby provide a foundation for plant breeding towards storage proteins with improved nutritional quality.......The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of storage....... The gene expression pattern associated with the clusters was investigated using pathway-specific analysis with specific reference to the temporal expression levels of a range of genes involved mainly in the photosynthesis process, amino acid and storage protein metabolism. It is concluded that the grain...

  4. Timing of transcription during the cell cycle: Protein complexes binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression.

    Science.gov (United States)

    Müller, Gerd A; Stangner, Konstanze; Schmitt, Thomas; Wintsche, Axel; Engeland, Kurt

    2017-11-17

    A central question in cell cycle control is how differential gene expression is regulated. Timing of expression is important for correct progression through the cell cycle. E2F, CDE, and CHR promoter sites have been linked to transcriptional repression in resting cells and activation during the cell cycle. Further, the DREAM complex binds CHR or CDE/CHR elements of G2/M genes resulting in repression during G0/G1. Here, we show that DREAM also binds to E2F sites of S phase genes in quiescence and upon p53 activation. Furthermore, we describe a novel class of promoter sites, the CHR-like elements (CLE), which can support binding of DREAM to E2F elements. Activation of such S phase genes is achieved through binding of E2F1-3/DP complexes to E2F sites. In contrast, the activating MuvB complexes MMB and FOXM1-MuvB bind to CHR elements and mediate peak expression in G2/M. In conclusion, data presented here in combination with earlier results leads us to propose a model that explains how DREAM can repress early cell cycle genes through E2F or E2F/CLE sites and late genes through CHR or CDE/CHR elements. Also p53-dependent indirect transcriptional repression through the p53-p21-Cyclin/CDK-DREAM-E2F/CLE/CDE/CHR pathway requires DREAM binding to E2F or E2F/CLE sites in early cell cycle genes and binding of DREAM to CHR or CDE/CHR elements of late cell cycle genes. Specific timing of activation is achieved through binding of E2F1-3/DP to E2F sites and MMB or FOXM1-MuvB complexes to CHR elements.

  5. Mechanism of allele specific assembly and disruption of master regulator transcription factor complexes of NF-KBp50, NF-KBp65 and HIF1a on a non-coding FAS SNP.

    Science.gov (United States)

    Awah, Chidiebere U; Tamm, Stephanie; Hedtfeld, Silke; Steinemann, Doris; Tümmler, Burkhard; Tsiavaliaris, Georgios; Stanke, Frauke

    2016-11-01

    A challenging question in genetics is to understand the molecular function of non-coding variants of the genome. By using differential EMSA, ChIP and functional genome analysis, we have found that changes in transcription factors (TF) apparent binding affinity and dissociation rates are responsible for allele specific assembly or disruption of master TFs: we observed that NF-KBp50, NF-KBp65 and HIF1a bind with an affinity of up to 10 fold better to the C-allele than to the T-allele of rs7901656 both in vivo and in vitro. Furthermore, we showed that NF-KBp50, p65 and HIF1a form higher order heteromultimeric complexes overlapping rs7901656, implying synergism of action among TFs governing cellular response to infection and hypoxia. With rs7901656 on the FAS gene as a paradigm, we show how allele specific transcription factor complex assembly and disruption by a causal variant contributes to disease and phenotypic diversity. This finding provides the highly needed mechanistic insight into how the molecular etiology of regulatory SNPs can be understood in functional terms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  7. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription

    DEFF Research Database (Denmark)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien

    2012-01-01

    Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking...... site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial...... diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites...

  8. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Park

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR associated protein 9 (Cas9 system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9 offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF activation domain to dCas9 bound with the VP64 (tetramer of VP16 activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1 and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1. The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.

  9. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.

    Science.gov (United States)

    Park, Jong-Jin; Dempewolf, Emma; Zhang, Wenzheng; Wang, Zeng-Yu

    2017-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR associated protein 9 (Cas9) system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9) offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF) activation domain to dCas9 bound with the VP64 (tetramer of VP16) activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1) and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1). The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.

  10. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  11. The splicing factor ASF/SF2 is associated with TIA-1-related/TIA-1-containing ribonucleoproteic complexes and contributes to post-transcriptional repression of gene expression.

    Science.gov (United States)

    Delestienne, Nathalie; Wauquier, Corinne; Soin, Romuald; Dierick, Jean-François; Gueydan, Cyril; Kruys, Véronique

    2010-06-01

    TIA-1-related (TIAR) protein is a shuttling RNA-binding protein implicated in several steps of RNA metabolism. In the nucleus, TIAR contributes to alternative splicing events, whereas, in the cytoplasm, it acts as a translational repressor on specific transcripts such as adenine and uridine-rich element-containing mRNAs. In addition, TIAR is involved in the general translational arrest observed in cells exposed to environmental stress. This activity is encountered by the ability of TIAR to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules. To elucidate these mechanisms of translational repression, we characterized TIAR-containing complexes by tandem affinity purification followed by MS. Amongst the identified proteins, we found the splicing factor ASF/SF2, which is also present in TIA-1 protein complexes. We show that, although mostly confined in the nuclei of normal cells, ASF/SF2 migrates into stress granules upon environmental stress. The migration of ASF/SF2 into stress granules is strictly determined both by its shuttling properties and its RNA-binding capacity. Our data also indicate that ASF/SF2 down-regulates the expression of a reporter mRNA carrying adenine and uridine-rich elements within its 3' UTR. Moreover, tethering of ASF/SF2 to a reporter transcript strongly reduces mRNA translation and stability. These results indicate that ASF/SF2 and TIA proteins cooperate in the regulation of mRNA metabolism in normal cells and in cells having to overcome environmental stress conditions. In addition, the present study provides new insights into the cytoplasmic function of ASF/SF2 and highlights mechanisms by which RNA-binding proteins regulate the diverse steps of RNA metabolism by subcellular relocalization upon extracellular stimuli.

  12. Single-cell profiling of lineage determining transcription factors in antigen-specific CD4+T cells reveals unexpected complexity in recall responses during immune reconstitution.

    Science.gov (United States)

    Phetsouphanh, Chansavath; Xu, Yin; Munier, Mee Ling; Zaunders, John J; Kelleher, Anthony D

    2017-08-01

    Recent studies of protein and gene expression at the single-cell level have revealed that the memory T-cell compartment is more heterogeneous than previously acknowledged. Identifying different T helper subsets involved in memory responses at the single-cell level is thus necessary to understand the level of heterogeneity within this population. Antigen-specific CD4 + T cells were measured using the CD25/OX40 assay together with a qualitative multiplex single-cell RT-PCR assay. Transcription profiles and subset proportions within the antigen-specific CD4 + T-cell population were dissected. Cytomegalovirus (CMV)-specific CD4 + T-cell responses skewed toward a Th1 response, whereas Tetanus toxoid responses skewed toward a Th2 type response. Fluctuations in CD4 + T-cell subsets were observed within the HIV-Gag-specific response during ongoing antiretroviral therapy. Strong effector responses (Th1) were observed in early treatment, however with ongoing therapy this effector response significantly decreased in combination with an increase in Tregs and circulating Tfh-like BCL-6 + memory cells. The apparent increase in Tcm in peripheral blood after a several weeks of antiretroviral therapy may be due to Tfh-like cell egress from germinal centers into the periphery.

  13. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.

    Directory of Open Access Journals (Sweden)

    Matoušek Jaroslav

    2012-02-01

    Full Text Available Abstract Background Lupulin glands of hop produce a specific metabolome including hop bitter acids valuable for the brewing process and prenylflavonoids with promising health-beneficial activities. The detailed analysis of the transcription factor (TF-mediated regulation of the oligofamily of one of the key enzymes, i.e., chalcone synthase CHS_H1 that efficiently catalyzes the production of naringenin chalcone, a direct precursor of prenylflavonoids in hop, constitutes an important part of the dissection of the biosynthetic pathways leading to the accumulation of these compounds. Results Homologues of flavonoid-regulating TFs HlMyb2 (M2, HlbHLH2 (B2 and HlWDR1 (W1 from hop were cloned using a lupulin gland-specific cDNA library from the hop variety Osvald's 72. Using a "combinatorial" transient GUS expression system it was shown that these unique lupulin-gland-associated TFs significantly activated the promoter (P of chs_H1 in ternary combinations of B2, W1 and either M2 or the previously characterized HlMyb3 (M3. The promoter activation was strongly dependent on the Myb-P binding box TCCTACC having a core sequence CCWACC positioned on its 5' end region and it seems that the complexity of the promoter plays an important role. M2B2W1-mediated activation significantly exceeded the strength of expression of native chs_H1 gene driven by the 35S promoter of CaMV, while M3B2W1 resulted in 30% of the 35S:chs_H1 expression level, as quantified by real-time PCR. Another newly cloned hop TF, HlMyb7, containing a transcriptional repressor-like motif pdLNLD/ELxiG/S (PDLNLELRIS, was identified as an efficient inhibitor of chs_H1-activating TFs. Comparative analyses of hop and A. thaliana TFs revealed a complex activation of Pchs_H1 and Pchs4 in combinatorial or independent manners. Conclusions This study on the sequences and functions of various lupulin gland-specific transcription factors provides insight into the complex character of the regulation of the

  14. Deciphering the Combinatorial DNA-binding Code of the CCAAT-binding Complex and the Iron-regulatory Basic Region Leucine Zipper (bZIP) Transcription Factor HapX*

    Science.gov (United States)

    Hortschansky, Peter; Ando, Eriko; Tuppatsch, Katja; Arikawa, Hisashi; Kobayashi, Tetsuo; Kato, Masashi; Haas, Hubertus; Brakhage, Axel A.

    2015-01-01

    The heterotrimeric CCAAT-binding complex (CBC) is evolutionarily conserved in eukaryotic organisms, including fungi, plants, and mammals. The CBC consists of three subunits, which are named in the filamentous fungus Aspergillus nidulans HapB, HapC, and HapE. HapX, a fourth CBC subunit, was identified exclusively in fungi, except for Saccharomyces cerevisiae and the closely related Saccharomycotina species. The CBC-HapX complex acts as the master regulator of iron homeostasis. HapX belongs to the class of basic region leucine zipper transcription factors. We demonstrated that the CBC and HapX bind cooperatively to bipartite DNA motifs with a general HapX/CBC/DNA 2:1:1 stoichiometry in a class of genes that are repressed by HapX-CBC in A. nidulans during iron limitation. This combinatorial binding mode requires protein-protein interaction between the N-terminal domain of HapE and the N-terminal CBC binding domain of HapX as well as sequence-specific DNA binding of both the CBC and HapX. Initial binding of the CBC to CCAAT boxes is mandatory for DNA recognition of HapX. HapX specifically targets the minimal motif 5′-GAT-3′, which is located at a distance of 11–12 bp downstream of the respective CCAAT box. Single nucleotide substitutions at the 5′- and 3′-end of the GAT motif as well as different spacing between the CBC and HapX DNA-binding sites revealed a remarkable promiscuous DNA-recognition mode of HapX. This flexible DNA-binding code may have evolved as a mechanism for fine-tuning the transcriptional activity of CBC-HapX at distinct target promoters. PMID:25589790

  15. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus.

    Science.gov (United States)

    Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong

    2014-09-01

    Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS). © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes.

    Science.gov (United States)

    Daniel, A R; Gaviglio, A L; Knutson, T P; Ostrander, J H; D'Assoro, A B; Ravindranathan, P; Peng, Y; Raj, G V; Yee, D; Lange, C A

    2015-01-22

    Progesterone and estrogen are important drivers of breast cancer proliferation. Herein, we probed estrogen receptor-α (ER) and progesterone receptor (PR) cross-talk in breast cancer models. Stable expression of PR-B in PR-low/ER+ MCF7 cells increased cellular sensitivity to estradiol and insulin-like growth factor 1 (IGF1), as measured in growth assays performed in the absence of exogenous progestin; similar results were obtained in PR-null/ER+ T47D cells stably expressing PR-B. Genome-wide microarray analyses revealed that unliganded PR-B induced robust expression of a subset of estradiol-responsive ER target genes, including cathepsin-D (CTSD). Estradiol-treated MCF7 cells stably expressing PR-B exhibited enhanced ER Ser167 phosphorylation and recruitment of ER, PR and the proline-, glutamate- and leucine-rich protein 1 (PELP1) to an estrogen response element in the CTSD distal promoter; this complex co-immunoprecipitated with IGF1 receptor (IGFR1) in whole-cell lysates. Importantly, ER/PR/PELP1 complexes were also detected in human breast cancer samples. Inhibition of IGF1R or phosphoinositide 3-kinase blocked PR-B-dependent CTSD mRNA upregulation in response to estradiol. Similarly, inhibition of IGF1R or PR significantly reduced ER recruitment to the CTSD promoter. Stable knockdown of endogenous PR or onapristone treatment of multiple unmodified breast cancer cell lines blocked estradiol-mediated CTSD induction, inhibited growth in soft agar and partially restored tamoxifen sensitivity of resistant cells. Further, combination treatment of breast cancer cells with both onapristone and IGF1R tyrosine kinase inhibitor AEW541 was more effective than either agent alone. In summary, unliganded PR-B enhanced proliferative responses to estradiol and IGF1 via scaffolding of ER-α/PELP1/IGF1R-containing complexes. Our data provide a strong rationale for targeting PR in combination with ER and IGF1R in patients with luminal breast cancer.

  17. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing.

    Science.gov (United States)

    Liang, Kaiwei; Gao, Xin; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Smith, Edwin; Shilatifard, Ali

    2015-03-01

    Cyclin-dependent kinase 9 (CDK9) and CDK12 have each been demonstrated to phosphorylate the RNA polymerase II C-terminal domain (CTD) at serine 2 of the heptad repeat, both in vitro and in vivo. CDK9, as part of P-TEFb and the super elongation complex (SEC), is by far the best characterized of CDK9, CDK12, and CDK13. We employed both in vitro and in vivo assays to further investigate the molecular properties of CDK12 and its paralog CDK13. We isolated Flag-tagged CDK12 and CDK13 and found that they associate with numerous RNA processing factors. Although knockdown of CDK12, CDK13, or their cyclin partner CCNK did not affect the bulk CTD phosphorylation levels in HCT116 cells, transcriptome sequencing (RNA-seq) analysis revealed that CDK12 and CDK13 losses in HCT116 cells preferentially affect expression of DNA damage response and snoRNA genes, respectively. CDK12 and CDK13 depletion also leads to a loss of expression of RNA processing factors and to defects in RNA processing. These findings suggest that in addition to implementing CTD phosphorylation, CDK12 and CDK13 may affect RNA processing through direct physical interactions with RNA processing factors and by regulating their expression. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism....... The biosynthetic machinery of GLS is governed by interplay of six MYB and three bHLH transcription factors. MYB28, MYB29 and MYB76 regulate methionine-derived GLS, and MYB51, MYB34 and MYB122 regulate tryptophan-derived GLS. The three bHLH transcription factors MYC2, MYC3 and MYC4 physically interact with all six...

  19. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription.

    Science.gov (United States)

    Djavadian, Reza; Chiu, Ya-Fang; Johannsen, Eric

    2016-06-01

    Epstein-Barr virus lytic replication is accomplished by an intricate cascade of gene expression that integrates viral DNA replication and structural protein synthesis. Most genes encoding structural proteins exhibit "true" late kinetics-their expression is strictly dependent on lytic DNA replication. Recently, the EBV BcRF1 gene was reported to encode a TATA box binding protein homolog, which preferentially recognizes the TATT sequence found in true late gene promoters. BcRF1 is one of seven EBV genes with homologs found in other β- and γ-, but not in α-herpesviruses. Using EBV BACmids, we systematically disrupted each of these "βγ" genes. We found that six of them, including BcRF1, exhibited an identical phenotype: intact viral DNA replication with loss of late gene expression. The proteins encoded by these six genes have been found by other investigators to form a viral protein complex that is essential for activation of TATT-containing reporters in EBV-negative 293 cells. Unexpectedly, in EBV infected 293 cells, we found that TATT reporter activation was weak and non-specific unless an EBV origin of lytic replication (OriLyt) was present in cis. Using two different replication-defective EBV genomes, we demonstrated that OriLyt-mediated DNA replication is required in cis for TATT reporter activation and for late gene expression from the EBV genome. We further demonstrate by fluorescence in situ hybridization that the late BcLF1 mRNA localizes to EBV DNA replication factories. These findings support a model in which EBV true late genes are only transcribed from newly replicated viral genomes.

  20. The anti-hepatic fibrosis effects of dihydrotanshinone I are mediated by disrupting the yes-associated protein and transcriptional enhancer factor D2 complex and stimulating autophagy.

    Science.gov (United States)

    Ge, Maoxu; Liu, Hong; Zhang, Yixuan; Li, Naren; Zhao, Shuangshuang; Zhao, Wuli; Zhen, Yongzhan; Yu, Jianzhong; He, Hongwei; Shao, Rong-Guang

    2017-05-01

    Dihydrotanshinone I (DHI), a lipophilic component of traditional Chinese medicine Salvia miltiorrhiza Bunge, has various therapeutic effects. We investigated the anti-fibrotic effect of DHI and its underlying mechanisms in vitro and in vivo. Rats subjected to bile duct ligation (BDL) were treated with DHI (25 mg·kg(-1) ·day(-1) , i.p.) for 14 days. Serum biochemical and liver tissue morphological analyses were performed. The human hepatic stellate cell line LX-2 served as a liver fibrosis model in vitro. Liver fibrogenic genes, yes-associated protein (YAP) downstream genes and autophagy markers were examined using western blot and real-time PCR analyses. Similar analyses were done in rat primary hepatic stellate cells (pHSCs). Autophagy flux was assessed by immunofluorescence. In BDL rats, DHI administration attenuated liver necrosis, bile duct proliferation and collagen accumulation and reduced the expression of genes associated with fibrogenesis, including Tgfb1, Mmp-2, Acta2 and Col1a1. DHI (1, 5, 10 μmol·L(-1) ) time- and dose-dependently suppressed the protein level of COL1A1, TGFβ1 and α-SMA in LX-2 cells and rat pHSCs. Furthermore, DHI blocked the nuclear translocation of YAP, which inhibited the YAP/TEAD2 interaction and its downstream fibrogenic genes, connective tissue growth factor, SOX4 and survivin. This stimulated autophagic flux and accelerated the degradation of liver collagen. DHI exerts anti-fibrotic effects in BDL rats, LX-2 cells and rat pHSCs by inhibiting the YAP and TEAD2 complex and stimulating autophagy. These findings indicate that DHI may be a potential therapeutic for the treatment of liver fibrosis. © 2017 The British Pharmacological Society.

  1. Functional Integration of Transcriptional and RNA Processing Machineries

    OpenAIRE

    Pandit, Shatakshi; Wang, Dong; Fu, Xiang-Dong

    2008-01-01

    Co-transcriptional RNA processing not only permits temporal RNA processing before the completion of transcription, but also allows sequential recognition of RNA processing signals on nascent transcripts threading out from the elongating RNAPII complex. Rapid progress in recent years has established multiple contacts that physically connect the transcription and RNA processing machineries, which centers on the C-terminal domain (CTD) of the largest subunit of RNAPII. While co-transcriptional R...

  2. Transcription regulation by the human Ccr4-Not proteins

    NARCIS (Netherlands)

    Zwartjes, Catharina Geertruida Maria

    2004-01-01

    Transcription by RNA polymerase II is a highly regulated process. Multiple protein complexes are involved in the regulation of mRNA synthesis. The Ccr4-Not complex regulates transcription at a global level and, most likely, requires other proteins to associate with promoters. The complex is

  3. Cap-binding complex (CBC)

    National Research Council Canada - National Science Library

    Gonatopoulos-Pournatzis, Thomas; Cowling, Victoria H

    2014-01-01

    .... One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation...

  4. A framework for discovering, designing, and testing microproteins to regulate synthetic transcriptional modules

    NARCIS (Netherlands)

    Fiume, Elisa; de Klein, Niek; Rhee, Seung Yon; Magnani, Enrico

    2016-01-01

    Transcription factors often form protein complexes and give rise to intricate transcriptional networks. The regulation of transcription factor multimerization plays a key role in the fine-tuning of the underlying transcriptional pathways and can be exploited to modulate synthetic transcriptional

  5. WRKY transcription factors.

    Science.gov (United States)

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  6. Transcription Factor Networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    David Y. Rhee

    2014-09-01

    Full Text Available Specific cellular fates and functions depend on differential gene expression, which occurs primarily at the transcriptional level and is controlled by complex regulatory networks of transcription factors (TFs. TFs act through combinatorial interactions with other TFs, cofactors, and chromatin-remodeling proteins. Here, we define protein-protein interactions using a coaffinity purification/mass spectrometry method and study 459 Drosophila melanogaster transcription-related factors, representing approximately half of the established catalog of TFs. We probe this network in vivo, demonstrating functional interactions for many interacting proteins, and test the predictive value of our data set. Building on these analyses, we combine regulatory network inference models with physical interactions to define an integrated network that connects combinatorial TF protein interactions to the transcriptional regulatory network of the cell. We use this integrated network as a tool to connect the functional network of genetic modifiers related to mastermind, a transcriptional cofactor of the Notch pathway.

