WorldWideScience

Sample records for vortexing combustor vc

  1. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    Science.gov (United States)

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  2. Characteristics of a trapped-vortex (TV) combustor

    Science.gov (United States)

    Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.

    1994-01-01

    The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.

  3. Combustion of hydrogen in an experimental trapped vortex combustor

    Science.gov (United States)

    Wu, Hui; Chen, Qin; Shao, Weiwei; Zhang, Yongliang; Wang, Yue; Xiao, Yunhan

    2009-09-01

    Combustion performances of pure hydrogen in an experimental trapped vortex combustor have been tested under different operating conditions. Pressure fluctuations, NOx emissions, OH distributions, and LBO (Lean Blow Out) were measured in the tests. Results indicate that the TVC test rig has successfully realized a double vortex construction in the cavity zone in a wide range of flow conditions. Hydrogen combustion in the test rig has achieved an excellent LBO performance and relatively low NOx emissions. Through comparison of dynamic pressure data, OH fluctuation images, and NOx emissions, the optimal operating condition has been found out to be Φp =0.4, fuel split =0.4, and primary air/fuel premixed.

  4. Single Cavity Trapped Vortex Combustor Dynamics – Part-1: Experiments

    Directory of Open Access Journals (Sweden)

    Atul Singhal

    2011-03-01

    Full Text Available In the present work, a water-cooled, modular, atmospheric pressure Trapped Vortex Combustor (TVC test rig is designed and fabricated for reacting and non-reacting flow experiments. The unique features of this rig consist of a continuously variable length-to-depth ratio (L/D of the cavity and optical access through quartz plates provided on three sides for visualization. Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation. Reacting flow experiments for the selected cases indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. The pressure drop across the single cavity TVC is observed to be lower as compared to conventional combustors. Temperatures are measured at the exit using thermocouples and corrected for radiative losses. Species concentrations are measured at the exit using an exhaust gas analyzer. The combustion efficiency is observed to be around 97-99 % and the pattern factor is observed to be in the range of 0.08 to 0.13. High-speed imaging made possible by the optical access indicates that the overall combustion is fairly steady, and there is no vortex shedding downstream.

  5. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    Science.gov (United States)

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  6. Single Cavity Trapped Vortex Combustor Dynamics – Part-2: Simulations

    Directory of Open Access Journals (Sweden)

    Atul Singhal

    2011-03-01

    Full Text Available The first part described a versatile TVC test rig capable of a continuously variable length-to-depth ratio (L/D of the cavity and optical access through quartz plates provided on three sides for visualization. Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation, the results of which were presented in part-1. The results indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. In the present paper, numerical simulations are performed to ascertain reasons for some of the trends. The predicted temperatures at the exit showed reasonably good agreement with measured values. The experiments are also performed for different flow conditions to ascertain stability limits of the combustor. Insight from these set of experiments along with simulations has highlighted the importance of air and fuel injection strategies in the cavity. It was observed in the experiments that for certain cases involving moderate cavity-air velocity, the flame tend to blowout whereas at higher and lower cavity-air velocities, the flame was observed to be stable. This observation could be explained based on understanding obtained from simulations. From a mixing and combustion efficiency standpoint, it is desirable to have a cavity vortex that is anti-clockwise. However, natural tendency for flow over a cavity is to form a vortex that is clockwise. The tendency to blowout at higher inlet flow velocities is thought to be because of these two opposing effects. This basic understating of cavity flow dynamics can be used for further design improvements in future to improve flame stability at higher inlet flow velocities.

  7. A novel vortex-fluidized bed combustor with two combustion chambers for rice-husk fuel

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T.

    2004-11-01

    Full Text Available A novel vortexing-fluidized bed combustor (VFBC using rice-husk as fuel was developed and presented. The combined characteristics of vortex combustion and fluidized bed combustion are the main features of the VFBC, which was designed to achieve high thermal capacity (MWth m-3, high thermal efficiency and low diameter to height ratio. The VFBC comprises a vertical cylinder chamber and a conical base, which provides a bed for incompletely combusted fuel. The overall dimensions are 1.10 m in height and 0.40 m in diameter. To evaluate combustor performance, the specific feed rate of fuel and mass flow rates of the primary, secondary, and tertiary air were varied independently of one another. The combustion appeared into two zones characterized by different combustion behaviors, i.e. 1 vortext combustion above the vortex ring and 2 fluidized bed combustion below the vortex ring. The fluidized bed zone has uniform temperature distributions across the cross-section of the combustor. The swirling of air above the vortex ringand the vortex ring itself played important roles in preventing the escape of combustion particulates. Bottomash appeared as fine black and grey particles of ash, which ranged in size from 200 to 600 µm. Fluidizationcould be initiated without the assistance of any inert material mixed into the bed. The experimental resultsindicated that thermal efficiency did not depend on the secondary or tertiary airflows, but was significantlyinfluenced by the excess air resulting from the combined total of the three airflows. The introduction of thetertiary airflow helped maintaining the temperature inside the combustor within acceptable levels. According to experimental conditions, i.e. a specific feed rate of 240 kg h-1m-3 and excess air (157%, it was found that the VFBC could achieve an exit gas temperature of 1060ºC, thermal efficiency of 95%, and thermal capacity of 0.91 MWth m-3. The amounts of CO2, CO, and O2 gases emitted were directly

  8. Measurement and Computation of Supersonic Flow in a Lobed Diffuser-Mixer for Trapped Vortex Combustors

    Science.gov (United States)

    Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.

    2002-01-01

    The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the

  9. Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor

    Energy Technology Data Exchange (ETDEWEB)

    Altay, H. Murat; Speth, Raymond L.; Hudgins, Duane E.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)

    2009-05-15

    The combustion dynamics of propane-hydrogen mixtures are investigated in an atmospheric pressure, lean, premixed backward-facing step combustor. We systematically vary the equivalence ratio, inlet temperature and fuel composition to determine the stability map of the combustor. Simultaneous pressure, velocity, heat release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When fuel is injected far upstream from the step, the equivalence ratio entering the flame is temporally and spatially uniform, and the combustion dynamics are governed only by flame-vortex interactions. Four distinct dynamic regimes are observed depending on the operating parameters. At high but lean equivalence ratios, the flame is unstable and oscillates strongly as it is wrapped around the large unsteady wake vortex. At intermediate equivalence ratios, weakly oscillating quasi-stable flames are observed. Near the lean blowout limit, long stable flames extending from the corner of the step are formed. At atmospheric inlet temperature, the unstable mode resonates at the 1/4 wavemode of the combustor. As the inlet temperature is increased, the 5/4 wavemode of the combustor is excited at high but lean equivalence ratios, forming the high-frequency unstable flames. Higher hydrogen concentration in the fuel and higher inlet temperatures reduce the equivalence ratios at which the transitions between regimes are observed. We plot combustion dynamics maps or the response curves, that is the overall sound pressure level as a function of the equivalence ratio, for different operating conditions. We demonstrate that numerical results of strained premixed flames can be used to collapse the response curves describing the transitions among the dynamic modes onto a function of the heat release rate parameter alone, rather than a function dependent on the equivalence ratio, inlet temperature and fuel

  10. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  11. Annular vortex combustor

    Science.gov (United States)

    Nieh, Sen; Fu, Tim T.

    1992-01-01

    An apparatus for burning coal water fuel, dry ultrafine coal, pulverized l and other liquid and gaseous fuels including a vertically extending outer wall and an inner, vertically extending cylinder located concentrically within the outer wall, the annnular space between the outer wall and the inner cylinder defining a combustion chamber and the all space within the inner cylinder defining an exhaust chamber. Fuel and atomizing air are injected tangentially near the bottom of the combustion chamber and secondary air is introduced at selected points along the length of the combustion chamber. Combustion occurs along the spiral flow path in the combustion chamber and the combined effects of centrifugal, gravitational and aerodynamic forces cause particles of masses or sizes greater than the threshold to be trapped in a stratified manner until completely burned out. Remaining ash particles are then small enough to be entrained by the flue gas and exit the system via the exhaust chamber in the opposite direction.

  12. On VC-density over indiscernible sequences

    OpenAIRE

    Guingona, Vincent; Hill, Cameron Donnay

    2011-01-01

    In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density and dp-rank coincide in the natural way.

  13. BRIC-100VC Biological Research in Canisters (BRIC)-100VC

    Science.gov (United States)

    Richards, Stephanie E.; Levine, Howard G. (Compiler); Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations of the effects of space flight on small specimens. The BRIC 100 mm petri dish vacuum containment unit (BRIC-100VC) has supported Dugesia japonica (flatworm) within spring under normal atmospheric conditions for 29 days in space and Hemerocallis lilioasphodelus L. (daylily) somatic embryo development within a 5% CO2 gaseous environment for 4.5 months in space. BRIC-100VC is a completely sealed, anodized-aluminum cylinder (Fig. 1) providing containment and structural support of the experimental specimens. The top and bottom lids of the canister include rapid disconnect valves for filling the canister with selected gases. These specialized valves allow for specific atmospheric containment within the canister, providing a gaseous environment defined by the investigator. Additionally, the top lid has been designed with a toggle latch and O-ring assembly allowing for prompt sealing and removal of the lid. The outside dimensions of the BRIC-100VC canisters are 16.0 cm (height) x 11.4 cm (outside diameter). The lower portion of the canister has been equipped with sufficient storage space for passive temperature and relative humidity data loggers. The BRIC- 100VC canister has been optimized to accommodate standard 100 mm laboratory petri dishes or 50 mL conical tubes. Depending on storage orientation, up to 6 or 9 canisters have been flown within an International Space Station (ISS) stowage locker.

  14. VC-dimension of univariate decision trees.

    Science.gov (United States)

    Yildiz, Olcay Taner

    2015-02-01

    In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.

  15. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  16. Advanced Low NOx Combustors for Aircraft Gas Turbines

    Science.gov (United States)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  17. Fluid Mechanics of Lean Blowout Precursors in Gas Turbine Combustors

    Directory of Open Access Journals (Sweden)

    T. M. Muruganandam

    2012-03-01

    Full Text Available Understanding of lean blowout (LBO phenomenon, along with the sensing and control strategies could enable the gas turbine combustor designers to design combustors with wider operability regimes. Sensing of precursor events (temporary extinction-reignition events based on chemiluminescence emissions from the combustor, assessing the proximity to LBO and using that data for control of LBO has already been achieved. This work describes the fluid mechanic details of the precursor dynamics and the blowout process based on detailed analysis of near blowout flame behavior, using simultaneous chemiluminescence and droplet scatter observations. The droplet scatter method represents the regions of cold reactants and thus help track unburnt mixtures. During a precursor event, it was observed that the flow pattern changes significantly with a large region of unburnt mixture in the combustor, which subsequently vanishes when a double/single helical vortex structure brings back the hot products back to the inlet of the combustor. This helical pattern is shown to be the characteristic of the next stable mode of flame in the longer combustor, stabilized by double helical vortex breakdown (VBD mode. It is proposed that random heat release fluctuations near blowout causes VBD based stabilization to shift VBD modes, causing the observed precursor dynamics in the combustor. A complete description of the evolution of flame near the blowout limit is presented. The description is consistent with all the earlier observations by the authors about precursor and blowout events.

  18. VC-dimensions of random function classes

    Directory of Open Access Journals (Sweden)

    Bernard Ycart

    2008-01-01

    Full Text Available For any class of binary functions on [n]={1, …, n} a classical result by Sauer states a sufficient condition for its VC-dimension to be at least d: its cardinality should be at least O(n d-1. A necessary condition is that its cardinality be at least 2 d (which is O(1 with respect to n. How does the size of a `typical' class of VC-dimension d compare to these two extreme thresholds ? To answer this, we consider classes generated randomly by two methods, repeated biased coin flips on the n-dimensional hypercube or uniform sampling over the space of all possible classes of cardinality k on [n]. As it turns out, the typical behavior of such classes is much more similar to the necessary condition; the cardinality k need only be larger than a threshold of 2 d for its VC-dimension to be at least d with high probability. If its expected size is greater than a threshold of O(log (which is still significantly smaller than the sufficient size of O(n d-1 then it shatters every set of size d with high probability. The behavior in the neighborhood of these thresholds is described by the asymptotic probability distribution of the VC-dimension and of the largest d such that all sets of size d are shattered.

  19. Gas turbine combustor transition

    Science.gov (United States)

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  20. Variable volume combustor

    Science.gov (United States)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  1. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  2. Vortex phase diagram studies in the weakly pinned single crystals of ...

    Indian Academy of Sciences (India)

    According to the LO theory, Jc is inversely proportional to the square root of Vc. An anomalous increase in Jc, therefore, implies a reduction in the correlation volume Vc [5]. The PE thus marks a transition from an ordered flux line lattice to a disordered vortex state. Apart from the PE anomaly, another anomalous feature in the ...

  3. Combustor and method for purging a combustor

    Science.gov (United States)

    Berry, Jonathan Dwight; Hughes, Michael John

    2015-06-09

    A combustor includes an end cap. The end cap includes a first surface and a second surface downstream from the first surface, a shroud that circumferentially surrounds at least a portion of the first and second surfaces, a plate that extends radially within the shroud, a plurality of tubes that extend through the plate and the first and second surfaces, and a first purge port that extends through one or more of the plurality of tubes, wherein the purge port is axially aligned with the plate.

  4. Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Musgrave, J.A.; Goff, F.; Shevenell, L.; Trujillo, P.E. Jr.; Counce, D.; Luedemann, G.; Garcia, S.; Dennis, B.; Hulen, J.B.; Janik, C.; Tomei, F.A.

    1989-02-01

    This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

  5. Staged cascade fluidized bed combustor

    Science.gov (United States)

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  6. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  7. Lost in interpretation: should the highest VC value be used to calculate the FEV1/VC ratio?

    Directory of Open Access Journals (Sweden)

    Fortis S

    2016-09-01

    Full Text Available Spyridon FortisDepartment of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA, USAAirflow obstruction or obstructive ventilatory defect (OVD is defined as low forced expiratory volume in 1 second (FEV1 to vital capacity (VC ratio. VC can be measured in various ways, and the definition of “low FEV1/VC” ratio varies.     VC can be measured during forced expiration before bronchodilators (forced vital capacity [FVC] and after bronchodilators (post-FVC, and during slow expiration (slow vital capacity [SVC] and during inspiration (inspiratory vital capacity [IVC]. Theoretically, in a healthy person, VC values should be the same regardless of the maneuver used. Nevertheless, SVC is usually larger than FVC except in patients with no OVD and body mass index <25 kg/m2.1 In obstructive lung diseases, FVC may be reduced, which may result in an increase of FEV1/FVC ratio and misdiagnosis.2 For that reason, American Thoracic Society–European Respiratory Society recommends using SVC or IVC to calculate the FEV1/VC ratio.2 Approximately, 10% of smokers have FEV1% predicted <80% and FEV1/FVC >70%, a pattern known as preserved ratio impaired spirometry.3 Of all the subjects with FVC below the lower limit of normal (LLN and FEV1/FVC > LLN, only 64% have restriction in lung volumes. The rest 36% have a nonspecific Pulmonary Function Test pattern.4 Approximately, 15% of patients with this nonspecific PFT pattern develop OVD in follow-up PFTs.4 It is possible that a portion of patients with obstructive lung disease remain underdiagnosed when FVC is used to compute FEV1/FVC ratio.View the original paper by Torén and colleagues.

  8. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  9. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  10. Radial midframe baffle for can-annular combustor arrangement having tangentially oriented combustor cans

    Science.gov (United States)

    Rodriguez, Jose L.

    2015-09-15

    A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.

  11. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  12. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants

    Science.gov (United States)

    Walworth, Aaron E.; Chai, Benli; Song, Guo-qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all

  13. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Directory of Open Access Journals (Sweden)

    Aaron E Walworth

    Full Text Available In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L., a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora', which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT. Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5 gene was down-regulated and associated with five other differentially expressed (DE genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2, a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5, and a VERNALIZATION1-like gene (VcVRN1, may function as integrators in place of FLOWERING LOCUS C (FLC in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1, LEAFY-like (VcLFY, APETALA1-like (VcAP1, CAULIFLOWER 1-like (VcCAL1, and FRUITFULL-like (VcFUL genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of

  14. Scientific core hole VC-2A, Valles Caldera, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Musgrave, J.; Goff, S. (Los Alamos National Lab., NM (USA)); Turner, T. (Turner (Tom), Salt Lake City, UT (USA))

    1990-10-01

    This report details the remedial action activities that were necessary to complete scientific core hole Valles caldera {number sign}2A (VC-2A) before it was relinquished to the landowners. Sandia National Laboratories, acting as the Geoscience Research Drilling Office (GRDO), managed the coring operations. Los Alamos National Laboratory (Los Alamos) obtained the proper drilling permits with the New Mexico State Engineers Office (SEO). A legal agreement between Los Alamos and the landowners states that the Laboratory will give the landowners the completed core hold with casing, well head, and other hardware at the end of May 1991, or earlier if scientific investigations were completed. By May 1988, the Science Team completed the planned scientific investigations in the VC-2A core hole. Upon the insistence of the GRDO, the New Mexico Oil Conservation Division (OCD) inspected the core hole, declared jurisdiction, and required that the 11.43- by 11.43-cm annular cement job be repaired to comply with OCD regulations. These regulations state that there must be a return to surface of cement in all cementing operations. We successfully completed a squeeze cementing operation and relinquished the core hold to the landowners in November 1988 to the satisfaction of the OCD, SEO, the landowners, and Los Alamos. 7 refs., 4 figs., 1 tab.

  15. Assessment of Combustor Working Environments

    Directory of Open Access Journals (Sweden)

    Leiyong Jiang

    2012-01-01

    Full Text Available In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the combustor. The airflow over each flow element of the combustor can or liner is not evenly distributed, and considerable variations, ±25%, around the average values, are observed. It is more important to note that the temperatures at the combustor can and cooling wiggle strips vary significantly, which can significantly affect fatigue life of engine critical components. The present study suggests that to develop an adequate aerothermodynamics tool, it is necessary to carry out a further systematic study, including validation of numerical results, simulations at typical engine operating conditions, and development of simple correlations between engine operating conditions and component working environments. As an ultimate goal, the cost and time of gas turbine engine fleet management must be significantly reduced.

  16. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  17. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Science.gov (United States)

    Zhang, Zhe; Yu, Ting; Kovacevic, Radovan

    2017-07-01

    Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel

  18. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhe [Center for Laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75206 (United States); Yu, Ting [Center for Laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75206 (United States); School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Kovacevic, Radovan, E-mail: kovacevi@smu.edu [Center for Laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75206 (United States)

    2017-07-15

    Highlights: • The coatings of 420 stainless steel reinforced with VC were fabricated by high power direct diode laser. • The erosion resistance of the cladded layer was increased with the increase in the VC fraction. • No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. • The corrosion resistance of the cladded layer was decreased with the increase in the VC fraction. - Abstract: Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%–40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V{sub 8}C{sub 7}, M{sub 7}C{sub 3}, and M{sub 23}C{sub 6} were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content

  19. In vivo and in vitro phenotypic differences between Great Lakes VHSV genotype IVb isolates with sequence types vcG001 and vcG002

    Science.gov (United States)

    Imanse, Sierra M.; Cornwell, Emily R.; Getchell, Rodman G.; Kurath, Gael; Bowser, Paul R.

    2014-01-01

    Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus first recognized in farmed rainbow trout in Denmark. In the past decade, a new genotype of this virus, IVb was discovered in the Laurentian Great Lakes basin and has caused several massive die-offs in some of the 28 species of susceptible North American freshwater fishes. Since its colonization of the Great Lakes, several closely related sequence types within genotype IVb have been reported, the two most common of which are vcG001 and vcG002. These sequence types have different spatial distributions in the Great Lakes. The aim of this study was to determine whether the genotypic differences between representative vcG001 (isolate MI03) and vcG002 (isolate 2010-030 #91) isolates correspond to phenotypic differences in terms of virulence using both in vitro and in vivo approaches. In vitro infection of epithelioma papulosum cyprini (EPC), bluegill fry (BF-2), and Chinook salmon embryo (CHSE) cells demonstrated some differences in onset and rate of growth in EPC and BF-2 cells, without any difference in the quantity of RNA produced. In vivo infection of round gobies (Neogobius melanostomus) via immersion exposure to different concentrations of vcG001 or vcG002 caused a significantly greater mortality in round gobies exposed to 102 plaque forming units ml− 1 of vcG001. These experiments suggest that there are phenotypic differences between Great Lakes isolates of VHSV genotype IVb.

  20. An Experimental Study of Swirling Flows as Applied to Annular Combustors

    Science.gov (United States)

    Seal, Michael Damian, II

    1997-01-01

    This thesis presents an experimental study of swirling flows with direct applications to gas turbine combustors. Two separate flowfields were investigated: a round, swirling jet and a non-combusting annular combustor model. These studies were intended to allow both a further understanding of the behavior of general swirling flow characteristics, such as the recirculation zone, as well as to provide a base for the development of computational models. In order to determine the characteristics of swirling flows the concentration fields of a round, swirling jet were analyzed for varying amount of swirl. The experimental method used was a light scattering concentration measurement technique known as marker nephelometry. Results indicated the formation of a zone of recirculating fluid for swirl ratios (rotational speed x jet radius over mass average axial velocity) above a certain critical value. The size of this recirculation zone, as well as the spread angle of the jet, was found to increase with increase in the amount of applied swirl. The annular combustor model flowfield simulated the cold-flow characteristics of typical current annular combustors: swirl, recirculation, primary air cross jets and high levels of turbulence. The measurements in the combustor model made by the Laser Doppler Velocimetry technique, allowed the evaluation of the mean and rms velocities in the three coordinate directions, one Reynold's shear stress component and the turbulence kinetic energy: The primary cross jets were found to have a very strong effect on both the mean and turbulence flowfields. These cross jets, along with a large step change in area and wall jet inlet flow pattern, reduced the overall swirl in the test section to negligible levels. The formation of the strong recirculation zone is due mainly to the cross jets and the large step change in area. The cross jets were also found to drive a four-celled vortex-type motion (parallel to the combustor longitudinal axis) near the

  1. DLE combustor exceeds performance guarantees

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, John; Leonard, Gary [GE Marine and Industrial Engines, Evendale, OH (United States)

    1995-05-01

    The 50MW Gent power station in Belgium started operating in 1994 using General Electric`s high efficiency LM6000 gas turbine. This article describes performance testing of the new Dry Low Emissions (DLE) combustion system fitted to the aeroderivative gas turbine, which has allowed the combined cycle, cogeneration facility to function at full-power, with low emissions of nitrogen oxides, carbon monoxide, and unburned hydrocarbons. Conventional combustion systems are compared to the new premixed lean combustor used here. (UK)

  2. Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor

    KAUST Repository

    Kewlani, Gaurav

    2012-01-09

    Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.

  3. Corrosion behaviour of WC-VC-Co hardmetals in acidic media

    CSIR Research Space (South Africa)

    Konadu, DS

    2010-09-01

    Full Text Available The effect of increasing vanadium carbide (VC) content on the corrosion behaviour of tungsten carbide – 10 wt% cobalt hard metals was investigated in 1 M hydrochloric (HCl), and sulphuric (H2SO4) acids solutions. Increasing VC content makes the open...

  4. Data of evolutionary structure change: 2VC4A-3CTKA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 2VC4A-3CTKA 2VC4 3CTK A A QYPIINFTTAGATVQSYTNFIRAVRGRLTTGADVRHEIP...pdbChain> 3CTKA GYQDKWDGKDRAVF EEEEEE...ID>3CTK A 3CTKA AIHKSSPQCTTI ... A 3CTKA VTLQT--IADDK 3CTK A 3CTKA VATSK-

  5. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  6. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Eon [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of); Park, Seul Hyun [Dept. of Mechanical Systems Engineering, Chosun University, Gwangju (Korea, Republic of); Hwang, Cheol Hong [Dept. of Fire and Disaster Prevention, Daejeon University, Daejeon (Korea, Republic of)

    2016-11-15

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics.

  7. Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime

    OpenAIRE

    Karapetrov, G.; Yefremenko, V.; Mihajlović, G; Pearson, J. E.; Iavarone, M.; Novosad, V.; Bader, S. D.

    2012-01-01

    We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectification) with respect to the direction of vortex flow is evidence that vortex jamming strongly moderates vortex dynamics in mesoscopic geometries. The findings can be applied to superconducting devices exploiting vortex dynamics and vortex manipula...

  8. Vortex profiles and vortex interactions at the electroweak crossover

    OpenAIRE

    Chernodub, M.N.; Ilgenfritz, E. -M.; Schiller, A.

    1999-01-01

    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.

  9. Hydrodynamic Vortex on Surfaces

    Science.gov (United States)

    Ragazzo, Clodoaldo Grotta; de Barros Viglioni, Humberto Henrique

    2017-10-01

    The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green's function on the surface. The uniqueness of the Green's function is established under hydrodynamic conditions at the surface's boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler's equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move ("Steady Vortex Metric"). Some examples of surfaces with steady vortex metric isometrically embedded in R^3 are presented.

  10. Interfacial properties of methane/aqueous VC-713 solution under hydrate formation conditions.

    Science.gov (United States)

    Peng, Bao-Zi; Sun, Chang-Yu; Liu, Peng; Liu, Yan-Tao; Chen, Jun; Chen, Guang-Jin

    2009-08-15

    The interfacial tensions between methane and aqueous solutions of different contents of VC-713 (a terpolymer of N-vinylpyrrolidone, N-vinylcaprolactam, and dimethylamino-ethyl-methacrylate) were measured at different temperatures and pressures in the hydrate formation region. The surface adsorption free energies of methane were calculated accordingly in order to investigate the effect of this kinetic inhibitor on the nucleation of hydrate. The results show that the presence of VC-713 lowers the interfacial tension, increasing the concentration of methane on the surface of the aqueous phase, and thus promotes nucleation of hydrate at the gas/liquid interface. Additionally, the measured interfacial tension data suggest that VC-713 tends not to form micelles in water. Subsequently, the lateral growth rate of hydrate film on the surface of a methane bubble suspended in the aqueous phase was measured at different pressures to investigate the effect of VC-713 on the growth of hydrate. The results show that the lateral growth rate of hydrate film from aqueous VC-713 solution is much lower than that from pure water, demonstrating that VC-713 significantly inhibits the hydrate growth. The mechanism of the inhibition is also discussed.

  11. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  12. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws...

  13. VcBBX, VcMYB21, and VcR2R3MYB Transcription Factors Are Involved in UV-B-Induced Anthocyanin Biosynthesis in the Peel of Harvested Blueberry Fruit.

    Science.gov (United States)

    Nguyen, Chau T T; Lim, Sooyeon; Lee, Jeong Gu; Lee, Eun Jin

    2017-03-15

    This study was carried out to better understand the mechanism responsible for increasing the anthocyanins in blueberries after UV-B radiation at 6.0 kJ m-2 for 20 min. UV-B induced upregulation of genes involved in anthocyanin biosynthesis in blueberry fruit compared to a nontreated control. Phenylalanine ammonia lyase, chalcone synthase, and flavanone 3'-hydroxylase, which are enzymes that function upstream of anthocyanin biosynthesis, were significantly expressed by UV-B. Expression levels of VcBBX, VcMYB21, and VcR2R3MYB transcription factors (TFs) were upregulated by UV-B in the same manner as the anthocyanin biosynthesis genes. The significant increase in the expression of TFs occurred immediately after UV-B treatment and was then maximized within 3 h. In accordance with these changes, individual anthocyanin contents in the fruits treated with UV-B significantly increased within 6 h and were 2-3-fold higher than the control. Our results indicated that UV-B radiation stimulates an increase in anthocyanin biosynthesis, which could be upregulated by the TFs studied.

  14. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  15. Characterizing the effects of VPA, VC and RCCS on rabbit keratocytes onto decellularized bovine cornea.

    Directory of Open Access Journals (Sweden)

    Ying Dai

    Full Text Available To investigate the morphological and growth characteristics of rabbit keratocytes when cultured on decellularized cornea under simulate microgravity (SMG rotary cell culture system (RCCS and static culture or in plastic culture supplemented with small molecules of valproic acid (VPA and vitamin C (VC. Bovine corneas were firstly decellularized with Triton X-100 and NH(4OH and through short-term freezing process. Then cell count kit-8 (CCK-8 and flow cytometry were used to test the effects of VPA and VC on the proliferation, cell cycle and apoptosis of rabbit keratocytes. Hematoxylin-eosin (H&E staining and scanning electron microscopy (SEM imaging showed that cells were eliminated in the decellularized bovine corneas. The proliferation of cultured keratocytes was promoted by VPA and VC in the cell proliferation assay. VPA and VC moderately decreased the number of apoptotic cells and obviously promoted cell-cycle entrance of keratocytes. Rabbit keratocytes in plastic displayed spindle shape and rare interconnected with or without VPA and VC. Cells revealed dendritic morphology and reticular cellular connections when cultured on the carriers of decellularized corneas supplemented with VPA and VC even in the presence of 10% fetal bovine serum (FBS. When cultured in RCCS supplemented with VPA, VC and 10% FBS, keratocytes displayed round shape with many prominences and were more prone to grow into the pores of carriers with aggregation. Reverse transcription-polymerase chain reaction (RT-PCR analysis proved that the keratocytes cultured on decellularized bovine cornea under SMG with VPA and VC expressed keratocan and lumican. Keratocytes cultured on plastic expressed lumican but not keratocan. Immunofluorescence identification revealed that cells in all groups were positively immunostained for vimentin. Keratocytes on decellularized bovine cornea under SMG or in static culture were positively immunostained for keratocan and lumican. Thus, we

  16. Computational Study of Combustor-Turbine Interactions

    Science.gov (United States)

    Miki, Kenji; Liou, Meng-Sing

    2017-01-01

    The Open National Combustion Code (OpenNCC) is applied to the simulation of a realisticcombustor configuration [Energy Efficient Engine (E(exp. 3))] in order to investigate the unsteady flow fields inside the combustor and around the first stage stator of a high pressure turbine (HPT). We consider one-twelfth (24 degrees) of the full annular E(exp. 3) combustor with three different geometries of the combustor exit: one without the vane, and two others with the vane set at different relative positions in relation to the fuel nozzle (clocking). Although it is common to take the exit flow profiles obtained by separately simulating the combustor and then feed it as the inflow profile when modeling the HPT, our studies show that the unsteady flow fields are influenced by the presence of the vane as well as clocking. More importantly, the characteristics (e.g., distribution and strength) of the high temperature spots (i.e., hot-streaks) appearing on the vane significantly alters. This indicates the importance of simultaneously modeling both the combustor and the HPT to understand the mechanics of the unsteady formulation of hot-streaks.

  17. Computational Study of Combustor-Turbine Interactions

    Science.gov (United States)

    Miki, Kenji; Liou, Meng-Sing

    2017-01-01

    The Open National Combustion Code (OpenNCC) is applied to the simulation of a realisticcombustor configuration (Energy Efficient Engine (E3)) in order to investigate the unsteady flow fields inside the combustor and around the first stage stator of a high pressure turbine (HPT). We consider one-twelfth (24 degrees) of the full annular E3 combustor with three different geometries of the combustor exit: one without the vane, and two others with the vane set at different relative positions in relation to the fuel nozzle (clocking). Although it is common to take the exit flow profiles obtained by separately simulating the combustor and then feed it as the inflow profile when modeling the HPT, our studies show that the unsteady flow fields are influenced by the presence of the vane as well as clocking. More importantly, the characteristics (e.g., distribution and strength) of the high temperature spots (i.e., hot-streaks) appearing on the vane significantly alters. This indicates the importance of simultaneously modeling both the combustor and the HPT to understand the mechanics of the unsteady formulation of hot-streaks.

  18. Performance of low-Btu fuel gas turbine combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bevan, S.; Bowen, J.H.; Feitelberg, A.S.; Hung, S.L.; Lacey, M.A.; Manning, K.S.

    1995-11-01

    This reports on a project to develop low BTU gas fuel nozzle for use in large gas turbine combustors using multiple fuel nozzles. A rich-quench-lean combustor is described here which reduces the amount of NO{sub x} produced by the combustion of the low BTU gas. The combustor incorporates a converging rich stage combustor liner, which separates the rich stage recirculation zones from the quench stage and lean stage air.

  19. Numerical Study on the Heat Release Distributions of a Supersonic Combustor with Three-Dimensional "Swallowtail" Cavity

    Science.gov (United States)

    Wang, Chun; Sun, Xiaofeng; Yao, Xuanyu; Jiang, Zonglin

    Hypersonic air-breathing propulsion has been a focus technology in hypersonic aviation in the past decades [1]. Three-dimensional cavity may act as the flame holder of a Scramjet engine in air-breathing hypersonic propulsion. An interesting three-dimensional cavity is "swallowtail" cavity which has a special inner shape like a swallowtail. With three-dimensional cavity in supersonic chamber, threedimensional vortexes may be organized optimally, and the exchange of mass, momentum and energy between cavity flow and supersonic flow may be enhanced to provide better performance of mixing and combustion[2]. Also, three-dimensional cavity may avoid the sharp heat release in local region of chamber and suppress the subsonic combustion oscillation induced by the cavity in a supersonic combustor. It is necessary to study the heat release distribution of a supersonic combustor with three-dimensional cavity.

