WorldWideScience

Sample records for vortex transformation performed

  1. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  2. Two-dimensional melting of vortex lattices and the mutual vortex drag effect in a superconducting transformer

    International Nuclear Information System (INIS)

    Glazman, L.I.; Fogel', N.Y.

    1984-01-01

    A study is reported of the effect of two-dimensional melting of a vortex lattice on the current-voltage characteristic of a transformer, in the form of the dependence of the secondary voltage V 2 on the primary-circuit transport current J 1 . The motion of vortices in the melted lattice is described in the diffusion approximation, and their interaction in the self-consistent field approximation. The melting of even one lattice largely eliminates the vortex drag: V 2 1 for any current J 1 . The square-root singularity of the characteristics which is typical of the ordinary transformer operation no longer occurs in the critical temperature range. In the linear part of the characteristic, the ratio V 2 /V 1 is inversely proportional to the magnetic field H over a wide range of the latter. The temperature dependence of V 2 and the asymptotic function V 2 (J 1 ) for large J 1 are different, according as one or both lattices melt. The transformer current-voltage characteristic thus conveys information about the state of the vortex lattice and allows its melting to be investigated. The function V 2 (V 1 ) and V 2 (H) found here agree well with experiment, and the experimental results can thus be explained by the melting of a vortex lattice

  3. Topological transformation of fractional optical vortex beams using computer generated holograms

    Science.gov (United States)

    Maji, Satyajit; Brundavanam, Maruthi M.

    2018-04-01

    Optical vortex beams with fractional topological charges (TCs) are generated by the diffraction of a Gaussian beam using computer generated holograms embedded with mixed screw-edge dislocations. When the input Gaussian beam has a finite wave-front curvature, the generated fractional vortex beams show distinct topological transformations in comparison to the integer charge optical vortices. The topological transformations at different fractional TCs are investigated through the birth and evolution of the points of phase singularity, the azimuthal momentum transformation, occurrence of critical points in the transverse momentum and the vorticity around the singular points. This study is helpful to achieve better control in optical micro-manipulation applications.

  4. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  5. On Bäcklund transformation and vortex filament equation for null Cartan curve in Minkowski 3-space

    Energy Technology Data Exchange (ETDEWEB)

    Grbović, Milica, E-mail: milica.grbovic@kg.ac.rs; Nešović, Emilija, E-mail: nesovickg@sbb.rs [University of Kragujevac, Faculty of Science, Department of Mathematics and Informatics (Serbia)

    2016-12-15

    In this paper we introduce Bäcklund transformation of a null Cartan curve in Minkowski 3-space as a transformation which maps a null Cartan helix to another null Cartan helix, congruent to the given one. We also give the sufficient conditions for a transformation between two null Cartan curves in the Minkowski 3-space such that these curves have equal constant torsions. By using the Da Rios vortex filament equation, based on localized induction approximation, we derive the vortex filament equation for a null Cartan curve and obtain evolution equation for it’s torsion. As an application, we show that Cartan’s frame vectors generate new solutions of the Da Rios vortex filament equation.

  6. Influence of vortex-lattice melting on the resistive properties of a superconducting thin-film transformer

    International Nuclear Information System (INIS)

    Glazman, L.I.; Fogel', N.Y.

    1983-01-01

    The current-voltage curve of a transformer (the dependence of the secondary voltage V 2 on the transport current I 1 in the primary circuit) has been calculated for two-dimensional vortex-lattice melting. It is shown that even in the critical temperature range the I--V curve loses its root singularity characteristic of a transformer operating in the standard mode. When the lattice is completely melted, the maximum of the V 2 (I 1 ) curve shifts to higher currents while V 2 is much lower than the primary voltage V 1 at any value of I 1 . All of this makes it possible to study vortex-lattice melting using a superconducting transformer. We compare our calculated I--V curve with that obtained experimentally by Tarenkov et al. 8

  7. Imaging of artificially induced vortex structures

    International Nuclear Information System (INIS)

    Fasano, Yanina; Menghini, M.; Cruz, F. de la

    2004-01-01

    The combination of engineered pinning potentials in superconducting crystals, the detection of the liquid-solid vortex transition and the observation of the vortex structure with single vortex sensitivity allow the microscopic analysis of the response of 3D elastic systems to the presence of these potentials. In this work we review recent results obtained by a combination of those techniques studying different vortex structure induced transformations. On the one hand, we have visualized the transformation, along the vortex direction, of a bulk vortex single crystal with hexagonal symmetry into another crystal with square symmetry induced by an engineered Fe-dot lattice deposited on a surface of the vortex single crystal. On the other hand, we found an infrequent first-order phase transition where a vortex liquid under the presence of a random correlated potential (columnar defects) transforms into a vortex solid with no change of topological order

  8. The Vortex and the Line: Performative Gestures in Allen Ginsberg's ‘Wichita Vortex Sutra’

    DEFF Research Database (Denmark)

    Sørensen, Bent

    and their identity politics… Queering the straight lines of Modernism, Allen Ginsberg suggests in his long poem about America and the Vietnam War, ‘Wichita Vortex Sutra’, that lying media discourses and corrupt political and military statements about the necessity of participation in the war may be cancelled out...... by a poet performing the simple, yet impossible speech act of declaring the end of the war, and in doing so queering the original declaratory speech act of the executive power. The poet must enter intrepidly the vortex of lies told by the voices disseminated by the media on behalf of politicians, authority...... to provide the reader of the Sutra with the possibility of Enlightenment. While the poet may be forced to travel along straight lines to penetrate the vortex, he should at any given opportunity queer these lines as much as possible....

  9. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Nonlinear Binormal Flow of Vortex Filaments

    Science.gov (United States)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  11. Simultaneous determination of furfural and its degradation products, furoic acid and maleic acid, in transformer oil by the reversed-phase vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Yifan; Li, Haiyan; Yang, Zhen; Zhang, Weijie; Hua, Jia

    2017-12-01

    To explore why the use of furfural as a transformer oil-paper insulation aging characteristic is problematic in real world application, we developed a method for the simultaneous determination of furfural, furoic acid, and maleic acid in transformer oil by reversed-phase vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography. The conditions for the proposed method were optimized, and the obtained extract can be directly analyzed by high-performance liquid chromatography. The detection limits (signal-to-noise ratio = 3) of the method ranged from 1.0 to 4.6 μg/L, the enrichment factors for furfural, furoic acid, maleic acid, and fumaric acid were 4.6, 25.1, 15.6, and 17.5, respectively, and the recovery rates for three analytes (fumaric acid was undetected) range from 82.1 to 106.2%. The contents of furfural, furoic acid, and maleic acid resulted from accelerated aging of transformer insulation oil-paper were measured using the present method for the first time, and the aging samples were analyzed by liquid chromatography with mass spectrometry for the identification of furoic acid and maleic acid in the aging transformer oil samples. Using the optimal method, the target products of samples at different aging time were tracked and measured. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers

    Directory of Open Access Journals (Sweden)

    Mubashshir Ahmad Ansari

    2018-04-01

    Full Text Available Vortex flow increases the interface area of fluid streams by stretching along with providing continuous stirring action to the fluids in micromixers. In this study, experimental and numerical analyses on a design of micromixer that creates vortex flow were carried out, and the mixing performance was compared with a simple micro T-mixer. In the vortex micro T-mixer, the height of the inlet channels is half of the height of the main mixing channel. The inlet channel connects to the main mixing channel (micromixer at the one end at an offset position in a fashion that creates vortex flow. In the simple micro T-mixer, the height of the inlet channels is equal to the height of the channel after connection (main mixing channel. Mixing of fluids and flow field have been analyzed for Reynolds numbers in a range from 1–80. The study has been further extended to planar serpentine microchannels, which were combined with a simple and a vortex T-junction, to evaluate and verify their mixing performances. The mixing performance of the vortex T-mixer is higher than the simple T-mixer and significantly increases with the Reynolds number. The design is promising for efficiently increasing mixing simply at the T-junction and can be applied to all micromixers.

  13. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  14. Vortex Formation and Acceleration of a Fish-Inspired Robot Performing Starts from Rest

    Science.gov (United States)

    Devoria, Adam; Bapst, Jonathan; Ringuette, Matthew

    2009-11-01

    We investigate the unsteady flow of a fish-inspired robot executing starts from rest, with the objective of understanding the connection among the kinematics, vortex formation, and acceleration performance. Several fish perform ``fast starts,'' where the body bends into a ``C'' or ``S'' shape while turning (phase I), followed by a straightening of the body and caudal fin and a linear acceleration (phase II). The resulting highly 3-D, unsteady vortex formation and its relationship to the acceleration are not well understood. The self-propelled robotic model contains motor-driven joints with programmable motion to emulate phase II of a simplified C-start. The experiments are conducted in a water tank, and the model is constrained to 1 direction along rails. The velocity is measured using digital particle image velocimetry (DPIV) in multiple planes. Vortex boundaries are identified using the finite-time Lyapunov exponent, then the unsteady vortex circulation is computed. The thrust is estimated from the identified vortices, and correlated with the circulation and model acceleration for different kinematics.

  15. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...

  16. Square vortex lattice in p-wave superconductors

    International Nuclear Information System (INIS)

    Shiraishi, J.

    1999-01-01

    Making use of the Ginzburg Landau equation for isotropic p-wave superconductors, we construct the single vortex solution in part analytically. The fourfold symmetry breaking term arising from the tetragonal symmetry distortion of the Fermi surface is crucial, since this term indicates a fourfold distortion of the vortex core somewhat similar to the one found in d-wave superconductors. This fourfold distortion of the vortex core in turn favors the square vortex lattice as observed recently by small angle neutron scattering (SANS) experiment from Sr 2 RuO 4 . We find that the hexagonal vortex lattice at H = H c1 transforms into the square one for H = H cr = 0.26 H c2 . On the other hand the SANS data does not reveal such transition. The square vortex covers everywhere studied by the SANS implying H cr is very close to H c1 . Therefore some improvement in the present model is certainly desirable. (orig.)

  17. Vortex dynamics during blade-vortex interactions

    Science.gov (United States)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  18. The effects of design parameters on vortex diode pump performance, 2

    International Nuclear Information System (INIS)

    Yoshitomi, Hideki; Koizumi, Tadao; Muroyama, Kenichi; Wada, Tsutomu.

    1989-01-01

    A fluidic pump with two vortex diodes is a new technology for transporting dangerous corrosive fluids without the use of moving parts. The pump can be connected with the discharge tank through series and cascade connections. In the previous report, we described the fundamentals and design criteria of the pump for the series connection case. This study has been performed with the same object as the previous work for the case of cascade connection. First, we present the basic pump characteristics with some dimensionless performance factors by analyzing the pump model. Then, the effects of the cylinder volumetric coefficient, driving pressure, suction-diode-to-delivery-diode-passage-area ratio and reverse-flow-to-forward-flow-resistance ratio of the vortex diode are investigated. As a result, the characteristic difference between series and cascade connections is clarified. Basic ways to decide the value of each performance factor are suggested. (author)

  19. Vortex rope instabilities in a model of conical draft tube

    Science.gov (United States)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  20. Vortex rope instabilities in a model of conical draft tube

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  1. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  2. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    Science.gov (United States)

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  3. Plasmonic vortex generator without polarization dependence

    Science.gov (United States)

    Wang, Han; Liu, Lixia; Liu, Chunxiang; Li, Xing; Wang, Shuyun; Xu, Qing; Teng, Shuyun

    2018-03-01

    In view of the limitations of vortex generators with polarization dependence at present, we propose a plasmonic vortex generator composed of rectangular holes etched in silver film, in which the optical vortex can be generated under arbitrary linearly polarized light illumination. Two sets of rectangular holes are arranged equidistantly on a circle and rotate in postulate directions. Theoretical analysis provides the design principle for the vortex generator, and numerical simulations give guidance on designating the vortex generator parameters. Experimental measurements verify the performance of the proposed vortex generator. Moreover, two alternative structures for the generation of a plasmonic vortex are also provided in this paper. The resulting perfect vortex, compact structure and flexible illumination conditions will lead to wide applications of this plasmonic vortex generator.

  4. Analysis and control of supersonic vortex breakdown flows

    Science.gov (United States)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  5. Vortex line topology during vortex tube reconnection

    Science.gov (United States)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  6. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  7. Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach

    Science.gov (United States)

    Goldstein, D. E.; Vasilyev, O. V.; Wray, A. A.; Rogallo, R. S.

    2000-01-01

    The objective of this study is to investigate the use of the second generation bi-orthogonal wavelet transform for the field decomposition in the Coherent Vortex Simulation of turbulent flows. The performances of the bi-orthogonal second generation wavelet transform and the orthogonal wavelet transform using Daubechies wavelets with the same number of vanishing moments are compared in a priori tests using a spectral direct numerical simulation (DNS) database of isotropic turbulence fields: 256(exp 3) and 512(exp 3) DNS of forced homogeneous turbulence (Re(sub lambda) = 168) and 256(exp 3) and 512(exp 3) DNS of decaying homogeneous turbulence (Re(sub lambda) = 55). It is found that bi-orthogonal second generation wavelets can be used for coherent vortex extraction. The results of a priori tests indicate that second generation wavelets have better compression and the residual field is closer to Gaussian. However, it was found that the use of second generation wavelets results in an integral length scale for the incoherent part that is larger than that derived from orthogonal wavelets. A way of dealing with this difficulty is suggested.

  8. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    Science.gov (United States)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  9. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    Science.gov (United States)

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  10. Vortex profiles and vortex interactions at the electroweak crossover

    OpenAIRE

    Chernodub, M. N.; Ilgenfritz, E. -M.; Schiller, A.

    1999-01-01

    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.

  11. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Directory of Open Access Journals (Sweden)

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  12. Vortex Cloud Street during AMTEX 75

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Agee, E. M.

    1978-01-01

    Strong northerly flow across Cheju Island, Korea, during the 1975 Air Mass Transformation Experiment (AMTEX 75) resulted in a pronounced vortex cloud street to the lee of the island on February 17 1975. This pattern has been studied and explained in terms of classical von Karman eddies shed...

  13. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  14. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    International Nuclear Information System (INIS)

    Galvis, J.A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-01-01

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  15. Obstacle-induced spiral vortex breakdown

    OpenAIRE

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-01-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by...

  16. Development of a High-Performance Fin-and-Tube Heat Exchanger with Vortex Generators for a Vending Machine

    Science.gov (United States)

    Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira

    The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.

  17. Vortex methods and vortex statistics

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (''blobs'') and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ''blob'' methods provide the most promising path to the understanding of these phenomena

  18. Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates

    OpenAIRE

    Schulte, T.; Santos, L.; Sanpera, A.; Lewenstein, M.

    2002-01-01

    We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.

  19. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  20. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  1. Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Cho, C.H.; Shin, D.H. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Hong, Y.C., E-mail: ychong@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Shin, Y.W. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); School of Advanced Green Energy and Environments, Handong Global University, Heunghae-eup, Buk-gu, Pohang-city, Gyeongbuk (Korea, Republic of)

    2015-08-30

    Highlights: • We developed a microwave plasma torch with reverse vortex reactor (RVR). • We calculated a volume fraction and temperature distribution of discharge gas and waste. • The performance of reverse vortex reactor increased from 29% to 43% than conventional vortex reactor. - Abstract: Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45 GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF{sub 6}, NF{sub 3} by varying plasma power and N{sub 2} flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF{sub 3} was achieved without an additive gas at the N{sub 2} flow rate of 150 liter per minute (L/min) by applying a microwave power of 6 kW with RVR. Also, a DRE of SF{sub 6} was 99.99% at the N{sub 2} flow rate of 60 L/min using an applied microwave power of 6 kW. The performance of reverse vortex reactor increased about 43% of NF{sub 3} and 29% of SF{sub 6} abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  2. The vortex free energy in the screening phase of the Z(2) Higgs model

    International Nuclear Information System (INIS)

    Meyer, H.

    1983-06-01

    The vortex free energy was proposed to distinguish between the confinement - and the Higgs phase (in the sense of 't Hooft) in lattice gauge theory, when matter fields are present that transform according to an arbitrary representation of the gauge group. In this paper I consider the Z(2) Higgs model and calculate the vortex free energy in the screening part of the confining/screening phase of Fradkin and Shenker. The result does not agree with the expected behavior that corresponds to the structure of the phase diagram. Therefore the vortex free energy is no longer a good indicator for confinement when matter fields transform nontrivially under the center of the gauge group (such as Z(2) Higgs scalars). (orig.)

  3. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  4. Studies on a burner used biomass pellets as fuel. Performance of a spiral vortex pellet burner

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio

    1987-12-21

    In order to develop a small size burner with high performance using biomass pellets fuel substitute for fuel oil, the burning performance of a spiral vortex pallet burner has been studied. An experimental equipment for the pellet burning is made up of a fuel supply unit, combustion chamber and a furnace. The used woody pellet is made of mixed sawdust and bark; with water content of 10.29%, particle diameter of 5.5-9mm, length of 5-50mm, and, apparent and real specific gravities are 0.59 and 1.334 respectively. The pellets are sent to bottom of the combustion chamber, spiral vortex combustion are carried out with blown air, the ashes and unburnt residues are discharged to out of combustion chamber with spiral vortex hot gases. As the result, it was clarified that the formation of the burning layers in a burner is required to be in order of the layers of ash, oxidation, reduction and carbonization up to the upper layer for high burning performance, and the formation of the layer is influenced by the condition of sedimentation of pellets in the combustion chamber. In the meanwhile the burning performance of the burner is influenced by the quantity of blast, the rate of feeding, and by the time of pre-heating in the combustion chamber. (23 figs, 5 refs)

  5. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication.

    Science.gov (United States)

    Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting

    2018-05-14

    Orbital angular momentum (OAM) mode crosstalk induced by atmospheric turbulence is a challenging phenomenon commonly occurring in OAM-based free-space optical (FSO) communication. Recent advances have facilitated new practicable methods using abruptly autofocusing light beams for weakening the turbulence effect on the FSO link. In this work, we show that a circular phase-locked Airy vortex beam array (AVBA) with sufficient elements has the inherent ability to form an abruptly autofocusing light beam carrying OAM, and its focusing properties can be controlled on demand by adjusting the topological charge values and locations of these vortices embedded in the array elements. The performance of a tailored Airy vortex beam array (TAVBA) through atmospheric turbulence is numerically studied. In a comparison with the ring Airy vortex beam (RAVB), the results indicate that TAVBA can be a superior light source for effectively reducing the intermodal crosstalk and vortex splitting, thus leading to improvement in the FSO system performance.

  6. Transverse energy circulation and the edge diffraction of an optical vortex beam.

    Science.gov (United States)

    Bekshaev, Aleksandr Ya; Mohammed, Kadhim A; Kurka, Ivan A

    2014-04-01

    Edge diffraction of a circular Laguerre-Gaussian beam represents an example of the optical vortex symmetry breakdown in which the hidden "vortex" energy circulation is partially transformed into the visible "asymmetry" form. The diffracted beam evolution is studied in terms of the irradiance moments and the moment-based parameters. In spite of the limited applicability of the moment-based formalism, we show that the "vortex" and "asymmetry" parts of the orbital angular momentum can still be reasonably defined for the hard-edge diffracted beams and retain their physical role of quantifying the corresponding forms of the transverse energy circulation.