  7. Nuclear stability and transcriptional directionality separate functionally distinct RNA species

    DEFF Research Database (Denmark)

    Andersson, Robin; Andersen, Peter Refsing; Valen, Eivind

    2014-01-01

    Mammalian genomes are pervasively transcribed, yielding a complex transcriptome with high variability in composition and cellular abundance. Although recent efforts have identified thousands of new long non-coding (lnc) RNAs and demonstrated a complex transcriptional repertoire produced by protei...... a vast majority of unstable transcripts. The predictive power of the approach promises to streamline the functional analysis of known and novel RNAs....

  8. Filovirus replication and transcription

    OpenAIRE

    Mühlberger, Elke

    2007-01-01

    The highly pathogenic filoviruses, Marburg and Ebola virus, belong to the nonsegmented negative-sense RNA viruses of the order Mononegavirales. The mode of replication and transcription is similar for these viruses. On one hand, the negative-sense RNA genome serves as a template for replication, to generate progeny genomes, and, on the other hand, for transcription, to produce mRNAs. Despite the similarities in the replication/transcription strategy, filoviruses have evolved structural and fu...

  9. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  10. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    Science.gov (United States)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  11. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  12. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  13. Mechanical Properties of Transcription.

    Science.gov (United States)

    Sevier, Stuart A; Levine, Herbert

    2017-06-30

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  14. Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli.

    Science.gov (United States)

    Zhang, Aixia; Rosner, Judah L; Martin, Robert G

    2008-09-01

    The Escherichia coli tolC encodes a major outer membrane protein with multiple functions in export (e.g. diverse xenobiotics, haemolysin) and as an attachment site for phage and colicins. tolC is regulated in part by MarA, SoxS and Rob, three paralogous transcriptional activators which bind a sequence called the marbox and which activate multiple antibiotic and superoxide resistance functions. Two previously identified tolC promoters, p1 and p2, are not regulated by MarA, SoxS or Rob but p2 is activated by EvgAS and PhoPQ which also regulate other functions. Using transcriptional fusions and primer extension assays, we show here that tolC has two additional strong overlapping promoters, p3 and p4, which are downstream of p1, p2 and the marbox and are activated by MarA, SoxS and Rob. p3 and p4 are configured so that a single marbox suffices to activate transcription from both promoters. At the p3 promoter, the marbox is separated by 20 bp from the -10 hexamer for RNA polymerase but at the p4 promoter, the same marbox is separated by 30 bp from the -10 hexamer. The multiple tolC promoters may allow the cell to respond to diverse environments by co-ordinating tolC transcription with other appropriate functions.

  15. Transcriptional regulation by Polycomb group proteins

    DEFF Research Database (Denmark)

    Di Croce, Luciano; Helin, Kristian

    2013-01-01

    ) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity.......Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins...

  16. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...

  17. The impact of transcription on posttranscriptional processes in yeast.

    Science.gov (United States)

    Turowski, Tomasz W

    2013-08-15

    In eukaryotes, three RNA polymerases are responsible for transcription. These complex enzymes show many similarities with one another, such as several common or highly homologue subunits, while some other features, such as transcript length, diversity, processing, and transcription regulation, are unique to each polymerase. The present article reviews recent publications focusing on the impact of transcription of various RNA species in yeast on posttranscriptional steps such as pre-RNA processing, transport and decay. Two major conclusions emerge from a critical analysis of the current knowledge. (1) The kinetics of transcription elongation affects cotranscriptional pre-RNA processing. (2) The efficiency of transcription, by saturating the proteins interacting with RNA, indirectly affects the processing, export and decay of transcripts. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Bacterial Transcription as a Target for Antibacterial Drug Development

    Science.gov (United States)

    Ma, Cong; Yang, Xiao

    2016-01-01

    SUMMARY Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. PMID:26764017

  19. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A; Herudek, Jan

    2016-01-01

    Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation s...

  20. Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing

    OpenAIRE

    Fong, Nova; Ohman, Marie; Bentley, David L.

    2009-01-01

    SUMMARY We investigated whether a continuous transcript is necessary for co-transcriptional pre-mRNA processing. Cutting an intron with the fast-cleaving hepatitis ? ribozyme, but not the slower hammerhead, inhibited splicing. Exon tethering to RNA pol II therefore cannot rescue splicing of a transcript severed by a ribozyme that cleaves rapidly relative to splicing. Ribozyme cutting also released cap-binding complex (CBC) from the gene, suggesting that exon 1 is not tethered. Unexpectedly, c...

  1. 21 CFR 12.98 - Official transcript.

    Science.gov (United States)

    2010-04-01

    ... a verbatim stenographic transcript of oral testimony and for necessary copies of the transcript. (b... the transcript of oral testimony. Corrections are permitted only for transcription errors. The...

  2. Mg2+-modulated KMnO4 reactivity of thymines in the open transcription complex reflects variation in the negative electrostatic potential along the separated DNA strands. Footprinting of Escherichia coli RNA polymerase complex at the lambdaP(R) promoter revisited.

    Science.gov (United States)

    Łoziński, Tomasz; Wierzchowski, Kazimierz L

    2005-06-01

    There is still a controversy over the mechanism of promoter DNA strand separation upon open transcription complex (RPo) formation by Escherichia coli RNA polymerase: is it a single or a stepwise process controlled by Mg2+ ions and temperature? To resolve this question, the kinetics of pseudo-first-order oxidation of thymine residues by KMnO4 in the -11 ... +2 DNA region of RPo at the lambdaP(R) promoter was examined under single-hit conditions as a function of temperature (13-37 degrees C) in the absence or presence of 10 mm MgCl2. The reaction was also studied with respect to thymidine and its nucleotides (TMP, TTP and TpT) as a function of temperature and [MgCl2]. The kinetic parameters, (ox)k and (ox)E(a), and Mg-induced enhancement of (ox)k proved to be of the same order of magnitude for RPo-lambdaP(R) and the nucleotides. Unlike the complex, (ox)E(a) for the nucleotides was found to be Mg-independent. The isothermal increase in (ox)k with increasing [Mg2+] was thus interpreted in terms of a simple model of screening of the negative charges on phosphate groups by Mg2+ ions, lowering the electrostatic barrier to the diffusion of MnO4- anions to the reactive double bond of thymine. Similar screening isotherms were determined for the oxidation of two groups of thymines in RPo at a consensus-like Pa promoter, differing in the magnitude of the Mg effect. Together, the findings show that: (a) the two DNA strands in the -11...+2 region of RPo-lambdaP(R) are completely separated over the whole range of temperatures investigated (13-37 degrees C) in the absence of Mg2+ (b) Mg2+ ions induce an increase in the rate of the oxidation reaction by screening negatively charged phosphate and carboxylate groups; and (c) the observed thymine reactivity and the magnitude of the Mg effect reflect variation in the strength of the electrostatic potential along the separated DNA strands, in agreement with the current structural model of RPo.

  3. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  4. Extensive polycistronism and antisense transcription in the mammalian Hox clusters.

    Directory of Open Access Journals (Sweden)

    Gaëll Mainguy

    Full Text Available The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70% have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb. This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering.

  5. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    control spanning the range from completely muted to cranked up to maximum. The volume, in this case, is the production rate of proteins. This production is the result of a two step procedure: i) transcription, in which a small part of DNA from the genome (a gene) is transcribed into an RNA molecule (an mRNA...... prediction and provide tools that help investigators use these. In addition, a de novo motif discovery tool was developed that locates these patterns in DNA sequences. This compared favorably to many contemporary methods. A novel experimental method, cap-analysis of gene expression (CAGE), was recently......); and ii) translation, in which the mRNA is translated into a protein. This thesis focus on the ¿rst of these steps, transcription, and speci¿cally the initiation of this. Simpli¿ed, initiation is preceded by the binding of several proteins, known as transcription factors (TFs), to DNA. This takes place...

  6. Enhancement of CIITA transcriptional function by ubiquitin.

    Science.gov (United States)

    Greer, Susanna F; Zika, Eleni; Conti, Brian; Zhu, Xin-Sheng; Ting, Jenny P-Y

    2003-11-01

    Although increasing evidence indicates that there is a direct link between ubiquitination and mono-ubiquitination and transcription in yeast, this link has not been demonstrated in higher eukaryotes. Here we show that the major histocompatibility complex (MHC) class II transactivator (CIITA), which is required for expression of genes encoding MHC class II molecules, is ubiquitinated. This ubiquitination enhanced the association of CIITA with both MHC class II transcription factors and the MHC class II promoter, resulting in an increase in transactivation function and in the expression of MHC class II mRNA. The degree of CIITA ubiquitination was controlled by histone acetylases (HATs) and deacetylases (HDACs), indicating that the crucial cellular processes mediated by these enzymes are linked to regulate transcription. Thus, ubiquitin positively regulates a mammalian coactivator by enhancing its assembly at the promoter.

  7. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  8. Transcription regulatory elements are punctuation marks for DNA replication

    Science.gov (United States)

    Mirkin, Ekaterina V.; Castro Roa, Daniel; Nudler, Evgeny; Mirkin, Sergei M.

    2006-01-01

    Collisions between DNA replication and transcription significantly affect genome organization, regulation, and stability. Previous studies have described collisions between replication forks and elongating RNA polymerases. Although replication collisions with the transcription-initiation or -termination complexes are potentially even more important because most genes are not actively transcribed during DNA replication, their existence and mechanisms remained unproven. To address this matter, we have designed a bacterial promoter that binds RNA polymerase and maintains it in the initiating mode by precluding the transition into the elongation mode. By using electrophoretic analysis of replication intermediates, we have found that this steadfast transcription-initiation complex inhibits replication fork progression in an orientation-dependent manner during head-on collisions. Transcription terminators also appeared to attenuate DNA replication, but in the opposite, codirectional orientation. Thus, transcription regulatory signals may serve as “punctuation marks” for DNA replication in vivo. PMID:16670199

  9. Rhythm quantization for transcription

    NARCIS (Netherlands)

    Cemgil, A.T.; Desain, P.W.M.; Kappen, H.J.

    1999-01-01

    Automatic Music Transcription is the extraction of an acceptable notation from performed music. One important task in this problem is rhythm quantization which refers to categorization of note durations. Although quantization of a pure mechanical performance is rather straightforward, the task

  10. transcriptional regulatory element

    African Journals Online (AJOL)

    ARL

    2012-06-12

    Jun 12, 2012 ... Further test of the effect of WPRE on plasmid-mediated gene expression with two therapeutic proteins showed substantial ... promoter-independent, and provide valuable information to improve vectors for efficient and stable gene expression in ... transcriptional events concerning the recombinant. mRNA.

  11. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any

  12. Coupling pre-mRNA processing to transcription on the RNA factory assembly line.

    Science.gov (United States)

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-03-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.

  13. Extraction of transcript diversity from scientific literature.

    Directory of Open Access Journals (Sweden)

    Parantu K Shah

    2005-06-01

    Full Text Available Transcript diversity generated by alternative splicing and associated mechanisms contributes heavily to the functional complexity of biological systems. The numerous examples of the mechanisms and functional implications of these events are scattered throughout the scientific literature. Thus, it is crucial to have a tool that can automatically extract the relevant facts and collect them in a knowledge base that can aid the interpretation of data from high-throughput methods. We have developed and applied a composite text-mining method for extracting information on transcript diversity from the entire MEDLINE database in order to create a database of genes with alternative transcripts. It contains information on tissue specificity, number of isoforms, causative mechanisms, functional implications, and experimental methods used for detection. We have mined this resource to identify 959 instances of tissue-specific splicing. Our results in combination with those from EST-based methods suggest that alternative splicing is the preferred mechanism for generating transcript diversity in the nervous system. We provide new annotations for 1,860 genes with the potential for generating transcript diversity. We assign the MeSH term "alternative splicing" to 1,536 additional abstracts in the MEDLINE database and suggest new MeSH terms for other events. We have successfully extracted information about transcript diversity and semiautomatically generated a database, LSAT, that can provide a quantitative understanding of the mechanisms behind tissue-specific gene expression. LSAT (Literature Support for Alternative Transcripts is publicly available at http://www.bork.embl.de/LSAT/.

  14. How salicylic acid takes transcriptional control over jasmonic acid signaling.

    Science.gov (United States)

    Caarls, Lotte; Pieterse, Corné M J; Van Wees, Saskia C M

    2015-01-01

    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  15. How salicylic acid takes transcriptional control over jasmonic acid signaling

    Directory of Open Access Journals (Sweden)

    Lotte eCaarls

    2015-03-01

    Full Text Available Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA and jasmonic acid (JA are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  16. Non-Equilibrium Thermodynamics of Transcriptional Bursts

    Science.gov (United States)

    Hernández-Lemus, Enrique

    Gene transcription or Gene Expression (GE) is the process which transforms the information encoded in DNA into a functional RNA message. It is known that GE can occur in bursts or pulses. Transcription is irregular, with strong periods of activity, interspersed by long periods of inactivity. If we consider the average behavior over millions of cells, this process appears to be continuous. But at the individual cell level, there is considerable variability, and for most genes, very little activity at any one time. Some have claimed that GE bursting can account for the high variability in gene expression occurring between cells in isogenic populations. This variability has a big impact on cell behavior and thus on phenotypic conditions and disease. In view of these facts, the development of a thermodynamic framework to study gene expression and transcriptional regulation to integrate the vast amount of molecular biophysical GE data is appealing. Application of such thermodynamic formalism is useful to observe various dissipative phenomena in GE regulatory dynamics. In this chapter we will examine at some detail the complex phenomena of transcriptional bursts (specially of a certain class of anomalous bursts) in the context of a non-equilibrium thermodynamics formalism and will make some initial comments on the relevance of some irreversible processes that may be connected to anomalous transcriptional bursts.

  17. Transcriptional features of genomic regulatory blocks.

    Science.gov (United States)

    Akalin, Altuna; Fredman, David; Arner, Erik; Dong, Xianjun; Bryne, Jan Christian; Suzuki, Harukazu; Daub, Carsten O; Hayashizaki, Yoshihide; Lenhard, Boris

    2009-01-01

    Genomic regulatory blocks (GRBs) are chromosomal regions spanned by highly conserved non-coding elements (HCNEs), most of which serve as regulatory inputs of one target gene in the region. The target genes are most often transcription factors involved in embryonic development and differentiation. GRBs often contain extensive gene deserts, as well as additional 'bystander' genes intertwined with HCNEs but whose expression and function are unrelated to those of the target gene. The tight regulation of target genes, complex arrangement of regulatory inputs, and the differential responsiveness of genes in the region call for the examination of fundamental rules governing transcriptional activity in GRBs. Here we use extensive CAGE tag mapping of transcription start sites across different human tissues and differentiation stages combined with expression data and a number of sequence and epigenetic features to discover these rules and patterns. We show evidence that GRB target genes have properties that set them apart from their bystanders as well as other genes in the genome: longer CpG islands, a higher number and wider spacing of alternative transcription start sites, and a distinct composition of transcription factor binding sites in their core/proximal promoters. Target gene expression correlates with the acetylation state of HCNEs in the region. Additionally, target gene promoters have a distinct combination of activating and repressing histone modifications in mouse embryonic stem cell lines. GRB targets are genes with a number of unique features that are the likely cause of their ability to respond to regulatory inputs from very long distances.

  18. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri...... as transcriptional repressors is incompletely understood, but involves post-translational modifications of histones by two major PcG protein complexes: polycomb repressive complex 1 and polycomb repressive complex 2.......The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work...

  19. Development of a PCR-RFLP method based on the transcription elongation factor 1-a gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex

    Science.gov (United States)

    Fusarium head blight (FHB) is a destructive disease of cereals crops worldwide and a major food safety concern due to grain contamination with trichothecenes and other mycotoxins. Fusarium graminearum, a member of the Fusarium graminearum species complex (FGSC) is the dominant FHB pathogen in many p...

  20. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2016-08-01

    Full Text Available Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  1. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Science.gov (United States)

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  2. Structural and Functional Insights into WRKY3 and WRKY4 Transcription Factors to Unravel the WRKY–DNA (W-Box Complex Interaction in Tomato (Solanum lycopersicum L.. A Computational Approach

    Directory of Open Access Journals (Sweden)

    Mohd Aamir

    2017-05-01

    Full Text Available The WRKY transcription factors (TFs, play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3, and WRKY4 (SlWRKY4 using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433 and WRKY4 (AtWRKY4: NP_172849 protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2 and AtWRKY1 (PDBID:2AYD as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates. The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the

  3. Structural and Functional Insights into WRKY3 and WRKY4 Transcription Factors to Unravel the WRKY–DNA (W-Box) Complex Interaction in Tomato (Solanum lycopersicum L.). A Computational Approach

    Science.gov (United States)

    Aamir, Mohd; Singh, Vinay K.; Meena, Mukesh; Upadhyay, Ram S.; Gupta, Vijai K.; Singh, Surendra

    2017-01-01

    The WRKY transcription factors (TFs), play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3), and WRKY4 (SlWRKY4) using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433) and WRKY4 (AtWRKY4: NP_172849) protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2) and AtWRKY1 (PDBID:2AYD) as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates). The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the initial

  4. Spanish dialects: phonetic transcription

    OpenAIRE

    Moreno Bilbao, M. Asunción; Mariño Acebal, José Bernardo

    1998-01-01

    It is well known that canonical Spanish, the dialectal variant `central' of Spain, so called Castilian, can be transcribed by rules. This paper deals with the automatic grapheme to phoneme transcription rules in several Spanish dialects from Latin America. Spanish is a language spoken by more than 300 million people, has an important geographical dispersion compared among other languages and has been historically influenced by many native languages. In this paper authors expand the Castilian ...

  5. The Transcription Factor THO Promotes Transcription Initiation and Elongation by RNA Polymerase I.

    Science.gov (United States)

    Zhang, Yinfeng; French, Sarah L; Beyer, Ann L; Schneider, David A

    2016-02-05

    Although ribosomal RNA represents the majority of cellular RNA, and ribosome synthesis is closely connected to cell growth and proliferation rates, a complete understanding of the factors that influence transcription of ribosomal DNA is lacking. Here, we show that the THO complex positively affects transcription by RNA polymerase I (Pol I). We found that THO physically associates with the rDNA repeat and interacts genetically with Pol I transcription initiation factors. Pol I transcription in hpr1 or tho2 null mutants is dramatically reduced to less than 20% of the WT level. Pol I occupancy of the coding region of the rDNA in THO mutants is decreased to ~50% of WT level. Furthermore, although the percentage of active rDNA repeats remains unaffected in the mutant cells, the overall rDNA copy number increases ~2-fold compared with WT. Together, these data show that perturbation of THO function impairs transcription initiation and elongation by Pol I, identifying a new cellular target for the conserved THO complex. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Mechanochemical ATPases and transcriptional activation

    National Research Council Canada - National Science Library

    Zhang, X; Chaney, M; Wigneshweraraj, Siva R; Schumacher, J; Bordes, P; Cannon, W; Buck, M

    2002-01-01

    ... transcription from other ATP‐independent activation mechanisms that rely on the recruitment of RNAP by transcription factors. As described below, productive interactions between σ 54 and its a...

  7. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation of the t......To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...... a select group of transcription factors that demonstrate the diversity displayed in their mode of activation and inactivation....

  8. DSC1-MCB regulation of meiotic transcription in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cunliffe, L; White, S; McInerny, C J

    2004-02-01

    Meiosis is initiated from the G1 phase of the mitotic cell cycle, and consists of pre-meiotic S-phase followed by two successive nuclear divisions. Here we show that control of gene expression during pre-meiotic S-phase in the fission yeast Schizosaccharomyces pombe is mediated by a DNA synthesis control-like transcription factor complex (DSC1), which acts upon M lu1 cell cycle box (MCB) promoter motifs. Several genes, including rec8+, rec11+, cdc18+, and cdc22+, which contain MCB motifs in their promoter regions, are found to be co-ordinately regulated during pre-meiotic S-phase. Both synthetic and native MCB motifs are shown to confer meiotic-specific transcription on a heterologous reporter gene. A DSC1-like transcription factor complex that binds to MCB motifs was also identified in meiotic cells. The effect of mutating and over-expressing individual components of DSC1 (cdc10+, res1+, res2+, rep1+ and rep2+) on the transcription of cdc22+, rec8+ and rec11+ during meiosis was examined. We found that cdc10+, res2+, rep1+ and rep2+ are required for correct meiotic transcription, while res1+ is not required for this process. This work demonstrates a role for MCB motifs and a DSC1-like transcription factor complex in controlling transcription during meiosis in fission yeast, and suggests a mechanism for how this specific expression occurs.

  9. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation

    Science.gov (United States)

    Chauvier, Adrien; Picard-Jean, Frédéric; Berger-Dancause, Jean-Christophe; Bastet, Laurène; Naghdi, Mohammad Reza; Dubé, Audrey; Turcotte, Pierre; Perreault, Jonathan; Lafontaine, Daniel A.

    2017-01-01

    On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemically probing nascent transcription complexes halted at defined positions, we find a narrow transcriptional window for metabolite binding, in which the downstream boundary is delimited by the checkpoint. We show that transcription complexes at the regulatory pause site favour the formation of a riboswitch intramolecular lock that strongly prevents TPP binding. In contrast, cotranscriptional metabolite binding increases RNA polymerase pausing and induces Rho-dependent transcription termination at the checkpoint. Early transcriptional pausing may provide a general mechanism, whereby transient transcriptional windows directly coordinate the sensing of environmental cues and bacterial mRNA regulation. PMID:28071751

  10. Detection of a ternary complex of NF-kappaB and IkappaBalpha with DNA provides insights into how IkappaBalpha removes NF-kappaB from transcription sites.