  20. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    devices like micro-unmanned air vehicles (micro-UAVs) [3]. However, the performance of pulse combustors strongly depends on the combustor dynamics. Despite its advan- tages, lack of thorough understanding of the dynamics complicates the design of pulse combustors and is one of the main reasons for lack of adequate ...

  1. Vortex dominated flows

    CERN Document Server

    Ting, Lu; Knio, Omar M

    2007-01-01

    Addressed to both graduate students and researchers this monograph provides in-depth analyses of vortex dominated flows via matched and multiscale asymptotics, and it demonstrates how insight gained through these analyses can be exploited in the construction of robust, efficient, and accurate numerical techniques. The dynamics of slender vortex filaments is discussed in detail, including fundamental derivations, compressible core structure, weakly non-linear limit regimes, and associated numerical methods. Similarly, the volume covers asymptotic analysis and computational techniques for weakly compressible flows involving vortex generated sound and thermoacoustics.

  2. Effect of initial vortex core size on the coherent structures in the swirling jet near field

    Science.gov (United States)

    Rukes, Lothar; Sieber, Moritz; Paschereit, C. Oliver; Oberleithner, Kilian

    2015-10-01

    This study investigates the sensitivity to initial conditions of swirling jets undergoing vortex breakdown. Emphasis is placed on the recirculation bubble and on the helical coherent structures that evolve in its periphery. It is proposed that the vortex core size of the incoming swirling jet is the critical parameter that determines the dynamics of these coherent structures. This proposition is assessed with Stereo Particle-Image-Velocimetry (PIV) measurements of the breakdown region of two swirling jet configurations with different vortex core sizes at very similar overall swirl intensities. The swirling jets were generated by radial vanes entering a mixing tube, and the vortex core size was adjusted by using different center-body geometries. The time-averaged flow fields in the breakdown region reveal substantial differences in the jet spreading and the size of the recirculation bubble. Proper Ortogonal Decomposition (POD) was applied to the anti-axisymmetric and axisymmetric velocity fluctuations, to reconstruct the dynamics of the helical instability and the breakdown bubble, respectively. We find that the mode shape of the helical instability is not affected by the vortex core size. The frequency is found to coincide with the vortex core rotation rate, which relates inversely to the core size. The shape and dynamics of the non-periodic breakdown bubble are significantly affected by a change in vortex core size. The POD reveals that the energy content of the dominant non-periodic structure is changed markedly with the vortex core size. The bubble dynamics are further investigated by tracking the upstream stagnation point from the PIV snapshots. It is shown that a larger vortex core promotes smooth fluctuations of the recirculation bubble, while a small initial vortex core is linked to bimodal fluctuations of the recirculation bubble. The conclusions drawn from this study are relevant for fundamental swirling jet studies, as well as for the design of swirl

  3. PERFORMANCE ANALYSIS OF OPTICAL CDMA SYSTEM USING VC CODE FAMILY UNDER VARIOUS OPTICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    HASSAN YOUSIF AHMED

    2012-06-01

    Full Text Available The intent of this paper is to study the performance of spectral-amplitude coding optical code-division multiple-access (OCDMA systems using Vector Combinatorial (VC code under various optical parameters. This code can be constructed by an algebraic way based on Euclidian vectors for any positive integer number. One of the important properties of this code is that the maximum cross-correlation is always one which means that multi-user interference (MUI and phase induced intensity noise are reduced. Transmitter and receiver structures based on unchirped fiber Bragg grating (FBGs using VC code and taking into account effects of the intensity, shot and thermal noise sources is demonstrated. The impact of the fiber distance effects on bit error rate (BER is reported using a commercial optical systems simulator, virtual photonic instrument, VPITM. The VC code is compared mathematically with reported codes which use similar techniques. We analyzed and characterized the fiber link, received power, BER and channel spacing. The performance and optimization of VC code in SAC-OCDMA system is reported. By comparing the theoretical and simulation results taken from VPITM, we have demonstrated that, for a high number of users, even if data rate is higher, the effective power source is adequate when the VC is used. Also it is found that as the channel spacing width goes from very narrow to wider, the BER decreases, best performance occurs at a spacing bandwidth between 0.8 and 1 nm. We have shown that the SAC system utilizing VC code significantly improves the performance compared with the reported codes.

  4. Micro-combustor for gas turbine engine

    Science.gov (United States)

    Martin, Scott M.

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  5. Variable volume combustor with aerodynamic support struts

    Science.gov (United States)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  6. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...... is dedicated to vortex rings. Source rings are only briefly mentioned....

  7. The singing vortex.

    Science.gov (United States)

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-06

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  8. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray

    2011-01-04

    In this paper, we investigate flame-vortex interaction in a lean premixed, laboratory scale, backward-facing step combustor. Two series of tests were conducted, using propane/hydrogen mixtures and carbon monoxide/hydrogen mixtures as fuels, respectively. Pressure measurements and high speed particle imaging velocimetry (PIV) were employed to generate pressure response curves as well as the images of the velocity field and the flame brush. We demonstrate that the step combustor exhibits several operating modes depending on the inlet conditions and fuel composition, characterized by the amplitude and frequency of pressure oscillations along with distinct dynamic flame shapes. We propose a model in which the combustor\\'s selection of the acoustic mode is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a relationship between these quantities at the operating conditions corresponding to each mode transition. Based on this relationship, we show that numerically-calculated density-weighted strained flame speed can be used to collapse the combustion dynamics data over the full range of conditions (inlet temperature, fuel composition, and equivalence ratio). Finally, we validate our strain flame based model by measuring the strain rate using the flame image and the velocity field from the PIV measurement. Our results show that the measured strain rates lie in the same range as the critical values at the transitions among distinct modes as those predicted by our model.

  9. System and method for controlling a combustor assembly

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  10. Core/Combustor Noise - Research Overview

    Science.gov (United States)

    Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  11. Carbon Textile Decorated with Pseudocapacitive VC/VxOyfor High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Van Lam, Do; Shim, Hyung Cheoul; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2017-11-01

    It is demonstrated that, via V 2 O 5 coating by low temperature atomic layer deposition and subsequent pyrolysis, ubiquitous cotton textile can readily turn into high-surface-area carbon textile fully decorated with pseudocapacitive V x O y /VC widely usable as electrodes of high-performance supercapacitor. It is found that carbothermic reduction of V 2 O 5 (C + V 2 O 5 → C' + VC + CO/CO 2 (g)) leads to chemical/mechanical activation of carbon textile, thereby producing high-surface-area conductive carbon textile. In addition, sequential phase transformation and carbide formation (V 2 O 5 → V x O y → VC) occurred by carbothermic reduction trigger decoration of the carbon textile with redox-active V x O y /VC. Thanks to the synergistic effect of electrical double layer and pseudocapacitance, the supercapacitors made of the hybrid carbon textile exhibit far better energy density (over 30-fold increase) with excellent cycling stability than the carbon textile simply undergone pyrolysis. The method can open up a promising and facile way to synthesize hybrid electrode materials for electrochemical energy storages possessing advantages of both electrical double layer and pseudocapacitive material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Residence time measurement of an isothermal combustor flow field

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Liangta; Spencer, Adrian [Loughborough University, Department of Aero and Auto Engineering, Loughborough (United Kingdom)

    2012-03-15

    Residence times of combustors have commonly been used to help understand NO{sub x} emissions and flame blowout. Both the time mean velocity and turbulence fields are important to the residence time, but determining the residence time via analysis of a measured velocity field is difficult due to the inherent unsteadiness and the three-dimensional nature of a high-Re swirling flow. A more direct approach to measure residence time is reported here that examines the dynamic response of fuel concentration to a sudden cutoff in the fuel injection. Residence time measurement was mainly taken using a time-resolved planar laser-induced fluorescence (PLIF) technique, but a second camera for particle image velocimetry (PIV) was added to check that the step change does not alter the velocity field and the spectral content of the coherent structures. Characteristic timescales evaluated from the measurements are referred to as convection and half-life times: The former describes the time delay from a fuel injector exit reference point to a downstream point of interest, and the latter describes the rate of decay once the effect of the reduced scalar concentration at the injection source has been transported to the point of interest. Residence time is often defined as the time taken for a conserved scalar to reduce to half its initial value after injection is stopped: this equivalent to the sum of the convection time and the half-life values. The technique was applied to a high-swirl fuel injector typical of that found in combustor applications. Two test cases have been studied: with central jet (with-jet) and without central jet (no-jet). It was found that the relatively unstable central recirculation zone of the no-jet case resulted in increased transport of fuel into the central region that is dominated by a precessing vortex core, where long half-life times are also found. Based on this, it was inferred that the no-jet case may be more prone to NO{sub x} production. The

  13. Exploring Online Learning at Primary Schools: Students' Perspectives on Cyber Home Learning System through Video Conferencing (CHLS-VC)

    Science.gov (United States)

    Lee, June; Yoon, Seo Young; Lee, Chung Hyun

    2013-01-01

    The purposes of the study are to investigate CHLS (Cyber Home Learning System) in online video conferencing environment in primary school level and to explore the students' responses on CHLS-VC (Cyber Home Learning System through Video Conferencing) in order to explore the possibility of using CHLS-VC as a supportive online learning system. The…

  14. Vortex Characterization for Engineering Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  15. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)

    1999-11-01

    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  16. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  17. Quantum vortex reconnections

    Science.gov (United States)

    Zuccher, S.; Caliari, M.; Baggaley, A. W.; Barenghi, C. F.

    2012-12-01

    We study reconnections of quantum vortices by numerically solving the governing Gross-Pitaevskii equation. We find that the minimum distance between vortices scales differently with time before and after the vortex reconnection. We also compute vortex reconnections using the Biot-Savart law for vortex filaments of infinitesimal thickness, and find that, in this model, reconnections are time symmetric. We argue that the likely cause of the difference between the Gross-Pitaevskii model and the Biot-Savart model is the intense rarefaction wave which is radiated away from a Gross-Pitaeveskii reconnection. Finally we compare our results to experimental observations in superfluid helium and discuss the different length scales probed by the two models and by experiments.

  18. On computation of solid fuel regression rate in ramjet combustor

    Science.gov (United States)

    Razmyslov, A. V.; Yanovskiy, L. S.; Toktaliev, P. D.

    2017-11-01

    Development of a solid fuel ramjets requires mathematical modeling of the solid fuel regression inside a combustor with accounting of solid fuel gasification and combustion processes and a numerical method to calculate parameters of these processes. This report presents a quasi-one-dimensional model of processes inside the solid fuel ramjet combustor. The model allows to calculate the solid fuel regression rate and gas flow parameters at the combustor outlet while air flow parameters at the combustor inlet are fixed. The model is based on mass, energy, species and momentum conservation equations and deals with thermochemical processes inside the ramjet combustor. It considers gas flow inside the combustor, gasified fuel combustion, convective heat transfer, solid fuel pyrolysis kinetics. The model is verified by comparison of the numerical results with the experimental data available from other authors. The analysis of the numerical results shows a dependence of the flow structure and thermochemical parameters of a solid fuel employed on the regression rate.

  19. Large-eddy simulation and acoustic analysis of a turbulent flow field in a swirl-stabilized combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Chan; Yoo, Kwang Hee; Sung, Hong Gye [Korea Aerospace University, Goyang (Korea, Republic of)

    2011-10-15

    To conduct a comprehensive study on the flow characteristics and acoustic oscillation in a gas turbine combustor, a 3D large-eddy simulation (LES) was implemented. The formulation consists of the Favre-filtered conservation equations of mass, momentum, and energy. The subgrid-scale dynamics are modeled using a compressible flow version of the Smagorinsky model. To investigate the dominant coherent structure, the proper orthogonal decomposition (POD) method was used for post-processing. The combustor of concern is the LM6000, lean-premixed dry low-NOx annular combustor, developed by General Electric Aircraft Engines (GEAE). Four important characteristics of swirl flow are visualized: vortex breakdown, procession and dissipation of vortical structures, recirculation zones, and helical waves immediately downstream of the swirl injector. It is shown that the turbulent motion of swirl flow directly affects acoustic oscillation through the cycle and spectral analysis. The four most dominant acoustic modes are extracted from the flow field by the POD analysis. The transverse modes in the y and z directions are dominant in all four modes, since the pressure fields are significantly affected by swirl flow.

  20. Modeling an oil shale fluid bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vasalos, I.A.; Lefkopoulos, A.; Georgiadou, M.

    1988-02-01

    Oil shale retorting involves heating of solid particles and pyrolysis of the organic matter to produce hydrocarbon liquid shale oil. During the pyrolysis process, part of the organic material remains in the inorganic matrix as coke residue. Combustion of the coke residue can provide the energy necessary for retorting. In this paper the use of a fluid bed combustor to burn the coke residue is examined. The basis for predicting the performance of the fluid bed combustor is the application of the two-phase theory of fluidization. The carbon burning efficiency was calculated as a function of temperature, pressure, and bubble size. For the same conditions, the carbonate decomposition and the associated energy loss were also established. Conditions were found which make feasible complete carbon combustion with minimum carbonate decomposition.

  1. Modeling an oil shale fluid bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vasalos, I.A.; Lefkopoulos, A.; Georgiadou, M.

    1985-01-01

    Oil shale retorting involves heating of solid particles and pyrolysis of the organic matter to produce hydrocarbon liquid--shale oil. During the pyrolysis process part of the organic material remains in the inorganic matrix as coke residue. Combustion of the coke residue can provide the energy necessary for retorting. In this paper the use of a fluid bed combustor to burn the coke residue is examined. The basis for predicting the performance of the fluid bed combustor is the application of the two-phase theory of fluidization. The carbon burning efficiency was calculated as a function of temperature, pressure, and bubble size. For the same conditions the carbonate decomposition and the associated energy loss was also established.

  2. Experimental study of vortex diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Shakerin, S.; Miller, P.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  3. Low NOx Fuel Flexible Combustor Integration Project Overview

    Science.gov (United States)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  4. Advanced Catalytic Combustors for Low Pollutant Emissions

    Science.gov (United States)

    1979-11-01

    414 -. m 0. Nd 9 co1t 1; F .u13u1 iw : H L OC. co 4) 1 w 4.1 0 O P4 w CV) bo m E- rW 44 en cn p ~ c A 4 5-41 H-4 E- E- t 4 56 The above criterio were...insulation has beer used in both combustor preliminary designs in order to minimize fuel injector thickness and to provide aerodynamically clean fuel

  5. Modern Method for Detecting Web Phishing Using Visual Cryptography (VC and Quick Response Code (QR code

    Directory of Open Access Journals (Sweden)

    Ms. Ashvini Kute

    2015-05-01

    Full Text Available Phishing is an attempt by an individual or a group to thieve personal confidential information such as passwords, credit card information etc from unsuspecting victims for identity theft, financial gain and other fraudulent activities. Here an image based (QR codes authentication using Visual Cryptography (VC is used. The use of Visual cryptography is explored to convert the QR code into two shares and both these shares can then be transmitted separately. One Time Passwords (OTP is passwords which are valid only for a session to validate the user within a specified amount of time. In this paper we are presenting a new authentication scheme for secure OTP distribution in phishing website detection through VC and QR codes.

  6. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  7. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.

    2016-01-01

    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  8. Intelligent MONitoring System for antiviral pharmacotherapy in patients with chronic hepatitis C (SiMON-VC

    Directory of Open Access Journals (Sweden)

    Luis Margusino-Framiñán

    2017-01-01

    Full Text Available Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy.

  9. Controlled pilot oxidizer for a gas turbine combustor

    Science.gov (United States)

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  10. Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting

    Science.gov (United States)

    Filippini, Maria; Amorosi, Alessandro; Campo, Bruno; Herrero-Martìn, Sara; Nijenhuis, Ivonne; Parker, Beth L.; Gargini, Alessandro

    2016-09-01

    The occurrence of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated solvents due to its high degree of toxicity and carcinogenicity. VC occurrence in aquifers is most often related to the degradation of higher chlorinated ethenes or ethanes and it is generally detected in plumes along with parent contaminants. However, specific combination of stratigraphic, hydrogeologic and geochemical conditions can enhance the degradation of parents and lead to the formation of plumes almost entirely composed of VC (i.e. VC-only plumes). This paper investigates the causes of VC-only plumes in the aquifers below the city of Ferrara (northern Italy) by combining multiple lines of evidence. The City of Ferrara is located on an alluvial lowland, built by the River Po, and is made up of alternating unconsolidated sandy aquifer and silt-clay aquitard deposits of fluvial origin. This region has been strongly impacted by prior industrial activities, with the occurrence of chlorinated compounds at several sites. VC-only plumes with uncertain source location were found at two contaminated sites. The source zone of a third plume composed of chloroethenes from PCE to VC was investigated for high resolution depositional facies architecture and contaminant distribution (contaminant concentration and Compound Specific Isotope Analysis - CSIA). The investigation suggested that degradation of PCE and TCE takes place during contaminant migration through peat-rich (swamp) layers related to the Holocene transgression, which locally act as a ;reactor; for stimulating degradation with the accumulation of VC in the strongly reducing environment of the peat. Regional-scale stratigraphic architecture showed the ubiquitous occurrence of swamp layers at distinct stratigraphic levels in the investigated system and their apparent linkage to the in situ creation of the VC-only plumes.

  11. Evolution of optical vortex distributions in stochastic vortex fields

    Science.gov (United States)

    Roux, Filippus S.

    2011-03-01

    Stochastic vortex fields are found in laser speckle, in scintillated beams propagating through a turbulent atmosphere, in images of holograms produced by Iterative Fourier Transform methods and in the beams produced by certain diffractive optical elements, to name but a few. Apart from the vortex fields found in laser speckle, the properties and dynamics of stochastic vortex fields are largely unexplored. Stochastic vortex fields with non-equilibrium initial conditions exhibit a surprisingly rich phenomenology in their subsequent evolution during free-space propagation. Currently there does not exist a general theory that can predict this behavior and only limited progress has thus far been made in its understanding. Curves of the evolution of optical vortex distributions during free-space propagation that are obtained from numerical simulations, will be presented. A variety of different stochastic vortex fields are used as input to these simulations, including vortex fields that are homogeneous in their vortex distributions, as well as inhomogeneous vortex fields where, for example, the topological charge densities vary sinusoidally along one or two dimensions. Some aspects of the dynamics of stochastic vortex fields have been uncovered with the aid of these numerical simulations. For example, the numerical results demonstrate that stochastic vortex fields contain both diffusion and drift motions that are driven by local and global variations in amplitude and phase. The mechanisms for these will be explained. The results also provide evidence that global variations in amplitude and phase are caused by variations in the vortex distributions, giving rise to feedback mechanisms and nonlinear behavior.

  12. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  13. Fuel systems for liquid-fuelled aerovalved pulse combustors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.

    1993-08-01

    The ability of pulse combustors to generate a combustion driven pressure rise has led to their potential application in gas turbines, which would result in an increase in the power output of the turbine. Pulse combustors inherently produce low NOx emissions compared to steady combustors of comparable size, have a high rate of heat transfer, have high energy transfer and combustion efficiency, have multi-fuel capacity, produce a combustion-driven pressure gain, and are simple. Disadvantages include high noise and vibration level and lack of fundamental understanding. Four types of fuel system were investigated for a liquid-fuelled pulse combustor: carburettor, high pressure steady flow fuel injection, low pressure steady flow fuel injection, and high pressure fuel interruptor. Gas analysis of the exhaust gases for the four fuel systems was conducted to determine the levels of CO emissions. Results of the study indicate that the pulse combustor has the ability to handle fuel injection at high pressure. Also it is possible to supply the fuel to the pulse combustor intermittently. Although the pulse combustor ran on all four fuel systems further work is required to optimize a fuel system for a liquid-fuelled pulse combustor for gas turbine applications. 57 refs., 67 figs., 24 tabs.

  14. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  15. Variable volume combustor with a conical liner support

    Science.gov (United States)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  16. The impact of equivalence ratio oscillations on combustion dynamics in a backward-facing step combustor

    Energy Technology Data Exchange (ETDEWEB)

    Murat Altay, H.; Speth, Raymond L.; Hudgins, Duane E.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)

    2009-11-15

    The combustion dynamics of propane-air flames are investigated in an atmospheric pressure, atmospheric inlet temperature, lean, premixed backward-facing step combustor. We modify the location of the fuel injector to examine the impact of equivalence ratio oscillations arriving at the flame on the combustion dynamics. Simultaneous pressure, velocity, heat-release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When the fuel is injected far upstream from the step, the equivalence ratio arriving at the flame is steady and the combustion dynamics are controlled only by flame-vortex interactions. In this case, different dynamic regimes are observed depending on the operating parameters. When the fuel is injected close to the step, the equivalence ratio arriving at the flame exhibits oscillations. In the presence of equivalence ratio oscillations, the measured sound pressure level is significant across the entire range of lean mean equivalence ratios even if the equivalence ratio oscillations arriving at the flame are out-of-phase with the pressure oscillations. The combustion dynamics are governed primarily by the flame-vortex interactions, while the equivalence ratio oscillations have secondary effects. The equivalence ratio oscillations could generate variations in the combustion dynamics in each cycle under some operating conditions, destabilize the flame at the entire range of the lean equivalence ratios, and increase the value of the mean equivalence ratio at the lean blowout limit. (author)

  17. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors.

    Science.gov (United States)

    Castro, Joel; Harrington, Andrea M; Garcia-Caraballo, Sonia; Maddern, Jessica; Grundy, Luke; Zhang, Jingming; Page, Guy; Miller, Paul E; Craik, David J; Adams, David J; Brierley, Stuart M

    2017-06-01

    α-Conotoxin Vc1.1 is a small disulfide-bonded peptide from the venom of the marine cone snail Conus victoriae. Vc1.1 has antinociceptive actions in animal models of neuropathic pain, but its applicability to inhibiting human dorsal root ganglion (DRG) neuroexcitability and reducing chronic visceral pain (CVP) is unknown. We determined the inhibitory actions of Vc1.1 on human DRG neurons and on mouse colonic sensory afferents in healthy and chronic visceral hypersensitivity (CVH) states. In mice, visceral nociception was assessed by neuronal activation within the spinal cord in response to noxious colorectal distension (CRD). Quantitative-reverse-transcription-PCR, single-cell-reverse-transcription-PCR and immunohistochemistry determined γ-aminobutyric acid receptor B (GABABR) and voltage-gated calcium channel (CaV2.2, CaV2.3) expression in human and mouse DRG neurons. Vc1.1 reduced the excitability of human DRG neurons, whereas a synthetic Vc1.1 analogue that is inactive at GABABR did not. Human DRG neurons expressed GABABR and its downstream effector channels CaV2.2 and CaV2.3. Mouse colonic DRG neurons exhibited high GABABR, CaV2.2 and CaV2.3 expression, with upregulation of the CaV2.2 exon-37a variant during CVH. Vc1.1 inhibited mouse colonic afferents ex vivo and nociceptive signalling of noxious CRD into the spinal cord in vivo, with greatest efficacy observed during CVH. A selective GABABR antagonist prevented Vc1.1-induced inhibition, whereas blocking both CaV2.2 and CaV2.3 caused inhibition comparable with Vc1.1 alone. Vc1.1-mediated activation of GABABR is a novel mechanism for reducing the excitability of human DRG neurons. Vc1.1-induced activation of GABABR on the peripheral endings of colonic afferents reduces nociceptive signalling. The enhanced antinociceptive actions of Vc1.1 during CVH suggest it is a novel candidate for the treatment for CVP. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  18. Aerobic and Anaerobic Transformation of cis-Dichloroethene (cis-DCE) and Vinyl Chloride (VC): Steps for Reliable Remediation

    Science.gov (United States)

    2003-12-01

    PCE, TCE, cis-DCE, 1,1-DCE, 1,2- dichloroethane, 1,2-d ibromoethane crs-DCE, VC TCE, cis-DCE cis-DCE, frans -DCE, 1,1-DCE, VC, vinyl bromide, 1,2...chlorinatedhydrocarbons in groundwater. water sci. Technor. 26:67-73. 33’ Muyzer G, De Waal , EC & Uitterlinden.AG (1993) Profiling of complex microbial

  19. Superconducting Vortex with Antiferromagnetic Core

    Energy Technology Data Exchange (ETDEWEB)

    Arovas, D.P. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States); Berlinsky, A.J.; Kallin, C.; Zhang, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States)

    1997-10-01

    We show that a superconducting vortex in underdoped high T{sub c} superconductors could have an antiferromagnetic core. This type of vortex configuration arises as a topological solution in the recently constructed SO(5) nonlinear {sigma} model and in Landau-Ginzburg theory with competing antiferromagnetic and superconducting order parameters. Experimental detection of this type of vortex by muon spin resonance and neutron scattering is proposed. {copyright} {ital 1997} {ital The American Physical Society}

  20. Inhibitory effect of magnesium L-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo.

    Science.gov (United States)

    Kameyama, K; Sakai, C; Kondoh, S; Yonemoto, K; Nishiyama, S; Tagawa, M; Murata, T; Ohnuma, T; Quigley, J; Dorsky, A; Bucks, D; Blanock, K

    1996-01-01

    An inhibitory effect of ascorbic acid (AsA) on melanogenesis has been described. However, AsA is quickly oxidized and decomposed in aqueous solution and thus is not generally useful as a depigmenting agent. Our purpose was to examine the effect on pigmentation of magnesium-L-ascorbyl-2-phosphate (VC-PMG), a stable derivative of AsA. Percutaneous absorption of VC-PMG was examined in dermatomed human skin, and its effect on melanin production by mammalian tyrosinase and human melanoma cells in culture was also measured. A 10% VC-PMG cream was applied to the patients. VC-PMG suppressed melanin formation by tyrosinase and melanoma cells. In situ experiments demonstrated that VC-PMG cream was absorbed into the epidermis and that 1.6% remained 48 hours after application. The lightening effect was significant in 19 of 34 patients with chloasma or senile freckles and in 3 of 25 patients with normal skin. VC-PMG is effective in reducing skin hyperpigmentation in some patients.

  1. Active Suppression of Instabilities in Engine Combustors

    Science.gov (United States)

    Kopasakis, George

    2004-01-01

    A method of feedback control has been proposed as a means of suppressing thermo-acoustic instabilities in a liquid- fueled combustor of a type used in an aircraft engine. The basic principle of the method is one of (1) sensing combustor pressure oscillations associated with instabilities and (2) modulating the rate of flow of fuel to the combustor with a control phase that is chosen adaptively so that the pressure oscillations caused by the modulation oppose the sensed pressure oscillations. The need for this method arises because of the planned introduction of advanced, lean-burning aircraft gas turbine engines, which promise to operate with higher efficiencies and to emit smaller quantities of nitrogen oxides, relative to those of present aircraft engines. Unfortunately, the advanced engines are more susceptible to thermoacoustic instabilities. These instabilities are hard to control because they include large dead-time phase shifts, wide-band noise characterized by amplitudes that are large relative to those of the instabilities, exponential growth of the instabilities, random net phase walks, and amplitude fluctuations. In this method (see figure), the output of a combustion-pressure sensor would be wide-band-pass filtered and then further processed to generate a control signal that would be applied to a fast-actuation valve to modulate the flow of fuel. Initially, the controller would rapidly take large phase steps in order to home in, within a fraction of a second, to a favorable phase region within which the instability would be reduced. Then the controller would restrict itself to operate within this phase region and would further restrict itself to operate within a region of stability, as long as the power in the instability signal was decreasing. In the phase-shifting scheme of this method, the phase of the control vector would be made to continuously bounce back and forth from one boundary of an effective stability region to the other. Computationally

  2. Radial inlet guide vanes for a combustor

    Science.gov (United States)

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  3. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  4. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  5. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 66; Issue 1. Melting of heterogeneous vortex matter: The vortex ... By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered ...

  6. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    Science.gov (United States)

    2015-10-16

    Crow instability (see for example Leweke & Williamson, 2012). (b) Short-wave cooperative elliptic instability (Leweke & Williamson 1998). (c...vortex generators. Of interest in such studies would be the formation of secondary vorticity from the surface, the downstream vortex trajectories , and

  7. The Acoustically Driven Vortex Cannon

    Science.gov (United States)

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  8. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  9. Process for Operating a Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J. (Inventor); Dippold, Vance F. (Inventor)

    2017-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  10. Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates

    OpenAIRE

    Schulte, T.; Santos, L.; Sanpera, A.; M. Lewenstein

    2002-01-01

    We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.

  11. Cylindrical vortex wake model: right cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Gaunaa, Mac

    2015-01-01

    The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios. For ...

  12. Oxy-combustor operable with supercritical fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  13. On the vortex ring state

    Science.gov (United States)

    Green, Richard; Gillies, E.; Giuni, M.; Hislop, J.; Savas, Omer

    2014-11-01

    The investigation considers the vortex ring state, a phenomenon normally associated with the collapse of a trailing, helical vortex wake into a unstable vortex ring, and is a problem encountered when a helicopter rotor descends into its own wake. A series of wind tunnel and towing tank experiments on rotor systems have been performed, and a comparison is then made with the behaviour of a specially designed open core, annular jet system that generates a mean flow velocity profile similar to that observed below a rotor. In experimentally simulated descents the jet system forms flow patterns that are topologically similar to the vortex ring state of a rotor system. Furthermore the dynamic behaviour of the flow shares many of the important characteristics of the rotor flow. This result suggests that the phenomenon of the vortex ring state of a rotor wake is decoupled from the detailed vortex dynamics of the helical vortex filaments themselves. The presentation will describe the principle behind the investigation, the details of the annular jet system and the results gained using PIV and flow visualisation of the wake and jet systems.

  14. Mercury emissions from municipal solid waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  15. Method for operating a combustor in a fuel cell system

    Science.gov (United States)

    Chalfant, Robert W.; Clingerman, Bruce J.

    2002-01-01

    A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

  16. Modeling of fuel mixing in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    David Pallares; Filip Johnsson [Chalmers University of Technology, Goeteborg (Sweden). Department of Energy and Environment

    2008-12-15

    This paper presents a three-dimensional model for fuel mixing in fluidized bed combustors. The model accounts for mixing patterns which were experimentally shown to govern mixing in risers with geometry and operational conditions representative for furnaces in fluidized bed combustors. The mixing process is modeled for three different solid phases in the furnace and the model, which includes the return leg, can be applied both under bubbling and circulating regimes. The semi-empirical basis of the model was previously validated in different large-scale fluidized bed combustors and is combined with a model for fuel particle conversion to obtain the fuel concentration field. Model results are compared with experimental data from the Chalmers 12 MW{sub th} CFB combustor, yielding a reasonable agreement.

  17. Manipulation of vortex rings for flow control

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Kuniaki; Hiramoto, Riho [Mechanical Systems Engineering, Hokkaido Institute of Technology, Maeda 7-15-4-1, Teine-ku, Sapporo 006-855 (Japan)], E-mail: toyodahm@poppy.ocn.ne.jp

    2009-10-15

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  18. Preliminary Combustion Analysis toward Stability Estimation of Rocket Engine Combustor

    OpenAIRE

    Mizobuchi, Yasuhiro; Shimizu, Taro; Naito, Taiki; 溝渕, 泰寛; 清水, 太郎; 内藤, 大貴

    2011-01-01

    A combustion flow in a model combustor equipped with a single injector located at a non-center position of the face plate is numerically simulated to investigate the combustion oscillation driving term, so called 'Rayleigh Index term' which plays a key role when we estimate the combustion stability of rocket engine combustors. The simulation reproduces the unsteady but stabilized flame behavior and reveals the flame stabilization mechanism. The critical combustion oscillation mode, T-mode, is...

  19. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  20. Phenomenological Model of Vortex Generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Westergaard, C.

    1995-01-01

    For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....

  1. Feasibility study of ultra-low NOx Gas turbine combustor using the RML combustion concept

    Energy Technology Data Exchange (ETDEWEB)

    Van, Tien Giap; Hwang, Jeong Jae; Kim, Min Kuk; Ahn, Kook Young [Environment and Energy Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2016-12-15

    A new combustion concept, the so called RML, was investigated to validate its application as a gas turbine combustor for combustor outlet temperatures over 1973 K. The feasibility study of the RML combustor was conducted with zero dimensional combustion calculations. The emission characteristics of RQL, LEAN, EGR and RML combustors were compared. The calculation results showed that the RQL combustor has lower NOx emissions than the LEAN at high outlet temperature. NOx emissions of the RML combustor at equivalence ratio of the rich chamber of 2.0 can be reduced by 30 % compared with the EGR combustor, and lower than the RQL combustor at a combustor outlet temperature over 1973 K. However, the CO emissions of the RML combustor were higher than those of the LEAN and EGR combustors. Also, the possibility of applying the RML combustor to gas turbines was discussed considering residence time, equivalence ratio of the rich chamber and recirculation rate. Although further research to design and realize the proposed RML combustor is needed, this study verified that the RML concept can be successfully used in a gas turbine combustor.