  7. Observation of the Dynamical Inversion of the Topological Charge of an Optical Vortex

    International Nuclear Information System (INIS)

    Molina-Terriza, Gabriel; Recolons, Jaume; Torres, Juan P.; Torner, Lluis; Wright, Ewan M.

    2001-01-01

    We report what is believed to be the first detailed experimental observation of the dynamic inversion of the topological charge of an optical vortex under free-space propagation. The vortex self-transformation occurs through continuous deformation of the noncanonical strength of the corresponding screw wave front dislocation, and is mediated by the occurrence of an extremely sharp turn in a Berry vortex trajectory, which observed at a Freund critical foliation appears as an edge-line dislocation orthogonal to the propagation direction, at a crucial point of the light evolution

  8. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  9. The interaction of counter-rotating strained vortex pairs with a third vortex

    International Nuclear Information System (INIS)

    Higgins, Keith; Ooi, Andrew; Chong, M S; Ruetten, Markus

    2009-01-01

    The vortex dynamics caused by the interaction of counter-rotating Burgers vortex pairs with a third Burgers vortex in a straining flow is investigated numerically. These interactions blend vortex merging and cancellation effects, and the aim is to investigate how the third vortex might influence the evolution of the vortex pair. Many different choices of initial conditions for the pair and third vortex exist, so attention is restricted to a class of initial conditions in which the vortex pair initially moves in the general direction of vortex 3, and the distance from vortex 3 to the line of free propagation of the vortex pair is the 'offset' parameter δ. A series of calculations with 0≤δ≤4 reveals three types of intermediate-time vortex dynamics that are called merging, swapping and switching. The evolution of the vortex core separation and core vorticity level diagnostics are used to determine the points of transition from merging to swapping and switching. In the longer term, vortex merging, cancellation and straining reduces the three vortices to a single vortex. Other diagnostics of interest are also monitored, including the spatial distributions of the rate of viscous dissipation and terms contributing to the vorticity transport equation. During the merging phase for the case with δ=0, double-peak and double-trough structures are observed in the dissipation-rate contours. In addition, the diffusion of vorticity dominates the vortex-stretching effect near vortex 1 during its absorbtion by vortex 3. Finally, the dynamics of the three vortices are also examined by computing a co-rotating angular velocity and stream function. A series of peaks in the co-rotating angular velocity is found to be associated with the conservation of angular momentum and interactions with a 'ghost' vortex in the co-rotating stream function.

  10. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  11. Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1981-03-01

    The equations that describe the motion of two-dimensional vortex fluids and guiding center plasmas are shown to possess underlying field Hamiltonian structure. A Poisson bracket which is given in terms of the vorticity, the physical although noncanonical dynamical variable, casts these equations into Heisenberg form. The Hamiltonian density is the kinetic energy density of the fluid. The well-known conserved quantities are seen to be in involution with respect to this Poisson bracket. Expanding the vorticity in terms of a Fourier-Dirac series transforms the field description given here into the usual canonical equations for discrete vortex motion. A Clebsch potential representation of the vorticity transforms the noncanonical field description into a canonical description

  12. A multiresolution remeshed Vortex-In-Cell algorithm using patches

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Cottet, Georges-Henri; Walther, Jens Honore

    2011-01-01

    We present a novel multiresolution Vortex-In-Cell algorithm using patches of varying resolution. The Poisson equation relating the fluid vorticity and velocity is solved using Fast Fourier Transforms subject to free space boundary conditions. Solid boundaries are implemented using the semi...

  13. Non-Abelian vortex lattices

    Science.gov (United States)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  14. Longitudinal vortex control - Techniques and applications (The 32nd Lanchester Lecture)

    Science.gov (United States)

    Bushnell, D. M.

    1992-01-01

    A summary is presented of vortex control applications and current techniques for the control of longitudinal vortices produced by bodies, leading edges, tips and intersections. Vortex control has up till now been performed by many approaches in an empirical fashion, assisted by the essentially inviscid nature of much of longitudinal vortex behavior. Attention is given to Reynolds number sensitivities, vortex breakdown and interactions, vortex control on highly swept wings, and vortex control in juncture flows.

  15. Vortex configuration and vortex-vortex interaction in nano-structured superconductors

    International Nuclear Information System (INIS)

    Kato, Masaru; Niwa, Yuhei; Suematsu, Hisataka; Ishida, Takekazu

    2012-01-01

    We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.

  16. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    Science.gov (United States)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  17. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  18. A nonabelian particle–vortex duality

    Directory of Open Access Journals (Sweden)

    Jeff Murugan

    2016-02-01

    Full Text Available We define a nonabelian particle–vortex duality as a 3-dimensional analogue of the usual 2-dimensional worldsheet nonabelian T-duality. The transformation is defined in the presence of a global SU(2 symmetry and, although derived from a string theoretic setting, we formulate it generally. We then apply it to so-called “semilocal strings” in an SU(2G×U(1L gauge theory, originally discovered in the context of cosmic string physics.

  19. Unsteady flow challenges tracking performance at vortex shedding frequencies without disrupting lift mechanisms

    Science.gov (United States)

    Matthews, Megan; Sponberg, Simon

    2017-11-01

    Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.

  20. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  1. New transition in the vortex liquid state of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kwok, Wai-Kwong; Karapetrov, Goran; Welp, Ulrich; Rydh, Andreas; Crabtree, George W.; Paulius, Lisa; Figueras, Jordi; Puig, Teresa; Obradors, X.

    2006-01-01

    We have carried out angular dependent magneto-transport measurements on optimally doped, untwinned YBa 2 Cu 3 O 7-δ crystals irradiated with high energy heavy ions to determine the onset of vortex line tension in the vortex liquid state. The dose matching field was controlled and kept at a low level to partially preserve the first order vortex lattice melting transition. A Bose glass transition is observed below the lower critical point which then transforms into a first order phase transition near 4 T. We find that the locus of points which indicates the onset of vortex line tension overlaps with the Bose glass transition line at low fields and then deviates at higher fields, indicating a new transition line in the vortex liquid state. This new line in the vortex liquid phase is dose independent and extends beyond the upper critical point

  2. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  3. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  4. RANS computations of tip vortex cavitation

    Science.gov (United States)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  5. Three-wave electron vortex lattices for measuring nanofields.

    Science.gov (United States)

    Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E

    2015-01-01

    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Performance and Flow Field of a Gravitation Vortex Type Water Turbine

    OpenAIRE

    Nishi, Yasuyuki; Inagaki, Terumi

    2017-01-01

    A gravitation vortex type water turbine, which mainly comprises a runner and a tank, generates electricity by introducing a flow of water into the tank and using the gravitation vortex generated when the water drains from the bottom of the tank. This water turbine is capable of generating electricity using a low head and a low flow rate with relatively simple structure. However, because its flow field has a free surface, this water turbine is extremely complicated, and thus its relevance to p...

  7. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex sheets are given.

  8. Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model

    Directory of Open Access Journals (Sweden)

    Bai Chenyuan

    2014-02-01

    Full Text Available For purpose of easy identification of the role of free vortices on the lift and drag and for purpose of fast or engineering evaluation of forces for each individual body, we will extend in this paper the Kutta–Joukowski (KJ theorem to the case of inviscid flow with multiple free vortices and multiple airfoils. The major simplification used in this paper is that each airfoil is represented by a lumped vortex, which may hold true when the distances between vortices and bodies are large enough. It is found that the Kutta–Joukowski theorem still holds provided that the local freestream velocity and the circulation of the bound vortex are modified by the induced velocity due to the outside vortices and airfoils. We will demonstrate how to use the present result to identify the role of vortices on the forces according to their position, strength and rotation direction. Moreover, we will apply the present results to a two-cylinder example of Crowdy and the Wagner example to demonstrate how to perform fast force approximation for multi-body and multi-vortex problems. The lumped vortex assumption has the advantage of giving such kinds of approximate results which are very easy to use. The lack of accuracy for such a fast evaluation will be compensated by a rigorous extension, with the lumped vortex assumption removed and with vortex production included, in a forthcoming paper.

  9. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; Ragni, D.; van Bussel, G.J.W.

    2016-01-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the in_nite vortex cascade, a numerical model of four base-vortices is chosen to represent

  10. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  11. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  12. Computational investigation of the temperature separation in vortex chamber

    International Nuclear Information System (INIS)

    Anish, S.; Setoguchi, T.; Kim, H. D.

    2014-01-01

    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  13. A Coaxial Vortex Ring Model for Vortex Breakdown

    OpenAIRE

    Blackmore, Denis; Brons, Morten; Goullet, Arnaud

    2008-01-01

    A simple - yet plausible - model for B-type vortex breakdown flows is postulated; one that is based on the immersion of a pair of slender coaxial vortex rings in a swirling flow of an ideal fluid rotating around the axis of symmetry of the rings. It is shown that this model exhibits in the advection of passive fluid particles (kinematics) just about all of the characteristics that have been observed in what is now a substantial body of published research on the phenomenon of vortex breakdown....

  14. Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators

    Science.gov (United States)

    Khanoknaiyakarn, C.; Promvonge, P.; Thianpong, C.; Skullong, S.

    2018-01-01

    A novel tubular heat exchanger incorporated with punched delta-winglet vortex generators (called perforated delta-winglet vortex generator, P-DWVG) is proposed for improving its thermal performance and energy saving. The P-DWVG elements are punched out from a straight tape having its width nearly equal to the tube diameter before insertion. The main aim at employing the P-DWVG insert is to produce counter-rotating vortices along the tube to promote turbulence intensity inside as well as to transport the cold fluid at the central core to the near-wall regions. The experiment was performed to study thermal behaviors in a uniform heat-fluxed tube inserted with P-DWVGs. The P-DWVGs with the attack angle of 45° were mounted periodically with three different blockage ratios (BR = 0.1, 0.2 and 0.3) and two pitch ratios (PR = 2 and 3). Air as the test fluid was varied to obtain turbulent airflow for Reynolds number (Re) in a range of 4,150-25,500. The experimental results show that the P-DWVG provides a considerable increase in the rate of heat transfer around 3.1-4.01 times whereas friction factor increases around 11.44- 34.23 times higher than the plain tube. To assess the real benefits of P-DWVGs, thermal performance factor (TEF) is examined and in the range of 1.39-1.48 where its maximum is at BR = 0.1 and PR = 2.

  15. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    Science.gov (United States)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  16. A new variable transformation technique for the nonlinear drift vortex

    International Nuclear Information System (INIS)

    Orito, Kohtaro

    1996-02-01

    The dipole vortex solution of the Hasegawa-Mima equation describing the nonlinear drift wave is a stable solitary wave which is called the modon. The profile of the modon depends on the nonlinearity of the ExB drift. In order to investigate the nonlinear drift wave more accurately, the effect of the polarization drift needs to be considered. In case of containing the effect of the polarization drift the profile of the electrostatic potential is distorted in the direction perpendicular to the ExB drift. (author)

  17. Performance analysis of vortex based mixers for confined flows

    Science.gov (United States)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  18. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    Science.gov (United States)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  19. Combustion of alternative fuels in vortex trapped combustor

    International Nuclear Information System (INIS)

    Ghenai, Chaouki; Zbeeb, Khaled; Janajreh, Isam

    2013-01-01

    Highlights: ► We model the combustion of alternative fuels in trapped vortex combustor (TVC). ► We test syngas and hydrogen/hydrocarbon mixture fuels. ► We examine the change in combustion performance and emissions of TVC combustor. ► Increasing the hydrogen content of the fuel will increase the temperature and NO x emissions. ► A high combustor efficiency is obtained for fuels with different compositions and LHV. - Abstract: Trapped vortex combustor represents an efficient and compact combustor for flame stability. Combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel–air stream. Computational Fluid Dynamics analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthetic gas (syngas). The flame temperature, the flow field, and species concentrations inside the Vortex Trapped Combustor were obtained. The results show that hydrogen enriched hydrocarbon fuels combustion will result in more energy, higher temperature (14% increase when methane is replaced with hydrogen fuels) and NO x emissions, and lower CO 2 emissions (50% decrease when methane is replaced with methane/hydrogen mixture with 75% hydrogen fraction). The NO x emission increases when the fraction of hydrogen increases for methane/hydrogen fuel mixture. The results also show that the flame for methane combustion fuel is located in the primary vortex region but it is shifted to the secondary vortex region for hydrogen combustion.

  20. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  1. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  2. Structures of single vortex and vortex lattice in a d-wave superconductor

    International Nuclear Information System (INIS)

    Xu, J.; Ren, Y.; Ting, C.

    1996-01-01

    The structures of a single vortex and vortex lattice in a superconductor with d x 2 -y 2 symmetry are studied self-consistently employing a recently developed Ginzburg-Landau theory. Near a single vortex, we found that an s-wave component of the order parameter is always induced, and it causes the local magnetic-field distribution and the d-wave order parameter to have a fourfold anisotropy. It is shown that there is a strong correlation between the structure of a single vortex and the shape of the vortex lattice. Our numerical calculation indicates that the structure of the vortex lattice is always oblique except for temperatures very close to T c where it becomes triangular. The possible connection of the result with experiment is also discussed. copyright 1996 The American Physical Society

  3. Analysis of design parameters and flow characteristics of the vortex valve for SIT flow control

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Chang, Moon Hee; Kim, Seong O.; Kim, Young In.

    1997-01-01

    This study was performed to provide a technical basis for the development of the vortex valve which will be adopted in Korean Advanced Reactor. The influence of nondimensional and geometrical parameters of the vortex valve were investigated by analyzing the flow field of the vortex chamber, and the performance related parameters were evaluated by utilizing of the published experimental and analytical data. Also the level transients of the stand pipe were investigated by using of the simplified analytical model. In order to obtain the more detailed information on the vortex flow field, three dimensional preliminary analyses for the vortex valve design were conducted by FLUENT code. This study were carried out by using the simplified analytical model of the vortex valve and downstream pipe. However, the detailed analysis on the integrated system of the vortex valve with the as built design data and the required operating conditions should be performed to obtain the more accurate results on the vortex valve behavior. Also the experimental study over a wide range of operating conditions to develop the correlation of the design parameters and the performance verification should be performed for the practical design and engineering applications of the vortex valve. The results of this study can be used as a basic information for the development of the vortex valve design for the SIT of Korean Advanced Reactor. (author). 12 refs., 5 tabs., 33 figs

  4. Vortex wake investigation behind a wing-flap model with jet simulations

    NARCIS (Netherlands)

    Veldhuis, L.L.M.; De Kat, R.

    2008-01-01

    To get a better insight in the effect of jets on vortex development and decay, stereo-PIV measurements were performed in a towing tank behind a flapped aircraft model. The experimental data set yields the wake vortex behavior in a range that extends from the vortex formation stage up to the

  5. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  6. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  7. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    Science.gov (United States)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  8. Vortex mass in a superfluid

    Science.gov (United States)

    Simula, Tapio

    2018-02-01

    We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.

  9. Prediction of the Effect of Vortex Generators on Airfoil Performance

    International Nuclear Information System (INIS)

    Sørensen, Niels N; Zahle, F; Bak, C; Vronsky, T

    2014-01-01

    Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two different airfoils at a Reynolds number of 3 million, the FFA- W3-301 and FFA-W3-360, respectively. The computations are compared with wind tunnel measurements from the Stuttgart Laminar Wind Tunnel with respect to lift and drag variation as function of angle of attack. Even though the method does not exactly capture the measured performance, it can be used to compare different VG setups qualitatively with respect to chord- wise position, inter and intra-spacing and inclination of the VGs already in the design phase

  10. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    Science.gov (United States)

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  11. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  12. Formation of quasistationary vortex and transient hole patterns through vortex merger

    International Nuclear Information System (INIS)

    Ganesh, R.; Lee, J.K.

    2002-01-01

    Collection of point-like intense vortices arranged symmetrically outside of a uniform circular vortex patch, both enclosed in a free-slip circular boundary, are numerically time evolved for up to 10-15 patch turnover times. These patterns are found to merge with the patch by successively inducing nonlinear dispersive modes (V-states) on the surface of the patch, draw off fingers of vorticity (filamentation), trap the irrotational regions as the fingers symmetrize under the shear flow of the patch and point-like vortices (wave breaking) followed by the vortex-hole capture. While the hole patterns are observed to break up over several turnover periods the vortex patterns appear to evolve into quasistationary patterns for some cases of an initial number of point-like vortices N pv . The bounded V-states, filamentation, and vortex (hole) pattern formation are discussed in some detail and their possible connection to recently observed vortex 'crystals' is pointed out

  13. Performance augmentation with vortex generators: Design and testing for stall-regulated AWT-26 turbine

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    A study investigated the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. Based on wind-tunnel results and analysis, a VG array was designed for and tested on the AWT-26 prototype, designated Pt. Performance and loads data were measured for P1, both with and without VGs installed. The turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a minimal effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for wind speed sites up to 8.5 m/s. 8 refs., 8 figs., 3 tabs.

  14. Vortex lattices in a rotating Fermi superfluid in the BCS–BEC crossover with many Landau levels

    International Nuclear Information System (INIS)

    Song, Tie-ling; Ma, C.R.; Ma, Yong-li

    2012-01-01

    We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross–Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS–BEC crossover. - Highlights: ► We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. ► Decomposing the vortex from the condensate, we can explain the vortex lattice. ► The calculation is consistent with numerical and experimental data. ► It can characterize experimentally properties in different regimes of the BCS–BEC crossover.

  15. Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack

    Science.gov (United States)

    Luckring, James M.

    2003-01-01

    A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

  16. INFLUENCE OF TRANSFORMATIONAL LEADERSHIP ON MANAGEMENT PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Mihaela TĂNASE

    2014-11-01

    Full Text Available In today's business world, competitive advantage reflects the ability of the organization to achieve high performance through proper, effective and efficient management. This paper seeks to propose a conceptual model and the companies considered for this study are chosen from Romania, specifically the multinational ones. The research tries to find what attributes of personality belonging to the components of transformational leadership are responsible for an increase or decrease of management performance. Thus, the methodology of the previous survey goes on identifying if it can establish a causal relationship type “stimulus – effect” (personality to transformational leadership, transformational leadership to management performance. The conclusions for the methodological aspects illustrate on one hand, relationship between transformational leadership and management performance and on the other hand, the profile of the effective transformational leader from multinational companies in the services sector, in the NE region of Romania.

  17. Effect of alternate-vortex on flow-induced in-line oscillation

    International Nuclear Information System (INIS)

    Kondo, Masaya; Anoda, Yoshinari

    1999-01-01

    Experiments were performed to study the in-line oscillations of a flexible cylinder in a water crossflow to estimate the effects of alternate-vortex. The measured oscillations were analyzed using the Gabor wavelet function to define the temporal phase relation between the in-line displacement and the vortex-induced force. The analysis shows that 1) the stability region located between two excited regions is generated by alternate vortex effect, 2) the phase relation, which was changed as the crossflow velocity increased, can be classified into three categories, 3) though the contribution of the alternate vortex at the excited region was positive, the contribution at the stability region was negative. (author)

  18. The singing vortex

    Science.gov (United States)

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  19. DNS of droplet-vortex interaction with a Karman vortex street

    International Nuclear Information System (INIS)

    Burger, M.; Schmehl, R.; Koch, R.; Wittig, S.; Bauer, H.-J.