    Science.gov (United States)

    Sue, Shih-Che; Alverdi, Vera; Komives, Elizabeth A; Dyson, H Jane

    2011-01-25

    It has been axiomatic in the field of NF-κB signaling that the formation of a stable complex between NF-κB and the ankyrin repeat protein IκBα precludes the interaction of NF-κB with DNA. Contradicting this assumption, we present stopped-flow fluorescence and NMR experiments that give unequivocal evidence for the presence of a ternary DNA-NF-κB-IκBα complex in solution. Stepwise addition of a DNA fragment containing the κB binding sequence to the IκBα-NF-κB complex results in changes in the IκBα NMR spectrum that are consistent with dissociation of the region rich in proline, glutamate, serine, and threonine (PEST) and C-terminal ankyrin repeat sequences of IκBα from the complex. However, even at high concentrations of DNA, IκBα remains associated with NF-κB, indicated by the absence of resonances of the free N-terminal ankyrin repeats of IκBα. The IκBα-mediated release of NF-κB from its DNA-bound state may be envisioned as the reverse of this process. The initial step would consist of the coupled folding and binding of the intrinsically disordered nuclear localization sequence of the p65 subunit of NF-κB to the well-structured N-terminal ankyrin repeats of IκBα. Subsequently the poorly folded C-terminal ankyrin repeats of IκBα would fold upon binding to the p50 and p65 dimerization domains of NF-κB, permitting the negatively charged C-terminal PEST sequence of IκBα to displace the bound DNA through a process of local mass action.

  11. Detection of a ternary complex of NF-κB and IκBα with DNA provides insights into how IκBα removes NF-κB from transcription sites

    Science.gov (United States)

    Sue, Shih-Che; Alverdi, Vera; Komives, Elizabeth A.; Dyson, H. Jane

    2011-01-01

    It has been axiomatic in the field of NF-κB signaling that the formation of a stable complex between NF-κB and the ankyrin repeat protein IκBα precludes the interaction of NF-κB with DNA. Contradicting this assumption, we present stopped-flow fluorescence and NMR experiments that give unequivocal evidence for the presence of a ternary DNA–NF-κB–IκBα complex in solution. Stepwise addition of a DNA fragment containing the κB binding sequence to the IκBα–NF-κB complex results in changes in the IκBα NMR spectrum that are consistent with dissociation of the region rich in proline, glutamate, serine, and threonine (PEST) and C-terminal ankyrin repeat sequences of IκBα from the complex. However, even at high concentrations of DNA, IκBα remains associated with NF-κB, indicated by the absence of resonances of the free N-terminal ankyrin repeats of IκBα. The IκBα-mediated release of NF-κB from its DNA-bound state may be envisioned as the reverse of this process. The initial step would consist of the coupled folding and binding of the intrinsically disordered nuclear localization sequence of the p65 subunit of NF-κB to the well-structured N-terminal ankyrin repeats of IκBα. Subsequently the poorly folded C-terminal ankyrin repeats of IκBα would fold upon binding to the p50 and p65 dimerization domains of NF-κB, permitting the negatively charged C-terminal PEST sequence of IκBα to displace the bound DNA through a process of local mass action. PMID:21220295

  12. The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux.

    Science.gov (United States)

    Lehmann, Martin; Schwarzländer, Markus; Obata, Toshihiro; Sirikantaramas, Supaart; Burow, Meike; Olsen, Carl Erik; Tohge, Takayuki; Fricker, Mark D; Møller, Birger Lindberg; Fernie, Alisdair R; Sweetlove, Lee J; Laxa, Miriam

    2009-05-01

    Metabolic adjustments are a significant, but poorly understood, part of the response of plants to oxidative stress. In a previous study (Baxter et al., 2007), the metabolic response of Arabidopsis cells in culture to induction of oxidative stress by menadione was characterized. An emergency survival strategy was uncovered in which anabolic primary metabolism was largely down-regulated in favour of catabolic and antioxidant metabolism. The response in whole plant tissues may be different and we have therefore investigated the response of Arabidopsis roots to menadione treatment, analyzing the transcriptome, metabolome and key metabolic fluxes with focus on primary as well as secondary metabolism. Using a redox-sensitive GFP, it was also shown that menadione causes redox perturbation, not just in the mitochondrion, but also in the cytosol and plastids of roots. In the first 30 min of treatment, the response was similar to the cell culture: there was a decrease in metabolites of the TCA cycle and amino acid biosynthesis and the transcriptomic response was dominated by up-regulation of DNA regulatory proteins. After 2 and 6 h of treatment, the response of the roots was different to the cell culture. Metabolite levels did not remain depressed, but instead recovered and, in the case of pyruvate, some amino acids and aliphatic glucosinolates showed a steady increase above control levels. However, no major changes in fluxes of central carbon metabolism were observed and metabolic transcripts changed largely independently of the corresponding metabolites. Together, the results suggest that root tissues can recover metabolic activity after oxidative inhibition and highlight potentially important roles for glycolysis and the oxidative pentose phosphate pathway.

  13. Inferring transcriptional logic from multiple dynamic experiments.

    Science.gov (United States)

    Minas, Giorgos; Jenkins, Dafyd J; Rand, David A; Finkenstädt, Bärbel

    2017-11-01

    The availability of more data of dynamic gene expression under multiple experimental conditions provides new information that makes the key goal of identifying not only the transcriptional regulators of a gene but also the underlying logical structure attainable. We propose a novel method for inferring transcriptional regulation using a simple, yet biologically interpretable, model to find the logic by which a set of candidate genes and their associated transcription factors (TFs) regulate the transcriptional process of a gene of interest. Our dynamic model links the mRNA transcription rate of the target gene to the activation states of the TFs assuming that these interactions are consistent across multiple experiments and over time. A trans-dimensional Markov Chain Monte Carlo (MCMC) algorithm is used to efficiently sample the regulatory logic under different combinations of parents and rank the estimated models by their posterior probabilities. We demonstrate and compare our methodology with other methods using simulation examples and apply it to a study of transcriptional regulation of selected target genes of Arabidopsis Thaliana from microarray time series data obtained under multiple biotic stresses. We show that our method is able to detect complex regulatory interactions that are consistent under multiple experimental conditions. Programs are written in MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States and are available on GitHub https://github.com/giorgosminas/TRS and at http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software. giorgos.minas@warwick.ac.uk or b.f.finkenstadt@warwick.ac.uk. Supplementary data are available at Bioinformatics online.

  14. Cap-binding complex (CBC)

    Science.gov (United States)

    Gonatopoulos-Pournatzis, Thomas; Cowling, Victoria H.

    2013-01-01

    The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events. PMID:24354960

  15. Misguided transcriptional elongation causes mixed lineage leukemia.

    Directory of Open Access Journals (Sweden)

    Dorothee Mueller

    2009-11-01

    Full Text Available Fusion proteins composed of the histone methyltransferase mixed-lineage leukemia (MLL and a variety of unrelated fusion partners are highly leukemogenic. Despite their prevalence, particularly in pediatric acute leukemia, many molecular details of their transforming mechanism are unknown. Here, we provide mechanistic insight into the function of MLL fusions, demonstrating that they capture a transcriptional elongation complex that has been previously found associated with the eleven-nineteen leukemia protein (ENL. We show that this complex consists of a tight core stabilized by recursive protein-protein interactions. This central part integrates histone H3 lysine 79 methylation, RNA Polymerase II (RNA Pol II phosphorylation, and MLL fusion partners to stimulate transcriptional elongation as evidenced by RNA tethering assays. Coimmunoprecipitations indicated that MLL fusions are incorporated into this complex, causing a constitutive recruitment of elongation activity to MLL target loci. Chromatin immunoprecipitations (ChIP of the homeobox gene A cluster confirmed a close relationship between binding of MLL fusions and transcript levels. A time-resolved ChIP utilizing a conditional MLL fusion singled out H3K79 methylation as the primary parameter correlated with target expression. The presence of MLL fusion proteins also kept RNA Pol II in an actively elongating state and prevented accumulation of inhibitory histone methylation on target chromatin. Hox loci remained open and productive in the presence of MLL fusion activity even under conditions of forced differentiation. Finally, MLL-transformed cells were particularly sensitive to pharmacological inhibition of RNA Pol II phosphorylation, pointing to a potential treatment for MLL. In summary, we show aberrant transcriptional elongation as a novel mechanism for oncogenic transformation.

  16. Telomerase stimulates ribosomal DNA transcription under hyperproliferative conditions.

    Science.gov (United States)

    Gonzalez, Omar Garcia; Assfalg, Robin; Koch, Sylvia; Schelling, Adrian; Meena, Jitendra K; Kraus, Johann; Lechel, Andre; Katz, Sarah-Fee; Benes, Vladimir; Scharffetter-Kochanek, Karin; Kestler, Hans A; Günes, Cagatay; Iben, Sebastian

    2014-08-13

    In addition to performing its canonical function, Telomerase Reverse Transcriptase (TERT) has been shown to participate in cellular processes independent of telomerase activity. Furthermore, although TERT mainly localizes to Cajal bodies, it is also present within the nucleolus. Because the nucleolus is the site of rDNA transcription, we investigated the possible role of telomerase in regulating RNA polymerase I (Pol I). Here we show that TERT binds to rDNA and stimulates transcription by Pol I during liver regeneration and Ras-induced hyperproliferation. Moreover, the inhibition of telomerase activity by TERT- or TERC-specific RNA interference, the overexpression of dominant-negative-TERT, and the application of the telomerase inhibitor imetelstat reduce Pol I transcription and the growth of tumour cells. In vitro, telomerase can stimulate the formation of the transcription initiation complex. Our results demonstrate how non-canonical features of telomerase may direct Pol I transcription in oncogenic and regenerative hyperproliferation.

  17. Subgenic Pol II interactomes identify region-specific transcription elongation regulators.

    Science.gov (United States)

    Harlen, Kevin M; Churchman, L Stirling

    2017-01-02

    Transcription, RNA processing, and chromatin-related factors all interact with RNA polymerase II (Pol II) to ensure proper timing and coordination of transcription and co-transcriptional processes. Many transcription elongation regulators must function simultaneously to coordinate these processes, yet few strategies exist to explore the complement of factors regulating specific stages of transcription. To this end, we developed a strategy to purify Pol II elongation complexes from subgenic regions of a single gene, namely the 5' and 3' regions, using sequences in the nascent RNA. Applying this strategy to Saccharomyces cerevisiae, we determined the specific set of factors that interact with Pol II at precise stages during transcription. We identify many known region-specific factors as well as determine unappreciated associations of regulatory factors during early and late stages of transcription. These data reveal a role for the transcription termination factor, Rai1, in regulating the early stages of transcription genome-wide and support the role of Bye1 as a negative regulator of early elongation. We also demonstrate a role for the ubiquitin ligase, Bre1, in regulating Pol II dynamics during the latter stages of transcription. These data and our approach to analyze subgenic transcription elongation complexes will shed new light on the myriad factors that regulate the different stages of transcription and coordinate co-transcriptional processes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  19. TCP transcription factors: architectures of plant form.

    Science.gov (United States)

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  20. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    Science.gov (United States)

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation. PMID:23050242

  1. Acetic acid treatment in S.cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of mitochondrial transcriptional complex Hap2-3-4-5.

    Directory of Open Access Journals (Sweden)

    Ana eKitanovic

    2012-09-01

    Full Text Available Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner.Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, pyruvate kinase (PYK and glucose-6-phosphate dehydrogenase (G6PDH we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  2. Transcriptional regulation of mononuclear phagocyte development

    Directory of Open Access Journals (Sweden)

    Roxane eTussiwand

    2015-10-01

    Full Text Available IntroductionThe mononuclear-phagocyte system (MPS, which comprises dendritic cells (DCs, macrophages and monocytes, is a heterogeneous group of myeloid cells. The complexity of the MPS is equally reflected by the plasticity in function and phenotype that characterizes each subset depending on their location and activation state. Specialized subsets of Mononuclear Phagocytes (MP reside in defined anatomical locations, are critical for the homeostatic maintenance of tissues, and provide the link between innate and adaptive immune responses during infections. The ability of MP to maintain or to induce the correct tolerogenic or inflammatory milieu also resides in their complex subset specialization. Such subset heterogeneity is obtained through lineage diversification and specification, which is controlled by defined transcriptional networks and programs. Understanding the MP biology means to define their transcriptional signature, which is required during lineage commitment, and which characterizes each subset’s features. This review will focus on the transcriptional regulation of the MPS; in particular what determines lineage commitment and functional identity; we will emphasizes recent advances in the field of single cell analysis and highlight unresolved questions in the field.

  3. A model for genesis of transcription systems.

    Science.gov (United States)

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.

  4. Discontent with content analysis of online transcripts

    Directory of Open Access Journals (Sweden)

    Judith Guevarra Enriquez

    2009-12-01

    Full Text Available Content analysis has dominated computer-mediated communication and educational technology studies for some time, and a review of its practices applied to online corpus of data or messages is overdue. We are confronted with complexity given the various foci, nuances and models for theorising learning and applying methods. One common suggestion to deal with the complexity in content analysis is a call for standardisation by replication or systematic research studies. This article presents its ‘discontent' with content analysis, discussing the issues and concerns that surround the analysis of online transcripts. It does not attempt to resolve nor provide a definitive answer. Instead, it is an open inquiry into another way of looking at online content. It presents an alternative or perhaps an extension of what we have come to know as content analysis. It argues for the notion of genres as another way of conceptualising online transcripts. It proposes two things: first that in performing transcript analysis, it is worthwhile to think how messages relate to a system of interactions that persists even beyond the online environment; secondly, there is an emergent and recurring metastructuring that is at work in online environments that is worth exploring, instead of imposing structures – models and frameworks that do not fit the emerging communicative practices of participants.

  5. Analysis of S. cerevisiae RNA Polymerase I Transcription In Vitro.

    Science.gov (United States)

    Pilsl, Michael; Merkl, Philipp E; Milkereit, Philipp; Griesenbeck, Joachim; Tschochner, Herbert

    2016-01-01

    RNA polymerase I (Pol I) activity is crucial to provide cells with sufficient amounts of ribosomal RNA (rRNA). Synthesis of rRNA takes place in the nucleolus, is tightly regulated and is coordinated with synthesis and assembly of ribosomal proteins, finally resulting in the formation of mature ribosomes. Many studies on Pol I mechanisms and regulation in the model organism S. cerevisiae were performed using either complex in vitro systems reconstituted from more or less purified fractions or genetic analyses. While providing many valuable insights these strategies did not always discriminate between direct and indirect effects in transcription initiation and termination, when mutated forms of Pol I subunits or transcription factors were investigated. Therefore, a well-defined minimal system was developed which allows to reconstitute highly efficient promoter-dependent Pol I initiation and termination of transcription. Transcription can be initiated at a minimal promoter only in the presence of recombinant core factor and extensively purified initiation competent Pol I. Addition of recombinant termination factors triggers transcriptional pausing and release of the ternary transcription complex. This minimal system represents a valuable tool to investigate the direct impact of (lethal) mutations in components of the initiation and termination complexes on the mechanism and regulation of rRNA synthesis.

  6. SUMO modification of NZFP mediates transcriptional repression through TBP binding.

    Science.gov (United States)

    Kim, Mijin; Chen, Zifan; Shim, Myoung Sup; Lee, Myoung Sook; Kim, Ji Eon; Kwon, Young Eun; Yoo, Tack Jin; Kim, Jin Young; Bang, Je Young; Carlson, Bradley A; Seol, Jae Hong; Hatfield, Dolph L; Lee, Byeong Jae

    2013-01-01

    The negatively regulating zinc finger protein (NZFP) is an essential transcription repressor required for early development during gastrulation in Xenopus laevis. In this study, we found that NZFP interacts with the small ubiquitin-like modifier (SUMO) conjugation E2 enzyme, Ubc9, and contains three putative SUMO conjugation sites. Studies with NZFP mutants containing mutations at the putative SUMO conjugation sites showed that these sites were able to be modified independently with SUMO. NZFP was found to be localized in the same nuclear bodies with SUMO-1. However, sumoylation of NZFP did not play a role either in the translocation of NZFP into the nucleus or on nuclear body formation. While wild type NZFP showed significant transcriptional repression, SUMO-conjugation site mutants manifested a decrease in transcriptional repression activity which is reversely proportional to the amount of sumoylation. The sumoylation defective mutant lost its TBP binding activity, while wild type NZFP interacted with TBP and inhibited transcription complex formation. These results strongly suggest that the sumoylation of NZFP facilitates NZFP to bind to TBP and the NZFP/TBP complex then represses the transcription of the target gene by inhibiting basal transcription complex formation.

  7. Transcriptional Regulation in Haematopoiesis:

    DEFF Research Database (Denmark)

    Lauridsen, Felicia K B

    in transplantation studies. Consistent with this, transcriptome profiling revealed very low expression of cell cycle genes in these reporter-dim HSCs. Sequencing of >1200 single HSCs confirmed that the main source of transcriptional heterogeneity was the cell cycle. It also revealed a low-level expression...... of distinct lineage affiliated genes in the otherwise highly purified HSCs. Taken together, these studies demonstrate the use of our model as a tool for isolating superior HSCs, and show that low-level expression of mature lineage markers is inherent in the highly purified stem cell compartment. In the second...... study we profiled the global DNA binding sites of two major players in myeloid differentiation – PU.1 and C/EBPα - together with histone modifications in four successive stages of myeloid differentiation (LSK, preGM, GMP and mature granulocytes). Consistent with their haematopoietic expression patterns...

  8. Euglena Transcript Processing.

    Science.gov (United States)

    McWatters, David C; Russell, Anthony G

    2017-01-01

    RNA transcript processing is an important stage in the gene expression pathway of all organisms and is subject to various mechanisms of control that influence the final levels of gene products. RNA processing involves events such as nuclease-mediated cleavage, removal of intervening sequences referred to as introns and modifications to RNA structure (nucleoside modification and editing). In Euglena, RNA transcript processing was initially examined in chloroplasts because of historical interest in the secondary endosymbiotic origin of this organelle in this organism. More recent efforts to examine mitochondrial genome structure and RNA maturation have been stimulated by the discovery of unusual processing pathways in other Euglenozoans such as kinetoplastids and diplonemids. Eukaryotes containing large genomes are now known to typically contain large collections of introns and regulatory RNAs involved in RNA processing events, and Euglena gracilis in particular has a relatively large genome for a protist. Studies examining the structure of nuclear genes and the mechanisms involved in nuclear RNA processing have revealed that indeed Euglena contains large numbers of introns in the limited set of genes so far examined and also possesses large numbers of specific classes of regulatory and processing RNAs, such as small nucleolar RNAs (snoRNAs). Most interestingly, these studies have also revealed that Euglena possesses novel processing pathways generating highly fragmented cytosolic ribosomal RNAs and subunits and non-conventional intron classes removed by unknown splicing mechanisms. This unexpected diversity in RNA processing pathways emphasizes the importance of identifying the components involved in these processing mechanisms and their evolutionary emergence in Euglena species.

  9. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription.

    Science.gov (United States)

    Yildirim, Sukriye; Castano, Enrique; Sobol, Margarita; Philimonenko, Vlada V; Dzijak, Rastislav; Venit, Tomás; Hozák, Pavel

    2013-06-15

    RNA polymerase I (Pol I) transcription is essential for the cell cycle, growth and protein synthesis in eukaryotes. In the present study, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) is a part of the protein complex on the active ribosomal promoter during transcription. PIP2 makes a complex with Pol I and the Pol I transcription factor UBF in the nucleolus. PIP2 depletion reduces Pol I transcription, which can be rescued by the addition of exogenous PIP2. In addition, PIP2 also binds directly to the pre-rRNA processing factor fibrillarin (Fib), and co-localizes with nascent transcripts in the nucleolus. PIP2 binding to UBF and Fib modulates their binding to DNA and RNA, respectively. In conclusion, PIP2 interacts with a subset of Pol I transcription machinery, and promotes Pol I transcription.

  10. The post-transcriptional operon

    DEFF Research Database (Denmark)

    2011-01-01

    A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon...... model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...

  11. Synthetic transcription elongation factors license transcription across repressive chromatin.

    Science.gov (United States)

    Erwin, Graham S; Grieshop, Matthew P; Ali, Asfa; Qi, Jun; Lawlor, Matthew; Kumar, Deepak; Ahmad, Istaq; McNally, Anna; Teider, Natalia; Worringer, Katie; Sivasankaran, Rajeev; Syed, Deeba N; Eguchi, Asuka; Ashraf, Md; Jeffery, Justin; Xu, Mousheng; Park, Paul M C; Mukhtar, Hasan; Srivastava, Achal K; Faruq, Mohammed; Bradner, James E; Ansari, Aseem Z

    2017-11-30

    Releasing a paused RNA polymerase II into productive elongation is tightly-regulated, especially at genes that impact human development and disease. To exert control over this rate-limiting step, we designed sequence-specific synthetic transcription elongation factors (Syn-TEFs). These molecules are composed of programmable DNA-binding ligands flexibly tethered to a small molecule that engages the transcription elongation machinery. By limiting activity to targeted loci, Syn-TEFs convert constituent modules from broad-spectrum inhibitors of transcription into gene-specific stimulators. We present Syn-TEF1, a molecule that actively enables transcription across repressive GAA repeats that silence frataxin expression in Friedreich's ataxia, a terminal neurodegenerative disease with no effective therapy. Furthermore, the modular design of Syn-TEF1 defines a general framework for developing a class of molecules that license transcription elongation at targeted genomic loci. Copyright © 2017, American Association for the Advancement of Science.