  2. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  3. Holographic Vortex Coronagraph

    Science.gov (United States)

    Palacios, David

    2010-01-01

    A holographic vortex coronagraph (HVC) has been proposed as an improvement over conventional coronagraphs for use in high-contrast astronomical imaging for detecting planets, dust disks, and other broadband light scatterers in the vicinities of stars other than the Sun. Because such light scatterers are so faint relative to their parent stars, in order to be able to detect them, it is necessary to effect ultra-high-contrast (typically by a factor of the order of 1010) suppression of broadband light from the stars. Unfortunately, the performances of conventional coronagraphs are limited by low throughput, dispersion, and difficulty of satisfying challenging manufacturing requirements. The HVC concept offers the potential to overcome these limitations.

  4. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  5. Photospheric magnetic vortex structures

    Directory of Open Access Journals (Sweden)

    S. Shelyag

    2011-05-01

    Full Text Available Using direct numerical magneto-hydrodynamic (MHD simulations, we demonstrate the evidence of two physically different types of vortex motions in the solar photosphere. Baroclinic motions of plasma in non-magnetic granules are the primary source of vorticity in granular regions of the solar photosphere, however, there is a significantly more efficient mechanism of vorticity production in strongly magnetised intergranular lanes. These swirly motions of plasma in intergranular magnetic field concentrations could be responsible for the generation of different types of MHD wave modes, for example, kink, sausage and torsional Alfvén waves. These waves could transport a relevant amount of energy from the lower solar atmosphere and contribute to coronal plasma heating.

  6. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  7. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  8. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  9. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  10. Vortex Models for Data Assimilation

    OpenAIRE

    Darakananda, Darwin

    2017-01-01

    Inviscid vortex models have been used for decades to investigate unsteady aerodynamics. However, real-time use of these models has been hindered by the tradeoff between increasing a model's dynamical capability and reducing its dimensionality. In this work, we present two different solutions to this problem. First, we develop a hybrid model where vortex sheets represent shear layers that separate from the wing and point vortices represent the rolled-up cores of these shear layers and the o...

  11. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    Science.gov (United States)

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  12. Optimizing the Calculation of DM,CO and VC via the Single Breath Single Oxygen Tension DLCO/NO Method

    Science.gov (United States)

    Coffman, Kirsten E.; Taylor, Bryan J.; Carlson, Alex R.; Wentz, Robert J.; Johnson, Bruce D.

    2015-01-01

    Alveolar-capillary membrane conductance (DM,CO) and pulmonary-capillary blood volume (VC) are calculated via lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (θCO) and the DM,NO/DM,CO ratio (α-ratio), are controversial. This study systematically determined optimal θCO and α-ratio values to be used in the single-FiO2 method that yielded the most similar DM,CO and VC values compared to the ‘gold-standard’ multiple-FiO2 method. Eleven healthy subjects performed single breath DLCO/DLNO maneuvers at rest and during exercise. DM,CO and VC were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven θCO equations and a range of previously reported α-ratios. The RP θCO equation (Reeves and Park, Respiration physiology 88:1–21, 1992.) and an α-ratio of 4.0–4.4 yielded DM,CO and VC values that were most similar between methods. The RP θCO equation and an experimental α-ratio should be used in future studies. PMID:26521031

  13. Conductive heat flux in VC-1 and the thermal regime of Valles caldera, Jemez Mountains, New Mexico ( USA).

    Science.gov (United States)

    Sass, J.H.; Morgan, P.

    1988-01-01

    Over 5% of heat in the western USA is lost through Quaternary silicic volcanic centers, including the Valles caldera in N central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. Presents new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the SW margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247 + or - 16 mW m-2. Inteprets the shallow thermal gradient data and the thermal regime at VC-1 to indicate a long-lived hydrothermal (and magmatic) system in the southwestern Valles caldera that has been maintained through the generation of shallow magma bodies during the long postcollapse history of the caldera. High heat flow at the VC-1 site is interpreted to result from hot water circulating below the base of the core hole, and we attribute the lower heat flow in the unsaturated zone is attributed to hydrologic recharge. -from Authors

  14. Lightcurves and Periods for Asteroids 1081 Reseda 2117 Danmark, 2315 Czechoslovakia, 2871 Schober, 6392 Takashimizuno, and (6409) 1992 VC

    Science.gov (United States)

    Yankov, Arten; Ditteon, Richard

    2009-01-01

    Ten asteroids were observed at the Oakley Southern Sky Observatory on six nights during the months of 2008 July and August. The asteroids were 1081 Reseda, 1421 Esperanto, 2117 Danmark, 2315 Czechoslovakia, 2871 Schober, 6392 Takashimizuno, (6409) 1992 VC, 7046 Reshetnev, (14276) 2000 CF2, and (32219) 2000 OU20.

  15. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator.......A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...

  16. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  17. An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs

    Directory of Open Access Journals (Sweden)

    Xiaobo Gu

    2015-07-01

    Full Text Available An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD, synchronous time division (STDD duplex and code division multiple access (CDMA with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS methods to predict the clock error and employs a third-order phase lock loop (PLL to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.

  18. Multiresponse Optimization of Laser Cladding Steel + VC Using Grey Relational Analysis in the Taguchi Method

    Science.gov (United States)

    Zhang, Zhe; Kovacevic, Radovan

    2016-07-01

    Laser cladding of metal matrix composite coatings (MMCs) has become an effective and economic method to improve the wear resistance of mechanical components. The clad quality characteristics such as clad height, carbide fraction, carbide dissolution, and matrix hardness in MMCs determine the wear resistance of the coatings. These clad quality characteristics are influenced greatly by the laser cladding processing parameters. In this study, American Iron and Steel Institute (AISI) 420 + 20% vanadium carbide (VC) was deposited on mild steel with a high powder direct diode laser. The Taguchi-based Grey relational method was used to optimize the laser cladding processing parameters (laser power, scanning speed, and powder feed rate) with the consideration of multiple clad characteristics related to wear resistance (clad height, carbide volume fraction, and Fe-matrix hardness). A Taguchi L9 orthogonal array was designed to study the effects of processing parameters on each response. The contribution and significance of each processing parameter on each clad characteristic were investigated by the analysis of variance (ANOVA). The Grey relational grade acquired from Grey relational analysis was used as the performance characteristic to obtain the optimal combination of processing parameters. Based on the optimal processing parameters, the phases and microstructure of the laser-cladded coating were characterized by using x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS).

  19. Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs

    Science.gov (United States)

    Dias, Tiago; Roma, Nuno; Sousa, Leonel

    2014-12-01

    A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.

  20. Insights into the ion-coupling mechanism in the MATE transporter NorM-VC

    Science.gov (United States)

    Krah, Alexander; Zachariae, Ulrich

    2017-08-01

    Bacteria have developed a variety of different mechanisms to defend themselves from compounds that are toxic to them, such as antibiotics. One of these defence mechanisms is the expulsion of drugs or other noxious compounds by multidrug efflux pumps. Multidrug and toxic compound extrusion (MATE) transporters are efflux pumps that extrude metabolic waste and a variety of antibiotics out of the cell, using an ion gradient as energy source. They function via an alternating-access mechanism. When ions bind in the outward facing conformation, a large conformational change to the inward facing conformation is induced, from which the ion is released and the extruded chemical compound is bound. NorM proteins, which are usually coupled to a Na+ gradient, are members of the MATE family. However, for NorM-VC from Vibrio cholerae, it has been shown that this MATE transporter is additionally coupled to protons. How H+ and Na+ binding are coupled mechanistically to enable drug antiport is not well understood. In this study, we use molecular dynamics simulations to illuminate the sequence of ion binding events that enable efflux. Understanding this antiport mechanism is important to support the development of novel compounds that specifically inhibit the functional cycle of NorM transporters.

  1. Hemangiosarcoma of the liver in workers of the PVC industry and other VC-induced diseases with angiologic-dermatologic, hepatologic, radiologic and neurologic symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Halama, J.; Becker-Stone, S.; Halama, J.M.

    1985-01-01

    Occupational diseases resulting from exposure to vinyl chloride (VC) include angiosarcoma of the liver and other neoplasms. Among workers exposed to VC the authors have found capillary abnormalities in the extremities, with scleroderma and Raynaud syndrome, acro-osteolysis, neurological and psychiatric diseases and chromosome abnormalities, as well as abnormal liver metabolism and haematological findings.

  2. Assessment of swirl spray interaction in lab scale combustor using time-resolved measurements

    Science.gov (United States)

    Rajamanickam, Kuppuraj; Jain, Manish; Basu, Saptarshi

    2017-11-01

    Liquid fuel injection in highly turbulent swirling flows becomes common practice in gas turbine combustors to improve the flame stabilization. It is well known that the vortex bubble breakdown (VBB) phenomenon in strong swirling jets exhibits complicated flow structures in the spatial domain. In this study, the interaction of hollow cone liquid sheet with such coaxial swirling flow field has been studied experimentally using time-resolved measurements. In particular, much attention is focused towards the near field breakup mechanism (i.e. primary atomization) of liquid sheet. The detailed swirling gas flow field characterization is carried out using time-resolved PIV ( 3.5 kHz). Furthermore, the complicated breakup mechanisms and interaction of the liquid sheet are imaged with the help of high-speed shadow imaging system. Subsequently, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) is implemented over the instantaneous data sets to retrieve the modal information associated with the interaction dynamics. This helps to delineate more quantitative nature of interaction process between the liquid sheet and swirling gas phase flow field.

  3. Combustion instability of pilot flame in a pilot bluff body stabilized combustor

    Directory of Open Access Journals (Sweden)

    Fu Xiao

    2015-12-01

    Full Text Available Combustion instability of pilot flame has been investigated in a model pilot bluff body stabilized combustor by running the pilot flame only. The primary objectives are to investigate the pilot flame dynamics and to provide bases for the study of the interaction mechanisms between the pilot flame and the main flame. Dynamic pressures are measured by dynamic pressure transducers. A high speed camera with CH∗ bandpass filter is used to capture the pilot flame dynamics. The proper orthogonal decomposition (POD is used to further analyze the high speed images. With the increase of the pilot fuel mass flow rate, the pilot flame changes from stable to unstable state gradually. The combustion instability frequency is 136 Hz when the pilot flame is unstable. Numerical simulation results show that the equivalence ratios in both the shear layer and the recirculation zone increase as the pilot fuel mass flow rate increases. The mechanism of the instability of the pilot flame can be attributed to the coupling between the second order acoustic mode and the unsteady heat release due to symmetric vortex shedding. These results illustrate that the pilot fuel mass flow rate has significant influences on the dynamic stability of the pilot flame.

  4. Experiments and numerical studies on a Syngas-fired Ultra low NOx combustor

    KAUST Repository

    S, Krishna

    2017-06-06

    Exhaust measurements of temperature and pollutants in a syngas-fired model trapped vortex combustor for stationary power generation applications are reported. The performance was further evaluated for configurations where mixing enhancement was obtained using struts in the mainstream flow. Mainstream premixing of fuel was also studied to investigate its effect on emissions. The exhaust temperature pattern factor was found to be poor for baseline cases, but improved with the introduction of struts. NO emissions were steadily below 3-ppm across various flow conditions, whereas CO emissions tended to increase with increasing Momentum Flux Ratios (MFRs) and mainstream fuel addition. Combustion efficiencies ~96% were observed for all conditions. The performance characteristics were found to be favourable at higher MFRs with low pattern factors and high combustion efficiencies. Numerical simulations employing RANS and LES with Presumed Probability Distribution Function (PPDF) model were also carried out. Mixture fraction profiles in the TVC cavity for non-reacting conditions show that LES simulations are able to capture the mean mixing field better than the RANS-based approach. This is attributed to the prediction of the jet decay rate and is reflected on the mean velocity magnitude fields, which reinforce this observation at different sections in the cavity. Both RANS and LES simulations show close agreement with the experimentally measured OH concentration, however, the RANS approach does not perform satisfactorily in capturing the trend of velocity magnitude. LES simulations clearly capture the trend observed in exhaust measurements which is primarily attributed to the flame stabilization mechanism.

  5. Relative equilibria of vortex arrays

    Science.gov (United States)

    Stremler, Mark

    2002-11-01

    Experiments with vibrating and oscillating cylinders have demonstrated that exotic vortex patterns can emerge in laminar wake flows. These wakes arise when more than two vortices are generated per shedding cycle. The Karman vortex street has proven to be a useful model for investigating the standard wake flow with two vortices per period; this utility suggests that it will be instructive to investigate other singly-periodic point vortex configurations that move without change of shape or size. The existence and structure of such relative equilibria of vortex arrays will be presented. Motivation for investigating these equilibria, all of which appear to be unstable, comes from the observation that the dynamics of a system slows down in the vicinity of unstable equilibria. Thus, states close to these equilibria can remain for a relatively long time, as illustrated by recent experiments in strongly magnetized electron plasma. The investigation of the relative equilibria of vortex arrays can thus provide a `road-map' for states that may be observable in laminar wake experiments.

  6. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; Ragni, D.; van Bussel, G.J.W.

    2016-01-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the in_nite vortex cascade, a numerical model of four base-vortices is chosen to represent

  7. CFD Evaluation of a 3rd Generation LDI Combustor

    Science.gov (United States)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2017-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  8. A new lipophilic pro-vitamin C, tetra-isopalmitoyl ascorbic acid (VC-IP), prevents UV-induced skin pigmentation through its anti-oxidative properties.

    Science.gov (United States)

    Ochiai, Yasunobu; Kaburagi, Satoko; Obayashi, Kei; Ujiie, Nobuyuki; Hashimoto, Satoru; Okano, Yuri; Masaki, Hitoshi; Ichihashi, Masamitsu; Sakurai, Hiromu

    2006-10-01

    Vitamin C, which is a strong anti-oxidant, plays an important role in maintaining physiological states. In dermatology, Vitamin C is used for treatment of various skin problems such as de-pigmentation of hyperpigmented spots. However, Vitamin C has limited stability and permeability, and development of a Vitamin C derivative with improved properties is needed. We evaluated the effect of a lipophilic Vitamin C derivative, tetra-isopalmitoyl ascorbic acid (VC-IP), on ultraviolet (UV)-induced skin pigmentation, to determine its potential as a more effective form of Vitamin C. The release of Vitamin C from VC-IP was examined using a reconstructed skin model following topical application of VC-IP. Anti-oxidative and anti-inflammatory activities of VC-IP were tested in cultured human keratinocytes. Subsequently, clinical test was done to clarify the effect of VC-IP on UVB-induced skin pigmentation. VC-IP released Vitamin C in physiological conditions and worked as pro-Vitamin C. In subsequent experiments, we found that VC-IP suppressed the elevation of intracellular peroxide after UVB irradiation, and enhanced cellular tolerance against UVB and reactive oxygen species such as hydrogen peroxide and tert-butyl hydroperoxide. Furthermore, VC-IP reduced the production of interleukin-1alpha and prostaglandin E2 in UVB-irradiated keratinocytes and suppressed melanocyte proliferation in conditioned culture medium prepared from UVB-irradiated keratinocytes. Finally, in a clinical study, topical application of a 3% VC-IP cream for 3 weeks suppressed pigmentation after UVB irradiation. These results demonstrate that VC-IP is a precursor of Vitamin C, and effectively suppresses UVB-induced skin pigmentation, possibly through its anti-oxidative activity.

  9. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-02-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  10. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  11. Combustor with two stage primary fuel assembly

    Science.gov (United States)

    Sharifi, Mehran; Zolyomi, Wendel; Whidden, Graydon Lane

    2000-01-01

    A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

  12. Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Directory of Open Access Journals (Sweden)

    J.V.S. Moorthy

    2014-03-01

    Full Text Available Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view.

  13. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  14. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  15. Stagnation point reverse flow combustor for a combustion system

    Science.gov (United States)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Hashmonay, Ben-Ami (Inventor)

    2007-01-01

    A combustor assembly includes a combustor vessel having a wall, a proximate end defining an opening and a closed distal end opposite said proximate end. A manifold is carried by the proximate end. The manifold defines a combustion products exit. The combustion products exit being axially aligned with a portion of the closed distal end. A plurality of combustible reactant ports is carried by the manifold for directing combustible reactants into the combustion vessel from the region of the proximate end towards the closed distal end.

  16. User's manual for atmospheric fluidized bed combustor system economic performance algorithm computer program. [AFBCIBM

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The computer program calculates several economic and energy terms, given various performance and cost parameters, for a system composed of coal, a coal beneficiation (cleaning) plant, a combustor plant and an associated flue gas desulfurization (FGD) plant. The combustor can be either an atmospheric fluidized bed combustor (AFBC) or a conventional pulverized (CP) combustor. The FGD system is a lime-slurry system.

  17. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  18. Vortex configuration and vortex-vortex interaction in nano-structured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru, E-mail: kato@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Naka-ku, Sakai, Osaka 599-8531 (Japan); CREST, JST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Niwa, Yuhei [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Naka-ku, Sakai, Osaka 599-8531 (Japan); CREST, JST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Suematsu, Hisataka [Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 1-2, Gakuencho, Naka-ku, Sakai, Osaka 599-8570 (Japan); CREST, JST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Ishida, Takekazu [Department of Physics and Electronics, Osaka Prefecture University, 1-1, Gakuencho, Naka-ku, Sakai, Osaka 599-8531 (Japan); CREST, JST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2012-09-15

    We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.

  19. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  20. Experiment of Waves on a Vortex filament

    OpenAIRE

    渡辺, 慎介; 舟久保, 悠子; Shinsuke, WATANABE; Yuko, FUNAKUBO; 横浜国大工; Department of Physics Yokohama National University; Department of Energy Engineering Faculty of Engineering, Yokohama National University

    2000-01-01

    Experiment of waves on a vortex filament is reported. A vertical vortex filament is generated by an axial flow of water in a cylindrical tank with a small hole in the center of the bottom. The motion of a vortex filament is controlled by a solid disk inserted from the top of water tank. When the disk is flapped sinusoidally around a horizontal axis, a vortex filament tends to contact perpendicularly with a disk, and begins to move on the disk. The motion brings about perturbations on a vortex...

  1. Video coding standards AVS China, H.264/MPEG-4 PART 10, HEVC, VP6, DIRAC and VC-1

    CERN Document Server

    Rao, K R; Hwang, Jae Jeong

    2014-01-01

    Review by Ashraf A. Kassim, Professor, Department of Electrical & Computer Engineering, and Associate Dean, School of Engineering, National University of Singapore.     The book consists of eight chapters of which the first two provide an overview of various video & image coding standards, and video formats. The next four chapters present in detail the Audio & video standard (AVS) of China, the H.264/MPEG-4 Advanced video coding (AVC) standard, High efficiency video coding (HEVC) standard and the VP6 video coding standard (now VP10) respectively. The performance of the wavelet based Dirac video codec is compared with H.264/MPEG-4 AVC in chapter 7. Finally in chapter 8, the VC-1 video coding standard is presented together with VC-2 which is based on the intra frame coding of Dirac and an outline of a H.264/AVC to VC-1 transcoder.   The authors also present and discuss relevant research literature such as those which document improved methods & techniques, and also point to other related reso...

  2. Idealized gas turbine combustor for performance research and validation of large eddy simulations.

    Science.gov (United States)

    Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R

    2007-03-01

    This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.

  3. Effect of tempering on hardness improvement in a VC/steel surface-alloyed material fabricated by high-energy electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Euh, Kwangjun; Kim, Yong Chan; Shin, Keesam; Lee, Sunghak; Kim, Nack J

    2003-04-15

    The present study is concerned with the tempering effect in improving the hardness of a vanadium carbide (VC)/carbon steel surface-alloyed material fabricated by high-energy electron-beam irradiation. The mixture of VC powders and flux (50%MgO-50%CaO) was placed on a plain carbon steel substrate, and then electron beam was irradiated. The surface-alloyed layer of 1.8 mm in thickness was homogeneously formed without defects. The microstructural analysis indicated that coarse VC particles were formed along solidification cell boundaries, and the matrix inside cells was mostly composed of lath-type martensite and fine cuboidal VC particles. A large amount of these VC particles in the lath-type martensitic matrix provided hardness four times greater than that of the substrate. When the VC/steel surface-alloyed material was tempered, fine VC particles precipitated in the tempered martensitic matrix, thereby leading to additional hardness increase. In addition, reduction of residual stress and an increase in fracture toughness could be expected.

  4. Thermal inhomogeneities in vortex tubes

    Science.gov (United States)

    Lemesh, N. I.; Senchuk, L. A.

    An experimental study of the effect of the temperature of the inlet gas on the temperature difference between the hot and cold streams discharged from a Ranque-Hilsch vortex tube is described. The experimental results are presented in graphical form. It is that the temperature difference increases with the temperature of the entering gas.

  5. Vortex dynamics in inhomogeneous plasmas

    DEFF Research Database (Denmark)

    Naulin, V.; Juul Rasmussen, J.

    1999-01-01

    The dynamics of vortical structures in magnetized plasmas with nonuniform density is investigated numerically. In particular the dynamics of monopolar vortices is considered and the results are discussed in terms of the conservation of potential vorticity. It is found that individual vortex...

  6. 150 Years of vortex dynamics

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    An IUTAM symposium with the title of this paper was held on October 12-16, 2008, in Lyngby and Copenhagen, Denmark, to mark the sesquicentennial of publication of Helmholtz's seminal paper on vortex dynamics. This volume contains the proceedings of the Symposium. The present paper provides...

  7. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne

    2003-01-01

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Sur...

  8. Assessment of a groundwater contamination with vinyl chloride (VC) and precursor volatile organic compounds (VOC) by use of a geographical information system (GIS).

    Science.gov (United States)

    Kistemann, Thomas; Hundhausen, Joachim; Herbst, Susanne; Classen, Thomas; Färber, Harald

    2008-07-01

    Regarding the health effects of volatile organic compounds (VOC) and their decomposition products (particularly vinyl chloride (VC)) under chronic low-dose exposure, VOC groundwater contaminations are seen to be an ongoing public health issue. This article presents results of a long-term investigation surveying VOC and VC groundwater contamination upstream of a large groundwater works in Cologne, Germany. For 10 years a contaminated aquifer has been monitored for different VOC and for VC. In total, 255 samples have been taken to assess both the 3-dimensional distribution and the temporal dynamics of the contaminants. VOC and VC precursor substances have been measured by means of pentane-liquid-liquid-extraction, GC and ECD, VC by means of derivatisation to 1,2 dibromochloroethane, GC, ECD, and by purge and trap technique and GC-MS-coupling. For spatial analysis all test results and additional hydrogeological attribute data have been transferred to a GIS. The spatial VOC distribution has been assessed by use of kriging interpolation indicating a decrease of the initial contaminants in time. A cluster analysis allowed to distinguish several independent contaminations within the large contamination area. The VC contamination was increasing. Anaerobic microbial dechlorination of VOC and subsequent VC accumulation were seen to be as credible from several indications (VC presence, downstream change of tetra/trichloroethylene-ratio and anaerobic conditions in the aquifer, high Fe(2+)- and Mn(2+)-concentrations). There was no statistically significant vertical differentiation of VOC and VC concentrations. The VOC load within the different water protection zones of the waterworks could be assessed.

  9. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density...... and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case...... of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...

  10. Axisymmetric contour dynamics for buoyant vortex rings

    Science.gov (United States)

    Chang, Ching; Llewellyn Smith, Stefan

    2017-11-01

    Vortex rings are important in many fluid flows in engineering and environmental applications. A family of steady propagating vortex rings including thin-core rings and Hill's spherical vortex was obtained by Norbury (1973). However, the dynamics of vortex rings in the presence of buoyancy has not been investigated yet in detail. When the core of a ring is thin, we may formulate reduced equations using momentum balance for vortex filaments, but that is not the case for ``fat'' rings. In our study, we use contour dynamics to study the time evolution of axisymmetric vortex rings when the density of the fluid inside the ring differs from that of the ambient. Axisymmetry leads to an almost-conserved material variable when the Boussinesq approximation is made. A set of integro-differential equations is solved numerically for these buoyant vortex rings. The same physical settings are also used to run a DNS code and compare to the results from contour dynamics.

  11. Vortex-Induced Vibration Suppression of a Circular Cylinder with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Shi-bo Tao

    2016-01-01

    Full Text Available The vortex-induced vibration is one of the most important factors to make the engineering failure in wind engineering. This paper focuses on the suppression method of vortex-induced vibration that occurs on a circular cylinder fitted with vortex generators, based on the wind tunnel experiment. The effect of the vortex generators is presented with comparisons including the bare cylinder. The experimental results reveal that the vortex generators can efficiently suppress vortex-induced vibration of the circular cylinder. Vortex generator control can make the boundary layer profile fuller and hence more resistant to separation. The selections of skew angles and the angular position have a significant influence on the vortex generator control effect. By correlation analysis, it can be concluded that the vortex generators can inhibit the communication between the two shear layers and produce streamwise vortices to generate a disturbance in the spanwise direction.

  12. Combustion of Syngas Fuel in Gas Turbine Can Combustor

    Directory of Open Access Journals (Sweden)

    Chaouki Ghenai

    2010-01-01

    Full Text Available Numerical investigation of the combustion of syngas fuel mixture in gas turbine can combustor is presented in this paper. The objective is to understand the impact of the variability in the alternative fuel composition and heating value on combustion performance and emissions. The gas turbine can combustor is designed to burn the fuel efficiently, reduce the emissions, and lower the wall temperature. Syngas mixtures with different fuel compositions are produced through different coal and biomass gasification process technologies. The composition of the fuel burned in can combustor was changed from natural gas (methane to syngas fuel with hydrogen to carbon monoxide (H2/CO volume ratio ranging from 0.63 to 2.36. The mathematical models used for syngas fuel combustion consist of the k-ε model for turbulent flow, mixture fractions/PDF model for nonpremixed gas combustion, and P-1 radiation model. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2 and nitrogen oxides (NOx per unit of energy generation is presented in this paper. The results obtained in this study show the change in gas turbine can combustor performance with the same power generation when natural gas or methane fuel is replaced by syngas fuels.

  13. The mechanism of char ignition in fluidized bed combustors

    NARCIS (Netherlands)

    Siemons, R.V.

    1987-01-01

    Knowledge about ignition processes of coal in fluidized beds is of importance for the start-up and dynamic control of these combustors. Initial experiments in a transparent fluidized bed scale model showed the existence of a considerable induction period for the ignition of char, especially at low

  14. Hydrogen Fuel Capability Added to Combustor Flametube Rig

    Science.gov (United States)

    Frankenfield, Bruce J.

    2003-01-01

    Facility capabilities have been expanded at Test Cell 23, Research Combustor Lab (RCL23) at the NASA Glenn Research Center, with a new gaseous hydrogen fuel system. The purpose of this facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Previously, this facility only had jet fuel available to perform these various combustor flametube tests. The new hydrogen fuel system will support the testing and development of aircraft combustors with zero carbon dioxide (CO2) emissions. Research information generated from this test rig includes combustor emissions and performance data via gas sampling probes and emissions measuring equipment. The new gaseous hydrogen system is being supplied from a 70 000-standard-ft3 tube trailer at flow rates up to 0.05 lb/s (maximum). The hydrogen supply pressure is regulated, and the flow is controlled with a -in. remotely operated globe valve. Both a calibrated subsonic venturi and a coriolis mass flowmeter are used to measure flow. Safety concerns required the placement of all hydrogen connections within purge boxes, each of which contains a small nitrogen flow that is vented past a hydrogen detector. If any hydrogen leaks occur, the hydrogen detectors alert the operators and automatically safe the facility. Facility upgrades and modifications were also performed on other fluids systems, including the nitrogen gas, cooling water, and air systems. RCL23 can provide nonvitiated heated air to the research combustor, up to 350 psig at 1200 F and 3.0 lb/s. Significant modernization of the facility control systems and the data acquisition systems was completed. A flexible control architecture was installed that allows quick changes of research configurations. The labor-intensive hardware interface has been removed and changed to a software-based system. In addition, the operation of this facility has been greatly enhanced with new software programming and graphic operator interface

  15. Conductive heat flux in VC-1 and the thermal regime of Valles Caldera, Jemez Mountains, New Mexico

    Science.gov (United States)

    Sass, J. H.; Morgan, Paul

    1988-06-01

    Over 5% of heat in the western United States is lost through Quaternary silicic volcanic centers, including the Valles caldera in north central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. We present new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the southwestern margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247±16 mW m-2. The only deep temperature information available is from an uncalibrated commercial log made 19 months after drilling. Gradients, derived from uncalibrated temperature logs, and conductivities are inversely correlated between 335 and 737 m, indicating a conductive thermal regime, and component heat fluxes over three depth intervals (335-539 m, 549-628 m, and 628-737 m) are in excellent agreement with each other with an average of 504±15 mW m-2. Temperature logs to 518 m depth with well-calibrated temperature sensors result in a revised heat flow of 463±15 mW m. We use shallow thermal gradient data from 75 other sites in and around the caldera to interpret the thermal regime at the VC-1 site. A critical review of published thermal conductivity data from the Valles caldera yields an average thermal conductivity of ≥1 W m-1 K-1 for the near-surface tuffaceous material, and we assume that shallow gradient values (°C km-1) are approximately numerically equal to heat flow (mW m-2). Heat loss from the caldera is asymmetrically distributed, with higher values (400 mW m-2 or higher) concentrated in the west-southwestern quadrant of the caldera. This quadrant also contains the main drainage from the caldera and the youngest volcanism associated with the caldera. We

  16. Evolution of optical vortex distributions in stochastic vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-01-01

    Full Text Available can to some extent be associated with the orbital angular momentum in the beam.3?5 Various aspects of optical vortices, such as their trajectories6?19 and morphology16, 20?22 have also been studied. However, these studies largely dealt with a small... are caused by variations in the vortex distributions, giving rise to feedback mechanisms and nonlinear behavior. Keywords: Infinitesimal propagation equation, entangle photons, atmospheric turbulence, orbital angular mo- mentum, decoherence 1...

  17. Special vortex in relativistic hydrodynamics

    Science.gov (United States)

    Chupakhin, A. P.; Yanchenko, A. A.

    2017-10-01

    An exact solution of the Euler equations governing the flow of a compressible fluid in relativistic hydrodynamics is found and studied. It is a relativistic analogue of the Ovsyannikov vortex (special vortex) investigated earlier for classical gas dynamics. Solutions are partially invariant of Defect 1 and Rank 2 with respect to the rotation group. A theorem on the representation of the factor-system in the form of a union of a non-invariant subsystem for the function determining the deviation of the velocity vector from the meridian, and invariant subsystem for determination of thermodynamic parameters, the Lorentz factor and the radial velocity component is proved. Compatibility conditions for the overdetermined non-invariant subsystem are obtained. A stationary solution of this type is studied in detail. It is proved that its invariant subsystem reduces to an implicit differential equation. For this equation, the manifold of branching of solutions is investigated, and a set of singular points is found.

  18. Experimental characteristics of vortex heaters

    Science.gov (United States)

    Piralishvili, Sh. A.; Novikov, N. N.

    The performance of a Ranque-Hilsch vortex tube is investigated experimentally for the case where the tube operates as a heater, with the mass of the heated gas remaining constant. The results obtained indicate that energy separation zones with sufficiently high (50 percent) relative heating effects can be achieved for a gas flow ratio of unity. A nomogram is presented for calculating the relative and absolute heating effects as a function of the tube geometry.

  19. Vortex disruption by magnetohydrodynamic feedback

    Science.gov (United States)

    Mak, J.; Griffiths, S. D.; Hughes, D. W.

    2017-11-01

    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses—and thus the degree of disruption—that depends on the strength of the background magnetic field (measured by the parameter M , a ratio between the Alfvén speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number Rm ). The resulting estimate suggests that significant disruption occurs when M2Rm =O (1 ) . To test our prediction, we analyze direct numerical simulations of vortices generated by the breakup of unstable shear flows with an initially weak background magnetic field. Using the Okubo-Weiss vortex coherence criterion, we introduce a vortex disruption measure, and show that it is consistent with our predicted scaling, for vortices generated by instabilities of both a shear layer and a jet.

  20. Vortex Molecules in Bose-Einstein Condensates

    Science.gov (United States)

    Nitta, Muneto; Eto, Minoru; Cipriani, Mattia

    2014-04-01

    Stable vortex dimers are known to exist in coherently coupled two component Bose-Einstein condensates (BECs). We construct stable vortex trimers in three component BECs and find that the shape can be controlled by changing the internal coherent (Rabi) couplings. Stable vortex N-omers are also constructed in coherently coupled N-component BECs. We classify all possible N-omers in terms of the mathematical graph theory. Next, we study effects of the Rabi coupling in vortex lattices in two-component BECs. We find how the vortex lattices without the Rabi coupling known before are connected to the Abrikosov lattice of integer vortices with increasing the Rabi coupling. In this process, vortex dimers change their partners in various ways at large couplings. We then find that the Abrikosov lattices are robust in three-component BECs.