    2006-01-01

    Predicting fuel spray interaction with large scale vortex structures still is a major challenge for state-of-the-art CFD codes. In order to elucidate the mechanisms involved, a fundamental study has been carried out in which the interaction of water droplets with a Karman vortex street is investigated. The disperse two-phase flow around a cylinder has been computed taking into account the mass, momentum and heat transfer between both phases. Flow conditions are chosen such that large scale vortices are generated by periodic flow separations of the well known Karman vortex street. A homogeneous distribution of water droplets is injected into the hot air up-stream of the computational domain. The mixing process as well as the impact of the droplets on the gas phase instabilities is analyzed in the downstream region where large scale vortex structures are present

  20. Drift wave coherent vortex structures in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Su, X.N.

    1992-01-01

    Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations

  1. Cylindrical vortex wake model: right cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Gaunaa, Mac

    2015-01-01

    The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios....... For each vortex element, the velocity components in all directions and in the entire domain are computed analytically in a novel approach. In particular, the velocity field from the vortex actuator disk is derived for the first time. The induction from the entire vortex system is studied and is seen...

  2. A vortex ring interacting with a vortex filament and its deformation near the two-dimensional stagnation point

    International Nuclear Information System (INIS)

    Kiya, M.; Sato, T.

    1986-01-01

    In this paper the interaction between vortex filaments and vortex rings and the deformation of vortex rings near the two-dimensional stagnation point are simulated by a three-dimensional vortex method. The two problems are respectively concerned with the effect of free-stream turbulence on turbulent plane mixing layers and the production of turbulence by the vortex stretching near saddles associated with large-scale coherent structures. The authors assume that the first step to understand the free-stream turbulence effect is to study the interaction between a vortex ring and a vortex filament and that the process of deformation of a vortex ring gives us a clue to understand physical processes occurring near the saddles

  3. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  4. Identification of vortex pairs in aircraft wakes from sectional velocity data

    Science.gov (United States)

    Carmer, Carl F. V.; Konrath, Robert; Schröder, Andreas; Monnier, Jean-Claude

    2008-03-01

    The dynamics of multiple-vortex wake systems behind aircraft endangering air traffic can be assessed also from physical modelling. Large-scale laboratory investigations of multiple-vortex systems have been performed in a free-flight laboratory and in a water towing tank. Specialized PIV measurements provide time-resolved flow velocity fields normal to the wake axis. The applicability of various ∇ u-based vortex identification schemes to planar velocity data is addressed and demonstrated for unequal-strength co- and counter-rotating vortex pairs. Large vortices shed off the wing tips and flaps are identified employing a ∇ u-based criterion. Their cooperative mechanisms of generation and decay are evidenced from iso-surfaces of squared swirling strength and from further characteristic vortex parameters.

  5. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  6. Performance measures for transform data coding.

    Science.gov (United States)

    Pearl, J.; Andrews, H. C.; Pratt, W. K.

    1972-01-01

    This paper develops performance criteria for evaluating transform data coding schemes under computational constraints. Computational constraints that conform with the proposed basis-restricted model give rise to suboptimal coding efficiency characterized by a rate-distortion relation R(D) similar in form to the theoretical rate-distortion function. Numerical examples of this performance measure are presented for Fourier, Walsh, Haar, and Karhunen-Loeve transforms.

  7. Numerical Study of a Southwest Vortex Rainstorm Process Influenced by the Eastward Movement of Tibetan Plateau Vortex

    Directory of Open Access Journals (Sweden)

    Xiaoli Liu

    2018-01-01

    Full Text Available A number of studies revealed the possible eastward movement of the Tibetan Plateau low-pressure system in summer and indicated the enhancement effect of this process on the southwest vortex in the Sichuan Basin, which can induce strong convective precipitation and flood events in China. In this study, a numerical simulation of a southwest vortex rainstorm process was performed. The results show that the low-pressure system originated from the Tibetan Plateau affects the southwest vortex mainly at the middle level, causing the strength increase of southwest vortex (SWV, and acts as a connection between the positive vorticity centers at the upper and lower layers. For the microscopic cloud structure, the vertical updraft of the cloud cluster embedded in the SWV increases as the low-pressure system from the plateau arrives at the Sichuan Basin. Vapor and liquid cloud water at the lower level are transported upward, based on which the ice cloud at the upper level and the warm cloud at the lower level are joined to create favorable conditions for the growth of ice crystals. As the ice crystals grow up, snow and graupel particles form, which substantially elevates the precipitation. This effect leads to the rapid development of SWV rainstorm clouds and the occurrence of precipitation. In addition to the effect of the plateau vortex, the subsequent merging of the convective clouds is another important factor for heavy rainfall because it also leads to development of convective clouds, causing heavy rainfall.

  8. Numerical and Experimental Study on a Model Draft Tube with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Tian Xiaoqing

    2013-01-01

    Full Text Available A model water turbine draft tube containing vortex generators (VG was studied. Numerical simulations were performed to investigate 55 design variations of the vortex generators in a draft tube. After analyzing the shapes of streamlines and velocity distributions in the tube and comparing static pressure recovery coefficients (SPRC in different design variations, an optimum vortex generator layout, which can raise SPRC of the draft tube by 4.8 percent, was found. To verify the effectiveness of the vortex generator application, a series of experiments were carried out. The results show that by choosing optimal vortex generator parameters, such as the installation type, installation position, blade-to-blade distance, and blade inclination angle, the draft tube equipped vortex generators can effectively raise their SPRC andworking stability.

  9. Propagation of optical vortex beams and nucleation of vortex-antivortex pairs in disordered nonlinear photonic lattices

    International Nuclear Information System (INIS)

    Cho, Yeong-Kwon; Kim, Ki-Hong

    2014-01-01

    The propagation of optical vortex beams through disordered nonlinear photonic lattices is numerically studied. The vortex beams are generated by using a superposition of several Gaussian laser beams arranged in a radially-symmetric manner. The paraxial nonlinear Schroedinger equation describing the longitudinal propagation of the beam array through nonlinear triangular photonic lattices with two-dimensional disorder is solved numerically by using the split-step Fourier method. We find that due to the spatial disorder, the vortex beam is destabilized after propagating a finite distance and new vortex-antivortex pairs are nucleated at the positions of perfect destructive interference. We also find that in the presence of a self-focusing nonlinearity, the vortex-antivortex pair nucleation is suppressed and the vortex beam becomes more stable, while a self-defocusing nonlinearity enhances the vortex-antivortex pair nucleation.

  10. Evaluation of the Performance of Vortex Generators on the DU 91-W2-250 Profile using Stereoscopic PIV

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Meyer, Knud Erik

    2009-01-01

    Stereoscopic PIV measurements investigating the effect of Vortex Generators on the lift force near stall and on glide ratio at best aerodynamic performance have been carried out in the LM Glasfiber wind tunnel on a DU 91-W2-250 profile. Measurements at two Reynolds numbers were analyzed; Re=0...

  11. Evaluation of the Performance of Vortex Generators on the DU 91-W2-250 Profile using Stereoscopic PIV

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Meyer, Knud Erik

    2008-01-01

    Stereoscopic PIV measurements investigating the effect of Vortex Generators on the lift force near stall and on glide ratio at best aerodynamic performance have been carried out in the LM Glasfiber wind tunnel on a DU 91-W2-250 profile. Measurements at two Reynolds numbers were analyzed; Re=0...

  12. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    Science.gov (United States)

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  13. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    Science.gov (United States)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  14. A nonabelian vortex-bond model of hadrons

    International Nuclear Information System (INIS)

    Patkos, A.

    1976-10-01

    The nature of non-Abelian theories for magnetic quark confinement is discussed. Using the internal holonomy group method the properties of infinitely long, straight, static vortices of cylindrical symmetry are investigated. For defining the conserved gauge-invariant charges the concept of ''the measuring matrices'' is used. It is shown for a general class of models that the most general vortex-like configurations can always be transformed to Abelian form. The introduction of Dirac-type monopoles and the stability problem in case of small amplitude oscillations are also discussed. (Sz. N.Z.)

  15. Multiplexing of adjacent vortex modes with the forked grating coupler

    Science.gov (United States)

    Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.

    2017-08-01

    For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.

  16. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  17. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  18. Optical vortex scanning inside the Gaussian beam

    International Nuclear Information System (INIS)

    Masajada, J; Leniec, M; Augustyniak, I

    2011-01-01

    We discussed a new scanning method for optical vortex-based scanning microscopy. The optical vortex is introduced into the incident Gaussian beam by a vortex lens. Then the beam with the optical vortex is focused by an objective and illuminates the sample. By changing the position of the vortex lens we can shift the optical vortex position at the sample plane. By adjusting system parameters we can get 30 times smaller shift at the sample plane compared to the vortex lens shift. Moreover, if the range of vortex shifts is smaller than 3% of the beam radius in the sample plane the amplitude and phase distribution around the phase dislocation remains practically unchanged. Thus we can scan the sample topography precisely with an optical vortex

  19. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvi......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  20. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws...

  1. An Organic Vortex Laser.

    Science.gov (United States)

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  2. A computational study of the topology of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  3. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  4. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    International Nuclear Information System (INIS)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe; Lykholt-Ustrup, Flemming

    2017-01-01

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation

  5. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe [Institute of Fluid System Dynamics, Technische Universitaet, Berlin (Germany); Lykholt-Ustrup, Flemming [Grundfos Holding A/S, Bjerringbro (Denmark)

    2017-04-15

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation.

  6. Some observations concerning blade-element-momentum (BEM) methods and vortex wake methods, including numerical experiments with a simple vortex model

    Energy Technology Data Exchange (ETDEWEB)

    Snel, H. [Netherlands Energy Research Foundation ECN, Renewable Energy, Wind Energy (Netherlands)

    1997-08-01

    Recently the Blade Element Momentum (BEM) method has been made more versatile. Inclusion of rotational effects on time averaged profile coefficients have improved its achievements for performance calculations in stalled flow. Time dependence as a result of turbulent inflow, pitching actions and yawed operation is now treated more correctly (although more improvement is needed) than before. It is of interest to note that adaptations in modelling of unsteady or periodic induction stem from qualitative and quantitative insights obtained from free vortex models. Free vortex methods and further into the future Navier Stokes (NS) calculations, together with wind tunnel and field experiments, can be very useful in enhancing the potential of BEM for aero-elastic response calculations. It must be kept in mind however that extreme caution must be used with free vortex methods, as will be discussed in the following chapters. A discussion of the shortcomings and the strength of BEM and of vortex wake models is given. Some ideas are presented on how BEM might be improved without too much loss of efficiency. (EG)

  7. Diagnostics of spatial structure of vortex multiplets in a swirl flow

    DEFF Research Database (Denmark)

    Naumov, I. V.; Okulov, Valery; Sørensen, Jens Nørkær

    2011-01-01

    Results on investigation of vortex unstable breakdown are presented. The structure of vortex multiplets was visualized in a vertical cylindrical container made of transparent organic glass of the optic quality with the inner diameter of 288 mm and rotating upper lid. Visualization was performed....... Visualization of flow structure for unstable swirl flows and cylinder aspect ratios from 3.2 to 5.5 allowed first identification of these regimes as multispiral breakdowns with formation of helical-like vortex duplets, triplets and quadruplets....

  8. Airfoil gust response and the sound produced by airifoil-vortex interaction

    Science.gov (United States)

    Amiet, R. K.

    1986-01-01

    This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.

  9. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  10. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  11. Simulation of the Initial 3-D Instability of an Impacting Drop Vortex Ring

    DEFF Research Database (Denmark)

    Sigurdson, Lorenz; Wiwchar, Justin; Walther, Jens Honore

    2013-01-01

    , a Rayleigh centrifugal instability, or a vortex breakdown-type instability. Simulations which simply have a perturbed solitary ring result in an instability similar to that seen experimentally. Waviness of the core which would be expected from a Widnall instability is not visible. Adding an opposite......-signed secondary vortex ring or an image vortex ring to the initial conditions, to trigger a Rayleigh or breakdown respectively, does not appear to significantly change the instability from what is seen with a solitary ring. This suggests that a Rayleigh or vortex breakdown-type instability are not likely at work......Computational vortex particle method simulations of a perturbed vortex ring are performed to recreate and understand the instability seen in impacting water drop experiments. Three fundamentally different initial vorticity distributions are used to attempt to trigger a Widnall instability...

  12. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  13. Auroral vortex street formed by the magnetosphere–ionosphere coupling instability

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2015-02-01

    Full Text Available By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  14. Auroral vortex street formed by the magnetosphere-ionosphere coupling instability

    Science.gov (United States)

    Hiraki, Y.

    2015-02-01

    By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  15. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1998-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  16. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  17. Vortex-antivortex patterns in mesoscopic superconductors

    International Nuclear Information System (INIS)

    Teniers, Gerd; Moshchalkov, V.V.; Chibotaru, L.F.; Ceulemans, Arnout

    2003-01-01

    We have studied the nucleation of superconductivity in mesoscopic structures of different shape (triangle, square and rectangle). This was made possible by using an analytical gauge transformation for the vector potential A which gives A n =0 for the normal component along the boundary line of the rectangle. As a consequence the superconductor-vacuum boundary condition reduces to the Neumann boundary condition. By solving the linearized Ginzburg-Landau equation with this boundary condition we have determined the field-temperature superconducting phase boundary and the corresponding vortex patterns. The comparison of these patterns for different structures demonstrates that the critical parameters of a superconductor can be manipulated and fine-tuned through nanostructuring

  18. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    Science.gov (United States)

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  19. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  20. The intraventricular filling vortex under heightened aortic blood pressure

    Science.gov (United States)

    Nelsen, Nicholas; Gaddam, Manikantam; Santhanakrishnan, Arvind

    2017-11-01

    Hypertension, or high aortic blood pressure, can induce structural changes in the left ventricle (LV) such as concentric hypertrophy. Previous studies have identified that the intraventricular filling vortex serves as an effective means of blood transport during diastolic filling. However, a fundamental understanding of how hypertension affects this vortex is unavailable. This knowledge can be useful for improving diagnosis and treatment of related heart disease conditions, including hypertensive heart failure. In this experimental study, we hypothesized that the circulation of the filling vortex would diminish with increased aortic pressure. Using a LV physical model within a left heart simulator, we performed hemodynamic measurements to acquire pressure and volumetric inflow profiles and 2D particle image velocimetry to visualize the intraventricular flow fields. Peak aortic pressures of 120 mm Hg, 140 mm Hg, and 160 mm Hg were each tested at heart rates of 70, 100, and 110 beats per minute, under: 1) reduced ejection fraction (EF), and 2) constant EF. Our results indicate that peak vortex circulation is reduced under elevated aortic pressures. Hemodynamics and characteristics of the intraventricular filling vortex in all examined experimental cases will be presented.

  1. Transitions in the vortex wake behind the plunging profile

    Science.gov (United States)

    Kozłowski, Tomasz; Kudela, Henryk

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.

  2. Vortex Formation and Foraging in Polyphenic Spadefoot Toad Tadpoles.

    Science.gov (United States)

    Bazazi, Sepideh; Pfennig, Karin S; Handegard, Nils Olav; Couzin, Iain D

    2012-06-01

    Animal aggregations are widespread in nature and can exhibit complex emergent properties not found at an individual level. We investigate one such example here, collective vortex formation by congeneric spadefoot toad tadpoles: Spea bombifrons and S. multiplicata. Tadpoles of these species develop into either an omnivorous or a carnivorous (cannibalistic) morph depending on diet. Previous studies show S. multiplicata are more likely to develop into omnivores and feed on suspended organic matter in the water body. The omnivorous morph is frequently social, forming aggregates that move and forage together, and form vortices in which they adopt a distinctive slowly-rotating circular formation. This behaviour has been speculated to act as a means to agitate the substratum in ponds and thus could be a collective foraging strategy. Here we perform a quantitative investigation of the behaviour of tadpoles within aggregates. We found that only S. multiplicata groups exhibited vortex formation, suggesting that social interactions differ between species. The probability of collectively forming a vortex, in response to introduced food particles, increased for higher tadpole densities and when tadpoles were hungry. Individuals inside a vortex moved faster and exhibited higher (by approximately 27%) tailbeat frequencies than those outside the vortex, thus incurring a personal energetic cost. The resulting environmental modification, however, suggests vortex behaviour may be an adaptation to actively create, and exploit, a resource patch within the environment.

  3. A vortex dynamics perspective on stratospheric sudden warmings

    OpenAIRE

    Matthewman, N. J.

    2009-01-01

    A vortex dynamics approach is used to study the underlying mechanisms leading to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observational data are used in chapter 2 to construct climatologies of the Arctic polar vortex structure during vortex-splitting and vortex-displacement SSWs occurring between 1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to be typically independent of height (barotropic), whereas breakdown during vor...

  4. Controlling vortex motion and vortex kinetic friction

    International Nuclear Information System (INIS)

    Nori, Franco; Savel'ev, Sergey

    2006-01-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves

  5. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  6. Vortex formation and instability in the left ventricle

    Science.gov (United States)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  7. On-chip generation and control of the vortex beam

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Aiping; Wang, Qin [College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210000, China and Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Zou, Chang-Ling, E-mail: clzou321@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Electric Engineering, Yale University, New Haven, Connecticut 06511 (United States); Ren, Xifeng, E-mail: renxf@ustc.edu.cn; Guo, Guang-Can [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-05-02

    A method to generate and control the amplitude and phase distributions of an optical vortex beam is proposed. By introducing a holographic grating on the top of a dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be converted to each other. This microscale holographic grating is very robust against the variation of geometry parameters. The designed vortex beam generator can produce the target beam with a fidelity up to 0.93, and the working bandwidth is about 175 nm with the fidelity larger than 0.80. In addition, a multiple generator composed of two holographic gratings on two parallel waveguides is studied, which can perform an effective and flexible modulation on the vortex beam by controlling the phase of the input light. Our work opens an available avenue towards the integrated orbital angular momentum devices with multiple degrees of optical freedom, which can be used for optical tweezers, micronano imaging, information processing, and so on.

  8. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain

    Science.gov (United States)

    Kou, Na; Yu, Shixing; Li, Long

    2017-01-01

    A high-order Bessel vortex beam carrying orbital angular momentum (OAM) is generated by using multilayer amplitude-phase-modulated surfaces (APMSs) at 10 GHz. The APMS transmitarray is composed of four-layer conformal square-loop (FCSL) surfaces with both amplitude and phase modulation. The APMS can transform a quasi-spherical wave emitted from the feeding source into a pseudo non-diffractive high-order Bessel vortex beam with OAM. The APMS for a second-order Bessel beam carrying OAM in the n = 2 mode is designed, fabricated, and measured. Full-wave simulation and measurement results confirm that Bessel vortex beams with OAM can be effectively generated using the proposed APMS transmitarray.

  9. Interaction of Vortex Ring with Cutting Plate

    Science.gov (United States)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  10. Electric vortex in MHD flow

    International Nuclear Information System (INIS)

    Garcia, M.