  12. Messenger RNA transcripts

    Science.gov (United States)

    Dan Cullen

    2004-01-01

    In contrast to DNA, messenger RNA (mRNA) in complex substrata is rarely analyzed, in large part because labile RNA molecules are difficult to purify. Nucleic acid extractions from fungi that colonize soil are particularly difficult and plagued by humic substances that interfere with Taq polymerase (Tebbe and Vahjen 1993 and references therein). Magnetic capture...

  13. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence.

    Science.gov (United States)

    Alhadid, Yazan; Chung, SangYoon; Lerner, Eitan; Taatjes, Dylan J; Borukhov, Sergei; Weiss, Shimon

    2017-07-01

    Over the past decade, fluorescence-based single-molecule studies significantly contributed to characterizing the mechanism of RNA polymerase at different steps in transcription, especially in transcription initiation. Transcription by bacterial DNA-dependent RNA polymerase is a multistep process that uses genomic DNA to synthesize complementary RNA molecules. Transcription initiation is a highly regulated step in E. coli, but it has been challenging to study its mechanism because of its stochasticity and complexity. In this review, we describe how single-molecule approaches have contributed to our understanding of transcription and have uncovered mechanistic details that were not observed in conventional assays because of ensemble averaging. © 2017 The Protein Society.

  14. Adaptation with transcriptional regulation

    Science.gov (United States)

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-02-01

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics.

  15. Mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Kadauke, Stephan; Blobel, Gerd A

    2013-04-02

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed "mitotic bookmarking." Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.

  16. The effect of the two epipodophyllotoxin derivatives etoposide (VP-16) and teniposide (VM-26) on cell lines established from patients with small cell carcinoma of the lung

    DEFF Research Database (Denmark)

    Roed, H; Vindeløv, Lars; Christensen, I J

    1987-01-01

    To determine whether there is any difference between the two epipodophyllotoxin derivatives etoposide and teniposide in their therapeutic effect in small cell carcinoma of the lung (SCCL), they were compared against five human SCCL cell lines in vitro. When the two were compared at equimolar conc...

  17. Cockayne syndrome: defective repair of transcription?

    Science.gov (United States)

    van Gool, A J; van der Horst, G T; Citterio, E; Hoeijmakers, J H

    1997-07-16

    In the past years, it has become increasingly evident that basal metabolic processes within the cell are intimately linked and influenced by one another. One such link that recently has attracted much attention is the close interplay between nucleotide excision DNA repair and transcription. This is illustrated both by the preferential repair of the transcribed strand of active genes (a phenomenon known as transcription-coupled repair, TCR) as well as by the distinct dual involvement of proteins in both processes. The mechanism of TCR in eukaryotes is still largely unknown. It was first discovered in mammals by the pioneering studies of Hanawalt and colleagues, and subsequently identified in yeast and Escherichia coli. In the latter case, one protein, the transcription repair-coupling factor, was found to accomplish this function in vitro, and a plausible model for its activity was proposed. While the E. coli model still functions as a paradigm for TCR in eukaryotes, recent observations prompt us to believe that the situation in eukaryotes is much more complex, involving dual functionality of multiple proteins.

  18. Intragenic DNA methylation prevents spurious transcription initiation.

    Science.gov (United States)

    Neri, Francesco; Rapelli, Stefania; Krepelova, Anna; Incarnato, Danny; Parlato, Caterina; Basile, Giulia; Maldotti, Mara; Anselmi, Francesca; Oliviero, Salvatore

    2017-03-02

    In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.

  19. Centromeric Transcription Regulates Aurora-B Localization and Activation

    Directory of Open Access Journals (Sweden)

    Michael D. Blower

    2016-05-01

    Full Text Available Centromeric transcription is widely conserved; however, it is not clear what role centromere transcription plays during mitosis. Here, I find that centromeres are transcribed in Xenopus egg extracts into a long noncoding RNA (lncRNA; cen-RNA that localizes to mitotic centromeres, chromatin, and spindles. cen-RNAs bind to the chromosomal passenger complex (CPC in vitro and in vivo. Blocking transcription or antisense inhibition of cen-RNA leads to a reduction of CPC localization to the inner centromere and misregulation of CPC component Aurora-B activation independently of known centromere recruitment pathways. Additionally, transcription is required for normal bipolar attachment of kinetochores to the mitotic spindle, consistent with a role for cen-RNA in CPC regulation. This work demonstrates that cen-RNAs promote normal kinetochore function through regulation of the localization and activation of the CPC and confirm that lncRNAs are components of the centromere.

  20. Dynamic usage of transcription start sites within core promoters

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Frith, Martin C; Katayama, Shintaro

    2006-01-01

    BACKGROUND: Mammalian promoters do not initiate transcription at single, well defined base pairs, but rather at multiple, alternative start sites spread across a region. We previously characterized the static structures of transcription start site usage within promoters at the base pair level......, based on large-scale sequencing of transcript 5' ends. RESULTS: In the present study we begin to explore the internal dynamics of mammalian promoters, and demonstrate that start site selection within many mouse core promoters varies among tissues. We also show that this dynamic usage of start sites...... is associated with CpG islands, broad and multimodal promoter structures, and imprinting. CONCLUSION: Our results reveal a new level of biologic complexity within promoters--fine-scale regulation of transcription starting events at the base pair level. These events are likely to be related to epigenetic...

  1. Analysis of Nucleosome Transcription Using Single-Particle FRET

    Science.gov (United States)

    Feofanov, Alexey V.; Kudryashova, Kseniya S.; Chertkov, Oleg V.; Nikitin, Dmitry V.; Pestov, Nikolai A.; Kulaeva, Olga I.; Studitsky, Vasily M.; Kirpichnikov, Mikhail P.

    Many biological reactions including transcription of a gene are too complex and heterogeneous to be understood by studying ensembles of interacting molecules. In these cases analysis of single complexes can clarify structural and dynamic aspects of these processes. Here we report that single-particle Förster resonance energy transfer (spFRET ) microscopy is applicable to investigation of transcription through nucleosomes by an RNA polymerase . Mononucleosomes that support transcription were assembled from core histones and short DNA containing the T7A1 promoter and strong 603 nucleosome-positioning sequence. Fluorophores (Cy3 and Cy5) were introduced in the neighboring coils of nucleosome DNA in spatially close positions without disturbance of nucleosomal structure or transcription. Such labeling allows the changes in the Cy3-Cy5 distance caused by DNA uncoiling from the octamer or DNA looping to be monitored as changes in FRET efficiency. spFRET measurements for freely diffusing single nucleosomes were conducted using a laser scanning confocal microscope equipped with avalanche photodiodes. Nucleosome subpopulations that differ in FRET efficiency (i.e. in nucleosome structure) were revealed. RNA polymerase was stalled in distinct positions on the nucleosomal DNA during transcription, and the structures of these complexes were characterized with spFRET microscopy.

  2. 7 CFR 614.12 - Transcripts.

    Science.gov (United States)

    2010-01-01

    ... verbatim transcript must pay for the transcription service and provide a copy of the transcript to NRCS at... participant may obtain a verbatim transcript as provided in paragraph (b) of this section. (b) Any party to an informal hearing appeal under § 614.9 may request that a verbatim transcript is made of the hearing...

  3. TIPT2 and geminin interact with basal transcription factors to synergize in transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Pitulescu Mara E

    2009-06-01

    Full Text Available Abstract Background The re-replication inhibitor Geminin binds to several transcription factors including homeodomain proteins, and to members of the polycomb and the SWI/SNF complexes. Results Here we describe the TATA-binding protein-like factor-interacting protein (TIPT isoform 2, as a strong binding partner of Geminin. TIPT2 is widely expressed in mouse embryonic and adult tissues, residing both in cyto- and nucleoplasma, and enriched in the nucleolus. Like Geminin, also TIPT2 interacts with several polycomb factors, with the general transcription factor TBP (TATA box binding protein, and with the related protein TBPL1 (TRF2. TIPT2 synergizes with geminin and TBP in the activation of TATA box-containing promoters, and with TBPL1 and geminin in the activation of the TATA-less NF1 promoter. Geminin and TIPT2 were detected in the chromatin near TBP/TBPL1 binding sites. Conclusion Together, our study introduces a novel transcriptional regulator and its function in cooperation with chromatin associated factors and the basal transcription machinery.

  4. Tat gets the "green" light on transcription initiation

    Directory of Open Access Journals (Sweden)

    Kashanchi Fatah

    2005-11-01

    Full Text Available Abstract Human immunodeficiency virus type 1 (HIV-1 Tat transactivation is an essential step in the viral life cycle. Over the past several years, it has become widely accepted that Tat exerts its transcriptional effect by binding the transactivation-responsive region (TAR and enhancing transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes the binding of P-TEFb, a transcription elongation factor composed of cyclin T1 and cdk9, and the interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain (CTD of RNA Pol II and increased processivity of RNA Pol II. A recent report, however, has generated renewed interest that Tat may also play a critical role in transcription complex (TC assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC assembly, the TBP-TATA box interaction. In this article, we will review this data in context of earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically, we will discuss experiments which demonstrated that Tat interacted with TBP and increased transcription initiation complex stability in cell free assays. We will also discuss studies which demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat transactivation was not compatible with pausing of the RNA Pol II at the TAR site will be discussed.

  5. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  6. Transcriptional regulation in Drosophila: the post-genome challenge.

    Science.gov (United States)

    Biggin, M D; Tjian, R

    2001-03-01

    Drosophila melanogaster has long been at the forefront of studies of transcriptional regulation in animals. Many fundamental ideas--such as cis control elements that act over long distances, the regulation of development by hierarchical cascades of transcription factors, dosage compensation, and position effect variegation--originated from studies of the fruit fly. The recent completion of the euchromatic DNA sequence of Drosophila is another breakthrough. The sequence data highlight important unanswered questions. For example, only one-fifth of the 124 Mb of Drosophila euchromatic DNA codes for protein. The function of the remaining 100 Mb of mostly unique DNA is largely unknown. Some proportion of this non-reading frame DNA must encode the functional recognition sites targeted by the approximately 700 sequence-specific DNA binding proteins that regulate transcription in Drosophila, but what proportion? Most or very little? Promoter sequences by definition contain all of the cis information that specifies how gene transcription is regulated. However, it has been difficult to decipher this information and predict the patterns of RNA expression. How do we break this "transcriptional code"? Mechanistic studies, using simple model promoters, indicate that transcription is controlled by the coordinate action of sequence-specific DNA binding proteins interacting with the general transcriptional machinery via intermediary adapters and chromatin remodeling activities. How can we integrate this biochemical information with data from genome-wide studies to describe the generation of highly complex patterns of transcription? Here, we discuss recent studies that may point the way ahead. We also highlight difficulties that the field faces in dissecting transcriptional control in the post-genome era.

  7. Discovering the RNA Transcription Landscape using Directional Approaches

    Science.gov (United States)

    Munafo, Daniela B.; Liu, Pingfang; Sumner, Christine J.; Apone, Lynne M.; Langhorst, Bradley W.; Yigit, Erbay; Dimalanta, Eileen T.; Davis, Theodore B.; Stewart, Fiona J.

    2013-01-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful technique that allows for sensitive digital quantification of transcript levels. Moreover, RNA-Seq enables the detection of non-canonical transcription start sites and termination sites, alternative splice isoforms and transcript mutation and edition. Standard “next-generation” RNA-sequencing approaches generally require double-stranded cDNA synthesis, which erases RNA strand information. In this approach, the synthesis of randomly primed double-stranded cDNA followed by addition of adaptors for sequencing leads to the loss of information about which strand was present in the original mRNA template. The polarity of the transcript is important for correct annotation of novel genes, identification of antisense transcripts with potential regulatory roles, and for correct determination of gene expression levels in the presence of antisense transcripts. Our objective was to address this need by developing a novel streamlined, low input method for Directional RNA-Sequencing that highly retains strand orientation information while maintaining even coverage of transcript expression. This method is based on second strand labeling and excision after adaptor ligation; allowing differential tagging of the first strand cDNA ends. As a result, we have enabled strand specific mRNA sequencing, as well as whole transcriptome sequencing (Total RNA-Seq) from ribosomal-depleted samples. Total RNA-Seq provides a much broader picture of expression dynamics including discovery of antisense transcripts. This work presents a streamlined, fast solution for complete RNA sequencing, with high quality data that illustrates the complexity and diversity of the RNA transcription landscape.

  8. Complex transcriptional and post-transcriptional regulation of an enzyme for Lipopolysaccharide modification

    OpenAIRE

    Moon, Kyung; Six, David A.; Lee, Hyun-Jung; Raetz, Christian R. H.; Gottesman, Susan

    2013-01-01

    The PhoQ/PhoP two-component system activates many genes for lipopolysaccharide (LPS) modification when cells are grown at low Mg2+ concentrations. An additional target of PhoQ and PhoP is MgrR, an Hfq-dependent small RNA that negatively regulates expression of eptB, also encoding a protein that carries out LPS modification. Examination of LPS confirmed that MgrR effectively silences EptB; the phosphoethanolamine modification associated with EptB is found in ΔmgrR::kan but not mgrR+ cells. Sig...

  9. RNA-guided transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  10. Functional characterization of tobacco transcription factor TGA2.1

    DEFF Research Database (Denmark)

    Kegler, C.; Lenk, I.; Krawczyk, S.

    2004-01-01

    Activation sequence-1 (as-1)-like regulatory cis elements mediate transcriptional activation in response to increased levels of plant signalling molecules auxin and salicylic acid (SA). Our earlier work has shown that tobacco cellular as-1-binding complex SARP (salicylic acid responsive protein...

  11. Transcriptional enhancers in the HLA-DQ subregion.

    OpenAIRE

    Sullivan, K E; Peterlin, B M

    1987-01-01

    Using transient expression assays, the HLA-DQ alpha and HLA-DQ beta genes of the human major histocompatibility complex were screened for cis-acting regulatory elements. Two regions in the HLA-DQ alpha gene and one in the HLA-DQ beta gene were identified which fulfilled the criteria for transcriptional enhancers.

  12. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  13. Transcript Analysis of Stem Cells

    OpenAIRE

    Alison V. Nairn; Rosa, Mitche dela; Moremen, Kelley W.

    2010-01-01

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a flexible and scalable method for analyzing transcript abundance that can be used at a single gene or high-throughput (>100 genes) level. Information obtained from this technique can be used as an indicator of potential regulation of glycosylation at the transcript level when combined with glycan structural or protein abundance data. This chapter describes detailed methods to design and perform qRT-PCR analyses and provides exampl...

  14. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins.

    Science.gov (United States)

    Schaefer, Ulf; Schmeier, Sebastian; Bajic, Vladimir B

    2011-01-01

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/.

  15. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  16. The ets-related transcription factor GABP directs bidirectional transcription.

    Directory of Open Access Journals (Sweden)

    Patrick J Collins

    2007-11-01

    Full Text Available Approximately 10% of genes in the human genome are distributed such that their transcription start sites are located less than 1 kb apart on opposite strands. These divergent gene pairs have a single intergenic segment of DNA, which in some cases appears to share regulatory elements, but it is unclear whether these regions represent functional bidirectional promoters or two overlapping promoters. A recent study showed that divergent promoters are enriched for consensus binding sequences of a small group of transcription factors, including the ubiquitous ets-family transcription factor GA-binding protein (GABP. Here we show that GABP binds to more than 80% of divergent promoters in at least one cell type. Furthermore, we demonstrate that GABP binding is correlated and associated with bidirectional transcriptional activity in a luciferase transfection assay. In addition, we find that the addition of a strict consensus GABP site into a set of promoters that normally function in only one direction significantly increases activity in the opposite direction in 67% of cases. Our findings demonstrate that GABP regulates the majority of divergent promoters and suggest that bidirectional transcriptional activity is mediated through GABP binding and transactivation at both divergent and nondivergent promoters.

  17. Targeting Transcription Factor Binding to DNA by Competing with DNA Binders as an Approach for Controlling Gene Expression.

    Science.gov (United States)

    Bouhlel, Mohamed Amine; Lambert, Melanie; David-Cordonnier, Marie-Helene

    2015-01-01

    Transcription factors are recognized as the master regulators of gene expression. Interestingly, about 10% of the transcription factors described in mammals are up to date directly implicated in a very large number of human diseases. With the exception of ligand-inducible nuclear receptors, transcription factors have longtime been considered as "undruggable" targets for therapeutics. However, the significant breakthroughs in their protein biochemistry and interactions with DNA at the structural level, together with increasing needs for new targeted-approaches particularly in cancers, has changed this postulate and opened the way for targeting transcription factors. Along with a better knowledge of their specific DNA binding sequences by genome wide and high throughput sequencing assay, these informations make possible the potent targeting of the transcription factors by three approaches dependently of their mechanism of action. In this review, we discuss the different physicochemical interactions between the transcription factors and the DNA helix, and the protein/protein interactions within a transcription factor complex and their impacts on the DNA structure. In order to impair transcription factor activities, small molecules compounds can either act by direct interaction on the transcription factor, or by blocking the protein/protein interactions in a transcription complex, or by competing with the transcription factor itself and specifically targeting its cognate binding sequence. For this latter mode of transcription targeting, we pay special attention to the DNA intercalating, alkylating or groove binders for transcription factor/DNA binding modulation.

  18. Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain.

    OpenAIRE

    Hill, C.S.; Wynne, J; Treisman, R

    1994-01-01

    The transcription factors Serum Response Factor (SRF) and Ternary Complex Factor (TCF) form a ternary complex at the c-fos Serum Response Element (SRE). We show that in NIH3T3 cells TCF binding is required for regulated transcription in response to stimulation by phorbol myristate acetate (PMA), but not by whole serum. We constructed a novel transcriptionally inactive SRE variant whose serum-regulated activity can be partially restored by overexpression of SRF in the absence of bound TCF. Act...

  19. Extensive chromatin remodelling and establishment of transcription factor ‘hotspots' during early adipogenesis

    OpenAIRE

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam; Sung, Myong-Hee; Baek, Songjoon; Loft, Anne; Hager, Gordon L; Mandrup, Susanne

    2011-01-01

    Adipogenesis is a tightly controlled differentiation process regulated by a complex transcriptional network. Here, DNase I hypersensitive site analysis, DHSseq, reveals the genome-wide changes in chromatin structure that occur during adipogenesis and identifies sites that are bound by multiple transcription factors.

  20. Step out of the groove : Epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, Pernette J.; Visser, Astrid E.; Rots, Marianne G.; Hall, JC; Dunlap, JC; Friedmann, T; VanHeyningen,

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  1. Step out of the groove : epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, P.J.; Visser, A.E.; Rots, M.G.

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  2. Transcriptional landscape estimation from tiling array data using a model of signal shift and drift

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Jarmer, Hanne Østergaard; Nicolas, P

    2009-01-01

    MOTIVATION: High-density oligonucleotide tiling array technology holds the promise of a better description of the complexity and the dynamics of transcriptional landscapes. In organisms such as bacteria and yeasts, transcription can be measured on a genome-wide scale with a resolution >25 bp...

  3. Protein Phosphatase 1-Dependent Transcriptional Programs for Long-Term Memory and Plasticity

    Science.gov (United States)

    Graff, Johannes; Koshibu, Kyoko; Jouvenceau, Anne; Dutar, Patrick; Mansuy, Isabelle M.

    2010-01-01

    Gene transcription is essential for the establishment and the maintenance of long-term memory (LTM) and for long-lasting forms of synaptic plasticity. The molecular mechanisms that control gene transcription in neuronal cells are complex and recruit multiple signaling pathways in the cytoplasm and the nucleus. Protein kinases (PKs) and…

  4. Genome maintenance and transcription integrity in ageing and disease

    Directory of Open Access Journals (Sweden)

    Stefanie eWolters

    2013-02-01

    Full Text Available DNA Damage contributes to cancer development and ageing. Congenital syndromes that affect DNA repair processes are characterized by cancer susceptibility, developmental defects, and accelerated ageing (Schumacher et al., 2008. DNA damage interferes with DNA metabolism by blocking replication and transcription. DNA polymerase blockage leads to replication arrest and can gives rise to genome instability. Transcription, on the other hand, is an essential process for utilizing the information encoded in the genome. DNA damage that interferes with transcription can lead to apoptosis and cellular senescence. Both processes are powerful tumor suppressors (Bartek and Lukas, 2007. Cellular response mechanisms to stalled RNA polymerase (RNAP II complexes have only recently started to be uncovered. Transcription-coupled DNA damage responses might thus play important roles for the adjustments to DNA damage accumulation in the ageing organism (Garinis et al., 2009. Here we review human disorders that are caused by defects in genome stability to explore the role of DNA damage in ageing and disease. We discuss how the nucleotide excision repair (NER system functions at the interface of transcription and repair and conclude with concepts how therapeutic targeting of transcription might be utilized in the treatment of cancer.