  1. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  2. Spin wave mediated magnetic vortex core reversal

    Science.gov (United States)

    Stoll, Hermann

    2012-10-01

    The magnetic vortex is the simplest, non-trivial ground state configuration of micron and sub-micron sized soft magnetic thin film platelets and therefore an interesting subject for the study of micro magnetism. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling was discovered by excitation of the gyrotropic eigenmode at sub-GHz frequencies. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. We demonstrated, experimentally and by micromagnetic simulations, that the unidirectional vortex core reversal process also occurs when azimuthal spin wave modes are excited in the multi-GHz frequency range. This finding highlights the importance of spin wave - vortex interaction and boosts vortex core reversal to much higher frequencies, which may offer new routes for GHz spintronics applications.

  3. Vortex dynamics in nonrelativistic Abelian Higgs model

    Directory of Open Access Journals (Sweden)

    A.A. Kozhevnikov

    2015-11-01

    Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.

  4. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  5. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  6. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Initial results from VC-1, First Continental Scientific Drilling Program Core Hole in Valles Caldera, New Mexico

    Science.gov (United States)

    Goff, Fraser; Rowley, John; Gardner, Jamie N.; Hawkins, Ward; Goff, Sue; Charles, Robert; Wachs, Daniel; Maassen, Larry; Heiken, Grant

    1986-02-01

    Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphie information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, arid to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the Battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

  8. Excitation of vortex meandering in shear flow

    OpenAIRE

    Schröttle, Josef; Dörnbrack, Andreas; Schumann, Ulrich

    2015-01-01

    This paper investigates the evolution of a streamwise aligned columnar vortex with vorticity ω in an axial background shear of magnitude Ω by means of linear stability analysis and numerical simulations. A long wave mode of vorticity normal to the plane spanned by the background shear vector Ω and the vorticity of the vortex are excited by an instability. The stationary wave modes of the vertical and lateral vorticity are amplified. In order to form a helical vortex, the lat...

  9. Optical Vortex Solitons in Parametric Wave Mixing

    OpenAIRE

    Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    1999-01-01

    We analyze two-component spatial optical vortex solitons supported by parametric wave mixing processes in a nonlinear bulk medium. We study two distinct cases of such localised waves, namely, parametric vortex solitons due to phase-matched second-harmonic generation in an optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component ...

  10. Computational Analysis of Dynamic SPK(S8)-JP8 Fueled Combustor-Sector Performance

    Science.gov (United States)

    Ryder, R.; Hendricks, Roberts C.; Huber, M. L.; Shouse, D. T.

    2010-01-01

    Civil and military flight tests using blends of synthetic and biomass fueling with jet fuel up to 50:50 are currently considered as "drop-in" fuels. They are fully compatible with aircraft performance, emissions and fueling systems, yet the design and operations of such fueling systems and combustors must be capable of running fuels from a range of feedstock sources. This paper provides Smart Combustor or Fuel Flexible Combustor designers with computational tools, preliminary performance, emissions and particulates combustor sector data. The baseline fuel is kerosene-JP-8+100 (military) or Jet A (civil). Results for synthetic paraffinic kerosene (SPK) fuel blends show little change with respect to baseline performance, yet do show lower emissions. The evolution of a validated combustor design procedure is fundamental to the development of dynamic fueling of combustor systems for gas turbine engines that comply with multiple feedstock sources satisfying both new and legacy systems.

  11. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    Science.gov (United States)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  12. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  13. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  14. Vortex molecules in Bose-Einstein condensates

    OpenAIRE

    Nitta, Muneto; Eto, Minoru; Cipriani, Mattia

    2013-01-01

    Stable vortex dimers are known to exist in coherently coupled two component Bose-Einstein condensates (BECs). We construct stable vortex trimers in three component BECs and find that the shape can be controlled by changing the internal coherent (Rabi) couplings. Stable vortex N-omers are also constructed in coherently coupled N-component BECs. We classify all possible N-omers in terms of the mathematical graph theory. Next, we study effects of the Rabi coupling in vortex lattices in two-compo...

  15. Spin transport in tilted electron vortex beams

    OpenAIRE

    Basu, Banasri; Chowdhury, Debashree

    2016-01-01

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter con...

  16. Numerical Investigation of a Model Scramjet Combustor Using DDES

    Science.gov (United States)

    Shin, Junsu; Sung, Hong-Gye

    2017-04-01

    Non-reactive flows moving through a model scramjet were investigated using a delayed detached eddy simulation (DDES), which is a hybrid scheme combining Reynolds averaged Navier-Stokes scheme and a large eddy simulation. The three dimensional Navier-Stokes equations were solved numerically on a structural grid using finite volume methods. An in-house was developed. This code used a monotonic upstream-centered scheme for conservation laws (MUSCL) with an advection upstream splitting method by pressure weight function (AUSMPW+) for space. In addition, a 4th order Runge-Kutta scheme was used with preconditioning for time integration. The geometries and boundary conditions of a scramjet combustor operated by DLR, a German aerospace center, were considered. The profiles of the lower wall pressure and axial velocity obtained from a time-averaged solution were compared with experimental results. Also, the mixing efficiency and total pressure recovery factor were provided in order to inspect the performance of the combustor.

  17. N+2 Advanced Low NOx Combustor Technology Final Report

    Science.gov (United States)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  18. Experimental study on the heavy-duty gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Antonovsky, V.; Ahn, Kook Young [Korea Institute of Machinery and Materials, Taejon (Korea, Republic of)

    2000-07-01

    The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed in the scale 1:1. The model experiments were executed at a pressure smaller than in the real gas turbine. The combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure, and NOx emission were measured at partial and full load for both model and on-site testing. The comparison of these items of information, received on similar modes in the stand and field tests, has allowed the development of a method of calculation and the improvement of gas turbine combustors.

  19. Experimental study on the heavy-duty gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    V, Antonovsky; Ahn, K.Y. [Korea Institute of Machinery and Materials, Taejon (Korea)

    2000-11-01

    The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed in the scale 1:1. The model experiments were executed at a pressure smaller than in the real gas turbine. The combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure, and NOx emission were measured at partial and full load for both model and on-site testing. The comparison of these items of information, received on similar modes in the stand and field tests, has allowed the development of a method of calculation and the improvement of gas turbine combustors. (author). 3 refs., 8 figs.

  20. Performance of a short combustor at high altitudes using hydrogen fuel

    Science.gov (United States)

    Sivo, Joseph N; Fenn, David B

    1956-01-01

    Performance characteristics of a 16-inch annular-type combustor installed in a full-scale engine using gaseous-hydrogen fuel were obtained at simulated altitudes from 66,000 to 86,000 feet at a flight Mach number of 0.8. Combustion efficiencies of 86 percent were obtained at 86,000 feet (combustor pressure, 420 lb/sq ft abs). Combustor blowout was not encountered during the investigation.

  1. Numerical Modeling of a Ducted Rocket Combustor With Experimental Validation

    OpenAIRE

    Hewitt, Patrick

    2008-01-01

    The present work was conducted with the intent of developing a high-fidelity numerical model of a unique combustion flow problem combining multi-phase fuel injection with substantial momentum and temperature into a highly complex turbulent flow. This important problem is very different from typical and more widely known liquid fuel combustion problems and is found in practice in pulverized coal combustors and ducted rocket ramjets. As the ducted rocket engine cycle is only now finding wides...

  2. Transient Heat Transfer Properties in a Pulse Detonation Combustor

    Science.gov (United States)

    2011-03-01

    Applications,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, March 2010. [7] F.P. Incropera , and D.P. Dewitt, Fundamentals of Heat and Mass Transfer ...cooling water mass flow rates through each individual cooling jacket was used to determine the average heat transfer rate in Watts. The maximum...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Transient Heat Transfer Properties in a Pulse Detonation Combustor 6. AUTHOR(S) Dion Glenn

  3. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  4. Recurrence networks to study dynamical transitions in a turbulent combustor

    Science.gov (United States)

    Godavarthi, V.; Unni, V. R.; Gopalakrishnan, E. A.; Sujith, R. I.

    2017-06-01

    Thermoacoustic instability and lean blowout are the major challenges faced when a gas turbine combustor is operated under fuel lean conditions. The dynamics of thermoacoustic system is the result of complex nonlinear interactions between the subsystems—turbulent reactive flow and the acoustic field of the combustor. In order to study the transitions between the dynamical regimes in such a complex system, the time series corresponding to one of the dynamic variables is transformed to an ɛ-recurrence network. The topology of the recurrence network resembles the structure of the attractor representing the dynamics of the system. The transitions in the thermoacoustic system are then captured as the variation in the topological characteristics of the network. We show the presence of power law degree distribution in the recurrence networks constructed from time series acquired during the occurrence of combustion noise and during the low amplitude aperiodic oscillations prior to lean blowout. We also show the absence of power law degree distribution in the recurrence networks constructed from time series acquired during the occurrence of thermoacoustic instability and during the occurrence of intermittency. We demonstrate that the measures derived from recurrence network can be used as tools to capture the transitions in the turbulent combustor and also as early warning measures for predicting impending thermoacoustic instability and blowout.

  5. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    DeSilva, Upul P.; Claussen, Heiko

    2017-09-05

    An acoustic transceiver is implemented for measuring acoustic properties of a gas in a turbine engine combustor. The transceiver housing defines a measurement chamber and has an opening adapted for attachment to a turbine engine combustor wall. The opening permits propagation of acoustic signals between the gas in the turbine engine combustor and gas in the measurement chamber. An acoustic sensor mounted to the housing receives acoustic signals propagating in the measurement chamber, and an acoustic transmitter mounted to the housing creates acoustic signals within the measurement chamber. An acoustic measurement system includes at least two such transceivers attached to a turbine engine combustor wall and connected to a controller.

  6. Vortex diffusion and vortex-line hysteresis in radial quantum turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Saluto, L., E-mail: lidia.saluto@unipa.it [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Jou, D., E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Mongiovi, M.S., E-mail: m.stella.mongiovi@unipa.it [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2014-05-01

    We study the influence of vortex diffusion on the evolution of inhomogeneous quantized vortex tangles. A simple hydrodynamical model to describe inhomogeneous counterflow superfluid turbulence is used. As an illustration, we obtain solutions for these effects in radial counterflow of helium II between two concentric cylinders at different temperatures. The vortex diffusion from the inner hotter cylinder to the outer colder cylinder increases the vortex length density everywhere as compared with the non-diffusive situation. The possibility of hysteresis in the vortex line density under cyclical variations of the heat flow is explored.

  7. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry.

    Science.gov (United States)

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Jiang, Ning; Hancock, James F

    2013-11-01

    The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering. Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6-10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic 'Aurora' and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

  8. Vortex dynamics in thin elliptic ferromagnetic nanodisks

    Science.gov (United States)

    Wysin, G. M.

    2015-10-01

    Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vortex state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equations, including the demagnetization field calculated with a Green's function approach for thin film problems. At finite temperature the thermalized dynamics is found using a second order Heun algorithm for a magnetic Langevin equation based on the LLG equations. The vortex state is stable only within a limited range of ellipticity, outside of which a quasi-single-domain becomes the preferred minimum energy state. A vortex is found to move in an elliptical potential, whose force constants along the principal axes are determined numerically. The eccentricity of vortex motion is directly related to the force constants. Elliptical vortex motion is produced spontaneously by thermal fluctuations. The vortex position and velocity distributions in thermal equilibrium are Boltzmann distributions. The results show that vortex motion in elliptical disks can be described by a Thiele equation.

  9. Flow field measurement around vortex cavitation

    NARCIS (Netherlands)

    Pennings, P.C.; Westerweel, J.; Van Terwisga, T.J.C.

    2015-01-01

    Models for the center frequency of cavitating-vortex induced pressure-fluctuations, in a flow around propellers, require knowledge of the vortex strength and vapor cavity size. For this purpose, stereoscopic particle image velocimetry (PIV) measurements were taken downstream of a fixed half-wing

  10. The modelling of symmetric airfoil vortex generators

    Science.gov (United States)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  11. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    for their initial evolution is derived. The results are supported by a numerical particle simulation. Also the possibility of vortex excitation by ion bursts and coalescence of two vortexes are demonstrated. The effects of finite ion temperature, particle trapping and charge exchange collisions are discussed...

  12. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available In this paper the authors explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring...

  13. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  14. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...

  15. Supersonic shock wave/vortex interaction

    Science.gov (United States)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of

  16. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  17. Revisions to the stratigraphy and volcanology of the post-0.5 Ma units and the volcanic section of VC-1 core hole, Valles Caldera, New Mexico

    Science.gov (United States)

    Self, S.; Wolff, J. A.; Spell, T. L.; Skuba, C. E.; Morrissey, M. M.

    1991-03-01

    Reexamination of the Continental Scientific Drilling Project VC-1 core, new field data, and new isotopic ages necessitate revision of the previously described geology of the youngest eruptive units from the Valles caldera. The Banco Bonito rhyolite lava flow and minor attendant pyroclastic, autoclastic, and reworked deposits about 0.9 km3 dense rock equivalent volume (DRE), are recognized as the product of the youngest eruption from the caldera. The best estimate of the age of this event is 170-240 ka (1σ). A slightly earlier eruption produced the El Cajete pumice fall deposit, followed by the Battleship Rock ignimbrite and the VC-1 Rhyolite, totalling about 1.8 km3 DRE. We suggest that the VC-1 Tuffs, ignimbrites recognized only in the VC-1 core hole, are not a separate unit as previously proposed but are, in fact, the Battleship Rock ignimbrite. A complex volcaniclastic breccia dating from about the time of the South Mountain Rhyolite lava flow (529 ka) is the lowermost volcanic unit in the VC-1 core. The young, post-500 ka eruption products from the SW part of the Valles caldera are all composed of very similar low-silica rhyolite and are thus distinct from earlier, postcaldera high-silica rhyolites included in the Valles Rhyolite Formation. This distinction marks a major change in the magmatic evolution of the Valles caldera. We propose that recognition of this change necessitates revisions to the stratigraphy of the upper part of the Tewa Group.

  18. Polynomial Apodizers for Centrally Obscured Vortex Coronagraphs

    Science.gov (United States)

    Fogarty, Kevin; Pueyo, Laurent; Mazoyer, Johan; N'Diaye, Mamadou

    2017-12-01

    Several coronagraph designs have been proposed over the last two decades to directly image exoplanets. Among these designs, vector vortex coronagraphs provide theoretically perfect starlight cancellation along with small inner working angles when deployed on telescopes with unobstructed pupils. However, current and planned space missions and ground-based extremely large telescopes present complex pupil geometries, including large central obscurations caused by secondary mirrors, which prevent vortex coronagraphs from rejecting on-axis sources entirely. Recent solutions combining the vortex phase mask with a ring-apodized pupil have been proposed to circumvent this issue, but provide a limited throughput for vortex charges > 2. We present pupil plane apodizations for charge 2, 4, and 6 vector vortex coronagraphs that compensate for pupil geometries with circularly symmetric central obstructions caused by on-axis secondary mirrors. These apodizations are derived analytically and allow vortex coronagraphs to retain theoretically perfect nulling in the presence of obstructed pupils. For a charge 4 vortex, we design polynomial apodization functions assuming a grayscale apodizing filter that represent a substantial gain in throughput over the ring-apodized vortex coronagraph design, while for a charge 6 vortex, we design polynomial apodized vortex coronagraphs that have ≳ 70 % total energy throughput for the entire range of central obscuration sizes studied. We propose methods for optimizing apodizations produced with either grayscale apodizing filters or shaped mirrors. We conclude by demonstrating how this design may be combined with apodizations numerically optimized for struts and primary mirror segment gaps to design terrestrial exoplanet imagers for complex pupils.

  19. Terahertz circular Airy vortex beams.

    Science.gov (United States)

    Liu, Changming; Liu, Jinsong; Niu, Liting; Wei, Xuli; Wang, Kejia; Yang, Zhengang

    2017-06-20

    Vortex beams have received considerable research interests both in optical and millimeter-wave domain since its potential to be utilized in the wireless communications and novel imaging systems. Many well-known optical beams have been demonstrated to carry orbital angular momentum (OAM), such as Laguerre-Gaussian beams and high-order Bessel beams. Recently, the radially symmetric Airy beams that exhibit an abruptly autofocusing feature are also demonstrated to be capable of carrying OAM in the optical domain. However, due to the lack of efficient devices to manipulate terahertz (THz) beams, it could be a challenge to demonstrate the radially symmetric Airy beams in the THz domain. Here we demonstrate the THz circular Airy vortex beams (CAVBs) with a 0.3-THz continuous wave through 3D printing technology. Assisted by the rapidly 3D-printed phase plates, individual OAM states with topological charge l ranging from l = 0 to l = 3 and a multiplexed OAM state are successfully imposed into the radially symmetric Airy beams. We both numerically and experimentally investigate the propagation dynamics of the generated THz CAVBs, and the simulations agree well with the observations.

  20. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  1. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  2. Fluid entrainment by isolated vortex rings

    Science.gov (United States)

    Dabiri, John O.; Gharib, Morteza

    2004-07-01

    Of particular importance to the development of models for isolated vortex ring dynamics in a real fluid is knowledge of ambient fluid entrainment by the ring. This time-dependent process dictates changes in the volume of fluid that must share impulse delivered by the vortex ring generator. Therefore fluid entrainment is also of immediate significance to the unsteady forces that arise due to the presence of vortex rings in starting flows. Applications ranging from industrial and transportation, to animal locomotion and cardiac flows, are currently being investigated to understand the dynamical role of the observed vortex ring structures. Despite this growing interest, fully empirical measurements of fluid entrainment by isolated vortex rings have remained elusive. The primary difficulties arise in defining the unsteady boundary of the ring, as well as an inability to maintain the vortex ring in the test section sufficiently long to facilitate measurements. We present a new technique for entrainment measurement that utilizes a coaxial counter-flow to retard translation of vortex rings generated from a piston cylinder apparatus, so that their growth due to fluid entrainment can be observed. Instantaneous streamlines of the flow are used to determine the unsteady vortex ring boundary and compute ambient fluid entrainment. Measurements indicate that the entrainment process does not promote self-similar vortex ring growth, but instead consists of a rapid convection-based entrainment phase during ring formation, followed by a slower diffusive mechanism that entrains ambient fluid into the isolated vortex ring. Entrained fluid typically constitutes 30% to 40% of the total volume of fluid carried with the vortex ring. Various counter-flow protocols were used to substantially manipulate the diffusive entrainment process, producing rings with entrained fluid fractions up to 65%. Measurements of vortex ring growth rate and vorticity distribution during diffusive entrainment

  3. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... oxygen (dry basis), whichever is less stringent. (c) The limits for municipal waste combustor organics... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for municipal waste combustor...

  4. High Speed Optical Diagnostics in a High Pressure, GOx/RP 2 Combustor

    Science.gov (United States)

    2017-07-10

    Combustor," 50th AIAA/ ASME /SAE/ASEE Joint Propulsion Conference. 2014, p. 3773. 11. Frezzotti, M. L., Terracciano, A., Nasuti, F., Hester, S., and...Anderson, W. E. "Low-order model studies of combustion instabilities in a DVRC combustor," 50th AIAA/ ASME /SAE/ASEE Joint Propulsion Conference. 2014, p

  5. Combustion stability with baffles, absorbers and velocity sensitive combustion. [liquid propellant rocket combustors

    Science.gov (United States)

    Mitchell, C. E.

    1980-01-01

    Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.

  6. Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor

    NARCIS (Netherlands)

    Shahi, Mina; Kok, Jacobus B.W.; Pozarlik, Artur Krzysztof; Roman Casado, J.C.; Sponfeldner, T.

    2014-01-01

    The objective of this study is to investigate the sensitivity and accuracy of the reaction flow-field prediction for the LIMOUSINE combustor with regard to choices in computational mesh and turbulent combustion model. The LIMOUSINE combustor is a partially premixed, bluff body-stabilized natural gas

  7. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor metals. 60.52a Section 60.52a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date on...

  8. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Science.gov (United States)

    2010-07-01

    ... September 20, 1994 § 60.53a Standard for municipal waste combustor organics. (a) (b) On and after the date... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor organics. 60.53a Section 60.53a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  9. Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach

    NARCIS (Netherlands)

    T. Tinga; B. de Jager; J.B.W. Kok; J.F. van Kampen

    2007-01-01

    A life assessment was performed on a fighter jet engine annular combustor liner, using a combined fluid/structural approach. Computational fluid dynamics analyses were performed to obtain the thermal loading of the combustor liner and finite element analyses were done to calculate the temperature

  10. Development and testing of pulsed and rotating detonation combustors

    Science.gov (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  11. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  12. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  13. A VORTEX MODEL OF A HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU

    2009-06-01

    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.

  14. Phase diagram of a lattice of pancake vortex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y., E-mail: y.tanaka@aist.go.j [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Crisan, A. [University of Birmingham, Birmingham (United Kingdom); National Institute of Materials Physics, Bucharest (Romania); Shivagan, D.D.; Iyo, A.; Shirage, P.M. [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Tokiwa, K.; Watanabe, T. [Tokyo University of Science, Noda (Japan); Terada, N. [Kagoshima University, Kagoshima (Japan)

    2009-10-15

    On a superconducting bi-layer with thickness much smaller than the penetration depth, lambda, a vortex molecule might form. A vortex molecule is composed of two fractional vortices and a soliton wall. The soliton wall can be regarded as a Josephson vortex missing magnetic flux (degenerate Josephson vortex) due to an incomplete shielding. The magnetic energy carried by fractional vortices is less than in the conventional vortex. This energy gain can pay a cost to form a degenerate Josephson vortex. The phase diagram of the vortex molecule is rich because of its rotational freedom.

  15. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  16. A capture method based on the VC1 domain reveals new binding properties of the human receptor for advanced glycation end products (RAGE

    Directory of Open Access Journals (Sweden)

    Genny Degani

    2017-04-01

    Full Text Available The Advanced Glycation and Lipoxidation End products (AGEs and ALEs are a heterogeneous class of compounds derived from the non-enzymatic glycation or protein adduction by lipoxidation break-down products. The receptor for AGEs (RAGE is involved in the progression of chronic diseases based on persistent inflammatory state and oxidative stress. RAGE is a pattern recognition receptor (PRR and the inhibition of the interaction with its ligands or of the ligand accumulation have a potential therapeutic effect. The N-terminal domain of RAGE, the V domain, is the major site of AGEs binding and is stabilized by the adjacent C1 domain. In this study, we set up an affinity assay relying on the extremely specific biological interaction AGEs ligands have for the VC1 domain. A glycosylated form of VC1, produced in the yeast Pichia pastoris, was attached to magnetic beads and used as insoluble affinity matrix (VC1-resin. The VC1 interaction assay was employed to isolate specific VC1 binding partners from in vitro generated AGE-albumins and modifications were identified/localized by mass spectrometry analysis. Interestingly, this method also led to the isolation of ALEs produced by malondialdehyde treatment of albumins. Computational studies provided a rational-based interpretation of the contacts established by specific modified residues and amino acids of the V domain. The validation of VC1-resin in capturing AGE-albumins from complex biological mixtures such as plasma and milk, may lead to the identification of new RAGE ligands potentially involved in pro-inflammatory and pro-fibrotic responses, independently of their structures or physical properties, and without the use of any covalent derivatization process. In addition, the method can be applied to the identification of antagonists of RAGE-ligand interaction.

  17. Molecular characterisation of a calmodulin gene, VcCaM1, that is differentially expressed under aluminium stress in highbush blueberry.

    Science.gov (United States)

    Inostroza-Blancheteau, C; Aquea, F; Loyola, R; Slovin, J; Josway, S; Rengel, Z; Reyes-Díaz, M; Alberdi, M; Arce-Johnson, P

    2013-11-01

    Calmodulin (CaM), a small acidic protein, is one of the best characterised Ca(2+) sensors in eukaryotes. This Ca(2+) -regulated protein plays a critical role in decoding and transducing environmental stress signals by activating specific targets. Many environmental stresses elicit changes in intracellular Ca(2+) activity that could initiate adaptive responses under adverse conditions. We report the first molecular cloning and characterisation of a calmodulin gene, VcCaM1 (Vaccinium corymbosum Calmodulin 1), in the woody shrub, highbush blueberry. VcCaM1 was first identified as VCAL19, a gene induced by aluminium stress in V. corymbosum L. A full-length cDNA of VcCaM1 containing a 766-bp open reading frame (ORF) encoding 149 amino acids was cloned from root RNA. The sequence encodes four Ca(2+) -binding motifs (EF-hands) and shows high similarity (99%) with the isoform CaM 201 of Daucus carota. Expression analyses showed that following Al treatment, VcCaM1 message level decreased in roots of Brigitta, an Al-resistant cultivar, and after 48 h, was lower than in Bluegold, an Al-sensitive cultivar. VcCAM1 message also decreased in leaves of both cultivars within 2 h of treatment. Message levels in leaves then increased by 24 h to control levels in Brigitta, but not in Bluegold, but then decreased again by 48 h. In conclusion, VcCaM1 does not appear to be directly involved in Al resistance, but may be involved in improved plant performance under Al toxicity conditions through regulation of Ca(2+) homeostasis and antioxidant systems in leaves. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters.

    Science.gov (United States)

    Houde, Magali; Douville, Mélanie; Gagnon, Pierre; Sproull, Jim; Cloutier, François

    2015-06-01

    Trichloroethylene (TCE) is a ubiquitous contaminant classified as a human carcinogen. Vinyl chloride (VC) is primarily used to manufacture polyvinyl chloride and can also be a degradation product of TCE. Very few data exist on the toxicity of TCE and VC in aquatic organisms particularly at environmentally relevant concentrations. The aim of this study was to evaluate the sub-lethal effects (10 day exposure; 0.1; 1; 10 µg/L) of TCE and VC in Daphnia magna at the gene, cellular, and life-history levels. Results indicated impacts of VC on the regulation of genes related to glutathione-S-transferase (GST), juvenile hormone esterase (JHE), and the vitelline outer layer membrane protein (VMO1). On the cellular level, exposure to 0.1, 1, and 10 µg/L of VC significantly increased the activity of JHE in D. magna and TCE increased the activity of chitinase (at 1 and 10 µg/L). Results for life-history parameters indicated a possible tendency of TCE to affect the number of molts at the individual level in D. magna (p=0.051). Measurement of VG-like proteins using the alkali-labile phosphates (ALP) assay did not show differences between TCE treated organisms and controls. However, semi-quantitative measurement using gradient gel electrophoresis (213-218 kDa) indicated significant decrease in VG-like protein levels following exposure to TCE at all three concentrations. Overall, results indicate effects of TCE and VC on genes and proteins related to metabolism, reproduction, and growth in D. magna. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  19. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  20. Combustor Design Criteria Validation. Volume III. User’s Manual

    Science.gov (United States)

    1979-02-01

    Consider a typical combustor liner and its predicted iso - thermal lines for an x-y planel e.a., in line with nr.mary jets, such as shown in Figure 7. The 3...GAS, XMAX, YMAX, UNIFORM STREAM 1 11 FPS 21PSIA 31 IN. 4 OR 51 OPTION 7 1.2. .2 Iq/7. . ISo t t t t t XNOZ C YNOZ C GAS XMAX ’MAX --- Z-D FIELD OPTION...solved for, 02-solve for U ARCONI 28500 Activation energy divided by gas constant for fuel reaction PREXPI 5E + 15 Preexponent for fuel reaction CR1 6.0

  1. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    Science.gov (United States)

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  2. On the Use of Vortex-Fitting in the Numerical Simulation of Blade-Vortex Interaction

    Science.gov (United States)

    Srinivasan, G. R.; VanDalsem, William (Technical Monitor)

    1997-01-01

    The usefulness of vortex-fitting in the computational fluid dynamics (CFD) methods to preserve the vortex strength and structure while convecting in a uniform free stream is demonstrated through the numerical simulations of two- and three-dimensional blade-vortex interactions. The fundamental premise of the formulation is the velocity and pressure field of the interacting vortex are unaltered either in the presence of an airfoil or a rotor blade or by the resulting nonlinear interactional flowfield. Although, the governing Euler and Navier-Stokes equations are nonlinear and independent solutions cannot be superposed, the interactional flowfield can be accurately captured by adding and subtracting the flowfield of the convecting vortex at each instant. The aerodynamics and aeroacoustics of two- and three-dimensional blade-vortex interactions have been calculated in Refs. 1-6 using this concept. Some of the results from these publications and similar other published material will be summarized in this paper.

  3. Dynamic Optimization for Vortex Shedding Suppression

    Directory of Open Access Journals (Sweden)

    Bonis Ioannis

    2016-01-01

    Full Text Available Flows around structures exhibiting vortex shedding induce vibrations that can potentially damage the structure. A way to avoid it is to suppress vortex shedding by controlling the wake. Wake control of laminar flow behind a rotating cylinder is formulated herein as a dynamic optimization problem. Angular cylinder speed is the manipulated variable that is adjusted to suppress vortex shedding by minimizing lift coefficient variation. The optimal angular speed is assumed to be periodic like wake formation. The control problem is solved for different time horizons tH. The impact of tH to control is evaluated and the need for feedback is assessed.

  4. Aircraft control in wake vortex wind shear

    Science.gov (United States)

    Wold, Gregory R.

    1995-01-01

    In the past, there have been a number of fatal incidents attributable to wake vortex encounters, involving both general aviation and commercial aircraft. In fact, the wake vortex hazard is considered to be the single dominant safety issue determining the aircraft spacing requirements at airports. As the amount of air traffic increases, the number of dangerous encounters is likely only to increase. It is therefore imperative that a means be found to reduce the danger. That is the purpose of this research: to use nonlinear inverse dynamic (NID) control methods in the design of an aircraft control system which can improve the safety margin in a wake vortex encounter.

  5. Acoustooptic operation of optical vortex beams

    Science.gov (United States)

    Martynyuk-Lototska, Iryna; Vasylkiv, Yurii; Dudok, Taras; Skab, Ihor; Vlokh, Rostyslav

    2018-02-01

    Using acoustooptic (AO) cells based on TeO2 crystal and silica glass, we have experimentally shown for the first time that the intensity profile and the phase structure of the vortex beam are preserved under AO Bragg diffraction. As a result, the vortex beam can be deflected due to AO diffraction, whereas the acoustooptically operated vortex beams can be efficiently used in such novel branches of optical technology as optical trapping and controlled addressing of the beams with different orbital angular momentums.

  6. All-electrical magnetic vortex array sensing

    Science.gov (United States)

    Tannous, C.; Gieraltowski, J.

    2016-08-01

    Vortex sensing magnetometers based on arrays of soft magnetic dots are good candidates for high-resolution and accurate spatial magnetic-field estimation. When the arrays are laid out along different spatial directions they can perform tensor gradiometry allowing the measurement of field components and their spatial derivatives as a function of orientation. Detection is based on using spin-polarized currents to counteract vortex displacements or to excite vortex oscillation modes triggered by magnetic-field application. Sensor linearization, field detection range and conditions to obtain large sensitivity electronic compatibility and scalability are discussed.

  7. Vortex motion behind a circular cylinder

    Science.gov (United States)

    Foeppl, L.

    1983-01-01

    Vortex motion behind a circular cylinder moving through water is discussed. It is shown that a pair of vortices form behind a moving cylinder and that their centers will move along a predictable curve. This curve represents an equilibrium condition which, however, is subject to perturbation. The stability of the vortex pair is investigated. Movement of the vortex pair away from the cylinder is calculated as an explanation of the resistance of the cylinder. Finally, the principles elaborated are applied to the flow around a flat plate.

  8. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  9. Electron vortex beams in a magnetic field and spin filter

    OpenAIRE

    Chowdhury, Debashree; Basu, Banasri; Bandyopadhyay, Pratul

    2015-01-01

    We investigate the propagation of electron vortex beams in a magnetic field. It is pointed out that when electron vortex beams carrying orbital angular momentum propagate in a magnetic field, the Berry curvature associated with the scalar electron moving in a cyclic path around the vortex line is modified from that in free space. This alters the spin-orbit interaction, which affects the propagation of nonparaxial beams. The electron vortex beams with tilted vortex lead to spin Hall effect in ...

  10. Secondary vortex formation in ring vortices in free jets

    Science.gov (United States)

    Schneider, E. M.

    1980-10-01

    Secondary vortex formation is examined as a basic component of the turbulent condition of vortex and laminar currents. Dyed fluid ring vortices are used to investigate formation moving against an object and in an unobstructed environment. Part of the vortex structure of jets can be explained by means of secondary vortices, and the sound spectrum both of a single turbulent vortex and of jets is influenced by secondary vortex formation.

  11. Vortex disruption by magnetohydrodynamic feedback

    CERN Document Server

    Mak, Julian; Hughes, D W

    2016-01-01

    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...