    1995-01-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low β flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion

  11. Non-coaxial superposition of vector vortex beams.

    Science.gov (United States)

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  12. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  13. Some observations of tip-vortex cavitation

    Science.gov (United States)

    Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.

    1991-08-01

    Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

  14. Spectroscopy of fractional Josephson vortex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II, Center for Collective Quantum Phenomena, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-07-01

    Using tiny current injectors we create {kappa} discontinuities of the Josephson phase in a long Josephson junction. The junction reacts at the discontinuities by creating fractional Josephson vortices of size {lambda}{sub J} pinned at them. Such vortices carry the flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Being pinned, a fractional vortex has an eigenfrequency (localized mode), which depends on {kappa} and applied bias current, and which lays within the plasma gap. If one considers a molecule consisting of several coupled fractional vortices, the eigenfrequency will split into several modes. We report on spectroscopy of a fractional vortex molecule performed in the thermal regime.

  15. Wake Vortex Inverse Model User's Guide

    Science.gov (United States)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  16. Vortex locking in direct numerical simulations of quantum turbulence.

    Science.gov (United States)

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  17. Improving the cooling performance of electrical distribution transformer using transformer oil – Based MEPCM suspension

    OpenAIRE

    Mushtaq Ismael Hasan

    2017-01-01

    In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25...

  18. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...... particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator....

  19. Stationary two-variable gravitational vortex fields

    International Nuclear Information System (INIS)

    Koppel, A.

    1974-01-01

    Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru

  20. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    International Nuclear Information System (INIS)

    Speetjens, M F M; Meleshko, V V; Van Heijst, G J F

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)

  1. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  2. Decreasing vortex flux in channels

    International Nuclear Information System (INIS)

    Migaj, V.K.; Nosova, I.S.

    1979-01-01

    A new method for reducing vortex flow losses in power plant channels is suggested. The method is based on vortex splitting in vortex flow areas with transverse barriers placed on the channel walls. The upper barrier ends are at the level of the upper boundary of the vortex area and don't protrude to the active flow beyond this boundary. The effectiveness of the method suggested is illustrated taking as an example the investigation of square and flat channels with abrupt widening in one plane, diffusers with widening in one plane, or a rectangualr bend. It is shown that splitting the vortex areas with transverse barriers in the channels results in reduction of hydraulic losses by 10-25%. The above method is characteristic of an extreme simplicity, its application doesn't require changes in the channel shape nor installation of any devices in the flow

  3. Study on the Temperature Separation Phenomenon in a Vortex Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ye, A Ran; Guang, Zhang; Kim, Heuy Dong [Andong National University, Andong (Korea, Republic of)

    2014-09-15

    A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

  4. Energy dynamics of the intraventricular vortex after mitral valve surgery.

    Science.gov (United States)

    Nakashima, Kouki; Itatani, Keiichi; Kitamura, Tadashi; Oka, Norihiko; Horai, Tetsuya; Miyazaki, Shohei; Nie, Masaki; Miyaji, Kagami

    2017-09-01

    Mitral valve morphology after mitral valve surgery affects postoperative intraventricular flow patterns and long-term cardiac performance. We visualized ventricular flow by echocardiography vector flow mapping (VFM) to reveal the impact of different mitral valve procedures. Eleven cases of mechanical mitral valve replacement (nine in the anti-anatomical and two in the anatomical position), three bioprosthetic mitral valve replacements, and four mitral valve repairs were evaluated. The mean age at the procedure was 57.4 ± 17.8 year, and the echocardiography VFM in the apical long-axis view was performed 119.9 ± 126.7 months later. Flow energy loss (EL), kinetic pressure (KP), and the flow energy efficiency ratio (EL/KP) were measured. The cases with MVR in the anatomical position and with valve repair had normal vortex directionality ("Clockwise"; N = 6), whereas those with MVR in the anti-anatomical position and with a bioprosthetic mitral valve had the vortex in the opposite direction ("Counterclockwise"; N = 12). During diastole, vortex direction had no effect on EL ("Clockwise": 0.080 ± 0.025 W/m; "Counterclockwise": 0.083 ± 0.048 W/m; P = 0.31) or KP ("Clockwise": 0.117 ± 0.021 N; "Counterclockwise": 0.099 ± 0.057 N; P = 0.023). However, during systole, the EL/KP ratio was significantly higher in the "Counterclockwise" vortex than that in the "Clockwise" vortex (1.056 ± 0.463 vs. 0.617 ± 0.158; P = 0.009). MVP and MVR with a mechanical valve in the anatomical position preserve the physiological vortex, whereas MVR with a mechanical valve in the anti-anatomical position and a bioprosthetic mitral valve generate inefficient vortex flow patterns, resulting in a potential increase in excessive cardiac workload.

  5. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  6. Backreaction of excitations on a vortex

    OpenAIRE

    Arodz, Henryk; Hadasz, Leszek

    1996-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their backreaction on the vortex. In the present paper we investigate backreaction of Proca type excitations on a straightlinear vortex in the Abelian Higgs model. We propose exact Ansatz for fields of the excited vortex. From initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the backreaction corrections. Their approximate solutions are found ...

  7. Improving the cooling performance of electrical distribution transformer using transformer oil – Based MEPCM suspension

    Directory of Open Access Journals (Sweden)

    Mushtaq Ismael Hasan

    2017-04-01

    Full Text Available In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25% as a cooling fluid instead of pure transformer oil. Paraffin wax is used as a phase change material to make the suspension, in addition to the ability of heat absorption due to melting, the paraffin wax considered as a good electrical insulator. Results obtained show that, using of MEPCM suspension instead of pure transformer oil lead to improve the cooling performance of transformer by reducing its temperature and as a consequence increasing its protection against the breakdown. The melting fraction increased with increasing outside temperature up to certain temperature after which the melting fraction reach maximum constant value (MF = 1 which indicate that, the choosing of PCM depend on the environment in which the transformer is used.

  8. Transitions in the vortex wake behind the plunging profile

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, Tomasz; Kudela, Henryk, E-mail: tomasz.kozlowski@pwr.wroc.pl, E-mail: henryk.kudela@pwr.wroc.pl [Department of Numerical Modelling of Flows, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish. (paper)

  9. Transitions in the vortex wake behind the plunging profile

    International Nuclear Information System (INIS)

    Kozłowski, Tomasz; Kudela, Henryk

    2014-01-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish. (paper)

  10. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  11. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  12. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  13. Soliton on thin vortex filament

    International Nuclear Information System (INIS)

    Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.

    1990-12-01

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  14. Delayed detached-eddy simulation of vortex breakdown over a 70 .deg. delta wing

    International Nuclear Information System (INIS)

    Son, Mi So; Sa, Jeong Hwan; Park, Soo Hyung; Byun, Yung Hwan; Cho, Kum Won

    2015-01-01

    To investigate the vortex breakdown over the ONERA70 delta wing at an angle-of-attack of 27 .deg., unsteady simulations were performed using Reynolds-averaged Navier-Stokes and Spalart-Allmaras delayed detached-eddy simulations. A low-diffusive preconditioned Roe scheme with third-order MUSCL interpolation scheme was applied, along with second-order dual-time stepping combined with diagonalized alternating direction implicit method for unsteady simulation. Vortex breakdown was investigated through an examination of total pressure loss, axial velocity, and axial vorticity around the primary vortex. Delayed dtached-eddy simulation provided good agreement with experimental data and predicted all physical phenomena related to vortex breakdown well.

  15. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  16. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  17. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    Science.gov (United States)

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  18. Moving vortex matter with coexisting vortices and anti-vortices

    International Nuclear Information System (INIS)

    Carneiro, Gilson

    2009-01-01

    Moving vortex matter, driven by transport currents independent of time, in which vortices and anti-vortices coexist is investigated theoretically in thin superconducting films with nanostructured defects. A simple London model is proposed for the vortex dynamics in films with periodic arrays of nanomagnets or cylindrical holes (antidots). Common to these films is that vortex anti-vortex pairs may be created in the vicinity of the defects by relatively small transport currents, because it adds to the current generated by the defects - the nanomagnets screening current, or the antidots backflow current - and may exceed locally the critical value for vortex anti-vortex pair creation. The model assumes that vortex matter dynamics is governed by Langevin equations, modified to account for creation and annihilation of vortex anti-vortex pairs. For pair creation, it is assumed that whenever the total current at some location exceeds a critical value, equal to that needed to separate a vortex from an anti-vortex by a vortex core diameter, a pair is created instantaneously around this location. Pair annihilation occurs by vortex anti-vortex collisions. The model is applied to films at zero external magnetic field and low temperatures. It is found that several moving vortex matter steady-states with equal numbers of vortices and anti-vortices are possible.

  19. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  20. Effect of cavitation on flow structure of a tip vortex

    Science.gov (United States)

    Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed

    2013-11-01

    Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.

  1. Meissner effects, vortex core states, and the vortex glass phase transition

    International Nuclear Information System (INIS)

    Huang, Ming.

    1991-01-01

    This thesis covers three topics involving Meissner effects and the resulting defect structures. The first is a study of Meissner effects in superconductivity and in systems with broken translational symmetry. The Meissner effect in the superconductors is a rigidity against external magnetic field caused by the breaking of the gauge symmetry. Other condensed matter systems also exhibit rigidities like this: The breaking of the translational symmetry in a cubic-liquid-crystal causes the system to expel twist deformations and the breaking of the translational symmetry in a nematic liquid crystal gives it a tendency to expel twist and bend deformations. In this thesis, the author studies these generalized Meissner effects in detail. The second is a study of the quasiparticle states bound to the vortex defect in superconductors. Scanning-tunneling-microscope measurements by Harald Hess et al. of the local density of states in a vortex core show a pronounced peak at small bias. These measurements contradict with previous theoretical calculations. Here, he solves the Bogoliubov equations to obtain the local density of states in the core and satisfactorily explain the experimental observations. He also predicted additional structure in the local density of states which were later observed in experiments. The third is a study of vortex dynamics in the presence of disorder. A mean field theory is developed for the recently proposed normal to superconducting vortex glass transition. Using techniques developed to study the critical dynamics of spin glasses, he calculates the mean field vortex glass phase boundary and the critical exponents

  2. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  3. Transformation of vortex structures in the wake of a sphere moving in the stratified fluid with decreasing of internal Froude number

    International Nuclear Information System (INIS)

    Matyushin, Pavel; Gushchin, Valentin

    2011-01-01

    The 3D separated, density stratified viscous fluid flows around a sphere are investigated by means of the direct numerical simulation (DNS) on the basis of the Navier-Stokes equations in the Boussinesq approximation on the supercomputers at the wide range of internal Froude (Fr) and Reynolds (Re) numbers. For DNS the Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with the hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, monotonous) has been used. At Fr > 10 with increasing of Re we observed the flow regimes of the homogeneous viscous fluid (including the laminar-turbulent transition in the boundary layer on the sphere). With decreasing of Fr at Re < 500 the strong transformation of vortex structures in the sphere wake is demonstrated by means of the β – visualization. Thus the refined classification of the flow regimes around a sphere moving in the viscous stratified fluid is presented.

  4. Experiments concerning the theories of vortex breakdown

    Science.gov (United States)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the stagnation and wave guide theories of vortex breakdown. Three different wings were used to produce a trailing vortex which convected downstream without undergoing breakdown. Disturbances were then introduced onto the vortex using a moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. A downstream traveling wave was observed to produce a structure similar in appearance to a vortex breakdown. An upstream traveling wave produced a moving turbulent region. The upstream disturbance moved into an axial velocity profile that had a wake-like defect while the downstream moving vortex breakdown moved against a jet-like overshoot. The longitudinal and swirl velocity profiles were documented by LDV measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  5. Magnetic vortex racetrack memory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Liwei D.; Jin, Yongmei M., E-mail: ymjin@mtu.edu

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  6. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    International Nuclear Information System (INIS)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan

    2012-01-01

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number

  7. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan [Pusan National Univ., Busan (Korea, Republic of)

    2012-09-15

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number.

  8. Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point

    Science.gov (United States)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.

  9. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  10. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.

    Science.gov (United States)

    Hiejima, Toshihiko

    2014-05-01

    The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations, vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is important for classifying the breakdown configuration.

  11. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  12. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  13. A note on integral vortex strength

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2010-01-01

    Roč. 58, č. 1 (2010), s. 23-28 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : circulation * unsteady Taylor vortex * vortex intensity * vortex strength * vorticity * vorticity decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  14. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...

  15. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  16. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  17. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    Science.gov (United States)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  18. Shock/vortex interaction and vortex-breakdown modes

    Science.gov (United States)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  19. Three-vortex configurations in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Seman, J. A.; Henn, E. A. L.; Shiozaki, R. F.; Ramos, E. R. F.; Caracanhas, M.; Castilho, P.; Castelo Branco, C.; Tavares, P. E. S.; Poveda-Cuevas, F. J.; Magalhaes, K. M. F.; Bagnato, V. S.; Haque, M.; Roati, G.

    2010-01-01

    We report on the creation of three-vortex clusters in a 87 Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.

  20. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect

    Science.gov (United States)

    Proctor, Fred H.

    2014-01-01

    This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.

  1. High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties.

    Science.gov (United States)

    Tang, Shiwei; Cai, Tong; Wang, Guang-Ming; Liang, Jian-Gang; Li, Xike; Yu, Jiancheng

    2018-04-23

    Vortex beam is believed to be an effective way to extend communication capacity, but available efforts suffer from the issues of complex configurations, fixed operation mode as well as low efficiency. Here, we propose a general strategy to design dual-modes vortex beam generator by using metasurfaces with polarization-dependent transmission and reflection properties. Combining the focusing and vortex functionalities, we design/fabricate a type of compact dual-modes vortex beam generator operating at both reflection/transmission sides of the system. Experimental results demonstrate that the designed metadevice can switch freely and independently between the reflective vortex with topological charge m 1  = 2 and transmissive vortex with m 2  = 1. Moreover, the metadevice exhibits very high efficiencies of 91% and 85% for the reflective and transmissive case respectively. Our findings open a door for multifunctional metadevices with high performances, which indicate wide applications in modern integration-optics and wireless communication systems.

  2. On the evolution of vortex rings with swirl

    International Nuclear Information System (INIS)

    Naitoh, Takashi; Okura, Nobuyuki; Gotoh, Toshiyuki; Kato, Yusuke

    2014-01-01

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions

  3. On the evolution of vortex rings with swirl

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Takashi, E-mail: naitoh.takashi@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: ohkura@meijo-u.ac.jp [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: gotoh.toshiyuki@nitech.ac.jp [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  4. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  5. Phase diagram of a lattice of pancake vortex molecules

    International Nuclear Information System (INIS)

    Tanaka, Y.; Crisan, A.; Shivagan, D.D.; Iyo, A.; Shirage, P.M.; Tokiwa, K.; Watanabe, T.; Terada, N.

    2009-01-01

    On a superconducting bi-layer with thickness much smaller than the penetration depth, λ, a vortex molecule might form. A vortex molecule is composed of two fractional vortices and a soliton wall. The soliton wall can be regarded as a Josephson vortex missing magnetic flux (degenerate Josephson vortex) due to an incomplete shielding. The magnetic energy carried by fractional vortices is less than in the conventional vortex. This energy gain can pay a cost to form a degenerate Josephson vortex. The phase diagram of the vortex molecule is rich because of its rotational freedom.

  6. Phenomenological Model of Vortex Generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Westergaard, C.

    1995-01-01

    For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....

  7. Rewritable ferroelectric vortex pairs in BiFeO3

    Science.gov (United States)

    Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook

    2017-08-01

    Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.

  8. Three-dimensional parallel vortex rings in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis

    2004-01-01

    We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability

  9. Mind the gap - tip leakage vortex in axial turbines

    International Nuclear Information System (INIS)

    Dreyer, M; Farhat, M; Decaix, J; Münch-Alligné, C

    2014-01-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex

  10. Mind the gap - tip leakage vortex in axial turbines

    Science.gov (United States)

    Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.

    2014-03-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.

  11. Experimental and numerical studies in a vortex tube

    International Nuclear Information System (INIS)

    Sohn, Chang Hyun; Kim, Chang Soo; Gowda, B. H. L Lakshmana; Jung, Ui Hyun

    2006-01-01

    The present investigation deals with the study of the internal flow phenomena of the counter-flow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1 MPa to 0.3 MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments

  12. Vortex phase diagram and vortex dynamics at low temperature in a thick a-MgxB1-x film

    International Nuclear Information System (INIS)

    Okuma, S.; Kohara, M.

    2007-01-01

    We report on the equilibrium vortex phase diagram and vortex dynamics at low temperature T in a thick amorphous (a-)Mg x B 1-x film based on the measurements of the dc resistivity ρ and time (t)-dependent component of the flux-flow voltage, δV(t), respectively. Both ρ(T) in perpendicular fields and the vortex phase diagram are qualitatively similar to those for the a-Mo x Si 1-x films, in which evidence for the quantum-vortex-liquid (QVL) phase has been obtained. In either material system we observe anomalous vortex flow with the asymmetric distribution of δV(t) in the QVL phase, suggesting that the anomalous flow is a universal phenomenon commonly observed for disordered amorphous films, independent of material

  13. Green functions of vortex operators

    International Nuclear Information System (INIS)

    Polchinski, J.; California Univ., Berkeley

    1981-01-01

    We study the euclidean Green functions of the 't Hooft vortex operator, primarly for abelian gauge theories. The operator is written in terms of elementary fields, with emphasis on a form in which it appears as the exponential of a surface integral. We explore the requirement that the Green functions depend only on the boundary of this surface. The Dirac veto problem appears in a new guise. We present a two-dimensional solvable model of a Dirac string, which suggests a new solution of the veto problem. The renormalization of the Green functions of the abelian Wilson loop and abelian vortex operator is studied with the aid of the operator product expansion. In each case, an overall multiplication of the operator makes all Green functions finite; a surprising cancellation of divergences occurs with the vortex operator. We present a brief discussion of the relation between the nature of the vacuum and the cluster properties of the Green functions of the Wilson and vortex operators, for a general gauge theory. The surface-like cluster property of the vortex operator in an abelian Higgs theory is explored in more detail. (orig.)

  14. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  15. Efficient creation of electron vortex beams for high resolution STEM imaging.

    Science.gov (United States)

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake

    Directory of Open Access Journals (Sweden)

    P. Chatelain

    2017-06-01

    Full Text Available A vortex particle-mesh (VPM method with immersed lifting lines has been developed and validated. Based on the vorticity–velocity formulation of the Navier–Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES of vertical axis wind turbine (VAWT flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters. The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  17. Single vortex states in a confined Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Komineas, S.; Cooper, N. R.; Papanicolaou, N.