  5. MicroRNA-27a regulates basal transcription by targeting the p44 subunit of general transcription factor IIH.

    Science.gov (United States)

    Portal, Maximiliano M

    2011-05-24

    General transcription factor IIH (TFIIH) is a complex RNA polymerase II basal transcription factor comprising 10 different polypeptides that display activities involved in transcription and DNA repair processes. Although biochemical studies have uncovered TFIIH importance, little is known about how the mRNAs that code for TFIIH subunits are regulated. Here it is shown that mRNAs encoding seven of the TFIIH subunits (p34, p44, p52, p62, XPB, CDK7, and p8) are regulated at the posttranscriptional level in a Dicer-dependent manner. Indeed, abolition of the miRNA pathway induces abnormal accumulation, stabilization, and translational activation of these seven mRNAs. Herein, miR-27a was identified as a key regulator of p44 mRNA. Moreover, miR-27a was shown to destabilize the p44 subunit of the TFIIH complex during the G2-M phase, thereby modulating the transcriptional shutdown observed during this transition. This work is unique in providing a demonstration of global transcriptional regulation through the action of a single miRNA.

  6. Phylogenetic and Transcription Analysis of Chrysanthemum WRKY Transcription Factors

    Science.gov (United States)

    Song, Aiping; Li, Peiling; Jiang, Jiafu; Chen, Sumei; Li, Huiyun; Zeng, Jun; Shao, Yafeng; Zhu, Lu; Zhang, Zhaohe; Chen, Fadi

    2014-01-01

    WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends) PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior. PMID:25196345

  7. Regulation of transcription initiation by Gfh factors from Deinococcus radiodurans.

    Science.gov (United States)

    Agapov, Aleksei; Esyunina, Daria; Pupov, Danil; Kulbachinskiy, Andrey

    2016-12-01

    Transcription factors of the Gre family bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus-specific homologues of Gre factors whose transcription functions remain poorly understood. Recently, we found that Gfh1 and Gfh2 proteins from Deinococcus radiodurans dramatically stimulate RNAP pausing during transcription elongation in the presence of Mn(2+), but not Mg(2+), ions. In contrast, we show that Gfh1 and Gfh2 moderately inhibit transcription initiation in the presence of either Mg(2+) or Mn(2+) ions. By using a molecular beacon assay, we demonstrate that Gfh1 and Gfh2 do not significantly change promoter complex stability or the rate of promoter escape by D. radiodurans RNAP. At the same time, Gfh factors significantly increase the apparent KM value for the 5'-initiating nucleotide, without having major effects on the affinity of metal ions for the RNAP active site. Similar inhibitory effects of Gfh factors are observed for transcription initiation on promoters recognized by the principal and an alternative σ factor. In summary, our data suggest that D. radiodurans Gfh factors impair the binding of initiating substrates independently of the metal ions bound in the RNAP active site, but have only mild overall effects on transcription initiation. Thus the mechanisms of modulation of RNAP activity by these factors are different for various steps of transcription. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli

    National Research Council Canada - National Science Library

    Bubunenko, Mikhail; Court, Donald L; Al Refaii, Abdalla; Saxena, Shivalika; Korepanov, Alexey; Friedman, David I; Gottesman, Max E; Alix, Jean‐Hervé

    2013-01-01

    E scherichia coli NusA and NusB proteins bind specific sites, such as those in the leader and spacer sequences that flank the 16 S region of the ribosomal RNA transcript, forming a complex with RNA...

  9. 7 CFR 780.13 - Verbatim transcripts.

    Science.gov (United States)

    2010-01-01

    ... of the hearing. The party requesting a verbatim transcript shall pay for the transcription service... 7 Agriculture 7 2010-01-01 2010-01-01 false Verbatim transcripts. 780.13 Section 780.13... AGRICULTURE SPECIAL PROGRAMS APPEAL REGULATIONS § 780.13 Verbatim transcripts. (a) Appellants and their...

  10. Circadian Control of Global Transcription

    Science.gov (United States)

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  11. Circadian Control of Global Transcription

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2015-01-01

    Full Text Available Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs. CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.

  12. Mitochondrial transcription in mammalian cells.

    Science.gov (United States)

    Shokolenko, Inna N; Alexeyev, Mikhail F

    2017-01-01

    As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them.

  13. Nuclear mRNA quality control in yeast is mediated by Nrd1 co-transcriptional recruitment, as revealed by the targeting of Rho-induced aberrant transcripts.

    Science.gov (United States)

    Honorine, Romy; Mosrin-Huaman, Christine; Hervouet-Coste, Nadège; Libri, Domenico; Rahmouni, A Rachid

    2011-04-01

    The production of mature export-competent transcripts is under the surveillance of quality control steps where aberrant mRNP molecules resulting from inappropriate or inefficient processing and packaging reactions are subject to exosome-mediated degradation. Previously, we have shown that the heterologous expression of bacterial Rho factor in yeast interferes in normal mRNP biogenesis leading to the production of full-length yet aberrant transcripts that are degraded by the nuclear exosome with ensuing growth defect. Here, we took advantage of this new tool to investigate the molecular mechanisms by which an integrated system recognizes aberrancies at each step of mRNP biogenesis and targets the defective molecules for destruction. We show that the targeting and degradation of Rho-induced aberrant transcripts is associated with a large increase of Nrd1 recruitment to the transcription complex via its CID and RRM domains and a concomitant enrichment of exosome component Rrp6 association. The targeting and degradation of the aberrant transcripts is suppressed by the overproduction of Pcf11 or its isolated CID domain, through a competition with Nrd1 for recruitment by the transcription complex. Altogether, our results support a model in which a stimulation of Nrd1 co-transcriptional recruitment coordinates the recognition and removal of aberrant transcripts by promoting the attachment of the nuclear mRNA degradation machinery.

  14. Processivity and coupling in messenger RNA transcription.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2010-01-01

    Full Text Available The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model.In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range.We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence.

  15. Internal translation of the connexin 43 transcript.

    Science.gov (United States)

    Salat-Canela, Clàudia; Sesé, Marta; Peula, Cristina; Ramón y Cajal, Santiago; Aasen, Trond

    2014-05-08

    Connexin 43 (Cx43), the most widely expressed gap junction protein, is associated with a number of physiological and pathological conditions. Many functions of Cx43 have been shown to be independent of gap junction formation and only require the expression of Cx43 C-terminal fragments. Recent evidence demonstrated that naturally occurring C-terminal isoforms can be generated via internal translation. Here, we confirm that C-terminal domains of Cx43, particularly the major 20-kDa isoform, can be independently generated and regulated by internal translation of the same single GJA1 gene transcript that encodes full-length Cx43. Through direct RNA transfection experiments, we provide evidence that internal translation is not due to a bona fide cap-independent IRES-mediated mechanism, as upstream ribosomal scanning or translation is required. In addition to the mTOR pathway, we show for the first time, using both inhibitors and cells from knockout mice, that the Mnk1/2 pathway regulates the translation of the main 20-kDa isoform. Internal translation of the Cx43 transcript occurs but is not cap-independent and requires translation upstream of the internal start codon. In addition to the PI3K/AKT/mTOR pathway, the major 20-kDa isoform is regulated by the Mnk1/2 pathway. Our results have major implications for past and future studies describing gap junction-independent functions of Cx43 in cancer and other pathological conditions. This study provides further clues to the signalling pathways that regulate internal mRNA translation, an emerging mechanism that allows for increased protein diversity and functional complexity from a single mRNA transcript.

  16. Chromatin and Transcription in Yeast

    Science.gov (United States)

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  17. Differential regulation of TGA transcription factors by post-transcriptional control.

    Science.gov (United States)

    Pontier, Dominique; Privat, Isabelle; Trifa, Youssef; Zhou, Jun-Ma; Klessig, Daniel F; Lam, Eric

    2002-12-01

    Transcription factors often belong to multigene families and their individual contribution in a particular regulatory network remains difficult to assess. We show here that specific members from a family of conserved Arabidopsis bZIP transcription factors, the TGA proteins, are regulated in their protein stability by developmental stage-specific proteolysis. Using GFP fusions of three different Arabidopsis TGA factors that represent members of distinct subclasses of the TGA factor family, we demonstrate that two of these TGA proteins are specifically targeted for proteolysis in mature leaf cells. Using a supershift gel mobility assay, we found evidence for similar regulation of the cognate proteins as compared to the GFP fusion proteins expressed under the cauliflower mosaic virus (CaMV) 35S promoter. Using various inhibitors, we showed that the expression of at least one of these three TGA factors could be stabilized by inhibition of proteasome-mediated proteolysis. This study indicates that TGA transcription factors may be regulated by distinct pathways of targeted proteolysis that can serve to modulate the contribution of specific members of a multigene family in complex regulatory pathways.

  18. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity

    Directory of Open Access Journals (Sweden)

    Alon Kalo

    2015-04-01

    Full Text Available The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  19. Transcriptional network of p63 in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Pozzi

    Full Text Available p63 is a transcription factor required for the development and maintenance of ectodermal tissues in general, and skin keratinocytes in particular. The identification of its target genes is fundamental for understanding the complex network of gene regulation governing the development of epithelia. We report a list of almost 1000 targets derived from ChIP on chip analysis on two platforms; all genes analyzed changed in expression during differentiation of human keratinocytes. Functional annotation highlighted unexpected GO terms enrichments and confirmed that genes involved in transcriptional regulation are the most significant. A detailed analysis of these transcriptional regulators in condition of perturbed p63 levels confirmed the role of p63 in the regulatory network. Rather than a rigid master-slave hierarchical model, our data indicate that p63 connects different hubs involved in the multiple specific functions of the skin.

  20. The role of WRKY transcription factors in plant abiotic stresses.

    Science.gov (United States)

    Chen, Ligang; Song, Yu; Li, Shujia; Zhang, Liping; Zou, Changsong; Yu, Diqiu

    2012-02-01

    The WRKY gene family has been suggested to play important roles in the regulation of transcriptional reprogramming associated with plant stress responses. Modification of the expression patterns of WRKY genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. Furthermore, a single WRKY gene often responds to several stress factors, and then their proteins may participate in the regulation of several seemingly disparate processes as negative or positive regulators. WRKY proteins also function via protein-protein interaction and autoregulation or cross-regulation is extensively recorded among WRKY genes, which help us understand the complex mechanisms of signaling and transcriptional reprogramming controlled by WRKY proteins. Here, we review recent progress made in starting to reveal the role of WRKY transcription factors in plant abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Transcriptional and chromatin regulation during fasting – The genomic era

    Science.gov (United States)

    Goldstein, Ido; Hager, Gordon L.

    2015-01-01

    An elaborate metabolic response to fasting is orchestrated by the liver and is heavily reliant upon transcriptional regulation. In response to hormones (glucagon, glucocorticoids) many transcription factors (TFs) are activated and regulate various genes involved in metabolic pathways aimed at restoring homeostasis: gluconeogenesis, fatty acid oxidation, ketogenesis and amino acid shuttling. We summarize the recent discoveries regarding fasting-related TFs with an emphasis on genome-wide binding patterns. Collectively, the summarized findings reveal a large degree of co-operation between TFs during fasting which occurs at motif-rich DNA sites bound by a combination of TFs. These new findings implicate transcriptional and chromatin regulation as major determinants of the response to fasting and unravels the complex, multi-TF nature of this response. PMID:26520657

  2. Integration of transcriptional inputs at promoters of the arabinose catabolic pathway

    Directory of Open Access Journals (Sweden)

    Surette Michael G

    2010-06-01

    Full Text Available Abstract Background Most modelling efforts of transcriptional networks involve estimations of in vivo concentrations of components, binding affinities and reaction rates, derived from in vitro biochemical assays. These assays are difficult and in vitro measurements may not approximate actual in vivo conditions. Alternatively, changes in transcription factor activity can be estimated by using partially specified models which estimate the "hidden functions" of transcription factor concentration changes; however, non-unique solutions are a potential problem. We have applied a synthetic biology approach to develop reporters that are capable of measuring transcription factor activity in vivo in real time. These synthetic reporters are comprised of a constitutive promoter with an operator site for the specific transcription factor immediately downstream. Thus, increasing transcription factor activity is measured as repression of expression of the transcription factor reporter. Measuring repression instead of activation avoids the complications of non-linear interactions between the transcription factor and RNA polymerase which differs at each promoter. Results Using these reporters, we show that a simple model is capable of determining the rules of integration for multiple transcriptional inputs at the four promoters of the arabinose catabolic pathway. Furthermore, we show that despite the complex and non-linear changes in cAMP-CRP activity in vivo during diauxic shift, the synthetic transcription factor reporters are capable of measuring real-time changes in transcription factor activity, and the simple model is capable of predicting the dynamic behaviour of the catabolic promoters. Conclusions Using a synthetic biology approach we show that the in vivo activity of transcription factors can be quantified without the need for measuring intracellular concentrations, binding affinities and reaction rates. Using measured transcription factor activity we

  3. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Chennubhotla Chakra

    2006-10-01

    Full Text Available Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these topological units transcription factors are densely interlinked in a largely hierarchical manner and respond to external signals by utilizing a fraction of these subnets. Conclusion As transcriptional regulation represents the 'slow' component of overall information processing, the identified topology suggests a model in which successive waves of transcriptional regulation originating from distinct fractions of the TR network control robust integrated responses to complex stimuli.

  4. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    Although retroviral vector systems have been found to efficiently transduce a variety of cell types in vitro, the use of vectors based on murine leukemia virus in preclinical models of somatic gene therapy has led to the identification of transcriptional silencing in vivo as an important problem...

  5. Transcription factors in alkaloid biosynthesis.

    Science.gov (United States)

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed. © 2013, Elsevier Inc. All Rights Reserved.

  6. Medical transcription outsourcing greased lightning?

    Science.gov (United States)

    Bikman, Jeremy; Whiting, Stacilee

    2007-06-01

    As medical transcription volume grows, providers need to decide whether to outsource the work, and if so, whether to retain offshore or onshore firms. There are benefits and drawbacks to both. To avoid problems, providers need to make sure the details are spelled out in the contract and that their expectations are understood and met by the outsource firm.

  7. Synthetic in vitro transcription circuits.

    Science.gov (United States)

    Weitz, Maximilian; Simmel, Friedrich C

    2012-01-01

    With the help of only two enzymes--an RNA polymerase and a ribonuclease--reduced versions of transcriptional regulatory circuits can be implemented in vitro. These circuits enable the emulation of naturally occurring biochemical networks, the exploration of biological circuit design principles and the biochemical implementation of powerful computational models.

  8. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    Science.gov (United States)

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  9. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  10. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Science.gov (United States)

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  11. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  12. Differential turnover of the multiple processed transcripts of the Escherichia coli focA-pflB operon.

    Science.gov (United States)

    Sawers, R Gary

    2006-08-01

    Expression of the anaerobically inducible focA-pflB operon of Escherichia coli is subject to complex transcriptional and post-transcriptional control, which generates eight transcripts whose 5' ends span approximately 1.2 kb. All eight transcripts have the same 3' end. The 5' ends of three of the transcripts, termed 6, 6a and 7, are located upstream of the operon. The promoters generating transcripts 6 and 7 are anaerobically regulated by FNR and ArcA approximately P, while promoter 6a is constitutively active. The 5' ends of the other five transcripts are all located within the operon. Most of the 5' ends of these operon-internal transcripts result from RNA polymerase-dependent processing of the three longer primary transcripts, 6, 6a and 7. Here, it is demonstrated that subsequent to, and distinct from, these processing events, post-transcriptional modification of these transcripts also occurs through the action of the endoribonuclease RNase E. Transcripts 6 and 7 exhibit differential stability with half-lives of 1 and 5 min, respectively. Transcript 7, which has the longer half-life, is the longest transcript of the operon and has a approximately 340 base untranslated leader. Two of the operon-internal transcripts, 4 and 5, also have comparatively short half-lives in the wild-type, which are significantly increased in a mutant with impaired RNase E activity. A precursor-product relationship is observed between the longer transcripts 3-7 and transcripts 1 and 2. The 5' ends of transcripts 1 and 2 are closest to the pflB gene and have half-lives of approximately 7-8 min. The consequence of this regulation is an accumulation of full-length pflB transcript and comparably low levels of dicistronic transcript. This ensures different levels of synthesis of the formate transporter FocA and pyruvate formate-lyase during anaerobic growth, while maintaining coordinate regulation. Transcript analysis throughout the growth phase revealed that maximal anaerobic expression of

  13. Stimulus-Specific Transcriptional Regulation Within the p53 Network

    Science.gov (United States)

    Donner, Aaron Joseph; Hoover, Jennifer Michelle; Szostek, Stephanie Aspen; Espinosa, Joaquín Maximiliano

    2010-01-01

    The p53 transcriptional network is composed of hundreds of effector genes involved in varied stress-response pathways, including cell cycle arrest and apoptosis. It is not clear how distinct p53 target genes are differentially activated to trigger stress-specific biological responses. We analyzed the p53 transcriptional program upon activation by two DNA-damaging agents, UVC and doxorubicin, versus the non-genotoxic molecule Nutlin-3. In colorectal cancer cells, UVC triggers apoptosis, doxorubicin induces transient cell cycle arrest followed by apoptosis, and Nutlin-3 leads to cell cycle arrest with no significant apoptosis. Quantitative gene expression analysis allowed us to group p53 target genes into three main classes according to their activation profiles in each scenario. The CDK-inhibitor p21 was classified as a Class I gene, being significantly activated under cell cycle arrest conditions (i.e., doxorubicin and Nutlin-3) but not during UVC-induced apoptosis. Chromatin immunoprecipitation analysis of the p21 locus indicates that the level of p53-dependent transcription is determined by the effects of stimulus-specific transcriptional coregulators acting downstream of p53 binding and histone acetylation. In particular, our analysis indicates that the subunits of the CDK-module of the human Mediator complex function as stimulus-specific positive coregulators of p21 transcription. PMID:17957141

  14. Towards resolving the transcription factor network controlling myelin gene expression.

    Science.gov (United States)

    Fulton, Debra L; Denarier, Eric; Friedman, Hana C; Wasserman, Wyeth W; Peterson, Alan C

    2011-10-01

    In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network.

  15. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  16. Phylogenetic and Transcription Analysis of Chrysanthemum WRKY Transcription Factors

    Directory of Open Access Journals (Sweden)

    Aiping Song

    2014-08-01

    Full Text Available WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium. A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior.

  17. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA.

    Science.gov (United States)

    Dykes, Iain M; Emanueli, Costanza

    2017-06-01

    Advances in genomics technology over recent years have led to the surprising discovery that the genome is far more pervasively transcribed than was previously appreciated. Much of the newly-discovered transcriptome appears to represent long non-coding RNA (lncRNA), a heterogeneous group of largely uncharacterised transcripts. Understanding the biological function of these molecules represents a major challenge and in this review we discuss some of the progress made to date. One major theme of lncRNA biology seems to be the existence of a network of interactions with microRNA (miRNA) pathways. lncRNA has been shown to act as both a source and an inhibitory regulator of miRNA. At the transcriptional level, a model is emerging whereby lncRNA bridges DNA and protein by binding to chromatin and serving as a scaffold for modifying protein complexes. Such a mechanism can bridge promoters to enhancers or enhancer-like non-coding genes by regulating chromatin looping, as well as conferring specificity on histone modifying complexes by directing them to specific loci. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  18. MarA-mediated transcriptional repression of the rob promoter.

    Science.gov (United States)

    Schneiders, Thamarai; Levy, Stuart B

    2006-04-14

    The Escherichia coli transcriptional regulator MarA affects functions that include antibiotic resistance, persistence, and survival. MarA functions as an activator or repressor of transcription utilizing similar degenerate DNA sequences (marboxes) with three different binding site configurations with respect to the RNA polymerase-binding sites. We demonstrate that MarA down-regulates rob transcripts both in vivo and in vitro via a MarA-binding site within the rob promoter that is positioned between the -10 and -35 hexamers. As for the hdeA and purA promoters, which are repressed by MarA, the rob marbox is also in the "backward" orientation. Protein-DNA interactions show that SoxS and Rob, like MarA, bind the same marbox in the rob promoter. Electrophoretic mobility shift analyses with a MarA-specific antibody demonstrate that MarA and RNA polymerase form a ternary complex with the rob promoter DNA. Transcription experiments in vitro and potassium permanganate footprinting analysis show that MarA affects the RNA polymerase-mediated closed to open complex formation at the rob promoter.

  19. The proteomes of transcription factories containing RNA polymerases I, II or III.

    Science.gov (United States)

    Melnik, Svitlana; Deng, Binwei; Papantonis, Argyris; Baboo, Sabyasachi; Carr, Ian M; Cook, Peter R

    2011-09-25

    Human nuclei contain three RNA polymerases (I, II and III) that transcribe different groups of genes; the active forms of all three are difficult to isolate because they are bound to the substructure. Here we describe a purification approach for isolating active RNA polymerase complexes from mammalian cells. After isolation, we analyzed their protein content by mass spectrometry. Each complex represents part of the core of a transcription factory. For example, the RNA polymerase II complex contains subunits unique to RNA polymerase II plus various transcription factors but shares a number of ribonucleoproteins with the other polymerase complexes; it is also rich in polymerase II transcripts. We also describe a native chromosome conformation capture method to confirm that the complexes remain attached to the same pairs of DNA templates found in vivo.