  12. Vortex Bursting Over a Unit Area Aspect Ratio Delta Wing Using Vortex Paneling Methods

    Science.gov (United States)

    1990-12-01

    Fiaures * Figure Page 1. Two-Dimensional Vortex Panel ... ....... 9 1 2. Vortex Panel Modeling of a NACA0012 Airfoil .......................... 14 3 3...Therefore, each node has a single vortex strength I (G).I I 7 109 5 4 I Figure 2. Vortex Panel Modeling of a NACA0012 Airfoil I 14I The no penetration...34 ." Figure 4. Enhanced Two-Dimensional Wake Splitting 2.4 Results The airfoil investigated was a NACA0012 airfoil. The following equation was used to

  13. The effect of incomplete fuel-air mixing on the lean blowout limit, lean stability limit and NO(x) emissions in lean premixed gas turbine combustors

    Science.gov (United States)

    Shih, W.-P.; Lee, J. G.; Santavicca, D. A.

    1994-01-01

    Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors.

  14. Drift due to viscous vortex rings

    Science.gov (United States)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc

    2016-11-01

    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  15. Vortex Shedding From a Flexible Hydrofoil

    CERN Document Server

    Dreyer, Matthieu

    2011-01-01

    Video of vortex shedding in the wake of a Naca0009 hydrofoil made of polyoxymethylene type C (POM C). This video was submitted as part of the Gallery of Fluid Motion 2011 which is showcase of fluid dynamics videos.

  16. Quenching processes in flame-vortex interactions

    Science.gov (United States)

    Zingale, M.; Niemeyer, J. C.; Timmes, F. X.; Dursi, L. J.; Calder, A. C.; Fryxell, B.; Lamb, D. Q.; MacNeice, P.; Olson, K.; Ricker, P. M.; Rosner, R.; Truran, J. W.; Tufo, H. M.

    2001-10-01

    We show direct numerical simulations of flame-vortex interactions in order to understand quenching of thermonuclear flames. The key question is-can a thermonuclear flame be quenched? If not, the deflagration-detonation transition mechanisms that demand a finely tuned preconditioned region in the interior of a white dwarf are unlikely to work. In these simulations, we pass a steady-state laminar flame through a vortex pair. The vortex pair represents the most severe strain the flame front will encounter inside the white dwarf. We perform a parameter study, varying the speed and size of the vortex pair, in order to understand the quenching process. No quenching is observed in any of the calculations performed to date. .

  17. Vortex structure and characterization of quasiperiodic functions

    CERN Document Server

    Dana, I

    2002-01-01

    Quasiperiodic functions (QPFs) are characterized by their full vortex structure in one unit cell. This characterization is much finer and more sensitive than the topological one given by the total vorticity per unit cell (the 'Chern index'). It is shown that QPFs with an arbitrarily prescribed vortex structure exist by constructing explicitly such a 'standard' QPF. Two QPFs with the same vortex structure are equivalent, in the sense that their ratio is a function which is strictly periodic, nonvanishing and at least continuous. A general QPF can then be approximately reconstructed from its vortex structure on the basis of the standard QPF and the equivalence concept. As another application of this concept, a simple method is proposed for calculating the quasiperiodic eigenvectors of periodic matrices. Possible applications to the quantum-chaos problem on a phase-space torus are briefly discussed.

  18. Development of gas pressure vortex regulator

    Science.gov (United States)

    Uss, A. Yu.; Chernyshyov, A. V.; Krylov, V. I.

    2017-08-01

    The present paper describes the applications of vortex regulators and the current state of the issue on the use and development of such devices. A patent review has been carried out. Automatic control systems using a vortex regulator are considered. Based on the analysis and preliminary numerical calculation of gas flow in the working cavity of the regulator, a new design of a vortex gas pressure regulator has been developed. An experimental sample of the device was made using additive technologies and a number of tests were carried out. The results of experimental studies confirmed the adequacy of the created mathematical model. Based on further numerical studies a new design of a vortex regulator with a distributed feed of the process control flow as well as with the regulated swirl of the supply and control process flows has been developed.

  19. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  20. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  1. Numerical simulations of trailing vortex bursting

    Science.gov (United States)

    Beran, Philip S.

    1987-01-01

    Solutions of the steady-state Navier-Stokes equations for the axisymmetric bursting of a laminar trailing vortex are computed with Newton's method and the pseudo-arc length continuation method for wide ranges of vortex strength and Reynolds number. The results indicate that a trailing vortex can undergo a transition from a state in which the core slowly diffuses to a state marked by large amplitude, spatial oscillations of core radius and core axial velocity. At the transition point the core grows rapidly in size. This event is interpreted as vortex bursting. The results also suggest that when the maximum core swirl velocity is sufficiently large the centerline axial flow downstream of transition will be reversed.

  2. Cockpit-based Wake Vortex Visualization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To prevent aircraft accidents due to wake vortex hazards, FAA procedures specify the minimum separation required between different categories of aircraft. However, a...

  3. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  4. Design of thermal protection system for 8 foot HTST combustor

    Science.gov (United States)

    Moskowitz, S.

    1973-01-01

    The combustor in the 8-foot high temperature structures tunnel at the NASA-Langley Research Center has encountered cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A program was conducted which analyzed the failed combustor liner hardware and determined that the mechanism of failure was vibratory fatigue. A vibration damper system using wave springs located axially between the liner T-bar and the liner support was designed as an intermediate solution to extend the life of the current two-pass regenerative air-cooled liner. The effects of liner wall thickness, cooling air passage height, stiffener ring geometry, reflective coatings, and liner material selection were investigated for these designs. Preliminary layout design arrangements including the external water-cooling system requirements, weight estimates, installation requirements and preliminary estimates of manufacturing costs were prepared for the most promissing configurations. A state-of-the-art review of thermal barrier coatings and an evaluation of reflective coatings for the gasside surface of air-cooled liners are included.

  5. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  6. Polynomial Apodizers for Centrally Obscured Vortex Coronagraphs

    OpenAIRE

    Fogarty, Kevin; Pueyo, Laurent; Mazoyer, Johan; N'Diaye, Mamadou

    2017-01-01

    Several coronagraph designs have been proposed over the last two decades to directly image exoplanets. Among these designs, the vector vortex coronagraphs provide theoretically perfect starlight cancellation along with small inner working angles when deployed on telescopes with unobstructed pupils. However, current and planned space missions and ground-based extremely large telescopes present complex pupil geometries, including secondary mirror central obscurations, that prevent vortex corona...

  7. Spatiotemporal complexity of the aortic sinus vortex

    Science.gov (United States)

    Moore, Brandon; Dasi, Lakshmi Prasad

    2014-07-01

    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calcific aortic valve disease. We characterize the spatiotemporal characteristics of aortic sinus vortex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High-resolution time-resolved (2 kHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in timescales as revealed using time bin-averaged vectors and corresponding instantaneous streamlines. There exist small timescale vortices and a large timescale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatiotemporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200 Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and timescales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics.

  8. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  9. Counterexamples to Moffatt's statements on vortex knots.

    Science.gov (United States)

    Bogoyavlenskij, Oleg

    2017-04-01

    One of the well-known problems of hydrodynamics is studied: the problem of classification of vortex knots for ideal fluid flows. In the literature there are known Moffatt statements that all torus knots K_{m,n} for all rational numbers m/n (0vortex knots for each one of the considered axisymmetric fluid flows. We prove that actually such a uniformity does not exist because it does not correspond to the facts. Namely, we derive a complete classification of all vortex knots realized for the fluid flows studied by Moffatt and demonstrate that the real structure of vortex knots is much more rich because the sets of mutually nonisotopic vortex knots realized for different axisymmetric fluid flows are all different. An exact formula for the limit of the hydrodynamic safety factor q_{h} at a vortex axis is derived for arbitrary axisymmetric fluid equilibria. Another exact formula is obtained for the limit of the magnetohydrodynamics safety factor q at a magnetic axis for the general axisymmetric plasma equilibria.

  10. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  11. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  12. Emission characteristics of a model gas turbine combustor at practical conditions

    Science.gov (United States)

    Drennan, S. A.; Sowa, W. A.; Samuelsen, G. S.

    1993-01-01

    This paper reports on in situ and exit plane emissions measurements from a model gas turbine combustor at practical air preheat temperatures and pressures for a range of operating conditions. The model combustor chosen for the study features two rows of jets (primary and dilution) with four jets per row, and utilizes effusive air cooling holes on the liner wall. The combustor dome is equipped with a flat-vaned swirler with a vane angle of 60 deg. Data are obtained at combustor pressures ranging from 2 to 10 atmospheres, air preheat temperatures from 204 C to 427 C, and combustor reference velocities from 10.0 to 20.0 m/s. An overall equivalence ratio of 0.3 was constant for all conditions. Exit plane and in situ measurements are presented for HC, O2, CO2, CO, and NO(x). The results from exit plane NO(x) measurements illustrate that the model combustor is representative of current gas turbine combustors. The in situ data reveal effects of fuel/air and wall jet mixing on emission performance.

  13. Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system.

    Science.gov (United States)

    Fields, Wanda; Fowler, Kathy; Hargreaves, Victoria; Reeve, Lesley; Bombick, Betsy

    2017-04-01

    Cytotoxicity assessment of combustible tobacco products by neutral red uptake (NRU) has historically used total particulate matter (TPM) or solvent captured gas vapor phase (GVP), rather than fresh whole smoke. Here, the development, validation and application of the NRU assay in Chinese Hamster Ovary (CHO) cells, following exposure to fresh whole smoke generated with the VITROCELL® VC10® system is described. Whole smoke exposure is particularly important as both particulate and vapor phases of tobacco smoke show cytotoxicity in vitro. The VITROCELL® VC10® system provides exposure at the air liquid interface (ALI) to mimic in vivo conditions for assessing the toxicological impact of smoke in vitro. Instrument and assay validations are crucial for comparative analyses. 1) demonstrate functionality of the VITROCELL® VC10® system by installation, operational and performance qualification, 2) develop and validate a cellular system for assessing cytotoxicity following whole smoke exposure and 3) assess the whole smoke NRU assay sensitivity for statistical differentiation between a reference combustible cigarette (3R4F) and a primarily "heat-not-burn" cigarette (Eclipse). The VITROCELL® VC10® provided consistent generation and delivery of whole smoke; exposure-related changes in in vitro cytotoxicity were observed with reproducible IC50 values; comparative analysis showed that the heat-not-burn cigarette was significantly (P<0.001) less cytotoxic than the 3R4F combustible cigarette, consistent with the lower levels of chemical constituents liberated by primarily-heating the cigarette versus burning. Copyright © 2017. Published by Elsevier Ltd.

  14. Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report

    Science.gov (United States)

    Bahr, D. W.; Burrus, D. L.; Sabla, P. E.

    1979-01-01

    A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.

  15. Hydrogen injection scheme influence on flow structure in supersonic combustor of constant cross-section

    Science.gov (United States)

    Starov, A. V.; Goldfeld, M. A.

    2017-10-01

    The efficiency of using two variants of hydrogen injection (distributed and non-distributed injection from vertical pylons) is experimentally investigated. The tests are performed in the attached pipeline regime with the Mach number at the model combustor entrance M=2. The combustion chamber has a backward-facing step at the entrance and slotted channels for combustion stabilization. The tested variants of injection differ basically by the shapes of the fuel jets and, correspondingly, by the hydrogen distribution over the combustor. As a result, distributed injection is found to provide faster ignition, upstream displacement of the elevated pressure region, and more intense combustion over the entire combustor volume.

  16. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  17. Experimental Characterization of Combustion Instabilities and Flow-Flame Dynamics in a Partially-Premixed Gas Turbine Model Combustor

    Science.gov (United States)

    Allison, Patton Manuel

    Partially-premixed, swirl combustion is applied in gas turbine combustors to achieve flame stabilization and reduced emission production. However, this method is also inherently sensitive to combustion instabilities which can cause large pressure, velocity, and heat release fluctuations. This thesis investigates thermoacoustic coupling created by flow-flame dynamics in a gas turbine model combustor (GTMC) for a variety of fuels and operating flow rates. Several naturally occurring instability modes were identified to control the acoustic response of the system, including Helmholtz resonances from the plenum and convective-acoustic effects which cause equivalence ratio oscillations. Laser Doppler velocimetry was used to measure radial flow in the GTMC, which can set up flow-fields which create loudly resonating flat-shaped flames, in comparison to quiet V-shaped flames. Flame location and shape altered convective time delays which determine the relative phases of pressure and heat release oscillations. Simultaneous pressure and chemiluminescence imaging showed that the heat release, pressure fluctuations, and flame motion are all coupled at the same instability frequency. Videos of the flame motion also revealed that the precessing vortex core (PVC), created by the swirling flow, influences the rocking behavior of the flame. Acetone was added to the fuel to act as a tracer in fluorescence measurements which indicated the localization of unburned fuel. It was discovered that fuel was distributed in lobes which corresponded to locations surrounding the shear layer outside of the central recirculation zone, and that the relative distribution of the lobes adjusted to forcing by the flow. Finally, high-speed formaldehyde planar laser-induced fluorescence was applied to study the motion of preheat zone surfaces in response to the oscillations of the instability. The flame surface density and wrinkling fluctuated at the acoustic frequency and displayed dampened motions

  18. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  19. Tunable-wavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex

    Science.gov (United States)

    Zhang, Wending; Wei, Keyan; Wang, Heng; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-01-01

    We present a method for tunable-wavelength picosecond vortex pulse generation by using an acoustically-induced fiber grating (AIFG). The AIFG-driven mode conversion characteristic was activated via a shear-mode piezoelectric transducer that excels in excitation efficiency of acoustic flexural wave and mechanical stability. The linearly-polarized ±1-order picosecond vortex pulse was experimentally generated via AIFG with a uniform coupling efficiency of ∼98.4% from the fundamental mode to the ±1-order vortex mode within the wavelength range 1540 nm ∼ 1560 nm. The topological charge and the linearly-polarized characteristic of the picosecond vortex pulse were verified by examination of the off-axial interference and the polarization angle-dependent intensity, respectively. Furthermore, the picosecond vortex pulse with wavelength tunability was input to a nonlinear BBO crystal to generate a frequency-doubled ±2-order vortex in the wavelength range 770 nm ∼ 780 nm. This technology provides a convenient apparatus for generating a picosecond vortex pulse and the frequency-doubled vortex with wavelength tunability.

  20. Sculptured 3D twister superlattices embedded with tunable vortex spirals.

    Science.gov (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby

    2011-09-01

    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  1. Effects of surface anisotropy on magnetic vortex core

    Energy Technology Data Exchange (ETDEWEB)

    Pylypovskyi, Oleksandr V., E-mail: engraver@univ.net.ua [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Sheka, Denis D. [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Kravchuk, Volodymyr P.; Gaididei, Yuri [Institute for Theoretical Physics, 03143 Kiev (Ukraine)

    2014-06-01

    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin–lattice simulations. - Highlights: • The shape of magnetic vortex core is essentially influenced by SA (surface anisotropy). • We predict barrel- or pillow-shaped deformation of the vortex depending on SA. • The variational approach fully describes the vortex core deformation. • We performed spin–lattice simulations to detect SA influence on the vortex core.

  2. Intraventricular vortex properties in nonischemic dilated cardiomyopathy.

    Science.gov (United States)

    Bermejo, Javier; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; Del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; Del Álamo, Juan C

    2014-03-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1-74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m(2)/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound.

  3. Prediction of swirling reacting flow in ramjet combustors

    Science.gov (United States)

    Lilley, D. G.; Samples, J. W.; Rhode, D. L.

    1981-01-01

    Numerical computations have been undertaken for a basic two-dimensional axisymmetric flowfield which is similar to that found in conventional gas turbine and ramjet combustors. A swirling flow enters a larger chamber via a sudden or gradual expansion. The calculation method involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation turbulence energy-turbulence dissipation rate turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. The results include recirculation zone characterization and predicted mean streamline patterns. Predictions with and without chemical reaction are obtained. An associated isothermal experimental flow study is providing a useful data base. Successful outcomes of the work can be incorporated into the more combustion- and hardware-oriented activities of industrial concerns.

  4. Gas turbine combustor exit piece with hinged connections

    Science.gov (United States)

    Charron, Richard C.; Pankey, William W.

    2016-04-26

    An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60) of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.

  5. Parametric Design of Injectors for LDI-3 Combustors

    Science.gov (United States)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2015-01-01

    Application of a partially calibrated National Combustion Code (NCC) for providing guidance in the design of the 3rd generation of the Lean-Direct Injection (LDI) multi-element combustion configuration (LDI-3) is summarized. NCC was used to perform non-reacting and two-phase reacting flow computations on several LDI-3 injector configurations in a single-element and a five-element injector array. All computations were performed with a consistent approach for mesh-generation, turbulence, spray simulations, ignition and chemical kinetics-modeling. Both qualitative and quantitative assessment of the computed flowfield characteristics of the several design options led to selection of an optimal injector LDI- 3 design that met all the requirements including effective area, aerodynamics and fuel-air mixing criteria. Computed LDI-3 emissions (namely, NOx, CO and UHC) will be compared with the prior generation LDI- 2 combustor experimental data at relevant engine cycle conditions.

  6. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study.

    Science.gov (United States)

    Harris, Wendy; Yin, Fang-Fang; Wang, Chunhao; Zhang, You; Cai, Jing; Ren, Lei

    2017-12-14

    To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. For XCAT, VPD/COMS were 11.93  ±  2.37%/0.90  ±  0.27 mm and 11.53  ±  1.47%/0.85  ±  0.20 mm among all scenarios with Cartesian sampling (SP  =  10%) and radial sampling (21 spokes, SP  =  5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR  =  20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46  ±  0.20 mm, 0.56  ±  0.17 mm and 0.23  ±  0.16 mm, respectively, for Cartesian-based sampling with SP  =  20% and 0.60  ±  0.19 mm, 0.56  ±  0.22 mm and 0.42  ±  0.15 mm, respectively, for radial-based sampling with

  7. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study

    Science.gov (United States)

    Harris, Wendy; Yin, Fang-Fang; Wang, Chunhao; Zhang, You; Cai, Jing; Ren, Lei

    2018-01-01

    Purpose. To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. Methods. 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. Results. For XCAT, VPD/COMS were 11.93  ±  2.37%/0.90  ±  0.27 mm and 11.53  ±  1.47%/0.85  ±  0.20 mm among all scenarios with Cartesian sampling (SP  =  10%) and radial sampling (21 spokes, SP  =  5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR  =  20. For patient data, the tumor tracking errors in superior–inferior, anterior–posterior and lateral (LAT) directions were 0.46  ±  0.20 mm, 0.56  ±  0.17 mm and 0.23  ±  0.16 mm, respectively, for Cartesian-based sampling with SP  =  20% and 0.60  ±  0.19 mm, 0.56  ±  0.22 mm and 0.42  ±  0.15 mm, respectively

  8. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  9. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  10. The Performance of Hydrocarbon Fuels with H2O2 in a Uni-element Combustor

    National Research Council Canada - National Science Library

    Muss, Jeffrey

    2003-01-01

    .... The combustor used decomposed 90% hydrogen peroxide as the oxidizer. The water-cooled combustion chamber included significant fuel film cooling, with the overall mixture ratio (MR) ranging from 3.75 to 7.4...

  11. Effects of Burning Alternative Fuel in a 5-Cup Combustor Sector

    Science.gov (United States)

    Tacina, K. M.; Chang, C. T.; Lee, C.-M.; He, Z.; Herbon, J.

    2015-01-01

    A goal of NASA's Environmentally Responsible Aviation (ERA) program is to develop a combustor that will reduce the NOx emissions and that can burn both standard and alternative fuels. To meet this goal, NASA partnered with General Electric Aviation to develop a 5-cup combustor sector; this sector was tested in NASA Glenn's Advanced Subsonic Combustion Rig (ASCR). To verify that the combustor sector was fuel-flexible, it was tested with a 50-50 blend of JP-8 and a biofuel made from the camelina sativa plant. Results from this test were compared to results from tests where the fuel was neat JP-8. Testing was done at three combustor inlet conditions: cruise, 30% power, and 7% power. When compared to burning JP-8, burning the 50-50 blend did not significantly affect emissions of NOx, CO, or total hydrocarbons. Furthermore, it did not significantly affect the magnitude and frequency of the dynamic pressure fluctuations.

  12. Three-dimensional particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-09-01

    Full Text Available Frodermann, M., Heinze, J., Hassa, C., Meier, U., Wolff-Gassmann, D., Hohmann, S., Zarzalis, N., ?Experimenal and Numerical Investigation of a Planar Combustor Sector at Realistic Operating Conditions?, Journal of Engineering for Gas Turbine and Power...

  13. A variable-geometry combustor used to study primary and secondary zone stoichiometry

    Science.gov (United States)

    Briehl, D.; Schultz, D. F.; Ehlers, R. C.

    1983-01-01

    A combustion program is underway to evaluate fuel quality effects on gas turbine combustors. A rich-lean variable geometry combustor design was chosen to evaluate fuel quality effects over a wide range of primary and secondary zone equivalence ratios at simulated engine operating conditions. The first task of this effort, was to evaluate the performance of the variable geometry combustor. The combustor incorporates three stations of variable geometry to control primary and secondary zone equivalence ratio and overall pressure loss. Geometry changes could be made while a test was in progress through the use of remote control actuators. The primary zone liner was water cooled to eliminate the concern of liner durability. Emissions and performance data were obtained at simulated engine conditions of 80 percent and full power. Inlet air temperature varied from 611 to 665K, inlet total pressure varied from 1.02 to 1.24 MPa, reference velocity was a constant 1400 K.

  14. Robust High Fidelity Large Eddy Simulation Tool for Gas Turbine Combustors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective is to develop and demonstrate the use of Large Eddy Simulation (LES) for computations of gas turbine combustor flow and transport processes, using the...

  15. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  16. Thermoacoustic analysis of the dynamic pressure inside a model combustor during limit cycle oscillations

    NARCIS (Netherlands)

    Alemela, P.R.; Roman Casado, J.C.; Tarband Veeraraghavan, S.K.; Kok, Jacobus B.W.

    2013-01-01

    In this work comprehensive experimental and numerical studies incorporating the most relevant physical mechanisms causing limit cycle pressure and combustion rate oscillations (LCO) in a laboratory scale combustor will be discussed. The strong interaction between the aerodynamics-combustion-acoustic

  17. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    Science.gov (United States)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  18. Vortices and vortex lattices in quantum ferrofluids.

    Science.gov (United States)

    Martin, A M; Marchant, N G; O'Dell, D H J; Parker, N G

    2017-03-15

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  19. Vortex Shedding Inside a Baffled Air Duct

    Science.gov (United States)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  20. Vortex stretching in a homogeneous isotropic turbulence

    Science.gov (United States)

    Hirota, M.; Nishio, Y.; Izawa, S.; Fukunishi, Y.

    2017-04-01

    Stretching vortices whose sizes are in the inertial subrange of a homogeneous isotropic turbulence are picked up, and the geometric relations with the neighboring vortices whose scales are twice larger are studied. Hierarchical vortices are extracted using a Fourier band-pass filter, and each extracted vortex is reconstructed as a set of short cylindrical segments along the vortex axis to discuss the vortex interactions. As a result, it is shown that the directions of larger vortices near the segments of the fast stretching vortices tend to be orthogonal to the direction of the stretching segments, and the locations of the larger vortices that contribute most to the stretching of smaller vortex segments are likely to be found in the direction with the relative angle of 45° from the axes of the stretching vortex segments. And, the vortices with the second highest contributions tend to be in the directions 45° from the stretching segments’ axes and orthogonal to the directions of the highest contributing vortices.

  1. Combustion Processes in Model SCRAM Jet Combustor Using Detonation Driven Shock Tunnel

    OpenAIRE

    小原, 哲郎; 伊藤, 豪明; 大八木, 重治; 金, 泰煥; 坪井, 伸幸

    2006-01-01

    Experiments were conducted in order to investigate mixing and combustion processes in a model SCRAM (Supersonic Combustion RAM) jet combustor equipped with a backward-facing step. A detonation-driven shock tunnel was used to generate high-enthalpy flow of Mach number three. Firstly, an influence of installing a sidewall on the combustor model was investigated. Secondly, flow-fields around the step were visualized using high-speed video camera with an aid of schlieren technique. A hydrogen fue...

  2. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J W; Irick, D K [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  3. Atmospheric effects on microphone array analysis of aircraft vortex sound

    Science.gov (United States)

    2006-05-08

    This paper provides the basis of a comprehensive analysis of vortex sound propagation : through the atmosphere in order to assess real atmospheric effects on acoustic array : processing. Such effects may impact vortex localization accuracy and detect...

  4. Numerical Study of Microscale Shock-Vortex Interaction

    Directory of Open Access Journals (Sweden)

    Hong Xiao

    2015-01-01

    Full Text Available Numerical studies of microscale shock-vortex interaction were conducted by particle-based direct simulation of Monte Carlo (DSMC. The enstrophy is found to be increased in the strong microscale shock-vortex interaction, which is not observed in the previous DSMC studies within the limited cases. Investigations also show that the increase of the enstrophy results in an increase in dissipation rate during the strong interaction. The incoming Mach number, vortex size, and vortex Mach number turn out to play a critical role in the strength of interaction, which in turn govern the change in the dissipation rate and the increase or decrease in enstrophy during the microscale shock-vortex interaction. It is also observed that the incoming Mach number is the most dominant parameter, followed by vortex size and vortex Mach number, during the microscale shock-vortex interaction.

  5. Bitter decoration and magneto-optical observations of vortex chains ...

    Indian Academy of Sciences (India)

    dimensional arrangements, called vortex chains. We have visualized vortex chains by Bitter decoration and magneto-optical technique. The fundamental energy scale for the attractive interaction between pancake and Josephson vortices is evaluated ...

  6. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  7. Dynamic control of collapse in a vortex Airy beam.

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam.

  8. Universal statistics of vortex lines.

    Science.gov (United States)

    Nahum, Adam; Chalker, J T

    2012-03-01

    We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term.

  9. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2016-01-15

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  10. Front propagation in a regular vortex lattice: Dependence on the vortex structure

    Science.gov (United States)

    Beauvier, E.; Bodea, S.; Pocheau, A.

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  11. Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors

    Science.gov (United States)

    Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz

    2003-01-01

    As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.

  12. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    Science.gov (United States)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  13. Downstream Thermal Evolution of Vortex Cores

    Science.gov (United States)

    Gómez-Barea, A.; Herrada, M. A.; Pérez-Saborid, M.; Barrero, A.

    1999-11-01

    The downstream evolution of the total temperature field in a quasi-incompressible axisymmetric vortex core has been computed. Starting at an initial station (z=0) with velocity profiles of the Burgers type and given temperature distributions, the numerical results of the evolution show that, according to experimental results, the total temperature in the near-axis region decreases substantially due to the work done by pressure and viscous forces together with the effect of both convection and conduction of heat. Depending on the values of the parameters characterizing the initial profiles and on the value of the Prandtl number, the vortex either breaks down or eventually reaches a self-similar regime. The results obtained shed light on the basic physics involved in the thermal separation phenomenon which appears inside Ranque-Hilsch vortex tubes.

  14. Optical vortex array in spatially varying lattice

    CERN Document Server

    Kapoor, Amit; Senthilkumaran, P; Joseph, Joby

    2015-01-01

    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  15. Tunable Intense High-Order Vortex Generation.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei

    2017-10-01

    In 2015, we found the scheme to generate intense high-order optical vortices that carry OAM in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. The topological charge of the harmonics scales with its order. These results have been confirmed in recent experiments. In the two incident beams case, we produced relativistic intense harmonics with expected frequency and optical vortex. When two counter-propagating LG laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and 3D PIC simulations. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374319, 11674339).

  16. Centre vortex removal restores chiral symmetry

    Science.gov (United States)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-12-01

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in {SU}(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadron spectrum, including dynamical chiral symmetry breaking. The hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly interacting constituent quarks.

  17. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  18. Magnetic Vortex Crystals in Frustrated Mott Insulator

    Directory of Open Access Journals (Sweden)

    Y. Kamiya

    2014-02-01

    Full Text Available Quantum fluctuations become particularly relevant in highly frustrated quantum magnets and can lead to new states of matter. We provide a simple and robust scenario for inducing magnetic vortex crystals in frustrated Mott insulators. By considering a quantum paramagnet that has a gapped spectrum with six-fold degenerate low-energy modes, we study the magnetic-field-induced condensation of these modes. We use a dilute gas approximation to demonstrate that a plethora of multi-Q condensates are stabilized for different combinations of exchange interactions. This rich quantum phase diagram includes magnetic vortex crystals, which are further stabilized by symmetric exchange anisotropies. Because skyrmion and domain-wall crystals have already been predicted and experimentally observed, this novel vortex phase completes the picture of emergent crystals of topologically nontrivial spin configurations.

  19. Wavelength-versatile optical vortex lasers

    Science.gov (United States)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  20. Vortex lattice theory: A linear algebra approach

    Science.gov (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  1. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe [Institute of Fluid System Dynamics, Technische Universitaet, Berlin (Germany); Lykholt-Ustrup, Flemming [Grundfos Holding A/S, Bjerringbro (Denmark)

    2017-04-15

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation.

  2. Theory of pairing symmetry in the vortex states

    NARCIS (Netherlands)

    Yokoyama, Takehito; Ichioka, Yukio; Yanaka, Yukio; Golubov, Alexandre Avraamovitch

    2010-01-01

    We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity

  3. Decoding algorithm for vortex communications receiver

    Science.gov (United States)

    Kupferman, Judy; Arnon, Shlomi

    2018-01-01

    Vortex light beams can provide a tremendous alphabet for encoding information. We derive a symbol decoding algorithm for a direct detection matrix detector vortex beam receiver using Laguerre Gauss (LG) modes, and develop a mathematical model of symbol error rate (SER) for this receiver. We compare SER as a function of signal to noise ratio (SNR) for our algorithm and for the Pearson correlation algorithm. To our knowledge, this is the first comprehensive treatment of a decoding algorithm of a matrix detector for an LG receiver.

  4. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  5. Geometric phase shaping of terahertz vortex beams.

    Science.gov (United States)

    Minasyan, Amalya; Trovato, Clément; Degert, Jérôme; Freysz, Eric; Brasselet, Etienne; Abraham, Emmanuel

    2017-01-01

    We propose a topological beam-shaping strategy of terahertz (THz) beams using geometric phase elements made of space-variant birefringent slabs. Quasi-monochromatic THz vortex beams are produced and characterized both in amplitude and phase from the reconstructed real-time two-dimensional imaging of the electric field. Nonseparable superpositions of such vortex beams are also obtained and characterized by two-dimensional polarimetric analysis. These results emphasize the versatility of the spin-orbit electromagnetic toolbox to prepare on-demand structured light endowed with polarization-controlled orbital angular momentum content in the THz domain, which should find many uses in future THz technologies.

  6. Selective edge enhancement using anisotropic vortex filter.

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2011-09-20

    In optical image processing, selective edge enhancement is important when it is preferable to emphasize some edges of an object more than others. We propose a new method for selective edge enhancement of amplitude objects using the anisotropic vortex phase mask by introducing anisotropy in a conventional vortex mask with the help of the sine function. The anisotropy is capable of edge enhancement in the selective region and in the required direction by changing the power and offset angle, respectively, of the sine function.

  7. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  8. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  9. VORTEX FLOW INSIDE THE DEEP SPHERICAL DIMPLE

    Directory of Open Access Journals (Sweden)

    В. Воскобійник

    2012-04-01

    Full Text Available The results of experimental researches of the forming features of the vortex flow which is formed at the turbulentflow above of the deep spherical dimple are presented. Visualization shows that inclined asymmetric large-scale vortices are generated inside the dimple. These vortex structures are switched from one tilt in other, exciting lowfrequencyoscillations. During an evolution the asymmetric vortices are broken up above an aft wall of the dimple andthe angle of their incline and break up is increased with the growth of Reynolds number.

  10. Investigation of the Effect of Tungsten Substitution on Microstructure and Abrasive Wear Performance of In Situ VC-Reinforced High-Manganese Austenitic Steel Matrix Composite

    Science.gov (United States)

    Moghaddam, Emad Galin; Karimzadeh, Neda; Varahram, Naser; Davami, Parviz

    2013-08-01

    Particulate VC-reinforced high-manganese austenitic steel matrix composites with different vanadium and tungsten contents were synthesized by conventional alloying and casting route. Microstructural characterizations showed that the composites processed by in situ precipitation of the reinforcements were composed of V8C7 particulates distributed in an austenitic matrix. It was observed that addition of tungsten to austenite increases work-hardening rate of subsurface layer during pin-on disk wear test. The maximum abrasive wear resistance was achieved at tungsten content equal to 2 wt pct. However, excessive addition of tungsten promoted the formation of W3C phase and reduced the abrasive wear resistance because of decrease in distribution homogeneity and volume fraction of the reinforcing VC particles.