    2005-01-01

    It has been demonstrated experimentally that non-axisymmetric vortices precess around the center of a Bose-Einstein condensate. Two types of single vortex states have been observed, usually referred to as the S vortex and the U vortex. We study theoretically the single vortex excitations in spherical and elongated condensates as a function of the interaction strength. We solve numerically the Gross-Pitaevskii equation and calculate the angular momentum as a function of precession frequency. The existence of two types of vortices means that we have two different precession frequencies for each angular momentum value. As the interaction strength increases the vortex lines bend and the precession frequencies shift to lower values. We establish that for given angular momentum the S vortex has higher energy than the U vortex in a rotating elongated condensate. We show that the S vortex is related to the solitonic vortex, which is a nonlinear excitation in the nonrotating system. For small interaction strengths the S vortex is related to the dark soliton. In the dilute limit a lowest Landau level calculation provides an analytic description of these vortex modes in terms of the harmonic oscillator states

  18. Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories

    Science.gov (United States)

    Marble, Erik; Morton, Christopher; Yarusevych, Serhiy

    2018-05-01

    Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.

  19. Traversing field of view and AR-PIV for mid-field wake vortex investigation in a towing tank

    Science.gov (United States)

    Scarano, F.; van Wijk, C.; Veldhuis, L. L. M.

    2002-08-01

    Wake vortex flow experiments are performed in a water tank where a 1:48 scaled model of a large transport aircraft A340-300 is towed at the speed of 3 and 5 ms-1 with values of the angle of attack α={2°, 4°, 8°}. Particle image velocimetry (PIV) measurements are performed in a plane perpendicular to the towing direction describing the streamwise component of the wake vorticity. The instantaneous field of view (I-FOV) is traversed vertically with an underwater moving-camera device tracking the vortex core during the downward motion. An adaptive resolution (AR) image-processing technique is introduced that enhances the PIV interrogation in terms of spatial resolution and accuracy. The main objectives of the investigation are to demonstrate the applicability of PIV diagnostics in wake vortex research with towing-tank facilities. The specific implementation of the traversing field-of-view (T-FOV) technique and the AR image processing are driven by the need to characterize the vortex wake global properties as well as the vortex decay phenomenon in the mid- and far-field. Relevant aerodynamic information is obtained in the mid-field where the time evolution of the vortex structure (core radius and tangential velocity) and of the overall vortex wake (vortex trajectory, descent velocity, circulation) are discussed.

  20. Vortex matter stabilized by many-body interactions

    Science.gov (United States)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  1. Back reaction of excitations on a vortex

    Science.gov (United States)

    Arodź, Henryk; Hadasz, Leszek

    1997-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their back reaction on the vortex. In the present paper we investigate back reaction of Proca-type excitations on a straight linear vortex in the Abelian Higgs model. We propose an exact ansatz for fields of the excited vortex. From an initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the back reaction corrections. Their approximate solutions are found in the cases of plane wave and wave-packet-type excitations. We find that the excited vortex radiates the vector field and that the Higgs field has a very broad oscillating component.

  2. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    Science.gov (United States)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  3. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    International Nuclear Information System (INIS)

    Kudela, Henryk; Kosior, Andrzej

    2014-01-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  4. Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

    Directory of Open Access Journals (Sweden)

    E. Peet

    2004-12-01

    Full Text Available In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes. Key words. Meteorology and atmospheric dynamics polar meteorology – Atmospheric composition and structure (middle atmosphere–composition and chemistry

  5. Vortex patterns in a mesoscopic superconducting rod with a magnetic dot

    Energy Technology Data Exchange (ETDEWEB)

    Romaguera, Antonio R. de C. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Fisica; Doria, Mauro M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Fisica dos Solidos; Peeters, F.M. [Universiteit Antwerpen (Belgium). Dept. Fysica

    2009-07-01

    Full text follows. Magnetism and superconductivity are competing orders and its coexistence has been the subject of intense investigation both in nano fabricated materials also in natural compounds. Together they bring new phenomena such as in case of magnetic dots on top of a superconducting film which are a source of ratchet potential.Recently we have investigated vortex patterns that originate from a magnetic domain internal to the superconductor. There vortex lines are curved in space, as their only source and sinkhole are inside the superconductor. We found that when the magnetic domain has a small magnetic moment, the vortex pattern is made of just three vortex loops, instead of one, two or any higher number of vortex loops. The presence of a magnetic moment near thin mesoscopic disks and films has been theoretically and experimentally investigated. New vortex patterns arise there due to the inhomogeneity of the applied magnetic field, although they do not display curved vortices because of the thin limit which turns the vortices into flat two-dimensional objects. In this work we report a theoretical investigation of vortex patterns into a mesoscopic superconducting rod with an external magnetic dot on top. We call it rod to characterize that its height is finite and comparable to the radius, thus larger than a disk and smaller than a wire. Inside the rod, a cylinder with height larger than the coherence length, {xi}, truly three-dimensional curved vortices are formed. We find reentrant behavior which means that the entrance and exit of a vortex is achieved by simply increasing (or decreasing) the intensity of the magnetic field generated by the dot. Thus the present system qualifies for technological applications as a logic gate to perform logical operation in digital circuits.

  6. Vortex patterns in a mesoscopic superconducting rod with a magnetic dot

    International Nuclear Information System (INIS)

    Romaguera, Antonio R. de C.; Doria, Mauro M.; Peeters, F.M.

    2009-01-01

    Full text follows. Magnetism and superconductivity are competing orders and its coexistence has been the subject of intense investigation both in nano fabricated materials also in natural compounds. Together they bring new phenomena such as in case of magnetic dots on top of a superconducting film which are a source of ratchet potential.Recently we have investigated vortex patterns that originate from a magnetic domain internal to the superconductor. There vortex lines are curved in space, as their only source and sinkhole are inside the superconductor. We found that when the magnetic domain has a small magnetic moment, the vortex pattern is made of just three vortex loops, instead of one, two or any higher number of vortex loops. The presence of a magnetic moment near thin mesoscopic disks and films has been theoretically and experimentally investigated. New vortex patterns arise there due to the inhomogeneity of the applied magnetic field, although they do not display curved vortices because of the thin limit which turns the vortices into flat two-dimensional objects. In this work we report a theoretical investigation of vortex patterns into a mesoscopic superconducting rod with an external magnetic dot on top. We call it rod to characterize that its height is finite and comparable to the radius, thus larger than a disk and smaller than a wire. Inside the rod, a cylinder with height larger than the coherence length, ξ, truly three-dimensional curved vortices are formed. We find reentrant behavior which means that the entrance and exit of a vortex is achieved by simply increasing (or decreasing) the intensity of the magnetic field generated by the dot. Thus the present system qualifies for technological applications as a logic gate to perform logical operation in digital circuits.

  7. Vortex Ring Interaction with a Heated Screen

    Science.gov (United States)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  8. Vortex dynamics in superconducting Corbino disk at zero field

    International Nuclear Information System (INIS)

    Enomoto, Y.; Ohta, M.

    2007-01-01

    We study the radial current driven vortex dynamics in the Corbino disk sample at zero field, by using a logarithmically interacting point vortex model involving effect of temperature, random pinning centers, and disk wall confinement force. We also take into account both the current induced vortex pair nucleation and the vortex pair annihilation processes in the model. Simulation results demonstrate that the vortex motion induced voltage exhibits almost periodic pulse behavior in time, observed experimentally, for a certain range of the model parameters. Such an anomalous behavior is thought to originate from large fluctuations of the vortex number due to the collective dynamics of this vortex system

  9. Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Middelkamp, S.; Schmelcher, P.; Torres, P. J.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Carretero-Gonzalez, R.; Freilich, D. V.; Hall, D. S.

    2011-01-01

    A quantized vortex dipole is the simplest vortex molecule, comprising two countercirculating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasiperiodic behavior, in which the vortex lines undergo stable epicyclic orbits.

  10. Vortex sorter for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik

    2004-01-01

    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing

  11. Optimization geometries of a vortex gliding-arc reactor for partial oxidation of methane

    International Nuclear Information System (INIS)

    Guofeng, Xu; Xinwei, Ding

    2012-01-01

    The effects of the geometry of gliding-arc reactor – such as distance between the electrodes, outlet diameter, and inlet position – on the reactor characteristics (methane conversion, hydrogen yield, and energy efficiency) have not been fully investigated. In this paper, AC gliding-arc reactors including the vortex flow configuration are designed to produce hydrogen from the methane by partial oxidation. The influence of vortex flow configuration on the reactor characteristics is also studied by varying the inlet position. When the inlet of the gliding-arc reactor is positioned close to the outlet, reverse vortex flow reactor (RVFR), the maximum energy efficiency reaches 50% and the yields of hydrogen and carbon monoxide are 40% and 65%, respectively. As the distance between electrodes increases from 5 mm to 15 mm, both hydrogen yield and energy efficiency increase approximately 10% for the RVFR. The energy efficiency and hydrogen yield are highest when the ratio of the outlet diameter to the inner diameter is 0.5 for the RVFR. Experimental results indicate that the flow field in the plasma reactor has an important influence on the reactor performance. Furthermore, hydrogen production increases as the number of feed gas flows in contact with the plasma zone increases. -- Highlights: ► Gliding-arc reactors were designed to produce hydrogen for studying the characteristics of the vortex flow reactor. ► Hydrogen yield of reverse vortex flow reactor was 10% higher than that of forward vortex flow reactor. ► Maximum energy efficiency was 50% for reverse vortex flow reactor. ► If discharge power was supplied to the reactors, the reactor performance increased with increasing distance between electrodes. ► Optimum ratio of the outlet and inner diameter was 1/2.

  12. Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M R; Milosevic, M V; Bending, S J [Department of Physics, University of Bath - Claverton Down, Bath, BA2 7AY (United Kingdom); Clem, J R [Ames Laboratory Department of Physics and Astronomy - Iowa State University, Ames, IA 50011-3160 (United States); Tamegai, T, E-mail: mrc61@cam.ac.u [Department of Applied Physics, University of Tokyo - Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)

    2009-03-01

    The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+delta} disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.

  13. Interaction of a strong vortex with decaying turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.

    1988-01-01

    The evolution of a localized, axially symmetric vortex under the action of shear stresses associated with decaying two-dimensional turbulent vorticity which is inhomogeneous in the presence of the vortex is studied analytically. For a vortex which is sufficiently strong relative to the coefficient of turbulent eddy viscosity, it is shown that turbulent fluctuations in the vortex interior and diffusion of coherent vorticity by the turbulence localize to the vortex periphery. It is also found that the coefficient of diffusion is small compared to the coefficient of eddy viscosity. 8 refs

  14. Particle-vortex duality in topological insulators and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, Jeff [The Laboratory for Quantum Gravity & Strings, Department of Mathematics and Applied Mathematics, University of Cape Town,Private Bag, Rondebosch, 7700 (South Africa); School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Nastase, Horatiu [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil)

    2017-05-31

    We investigate the origins and implications of the duality between topological insulators and topological superconductors in three and four spacetime dimensions. In the latter, the duality transformation can be made at the level of the path integral in the standard way, while in three dimensions, it takes the form of “self-duality in odd dimensions'. In this sense, it is closely related to the particle-vortex duality of planar systems. In particular, we use this to elaborate on Son’s conjecture that a three dimensional Dirac fermion that can be thought of as the surface mode of a four dimensional topological insulator is dual to a composite fermion.

  15. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  16. Back reaction of excitations on a vortex

    International Nuclear Information System (INIS)

    Arodz, H.; Hadasz, L.

    1997-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their back reaction on the vortex. In the present paper we investigate back reaction of Proca-type excitations on a straight linear vortex in the Abelian Higgs model. We propose an exact ansatz for fields of the excited vortex. From an initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the back reaction corrections. Their approximate solutions are found in the cases of plane wave and wave-packet-type excitations. We find that the excited vortex radiates the vector field and that the Higgs field has a very broad oscillating component. copyright 1997 The American Physical Society

  17. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    Science.gov (United States)

    2010-10-28

    interferometer with high space resolution, PIV method, FTIR spectrometer, optical spectrometer, pressure sensors with high time resolution, IR pyrometer and...of strong LP-vortex interaction. Intensive acoustic waves are created by CHFD in swirl flow in this regime. 38. Study of control of a longitudinal...quartz tube, 4- HF ball electrode, 5- Tesla’s transformer, 6- microwave interferometer, 7- video camera, 8-optical pyrometer , 9-pressure sensor, 10

  18. Spectral analysis of point-vortex dynamics : first application to vortex polygons in a circular domain

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Meleshko, V.V.; Heijst, van G.J.F.

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N point vortices of equal strength arranged in a polygonal configuration ("N-vortex polygons"). In unbounded domains, such N-vortex polygons are unconditionally stable for N

  19. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (<10 ns) magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  20. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  1. Giant moving vortex mass in thick magnetic nanodots.

    Science.gov (United States)

    Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O

    2015-09-10

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  2. Modeling Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  3. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  4. Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons

    Science.gov (United States)

    Jabir, M. V.; Apurv Chaitanya, N.; Aadhi, A.; Samanta, G. K.

    2016-02-01

    The “perfect” vortex is a new class of optical vortex beam having ring radius independent of its topological charge (order). One of the simplest techniques to generate such beams is the Fourier transformation of the Bessel-Gauss beams. The variation in ring radius of such vortices require Fourier lenses of different focal lengths and or complicated imaging setup. Here we report a novel experimental scheme to generate perfect vortex of any ring radius using a convex lens and an axicon. As a proof of principle, using a lens of focal length f = 200 mm, we have varied the radius of the vortex beam across 0.3-1.18 mm simply by adjusting the separation between the lens and axicon. This is also a simple scheme to measure the apex angle of an axicon with ease. Using such vortices we have studied non-collinear interaction of photons having orbital angular momentum (OAM) in spontaneous parametric down-conversion (SPDC) process and observed that the angular spectrum of the SPDC photons are independent of OAM of the pump photons rather depends on spatial profile of the pump beam. In the presence of spatial walk-off effect in nonlinear crystals, the SPDC photons have asymmetric angular spectrum with reducing asymmetry at increasing vortex radius.

  5. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  6. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  7. Modelling the operation of precipitator with vortex effect

    International Nuclear Information System (INIS)

    Eysseric-Emile, C.

    1994-01-01

    In the Purex process which is implemented for the processing of irradiated fuels to eliminate fission products and to recover and valorise uranium and plutonium under the form of end products, a precipitation operation occurs to prepare the plutonium oxalate. This research thesis aims at analysing hydrodynamic characteristics of a specific apparatus used for this precipitation, the precipitator with vortex effect. In a first part, the author presents the problems associated with precipitation operations, their implementation in the processing of irradiated fuels, and compares the considered precipitator with other devices used for the precipitation of radioactive compounds. He proposes a review of literature on the vortex effect in agitated vessel, highlights the key parameter (the forced vortex radius), and reports some preliminary measurements performed on the precipitator. The author then reports the study of liquid phase flows in the precipitator, measurements of rate of suspension, and the study of micro-mixing with reactants. He finally reports attempts to validate trends noticed during flow analysis and a first simple modelling of the precipitator [fr

  8. High Magnetic Field Vortex Microscopy by NMR

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-03-01

    At low temperatures the ^17O NMR spectrum of HTS exhibits a characteristic vortex lattice line shape. Measurements of spin-lattice relaxation rate, T_1-1, across the vortex spectrum represent a probe of low-energy quasiparticle excitations as a function of distance from the vortex core. We report ^17O(2,3) T_1-1 measurements of YBa_2Cu_3O7 at low temperatures in magnetic fields up to 37 T. We find that the rate increases on approaching the vortex core. In the vortex core region at 37 T we observe an additional increase in the relaxation rate. The temperature dependence of the rate will also be discussed. Work at Northwestern University is supported by the NSF (DMR 91-20000) through the Science and Technology Center for Superconductivity.

  9. Vortex molecule in a nanoscopic square superconducting plate

    International Nuclear Information System (INIS)

    Suematsu, Hisataka; Kato, Masaru; Ishida, Takekazu; Koyama, Tomio; Machida, Masahiko

    2010-01-01

    Using the finite element method and solving the Bogoliubov-de Gennes equation, we have investigated magnetic field dependence of the stable vortex structures in a mesoscopic superconducting plate at low temperature (T = 0.1T c ). Because of the compactness of vortex configuration, there is interference between bound states around vortices and such quasi-particle structure affects the vortex configuration. Especially in two-vortices state, vortices form a molecule-like state, where bound states of each vortex form molecular orbital like bonding and anti-bonding states. The vortex configuration is different from that, which is expected from the repulsive interaction between vortices. (author)

  10. Tunable magnetic vortex resonance in a potential well

    Science.gov (United States)

    Warnicke, P.; Wohlhüter, P.; Suszka, A. K.; Stevenson, S. E.; Heyderman, L. J.; Raabe, J.

    2017-11-01

    We use frequency-resolved x-ray microscopy to fully characterize the potential well of a magnetic vortex in a soft ferromagnetic permalloy square. The vortex core is excited with magnetic broadband pulses and simultaneously displaced with a static magnetic field. We observe a frequency increase (blueshift) in the gyrotropic mode of the vortex core with increasing bias field. Supported by micromagnetic simulations, we show that this frequency increase is accompanied by internal deformation of the vortex core. The ability to modify the inner structure of the vortex core provides a mechanism to control the dynamics of magnetic vortices.

  11. Dynamic Control of Collapse in a Vortex Airy Beam

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  12. Vortex-line fluctuations in model high-temperature superconductors

    International Nuclear Information System (INIS)

    Li, Y.; Teitel, S.

    1993-01-01

    We carry out Monte Carlo simulations of the uniformly frustrated three-dimensional XY model, as a model for vortex-line fluctuations in a high-T c superconductor in an external magnetic field. A density of vortex lines of f=1/25 is considered. We find two sharp phase transitions. The low-T superconducting phase is an ordered vortex-line lattice. The high-T normal phase is a vortex-line liquid, with much entangling, cutting, and loop excitations. An intermediate phase is found, which is characterized as a vortex-line liquid of disentangled, approximately straight, lines. In this phase, the system displays superconducting properties in the direction parallel to the magnetic field, but normal behavior in planes perpendicular to the field. A detailed analysis of the vortex structure function is carried out

  13. Vortex survival in 3D self-gravitating accretion discs

    Science.gov (United States)

    Lin, Min-Kai; Pierens, Arnaud

    2018-04-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  14. A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies

    Science.gov (United States)

    Sutyrin, G.

    2016-02-01

    In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.

  15. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  16. Superconductivity and vortex properties in various multilayers

    International Nuclear Information System (INIS)

    Koorevaar, P.

    1994-01-01

    In this thesis three qualitatively different type of superconducting multilayers are studied. We discuss the vortex lattice structure in Nb/NbZr multilayers, a system where both type of constituting layers are superconducting. At certain temperatures and for parallel fields close to H c2parallel , the Nb/NbZr system has a strongly modulated order parameter, and in this aspect resembles the high-Tc materials. By lowering the field the modulation decreases, having important consequences for the vortex lattice structure. By studying the transport critical currents we show that in the case of strong modulation the vortex lattice has a kinked structure, but at weaker modulations the vortices are straight, and the change in modulation actually results in a vortex lattice transition. Our study confirms the picture of the existence of kinked vortex lattices, but it is rather surprising that these kinked structures can exist in a system which in itself is not at all that anisotropic. It indicates the relevance of other parameters governing the vortex lattice structure. (orig.)

  17. Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.

    Science.gov (United States)

    Veretenov, N A; Fedorov, S V; Rosanov, N N

    2017-12-29

    We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.