  20. A molecular link between gene-specific and chromosome-wide transcriptional repression.

    Science.gov (United States)

    Chu, Diana S; Dawes, Heather E; Lieb, Jason D; Chan, Raymond C; Kuo, Annie F; Meyer, Barbara J

    2002-04-01

    Gene-specific and chromosome-wide mechanisms of transcriptional regulation control development in multicellular organisms. SDC-2, the determinant of hermaphrodite fate in Caenorhabditis elegans, is a paradigm for both modes of regulation. SDC-2 represses transcription of X chromosomes to achieve dosage compensation, and it also represses the male sex-determination gene her-1 to elicit hermaphrodite differentiation. We show here that SDC-2 recruits the entire dosage compensation complex to her-1, directing this X-chromosome repression machinery to silence an individual, autosomal gene. Functional dissection of her-1 in vivo revealed DNA recognition elements required for SDC-2 binding, recruitment of the dosage compensation complex, and transcriptional repression. Elements within her-1 differed in location, sequence, and strength of repression, implying that the dosage compensation complex may regulate transcription along the X chromosome using diverse recognition elements that play distinct roles in repression.

  1. Transcription Blockage Leads to New Beginnings

    Science.gov (United States)

    Andrade-Lima, Leonardo C.; Veloso, Artur; Ljungman, Mats

    2015-01-01

    Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes. PMID:26197343

  2. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

    OpenAIRE

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcript...

  3. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure.

    Science.gov (United States)

    Lake, Robert J; Boetefuer, Erica L; Tsai, Pei-Fang; Jeong, Jieun; Choi, Inchan; Won, Kyoung-Jae; Fan, Hua-Ying

    2014-04-01

    Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.

  4. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-04-01

    Full Text Available Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.

  5. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding

    Science.gov (United States)

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1. PMID:25654332

  6. Building a Synthetic Transcriptional Oscillator.

    Science.gov (United States)

    Schwarz-Schilling, Matthaeus; Kim, Jongmin; Cuba, Christian; Weitz, Maximilian; Franco, Elisa; Simmel, Friedrich C

    2016-01-01

    Reaction circuits mimicking genetic oscillators can be realized with synthetic, switchable DNA genes (so-called genelets), and two enzymes only, an RNA polymerase and a ribonuclease. The oscillatory behavior of the genelets is driven by the periodic production and degradation of RNA effector molecules. Here, we describe the preparation, assembly, and testing of a synthetic, transcriptional two-node negative-feedback oscillator, whose dynamics can be followed in real-time by fluorescence read-out.

  7. Automatic transcription of polyphonic music using a note masking technique

    OpenAIRE

    Kelly, Ronan

    2010-01-01

    peer-reviewed Music transcription is a complex cognitive task that requires a trained musician to listen to a piece of music, write down what notes were played and the timing of the notes. The task is further complicated if the music is polyphonic, where several notes are played simultaneously, requiring the musician to listen repeatedly to the piece of music so as to work out the notes that were played and their timing. This thesis describes a polyphonic note detection syst...

  8. Transcriptional control of t lymphocyte differentiation

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); F. Weerkamp (Floor); A.W. Langerak (Anton); R.W. Hendriks (Rudi); H.C. Clevers (Hans)

    2001-01-01

    textabstractInitiation of gene transcription by transcription factors (TFs) is an important regulatory step in many developmental processes. The differentiation of T cell progenitors in the thymus is tightly controlled by signaling molecules, ultimately activating

  9. 16 CFR 1502.36 - Official transcript.

    Science.gov (United States)

    2010-01-01

    ... presiding officer will arrange for a verbatim stenographic transcript of oral testimony and for necessary.... Corrections are permitted only for transcription errors. The presiding officer shall promptly order justified...

  10. Functionality of intergenic transcription: an evolutionary comparison.

    Directory of Open Access Journals (Sweden)

    Philipp Khaitovich

    2006-10-01

    Full Text Available Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts.

  11. Murine Leukemia Virus Uses TREX Components for Efficient Nuclear Export of Unspliced Viral Transcripts

    Directory of Open Access Journals (Sweden)

    Toshie Sakuma

    2014-03-01

    Full Text Available Previously we reported that nuclear export of both unspliced and spliced murine leukemia virus (MLV transcripts depends on the nuclear export factor (NXF1 pathway. Although the mRNA export complex TREX, which contains Aly/REF, UAP56, and the THO complex, is involved in the NXF1-mediated nuclear export of cellular mRNAs, its contribution to the export of MLV mRNA transcripts remains poorly understood. Here, we studied the involvement of TREX components in the export of MLV transcripts. Depletion of UAP56, but not Aly/REF, reduced the level of both unspliced and spliced viral transcripts in the cytoplasm. Interestingly, depletion of THO components, including THOC5 and THOC7, affected only unspliced viral transcripts in the cytoplasm. Moreover, the RNA immunoprecipitation assay showed that only the unspliced viral transcript interacted with THOC5. These results imply that MLV requires UAP56, THOC5 and THOC7, in addition to NXF1, for nuclear export of viral transcripts. Given that naturally intronless mRNAs, but not bulk mRNAs, require THOC5 for nuclear export, it is plausible that THOC5 plays a key role in the export of unspliced MLV transcripts.

  12. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and...... process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.......A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co......-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...

  13. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  14. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  15. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  16. Mammalian transcription-coupled excision repair

    NARCIS (Netherlands)

    W. Vermeulen (Wim); M.I. Fousteri (Maria)

    2013-01-01

    textabstractTranscriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcrip-tional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed

  17. Hydra constitutively expresses transcripts involved in vertebrate ...

    Indian Academy of Sciences (India)

    Unknown

    conserved glycolytic pathway. Noggin is expressed in the Spemann organizer in the. Xenopus embryo and is required for neural induction. Figure 1. Noggin- and goosecoid-like transcripts in P. oligactis. (a) Noggin-like transcripts in the hypostomal region (hp) and basal disc (bp) in an adult hydra. (b) Noggin-like transcripts ...

  18. Overlapping CRE and E-box promoter elements can independently regulate COX-2 gene transcription in macrophages.

    Science.gov (United States)

    Mestre, J R; Rivadeneira, D E; Mackrell, P J; Duff, M; Stapleton, P P; Mack-Strong, V; Maddali, S; Smyth, G P; Tanabe, T; Daly, J M

    2001-05-11

    Macrophage cyclooxygenase-2 (COX-2) transcription is mediated through the collaboration of different promoter elements. Here, the role of an overlapping cyclic AMP responsive element (CRE)/E-box was investigated. Nuclear proteins bound both the CRE and E-box, which synergized with other promoter elements to induce COX-2 transcription. Endotoxin induced binding of nuclear proteins to the CRE and E-box and each element independently induced higher COX-2 transcription levels than the overlapping CRE/E-box. Transcription factors associated with the CRE binding complex included c-Jun and CRE binding protein and with the E-box binding complex USF-1; their overexpression significantly induced COX-2 transcription. Therefore, both CRE and E-box promoter elements regulate COX-2 transcription in macrophages.

  19. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    Science.gov (United States)

    2017-05-01

    normal growth conditions, more than half of nuclear P-TEFb are sequestered in a kinase-inactive complex called the 7SK snRNP that contains the 7SK snRNA... fusion partners (e.g. AFF1, AFF4, ELL1, ELL2, ENL and AF9) of the mixed lineage leukemia (MLL) protein and promotes transcription of MLL-target...LARP7 can also exist in other nuclear complexes and can potentially participate in other unrelated biological functions. It is thus essential to further

  20. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    Science.gov (United States)

    Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan

    2016-01-01

    High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  1. Cooperative RNA polymerase molecules behavior on a stochastic sequence-dependent model for transcription elongation.

    Directory of Open Access Journals (Sweden)

    Pedro Rafael Costa

    Full Text Available The transcription process is crucial to life and the enzyme RNA polymerase (RNAP is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites.

  2. A Comparative Study of RNA Polymerase II Transcription Machinery in Yeasts

    Science.gov (United States)

    Sharma, Nimisha; Mehta, Surbhi

    The control of gene expression, predominantly at the level of transcription, plays a fundamental role in biological processes determining the phenotypic changes in cells and organisms. The eukaryotes have evolved a complex and sophisticated transcription machinery to transcribe DNA into RNA. RNA polymerase II enzyme lies at the centre of the transcription apparatus that comprises nearly 60 polypeptides and is responsible for the expression and regulation of proteinencoding genes. Much of our present understanding and knowledge of the RNA polymerase II transcription apparatus in eukaryotes has been derived from studies in Saccharomyces cerevisiae. More recently, Schizosaccharomyces pombe has emerged as a better model system to study transcription because the transcription mechanism in this yeast is closer to that in higher eukaryotes. Also, studies on components of the basal transcription machinery have revealed a number of properties that are common with other eukaryotes, but have also highlighted some features unique to S. pombe. In fact, the fungal transcription associated protein families show greater species specificity and only 15% of these proteins contain homologues shared between both S. cerevisiae and S. pombe. In this chapter, we compare the RNA polymerase II transcription apparatus in different yeasts.

  3. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren

    2008-01-01

    Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs, harb...... a promoter-proximal 5′ splice site via its U1 snRNA interaction can feed back to stimulate transcription initiation by enhancing preinitiation complex assembly.......Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs......, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...

  4. Connections between transcription, mRNP assembly and quality control in S. cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    -competent mRNP. We show that a transcription-defective allele of the Rad3p helicase, a component of the TFIIH transcription initiation factor, suppress several export-related phenotypes linked to mutation of Rna14p and members of the THO complex. Biochemical and genetic data indicate that mutation of Rad3p...... in the context of THO and rna14-3 mutants improves mRNP quality by acting upstream of transcription-site retention and nuclear degradation of the transcripts. As Rad3p mutant effects can be phenocopied by other mutations known to affect transcription and by the addition of transcription elongation drugs, our...... the role(s) of the THO complex, we have searched for mutant alleles that exhibit a genetic interaction with a strain carrying a deletion of the THO complex component MFT1. Our results suggest that the THO complex is functionally connected to the 3’end formation/mRNA export step. High...

  5. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.

    Science.gov (United States)

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.

  6. The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression.

    Science.gov (United States)

    Ohama, Naohiko; Kusakabe, Kazuya; Mizoi, Junya; Zhao, Huimei; Kidokoro, Satoshi; Koizumi, Shinya; Takahashi, Fuminori; Ishida, Tetsuya; Yanagisawa, Shuichi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-01-01

    Group A1 heat shock transcription factors (HsfA1s) are the master regulators of the heat stress response (HSR) in plants. Upon heat shock, HsfA1s trigger a transcriptional cascade that is composed of many transcription factors. Despite the importance of HsfA1s and their downstream transcriptional cascade in the acquisition of thermotolerance in plants, the molecular basis of their activation remains poorly understood. Here, domain analysis of HsfA1d, one of several HsfA1s in Arabidopsis thaliana, demonstrated that the central region of HsfA1d is a key regulatory domain that represses HsfA1d transactivation activity through interaction with HEAT SHOCK PROTEIN70 (HSP70) and HSP90. We designated this region as the temperature-dependent repression (TDR) domain. We found that HSP70 dissociates from HsfA1d in response to heat shock and that the dissociation is likely regulated by an as yet unknown activation mechanism, such as HsfA1d phosphorylation. Overexpression of constitutively active HsfA1d that lacked the TDR domain induced expression of heat shock proteins in the absence of heat stress, thereby conferring potent thermotolerance on the overexpressors. However, transcriptome analysis of the overexpressors demonstrated that the constitutively active HsfA1d could not trigger the complete transcriptional cascade under normal conditions, thereby indicating that other factors are necessary to fully induce the HSR. These complex regulatory mechanisms related to the transcriptional cascade may enable plants to respond resiliently to various heat stress conditions. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Mammalian Transcription-Coupled Excision Repair

    Science.gov (United States)

    Vermeulen, Wim; Fousteri, Maria

    2013-01-01

    Transcriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcriptional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed transcription-coupled nucleotide excision repair (TC-NER) that ensures rapid removal of such transcription-impeding DNA lesions and prevents persistent stalling of transcription. Defective TC-NER is causatively linked to Cockayne syndrome, a rare severe genetic disorder with multisystem abnormalities that results in patients’ death in early adulthood. Here we review recent data on how damage-arrested transcription is actively coupled to TC-NER in mammals and discuss new emerging models concerning the role of TC-NER-specific factors in this process. PMID:23906714

  8. Complex Narratives

    NARCIS (Netherlands)

    Simons, J.; Buckland, W.

    2014-01-01

    In the opening chapter, "Complex Narratives," Jan Simons brings together narratology, game theory, and complexity theory to untangle the intricate nature of complex narratives in contemporary cinema. He presents an overview of the different concepts - forking path narratives, mind-game films,

  9. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  10. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam

    2011-01-01

    Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) family members are key regulators of this process. We have employed DNase I...... hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides...... with cooperative binding of multiple early transcription factors (including glucocorticoid receptor, retinoid X receptor, Stat5a, C/EBPβ and -δ) to transcription factor 'hotspots'. Our results demonstrate that C/EBPβ marks a large number of these transcription factor 'hotspots' before induction of differentiation...

  11. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  12. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

    DEFF Research Database (Denmark)

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik

    2009-01-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites......, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks...... involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process....

  13. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci

    DEFF Research Database (Denmark)

    Mousavi, Kambiz; Zare, Hossein; Dell'orso, Stefania

    2013-01-01

    Transcription factors and DNA regulatory binding motifs are fundamental components of the gene regulatory network. Here, by using genome-wide binding profiling, we show extensive occupancy of transcription factors of myogenesis (MyoD and Myogenin) at extragenic enhancer regions coinciding with RNA......)RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional...... complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events....

  14. Systematic Analysis of Transcriptional and Post-transcriptional Regulation of Metabolism in Yeast.

    Directory of Open Access Journals (Sweden)

    Emanuel Gonçalves

    2017-01-01

    Full Text Available Cells react to extracellular perturbations with complex and intertwined responses. Systematic identification of the regulatory mechanisms that control these responses is still a challenge and requires tailored analyses integrating different types of molecular data. Here we acquired time-resolved metabolomics measurements in yeast under salt and pheromone stimulation and developed a machine learning approach to explore regulatory associations between metabolism and signal transduction. Existing phosphoproteomics measurements under the same conditions and kinase-substrate regulatory interactions were used to in silico estimate the enzymatic activity of signalling kinases. Our approach identified informative associations between kinases and metabolic enzymes capable of predicting metabolic changes. We extended our analysis to two studies containing transcriptomics, phosphoproteomics and metabolomics measurements across a comprehensive panel of kinases/phosphatases knockouts and time-resolved perturbations to the nitrogen metabolism. Changes in activity of transcription factors, kinases and phosphatases were estimated in silico and these were capable of building predictive models to infer the metabolic adaptations of previously unseen conditions across different dynamic experiments. Time-resolved experiments were significantly more informative than genetic perturbations to infer metabolic adaptation. This difference may be due to the indirect nature of the associations and of general cellular states that can hinder the identification of causal relationships. This work provides a novel genome-scale integrative analysis to propose putative transcriptional and post-translational regulatory mechanisms of metabolic processes.

  15. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network.

    Science.gov (United States)

    Hernando, C Esteban; Romanowski, Andrés; Yanovsky, Marcelo J

    2017-01-01

    The circadian clock drives rhythms in multiple physiological processes allowing plants to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of thousands of genes linked to the control of photosynthesis, cell elongation, biotic and abiotic stress responses, developmental processes such as flowering, and the clock itself. Given its pervasive effects on plant physiology, it is not surprising that circadian clock genes have played an important role in the domestication of crop plants and in the improvement of crop productivity. Therefore, identifying the principles governing the dynamics of the circadian gene regulatory network in plants could strongly contribute to further speed up crop improvement. Here we provide an historical as well as a current description of our knowledge of the molecular mechanisms underlying circadian rhythms in plants. This work focuses on the transcriptional and post-transcriptional regulatory layers that control the very core of the circadian clock, and some of its complex interactions with signaling pathways that help synchronize plant growth and development to daily and seasonal changes in the environment. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cockayne syndrome--a primary defect in DNA repair, transcription, both or neither?

    Science.gov (United States)

    Friedberg, E C

    1996-09-01

    Cockayne syndrome is a rare autosomal recessive disease characterized by a complex clinical phenotype. Most Cockayne syndrome cells are hypersensitive to killing by ultraviolet radiation. This observation has prompted a wealth of studies on the DNA repair capacity of Cockayne syndrome cells in vitro. Many studies support the notion that such cells are defective in a DNA repair mode(s) that is transcription-dependent. However, it remains to be established that this is a primary molecular defect in Cockayne syndrome cells and that it explains the complex clinical phenotype associated with the disease. An alternative hypothesis is that Cockayne syndrome cells have a defect in transcription affecting the expression of certain genes, which is compatible with embryogenesis but not with normal post-natal development. Defective transcription may impair the normal processing of DNA damage during transcription-dependent repair.

  17. Transcriptional regulation of the human mitochondrial peptide deformylase (PDF).

    Science.gov (United States)

    Pereira-Castro, Isabel; Costa, Luís Teixeira da; Amorim, António; Azevedo, Luisa

    2012-05-18

    The last years of research have been particularly dynamic in establishing the importance of peptide deformylase (PDF), a protein of the N-terminal methionine excision (NME) pathway that removes formyl-methionine from mitochondrial-encoded proteins. The genomic sequence of the human PDF gene is shared with the COG8 gene, which encodes a component of the oligomeric golgi complex, a very unusual case in Eukaryotic genomes. Since PDF is crucial in maintaining mitochondrial function and given the atypical short distance between the end of COG8 coding sequence and the PDF initiation codon, we investigated whether the regulation of the human PDF is affected by the COG8 overlapping partner. Our data reveals that PDF has several transcription start sites, the most important of which only 18 bp from the initiation codon. Furthermore, luciferase-activation assays using differently-sized fragments defined a 97 bp minimal promoter region for human PDF, which is capable of very strong transcriptional activity. This fragment contains a potential Sp1 binding site highly conserved in mammalian species. We show that this binding site, whose mutation significantly reduces transcription activation, is a target for the Sp1 transcription factor, and possibly of other members of the Sp family. Importantly, the entire minimal promoter region is located after the end of COG8's coding region, strongly suggesting that the human PDF preserves an independent regulation from its overlapping partner. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Conformational flexibility of RNA polymerase III during transcriptional elongation

    Science.gov (United States)

    Fernández-Tornero, Carlos; Böttcher, Bettina; Rashid, Umar Jan; Steuerwald, Ulrich; Flörchinger, Beate; Devos, Damien P; Lindner, Doris; Müller, Christoph W

    2010-01-01

    RNA polymerase (Pol) III is responsible for the transcription of genes encoding small RNAs, including tRNA, 5S rRNA and U6 RNA. Here, we report the electron cryomicroscopy structures of yeast Pol III at 9.9 Å resolution and its elongation complex at 16.5 Å resolution. Particle sub-classification reveals prominent EM densities for the two Pol III-specific subcomplexes, C31/C82/C34 and C37/C53, that can be interpreted using homology models. While the winged-helix-containing C31/C82/C34 subcomplex initiates transcription from one side of the DNA-binding cleft, the C37/C53 subcomplex accesses the transcription bubble from the opposite side of this cleft. The transcribing Pol III enzyme structure not only shows the complete incoming DNA duplex, but also reveals the exit path of newly synthesized RNA. During transcriptional elongation, the Pol III-specific subcomplexes tightly enclose the incoming DNA duplex, which likely increases processivity and provides structural insights into the conformational switch between Pol III-mediated initiation and elongation. PMID:20967027

  19. Role of Transcription Factors in Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Smriti ePatodia

    2012-02-01

    Full Text Available Following axotomy, the activation of multiple intracellular signalling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other and the extracellular environment to determine the fate of the injured neurons. The nerve injury response is channelled through manifold and parallel pathways, integrating diverse inputs and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional role of a number of different transcription factors – c-jun, ATF3, CREB, STAT3, C/EBP β & δ, Oct-6, Sox11, p53, NFκB, and ELK3 – in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving functional and anatomical regeneration after peripheral nerve injury.

  20. Post-transcriptional regulation of long noncoding RNAs in cancer.

    Science.gov (United States)

    Shi, Xuefei; Sun, Ming; Wu, Ying; Yao, Yanwen; Liu, Hongbing; Wu, Guannan; Yuan, Dongmei; Song, Yong

    2015-02-01

    It is a great surprise that the genomes of mammals and other eukaryotes harbor many thousands of long noncoding RNAs (lncRNAs). Although these long noncoding transcripts were once considered to be simply transcriptional noise or cloning artifacts, multiple studies have suggested that lncRNAs are emerging as new players in diverse human diseases, especially in cancer, and that the molecular mechanisms of lncRNAs need to be elucidated. More recently, evidence has begun to accumulate describing the complex post-transcriptional regulation in which lncRNAs are involved. It was reported that lncRNAs can be implicated in degradation, translation, pre-messenger RNA (mRNA) splicing, and protein activities and even as microRNAs (miRNAs) sponges in both a sequence-dependent and sequence-independent manner. In this review, we present an updated vision of lncRNAs and summarize the mechanism of post-transcriptional regulation by lncRNAs, providing new insight into the functional cellular roles that they may play in human diseases, with a particular focus on cancers.