  11. Low-amplitude magnetic vortex core reversal by non-linear interference between azimuthal spin waves and the vortex gyromode

    OpenAIRE

    Sproll, Markus; Noske, Matthias; Bauer, Hans; Kammerer, Matthias; Gangwar, Ajay; Dieterle, Georg; Weigand, Markus; Stoll, Hermann; Back, Christian H.; Schütz, Gisela

    2013-01-01

    We demonstrate a non-linear interference due to an active 'dual frequency' excitation of both, the sub-GHz vortex gyromode and multi-GHz magneto-static spin waves in ferromagnetic micrometer sized platelets in the vortex state. When the sub-GHz vortex gyromode is excited simultaneously a significant broadband reduction of the switching threshold for spin wave mediated vortex core reversal is observed in both, experiments and micromagnetic simulations. Consequently, the magnetic field amplitud...

  12. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh [Precision Combustion, Inc., North Haven, CT (United States); Baird, Benjamin [Precision Combustion, Inc., North Haven, CT (United States); Alavandi, Sandeep [Precision Combustion, Inc., North Haven, CT (United States); Pfefferle, William [Precision Combustion, Inc., North Haven, CT (United States)

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar

  13. Simulations of a single vortex ring using an unbounded, regularized particle-mesh based vortex method

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore

    2014-01-01

    In resent work we have developed a new FFT based Poisson solver, which uses regularized Greens functions to obtain arbitrary high order convergence to the unbounded Poisson equation. The high order Poisson solver has been implemented in an unbounded particle-mesh based vortex method which uses a re......, unbounded particle-mesh based vortex method is used to simulate the instability, transition to turbulence and eventual destruction of a single vortex ring. From the simulation data a novel method on analyzing the dynamics of the enstrophy is presented based on the alignment of the vorticity vector......-meshing of the vortex particles to ensure the convergence of the method. Furthermore, we use a re-projection of the vorticity field to include the constraint of a divergence-free stream function which is essential for the underlying Helmholtz decomposition and ensures a divergence free vorticity field. The high order...

  14. Numerical simulation of secondary vortex chamber effect on the cooling capacity enhancement of vortex tube

    Science.gov (United States)

    Pourmahmoud, Nader; Azar, Farid Sepehrian; Hassanzadeh, Amir

    2014-09-01

    A vortex tube with additional chamber is investigated by computational fluid mechanics techniques to realize the effects of additional chamber in Ranque-Hilsch vortex tube and to understand optimal length for placing the second chamber in order to have maximum cooling effect. Results show that by increasing the distance between two chambers, both minimum cold and maximum hot temperatures increase and maximum cooling effect occurs at Z/ L = 0.047 (dimensionless distance).

  15. Symmetrical collision of multiple vortex rings

    Science.gov (United States)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  16. Sound signature of propeller tip vortex cavitation

    NARCIS (Netherlands)

    Pennings, P.C.; Westerweel, J.; Van Terwisga, T.J.C.

    2015-01-01

    The design of an efficient propeller is limited by the harmful effects of cavitation. The insuffcient understanding of the role of vortex cavitation in noise and vibration reduces the maximum effciency by a necessary safety margin. The aim in the present study is to directly relate propeller

  17. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  18. Soliton algebra by vortex-beam splitting.

    Science.gov (United States)

    Minardi, S; Molina-Terriza, G; Di Trapani, P; Torres, J P; Torner, L

    2001-07-01

    We experimentally demonstrate the possibility of breaking up intense vortex light beams into stable and controllable sets of parametric solitons. We report observations performed in seeded second-harmonic generation, but the scheme can be extended to all parametric processes. The number of generated solitons is shown to be determined by a robust arithmetic rule.

  19. Vortex matter driven through mesoscopic channels

    Science.gov (United States)

    Kes, P. H.; Kokubo, N.; Besseling, R.

    2004-08-01

    The dynamics of vortex matter confined to mesoscopic channels has been investigated by means of mode locking experiments. When vortices are coherently driven through the potential provided by static vortices pinned in the channel edges, interference between the washboard frequency of the moving vortex lattice and the frequency of the superimposed rf-drive causes (Shapiro-like) steps in the dc- I- V curves. The position of the voltage steps uniquely determines the number of moving rows in each channel. It also shows how the frustration between row spacing and channel width behaves as a function of magnetic field. Maxima in flow stress (∼ Ic) occur at mismatch conditions. They are related to the traffic-jam-like flow impedance caused by the disorder in the edges. At higher fields, near the 2D-melting line Bm( T), the mode-locking interference characteristic for crystalline motion, strongly depends on the velocity, i.e. the applied frequency at which the vortex motion is probed. The minimum velocity at which coherent motion could be observed, diverges when the melting line is approached from below. Above the melting line interference is absent for any frequency. These observations give the first direct evidence for a dynamic phase transition of vortex matter driven through a disorder potential as predicted by Koshelev and Vinokur.

  20. Thermonuclear Quenching in Flame-Vortex Interactions

    Science.gov (United States)

    Zingale, M.; Niemeyer, J. C.; Timmes, F. X.; Dursi, L. J.; Calder, A. C.; Fryxell, B.; Olson, K.; Ricker, P.; Rosner, R.; Truran, J. W.; Tufo, H.; MacNeice, P.

    2000-12-01

    A Type Ia supernova begins as a flame, deep in the interior of a white dwarf. At some point, the burning may undergo a deflagration-detonation transition (DDT). Some mechanisms for this transition require a preconditioned region in the star. As the flame propagates down the temperature gradient, the speed increases, and the transition to a detonation may occur (see Khokhlov et al. 1997; Niemeyer & Woosley 1997). For this to happen, the region must be free of any temperature fluctuations -- any burning must be quenched. We show direct numerical simulations of flame-vortex interactions in order to understand quenching of thermonuclear flames. The key question is -- can a thermonuclear flame be quenched? If not, the DDT mechanisms that demand the finely tuned preconditioned region are unlikely to work. In these simulations, we pass a steady-state laminar flame through a vortex pair. The vortex pair represents the most severe strain the flame front will encounter inside the white dwarf. We perform a parameter study, varying the speed and size of the vortex pair, in order to understand the quenching process. These simulations were carried out with the FLASH Code. This work is supported by the Department of Energy under Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. These calculations were performed on the Nirvana Cluster at Los Alamos National Laboratory

  1. Statistical behaviour of optical vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2009-09-01

    Full Text Available vortex fields F. Stef Roux CSIR National Laser Centre, South Africa Colloquium presented at School of Physics National University of Ireland Galway, Ireland 21 September 2009 . – p.1/37 What are optical vortices? . – p.2/37 Topological charge V− = x− iy...

  2. Iterative Brinkman penalization for remeshed vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time...

  3. Point vortex dynamics: A classical mathematics playground

    DEFF Research Database (Denmark)

    Aref, Hassan

    2007-01-01

    the integrability of the three-vortex problem, the interplay of relative equilibria of identical vortices and the roots of certain polynomials, addition formulas for the cotangent and the Weierstrass zeta function, projective geometry, and other topics. The hope and intent of the article is to garner further...

  4. Peculiar rotation of electron vortex beams.

    Science.gov (United States)

    Schachinger, T; Löffler, S; Stöger-Pollach, M; Schattschneider, P

    2015-11-01

    Standard electron optics predicts Larmor image rotation in the magnetic lens field of a TEM. Introducing the possibility to produce electron vortex beams with quantized orbital angular momentum brought up the question of their rotational dynamics in the presence of a magnetic field. Recently, it has been shown that electron vortex beams can be prepared as free electron Landau states showing peculiar rotational dynamics, including no and cyclotron (double-Larmor) rotation. Additionally very fast Gouy rotation of electron vortex beams has been observed. In this work a model is developed which reveals that the rotational dynamics of electron vortices are a combination of slow Larmor and fast Gouy rotations and that the Landau states naturally occur in the transition region in between the two regimes. This more general picture is confirmed by experimental data showing an extended set of peculiar rotations, including no, cyclotron, Larmor and rapid Gouy rotations all present in one single convergent electron vortex beam. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Wake Vortex Avoidance System and Method

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  6. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  7. Vortex dynamics in nonlinear free surface flows

    Science.gov (United States)

    Curtis, Christopher W.; Kalisch, Henrik

    2017-03-01

    The two-dimensional motion of point vortices in an inviscid fluid with a free surface and an impenetrable bed is investigated. The work is based on forming a closed system of equations for surface variables and vortex positions using a variant of the Ablowitz, Fokas, and Musslimani formulation [M. J. Ablowitz, A. S. Fokas, and Z. H. Musslimani, J. Fluid Mech. 562, 313-343 (2006)] of the water-wave free-surface problem. The equations are approximated with a dealiased spectral method making use of a high-order approximation of the Dirichlet-Neumann operator and a high-order time-stepping scheme. Numerical simulations reveal that the combination of vortex motion and solid bottom boundary yields interesting dynamics not seen in the case of vortex motion in an infinitely deep fluid. In particular, strong deformations of the free surface, including non-symmetric surface profiles and regions of large energy concentration, are observed. Our simulations also uncover a rich variety of vortex trajectories including orbiting and nearly parallel patterns of motion. The dynamics of the free surface and of the point vortices are strongly influenced by the initial placement and polarity of the vortices. The method put forward here is flexible enough to handle a large number of vortices and may easily be extended to include the effects of varying bathymetry, stratification, and background shear currents.

  8. Impact of pulsations on vortex flowmeters

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Bokhorst, E. van; Limpens, C.H.L.

    1998-01-01

    The impact of imposed pulsations on the output of five 3”-industrial vortex flow meters with a triangular bluff body and various type of sensors was experimentally investigated in a gas flow over a wide range of frequencies from 20 Hz to 400 Hz and amplitudes ranging from 1% to 30% rms of the

  9. On variational principles for coherent vortex structures

    NARCIS (Netherlands)

    van de Fliert, B.W.; van Groesen, Embrecht W.C.

    1993-01-01

    Different approaches are discussed of variational principles characterizing coherent vortex structures in two-dimensional flows. Turbulent flows seem to form ordered structures in the large scales of the motion and the self-organization principle predicts asymptotic states realizing an extremal

  10. Vortex Cloud Street during AMTEX 75

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Agee, E. M.

    1978-01-01

    Strong northerly flow across Cheju Island, Korea, during the 1975 Air Mass Transformation Experiment (AMTEX 75) resulted in a pronounced vortex cloud street to the lee of the island on February 17 1975. This pattern has been studied and explained in terms of classical von Karman eddies shed...

  11. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder...

  12. Chemical Observations of a Polar Vortex Intrusion

    Science.gov (United States)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  13. Three-dimensional blade vortex interactions

    Science.gov (United States)

    Davoudzadeh, Farhad; Buggein, Richard C.; Shamroth, Stephen J.; Kitaplioglu, Cahit

    1991-01-01

    A three-dimensional time dependent Navier-Stokes analysis was applied to the rotor blade vortex interaction problem. The numerical procedure is an iterative implicit procedure using three point central differences to represent spatial derivatives. A series of calculations were made to determine the time steps, pseudo-time steps, iterations, artificial dissipation level, etc. required to maintain a nondissipative vortex. Results show the chosen method to have excellent non-dissipative properties provided the correct parameters are chosen. This study was used to set parameters for both two- and three-dimensional blade vortex interaction studies. The case considered was the interaction between a vortex and a NACA0012 airfoil. The results showed the detailed physics during the interaction including the pressure pulse propagating from the blade. The simulated flow physics was qualitatively similar to that experimentally observed. The BVI phenomena is the result of the buildup and violent collapse of the shock waves and local supersonic pockets on the blade surfaces. The resulting pressure pulse build-up appears to be centered at the blade leading edge.

  14. Current-vortex filaments in magnetized plasmas

    NARCIS (Netherlands)

    Bergmans, J.; Kuvshinov, B. N.; Lakhin, V. P.; Schep, T. J.; Westerhof, E.

    1999-01-01

    Current-vortex filament solutions to the two-fluid plasma equations that describe drift-Alfven waves are presented. Such filament systems are Hamiltonian. Integrable three and four filament systems are discussed in some detail. A wide variety of orbit topologies exists in the plasma case. Special

  15. Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

    Directory of Open Access Journals (Sweden)

    Zheng-Shou Chen

    2010-06-01

    Full Text Available The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

  16. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    Science.gov (United States)

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  17. On the evolution of vortex rings with swirl

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Takashi, E-mail: naitoh.takashi@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: ohkura@meijo-u.ac.jp [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: gotoh.toshiyuki@nitech.ac.jp [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  18. The Interaction Vortex Flow Around Two Bluff Cylinders

    Directory of Open Access Journals (Sweden)

    Hirao K.

    2013-04-01

    Full Text Available In this study, the interaction vortex flow features around a pair of parallel arranged bluff cylinders were observed by visualizing water flow experiment at the range of the gap ratio G/d=0~3. It was obtained that the result of established wind tunnel test and the result of this water tank test agreed about the characteristics of vortex shedding when varying the distance of circular cylinder gap. The flow pattern and vortex shedding frequency of another type bluff cylinder (triangular and square cylinder were also investigated. As a result of the experiment, it was shown that the flow pattern of wake flow was divided into three kinds (coupled vortex streets, biased gap flow and single vortex street regardless of the cylinder section shape and cylinder size. Then, the region of the appearance of flow pattern was shown about each case. In the case where two each other independent vortex streets were formed, three typical flow patterns of vortex formation (in-phase coupled vortex streets, out-of-phase coupled vortex streets and complication coupled vortex streets were observed. It was known that three configuration of vortex formation appear intermittently and alternatively.

  19. Non-coaxial superposition of vector vortex beams.

    Science.gov (United States)

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  20. Vortex Interactions on Plunging Airfoil and Wings

    Science.gov (United States)

    Eslam Panah, Azar; Buchholz, James

    2012-11-01

    The development of robust qualitative and quantitative models for the vorticity fields generated by oscillating foils and wings can provide a framework in which to understand flow interactions within groups of unsteady lifting bodies (e.g. shoals of birds, fish, MAV's), and inform low-order aerodynamic models. In the present experimental study, the flow fields generated by a plunging flat-plate airfoil and finite-aspect-ratio wing are characterized in terms of vortex topology, and circulation at Re=10,000. Strouhal numbers (St=fA/U) between 0.1 and 0.6 are investigated for plunge amplitudes of ho/c = 0.2, 0.3, and 0.4, resulting in reduced frequencies (k= π fc/U) between 0.39 and 4.71. For the nominally two-dimensional airfoil, the number of discrete vortex structures shed from the trailing edge, and the trajectory of the leading edge vortex (LEV) and its interaction with trailing edge vortex (TEV) are found to be primarily governed by k; however, for St >0.4, the role of St on these phenomena increases. Likewise, circulation of the TEV exhibits a dependence on k; however, the circulation of the LEV depends primarily on St. The growth and ultimate strength of the LEV depends strongly on its interaction with the body; in particular, with a region of opposite-sign vorticity generated on the surface of the body due to the influence of the LEV. In the finite-aspect-ratio case, spanwise flow is also a significant factor. The roles of these phenomena on vortex evolution and strength will be discussed in detail.

  1. Agglomeration of biomass fired fluidized bed gasifier and combustor

    Energy Technology Data Exchange (ETDEWEB)

    Mettanant, V.; Basu, P. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Mechanical Engineering; Butler, J. [Greenfield Research Inc., Halifax, NS (Canada)

    2009-10-15

    As a renewable energy, biomass has the potential to supplement or replace energy produced from fossil fuel resources. However, agglomeration can occur in the fluidized bed boilers and gasifiers used to generate biomass energy. This paper discussed the theoretical and experimental results obtained during an agglomeration study of a biomass-fired fluidized bed gasifier and combustor. The mechanisms of agglomeration were studied as well as influence of various biomass components on bed materials. The study showed that agglomeration is typically caused by the formation of low melting point eutectic mixtures in the bed through a reaction of alkali materials in the fuel with silica bed materials. Agglomeration is also prompted by reactions between alkali species in ash and silica. Beds firing coffee husks, cotton husks, wastes and soy husks have the highest agglomeration problems, while peat, wood, and sewage sludge burn without agglomeration due to their low agglomeration index. The use of alternative bed materials instead of silica sands was recommended. It was concluded that the co-combustion of biomass with coal and other fuels will also prevent agglomerates from forming. 50 refs., 9 tabs., 39 figs.

  2. Fuel burner and combustor assembly for a gas turbine engine

    Science.gov (United States)

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  3. Frequency Domain Analysis of a Gas Fired Mechanically Valved Pulse Combustor

    Science.gov (United States)

    Neumeier, Yedidia

    1993-01-01

    This study presents an analysis of a mechanically valved pulse combustor in the frequency domain. The pulse combustor is treated as a feedback system. The forward branch of the system consists of the acoustic resonator, while the feedback loop consists of the combustion heat release process and the heat loss through the pulse combustor walls. The model of the acoustic resonator is based upon an analysis of the conservation equation for the combustion chamber energy oscillations and the tail pipe acoustics. The present study utilizes a phenomenological approach to model the periodic heat release process in the combustor. The model accounts for the mixing of cold reactants with hot products, flame extinction due to high velocities during the injection time, and the kinetics of the chemical reaction. The results of this study indicate that a high periodic heat transfer must take place in the combustion zone of mechanically valved pulse combustors. The intensity of this oscillating heat transfer is an order of magnitude larger than has been observed until the present study. The results imply that the unsteady heat transfer contributes vital feedback that stabilizes the limit cycle of the pulse combustor. The study was extended to include preliminary experimental evidence for the existence of a very high wall heat losses in the combustion zone, as predicted by the model. No model of pulse combustor that fails to account for unsteady heat transfer in the combustion zone can be considered fully accurate. A calibration procedure is developed to optimize the model prediction. This calibration process is oriented to provide an accurate prediction of the important parameters; namely, the pressure level and the operating frequency, at the cost of less accuracy in predicting relatively less important parameters. The model developed in the study has been used to develop a software package application for design and analysis of pulse combustors. The use of the software for pulse

  4. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  5. Parametric Modeling Investigation of a Radially-Staged Low-Emission Aviation Combustor

    Science.gov (United States)

    Heath, Christopher M.

    2016-01-01

    Aviation gas-turbine combustion demands high efficiency, wide operability and minimal trace gas emissions. Performance critical design parameters include injector geometry, combustor layout, fuel-air mixing and engine cycle conditions. The present investigation explores these factors and their impact on a radially staged low-emission aviation combustor sized for a next-generation 24,000-lbf-thrust engine. By coupling multi-fidelity computational tools, a design exploration was performed using a parameterized annular combustor sector at projected 100% takeoff power conditions. Design objectives included nitrogen oxide emission indices and overall combustor pressure loss. From the design space, an optimal configuration was selected and simulated at 7.1, 30 and 85% part-power operation, corresponding to landing-takeoff cycle idle, approach and climb segments. All results were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Species concentrations were solved directly using a reduced 19-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear K-epsilon model. This research demonstrates revolutionary combustor design exploration enabled by multi-fidelity physics-based simulation.

  6. Development of preliminary design program for combustor of regenerative cooled liquid rocket engine

    Science.gov (United States)

    Cho, Won Kook; Seol, Woo Seok; Son, Min; Seo, Min Kyo; Koo, Jaye

    2011-10-01

    An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level. Properties of burnt gas from a kerosene-LOx mixture in the combustor and rocket performance were calculated from CEA which is the code for the calculation of chemical equilibrium. The heat transfer of regenerative cooling was analyzed by using SUPERTRAPP code for coolant properties and by one-dimensional correlations of the heat transfer coefficient from the combustor liner to the coolant. Profiles of the combustors of F-1 and RS-27A engines were designed from similar input data and the present results were compared to actual data for validation. Finally, the combustors of 30 tonf class, 75 tonf class and 150 tonf class were designed from the required thrust, combustion chamber, exit pressure and mixture ratio of propellants. The wall temperature, heat flux and pressure drop were calculated for heat transfer analysis of regenerative cooling using the profiles.

  7. Effects of Cavity Configurations on Flameholding and Performances of Kerosene Fueled Scramjet Combustor

    Science.gov (United States)

    Shi, Deyong; Song, Wenyan; Wang, Yuhang; Wang, Yanhua

    2017-08-01

    In this work, the effects of cavity flameholder configurations on flameholding and performances of kerosene fueled scramjet combustor were studied experimentally and numerically. For experiments, a directly connected ground facility was used and clean high enthalpy air, with a total temperature of 800 K and a total pressure of 800 Kpa, was provided by an electricity resistance heater. To investigate the effects of cavity configurations on flameholding capacity and reacting-flow characteristics, three different flameholders, one single cavity flameholder and two tandem cavity flameholders, were used in experiments. For the two combustors with tandem cavity flameholders, the location and configurations of its up-stream cavity were same with the single cavity flameholder, and the length-to-depth ratios for down-stream cavities were 9 and 11 respectively. The experimental results showed that stabilize kerosene combustion were achieved for combustor with tandem cavity flameholders mounted, and none for that with single cavity flameholder. The none-reacting and reacting flows of combustor models with tandem cavity flameholders were compared and studied with numerical and experimental results. The results showed that higher combustion efficiencies and pressure recovery ratios were achieved for the combustor with down-stream cavity length-to-depth ratio of 9.

  8. Study on the Effect of Air Throttling on Flame Stabilization of an Ethylene Fueled Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2015-01-01

    Full Text Available The effect of air throttling on flame stabilization of an ethylene fueled scramjet combustor was investigated by numerical simulation and experiments in this paper. The results were obtained under the inflow condition with Mach number of 2.0, total temperature of 900 K, total pressure of 0.8 MPa, and total equivalence ratio of 0.5. The shock train generated by air throttling had a big effect on the flow structure of the scramjet combustor. Compared with the combustor without air throttling, the flow field with air throttling had a lower velocity and higher pressure, temperature, and vortices intensity. Air throttling was an effective way to achieve flame stabilization; the combustion in the combustor without air throttling was nearly blowout. In the experiment, the combustion was nearly blowout with air throttling location of 745 mm, and the fuel/air mixture in the combustor with air throttling location of 875 mm was burned intensively. It was important to choose the location and time sequence of air throttling for fuel ignition and flame stabilization. The numerical simulation results agreed well with experimental measurements.

  9. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  10. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck

    2013-08-01

    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  11. On the Origin of Polar Vortex Air

    Science.gov (United States)

    Rosenfield, J. E.; Schoeberl, M. R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The existence of the multi-year HALOE CH4 data set, together with some comparisons of forward with back trajectory calculations which we have carried out, has motivated us to reexamine the question of polar vortex descent. Three-dimensional diabatic trajectory calculations have been carried out for the seven month fall to spring period in both the northern hemisphere (NH) and southern hemisphere (SH) polar stratosphere for the years 1992-1999. These computations are compared to fixed descent computations where the parcels were fixed at their latitude-longitude locations and allowed to descend without circulating. The forward trajectory computed descent is always less than the fixed descent due to horizontal parcel motions and variations in heating rates with latitude and longitude. Although the forward calculations estimate the maximum amount of descent that can occur, they do not necessarily indicate the actual origin of springtime vortex air. This is because more equator-ward air can be entrained within the vortex during its formation. To examine the origin of the springtime vortex air, the trajectory model was run backward for seven months from spring to fall. The back trajectories show a complex distribution of parcels in which one population originates in the upper stratosphere and mesosphere and experiences considerable descent in the polar regions, while the remaining parcels originate at lower altitudes of the middle and lower stratosphere and are mixed into the polar regions during vortex formation without experiencing as much vertical transport. The amount of descent experienced by the first population shows little variability from year to year, while the computed descent and mixing of the remaining parcels show considerable interannual variability due to the varying polar meteorology. Because of this complex parcel distribution it is not meaningful to speak of a net amount of descent experienced over the entire winter period. Since the back trajectories

  12. 40 CFR Appendix to Subpart Eee of... - Quality Assurance Procedures for Continuous Emissions Monitors Used for Hazardous Waste Combustors

    Science.gov (United States)

    2010-07-01

    ... Continuous Emissions Monitors Used for Hazardous Waste Combustors Appendix to Subpart EEE of Part 63... Hazardous Air Pollutants from Hazardous Waste Combustors Pt. 63, Subpt. EEE, App. Appendix to Subpart EEE of... under this subpart EEE of part 63. Owners and operators must meet these minimum requirements and are...

  13. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... stringent. (c) The emission limits for municipal waste combustor organics, expressed as total mass dioxin... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission guidelines for municipal waste...

  14. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... that affected facility any gases that contain municipal waste combustor organics, expressed as total... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission limits for municipal waste...

  15. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available A three-component flow field inside a can-type, forward flow experimental combustor was measured under non-reacting conditions. The combustor was run at atmospheric conditions with the air flow supplied from a fan and the outlet was straight...

  16. Computational investigation of the temperature separation in vortex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Anish, S. [National Institute of Technology Karnataka, Mangalore (India); Setoguchi, T. [Institute of Ocean Energy, Saga University (Japan); Kim, H. D. [Andong National University, Andong (Korea, Republic of)

    2014-06-15

    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  17. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (<10 ns) magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  18. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    Science.gov (United States)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  19. Performance of a single fuel-vaporizing combustor with six injectors adapted for gaseous hydrogen

    Science.gov (United States)

    Wear, Jerrold D; Smith, Arthur L

    1955-01-01

    The combustor was operated over a range of inlet-air pressures from 5.3 to 24.0 inches of mercury absolute and inlet-air reference velocities from 60 to 100 feet per second. The combustion efficiencies obtained with the six configurations varied from about 65 to 95 percent for a combustor temperature-rise range of 200 degrees to 1400 degrees F. At a temperature rise of 1200 degrees F (near-rated engine conditions), the spread in efficiencies of the six configurations was about 5 percent. Efficiencies in the range of 65 to 85 percent were obtained at operating conditions beyond the burning range of conventional jet fuels. A fuel-injector configuration that fed only gaseous hydrogen fuel into the standard liquid-fuel-vaporizing tubes generally gave the highest efficiencies. This configuration minimizes the possibility of combustion in the fuel-vaporizing tubes and could be easily adapted to the full-scale engine combustor.

  20. Numerical study of effect of compressor swirling flow on combustor design in a MTE

    Science.gov (United States)

    Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang

    2017-08-01

    An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.

  1. A computational model for the study of gas turbine combustor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Costura, D.M.; Lawless, P.B.; Fankel, S.H. [Purdue Univ., West Lafayette, IN (United States)

    1999-04-01

    A dynamic combustor model is developed for inclusion into a one-dimensional full gas turbine engine simulation code. A flux-difference splitting algorithm is used to numerically integrate the quasi-one-dimensional Euler equations, supplemented with species mass conservation equations. The combustion model involves a single-step, global finite-rate chemistry scheme with a temperature-dependent activation energy. Source terms are used to account for mass bleed and mass injection, with additional capabilities to handle momentum and energy sources and sinks. Numerical results for cold and reacting flow for a can-type gas turbine combustor are presented. Comparisons with experimental data from this combustor are also made.

  2. Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor

    Directory of Open Access Journals (Sweden)

    Gautam Choubey

    2016-09-01

    Full Text Available Multi-strut injection is an approach to increase the overall performance of Scramjet while reducing the risk of thermal choking in a supersonic combustor. Hence computational simulation of Scramjet combustor at Mach 2.5 through multiple central lobed struts (three struts have been presented and discussed in the present research article. The geometry and model used here is slight modification of the DLR (German Aerospace Center scramjet model. Present results show that the presence of three struts injector improves the performance of scramjet combustor as compared to single strut injector. The combustion efficiency is also found to be highest in case of three strut fuel injection system. In order to validate the results, the numerical data for single strut injection is compared with experimental result which is taken from the literature.

  3. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  4. Vortex structure in the Venus plasma wake

    Science.gov (United States)

    Perez-de-Tejada, H.; Lundin, R. N. A.

    2016-12-01

    Measurements conducted with the ASPERA-4 instrument of the Venus Express spacecraft in orbit around Venus show velocity distributions of the H+ ions that describe a large scale vortex flow structure in the Venus wake (Lundin et al., GRL, 40, 1273, 2013). Such structure is in agreement with that reported from the early Pioneer Venus Orbiter plasma data (Pérez-de-Tejada et al., INTECH, ISBN 978-953-51-0880-1, p. 317, 2012) and suggests that the solar wind around the Venus ionosphere is forced back into the planet from the wake. Measurements also show that a vortex circulation flow rather than local magnetic forces is responsible for the deviated direction of motion of the solar wind in the Venus wake.

  5. Coherent vortex structures in fluids and plasmas

    CERN Document Server

    Tur, Anatoli

    2017-01-01

    This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?

  6. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  7. Helicity of the toroidal vortex with swirl

    CERN Document Server

    Bannikova, Elena Yu; Poslavsky, Sergey A

    2016-01-01

    On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small and large linked circles - directrix and generatrix of the torus - depends on distribution of the azimuthal velocity in the core of the swirling vortex ring. In the case of non-homogeneous swirl this relationship differs from the well-known Moffat relationship - the doubled product of such circulations multiplied by the number of links. The results can be applied to vortices in planetary atmospheres and to vortex movements in the vicinity of active galactic nuclei.

  8. On the Vortex Sound from Rotating Rods

    Science.gov (United States)

    Yudin, E. Y.

    1947-01-01

    The motion of different bodies imersed in liquid or gaseous media is accompanied by characteristic sound which is excited by the formation of unstable surfaces of separation behind the body, usually disintegrating into a system of discrete vortices(such as the Karman vortex street due to the flow about an infintely long rod, etc.).In the noise from fans,pumps,and similar machtnery, vortexnQif3eI?Yequently predominates. The purpose of this work is to elucidate certain questions of the dependence ofthis sound upon the aerodynamic parameters and the tip speed of the rotating rods,or blades. Although scme material is given below,insufficientto calculate the first rough approximation to the solution of this question,such as the mechanics of vortex formation,never the less certain conclusions maybe found of practical application for the reduction of noise from rotating blades.

  9. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  10. Vortex Anemometer Using MEMS Cantilever Sensor

    CERN Document Server

    Zylka, P; Zylka, Pawel; Modrzynski, Pawel

    2010-01-01

    This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of a trapezoidal glass-epoxy composite bluff body was put into oscillatory motion by vortices shed alternately from side surfaces of the obstacle. Verified linearmeasurement range of the device extended from 5 to 22 m/s; however, it could be broadened in absence of external 50-Hz mains electrical interfering signal which required bandpass frequency-domain digital sensor signal processing. The MEMS vortex sensor proved its effectiveness in detection of semilaminar airflow velocity distribution in a 40-mm-diameter tubular pipe.

  11. Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

    1996-12-31

    General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

  12. Inelastic electron-vortex-beam scattering

    OpenAIRE

    Boxem, Van, Ruben; Partoens, Bart; Verbeeck, Jo

    2015-01-01

    Abstract: Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The mode...

  13. Enhanced backscattering of optical vortex fields.

    Science.gov (United States)

    Schwartz, Chaim; Dogariu, Aristide

    2005-06-15

    The effect of an incident field with a phase screw dislocation (a so-called optical vortex) on the shape of the enhanced backscattering cone was studied theoretically and demonstrated experimentally. We show that the correlation function of the incident field acts as a filter that modifies the shape of the enhanced backscattering cone. The peak value is reduced, and its width is increased as the topological charge of the phase dislocation increases.

  14. Sequential transitions of bathtub vortex flow

    Science.gov (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2017-08-01

    The bathtub vortex has been found to autonomously arise owing to instability of a symmetric flow in a rectangular vessel when water is drained. We consider a model flow through a vessel with a rectangular horizontal cross section and a drain hole at the center of the bottom to investigate the physical mechanism for generation of swirling fluid motion like the bathtub vortex and the sequential transitions of the flow by numerical simulations and the linear stability analyses. The water surface is assumed to be flat even after instability. If the flow becomes unstable under this assumption, it assures that the surface deformation is irrelevant to the instability. It is emphasized that our interest is not limited to the real bathtub vortex but directed to occurrence of a large vortex in a flow having two reflectional symmetries. The configuration of the vessel has the double plane symmetry (DPS), which allows the flow have the same DPS at small Reynolds numbers. It is found that the instabilities and hence transitions occur accompanying symmetry-breaking of the flow field. Namely, the DPS flow experiences instability to yield vortical motion above a critical Reynolds number, losing the DPS but retaining the π -rotational (twofold rotational) symmetry around the center axis. The vortical flow also becomes unstable at a higher Reynolds number, makes a transition, and loses the π -rotational symmetry, but still keeps the time-translation symmetry, i.e., steadiness. The steadiness is broken at an even higher Reynolds number, owing to instability caused by an oscillatory mode of disturbance. The first and second transitions of the flow are identified as pitchfork bifurcations, and the third transition is identified as a Hopf bifurcation.

  15. A nonabelian particle–vortex duality

    Directory of Open Access Journals (Sweden)

    Jeff Murugan

    2016-02-01

    Full Text Available We define a nonabelian particle–vortex duality as a 3-dimensional analogue of the usual 2-dimensional worldsheet nonabelian T-duality. The transformation is defined in the presence of a global SU(2 symmetry and, although derived from a string theoretic setting, we formulate it generally. We then apply it to so-called “semilocal strings” in an SU(2G×U(1L gauge theory, originally discovered in the context of cosmic string physics.