  18. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...... expansion approximation of the central vortex core and reduce the model to a single first-order equation. We solve the equation numerically and find that the axial velocity depends linearly on height whereas the azimuthal velocity is almost independent of height. We discuss the model of the bathtub vortex...

  19. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  20. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2014-01-01

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  1. A counter-rotating vortex pair in inviscid fluid

    Science.gov (United States)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  2. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  3. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  4. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  5. A multipole-expanded effective field theory for vortex ring-sound interactions

    Science.gov (United States)

    Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto

    2018-02-01

    The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.

  6. Observations of tip vortex cavitation inception from a model marine propeller

    Science.gov (United States)

    Lodha, R. K.; Arakeri, V. H.

    1984-01-01

    Cavitation inception characteristics of a model marine propeller having three blades, developed area ratio of 0.34 and at three different pitch to diameter ratios of 0.62, 0.83 and 1.0 are reported. The dominant type of cavitation observed at inception was the tip vortex type. The measured magnitude of inception index is found to agree well with a proposed correlation due to Strasberg. Performance calculations of the propeller based on combined vortex and blade element theory are also presented.

  7. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    International Nuclear Information System (INIS)

    Baldacchino, D; Ferreira, C; Florentie, L; Timmer, N; Van Zuijlen, A; Manolesos, M; Chaviaropoulos, T; Diakakis, K; Papadakis, G; Voutsinas, S; González Salcedo, Á; Aparicio, M; García, N R.; Sørensen, N N.; Troldborg, N

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30% thick DU97W300 and an 18% thick NTUA T18 have been used for benchmarking several simulation tools. These tools span low-to-high complexity, ranging from engineering-level integral boundary layer tools to fully-resolved computational fluid dynamics codes. Results indicate that with appropriate calibration, engineering-type tools can capture the effects of vortex generators and outperform more complex tools. Fully resolved CFD comes at a much higher computational cost and does not necessarily capture the increased lift due to the VGs. However, in lieu of the limited experimental data available for calibration, high fidelity tools are still required for assessing the effect of vortex generators on airfoil performance. (paper)

  8. On the self-induced motion of a helical vortex

    NARCIS (Netherlands)

    Boersma, J.; Wood, D.H.

    1999-01-01

    The velocity field in the immediate vicinity of a curved vortex comprises a circulation around the vortex, a component due to the vortex curvature, and a ‘remainder’ due to the more distant parts of the vortex. The first two components are relatively well understood but the remainder is known only

  9. Computer simulation of vortex pinning in type II superconductors. II. Random point pins

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1983-01-01

    Pinning of vortices in a type II superconductor by randomly positioned identical point pins is simulated using the two-dimensional method described in a previous paper (Part I). The system is characterized by the vortex and pin numbers (N/sub v/, N/sub p/), the vortex and pin interaction ranges (R/sub v/, R/sub p/), and the amplitude of the pin potential A/sub p/. The computation is performed for many cases: dilute or dense, sharp or soft, attractive or repulsive, weak or strong pins, and ideal or amorphous vortex lattice. The total pinning force F as a function of the mean vortex displacment X increases first linearly (over a distance usually much smaller than the vortex spacing and than R/sub p/) and then saturates, fluctuating about its averaging F-bar. We interpret F-bar as the maximum pinning force j/sub c/B of a large specimen. For weak pins the prediction of Larkin and Ovchinnikov for two-dimensional collective pinning is confirmed: F-bar = const. iW/R/sub p/c 66 , where W-bar is the mean square pinning force and c 66 is the shear modulus of the vortex lattice. If the initial vortex lattice is chosen highly defective (''amorphous'') the constant is 1.3--3 times larger than for the ideal triangular lattice. This finding may explain the often observed ''history effect.'' The function F-bar(A/sub p/) exhibits a jump, which for dilute, sharp, attractive pins occurs close to the ''threshold value'' predicted for isolated pins by Labusch. This jump reflects the onset of plastic deformation of the vortex lattice, and in some cases of vortex trapping, but is not a genuine threshold

  10. Superposition of vortex cylinders for steady and unsteady simulation of rotors of finite tip-speed ratio

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2015-01-01

    coefficient obtained with this model for the constant circulation rotor is assessed and compared with that of existing solutions. Results from prescribed thrust distributions are compared with that of actuator disk simulations. Steady simulations are performed to compare with the BEM algorithm. The model......Joukowski introduced in 1912 a helical vortex model to represent the vorticity of a rotor and its wake. For an infinite number of blades but finite tip-speed ratio, the model consists of a vortex cylinder of longitudinal and tangential vorticity, a root vortex and a bound vortex disk...... is also applied to compute the velocity field in the entire domain and perform unsteady simulations. Results for an unsteady simulation corresponding to a pitch change of the rotor is used to compare the model with measurements and a BEM code with a dynamic inflow model. Copyright © 2015 John Wiley & Sons...

  11. The analysis of actuating mechanism and review of concepts for the vortex valve

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Sim, Yun Seop; Joung, Sae Won; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    To understand the basic features of the passive fluidic device, which is increasing available core cooling water from the safety injection tanks in the KNGR, review of the existing vortex valves concepts and analysis of the actuating mechanism of them have been performed and the results are as following: * Preliminary methodology development for parallel two water columns behavior, which is similar to the SIT valve actuation condition * Preliminary methodology for the vortex value actuation features * Analysis of the parallel water columns behavior and vortex valve actuation features using the results of above activities * Further works to be done in the analytical methodology. 16 figs., 2 refs. (Author) .new

  12. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    E ZELDOV2, A SOIBEL3, F de la CRUZ4,CJ van der BEEK5,. M KONCZYKOWSKI5, T ... 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot. 76100, Israel ..... heterogeneous nature of the vortex nanoliquid.

  13. Motion of a single quantized vortex in an orifice

    International Nuclear Information System (INIS)

    Schwarz, K.W.

    1993-01-01

    Discrete phase-slip events are observed when superfluid 4 He moves through a microscopic orifice. In order to understand such behavior, one must know (a) how a quantized vortex is introduced into the orifice, and (b) how such a vortex evolves fluid dynamically so as to absorb energy from the applied flow field. To begin the study of the latter question, the authors present calculations done with an idealized orifice geometry. It is found that vortex loops larger than a critical size are carried out of the orifice and stretched by the diverging flow. As it stretches, such a vortex will cross the orifice, the energy required to stretch the vortex being absorbed from the flow field. Both a vortex loop introduced directly into the orifice and a remanent vortex extending to infinity will be discussed

  14. Velocity measurement by vortex shedding. Contribution to the mass-flow measurement

    International Nuclear Information System (INIS)

    Martinez Piquer, T.

    1988-01-01

    The phenomenon of vortex shedding has been known for centuries and has been the subject of scientific studies for about one hundred years. It is only in the ten last years that is has been applied to the measurement of fluids velocity. In 1878 F. Strouhal observed the vortex shedding phenomenon and shown that the shedding frequency of a wire vibrating in the wind was related to the wire diameter and the wind velocity. Rayleigh, who introduced the non-dimensional Strouhal number, von Karman and Rohsko, carried out extensive work or the subject which indicated that vortex shedding could form the basis for a new type of flowmeter. The thesis describes two parallel lines of investigation which study in depth the practical applications of vortex shedding. The first one deals with the measure of velocity and it presents the novelty of a bluff body with a cross-section which has not been used until this day. This body is a circular cylinder with a two-dimensional slit along the diameter and situated in crossdirection to the fluid's stream. It possesses excellent characteristics and it is the most stable as a vortex shedder, which gives it great advantage to the rest of the shapes used until now. The detection of the vortex has been performed by measuring the pressure changes generated by the vortex on two posts situated just beside the slit. To calculate the frequency of the vortex shedding, we obtain the difference of the mentioned signals, which are the same and 180 out of phase. Finding out the period of the autocorrelation function of this signal we can estimate the velocity of the fluid. A logical equipment based on a microprocessor has been designed for the calculation using a zero-crossing time algorithm implemented in assembler language. The second line of research refers to a new method of measure mass flow. The pressure signal generated by the vortex has an intensity which is proportional to the density and to the square of the velocity. Since we have already

  15. Theory of vortex flows in partially ionized magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, D.; Shukla, P.K

    2004-06-07

    A complete theory for vortex flows in partially ionized magnetoplasmas is presented. Accurate analytical and numerical results are obtained concerning the structure of a Burger's vortex and a tripolar vortex. A novel type of rotating tripolar vortices with elliptic cores are found in the systems dominated by the convection in incompressible flows, but whose generation is triggered by the diffusive and compressible effects. Our vortex flow models successfully explain recent observations from laboratory magnetoplasmas and geophysical flows.

  16. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    Science.gov (United States)

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  17. Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow with vortex production — A general model

    Directory of Open Access Journals (Sweden)

    Bai Chenyuan

    2014-10-01

    Full Text Available By using a special momentum approach and with the help of interchange between singularity velocity and induced flow velocity, we derive in a physical way explicit force formulas for two-dimensional inviscid flow involving multiple bound and free vortices, multiple airfoils, and vortex production. These force formulas hold individually for each airfoil thus allowing for force decomposition, and the contributions to forces from singularities (such as bound and image vortices, sources, and doublets and bodies out of an airfoil are related to their induced velocities at the locations of singularities inside this airfoil. The force contribution due to vortex production is related to the vortex production rate and the distance between each pair of vortices in production, thus frame-independent. The formulas are validated against a number of standard problems. These force formulas, which generalize the classic Kutta–Joukowski theorem (for a single bound vortex and the recent generalized Lagally theorem (for problems without a bound vortex and vortex production to more general cases, can be used to identify or understand the roles of outside vortices and bodies on the forces of the actual body, optimize arrangement of outside vortices and bodies for force enhancement or reduction, and derive analytical force formulas once the flow field is given or known.

  18. Prediction of the Effect of Vortex Generators on Airfoil Performance

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Bak, Christian

    2014-01-01

    Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two...... different airfoils at a Reynolds number of 3 million, the FFA- W3-301 and FFA-W3-360, respectively. The computations are compared with wind tunnel measurements from the Stuttgart Laminar Wind Tunnel with respect to lift and drag variation as function of angle of attack. Even though the method does...

  19. Vortex operators in gauge field theories

    International Nuclear Information System (INIS)

    Polchinski, J.

    1980-07-01

    Several related aspects of the 't Hooft vortex operator are studied. The current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator are reviewed first. The Abelian vortex operator written in terms of elementary fields and the calculation of its Green's functions are considered. A two-dimensional solvable model of a Dirac string is presented. The expression of the Green's functions more neatly in terms of Wu and Yang's geometrical idea of sections is addressed. The renormalization of the Green's functions of two kinds of Abelian looplike operators, the Wilson loop and the vortex operator, is studied; for both operators only an overall multiplicative renormalization is needed. In the case of the vortex this involves a surprising cancellation. Next, the dependence of the Green's functions of the Wilson and 't Hooft operators on the nature of the vacuum is discussed. The cluster properties of the Green's functions are emphasized. It is seen that the vortex operator in a massive Abelian theory always has surface-like clustering. The form of Green's functions in terms of Feynman graphs is the same in Higgs and symmetric phases; the difference appears in the sum over all tadpole trees. Finally, systems having fields in the fundamental representation are considered. When these fields enter only weakly into the dynamics, a vortex-like operator is anticipated. Any such operator can no longer be local looplike, but must have commutators at long range. A U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint), is examined. When the fundamental field is weakly coupled, the expected phase transitions are found. When it is strongly coupled, the operator still appears to be a good order parameter, a discontinuous change in its behavior leads to a new phase transition. 18 figures

  20. Vorticity budget of a tornado-like vortex

    Energy Technology Data Exchange (ETDEWEB)

    Sassa, Koji; Takemura, Saki, E-mail: sassa@kochi-u.ac.jp [Department of Applied Science, Kochi University (Japan)

    2011-12-22

    We evaluated the vorticity budget of a tornado-like vortex by measuring vertical and horizontal circulations of it. Though spiral horizontal vortices are clearly observed to converge and tilted into the tornado-like vortex, their circulation is quite small. The conversion of the vertical vorticity concentrated at the side of the spiral horizontal vortices was found to mainly contribute to the maintenance of the tornado-like vortex.

  1. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  2. AN INVESTIGATION OF THE EFFECT OF THE HOT END PLUGS ON THE EFFICIENCY OF THE RANQUE-HILSCH VORTEX TUBE

    Directory of Open Access Journals (Sweden)

    MAZIAR ARJOMANDI

    2007-12-01

    Full Text Available The phenomenon of temperature distribution in confined steady rotating gas flows is called Ranque-Hilsch effect. The simple counter-flow vortex tube consists of a long hollow cylinder with tangential nozzle at one end for injecting compressed air. The flow inside the vortex tube can be described as rotating air, which moves in a spring-shaped vortex track. The peripheral flow moves toward the hot end where a hot end plug is placed and the axial flow, which is forced back by the plug, moves in the opposite direction toward the cold end. This paper focuses on the effect of the size of hot nozzle on the performance of the Ranque–Hilsch vortex tube. Series of plugs were used in the experiment in order to find the relationship between the diameter of hot end plug and the performance of the vortex tube.

  3. The Acoustically Driven Vortex Cannon

    Science.gov (United States)

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  4. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  5. Vortex particle method in parallel computations on graphical processing units used in study of the evolution of vortex structures

    International Nuclear Information System (INIS)

    Kudela, Henryk; Kosior, Andrzej

    2014-01-01

    Understanding the dynamics and the mutual interaction among various types of vortical motions is a key ingredient in clarifying and controlling fluid motion. In the paper several different cases related to vortex tube interactions are presented. Due to problems with very long computation times on the single processor, the vortex-in-cell (VIC) method is implemented on the multicore architecture of a graphics processing unit (GPU). Numerical results of leapfrogging of two vortex rings for inviscid and viscous fluid are presented as test cases for the new multi-GPU implementation of the VIC method. Influence of the Reynolds number on the reconnection process is shown for two examples: antiparallel vortex tubes and orthogonally offset vortex tubes. Our aim is to show the great potential of the VIC method for solutions of three-dimensional flow problems and that the VIC method is very well suited for parallel computation. (paper)

  6. A Model for the Onset of Vortex Breakdown

    Science.gov (United States)

    Mahesh, K.

    1996-01-01

    A large body of information exists on the breakdown of incompressible streamwise vortices. Less is known about vortex breakdown at high speeds. An interesting example of supersonic vortex breakdown is the breakdown induced by the interaction of vortices with shock waves. The flow in supersonic engine inlets and over high-speed delta wings constitute technologically important examples of this phenomenon, which is termed 'shock-induced vortex breakdown'. In this report, we propose a model to predict the onset of shock-induced vortex breakdown. The proposed model has no adjustable constants, and is compared to both experiment and computation. The model is then extended to consider two other problems: the breakdown of a free compressible vortex, and free incompressible vortex breakdown. The same breakdown criterion is used in all three problems to predict the onset of breakdown. Finally, a new breakdown map is proposed that allows the simultaneous comparison of data from flows ranging from incompressible breakdown to breakdown induced by a shock wave.

  7. Examples of Applications of Vortex Methods to Wind Energy

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents wind-energy simulations obtained with the vortex code OmniVor (described in Chap. 44 ) and compared to BEM, CFD and measurements. The chapter begins by comparing rotor loads obtained with vortex methods, BEM and actuator-line simulations of wind turbines under uniform...... and yawed inflows. The second section compares wakes and flow fields obtained by actuator-disk simulations and a free-wake vortex code that uses vortex segments and vortex particles. The third section compares different implementations of viscous diffusion models and investigate their effects...

  8. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    International Nuclear Information System (INIS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-01-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors

  9. Vortex Shedding Inside a Baffled Air Duct

    Science.gov (United States)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  10. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  11. Spatial transformation abilities and their relation to later mathematics performance.

    Science.gov (United States)

    Frick, Andrea

    2018-04-10

    Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.

  12. Polar night vortex breakdown and large-scale stirring in the southern stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Alvaro de la [Universidad Complutense de Madrid, Departamento de Geofisica y Meteorologia, Madrid (Spain); University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Mechoso, C.R. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Ide, K. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); University of Maryland, Department of Atmospheric and Oceanic Science, Collage Park, MD (United States); Walterscheid, R. [The Aerospace Corporation, Space Sciences Department, Los Angeles, CA (United States); Schubert, G. [University of California, Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States)

    2010-11-15

    The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Strateole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex. (orig.)

  13. Simulations of wind turbine rotor with vortex generators

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Sørensen, Niels N.

    2016-01-01

    This work presents simulations of the DTU 10MW wind turbine rotor equipped with vortex generators (VGs) on the inner part of the blades. The objective is to study the influence of different VG configurations on rotor performance and in particular to investigate the radial dependence of VGs, i...

  14. Vortex dynamics in nonrelativistic version of Abelian Higgs model: Effects of the medium on the vortex motion

    Directory of Open Access Journals (Sweden)

    Kozhevnikov Arkadii

    2016-01-01

    Full Text Available The closed vortex dynamics is considered in the nonrelativistic version of the Abelian Higgs Model. The effect of the exchange of excitations propagating in the medium on the vortex string motion is taken into account. The obtained are the effective action and the equation of motion both including the exchange of the propagating excitations between the distant segments of the vortex and the possibility of its interaction with the static fermion asymmetric background. They are applied to the derivation of the time dependence of the basic geometrical contour characteristics.

  15. Experimental study of vortex breakdown in a cylindrical, swirling flow

    Science.gov (United States)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.

    1996-01-01

    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.

  16. Formation Number Of Laminar Vortex Rings. Numerical Simulations

    International Nuclear Information System (INIS)

    Rosenfeld, M.; Rambod, E.; Gharib, M.

    1998-01-01

    The formation time scale of axisymmetric vortex rings is studied numerically for relatively long discharge times. Experimental findings on the existence and universality of a formation time scale, referred to as the formation number, are confirmed. The formation number is indicative of the time a vortex ring acquires its maximal circulation. For vortex rings generated by impulsive motion of a piston, the formation number was found experimentally to be approximately 4. Numerical extension of the experimental study to thick shear layers indicates that the scaled circulation of the pinched-off vortex is relatively insensitive of the details of the formation process, such as the velocity program, velocity profile or vortex generator geometry. In contrast, the formation number does depend on the velocity profile

  17. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  18. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    Science.gov (United States)

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  19. Vortex deformation and reduction of the Lorentz force

    International Nuclear Information System (INIS)

    Vuorio, M.