  1. Transcriptional profiles of plasticity for desiccation stress in drosophila.

    Science.gov (United States)

    Clemson, Allannah S; Sgrò, Carla M; Telonis-Scott, Marina

    2017-11-08

    We examined the transcriptional responses of desiccation resistance candidate genes in populations of Drosophila melanogaster divergent for desiccation resistance and in capacity to improve resistance via phenotypic plasticity. Adult females from temperate and tropical eastern Australian populations were exposed to a rapid desiccation hardening (RDH) treatment, and groups without RDH to acute desiccation stress, and temporally profiled transcript expression of 12 candidate desiccation genes during, and in recovery from stress. We found that desiccation exposure resulted in largely transitory, stress-specific transcriptional changes in all but one gene. However linking the expression profiles to the population-level phenotypic divergence was difficult given subtle, and time-point specific population expression variation. Nonetheless, rapid desiccation hardening had the largest effect on gene expression, resulting in distinct molecular profiles. We report a hitherto uncharacterised desiccation molecular hardening response where prior exposure essentially 'primes' genes to respond to subsequent stress without discernible transcript changes prior to stress. This, taken together with some population gene expression variation of several bona fide desiccation candidates associated with different water balance strategies speaks of the complexity of natural desiccation resistance and plasticity and provides new avenues for understanding the molecular basis of a trait of ecological significance. Copyright © 2017. Published by Elsevier Inc.

  2. Effects of transcriptional pausing on gene expression dynamics.

    Directory of Open Access Journals (Sweden)

    Tiina Rajala

    2010-03-01

    Full Text Available Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate how RNA polymerase pausing affects a gene's transcriptional dynamics and gene networks. We show that pauses' duration and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase pausing might be an important evolvable feature of genetic networks.

  3. Gene transcription and electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  4. CDK8 Kinase Phosphorylates Transcription Factor STAT1 to Selectively Regulate the Interferon Response

    OpenAIRE

    Bancerek, Joanna; Poss, Zachary C.; Steinparzer, Iris; Sedlyarov, Vitaly; Pfaffenwimmer, Thaddäus; Mikulic, Ivana; Dölken, Lars; Strobl, Birgit; Müller, Mathias; Taatjes, Dylan J.; Kovarik, Pavel

    2013-01-01

    Summary Gene regulation by cytokine-activated transcription factors of the signal transducer and activator of transcription (STAT) family requires serine phosphorylation within the transactivation domain (TAD). STAT1 and STAT3 TAD phosphorylation occurs upon promoter binding by an unknown kinase. Here, we show that the cyclin-dependent kinase 8 (CDK8) module of the Mediator complex phosphorylated regulatory sites within the TADs of STAT1, STAT3, and STAT5, including S727 within the STAT1 TAD ...

  5. 10 CFR 9.108 - Certification, transcripts, recordings and minutes.

    Science.gov (United States)

    2010-01-01

    ... transcription as provided in § 9.14. The Secretary shall maintain a complete verbatim copy of the transcript, a...). Copies of such transcript, or minutes, or a transcription of such recording disclosing the identity of...

  6. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery.

    Science.gov (United States)

    Oberoi, Jasmeen; Fairall, Louise; Watson, Peter J; Yang, Ji-Chun; Czimmerer, Zsolt; Kampmann, Thorsten; Goult, Benjamin T; Greenwood, Jacquie A; Gooch, John T; Kallenberger, Bettina C; Nagy, Laszlo; Neuhaus, David; Schwabe, John W R

    2011-02-01

    Eukaryotic transcriptional repressors function by recruiting large coregulatory complexes that target histone deacetylase enzymes to gene promoters and enhancers. Transcriptional repression complexes, assembled by the corepressor NCoR and its homolog SMRT, are crucial in many processes, including development and metabolic physiology. The core repression complex involves the recruitment of three proteins, HDAC3, GPS2 and TBL1, to a highly conserved repression domain within SMRT and NCoR. We have used structural and functional approaches to gain insight into the architecture and biological role of this complex. We report the crystal structure of the tetrameric oligomerization domain of TBL1, which interacts with both SMRT and GPS2, and the NMR structure of the interface complex between GPS2 and SMRT. These structures, together with computational docking, mutagenesis and functional assays, reveal the assembly mechanism and stoichiometry of the corepressor complex.

  7. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis

    Science.gov (United States)

    Oh, Kyoung-Jin; Han, Hye-Sook; Kim, Min-Jung; Koo, Seung-Hoi

    2013-01-01

    Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed. [BMB Reports 2013; 46(12): 567-574] PMID:24238363

  8. The TFIIB tip domain couples transcription initiation to events involved in RNA processing.

    Science.gov (United States)

    Tran, Khiem; Gralla, Jay D

    2010-12-17

    TFIIB is the only factor within the multimegadalton transcription complex that is obligatorily required to undergo dissociation and re-association with each round of mRNA transcription. Here we show that a six-amino acid human TFIIB tip region is needed for appropriate levels of serine 5 C-terminal domain phosphorylation and mRNA capping and for retention of the required elongation factor TFIIF. We suggest that the broad functions of this tiny region are used to suppress transcription noise by restricting functional RNA synthesis from non-promoter sites on the genome, which will not contain TFIIB.

  9. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.

    2011-08-18

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding of the transcription regulatory code. Results: We constructed binding motifs for TFs forming a complex with HIF-1α at the erythropoietin 3\\'-enhancer. Corresponding TFBSs were predicted in the segments around transcription start sites (TSSs) of all human genes. Using the genome-wide set of regulatory regions, we observed several strongly preferred distances between hypoxia-responsive element (HRE) and binding sites of a particular cofactor protein. The set of preferred distances was called as a preferred pair distance template (PPDT). PPDT dramatically depended on the TF and orientation of its binding sites relative to HRE. PPDT evaluated from the genome-wide set of regulatory sequences was used to detect significant PPDT-consistent binding site pairs in regulatory regions of hypoxia-responsive genes. We believe PPDT can help to reveal the layout of eukaryotic regulatory segments. © The Author 2011. Published by Oxford University Press. All rights reserved.

  10. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome.

    Science.gov (United States)

    Kim, Kyumin; Heo, Dong-Hyuk; Kim, Iktae; Suh, Jeong-Yong; Kim, Minkyu

    2016-06-17

    The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.

    Science.gov (United States)

    Castro-Roa, Daniel; Zenkin, Nikolay

    2015-09-15

    The various properties of RNA polymerase (RNAP) complexes with nucleic acids during different stages of transcription involve various types of regulation and different cross-talk with other cellular entities and with fellow RNAP molecules. The interactions of transcriptional apparatus with the translational machinery have been focused mainly in terms of outcomes of gene expression, whereas the study of the physical interaction of the ribosome and the RNAP remains obscure partly due to the lack of a system that allows such observations. In this article we will describe the methodology needed to set up a pure, transcription-coupled-to-translation system in which the translocation of the ribosome can be performed in a step-wise manner towards RNAP allowing investigation of the interactions between the two machineries at colliding and non-colliding distances. In the same time RNAP can be put in various types of states, such as paused, roadblocked, backtracked, etc. The experimental system thus allows studying the effects of the ribosome on different aspects of transcription elongation and the effects by RNAP on translation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  13. Dissecting the stochastic transcription initiation process in live Escherichia coli.

    Science.gov (United States)

    Lloyd-Price, Jason; Startceva, Sofia; Kandavalli, Vinodh; Chandraseelan, Jerome G; Goncalves, Nadia; Oliveira, Samuel M D; Häkkinen, Antti; Ribeiro, Andre S

    2016-06-01

    We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases differs in different growth conditions, the fraction of RNA polymerases free for transcription remains approximately constant within a certain range of these conditions. After establishing this, we apply a standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription events in cells with different RNA polymerase concentrations. We find that, under full induction, the closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average. We then establish that the closed complex formation usually occurs multiple times prior to each successful initiation event. Furthermore, the promoter intermittently switches to an inactive state that, on average, lasts ∼87 s. This is shown to arise from the intermittent repression of the promoter by LacI. The methods employed here should be of use to resolve the rate-limiting steps governing the in vivo dynamics of initiation of prokaryotic promoters, similar to established steady-state assays to resolve the in vitro dynamics. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Investigation of molecular size of transcription factor TFIIE in solution.

    Science.gov (United States)

    Itoh, Yoshiyuki; Unzai, Satoru; Sato, Mamoru; Nagadoi, Aritaka; Okuda, Masahiko; Nishimura, Yoshifumi; Akashi, Satoko

    2005-11-15

    Human general transcription factor IIE (TFIIE), a component of a transcription preinitiation complex associated with RNA polymerase II, was characterized by size-exclusion chromatography, mass spectrometry, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Recombinant human TFIIE was purified to homogeneity and shown to contain equimolar amounts of TFIIEalpha (50 kDa) and TFIIEbeta (35 kDa) by SDS-PAGE. In the analysis of size-exclusion chromatography of the purified sample, as already reported, TFIIE was shown to be a 170-kDa alpha(2)beta(2) heterotetramer. However, by using electrospray ionization mass spectrometry the purified sample gave the molecular mass of 84,152 +/- 5, indicating that TFIIE is an alphabeta heterodimer but not a heterotetramer. Analytical ultracentrifugation experiment of TFIIE provided that only a single component with the molecular mass of ca. 80,000 existed in solution, also suggesting an alphabeta heterodimer. In addition, its extraordinarily rod-like molecular shape was confirmed by SAXS. It is likely that the rod-like molecular shape of TFIIE has misled larger molecular size in size-exclusion chromatography, which was calibrated by globular proteins. It is demonstrated that TFIIE exists as a heterodimer under our present conditions in solution, although two molecules of heterodimer might be required for the formation of the preinitiation complex with RNA polymerase II for starting the transcription process. (c) 2005 Wiley-Liss, Inc.

  15. A dual switch controls bacterial enhancer-dependent transcription

    Science.gov (United States)

    Wiesler, Simone C.; Burrows, Patricia C.; Buck, Martin

    2012-01-01

    Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ54 factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125

  16. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  18. Correlation of Methane Production and Functional Gene Transcriptional Activity in a Peat Soil ▿

    Science.gov (United States)

    Freitag, Thomas E.; Prosser, James I.

    2009-01-01

    The transcription dynamics of subunit A of the key gene in methanogenesis (methyl coenzyme M reductase; mcrA) was studied to evaluate the relationship between process rate (methanogenesis) and gene transcription dynamics in a peat soil ecosystem. Soil methanogen process rates were determined during incubation of peat slurries at temperatures from 4 to 37°C, and real-time quantitative PCR was applied to quantify the abundances of mcrA genes and transcripts; corresponding transcriptional dynamics were calculated from mcrA transcript/gene ratios. Internal standards suggested unbiased recovery of mRNA abundances in comparison to DNA levels. In comparison to those in pure-culture studies, mcrA transcript/gene ratios indicated underestimation by 1 order of magnitude, possibly due to high proportions of inactive or dead methanogens. Methane production rates were temperature dependent, with maxima at 25°C, but changes in abundance and transcription of the mcrA gene showed no correlation with temperature. However, mcrA transcript/gene ratios correlated weakly (regression coefficient = 0.76) with rates of methanogenesis. Methanogen process rates increased over 3 orders of magnitude, while the corresponding maximum transcript/gene ratio increase was only 18-fold. mcrA transcript dynamics suggested steady-state expression in peat soil after incubation for 24 and 48 h, similar to that in stationary-phase cultures. mcrA transcript/gene ratios are therefore potential in situ indicators of methanogen process rate changes in complex soil systems. PMID:19749064

  19. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  20. Fractional Dynamics of Globally Slow Transcription and Its Impact on Deterministic Genetic Oscillation

    Science.gov (United States)

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models – the Goodwin oscillator and the Rössler oscillator. By constructing a “dual memory” oscillator – the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically. PMID:22679500

  1. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Directory of Open Access Journals (Sweden)

    Kun Wei

    Full Text Available In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE. Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  2. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Science.gov (United States)

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  3. Global identification and characterization of transcriptionally active regions in the rice genome.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs not encoded by annotated exons in the rice (Oryza. sativa subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83% japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome.

  4. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  5. Transcription inactivation through local refolding of the RNA polymerase structure

    Energy Technology Data Exchange (ETDEWEB)

    Belogurov, Georgiy A.; Vassylyeva, Marina N.; Sevostyanova, Anastasiya; Appleman, James R.; Xiang, Alan X.; Lira, Ricardo; Webber, Stephen E.; Klyuyev, Sergiy; Nudler, Evgeny; Artsimovitch, Irina; Vassylyev, Dmitry G.; (OSU); (UAB); (Anadys); (NYUSM)

    2009-02-12

    Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx - a desmethyl derivative of myxopyronin B - complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the {beta}'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex - the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs.

  6. carbene complexes

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Reaction of oligomeric Cu(I) complexes [Cu{µ-S-C(=NR)(O–Ar–CH3)}]n with Lewis acids gave Cu(I) carbene complexes, which were characterized by 1H and 13C NMR spectroscopy. Cu(I) car- bene complexes could be directly generated from RNCS, Cu(I)–OAr and Lewis acids; this method can be used to ...

  7. Transcript profiling of the murine immune response to invasive aspergillosis.

    Science.gov (United States)

    Dhesi, Zaneeta; Herbst, Susanne; Armstrong-James, Darius

    2012-01-01

    Invasive aspergillosis is an opportunistic infection for which complex host-pathogen interactions determine infection outcome. In particular, immunosuppressive therapies and other host factors, such as neutropenia, need to be taken into account when modelling the immune response to aspergillosis. Mammalian models have been developed in order to gain a deeper understanding of these biological interactions, which cannot be easily replicated in vitro. In vivo transcript profiling is emerging as a valuable technique to gain an overview of host responses to invasive infections. This approach can be applied to specific tissue sections, whole organs, or peripheral blood leukocyte populations. Here we describe a microarray technique for analyzing transcript profiles from whole lung homogenates in the context of invasive aspergillosis. This approach has the advantage of enabling a broad overview of the immune responses that govern disease outcome. The generic techniques described, however, have wider application to other infectious processes and tissue types.

  8. NAC Transcription Factors in Stress Responses and Senescence

    DEFF Research Database (Denmark)

    O'Shea, Charlotte

    Plant-specific NAM/ATAF/CUC (NAC) transcription factors have recently received considerable attention due to their significant roles in plant development and stress signalling. This interest has resulted in a number of physiological, genetic and cell biological studies of their functions. Some...... low degree of average structure but different patterns of disorder/order and molecular recognition features (MoRFs). For example, senescence-associated ANAC046 has a simple pattern with just a single MoRF. Analysis in yeast and thermodynamic characterisation suggested that the 11-residue C-terminal Mo......RF is a functional hotspot for both transcriptional activity and interaction with the cellular hub protein Radical Induced Cell Death1 (RCD1). Specific amino acid residues essential for the interaction were identified. These studies and structural analysis suggested that RCD1-ANAC046 complex formation does...

  9. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Pedersen, Marianne Terndrup

    2011-01-01

    a role in transcriptional repression. TET1 binds a significant proportion of Polycomb group target genes. Furthermore, TET1 associates and colocalizes with the SIN3A co-repressor complex. We propose that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby...... contributes to the regulation of DNA methylation fidelity.......Enzymes catalysing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression and maintaining cellular identity. Recently, TET1 was found to hydroxylate the methyl group of mC, converting it to 5-hydroxymethyl cytosine (hmC). Here we show that TET1 binds...

  10. An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man

    KAUST Repository

    Ravasi, Timothy

    2010-03-01

    Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.

  11. A transcription factor hierarchy defines an environmental stress response network.

    Science.gov (United States)

    Song, Liang; Huang, Shao-Shan Carol; Wise, Aaron; Castanon, Rosa; Nery, Joseph R; Chen, Huaming; Watanabe, Marina; Thomas, Jerushah; Bar-Joseph, Ziv; Ecker, Joseph R

    2016-11-04

    Environmental stresses are universally encountered by microbes, plants, and animals. Yet systematic studies of stress-responsive transcription factor (TF) networks in multicellular organisms have been limited. The phytohormone abscisic acid (ABA) influences the expression of thousands of genes, allowing us to characterize complex stress-responsive regulatory networks. Using chromatin immunoprecipitation sequencing, we identified genome-wide targets of 21 ABA-related TFs to construct a comprehensive regulatory network in Arabidopsis thaliana Determinants of dynamic TF binding and a hierarchy among TFs were defined, illuminating the relationship between differential gene expression patterns and ABA pathway feedback regulation. By extrapolating regulatory characteristics of observed canonical ABA pathway components, we identified a new family of transcriptional regulators modulating ABA and salt responsiveness and demonstrated their utility to modulate plant resilience to osmotic stress. Copyright © 2016, American Association for the Advancement of Science.

  12. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing.

    Science.gov (United States)

    Calo, Eliezer; Flynn, Ryan A; Martin, Lance; Spitale, Robert C; Chang, Howard Y; Wysocka, Joanna

    2015-02-12

    DEAD-box RNA helicases are vital for the regulation of various aspects of the RNA life cycle, but the molecular underpinnings of their involvement, particularly in mammalian cells, remain poorly understood. Here we show that the DEAD-box RNA helicase DDX21 can sense the transcriptional status of both RNA polymerase (Pol) I and II to control multiple steps of ribosome biogenesis in human cells. We demonstrate that DDX21 widely associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA, most prominently with non-coding RNAs involved in the formation of ribonucleoprotein complexes, including ribosomal RNA, small nucleolar RNAs (snoRNAs) and 7SK RNA. Although broad, these molecular interactions, both at the chromatin and RNA level, exhibit remarkable specificity for the regulation of ribosomal genes. In the nucleolus, DDX21 occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes rRNA transcription, processing and modification. In the nucleoplasm, DDX21 binds 7SK RNA and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs. Promoter-bound DDX21 facilitates the release of the positive transcription elongation factor b (P-TEFb) from the 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes. Our results uncover the multifaceted role of DDX21 in multiple steps of ribosome biogenesis, and provide evidence implicating a mammalian RNA helicase in RNA modification and Pol II elongation control.

  13. Transcriptional architecture of the mammalian circadian clock.

    Science.gov (United States)

    Takahashi, Joseph S

    2017-03-01

    Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.

  14. A brain-specific transcription activator.

    Science.gov (United States)

    Korner, M; Rattner, A; Mauxion, F; Sen, R; Citri, Y

    1989-11-01

    We have identified a DNA binding protein, named BETA, that interacts with the same (B) transcriptional regulatory sequence as the known transcription factor NF-kappa B. BETA is found only in gray matter throughout the brain, and not in a variety of other rat tissues. Two binding sites for BETA are present adjacent to the promoter of the rat proenkephalin gene. Transfection of primary brain cultures that express BETA, with a reporter gene driven by the SV40 promoter linked to BETA DNA binding sites, results in transcriptional activation. We infer that BETA is a brain-specific transcription activator.

  15. Heritable change caused by transient transcription errors.

    Directory of Open Access Journals (Sweden)

    Alasdair J E Gordon

    2013-06-01

    Full Text Available Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations and protein conformation (prions can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change ('epimutations' remains an open question. Here, we demonstrate that transcriptional errors made specifically in the mRNA encoding a transcription factor can promote heritable phenotypic change by reprogramming a transcriptional network, without altering DNA. We have harnessed the classical bistable switch in the lac operon, a memory-module, to capture the consequences of transient transcription errors in living Escherichia coli cells. We engineered an error-prone transcription sequence (A9 run in the gene encoding the lac repressor and show that this 'slippery' sequence directly increases epigenetic switching, not mutation in the cell population. Therefore, one altered transcript within a multi-generational series of many error-free transcripts can cause long-term phenotypic consequences. Thus, like DNA mutations, transcriptional epimutations can instigate heritable changes that increase phenotypic diversity, which drives both evolution and disease.

  16. Characterization of transcription site-associated mRNP retention in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    In a variety of S. cerevisiae mutants with defective mRNP maturation and/or export, heat shock (hs) mRNPs are retained at or near their sites of transcription. For example, mutants of the THO complex display an intense hs-mRNA FISH signal, which co-localizes with the hs-gene after transcriptional...... induction. The THO complex is implicated in co-transcriptional mRNP assembly, but its precise role is still unclear. Transcriptional run-on analysis as well as genetic interaction data suggest that the function of the THO complex is linked to 3’-end processing. Chromatin immunoprecipitation (ChIP) assays...... underrepresented in recovered fractions from mutant cells. This bias is abolished when a THO mutation is combined with a second site mutation alleviating the mRNA export block. Thus, the bias parallels transcription-site retention of the mRNP and suggests the existence of a complex specifically formed at the 3...

  17. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells.