  16. Vortex formation during rf heating of plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

  17. Principles of the Theory of Vortex Gravitation

    OpenAIRE

    Orlov, S. A.

    2004-01-01

    The developed theory proves that a universal vortex motion, along with the pressure variation in a space continuum called ether, is actually the source of the universal gravitation and creation of celestial bodies and their motion in the Universe. Calculations of the gravitation forces are carried out on the basis of the laws of mechanics of continua and (or) aerodynamics with the use of the Navier-Stokes equations. As a result of the solution, an algebraic formula for the gravitation forces ...

  18. Aerodynamic-wave break-up of liquid sheets in swirling airflows and combustor modules

    Science.gov (United States)

    Ingebo, R.

    1983-01-01

    Experimental mean drop diameter data were obtained for the atomization of liquid sheets injected axially downstream in high velocity swirling and nonswirling airflow. Conventional simplex pressure atomizing fuel nozzles and splash type fuel injectors were studied under simulated combustor inlet airflow conditions. A general empirical expression relating reciprocal mean drop diameter to airstream mass velocity was obtained and is presented. The finest degree of atomization, i.e., the highest value of the coefficient C, was obtained with swirl can combustor modules (C = 15) as compared with pressure atomizing nozzles (C = 12). Previously announced in STAR as N83-23545

  19. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.

    Science.gov (United States)

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru

    2011-03-01

    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  20. Apparatus and filtering systems relating to combustors in combustion turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  1. Effect of ambient conditions on the emissions from a gas turbine combustor

    Science.gov (United States)

    Kauffman, C. W.

    1980-01-01

    The effect of variations in the ambient conditions of pressure, temperature, and relative humidity upon the emissions of a gas turbine combustion are investigated. A single combustor can from a Pratt and Whitney JT8D-17 engine was run at parametric inlet conditions bracketing the actual engine idle conditions. Data were correlated to determine the functional relationships between the emissions and ambient conditions. Mathematical modelling was used to determine the mechanism for the carbon monoxide and hydrocarbon emissions. Carbon monoxide emissions were modelled using finite rate chemical kinetics in a plug flow scheme. Hydrocarbon emissions were modelled by a vaporization scheme throughout the combustor.

  2. Parametric performance of a turbojet engine combustor using jet A and A diesel fuel

    Science.gov (United States)

    Butze, H. F.; Humenik, F. M.

    1979-01-01

    The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.

  3. Simulations of NOx Emissions from Low Emissions Discrete Jet Injector Combustor Tests

    Science.gov (United States)

    Ajmani, Kumud; Breisacher, Kevin

    2014-01-01

    An experimental and computational study was conducted to evaluate the performance and emissions characteristics of a candidate Lean Direct Injection (LDI) combustor configuration with a mix of simplex and airblast injectors. The National Combustion Code (NCC) was used to predict the experimentally measured EINOx emissions for test conditions representing low power, medium power, and high-power engine cycle conditions. Of the six cases modeled with the NCC using a reduced-kinetics finite-rate mechanism and lagrangian spray modeling, reasonable predictions of combustor exit temperature and EINOx were obtained at two high-power cycle conditions.

  4. Performance of semi-transportation-cooled liner in high-temperature-rise combustors

    Science.gov (United States)

    Wear, J. D.; Trout, A. M.; Smith, J. M.

    1981-01-01

    Results from tests with the Lamilloy combustor liner are compared with results obtained from a conventionally designed, film cooled, step-louver liner. Operation of the Lamilloy liner with counterrotating swirl combustor fuel modules with mixing venturis was possible to a fuel-air ratio of 0.065 without obtaining excessive liner metal temperatures. At the 0.065 fuel-air condition the average liner metal temperature was 140 K and the maximum local temperature 280 K above the inlet air temperature. Combustion efficiency, pattern factor, and smoke data are discussed.

  5. Control of vortex rings for manoeuvrability.

    Science.gov (United States)

    Gemmell, Brad J; Troolin, Daniel R; Costello, John H; Colin, Sean P; Satterlie, Richard A

    2015-07-06

    Manoeuvrability is critical to the success of many species. Selective forces acting over millions of years have resulted in a range of capabilities currently unmatched by machines. Thus, understanding animal control of fluids for manoeuvring has both biological and engineering applications. Within inertial fluid regimes, propulsion involves the formation and interaction of vortices to generate thrust. We use both volumetric and planar imaging techniques to quantify how jellyfish (Aurelia aurita) modulate vortex rings during turning behaviour. Our results show that these animals distort individual vortex rings during turns to alter the force balance across the animal, primarily through kinematic modulation of the bell margin. We find that only a portion of the vortex ring separates from the body during turns, which may increase torque. Using a fluorescent actin staining method, we demonstrate the presence of radial muscle fibres lining the bell along the margin. The presence of radial muscles provides a mechanistic explanation for the ability of scyphomedusae to alter their bell kinematics to generate non-symmetric thrust for manoeuvring. These results illustrate the advantage of combining imaging methods and provide new insights into the modulation and control of vorticity for low-speed animal manoeuvring. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Simulating marine propellers with vortex particle method

    Science.gov (United States)

    Wang, Youjiang; Abdel-Maksoud, Moustafa; Song, Baowei

    2017-01-01

    The vortex particle method is applied to compute the open water characteristics of marine propellers. It is based on the large-eddy simulation technique, and the Smagorinsky-Lilly sub-grid scale model is implemented for the eddy viscosity. The vortex particle method is combined with the boundary element method, in the sense that the body is modelled with boundary elements and the slipstream is modelled with vortex particles. Rotational periodic boundaries are adopted, which leads to a cylindrical sector domain for the slipstream. The particle redistribution scheme and the fast multipole method are modified to consider the rotational periodic boundaries. Open water characteristics of three propellers with different skew angles are calculated with the proposed method. The results are compared with the ones obtained with boundary element method and experiments. It is found that the proposed method predicts the open water characteristics more accurately than the boundary element method, especially for high loading condition and high skew propeller. The influence of the Smagorinsky constant is also studied, which shows the results have a low sensitivity to it.

  7. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    Science.gov (United States)

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  8. Josephson Vortex Qubit based on a Confocal Annular Josephson Junction

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2017-01-01

    . Thisintrinsic vortex potential can be tuned by an externally applied magnetic fieldand tilted by a bias current. The two-state system is accurately modeled by aone-dimensional sine-Gordon like equation by means of which one can numericallycalculate both the magnetic field needed to set the vortex in a given...... state aswell as the vortex depinning currents. Experimental data taken at 4.2K onhigh-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocatethe presence of a robust and finely tunable double-well potential for whichreliable manipulation of the vortex state has been classically...... demonstrated.The vortex is prepared in a given potential by means of an externally appliedmagnetic field, while the state readout is accomplished by measuring thevortex-depinning current in a small magnetic field. Our proof of principleexperiment convincingly demonstrates that the proposed vortex qubit based...

  9. Numerical visualization of air intake induced by free surface vortex

    Science.gov (United States)

    Park, Young Kyu; Dey, Mohan Kumar; Choi, Yoon Hwan; Lee, Yeon Won

    2017-12-01

    Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induces noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free surface vortex and air absorption in a pump intake has been investigated by the Volume of Fraction (VOF) method with steady multiphase flow model in order to represent the behavior of the free surface vortex exactly. The homogeneous free surface model is used to apply interactions of air and water. The results show that air intake by the free surface vortex motion can be visualized using the iso-surface of air volume fraction. The vortices make an air column from the free surface to the pump intake. Also, it was found that the free surface vortex can be controlled by installing curtain walls.

  10. COMPARATIVE ANALYSIS OF PERFORMANCE CHARACTERISTICS OF JET VORTEX TYPE SUPERCHAGES

    Directory of Open Access Journals (Sweden)

    A. Rogovyi

    2016-06-01

    Full Text Available On the basis of mathematical modeling there was carried out a comparative analysis of characteristics of jet vortex type superchargers. Dependences of the energy performance of vortex ejector on the geometry parameters and the largest values in terms of efficiency as well as the coefficient of ejection are analyzed. There were built combined characteristics of vortex chamber pumps and vortex ejectors. Vortex chamber pump has advantage pressure in an exit channel over the vortex ejector, consequently there is a more effective power transmission from a working medium, besides the withdrawal of pumping medium in a tangential channel allows to avoid energy losses owing to rotation of a stream in an exit channel.

  11. Novel Vortex Generator and Mode Converter for Electron Beams

    OpenAIRE

    Schattschneider, P.; Stoeger-Pollach, M.; Verbeeck, J.

    2012-01-01

    Abstract: A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with a topological charge m = +/- 1 into beams closely resembling Hermite-Gaussian HG(10) and HG(01) modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m = +/- 1. This combination serves as a g...

  12. Magnetic vortex core reversal by excitation of spin waves

    OpenAIRE

    KAMMERER, M.; Weigand, M.; Curcic, M.; Noske, M.; Sproll, M.; Vansteenkiste, A.; Van Waeyenberge, B.; Stoll, H.; Woltersdorf, G.; Back, C. H.; Schuetz, G

    2011-01-01

    Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at su...

  13. Optical vortex interaction and generation via nonlinear wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Lenzini, F. [INLN, Universite de Nice-Sophia Antipolis, CNRS, 1361 route des Lucioles, FR-06560 Valbonne (France); Dipartimento di Fisica, Universita di Firenze, via Sansone 1, IT-50019 Sesto Fiorentino (Italy); Residori, S.; Bortolozzo, U. [INLN, Universite de Nice-Sophia Antipolis, CNRS, 1361 route des Lucioles, FR-06560 Valbonne (France); Arecchi, F. T. [Dipartimento di Fisica, Universita di Firenze, via Sansone 1, IT-50019 Sesto Fiorentino (Italy)

    2011-12-15

    Optical vortex beams are made to interact via degenerate two-wave mixing in a Kerr-like nonlinear medium. Vortex mixing is shown to occur inside the medium, leading to exchange of topological charge and cascaded generation of vortex beams. A mean-field model is developed and is shown to account for the selection rules of the topological charges observed after the wave-mixing process. Fractional charges are demonstrated to follow the same rules as for integer charges.

  14. Wake Vortex Inverse Model User's Guide

    Science.gov (United States)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  15. Subsonic vortex-flow design study for slender wings

    Science.gov (United States)

    Lamar, J. E.

    1978-01-01

    A theoretical study describing the effects of spanwise camber on the lift dependent drag of slender delta wings having leading-edge-vortex-flow is presented. The earlier work by Barsby, using conical flow, indicated that drag levels similar to those in attached flow could be obtained. This is reexamined and then extended to the more practical case of nonconical flow by application of the vortex-lattice method coupled with the suction-analogy and the recently developed Boeing free-vortex-sheet method. Lastly, a design code is introduced which employs the suction analogy in an attempt to define 'optimum' camber surfaces for minimum lift dependent drag for vortex flow conditions

  16. Octave-band tunable optical vortex parametric oscillator.

    Science.gov (United States)

    Abulikemu, Aizitiaili; Yusufu, Taximaiti; Mamuti, Roukuya; Araki, Shungo; Miyamoto, Katsuhiko; Omatsu, Takashige

    2016-07-11

    We developed an octave-band tunable optical vortex laser based on a 532 nm optical vortex pumped optical parametric oscillator with a simple linear-cavity configuration by employing cascaded non-critical phase-matching LiB3O5 crystals. The optical vortex output was tunable from 735 to 1903 nm. For a pump energy of 9 mJ, an optical vortex pulse energy of 0.24-2.36 mJ was obtained, corresponding to an optical-optical efficiency of 0.3-26%.

  17. Trailing Vortex-Induced Loads During Close Encounters in Cruise

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.

    2015-01-01

    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.

  18. Three-wave electron vortex lattices for measuring nanofields.

    Science.gov (United States)

    Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E

    2015-01-01

    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Vortex reconnections in atomic condensates at finite temperature

    Science.gov (United States)

    Allen, A. J.; Zuccher, S.; Caliari, M.; Proukakis, N. P.; Parker, N. G.; Barenghi, C. F.

    2014-07-01

    The study of vortex reconnections is an essential ingredient of understanding superfluid turbulence, a phenomenon recently also reported in trapped atomic Bose-Einstein condensates. In this work we show that, despite the established dependence of vortex motion on temperature in such systems, vortex reconnections are actually temperature independent on the typical length and time scales of atomic condensates. Our work is based on a dissipative Gross-Pitaevskii equation for the condensate, coupled to a semiclassical Boltzmann equation for the thermal cloud (the Zaremba-Nikuni-Griffin formalism). Comparison to vortex reconnections in homogeneous condensates further shows reconnections to be insensitive to the inhomogeneity in the background density.

  20. Novel vortex generator and mode converter for electron beams.

    Science.gov (United States)

    Schattschneider, P; Stöger-Pollach, M; Verbeeck, J

    2012-08-24

    A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with a topological charge m=±1 into beams closely resembling Hermite-Gaussian HG(10) and HG(01) modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m=±1. This combination serves as a generator of electron vortex beams of high brilliance.

  1. Chaotic scattering of two identical point vortex pairs revisited

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Aref, Hassan

    2008-01-01

    A new numerical exploration suggests that the motion of two vortex pairs, with constituent vortices all of the same absolute circulation, displays chaotic scattering regimes. The mechanisms leading to chaotic scattering are different from the “slingshot effect” identified by Price [Phys. Fluids A 5...... unstable periodic solutions similar to those seen in the thereby associated three-vortex problems. The integrals of motion, linear impulse and Hamiltonian are recast in a form appropriate for vortex pair scattering interactions that provides constraints on the parameters characterizing the outgoing vortex...

  2. Two possible mechanisms for vortex self-organization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The vortex self-organization is investigated in this paper by four groups of numerical experiments within the framework of quasi-geostrophic model, and based on the experimental results two types of possible mechanisms for vortex self-organization are suggested. The meso-scale topography may enable separated vortices to merge into a larger scale vortex; and the interaction of meso-γand meso-β scale systems may make separated vortices to self organize a typhoon-like vortex circulation.

  3. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for smoke vortex are formulated. They are dynamic evolution equations for exact stress field and dynamic evolution equations for average stress field. For industrial application and experimental data processing, their corresponding approximation equations for viscous fluid are given. Some simple discussions are made.

  4. The mechanism of vortex switching in magnetic nanodots under circular magnetic field. II. The dynamics of spin plaquette with vortex

    CERN Document Server

    Kovalev, A S

    2003-01-01

    A plaquette spin system in a vortex configuration is considered analytically and numerically to treat theoretically the vortex switching in magnetic nanodots due to the action of external circular magnetic field. The initial (linear) stage of the switching is analyzed. The analytical results obtained confirm the numerical data on the plaquette dynamics. Both the numerical analysis and the analytical consideration of the initial activation stage show the importance of taking into account the system azimuthal modes. At the frequencies of these modes the most rapid amplification of the vortex energy and the total out-of-plane magnetization occurs. The growth of the modes amplitudes gives rise to a parametrical activation of the low-frequency symmetric mode, and in turn causes the vortex switching. The results obtained provide a qualitative explanation of the numerical data on vortex switching in large-sized magnetic systems and may be used in experiments on guided effect on vortex polarization in magnetic nanodo...

  5. Effects of vortex-vortex interactions on ion-track pinning in high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gray, K.E.; Steel, D.G.; Hettinger, J.D. [and others

    1996-12-31

    Many superconductor applications rely on the ability to pin vortex lattices. This ability depends on structural defects to pin individual vortices, but vortex-vortex interactions often play an important role in pinning the other vortices. Experimental progress on this complex problem can be made by introducing random arrays of well-defined pinning centers and studying the flux dynamics for a range of vortex densities (i.e., fields). Results of such studies in epitaxial Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub y} films containing ion tracks show the importance of vortex-vortex interactions. As an example, the effective pinning field of the defects rises to many times the ion-dose field for temperatures well below {Tc}.

  6. MULTIMODAL IMAGING IN VORTEX VEIN VARICES.

    Science.gov (United States)

    Veronese, Chiara; Staurenghi, Giovanni; Pellegrini, Marco; Maiolo, Chiara; Primavera, Laura; Morara, Mariachiara; Armstrong, Grayson W; Ciardella, Antonio P

    2017-03-22

    The aim of this study is to describe the clinical presentation of vortex vein varices with multimodal imaging. The authors carried out a retrospective case series of eight patients (7 female, 1 male) with an average age of 60.2 years (min 8, max 84, median 68.5) presenting with vortex vein varices. All patients were evaluated at the Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy and at Luigi Sacco Hospital, University of Milan, Milan, Italy. Patients underwent complete ophthalmologic examinations, including best corrected visual acuity, intraocular pressure, anterior segment, and fundus examination. Imaging studies, including fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine green angiography, and spectral-domain enhanced depth imaging optical coherence tomography were also performed. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography using the Heidelberg Retina Angiograph and the Staurenghi 230 SLO Retina Lens were used to demonstrate the disappearance of all retinal lesions when pressure was applied to the globe. All eight cases initially presented to the emergency room. One patient presented secondary to trauma, two patients presented for suspected hemangioma, whereas the other five were referred to the authors' hospitals for suspected retinal lesions. On examination, retinal abnormalities were identified in all 8 patients, with 7 (87.5%) oculus dexter and 1 (12.5%) oculus sinister, and with 1 (12.5%) inferotemporally, 3 (37.5%) superonasally, 3 (37.5%) inferonasally, and 1 (12.5%) inferiorly. Fundus color photography showed an elevated lesion in seven patients and a nonelevated red lesion in one patient. In all patients, near-infrared reflectance imaging showed a hyporeflective lesion in the periphery of the retina. Fundus autofluorescence identified round hypofluorescent rings surrounding weakly hyperfluorescent lesions in all

  7. Instability of Non-vortex State toward a Quantized Vortex in Bose-Einstein Condensate under External Rotation

    OpenAIRE

    Isoshima, Tomoya; Machida, Kazushige

    1999-01-01

    The instability condition of the non-vortex state toward vortex formation is exa mined within the Bogoliubov theory when a Bose-Einstein condensate is under exte rnally forced rotation. The obtained critical angular velocity combined with the previous stability cond itions for a votex yields a detailed phase diagram in the critical velocity vs t he system parameter. This facilitates vortex formation experiments for alkali atom gases confined in a harmonic potential.

  8. Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.; Nielson, D.L.

    1987-06-01

    Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

  9. Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex-vortex interaction

    Science.gov (United States)

    Reimann, Tommy; Schulz, Michael; Mildner, David F. R.; Bleuel, Markus; Brûlet, Annie; Harti, Ralph P.; Benka, Georg; Bauer, Andreas; Böni, Peter; Mühlbauer, Sebastian

    2017-10-01

    Vortex attraction which can cause a bundling of vortices has been observed in a multitude of type-II superconductors. While its underlying mechanisms have been extensively studied, the morphology of the emerging vortex superstructure has only been rarely considered. Here, we present a comprehensive experimental study on the type-II/1 superconductor niobium which focuses on the transformation of its homogeneous vortex lattice into an inhomogeneous domain structure at the onset of vortex attraction. By means of small-angle neutron scattering, ultra-small-angle neutron scattering, and neutron grating interferometry, the vortex lattice and the micrometer-scale vortex domain structure as well as its distribution could be investigated. In particular, we focus on the transformation of the vortex lattice at the transition to the intermediate mixed state, which is characterized by vortex attraction. We have found that the phase separation of the vortex lattice into an irregular domain structure takes place via a process showing strong similarity to spinodal decomposition. While pinning disorders the domain morphology, the characteristic length scale of the domain structure is governed by an interplay of field distortion energy and domain surface tension. Finally, geometric barriers in the disk-shaped samples provoke an inhomogeneous distribution of domains on the macroscopic scale.

  10. Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Middelkamp, S.; Schmelcher, P. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, DE-22761 Hamburg (Germany); Torres, P. J. [Departamento de Matematica Aplicada, Universidad de Granada, ES-18071 Granada (Spain); Kevrekidis, P. G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515 (United States); Frantzeskakis, D. J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece); Carretero-Gonzalez, R. [Nonlinear Dynamical System Group, Computational Science Research Center and Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182-7720 (United States); Freilich, D. V.; Hall, D. S. [Department of Physics, Amherst College, Amherst, Massachusetts 01002-5000 (United States)

    2011-07-15

    A quantized vortex dipole is the simplest vortex molecule, comprising two countercirculating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasiperiodic behavior, in which the vortex lines undergo stable epicyclic orbits.

  11. Study of a 30 MW bubbling fluidized bed combustor based on co ...

    Indian Academy of Sciences (India)

    During experimental investigations, the study of bed temperatures and steam temperatures at different zones has been done for coal fired and biomass fired combustors with 30% share. No clear effects of co-firing on boiler performance are observed. However, the operational behavior of the boiler in terms of bed ...

  12. Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor

    Science.gov (United States)

    2009-12-01

    needles within a quarter of its cells.39 Hydrogen flows through the hypodermic needles , and air passes through the remaining cells. At the exit of the...5 II. Theory and Previous Research ........................................................................ 6 II.1 Standard Gas...flame temperatures, emissions and other characteristics. 6 II. Theory and Previous Research II.1 Standard Gas Turbine Engine Combustor A

  13. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    Science.gov (United States)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  14. Modeling of complex physics & combustion dynamics in a combustor with a partially premixed turbulent flame

    NARCIS (Netherlands)

    Shahi, Mina

    2014-01-01

    To avoid the formation of the high temperature stoichiometric regions in flames in a gas turbine combustor, and hence the formation of nitric oxides, an alternative concept of combustion technology was introduced by means of lean premixed combustion. However, the low emission of nitric oxides and

  15. Experimental and numerical studies of a lean-burn internally-staged combustor

    Directory of Open Access Journals (Sweden)

    Fu Zhenbo

    2014-06-01

    Full Text Available A lean-burn internally-staged combustor for low emissions that can be used in civil aviation gas turbines is introduced in this paper. The main stage is designed and optimized in terms of fuel evaporation ratio, fuel/air pre-mixture uniformity, and particle residence time using commercial computational fluid dynamics (CFD software. A single-module rectangular combustor is adopted in performance tests including lean ignition, lean blowout, combustion efficiency, emissions, and combustion oscillation using aviation kerosene. Furthermore, nitrogen oxides (NOx emission is also predicted using CFD simulation to compare with test results. Under normal inlet temperature, this combustor can be ignited easily with normal and negative inlet pressures. The lean blowout fuel/air ratio (LBO FAR at the idle condition is 0.0049. The fuel split proportions between the pilot and main stages are determined through balancing emissions, combustion efficiency, and combustion oscillation. Within the landing and take-off (LTO cycle, this combustor enables 42% NOx reduction of the standard set by the 6th Committee on Aviation Environmental Protection (CAEP/6 with high combustion efficiency. The maximum board-band pressure oscillations of inlet air and fuel are below 1% of total pressure during steady-state operations at the LTO cycle specific conditions.

  16. Compact Combustor Integrated (CI) with Compressor and Turbine for Perspective Turbojet Engine

    Science.gov (United States)

    Strokin, V. N.; Volkov, S. A.; Ljashenko, V. P.; Popov, V. I.; Startzev, A. N.; Nigmatullin, R. Z.; Shilova, T. V.; Belikov, U. V.

    2017-11-01

    For several years, CIAM has conducted comprehensive work on the development the combustor integrated (CI) with air swirling. This project involved an integrated development of three components: diffuser, combustion chamber and nozzle guide vanes of turbine to reduce their length and, respectively, the length of the engine and obtain high performance elements with low emissions of harmful substances. The new frontal device was proposed for CI combustor. The design optimization of this type combustor was conducted in the compartments and in a full-size combustion chamber. It was shown the possibility of obtaining high combustion efficiency and low NOx emissions at a short length on cruise condition. By a simplified model of the frontal device it was shown experimentally that the proposed device provided a lighting-up and flame spreading in a wide range of equivalence ratio ER (ER > 0.014) at idling. It was shown that short vane diffuser with moderate swirling ensured high parameters of the combustion chamber. The use of residual swirling of the combustion products at the exit of combustor allows reducing the size, or the number of nozzle guide vanes of the turbine. In General, the use of the swirling of the air stream gives a possibility of total length reduction for all three elements by about 20 – 25 %.

  17. Characterizing G-Loading, Swirl Direction, and Rayleigh Losses in an Ultra Compact Combustor

    Science.gov (United States)

    2013-07-01

    guide vanes and the turbine inlet guide vanes [4...factor HPT = Higher pressure turbine HSV = High speed video IB = Instrumentation block ID = Inner diameter IGV = Inlet guide vanes (turbine) IR...caused by burning that 2 is still happening on the way out of the combustor and into the turbine inlet guide vane (IGV) or non-uniformity in the

  18. Large Engine Technology Program. Task 22: Variable Geometry Concepts for Rich-Quench-Lean Combustors

    Science.gov (United States)

    Tacina, Robert R. (Technical Monitor); Cohen, J. M.; Padget, F. C.; Kwoka, D.; Wang, Q.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein was to define, evaluate, and optimize variable geometry concepts suitable for use with a Rich-Quench-Lean (RQL) combustor. The specific intent was to identify approaches that would satisfy High Speed Civil Transport (HSCT) cycle operational requirements with regard to fuel-air ratio turndown capability, ignition, and stability margin without compromising the stringent emissions, performance, and reliability goals that this combustor would have to achieve. Four potential configurations were identified and three of these were refined and tested in a high-pressure modular RQL combustor rig. The tools used in the evolution of these concepts included models built with rapid fabrication techniques that were tested for airflow characteristics to confirm sizing and airflow management capability, spray patternation, and atomization characterization tests of these models and studies that were supported by Computational Fluid Dynamics analyses. Combustion tests were performed with each of the concepts at supersonic cruise conditions and at other critical conditions in the flight envelope, including the transition points of the variable geometry system, to identify performance, emissions, and operability impacts. Based upon the cold flow characterization, emissions results, acoustic behavior observed during the tests and consideration of mechanical, reliability, and implementation issues, the tri-swirler configuration was selected as the best variable geometry concept for incorporation in the RQL combustor evolution efforts for the HSCT.

  19. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    Science.gov (United States)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.

    2015-01-01

    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.

  20. Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Kuprianov, Vladimir I.; Chakritthakul, Songpol [School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121 (Thailand); Kaewklum, Rachadaporn [School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121 (Thailand); Department of Mechanical Engineering, Burapha University, Chonburi 20131 (Thailand); Sirisomboon, Kasama [Department of Mechanical Engineering, Silpakorn University, Nakhon Pathom 73000 (Thailand); Arromdee, Porametr [School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121 (Thailand); Department of Mechanical Engineering, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2010-09-15

    Burning of rice husk in a swirling fluidized-bed combustor (SFBC) was the focus of this experimental study. Swirl motion of a fluidized bed in this combustor was induced by an annular spiral distributor of primary air and also promoted by tangential injection of secondary air into the bed splash zone. ''As-received'' rice husk was moisturized with the aim to control NO emission from the combustor. The SFBC was tested at a constant fuel feed rate (of about 80 kg/h) for six fuel-moisture contents (from 8.4% to 35%). In each test series for the particular fuel quality, excess air was ranged from about 20% to 80%. Radial and axial profiles of temperature and gas concentrations (O{sub 2}, CO and NO) were plotted for different fuel options and operating conditions with the aim to study pollutants formation and reduction in different regions of the SFBC. With increasing the fuel-moisture content, the emission of NO from the combustor apparently reduced, while the emission of CO was adjusted at a quite low level due to the effects of secondary air. An effective least-cost control of both NO and CO emissions and high (over 99%) combustion efficiency are achievable when firing moisturized rice husk in this SFBC. (author)

  1. 77 FR 32022 - Direct Final Negative Declaration and Withdrawal of Large Municipal Waste Combustors State Plan...

    Science.gov (United States)

    2012-05-31

    ... Combustors State Plan for Designated Facilities and Pollutants: Illinois AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is taking direct final action to approve Illinois.... Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, Illinois 60604. 5. Hand Delivery: Carlton T...

  2. Bioethanol combustion in an industrial gas turbine combustor: simulations and experiments

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Pozarlik, Artur Krzysztof; Beran, Martin; Axelsson, L.; Brem, Gerrit

    2014-01-01

    Combustion tests with bioethanol and diesel as a reference have been performed in OPRA's 2 MWe class OP16 gas turbine combustor. The main purposes of this work are to investigate the combustion quality of ethanol with respect to diesel and to validate the developed CFD model for ethanol spray

  3. Simulation Investigation on Combustion Characteristics in a Four-Point Lean Direct Injection Combustor with Hydrogen/Air

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2017-06-01

    Full Text Available To investigate the combustion characteristics in multi-point lean direct injection (LDI combustors with hydrogen/air, two swirl–venturi 2 × 2 array four-point LDI combustors were designed. The four-point LDI combustor consists of injector assembly, swirl–venturi array and combustion chamber. The injector, swirler and venturi together govern the rapid mixing of hydrogen and air to form the mixture for combustion. Using clockwise swirlers and anticlockwise swirlers, the co-swirling and count-swirling swirler arrays LDI combustors were achieved. Using Reynolds-Averaged Navier–Stokes (RANS code for steady-state reacting flow computations, the four-point LDI combustors with hydrogen/air were simulated with an 11 species and 23 lumped reaction steps H2/Air reaction mechanism. The axial velocity, turbulence kinetic energy, total pressure drop coefficient, outlet temperature, mass fraction of OH and emission of pollutant NO of four-point LDI combustors, with different equivalence ratios, are here presented and discussed. As the equivalence ratios increased, the total pressure drop coefficient became higher because of increasing heat loss. Increasing equivalence ratios also corresponded with the rise in outlet temperature of the four-point LDI combustors, as well as an increase in the emission index of NO EINO in the four-point LDI combustors. Along the axial distance, the EINO always increased and was at maximum at the exit of the dump. Along the chamber, the EINO gradually increased, maximizing at the exit of chamber. The total temperature of four-point LDI combustors with different equivalence ratios was identical to the theoretical equilibrium temperature. The EINO was an exponential function of the equivalence ratio.

  4. Development of new tip-loss corrections based on vortex theory and vortex methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2014-01-01

    A new analytical formulation of the tip-loss factor is established based on helical vortex lament solutions. The derived tip-loss factor can be applied to wind-turbines, propellers or other rotary wings. Similar numerical formulations are used to assess the influence of wake expansion on tip...

  5. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Smith, A. L.

    1980-01-01

    Analytical and experimental studies were conducted in three contract activities funded by the National Aeronautics and Space Administration, Lewis Research Center, to assess the impacts of broad property fuels on the design, performance, durability, emissions and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Trade-offs between fuel properties, exhaust emissions and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability and somewhat lesser impacts on starting characteristics, lightoff, emissions and smoke.

  6. Observational facts of sustained departure plateau vortexes

    Science.gov (United States)

    Yu, Shuhua; Gao, Wenliang; Peng, Jun; Xiao, Yuhua

    2014-02-01

    By using the twice-daily atmospheric observation data from 1998 to 2012, station rainfall data, Tropical Rainfall Measure Mission (TRMM) data, as well as the plateau vortex and shear line year book, characteristics of the sustained departure plateau vortexes (SDPVs) are analyzed. Some new useful observational facts and understanding are obtained about the SDPV activities. The following results are obtained. (1) The active period of SDPVs is from June to August, most in July, unlike that of the unsustained departure plateau vortexes (UDPVs), which have same occurrence frequencies in the three summer months. (2) The SDPVs, generated mainly in the Qumalai neighborhood and situated in a sheared surrounding, move eastward or northeastward, while the UDPVs are mainly led by the upper-level trough, and move eastward or southeastward. (3) The SDPVs influence wide areas of China, even far to the Korean Peninsula, Japan, and Vietnam. (4) The SDPVs change their intensities and properties on the way to the east. Most of them become stronger and produce downpour or sustained regional rainstorms to the south of Yellow River. (5) The longer the SDPV sustains, the more baroclinity it has. (6) When an SDPV moves into the sea, its central pressure descends and rainfall increases in all probability. (7) An SDPV might spin over the bend of the Yellow River when there exists a tropical cyclone in the East China Sea. It could also move oppositely to a landed tropical low pressure originated from the sea to the east of Taiwan or from the South China Sea.

  7. Characterisation of Interaction between Combustion Dynamics and Equivalence Ratio Oscillations in a Pressurised Combustor

    Directory of Open Access Journals (Sweden)

    Jaap F. van Kampen

    2010-09-01

    Full Text Available In regular operation, all gas turbine combustors have a significant spontaneous noise level induced by the turbulent high power flame. This noise is characteristic for the operation as it is the result of the interaction between turbulence and combustion. Pressure fluctuations may also be generated by thermoacoustic instabilities induced by amplification by the flame of the acoustic field in the combustor. This paper focuses on the characterisation of the latter process, the combustion dynamics, in a pressurized premixed natural gas combustor. In order to predict the thermo-acoustically unstable operating ranges of modern gas-turbines with the use of an acoustic network model, it is essential to determine accurately the flame transfer function. This transfer function gives the relationship between a perturbation upstream of the flame and its combustion response, leading to acoustic forcing. In this paper, the flame transfer function is obtained by experimental means in a combustor test rig. This test rig was built in the framework of the European DESIRE project, and has the ability to perform thermo-acoustic measurements up to an absolute pressure of 5 bars. The maximum power of the setup is 500 kW. The paper presents a method to determine the flame transfer function by factorizing it in six subfunctions. Systematically these subfunctions are determined. With the method presented, acoustic measurements on the steady, unperturbed flame and on the unsteady, actively perturbed flame are performed. The effect of pressure is investigated. The steady measurements are used to provide an acousto-combustion finger print of the combustor. In the unsteady measurements, the flame transfer function is reconstructed from the measured acoustic pressures. These flame transfer functions are compared to transfer functions obtained from a numerical experiment in CFD. Good agreement is obtained.