    1977-01-01

    A vortex of an extreme II-type superconductor is considered in the presence of a transport current. The equivalence of Magnus and Lorentz forces in a static vortex is discussed and the effect of vortex deformation is included in calculating corrections to the conventional expression of the Lorentz force. (author)

  20. Fundamental vortices, wall-crossing, and particle-vortex duality

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chiung; Yi, Piljin [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Yoshida, Yutaka [Research Institute for Mathematical Sciences, Kyoto University,Kyoto 606-8502 (Japan)

    2017-05-18

    We explore 1d vortex dynamics of 3d supersymmetric Yang-Mills theories, as inferred from factorization of exact partition functions. Under Seiberg-like dualities, the 3d partition function must remain invariant, yet it is not a priori clear what should happen to the vortex dynamics. We observe that the 1d quivers for the vortices remain the same, and the net effect of the 3d duality map manifests as 1d Wall-Crossing phenomenon; although the vortex number can shift along such duality maps, the ranks of the 1d quiver theory are unaffected, leading to a notion of fundamental vortices as basic building blocks for topological sectors. For Aharony-type duality, in particular, where one must supply extra chiral fields to couple with monopole operators on the dual side, 1d wall-crossings of an infinite number of vortex quiver theories are neatly and collectively encoded by 3d determinant of such extra chiral fields. As such, 1d wall-crossing of the vortex theory encodes the particle-vortex duality embedded in the 3d Seiberg-like duality. For N=4, the D-brane picture is used to motivate this 3d/1d connection, while, for N=2, this 3d/1d connection is used to fine-tune otherwise ambiguous vortex dynamics. We also prove some identities of 3d supersymmetric partition functions for the Aharony duality using this vortex wall-crossing interpretation.

  1. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  2. Stability of barotropic vortex strip on a rotating sphere.

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  3. Stability of barotropic vortex strip on a rotating sphere

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  4. Vortex dynamics in Josephson junctions arrays

    International Nuclear Information System (INIS)

    Shalom, Diego Edgar

    2005-01-01

    In this work we study the dynamics of vortices in two-dimensional overdamped Josephson Junctions Arrays (JJA) driven by dc current in a wide range of conditions varying magnetic field and temperature using experiments, numerical simulations and analytic studies.We develop the Fixed Phase method, a variation of numeric relaxation techniques in which we fix and control the phase of some islands, adjacent to the vortex center, while allowing all other phases in the system to relax.In this way we are able to pull and push the vortex uphill, as we are forcing the center of rotation of the vortex currents to be in a defined location, allowing us to calculate the potential energy of a vortex located in any arbitrary position.We use this method to study the potential energy of a vortex in a variety of situations in homogeneous and non-homogeneous JJA, such as arrays with defects, channel arrays and ratchets.We study the finite size effects in JJA by means of analytic and numerical tools.We implement the rings model, in which we replace the two-dimensional square array by a series of square, concentric, uncoupled rings. This is equivalent to disregarding the radial junctions that couple consecutive rings.In spite of its extreme simplicity, this model holds the main ingredients of the magnetic dependence of the energy.We combine this model with other terms that take into account the dependence in the position of the vortex to obtain a general expression for the potential energy of a vortex in a finite JJA with applied magnetic field.We also present an expression for the first critical field, corresponding to the value of the magnetic field in which the entrance of the first vortex becomes energetically favorable.We build and study JJA modulated to form periodic and asymmetrical potentials for the vortices, named ratchet potentials.The experimental results clearly show the existence of a rectification in the motion of vortices in these potentials.Under certain conditions we

  5. Review of Vortex Methods for Simulation of Vortex Breakdown

    National Research Council Canada - National Science Library

    Levinski, Oleg

    2001-01-01

    The aim of this work is to identify current developments in the field of vortex breakdown modelling in order to initiate the development of a numerical model for the simulation of F/A-18 empennage buffet...

  6. Rotation of a single vortex in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fu-Cheng; He Ya-Feng

    2017-01-01

    A single vortex is obtained in radio-frequency capacitive discharge in argon gas. The dust subsystem is confined in the horizontal plane with an asymmetrical saw structure placed on the lower electrode. The vortex rotates as a whole along the long side of the saw-teeth. Asymmetry of the saw structure plays an important role in the rotation of the vortex. Nonzero curl of the total force resulting from the local ion flow and the electric field in the plasma sheath could be attributed to the persistent rotation of vortex. (paper)

  7. Study on vortex cavitation in a compact fast reactor. Effects of system pressure on inception condition

    International Nuclear Information System (INIS)

    Hiroyuki Sato; Toshiki Ezure; Hideki Kamide

    2005-01-01

    A compact sodium reactor is designed as a commercialized fast reactor cycle system. A 1/10 scaled water experiment was performed to optimize flow in an upper plenum of the reactor vessel, because of high flow velocity resulted from the compacted vessel. In the experiment, vortex cavitation was found at the hot leg inlet because of high velocity in the hot leg pipe (9.4m/s in the design). To evaluate cavitation inception condition of the commercialized reactor, we use the cavitation number k in order to consider the difference of system pressures (0.1MPa in the experiment and 0.3MPa in the design). The minimum pressure at the vortex center will depend on vortex core radius (size of forced vortex region). It is related to axial velocity gradient and fluid viscosity in theory of the Burger's stretched vortex model. We carried out a basic water experiment to investigate the influence of system pressure and fluid viscosity on the vortex cavitation. The cavitation number at the inception of vortex cavitation slightly increased according to the increase of the system pressure. It means that the vortex cavitation occurs easily under higher pressure condition as compared with the similar condition of cavitation number with lower pressure. However the increase was less than 30% when the system pressure was varied from 0.1 to 0.3MPa. The influence of fluid viscosity was examined by change of fluid temperature. Velocity distribution around the vortex was also measured to see the structure of vortex. (authors)

  8. Proposed thermodynamic method to determine the vortex mass in layered superconductors

    International Nuclear Information System (INIS)

    Moler, K.A.; Fetter, A.L.; Kapitulnik, A.

    1995-01-01

    The authors describe a simple method to study vortex dynamics that can determine or set an upper limit on the vortex mass. The specific heat of the vortex lattice in layered superconductors has a classical limit of 1 k B per pancake vortex if the vortex mass is zero. If the vortex mass m v is finite, a new Einstein branch of normal modes will appear with a crossover temperature Θ E ∝ m v -1 , and the specific heat will saturate at a new classical limit of 2 k B per pancake vortex

  9. Transverse force on a moving vortex with the acoustic geometry

    International Nuclear Information System (INIS)

    Zhang Pengming; Cao Liming; Duan Yishi; Zhong Chengkui

    2004-01-01

    We consider the transverse force on a moving vortex with the acoustic metric using the phi-mapping topological current theory. In the frame of effective space-time geometry the vortex appear naturally by virtue of the vortex tensor in the Lorentz space-time and we show that it is just the vortex derived with the order parameter in the condensed matter. With the usual Lagrangian we obtain the equation of motion for the vortex. At last, we show that the transverse force on the moving vortex in our equation is just the usual Magnus force in a simple model

  10. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  11. Aerosol Effects on Microphysical Processes, Storm Structure, and Cold Pool Strength in Simulated Supercell Thunderstorms from VORTEX-2 and VORTEX-SE

    Science.gov (United States)

    Guo, M.; Dawson, D. T., II; Baldwin, M. E.; Mansell, E. R.

    2017-12-01

    The cloud condensation nuclei (CCN) concentration has been found to strongly affect microphysical, dynamical and thermodynamical processes in supercells and other deep convective storms. Moreover, recent simulation studies have shown aerosols effects differ between higher- and lower-CAPE environments. Owing to the known sensitivity of severe storms to microphysical differences, studying the impact of aerosols supercell storms different environments is of clear societal importance. Tornadic environments in the southwastern U.S. are generally characterized by lower magnitudes CAPE and deeper tropospheric moisture than those in the Great Plains. These two regions were the focus of Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX)-2 and VORTEX-Southeast (SE) field campaigns, respectively. In our study, we simulate several cases from VORTEX-2 and -SE with the Advanced Regional Prediction System (ARPS) Model at 6 different CCN concentrations (100-3000 cm-3). We use NSSL 3-moment microphysics parameterization schemeto explicitly predict precipitation particle size distributions and microphysirocess rates. Overall, storms under the higher-CAPE VORTEX-2 environments are more sensitiveto the change of CCN than those under the lower-CAPE VORTEX-SE environments. Updraft volume decreases as CCN increases for the VORTEX-2 cases, whereas the opposite is true but with a much weaker trend for the VORTEX-SE cases. Moreover, the cold pool strength drops dramatically as CCN surpasses 1000 cm-3n the VORTEX-2 cases but barely changes for the VORTEX-SE cases. Through a microphysics budget analysis, we show the change of the importance of ice processes is key to the differing sensitivities. in the VORTEX-2 cases, deposition to ice nuclei, cloud drop freezing and rain drop freezing in the upper levels (5-11km) contribute more to latent heating since more rain and cloud drops are lifted above the freezing level due to stronger updrafts. For CCN concentration over 1000

  12. Theory of pairing symmetry in the vortex states

    NARCIS (Netherlands)

    Yokoyama, Takehito; Ichioka, Yukio; Yanaka, Yukio; Golubov, Alexandre Avraamovitch

    2010-01-01

    We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity

  13. Vectorial diffraction properties of THz vortex Bessel beams.

    Science.gov (United States)

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  14. Direct visualization of the vortex distributions in a superconducting film with a Penrose array of magnetic pinning centers: Symmetry induced giant vortex state

    International Nuclear Information System (INIS)

    Kramer, R.B.G.; Silhanek, A.V.; Van de Vondel, J.; Raes, B.; Moshchalkov, V.V.

    2010-01-01

    Using scanning Hall probe microscopy a direct visualization of the flux distribution in a Pb film covering a fivefold Penrose array of Co dots is obtained. We demonstrate that stable vortex configurations can be found for fields H ∼ 0.8H 1 , H 1 and 1.6H 1 , where H 1 corresponds to one flux quantum per pinning site. The vortex pattern at 0.8H 1 corresponds to one vacancy in one of the vertices of the thin tiles whereas at 1.6H 1 the vortex structure can be associated with one interstitial vortex inside each thick tile. Strikingly, for H = 1.6H 1 interstitial and pinned vortices arrange themselves in ring-like structures ('vortex corrals') which favor the formation of a giant vortex state at their center.

  15. Superconducting coherence in a vortex line liquid

    International Nuclear Information System (INIS)

    Chen, T.; Teitel, S.

    1995-01-01

    We carry out simulations of the anisotropic uniformly frustrated 3d XY model, as a model for vortex line fluctuations in high T c superconductors. We compute the phase diagram as a function of temperature and anisotropy, for a fixed applied magnetic field B. We find two distinct phase transitions. Upon heating, there is first a lower T c perpendicular where the vortex line lattice melts and super-conducting coherence perpendicular to the applied magnetic field vanishes. At a higher T cz , within the vortex line liquid, superconducting coherence parallel to the applied magnetic field vanishes. For finite anisotropy, both T c perpendicular and T cz lie well below the crossover from the vortex line liquid to the normal state

  16. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  17. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  18. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  19. The observation of a triangular vortex in a rotating fluid

    NARCIS (Netherlands)

    Beckers, M.; Heijst, van G.J.F.

    1998-01-01

    A dye visualization study of a triangular vortex in a rotating fluid is presented. The emergence and subsequent break-up of the vortex structure are described. Soon after the generation of the triangular vortex it becomes unstable: two satellite vortices merge and pair with the core vortex into an

  20. Vortex phase diagram and vortex dynamics at low temperature in a thick a-Mg{sub x}B{sub 1-x} film

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, S. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)], E-mail: sokuma@o.cc.titech.ac.jp; Kohara, M. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2007-09-01

    We report on the equilibrium vortex phase diagram and vortex dynamics at low temperature T in a thick amorphous (a-)Mg{sub x}B{sub 1-x} film based on the measurements of the dc resistivity {rho} and time (t)-dependent component of the flux-flow voltage, {delta}V(t), respectively. Both {rho}(T) in perpendicular fields and the vortex phase diagram are qualitatively similar to those for the a-Mo{sub x}Si{sub 1-x} films, in which evidence for the quantum-vortex-liquid (QVL) phase has been obtained. In either material system we observe anomalous vortex flow with the asymmetric distribution of {delta}V(t) in the QVL phase, suggesting that the anomalous flow is a universal phenomenon commonly observed for disordered amorphous films, independent of material.

  1. On the effects of leading edge vortex generators on an OA209 airfoil

    OpenAIRE

    Heine, Benjamin; Mulleners, Karen; Gardner, Anthony; Mai, Holger

    2009-01-01

    Leading edge vortex generators have been found to significantly increase the aerodynamic performance of an airfoil under dynamic stall conditions. However, the principle of operation of these devices is still unclear. Therefore static wind and water tunnel experiments as well as CFD simulations have been conducted on a rotary aircraft wing profile OA209. A POD analysis applied to the vector fields generated by PIV measurements showed that the vortex generators break larger flow structures...

  2. Inclined Jet in Crossflow Interacting with a Vortex Generator

    Science.gov (United States)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  3. Control of vortex state in cobalt nanorings with domain wall pinning centers

    Directory of Open Access Journals (Sweden)

    Manohar Lal

    2018-05-01

    Full Text Available Magnetic rings at the mesoscopic scale exhibit new spin configuration states and switching behavior, which can be controlled via geometrical structure, material composition and applied field. Vortex states in magnetic nanorings ensure flux closure, which is necessary for low stray fields in high packing density in memory devices. We performed magnetoresistance measurements on cobalt nanoring devices and show that by attaching nanowires to the ring, the vortex state can be stabilized. When a square pad is attached to the free end of the wire, the domain wall nucleation field in the nanowire is reduced. In addition, the vortex state persists over a larger range of magnetic fields, and exists at all in-plane orientations of the magnetic field. These experimental findings are well supported by our micromagnetic simulations.

  4. Ultrafast vortex core dynamics investigated by finite-element micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gliga, Sebastian

    2010-07-01

    The investigations carried out in this thesis concern the ultrafast dynamics of a fundamental micromagnetic configuration: the vortex. Over the past decade, a detailed understanding of the dynamic and static properties of such magnetic nanostructures has been achieved as a result of close interplay between experiments, theory and numeric simulations. Here, micromagnetic simulations were performed based on the finite-element method. The vortex structure arises in laterally-confined ferromagnets, in particular in thin-film elements, and is characterized by an in-plane curling of the magnetic moments around a very stable and narrow core. In the present study, a novel process in micromagnetism was found: the ultrafast reversal of the vortex core. The possibility of easily switching the core orientation by means of short in-plane field pulses is surprising in view of the very high stability of the core. Moreover, the simulations presented here showed that this reversal process unfolds on a time scale of only a few tens of picoseconds, which leads to the prediction of the fastest and most complex micromagnetic reversal process known to date. Indeed, the vortex core is not merely switched: it is destroyed and recreated in the immediate vicinity with an opposite direction. This is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses and results in a sudden burst-like emission of spin waves. Equally fascinating is the ultrafast dynamics of an isolated magnetic antivortex, the topological counterpart of the vortex. The simulations performed here showed that the static complementarity between vortices and antivortices is equally reflected in their ultrafast dynamics, which leads to the reversal of the antivortex core. A promising means for the control of the magnetization on the nanoscale consists in exploiting the spin-transfer torque effect. The study of the current-induced dynamics of vortices showed that the core reversal can be

  5. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  6. Vortex operators in gauge field theories

    International Nuclear Information System (INIS)

    Polchinski, J.G.

    1980-01-01

    We study several related aspects of the t Hooft vortex operator. The first chapter reviews the current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator. The second chapter deals with the Abelian vortex operator written in terms of elementary fields and with the calculation of its Green's functions. The Dirac veto problem appears in a new guise. We present a two dimensional solvable model of a Dirac string. This leads us to a new solution of the veto problem; we discuss its extension to four dimensions. We then show how the Green's functions can be expressed more neatly in terms of Wu and Yang's geometrical idea of sections. In the third chapter we discuss the dependence of the Green's functions of the Wilson and t Hooft operators on the nature of the vacuum. In the fourth chapter we consider systems which have fields in the fundamental representation, so that there are no vortex operators. When these fields enter only weakly into the dynamics, as is the case in QCD and in real superconductors, we would expect to be able to define a vortex-like operator. We show that any such operator can no longer be local looplike, but must have commutators at long range. We can still find an operator with useful properties, its cluster property, though more complicated than that of the usual vortex operator, still appears to distinguish Higgs, confining and perturbative phases. To test this, we consider a U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint)

  7. A new look at sound generation by blade/vortex interaction

    Science.gov (United States)

    Hardin, J. C.; Mason, J. P.

    1985-01-01

    As a preliminary attempt to understand the dynamics of blade/vortex interaction, the two-dimensional problem of a rectilinear vortex filament interacting with a Joukowski airfoil is analyzed in both the lifting and nonlifting cases. The vortex velocity components could be obtained analytically and integrated to determine the vortex trajectory. With this information, the aeroacoustic low-frequency Green's function approach could then be employed to calculate the sound produced during the encounter. The results indicate that the vortex path deviates considerably from simple convection due to the presence of the airfoil and that a reasonably sharp sound pulse is radiated during the interaction whose fundamental frequency is critically dependent upon whether the vortex passes above or below the airfoil. Determination of this gross parameter of the interaction is shown to be highly nonlinearly dependent upon airfoil circulation, vortex circulation, and initial position.

  8. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  9. Numerical research of the compressible flow in a vortex tube using OpenFOAM software

    Directory of Open Access Journals (Sweden)

    Burazer Jela M.

    2017-01-01

    Full Text Available The work presented in this paper is dealing with numerical simulation of energy separation mechanism and flow phenomena within a Ranque-Hilsch vortex tube. Simulation of turbulent, compressible, highly swirling flow inside vortex tube is performed using RANS approach, with Favre averaged conservation equations. For turbulence closure, k-ε and k-ω shear-stress transport models are used. It is assumed that the mean flow is axisymmetric, so the 2-D computational domain is used. Computations were performed using open-source CFD software Open- FOAM. All compressible solvers available within OpenFOAM were tested, and it was found that most of the solvers cannot predict energy separation. Code of two chosen solvers, which proved as the most robust, is modified in terms of mean energy equation implementation. Newly created solvers predict physically accepted behavior in vortex tube, with good agreement with experimental results. Comparison between performances of solvers is also presented. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046

  10. A Prescribed-Wake Vortex Line Method for Aerodynamic Analysis and Optimization of Multi-Rotor Wind Turbines

    OpenAIRE

    Rosenberg, Aaron; Sharma, Anupam

    2015-01-01

    The objective of this paper is to extend the xed wake vortex lattice method (VLM), used to evaluate the performance of single-rotor wind turbines (SRWT), for use in analyzing dual-rotor wind turbines (DRWT). VLM models wind turbine blades as bound vortex laments with helical trailing vortices. Using the Biot-Savart law, it is possible to calculate the induction in the plane of rotation allowing for a computationally inexpensive, yet accurate, prediction of blade loading and power performance....

  11. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    Science.gov (United States)

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and

  12. Magnetization reversal in circular vortex dots of small radius.

    Science.gov (United States)

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  13. On the electron vortex beam wavefunction within a crystal

    International Nuclear Information System (INIS)

    Mendis, B.G.