    Science.gov (United States)

    Chiou, Yi-Ying; Hu, Jinchuan; Sancar, Aziz; Selby, Christopher P

    2018-02-16

    In mammalian cells, bulky DNA adducts located in the template but not the coding strand of genes block elongation by RNA polymerase II (RNAPII). The blocked RNAPII targets these transcription-blocking adducts to undergo more rapid excision repair than adducts located elsewhere in the genome. In excision repair, coupled incisions are made in the damaged DNA strand on both sides of the adduct. The fate of RNAPII in the course of this transcription-coupled repair (TCR) pathway is unclear. To address the fate of RNAPII, we used methods that control transcription to initiate a discrete "wave" of elongation complexes. Analyzing genome-wide transcription and repair by next-generation sequencing, we identified locations of elongation complexes and transcription-repair coupling events in genes throughout the genome. Using UV-exposed human skin fibroblasts, we found that, at the dose used, a single wave of elongation complexes was blocked within the first 25 kb of genes. TCR occurred where the elongation complexes were blocked, and repair was associated with the dissociation of these complexes. These results indicate that individual elongation complexes do not engage in multiple rounds of TCR with successive lesions. Our results are consistent with a model in which RNAPII is dissociated after the dual incision of the transcription-blocking lesion, perhaps by Cockayne syndrome group B translocase, or during the synthesis of a repair patch. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Computational Complexity

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2017-02-01

    Full Text Available Complex systems (CS involve many elements that interact at different scales in time and space. The challenges in modeling CS led to the development of novel computational tools with applications in a wide range of scientific areas. The computational problems posed by CS exhibit intrinsic difficulties that are a major concern in Computational Complexity Theory. [...

  19. Complex narratives

    NARCIS (Netherlands)

    Simons, J.

    2008-01-01

    This paper brings together narratology, game theory, and complexity theory to untangle the intricate nature of complex narratives in contemporary cinema. It interrogates the different terms - forking-path narratives, mind-game films, modular narratives, multiple-draft films, database narratives,

  20. Communication Complexity

    Indian Academy of Sciences (India)

    Jaikumar Radhakrishnan

    Communication complexity. Strategy I. Alice x ∈ {0, 1}n. ⇒. ⇐. Bob y ∈ {0, 1}n. Naive strategy. Alice sends x to Bob. Bob tells Alice if x = y. Cost. Requires n + 1 bits of communication. Jaikumar Radhakrishnan. Communication Complexity ...

  1. Complexity Theory

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  2. Complex derivatives

    Science.gov (United States)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  3. Role of the σ54 Activator Interacting Domain in Bacterial Transcription Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Alexander R. [Univ. of California, Berkeley, CA (United States); Wemmer, David E. [Univ. of California, Berkeley, CA (United States)

    2016-10-11

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.

  4. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  5. Transcriptional regulatory proteins as biosensing tools.

    Science.gov (United States)

    Turner, Kendrick; Joel, Smita; Feliciano, Jessika; Feltus, Agatha; Pasini, Patrizia; Wynn, Daniel; Dau, Peter; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia

    2017-06-22

    We have developed sensing systems employing different classes of transcriptional regulatory proteins genetically and chemically modified to incorporate a fluorescent reporter molecule for detection of arsenic, hydroxylated polychlorinated biphenyls (OH-PCBs), and cyclic AMP (cAMP). These are the first examples of optical sensing systems based on transcriptional regulatory proteins.

  6. Transcriptional regulation of the cell cycle

    NARCIS (Netherlands)

    Stahl, M.

    2006-01-01

    Transcriptional regulators play an important role during cell cycle progression. A subset of these even seems to have a critical function in regulating cell cycle transitions. In this thesis, I have addressed the importance of transcriptional control in the regulation of cell cycle progression, in

  7. Overlapping transcription structure of human cytomegalovirus ...

    Indian Academy of Sciences (India)

    2013-01-21

    Jan 21, 2013 ... Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR.

  8. Transcription of Byzantine Chant - Problems, Possibilities, Formats

    DEFF Research Database (Denmark)

    Troelsgård, Christian

    2007-01-01

    Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes.......Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes....

  9. Speech Transcript Evaluation for Information Retrieval

    NARCIS (Netherlands)

    van der Werff, Laurens Bastiaan; Kraaij, Wessel; de Jong, Franciska M.G.

    Speech recognition transcripts are being used in various fields of research and practical applications, putting various demands on their accuracy. Traditionally ASR research has used intrinsic evaluation measures such as word error rate to determine transcript quality. In non-dictation-type

  10. DNA dynamically directs its own transcription initiation

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, K. O. (Kim O.); Kalosakas, G. (George); Bishop, A. R. (Alan R.); Choi, C. H. (Chu H.); Usheva, A. (Anny)

    2004-01-01

    Initiation of DNA gene transcription requires a transient opening in the double helix at the transcriptional start site. It is generally assumed that the location of this 'transcriptional bubble' is determined by sequence-specific protein binding, and that the energy required for unwinding the double helix comes from torsional strain. Physical twisting should cause DNA to open consistently in weakly bonded A/T rich stretches, however, simple base-pairing energetics alone can not account for the variety of observed transcriptional start sites. Applying the Peyrard-Bishop nonlinear cooperativity model to DNA, we are able to predict that thermally-induced DNA bubbles, similar in size to transcription bubbles, form at specific locations on DNA promoters. These predicted openings agree remarkably well with experiment, and that they correlate exactly with known transcription start sites and important regulatory sites on three different promoters. We propose that the sequence-specific location of the transcriptional start site is predetermined by the inherent opening patterns of specific DNA sequences. As DNA bubble formation is independent of protein binding, it appears that DNA is not only a passive carrier of information, but its dynamics plays an important role in directing the transcription and regulation of the genes it contains.

  11. Overlapping transcription structure of human cytomegalovirus ...

    Indian Academy of Sciences (India)

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three ...

  12. RNA-Seq for Enrichment and Analysis of IRF5 Transcript Expression in SLE

    Science.gov (United States)

    Stone, Rivka C.; Du, Peicheng; Feng, Di; Dhawan, Kopal; Rönnblom, Lars; Eloranta, Maija-Leena; Donnelly, Robert; Barnes, Betsy J.

    2013-01-01

    Polymorphisms in the interferon regulatory factor 5 (IRF5) gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE). IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s), it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1) SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2) an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3) an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype. PMID:23349905

  13. RNA-Seq for enrichment and analysis of IRF5 transcript expression in SLE.

    Directory of Open Access Journals (Sweden)

    Rivka C Stone

    Full Text Available Polymorphisms in the interferon regulatory factor 5 (IRF5 gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE. IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s, it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1 SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2 an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3 an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype.

  14. Experimental incubations elicit profound changes in community transcription in OMZ bacterioplankton.

    Directory of Open Access Journals (Sweden)

    Frank J Stewart

    , and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations.

  15. Evolution of general transcription factors.

    Science.gov (United States)

    Gunbin, K V; Ruvinsky, A

    2013-02-01

    Three genes GTF2IRD1, GTF2I, and GTF2IRD2, which encode members of the GTF2I (or TFII-I) family of so-called general transcription factors, were discovered and studied during the last two decades. Chromosome location and similarity of exon-intron structures suggest that the family evolved by duplications. The initial duplication of ancestral proto-GTF2IRD1 gene likely occurred in early vertebrates prior to origin of cartilaginous fish and led to formation of GTF2I (>450 MYA), which was later lost in bony fish but successfully evolved in the land vertebrates. The second duplication event, which created GTF2IRD2, occurred prior to major radiation events of eutherian mammalian evolution (>100 MYA). During recent steps of primate evolution there was another duplication which led to formation of GTF2IRD2B (evolution of the genes. The atypical substitutions are often located on secondary structures joining α-helices and affect 3D arrangement of the protein globule. Such substitutions are commonly traced at the early stages of evolution in Tetrapoda, Amniota, and Mammalia.

  16. Histone variants in plant transcriptional regulation.

    Science.gov (United States)

    Jiang, Danhua; Berger, Frédéric

    2017-01-01

    Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Transcription Factor Pathways and Congenital Heart Disease

    Science.gov (United States)

    McCulley, David J.; Black, Brian L.

    2013-01-01

    Congenital heart disease is a major cause of morbidity and mortality throughout life. Mutations in numerous transcription factors have been identified in patients and families with some of the most common forms of cardiac malformations and arrhythmias. This review discusses factor pathways known to be important for normal heart development and how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. A comprehensive, current list of known transcription factor mutations associated with congenital heart disease is provided, but the review focuses primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. By understanding the interaction partners, transcriptional targets, and upstream activators of these core cardiac transcription factors, additional information about normal heart formation and further insight into genes and pathways affected in congenital heart disease should result. PMID:22449847

  18. Chromosomal organization of transcription: in a nutshell.

    Science.gov (United States)

    Meyer, Sam; Reverchon, Sylvie; Nasser, William; Muskhelishvili, Georgi

    2017-11-28

    Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.

  19. A systems approach to analyze transcription factors in mammalian cells.

    Science.gov (United States)

    Soler, Eric; Andrieu-Soler, Charlotte; Boer, Ernie de; Bryne, Jan Christian; Thongjuea, Supat; Rijkers, Erikjan; Demmers, Jeroen; van IJcken, Wilfred; Grosveld, Frank

    2011-02-01

    Transcription factors (TFs) play a central role in the development of multicellular organisms. The sequential actions of critical TFs direct cells to adopt defined differentiation pathways leading to functional, fully differentiated tissues. Here, we describe a generic experimental pipeline that integrates biochemistry, genetics and next generation sequencing with bioinformatics to characterize TF complexes composition, function and target genes at a genome-wide scale. We show an application of this experimental pipeline which aims to unravel the molecular events taking place during hematopoietic cell differentiation. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward

    2014-01-01

    to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2...... diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele...

  1. Carney Complex

    Science.gov (United States)

    ... at least one of the features listed. Major diagnostic features for Carney Complex Spotty skin pigmentation with ... called large cell calcifying Sertoli cell tumor (LCCST) Thyroid cancer Psammomatous melanotic schwannoma, meaning tumors that grow on ...

  2. Complex Covariance

    Directory of Open Access Journals (Sweden)

    Frieder Kleefeld

    2013-01-01

    Full Text Available According to some generalized correspondence principle the classical limit of a non-Hermitian quantum theory describing quantum degrees of freedom is expected to be the well known classical mechanics of classical degrees of freedom in the complex phase space, i.e., some phase space spanned by complex-valued space and momentum coordinates. As special relativity was developed by Einstein merely for real-valued space-time and four-momentum, we will try to understand how special relativity and covariance can be extended to complex-valued space-time and four-momentum. Our considerations will lead us not only to some unconventional derivation of Lorentz transformations for complex-valued velocities, but also to the non-Hermitian Klein-Gordon and Dirac equations, which are to lay the foundations of a non-Hermitian quantum theory.

  3. Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing

    Science.gov (United States)

    Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.

    2013-03-01

    The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.

  4. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    KAUST Repository

    Schmeier, Sebastian

    2016-10-17

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.

  5. Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Suparna; Lou, Xiaohua; Hwang, Peter; Rajashankar, Kanagalaghatta R.; Wang, Xiaoping; Gustafsson, Jan-Åke; Fletterick, Robert J.; Jacobson, Raymond H.; Webb, Paul [MDACC; (HMRI); (Cornell); (UCSF); (Houston)

    2014-07-01

    Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1–TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1–TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.

  6. Reconstruction of transcription control networks in Mollicutes by high-throughput identification of promoters

    Directory of Open Access Journals (Sweden)

    Gleb Y Fisunov

    2016-12-01

    Full Text Available Bacteria of the class Mollicutes have significantly reduced genomes and gene expression control systems. They are also efficient pathogens that can colonize a broad range of hosts including plants and animals. Despite their simplicity, Mollicutes demonstrate complex transcriptional responses to various conditions, which contradicts their reduction in gene expression regulation mechanisms. We analyzed the conservation and distribution of transcription regulators across the 50 Mollicutes species. The majority of the transcription factors regulate transport and metabolism, and there are four transcription factors that demonstrate significant conservation across the analyzed bacteria. These factors include repressors of chaperone HrcA, cell cycle regulator MraZ and two regulators with unclear function from the WhiA and YebC/PmpR families. We then used three representative species of the major clades of Mollicutes (Acholeplasma laidlawii, Spiroplasma melliferum and Mycoplasma gallisepticum to perform promoters mapping and activity quantitation. We revealed that Mollicutes evolved towards a promoter architecture simplification that correlates with a diminishing role of transcription regulation and an increase in transcriptional noise. Using the identified operons structure and a comparative genomics approach, we reconstructed the transcription control networks for these three species. The organization of the networks reflects the adaptation of bacteria to specific conditions and hosts.

  7. RECQ5 helicase promotes resolution of conflicts between replication and transcription in human cells.

    Science.gov (United States)

    Urban, Vaclav; Dobrovolna, Jana; Hühn, Daniela; Fryzelkova, Jana; Bartek, Jiri; Janscak, Pavel

    2016-08-15

    Collisions between replication and transcription machineries represent a significant source of genomic instability. RECQ5 DNA helicase binds to RNA-polymerase (RNAP) II during transcription elongation and suppresses transcription-associated genomic instability. Here, we show that RECQ5 also associates with RNAPI and enforces the stability of ribosomal DNA arrays. We demonstrate that RECQ5 associates with transcription complexes in DNA replication foci and counteracts replication fork stalling in RNAPI- and RNAPII-transcribed genes, suggesting that RECQ5 exerts its genome-stabilizing effect by acting at sites of replication-transcription collisions. Moreover, RECQ5-deficient cells accumulate RAD18 foci and BRCA1-dependent RAD51 foci that are both formed at sites of interference between replication and transcription and likely represent unresolved replication intermediates. Finally, we provide evidence for a novel mechanism of resolution of replication-transcription collisions wherein the interaction between RECQ5 and proliferating cell nuclear antigen (PCNA) promotes RAD18-dependent PCNA ubiquitination and the helicase activity of RECQ5 promotes the processing of replication intermediates. © 2016 Urban et al.

  8. Cryptic Transcription and Early Termination in the Control of Gene Expression

    Directory of Open Access Journals (Sweden)

    Jessie Colin

    2011-01-01

    Full Text Available Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs. CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.

  9. Global mapping of transcription factor motifs in human aging.

    Science.gov (United States)

    Alfego, David; Rodeck, Ulrich; Kriete, Andres

    2018-01-01

    Biological aging is a complex process dependent on the interplay of cell autonomous and tissue contextual changes which occur in response to cumulative molecular stress and manifest through adaptive transcriptional reprogramming. Here we describe a transcription factor (TF) meta-analysis of gene expression datasets accrued from 18 tissue sites collected at different biological ages and from 7 different in-vitro aging models. In-vitro aging platforms included replicative senescence and an energy restriction model in quiescence (ERiQ), in which ATP was transiently reduced. TF motifs in promoter regions of trimmed sets of target genes were scanned using JASPAR and TRANSFAC. TF signatures established a global mapping of agglomerating motifs with distinct clusters when ranked hierarchically. Remarkably, the ERiQ profile was shared with the majority of in-vivo aged tissues. Fitting motifs in a minimalistic protein-protein network allowed to probe for connectivity to distinct stress sensors. The DNA damage sensors ATM and ATR linked to the subnetwork associated with senescence. By contrast, the energy sensors PTEN and AMPK connected to the nodes in the ERiQ subnetwork. These data suggest that metabolic dysfunction may be linked to transcriptional patterns characteristic of many aged tissues and distinct from cumulative DNA damage associated with senescence.

  10. Identification of yeast transcriptional regulation networks using multivariate random forests.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xiao

    2009-06-01

    Full Text Available The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays to sequence features residing in gene promoters (as derived from DNA motif data and transcription factor binding to gene promoters (as derived from tiling microarrays. We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression measures. An analysis of the multivariate random forest output reveals complex regulatory networks, which consist of cohesive, condition-dependent regulatory cliques. Each regulatory clique features homogeneous gene expression profiles and common motifs or synergistic motif groups. We apply our method to several yeast physiological processes: cell cycle, sporulation, and various stress conditions. Our technique displays excellent performance with regard to identifying known regulatory motifs, including high order interactions. In addition, we present evidence of the existence of an alternative MCB-binding pathway, which we confirm using data from two independent cell cycle studies and two other physioloigical processes. Finally, we have uncovered elaborate transcription regulation refinement mechanisms involving PAC and mRRPE motifs that govern essential rRNA processing. These include intriguing instances of differing motif dosages and differing combinatorial motif control that promote regulatory specificity in rRNA metabolism under differing physiological processes.

  11. EAR motif-mediated transcriptional repression in plants

    Science.gov (United States)

    Kagale, Sateesh

    2011-01-01

    Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLN xxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TO PLESS (TPL) and AtSA P18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA 19, co-complex formation between TPL-related 1 (TPR1) and AtHDA 19, as well as direct physical interaction between AtSA P18 and AtHDA 19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR -mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors. PMID:20935498

  12. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  13. Retroviral transcriptional regulation and embryonic stem cells: war and peace.

    Science.gov (United States)

    Schlesinger, Sharon; Goff, Stephen P

    2015-03-01

    Retroviruses have evolved complex transcriptional enhancers and promoters that allow their replication in a wide range of tissue and cell types. Embryonic stem (ES) cells, however, characteristically suppress transcription of proviruses formed after infection by exogenous retroviruses and also of most members of the vast array of endogenous retroviruses in the genome. These cells have unusual profiles of transcribed genes and are poised to make rapid changes in those profiles upon induction of differentiation. Many of the transcription factors in ES cells control both host and retroviral genes coordinately, such that retroviral expression patterns can serve as markers of ES cell pluripotency. This overlap is not coincidental; retrovirus-derived regulatory sequences are often used to control cellular genes important for pluripotency. These sequences specify the temporal control and perhaps "noisy" control of cellular genes that direct proper cell gene expression in primitive cells and their differentiating progeny. The evidence suggests that the viral elements have been domesticated for host needs, reflecting the wide-ranging exploitation of any and all available DNA sequences in assembling regulatory networks. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Transcriptional analysis of the Streptococcus pyogenes salivaricin locus.

    Science.gov (United States)

    Namprachan-Frantz, Phanramphoei; Rowe, Hannah M; Runft, Donna L; Neely, Melody N

    2014-02-01

    The sal lantibiotic locus plays an important role in the virulence of Streptococcus pyogenes. Our transcriptional analysis of the sal locus provides new information on the complex regulation of this operon. Transcription of the operon is regulated by a promoter upstream of the operon and by a second internal promoter upstream of the salKRZ genes. Here we identify the location of the internal promoter and provide information on how this promoter is autoregulated by proteins within the locus. We determined by primer extension that the salKR promoter is located within the salY gene and identified several regulatory regions important for expression. The higher activity of the promoter in a salKR deletion strain indicates a role in repression by the SalR response regulator. Further, this promoter had higher activity in a salA deletion strain, implicating corepression or a signaling role for the SalA peptide. Finally, we demonstrate that this promoter can be controlled by host factors. Analysis of transcriptional regulation of this locus provides a better understanding of the function of the sal locus in S. pyogenes pathogenesis.

  15. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator)*

    Science.gov (United States)

    Shao, Wei; Zumer, Kristina; Fujinaga, Koh; Peterlin, B. Matija

    2016-01-01

    The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCFFBXO3 (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus. PMID:27365398

  16. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator).

    Science.gov (United States)

    Shao, Wei; Zumer, Kristina; Fujinaga, Koh; Peterlin, B Matija

    2016-08-19

    The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCF(FBXO3) (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS.

    Science.gov (United States)

    Ferraiuolo, Laura; De Bono, Joseph P; Heath, Paul R; Holden, Hazel; Kasher, Paul; Channon, Keith M; Kirby, Janine; Shaw, Pamela J

    2009-06-01

    The transcriptional adaptive response of motoneurons and muscles to voluntary exercise has been investigated by using laser capture microdissection and microarray analysis. Our results show that motoneurons respond to physical activity by activating a complex transcriptional plan, with changes involved in neurotrophic factor signalling, electrophysiological changes and synaptic reorganization. Gastrocnemius muscle shows increases in transcripts responsible for neovascularization and new myogenesis. Both tissues show transcriptional changes involved in the growth and reinforcement of the neuromuscular junction. This study indicates that the neuromuscular system undergoes significant structural and functional alterations, aiming to optimize the transmission of both chemical and electrical stimuli, thus prompting axonal outgrowth and mechanisms similar to long-term potentiation in hippocampal neurons. Understanding the response of these cells during exercise has potentially important implications for human neuromuscular disease, including amyotrophic lateral sclerosis, by highlighting candidate genes pivotal for the balance between the physiology and the pathology of the neuromuscular system in terms of the stress response to physical exercise.

  18. Control of cell cycle transcription during G1 and S phases.

    Science.gov (United States)

    Bertoli, Cosetta; Skotheim, Jan M; de Bruin, Robertus A M

    2013-08-01

    The accurate transition from G1 phase of the cell cycle to S phase is crucial for the control of eukaryotic cell proliferation, and its misregulation promotes oncogenesis. During G1 phase, growth-dependent cyclin-dependent kinase (CDK) activity promotes DNA replication and initiates G1-to-S phase transition. CDK activation initiates a positive feedback loop that further increases CDK activity, and this commits the cell to division by inducing genome-wide transcriptional changes. G1-S transcripts encode proteins that regulate downstream cell cycle events. Recent work is beginning to reveal the complex molecular mechanisms that control the temporal order of transcriptional activation and inactivation, determine distinct functional subgroups of genes and link cell cycle-dependent transcription to DNA replication stress in yeast and mammals.

  19. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells

    Science.gov (United States)

    Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael

    2017-01-01

    The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002

  20. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.