  8. Low NO/sub x/ Heavy Fuel Combustor Concept Program. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cutrone, M B

    1981-10-01

    Six combustor concepts were designed, fabricated, and underwent a series of combustion tests with the objective of evaluating and developing a combustor capable of meeting US New Source Performance Standards (NSPS), dry, for high-nitrogen liquid fuels. Three rich/lean and three lean/lean two-stage combustors were tested with ERBS distillate, petroleum residual, and SRC-II coal derived liquid (CDL) fuels with fuel-bound nitrogen contents of 0.0054, 0.23, and 0.87 weight percent, respectively. A lean/lean concept was demonstrated with ultralow NO/sub x/ emissions, dry, of 5 gm NO/sub x/kg fuel on ERBS, and NO/sub x/ emissions meeting the NSPS NO/sub x/ standard on residual fuel. This combustor concept met operational goals for pressure drop, smoke, exhaust pattern factor, and combustion efficiency. A rich/lean concept was identified and developed which demonstrated NO/sub x/ emissions approaching the NSPS standards, dry, for all liquid fuels including the 0.87 weight percent nitrogen SRC-II coal-derived liquid. Exhaust pattern factor and pressure drop met or approached goals. Smoke emissions were higher than the program goal. However, a significant improvement was made with only a minor modification of the fuel injector/air swirler system, and further development should result in meeting smoke goals for all fuels. Liner metal temperatures were higher than allowable for commercial application. Conceptual designs for further development of these two rich/lean and lean/lean concepts have been completed which address smoke and metal temperature concerns, and are available for the next phase of this NASA-sponsored, DOE-funded program. Tests of a rich/lean concept, and a catalytic combustor concept using low- and intermediate-Btu simulated coal-derived gases will be completed during the ongoing Phase IA extension of this program.

  9. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    Science.gov (United States)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  10. Meissner Effects, Vortex Core States, and the Vortex Glass Phase Transition.

    Science.gov (United States)

    Huang, Ming

    This thesis covers three topics involving Meissner effects and the resulting defect structures. The first is a study of Meissner effects in superconductivity and in systems with broken translational symmetry. The Meissner effect in superconductors is a rigidity against external magnetic field caused by the breaking of the gauge symmetry. Other condensed matter systems also exhibit rigidities like this: The breaking of the translational symmetry in a cubic-liquid -crystal causes the system to expel twist deformations and the breaking of the translational symmetry in a nematic liquid crystal gives it a tendency to expel twist and bend deformations. In this thesis, we study these generalized Meissner effects in detail. The second is a study of the quasiparticle states bound to the vortex defect in superconductors. Scanning -tunneling-microscope measurements by Harald Hess et al. of the local density of states in a vortex core show a pronounced peak at small bias. These measurements contradict with previous theoretical calculations. Here, we solve the Bogoliubov equations to obtain the local density of states in the core and satisfactorily explain the experimental observations. We also predicted additional structure in the local density of states which were later observed in experiments. The third is a study of vortex dynamics in the precense of disorder. A mean field theory is developed for the recently proposed normal to superconducting vortex glass transition. Using techniques developed to study the critical dynamics of spin glasses, we calculate the mean field vortex glass phase boundary and the critical exponents. We also explain the experimentally observed magnetic field induced transition broadening.

  11. Equilibrium large vortex state in ferromagnetic disks

    Science.gov (United States)

    Metlov, Konstantin L.

    2013-06-01

    Magnetic vortices in soft ferromagnetic nano-disks have been extensively studied for at least several decades both for their applied (non-volatile information storage) as well as fundamental value. Here, it is shown that there is another vortex ground state with large radius-dependent core profile in nano-scale ferromagnetic disks of several exchange lengths in size. Its energy is computed numerically and its stability is studied analytically, which allows to plot it on magnetic phase diagram. Large vortices may exist on par with the classical ones, while being separated by an energy barrier, controllable by tuning the geometry and material of ferromagnetic disk.

  12. Sound radiation by a plane localized vortex

    Science.gov (United States)

    Yakovlev, P. G.

    2012-07-01

    A classical problem on small-scale fluctuations of the Rankine vortex in a compressible gas has been numerically simulated. Euler equations for a compressible gas have been solved by the CABARET method. Simulation results well predict the value of the eigenfrequency of the boundary fluctuations for the azimuthal harmonic n = 2 and almost coincide with the analytic solution. The value of the acoustic instability increment has been quantitatively predicted despite the fact that it is small and it has been revealed at a fluctuation number higher than 100.

  13. Vortex filament tracking method in the Gross-Pitaevskii model

    CERN Document Server

    Villois, Alberto; Proment, Davide; Salman, Hayder

    2016-01-01

    We present an accurate and robust numerical method to track quantised vortex lines in a superfluid described by the Gross-Pitaevskii model. Specifically, we track the topological defects of the complex wave-function describing the order parameter of the superfluid by looking for the zeros of the field and reconstructing the vortex lines making use of the pseudo-vorticity field. Assuming that the field is periodic, we make an extensive use of the Fourier representation of the field and its derivatives in order to get spectral accuracy. We present several case studies to test the precision of the method, like the evaluation of the curvature and torsion of a torus vortex knot and the measurement of the Kelvin wave spectrum of a vortex line and a vortex ring. Moreover, we show that the method is independent of the geometry of a vortex line and so applicable to systems where no a-priori knowledge of the vortex configuration is required, like a turbulent system characterised by many vortex rings and sound waves. Fi...

  14. Maxwell's Demon in the Ranque-Hilsch Vortex Tube

    Science.gov (United States)

    Liew, R.; Zeegers, J. C. H.; Kuerten, J. G. M.; Michalek, W. R.

    2012-08-01

    A theory was developed that explains energy separation in a vortex tube, known as one of the Maxwellian demons. It appears that there is a unique relation between the pressures in the exits of the vortex tube and its temperatures. Experimental results show that the computed and measured temperatures are in very good agreement.

  15. Maxwell's demon in the Ranque-Hilsch vortex tube

    OpenAIRE

    Liew, R Raoul; Zeegers, JCH Jos; Kuerten, JGM Hans; Michalek, WR Wiktor

    2012-01-01

    A theory was developed that explains energy separation in a vortex tube, known as one of the Maxwellian demons. It appears that there is a unique relation between the pressures in the exits of the vortex tube and its temperatures. Experimental results show that the computed and measured temperatures are in very good agreement.

  16. Droplet behaviour in a Ranque-Hilsch vortex tube

    NARCIS (Netherlands)

    Liew, R.; Michalek, W.R.; Zeegers, J.C.H.; Kuerten, Johannes G.M.

    The vortex tube is an apparatus by which compressed gas is separated into cold and warm streams. Although the apparatus is mostly used for cooling, the possibility to use the vortex tube as a device for removing non-desired condensable components from gas mixtures is investigated. To give first

  17. Quantitative theory of thermal fluctuations and disorder in the vortex ...

    Indian Academy of Sciences (India)

    thermal fluctuations will effectively reduce the effects of disorder and melt the vor- tex lattice. As a result the H–T phase diagram .... of the vortex lattice by disorder was solved with the vortex matter being in the replica symmetry broken (RSB) phase and it ..... E Zeldov, private communication. [19] U Divakar, A J Drew, S L Lee, ...

  18. Optimizing the performance of a data vortex interconnection network

    Science.gov (United States)

    Shacham, Assaf; Bergman, Keren

    2007-04-01

    The definition of the data vortex architecture leaves broad room for decisions regarding the exact design point required for achieving a desired performance level. A detailed simulation-based study of various parameters that affect a data vortex interconnection network's performance is reported. Three implementations are compared by acceptance rate, latency, and cost.

  19. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC ...

  20. Modeling Vortex Generators in the Wind-US Code

    Science.gov (United States)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  1. Modeling Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  2. Observation of superconducting vortex clusters in S/F hybrids.

    Science.gov (United States)

    Di Giorgio, C; Bobba, F; Cucolo, A M; Scarfato, A; Moore, S A; Karapetrov, G; D'Agostino, D; Novosad, V; Yefremenko, V; Iavarone, M

    2016-12-09

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field Hc2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.

  3. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  4. Magnetization reversal in circular vortex dots of small radius.

    Science.gov (United States)

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni80Fe20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  5. Study on the Interactions between Hierarchical Vortex Motions

    OpenAIRE

    栗原, 誠; アブデルカリーム, ワリード; 茂田, 正哉; 福西, 祐; 伊澤, 精一郎; Makoto, KURIHARA; W., Abdel KAREEM; Masaya, SHIGETA; Yu, FUKUNISHI; Seiichiro, IZAWA; 東北大・院; スエズカナル大; 東北大・工; 東北大・工; 東北大・工

    2007-01-01

    Large-scale vortices are extracted from a steady homogeneous isotropic turbulence using the Fourier lowpass filter. Extracted vortices are replaced with a group of vortex blobs to directly calculate the induced velocities between the vortices. As a result, it is found that a stretching of a vortex is caused by vortices near-by.

  6. Quantum vortex dynamics in two-dimensional neutral superfluids

    NARCIS (Netherlands)

    Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.

    2010-01-01

    We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and

  7. A Numerical Study of Taylor-Vortex Flow.

    Science.gov (United States)

    1985-04-01

    Keller (1980). Calculations of the finite cylinder case have been made by Alziary de Roquefort and Grillaud (1978) at Reynolds I. numbers and aspect...of motion for Taylor vortex flow, Comput. Fluids, 1, 301-316. (2] Alziary de Roquefort , T. and G. Grillaud, 1978, Computation of Taylor Vortex Flow by

  8. Vortex beam characterization in terms of Hypergeometric- Gaussian modes

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Q-plates are commonly used for uncomplicated generation of polarization controlled vortex beams. Here we show experimentally that the output is not a pure vortex but rather a Hypergeometric-Gaussian mode. Results are in good agreement with theory....

  9. The origins of a wind turbine tip vortex

    NARCIS (Netherlands)

    Micallef, D.; Akay, B.; Simao Ferreira, C.J.; Sant, T.; Van Bussel, G.J.W.

    2014-01-01

    The tip vortex of a wind turbine rotor blade originates as a result of a complex distribution of vorticity along the blade tip thickness. While the tip vortex evolution was extensively studied previously in other work, the mechanism of the initiation of the tip vorticity in a 3D rotating environment

  10. Optimal Vortex Formation as a Unifying Principle in Biological Propulsion

    Science.gov (United States)

    Gharib, Morteza

    2004-11-01

    The dynamics of vortex formation in starting flows are governed by limiting physical processes that have been observed in experiments and numerical simulations. For several years it has been suggested that the principles of optimal vortex ring formation discovered in the laboratory might also occur naturally in biological systems. Pulsed-jet swimming (e.g. squid and jellyfish) and cardiac blood transport are among the most commonly cited examples of systems which could benefit from a strategy of optimal vortex ring formation. However, previous efforts to quantify the biological mechanisms of vortex formation have encountered difficulties in resolving the effects of transient boundary conditions such as valve and orifice motion. We have combined new vortex generation techniques with in vivo measurements to determine the effects of time-dependent boundary conditions on vortex formation by starting-flow propulsors. Results indicate that vortex formation across various biological systems is manipulated by these kinematics in order to maximize thrust and/or propulsive efficiency. Hence, it is important to include these effects in realistic models of the bio-fluid mechanics. We also examine possible extension of these results to organisms that generate more complex vortical structures, such as fishes and birds. An emphasis on observed vortex dynamics and transient boundary conditions facilitates quantitative comparisons across propulsion schemes irrespective of their individual biological functions.

  11. Vortex lattice transitions in YNi 2 B 2 C

    Indian Academy of Sciences (India)

    We have performed extensive small-angle neutron scattering (SANS) diffraction studies of the vortex lattice in single crystal YNi2B2C for B | | c . High-resolution SANS, combined with a field-oscillation vortex lattice preparation technique, allows us to separate Bragg scattered intensities from two orthogonal domains and ...

  12. Atomic resolution crystal structure of VcLMWPTP-1 from Vibrio cholerae O395: Insights into a novel mode of dimerization in the low molecular weight protein tyrosine phosphatase family

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Seema; Banerjee, Ramanuj; Sen, Udayaditya, E-mail: udayaditya.sen@saha.ac.in

    2014-07-18

    Highlights: • VcLMWPTP-1 forms dimer in solution. • The dimer is catalytically active unlike other reported dimeric LMWPTPs. • The formation of extended dimeric surface excludes the active site pocket. • The surface bears closer resemblance to eukaryotic LMWPTPs. - Abstract: Low molecular weight protein tyrosine phosphatase (LMWPTP) is a group of phosphotyrosine phosphatase ubiquitously found in a wide range of organisms ranging from bacteria to mammals. Dimerization in the LMWPTP family has been reported earlier which follows a common mechanism involving active site residues leading to an enzymatically inactive species. Here we report a novel form of dimerization in a LMWPTP from Vibrio cholera 0395 (VcLMWPTP-1). Studies in solution reveal the existence of the dimer in solution while kinetic study depicts the active form of the enzyme. This indicates that the mode of dimerization in VcLMWPTP-1 is different from others where active site residues are not involved in the process. A high resolution (1.45 Å) crystal structure of VcLMWPTP-1 confirms a different mode of dimerization where the active site is catalytically accessible as evident by a tightly bound substrate mimicking ligand, MOPS at the active site pocket. Although being a member of a prokaryotic protein family, VcLMWPTP-1 structure resembles very closely to LMWPTP from a eukaryote, Entamoeba histolytica. It also delineates the diverse surface properties around the active site of the enzyme.

  13. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor

    Science.gov (United States)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang

    2017-04-01

    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  14. Sound sources in the interactions of two inviscid two-dimensional vortex pairs

    Science.gov (United States)

    Tang, S. K.; Ko, N. W. M.

    2000-09-01

    The sources of sound during the interactions of two identical two-dimensional inviscid vortex pairs are investigated numerically by using the vortex sound theory and the method of contour dynamics. The sound sources are identified and then separated into two independent components, which represent the contributions from the vortex centroid dynamics and the microscopic vortex core dynamics. Results show that the sound generation mechanism of the latter is independent of the type of vortex pair interaction, while that of the former depends on the jerks, accelerations and vortex forces on the vortex pairs. The power developed by the vortex forces is found to be important in the generation of sound when the vortex cores are severely deformed and their centroids are close to each other. The isolated source terms also explain the appearance of wavy oscillations on the time variations of the sound source strengths in the vortex ring and the two-dimensional vortex interaction systems.

  15. (Non)-universality of vortex reconnections in superfluids

    CERN Document Server

    Villois, Alberto; Proment, Davide

    2016-01-01

    An insight into vortex reconnections in superfluids is presented making use of analytical results and numerical simulations of the Gross--Pitaevskii model. Universal aspects of the reconnection process are investigated by considering different initial vortex configurations and making use of a recently developed tracking algorithm to reconstruct the vortex filaments. We show that about the reconnection event the vortex lines approach and separate always accordingly to the time scaling $ \\delta \\sim t^{-1/2} $ with pre-factors that depend on the vortex configuration. We also investigate the behavior of curvature and torsion close to the reconnection point, demonstrating analytically that the curvature can exhibit a self-similar behavior that might be broken by the development of shock-like structures in the torsion.

  16. Universal and nonuniversal aspects of vortex reconnections in superfluids

    Science.gov (United States)

    Villois, Alberto; Proment, Davide; Krstulovic, Giorgio

    2017-04-01

    Insight into vortex reconnections in superfluids is presented, making use of analytical results and numerical simulations of the Gross-Pitaevskii model. Universal aspects of the reconnection process are investigated by considering different initial vortex configurations and making use of a recently developed tracking algorithm to reconstruct the vortex filaments. We show that during a reconnection event the vortex lines approach and separate always according to the time scaling δ ˜t1 /2 with prefactors that depend on the vortex configuration. We also investigate the behavior of curvature and torsion close to the reconnection point, demonstrating analytically that the curvature can exhibit a self-similar behavior that might be broken by the development of shocklike structures in the torsion.

  17. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    Actuator Vortex Generator Model (AcVG), is based on the lifting force theory of Bender, Anderson and Yagle, the BAY Model, which provides an efficient method for computational fluid dynamic (CFD) simulations of flow with VGs, and the forces are applied into the computational domain using the actuator shape...... code using Reynold-Average Navier-Stokes (RANS) methods. The third model is the experimental one, where measurements were carried out in a low speed closed-circuit wind tunnel utilizing Stereoscopic Particle Image Velocimetry (SPIV) with a single vortex generator positioned on a vertical wall...... in the center of the test section. The fourth model, used as a quantitative comparison, is the analytical model of the primary vortex based in the helical structure of longitudinal embedded vortex, which can reduce the complex flow to merely four parameters: circulation, convection velocity, vortex core radius...

  18. Coupled particle dispersion by three-dimensional vortex structures

    Energy Technology Data Exchange (ETDEWEB)

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  19. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  20. Hybrid generation and analysis of vector vortex beams.

    Science.gov (United States)

    Mamani, Sandra; Bendau, Ethan; Secor, Jeff; Ashrafi, Solyman; Tu, Jiufeng J; Alfano, Robert R

    2017-03-10

    A method is described for generating optical vector vortex beams carrying superpositions of orbital angular momentum states by using a tandem application of a spatial light modulator with a vortex retarder. The vortex component has a spatially inhomogeneous phase front that can carry orbital angular momentum, and the vector nature is a spatially inhomogeneous state of polarization in the laser beam profile. The vector vortex beams are characterized experimentally by imaging the beams at points across the focal plane in an astigmatic system using a tilted lens. Mathematical analysis of the Gouy phase shows good agreement with the phase structure obtained in the experimental images. The polarization structure of the vector beam and the orbital angular momentum of the vortex beam are shown to be preserved.

  1. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  2. Investigation on temperature separation and flow behaviour in vortex chamber

    Science.gov (United States)

    Matsuno, Yuhi; Fukushima, Yusuke; Matsuo, Shigeru; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.

  3. Propagation of sharply autofocused ring Airy Gaussian vortex beams.

    Science.gov (United States)

    Chen, Bo; Chen, Chidao; Peng, Xi; Peng, Yulian; Zhou, Meiling; Deng, Dongmei

    2015-07-27

    Controlling the focal length and the intensity of the optical focus in the media is an important task. Here we investigate the propagation properties of the sharply autofocused ring Airy Gaussian vortex beams numerically and some numerical experiments are performed. We introduce the distribution factor b into the initial beams, and discuss the influences for the beams. With controlling the factor b, the beams that tend to a ring Airy vortex beam with the smaller value, or a hollow Gaussian vortex beam with the larger one. By a choice of initial launch condition, we find that the number of topological charge of the incident beams, as well as its size, greatly affect the focal intensity and the focal length of the autofocused ring Airy Gaussian vortex beams. Furthermore, we show that the off-axis autofocused ring Airy Gaussian beams with vortex pairs can be implemented.

  4. The evolution of contrail microphysics in the vortex phase

    Energy Technology Data Exchange (ETDEWEB)

    Unterstrasser, S.; Gierens, K. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Spichtinger, P. [Eidgenoessische Technische Hochschule, Zuerich (Switzerland). Inst. for Atmospheric and Climate Science

    2008-04-15

    We investigate the evolution of contrails during the vortex phase using numerical simulations. Emphasis is placed on microphysical properties and on the vertical distribution of ice mass and number concentration at the end of the vortex phase. Instead of using a 3D model which would be preferable but computationally too costly, we use a 2D model equipped with a special tool for controlling vortex decay. We conduct a great number of sensitivity studies for one aircraft type. It turns out that atmospheric parameters, namely supersaturation, temperature, stability and turbulence level have the biggest impact on the number of ice crystals and on the ice mass that survives until vortex breakup and that therefore makes up the persistent contrail in supersaturated air. The initial ice crystal number density and its distribution in the vortex, are of minor importance. (orig.)

  5. The evolution of contrail microphysics in the vortex phase

    Directory of Open Access Journals (Sweden)

    Simon Unterstrasser

    2008-04-01

    Full Text Available We investigate the evolution of contrails during the vortex phase using numerical simulations. Emphasis is placed on microphysical properties and on the vertical distribution of ice mass and number concentration at the end of the vortex phase. Instead of using a 3D model which would be preferable but computationally too costly, we use a 2D model equipped with a special tool for controlling vortex decay. We conduct a great number of sensitivity studies for one aircraft type. It turns out that atmospheric parameters, namely supersaturation, temperature, stability and turbulence level have the biggest impact on the number of ice crystals and on the ice mass that survives until vortex breakup and that therefore makes up the persistent contrail in supersaturated air. The initial ice crystal number density and its distribution in the vortex, are of minor importance.

  6. Effects of trailing jet instability on vortex ring formation

    Science.gov (United States)

    Zhao, Wei; Frankel, Steven H.; Mongeau, Luc G.

    2000-03-01

    Numerical simulations of an impulsively started jet were performed in order to investigate the effects of trailing jet instability on axisymmetric vortex ring formation. The predictions were compared to experimental results reported in the literature and to recently published numerical results. The total and vortex ring circulations were found to be in good agreement with both the experimental and the numerical results. The presence of a universal formation time scale was confirmed. The results also highlighted an important interaction between an instability which develops in the trailing jet for large discharge times and the dynamics of the head vortex ring. This interaction accelerates the process by which the vortex ring detaches from the trailing jet and has a significant effect on the vortex ring circulation.

  7. Vortex shells in mesoscopic triangles of amorphous superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kokubo, N., E-mail: kokubo@uec.ac.jp [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Miyahara, H. [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Okayasu, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nojima, T. [Institute for Materials Research,Tohoku University, Sendai 980-8577 (Japan)

    2016-11-15

    Highlights: • Direct imaging of multi-vortex states was made in mesoscopic equilateral triangles. • Commensurate and incommensurate vortex states were observed with metastability. • Formation of triangular multiple shells with alternative vortex packing was discussed. • Occupations of vortices in triangular multiple shells are not monotonic with vorticity. • Packing sequence of triangular shells was compared with ones of square and circle shells. - Abstract: Direct observation of vortex states confined in mesoscopic regular triangle dots of amorphous Mo–Ge thin films was made with a scanning superconducting quantum interference device microscope. The observed magnetic images illustrate clearly how vortices are distributed over the triangle dots by forming not only commensurate triangular clusters, but also unique patterns imposed by incommensurability. We discuss the results in terms of vortex shells and construct the packing sequence of vortices in the multiple shell structure.

  8. A study of short wave instability on vortex filaments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong Yun [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  9. Inclined Jet in Crossflow Interacting with a Vortex Generator

    Science.gov (United States)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  10. Direct Numerical Simulation of Twin Swirling Flow Jets: Effect of Vortex-Vortex Interaction on Turbulence Modification

    Directory of Open Access Journals (Sweden)

    Wenkai Xu

    2014-01-01

    Full Text Available A direct numerical simulation (DNS was carried out to study twin swirling jets which are issued from two parallel nozzles at a Reynolds number of Re = 5000 and three swirl levels of S = 0.68, 1.08, and 1.42, respectively. The basic structures of vortex-vortex interaction and temporal evolution are illustrated. The characteristics of axial variation of turbulent fluctuation velocities, in both the near and far field, in comparison to a single swirling jet, are shown to explore the effects of vortex-vortex interaction on turbulence modifications. Moreover, the second order turbulent fluctuations are also shown, by which the modification of turbulence associated with the coherent or correlated turbulent fluctuation and turbulent kinetic energy transport characteristics are clearly indicated. It is found that the twin swirling flow has a fairly strong localized vortex-vortex interaction between a pair of inversely rotated vortices. The location and strength of interaction depend on swirl level greatly. The modification of vortex takes place by transforming large-scale vortices into complex small ones, whereas the modulation of turbulent kinetic energy is continuously augmented by strong vortex modification.

  11. Design features of vortex dust collectors

    Directory of Open Access Journals (Sweden)

    Puring Svetlana

    2017-01-01

    Full Text Available This article states that during the construction of industrial buildings it is necessary to provide engineering communications (including systems of supply and exhaust ventilation which ensure uninterrupted production, its technological and environmental safety. It is necessary to use cleaning devices to remove pollutants from ventilation emissions in local exhaust systems. As for devices for removing highly disperse non-sticky dust, it is possible to offer vortex dust collectors, the efficiency of which depends on the design and operating mode. A method is proposed to increase the efficiency of a vortex dust collector, to improve the quality of the purified air, and to reduce energy consumption during air purification by installing watering nozzles in primary and secondary air pipes made in the form of a Venturi tube. In consequence of multidirectional movement of dust particles and sprayed water, active coagulation of dust particles takes place, as a result of which the separation increases. Apart from that, watering dusty air flows leads to the formation of a liquid film on the inner surface of the separation chamber, which prevents dust particles from rebounding off the separation chamber and facilitates their capture and flushing into the collecting hopper

  12. Vortex breakdown in gaseous swirling jets

    Science.gov (United States)

    Sanchez, Antonio L.; Carpio, Jaime; Williams, Forman A.

    2017-11-01

    Numerical integrations of the axisymmetric Navier-Stokes equations are employed to describe the structure of low-Mach-number gaseous swirling jets with jet-to-ambient density ratios ρj /ρa of order unity. The integrations consider moderately large values of the Reynolds number on the order of a few hundred and values of the swirl ratio S of order unity. Slender jets are found to exist for values of S below a critical value of order unity, at which vortex breakdown occurs. As in the case of constant density jets (Billant, Chomaz, and Huerre, JFM 1998), two different types of axisymmetric vortex breakdown are identified, namely, a bubble state and a cone configuration. The critical values of S characterizing the existence of the different solutions are determined as a function of ρj /ρa . Additional computations based on the quasicylindrical approximation are employed to describe slender subcritical jets. The results indicate that the breakdown of the quasicylindrical approximation provides an accurate prediction for the transition from the slender solution to the bubble state, whereas a prediction for the transition to the cone state can be obtained by consideration of the structure of the flow at small distances from the jet exit. This work was supported by the US AFOSR Grant No. FA9550-16-1-0443.

  13. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  14. Vortex particle method in parallel computations on graphical processing units used in study of the evolution of vortex structures

    Science.gov (United States)

    Kudela, Henryk; Kosior, Andrzej

    2014-12-01

    Understanding the dynamics and the mutual interaction among various types of vortical motions is a key ingredient in clarifying and controlling fluid motion. In the paper several different cases related to vortex tube interactions are presented. Due to problems with very long computation times on the single processor, the vortex-in-cell (VIC) method is implemented on the multicore architecture of a graphics processing unit (GPU). Numerical results of leapfrogging of two vortex rings for inviscid and viscous fluid are presented as test cases for the new multi-GPU implementation of the VIC method. Influence of the Reynolds number on the reconnection process is shown for two examples: antiparallel vortex tubes and orthogonally offset vortex tubes. Our aim is to show the great potential of the VIC method for solutions of three-dimensional flow problems and that the VIC method is very well suited for parallel computation.

  15. Visualizing the Chemistry of Climate Change (VC3Chem): Online resources for teaching and learning chemistry through the rich context of climate science

    Science.gov (United States)

    McKenzie, L.; Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; Kirchhoff, M.

    2013-12-01

    Global climate change is one of the most pressing environmental challenges facing humanity. Many of the important underlying concepts require mental models that are built on a fundamental understanding of chemistry, yet connections to climate science and global climate change are largely missing from undergraduate chemistry courses for science majors. In Visualizing the Chemistry of Climate Change (VC3Chem), we have developed and piloted a set of online modules that addresses this gap by teaching core chemistry concepts through the rich context of climate science. These interactive web-based digital learning experiences enable students to learn about isotopes and their relevance in determining historical temperature records, IR absorption by greenhouse gases, and acid/base chemistry and the impacts on changing ocean pH. The efficacy of these tools and this approach has been assessed through measuring changes in students' understanding about both climate change and core chemistry concepts.

  16. Analysis of Structure and Abrasion Resistance of the Metal Composite Based on an Intermetallic FeAl Phase with VC and TiC Precipitates

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2013-09-01

    Full Text Available Metal alloys with matrix based on an Fe-Al system are generally considered materials for high-temperature applications. Their main advantages are compact crystallographic structure, long-range ordering and structural stability at high temperatures. These materials are based on an intermetallic phase of FeAl or Fe3Al, which is stable in the range from room temperature up to the melting point of 1240°C. Their application at high temperatures is also beneficial because of the low cost of production, very good resistance to oxidation and corrosion, and high mechanical strength. The casting alloy the structure of which includes the FeAl phase is, among others, highaluminium cast iron. This study has been devoted to the determination of the effect of vanadium and titanium on the transformation of the high-aluminium cast iron structure into an in-situ FeAl-VC composite.

  17. Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    Hao Ouyang

    2014-01-01

    Full Text Available The influence of the in-stream pylon and strut on the performance of scramjet combustor was experimentally and numerically investigated. The experiments were conducted with a direct-connect supersonic model combustor equipped with multiple cavities. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The research results show that, compared with the scramjet combustor without pylon and strut, the wall pressure and the thrust of the scramjet increase due to the improvement of mixing and combustion effect due to the pylon and strut. The total pressure loss caused by the strut is considerable whereas pylon influence is slight.

  18. Diode Laser Sensor for Gas Temperature and H2O Concentration in a Scramjet Combustor Using Wavelength Modulation Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Rieker, Gregory B; Li, Jonathan T; Jeffries, Jay B; Mathur, Tarun; Gruber, Mark R; Carter, Campbell D

    2005-01-01

    A diode laser absorption sensor which probes three spectral features of water vapor in the near infrared region to infer gas temperature and water vapor concentration near the exit of a scramjet combustor is presented...

  19. Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-attab, K.A.; Zainal, Z.A. [Universiti Sains Malaysia, School of Mechanical Engineering, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2011-04-15

    The combustion difficulties for low heating value (LHV) gases derived from biomass fuels via a gasification process have led to more investigations into LHV gas combustors. Cyclone combustors provide good air/fuel mixing with long residence times. In this study, a small-scale pressurized cyclone combustor (PCC) was designed and optimized using computational fluid dynamics (CFD) simulation. The PCC, along with a turbocharger-based, two-stage microturbine engine, was first characterized experimentally with liquefied petroleum gas (LPG) fuel and then with both LPG and LHV gas derived from biomass in dual-fuel mode. The combustor achieved ultra-low CO and NO{sub x} emissions of about 5 and 7 ppm, respectively, for LPG fuel and of about 55 and 12 ppm, respectively, in dual-fuel mode at the maximum second-stage turbine speed of 26,000 rpm with stable turbine operation. (author)

  20. Assessment of Ficam VC (Bendiocarb) Residual Activity on Different Wall Surfaces for Control of Anopheles gambiae s.s. (Diptera: Culicidae) in Northern Uganda.

    Science.gov (United States)

    Kirunda, James; Okello-Onen, Joseph; Opiyo, Elizabeth A; Rwakimari, J B; de Alwis, Ranjith; Okia, Michael; Ambayo, Denis; Abola, Benard; Hoel, David F

    2017-07-01

    Insecticide decay rate on different wall surfaces is of importance to indoor residual spray (IRS) programs used as a malaria control intervention. Past IRS operations showed increasing populations of endophilic malaria vectors resting on indoor surfaces from various sites in Uganda following use of Ficam VC (bendiocarb) insecticide; variability of insecticide life was believed to be primarily due to wall surface type. Bendiocarb longevity was tested in the northern Uganda districts of Amuru, Apac, and Pader to assess its residual efficacy on three commonly encountered wall surfaces. Wall types included mud and wattle, plain brick, and painted plaster. A susceptible mosquito strain (Anopheles gambiae Kisumu) was used in all trials. Nine houses in each of the three districts were set with three test cones and one control cone per house, divided evenly among the three wall surfaces. Bioassays were run monthly through 6 mo. Painted plastered surfaces produced 100% mortality (at 24 h) through 6 mo. Plain brick surfaces killed 100% of test mosquitoes through 4 mo, while mud and wattle wall surfaces produced a 98% mortality rate at 3 mo post spray. The KD60 (knockdown at 60 min) for painted plastered surfaces was 100% for 6 mo, plain brick surface KD60 was 80% at 6 mo, and the mud and wattle surface KD60 was >80% at 3 mo. There was a significant effect on Ficam VC longevity by wall type and evidence of a relationship between test period and wall type on the KD60. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.