    2015-01-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2 rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the ‘free space’ vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the pendellösung, i.e. at a given depth probes with relatively constant can be in a more mixed state compared to those with more rapidly varying . This suggests that minimising oscillations in the pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. - Highlights: • Equations are derived for vortex decomposition due to scattering within a crystal. • There is no direct correlation between vortex decomposition and pendellösung. • Results are also discussed in the context of EMCD measurements

  14. Characterisation of vortex flow inside an entrained cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rambert, A.; Elcafsi, A.; Gougat, P. [Centre National de la Recherche Scientifique, 91 - Orsay (France). Lab. d' Informatique pour la Mecanique et les Sciences de l' Ingenieur

    2000-07-01

    A number of studies have referred to the existence of a vortex cell within an urban street canyon when ambient winds aloft are perpendicular to the street. The understanding of vortex dynamics or vorticity distribution in a such configuration is of great interest. Vortex structures play an important role in the dynamics of pollutant dispersion. This configuration was simulated by the interaction between a boundary layer and a cavity. Experimental characterisation of the vortex structures evolution was developed by flow velocity measurements inside and out of the cavity. Classical methods like hot wire and laser Doppler velocimetry (LDV) display only local measurements. Particle image velocimetry (PIV) method based on the optical flow technique permitted global velocity measurements. This technique emphasis the vortex structures inside the cavity which present small scales as well as large scales related to the cavity geometry. These vortices are usually non-stationary. (orig.)

  15. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  16. Anomalous Josephson effect controlled by an Abrikosov vortex

    Science.gov (United States)

    Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.

    2017-12-01

    The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

  17. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  18. Effect of instability of vortex streets behind circular cylinder on lock-in oscillation

    International Nuclear Information System (INIS)

    Masaya Kondo

    2005-01-01

    Full text of publication follows: The effects of the instability of vortex streets formed in the wakes of a circular cylinder on lock-in oscillation was investigated using a splitter plate and a phase-estimation methodology. The lock-in oscillation at the reduced velocity of 2.5 ≤ Vr < ∼ 3.5 is a self excited oscillation with alternate vortices. The amplitude of the lock-in oscillation is changed with the reduced velocity, although the oscillation frequency and the external force frequency caused by vortices is insensitive to the reduced velocity. Author reported that the amplitude changed with the energy input, which changed with the relationship between the phase of the external force and the phase of the cylinder displacement. The report suggested that the timing of the vortices shedding would change with the reduced velocity. The reason of the timing change, however, has not been clarified yet. This paper presents an explanation of the timing change using the instability of the vortex streets formed in the wake. The distance with a next vortex in a vortex street behind a cylinder at the lock-in condition changes with reduced velocity. On the assumption that the distance between two vortex streets formed in a wake of the cylinder is a constant, only one reduced velocity satisfied the stable condition called 'Karman Vortex Street'. It means that two vortex streets formed at the lock-in condition would be instable essentially, and the vortices would interact each other to form the stable condition. The interaction among the vortices would affect not only for the shed vortices in the wake but also for the growing-up vortex on the cylinder surface. Therefore, the instability of the vortex streets would affect the timing of the vortices shedding. A flow-induced oscillation test using a circular cylinder with a splitter plate was performed to confirm such an instability. The splitter plate was installed in the far wake of the cylinder to terminate the interaction

  19. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  20. Roles of pinning strength and density in vortex melting

    International Nuclear Information System (INIS)

    Obaidat, I M; Khawaja, U Al; Benkraouda, M

    2008-01-01

    We have investigated the role of pinning strength and density on the equilibrium vortex-lattice to vortex-liquid phase transition under several applied magnetic fields. This study was conducted using a series of molecular dynamic simulations on several samples with different strengths and densities of pinning sites which are arranged in periodic square arrays. We have found a single solid-liquid vortex transition when the vortex filling factor n>1. We have found that, for fixed pinning densities and strengths, the melting temperature, T m , decreases almost linearly with increasing magnetic field. Our results provide direct numerical evidence for the significant role of both the strength and density of pinning centers on the position of the melting line. We have found that the vortex-lattice to vortex-liquid melting line shifts up as the pinning strength or the pinning density was increased. The effect on the melting line was found to be more pronounced at small values of strength and density of pinning sites

  1. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    Science.gov (United States)

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  2. Origin and dynamics of vortex rings in drop splashing.

    Science.gov (United States)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  3. Intraventricular vortex properties in nonischemic dilated cardiomyopathy

    Science.gov (United States)

    Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.

    2014-01-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062

  4. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  5. Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure

    Science.gov (United States)

    Cheng, Tinghai; Wang, Yingting; Qin, Feng; Song, Zhaoyang; Lu, Xiaohui; Bao, Gang; Zhao, Xilu

    2016-08-01

    The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.

  6. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  7. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    Science.gov (United States)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  8. Vortex information display system program description manual. [data acquisition from laser Doppler velocimeters and real time operation

    Science.gov (United States)

    Conway, R.; Matuck, G. N.; Roe, J. M.; Taylor, J.; Turner, A.

    1975-01-01

    A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions.

  9. Vortex structure and characterization of quasiperiodic functions

    International Nuclear Information System (INIS)

    Dana, Itzhack; Chernov, Vladislav E

    2002-01-01

    Quasiperiodic functions (QPFs) are characterized by their full vortex structure in one unit cell. This characterization is much finer and more sensitive than the topological one given by the total vorticity per unit cell (the 'Chern index'). It is shown that QPFs with an arbitrarily prescribed vortex structure exist by constructing explicitly such a 'standard' QPF. Two QPFs with the same vortex structure are equivalent, in the sense that their ratio is a function which is strictly periodic, nonvanishing and at least continuous. A general QPF can then be approximately reconstructed from its vortex structure on the basis of the standard QPF and the equivalence concept. As another application of this concept, a simple method is proposed for calculating the quasiperiodic eigenvectors of periodic matrices. Possible applications to the quantum-chaos problem on a phase-space torus are briefly discussed

  10. Vortex Dynamics in Superconductors with Different Types of Pinning Potentials

    International Nuclear Information System (INIS)

    Laguna, Maria Fabiana

    2001-01-01

    In this work we study the behavior of the vortex system in the mixed state of a type II superconductor when it interacts with different kinds of pinning potentials. To do this, we perform numerical simulations in the presence of an external magnetic field, by making use of two different approaches.One corresponds to a Langevin simulation of the three dimensional XY model or Josephson-junction network, whereas the other corresponds to a Molecular dynamics simulation of two dimensional point-like vortices.We analyze the transport properties of highly anisotropic superconductors with different kinds of topological disorder in the configuration in which the external field is applied perpendicular to the CuO planes.We found that for systems with point defects the activation energy is the same for the two components of the resistivity, while in systems with columnar defects the activation energies can be different.We also study the structure, phase transitions and transport properties of the vortex system when the external magnetic field lies parallel to the planes in layered superconductors. We analyze the stability of different phases at low temperatures and show under which conditions the smectic phase is stable.Our results indicate the presence of the smectic phase in an intermediate range of temperatures.We have studied a vortex array in a periodic pinning potential with triangular and kagome geometries.We obtain the ground state vortex configurations and calculate some thermodynamic quantities for different magnetic fields.We observe several stages of lattice pinning and melting and we characterize different phases and transitions between them.Finally, simulating the Bitter pinning effect over the vortex system, we study static and dynamic properties of the vortex system in the presence of the surface Bitter pinning and the bulk pinning.We found low temperature structures similar to those obtained experimentally.We analyze the dynamics of the nucleation and growth

  11. Fermions and vortex solutions in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    de Vega, H.J.

    1978-01-01

    The interaction of fermions with an extended vortex solution of the Higgs model is investigated. It is found that this interaction has long-range inverse-square tail. It is caused by the coupling of the fermion angular momentum with the vortex gauge field itself. The fermion-vortex bound states present at the threshold and the fermion-vortex scattering are studied. The scattering phase shifts and the Jost functions are obtained for large and small fermion momenta as well as the low-energy cross section which diverges at zero momentum. The quantum field theory in the one-vortex sectors is developed. It is found that, in the presence of fermions, a vortex with an even (odd) number of flux quanta has a half-integer (integer) fermionic number. It follows that a two-quantum vortex is stable. Finally, the stable vortex solution of an SU(2) Higgs model is investigated. The appropriate ansatz for the field is given and radial equations are discussed. It is shown that the interaction of a vortex with any nonsinglet particle has a long-range inverse-square tail

  12. Investigation of propagation dynamics of truncated vector vortex beams.

    Science.gov (United States)

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  13. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  14. Intracavity vortex beam generation

    Science.gov (United States)

    Naidoo, Darryl; Aït-Ameur, Kamel; Forbes, Andrew

    2011-10-01

    In this paper we explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring this OAM to matter and to be used in quantum information processing. We explore an extra-cavity and intra-cavity approach in LG0l mode generation respectively. The outputs of a Porro-prism resonator are represented by "petals" and we show that through a full modal decomposition, the "petal" fields are a superposition of two LG0l modes.

  15. Kaplan turbine tip vortex cavitation - analysis and prevention

    Science.gov (United States)

    Motycak, L.; Skotak, A.; Kupcik, R.

    2012-11-01

    The work is focused on one type of Kaplan turbine runner cavitation - a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  16. Evaluation of Large-Scale Wing Vortex Wakes from Multi-Camera PIV Measurements in Free-Flight Laboratory

    Science.gov (United States)

    Carmer, Carl F. v.; Heider, André; Schröder, Andreas; Konrath, Robert; Agocs, Janos; Gilliot, Anne; Monnier, Jean-Claude

    Multiple-vortex systems of aircraft wakes have been investigated experimentally in a unique large-scale laboratory facility, the free-flight B20 catapult bench, ONERA Lille. 2D/2C PIV measurements have been performed in a translating reference frame, which provided time-resolved crossvelocity observations of the vortex systems in a Lagrangian frame normal to the wake axis. A PIV setup using a moving multiple-camera array and a variable double-frame time delay has been employed successfully. The large-scale quasi-2D structures of the wake-vortex system have been identified using the QW criterion based on the 2D velocity gradient tensor ∇H u, thus illustrating the temporal development of unequal-strength corotating vortex pairs in aircraft wakes for nondimensional times tU0/b≲45.

  17. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  18. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...

  19. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: Uniform-diameter circular cylinder

    International Nuclear Information System (INIS)

    Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.

    2012-01-01

    Flow characteristics, around a short uniform-diameter circular cylinder in crossflow, are investigated experimentally. Extensive flow visualization using oil-lampblack and smoke-wire methods have been performed. Near-wake velocity measurements have been performed using a hotwire anemometer. Complex secondary flows are observed on and around the cylinder in crossflow. Multiple vortices are observed in the horseshoe vortex system near the cylinder–endwall junction. Based on this flow visualization and local mass transfer measurement results, a six-vortex secondary flow model has been proposed. - Highlights: ► Flow visualizations and velocity measurements for a short circular cylinder. ► Six vortices in the horseshoe vortex system upstream of the base of the cylinder. ► Cross-stream turbulence intensity profiles show a similarity in their shape.

  20. Rotation and oscillation of nonlinear dipole vortex in the drift-unstable plasma

    International Nuclear Information System (INIS)

    Orito, Kohtaro; Hatori, Tadatsugu.

    1997-10-01

    The behaviors of the nonlinear dipole vortex in the drift unstable plasma are studied by numerical approaches. Model equations used in numerical simulation are derived from two-fluid model and are composed of two equations with respect to the electrostatic potential and the density perturbation. When the initial dipole vortex is inclined at some angle with respect to the direction of the drift velocity, the dipole vortex oscillates or rotates in the first stage. These phenomenon also happen in the stable system. In the second stage, one part of the dipole vortex grows and another decays because of the destabilization. The shrunk vortex rotates around the enlarged vortex. Consequently, a monopole vortex appears out of the dipole vortex. (author)

  1. Phase diagrams of magnetic state transformations in multiferroic composites controlled by size, shape and interfacial coupling strain

    Directory of Open Access Journals (Sweden)

    Qiang Sheng

    2017-10-01

    Full Text Available This work aims to give a comprehensive view of magnetic state stability and transformations in PZT-film/FeGa-dot multiferroic composite systems due to the combining effects of size, shape and interfacial coupling strain. It is found that the stable magnetic state of the FeGa nanodots is not only a function of the size and shape of the nanodot but also strongly sensitive to the interfacial coupling strain modified by the polarization state of PZT film. In particular, due to the large magnetostriction of FeGa, the phase boundaries between different magnetic states (i.e., in-plane/out-of-plane polar states, and single-/multi-vortex states of FeGa nanodots can be effectively tuned by the polarization-mediated strain. Fruitful strain-mediated transformation paths of magnetic states including those between states with different orderings (i.e., one is polar and the other is vortex, as well as those between states with the same ordering (i.e., both are polar or both are vortex have been revealed in a comprehensive view. Our result sheds light on the potential of utilizing electric field to induce fruitful magnetic state transformation paths in multiferroic film-dot systems towards a development of novel magnetic random access memories.

  2. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  3. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  4. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  5. Vortex breakdown incipience: Theoretical considerations

    Science.gov (United States)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  6. Vortex dynamics and correlated disorder in high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vinokur, V.M.

    1993-08-01

    We develop a theory for the vortex motion in the presence of correlated disorder in the form of the twin boundaries and columnar defects. Mapping vortex trajectories onto boson world lines enables us to establish the duality of the vortex transport in the systems with correlated disorder and hopping conductivity of charged particles in 2D systems. A glassy-like dynamics of the vortex lines with zero linear-resistivity and strongly nonlinear current-voltage behavior as V {proportional_to} exp[{minus} const/J{sup {mu}}] in a Bose glass state is predicted.

  7. Mathematical aspects of vortex dynamics; Proceedings of the Workshop, Leesburg, VA, Apr. 25-27, 1988

    International Nuclear Information System (INIS)

    Caflisch, R.E.

    1989-01-01

    Various papers on the mathematical aspects of vortex dynamics are presented. Individual topics addressed include: mathematical analysis of vortex dynamics, improved vortex methods for three-dimensional flows, the relation between thin vortex layer and vortex sheets, computations of broadband instabilities in a class of closed-streamline flows, vortex-sheet dynamics and hyperfunction theory, free surface vortex method with weak viscous effects, iterative method for computing steady vortex flow systems, invariant measures for the two-dimensional Euler flow, similarity flows containing two-branched vortex sheets, strain-induced vortex stripping, convergence of the vortex method for vortex sheets, boundary conditions and deterministic vortex methods for the Navier-Stokes equations, vorticity creation boundary conditions, vortex dynamics of stratified flows, vortex breakdown, numerical studies of vortex reconnection, vortex lattices in theory and practice, dynamics of vortex structures in the wall region of a turbulent boundary layer, and energy of a vortex lattice configuration

  8. Design Parameters of Vortex Pumps: A Meta-Analysis of Experimental Studies

    Directory of Open Access Journals (Sweden)

    Angela Gerlach

    2017-01-01

    Full Text Available Vortex pumps can impel solid-containing fluids and are therefore widely applied, from wastewater transport to the food industry. Despite constant efforts to improve vortex pumps, however, they have remained relatively inefficient compared to conventional centrifugal pumps. To find an optimized design of vortex pumps, this paper provides a systematic analysis on experimental studies that investigated how variations in geometric parameters influence vortex pump characteristics, in particular the pump head, the pressure coefficient and the efficiency for best point operation. To this end, an extensive literature search was conducted, and eighteen articles with 53 primary investigations were identified and meta-integrated. This showed that it is not yet clarified how vortex pumps operate. Two different assumptions of the underlying operating principle of a vortex pump lead to diverging design principles. From the results of this meta-analysis, we deduce recommendations for a more efficient design of a vortex pump and emphasize further aspects on the underlying operating principle of a vortex pump.

  9. Detection of posterior vortex veins in eyes with pathologic myopia by ultra-widefield indocyanine green angiography.

    Science.gov (United States)

    Moriyama, Muka; Cao, Kejia; Ogata, Satoko; Ohno-Matsui, Kyoko

    2017-09-01

    To analyse the characteristics of posterior vortex veins detected in highly myopic eyes by wide-field indocyanine green angiography (ICGA). One hundred and fifty-eight consecutive patients (302 eyes) with high myopia (myopic refractive error >8.0 dioptres (D) or axial length ≥26.5 mm) were studied. Wide-field ICGA was performed with the Spectralis HRA module. Posterior vortex veins were found in 80 eyes (26%). The prevalence of posterior staphyloma was significantly higher in eyes in which posterior vortex vein was detected than in eyes without posterior vortex vein. The posterior vortex veins were classified into five types according to the site of exit from the eye; around the optic nerve in 28%, in the macular area in 17%, along the border of staphyloma in 6%, along the margin of macular atrophy or large peripapillary conus in 21%, and elsewhere in 28%. In one eye, two posterior vortex veins collected the choroidal venous blood from the entire fundus. Wide-field ICGA can analyse the characteristic features of choroidal blood outflow system through posterior vortex veins in highly myopic eyes. They may play an important role as routes of choroidal outflow in highly myopic eyes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Z2 vortex strings in grand unified theories

    International Nuclear Information System (INIS)

    Olive, D.; Turok, N.

    1982-01-01

    Spontaneously broken gauge theories may display distinct vortex string solutions for the disconnected components of the exact gauge symmetry group. A type of Higgs mechanism thought to apply in grand unified theories as being responsible for fermion masses yields Z 2 vortex lines, irrespectively of the group. These could seed galaxy formation if the corresponding fermion masses are superheavy. More generally a Higgs mechanism producing Zsub(n) vortex strings is presented. (orig.)

  11. Automatic Image Processing Workflow for the Keck/NIRC2 Vortex Coronagraph

    Science.gov (United States)

    Xuan, Wenhao; Cook, Therese; Ngo, Henry; Zawol, Zoe; Ruane, Garreth; Mawet, Dimitri

    2018-01-01

    The Keck/NIRC2 camera, equipped with the vortex coronagraph, is an instrument targeted at the high contrast imaging of extrasolar planets. To uncover a faint planet signal from the overwhelming starlight, we utilize the Vortex Image Processing (VIP) library, which carries out principal component analysis to model and remove the stellar point spread function. To bridge the gap between data acquisition and data reduction, we implement a workflow that 1) downloads, sorts, and processes data with VIP, 2) stores the analysis products into a database, and 3) displays the reduced images, contrast curves, and auxiliary information on a web interface. Both angular differential imaging and reference star differential imaging are implemented in the analysis module. A real-time version of the workflow runs during observations, allowing observers to make educated decisions about time distribution on different targets, hence optimizing science yield. The post-night version performs a standardized reduction after the observation, building up a valuable database that not only helps uncover new discoveries, but also enables a statistical study of the instrument itself. We present the workflow, and an examination of the contrast performance of the NIRC2 vortex with respect to factors including target star properties and observing conditions.

  12. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    Science.gov (United States)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  13. Quantum oscillations in vortex-liquids

    Science.gov (United States)

    Banerjee, Sumilan; Zhang, Shizhong; Randeria, Mohit

    2012-02-01

    Motivated by observations of quantum oscillations in underdoped cuprates [1], we examine the electronic density of states (DOS) in a vortex-liquid state, where long-range phase coherence is destroyed by an external magnetic field H but the local pairing amplitude survives. We note that this regime is distinct from that studied in most of the recent theories, which have focused on either a Fermi liquid with a competing order parameter or on a d-wave vortex lattice. The cuprate experiments are very likely in a resistive vortex-liquid state. We generalize the s-wave analysis of Maki and Stephen [2] to d-wave pairing and examine various regimes of the chemical potential, gap and field. We find that the (1/H) oscillations of the DOS at the chemical potential in a d-wave vortex-liquid are much more robust, i.e., have a reduced damping, compared to the s-wave case. We critically investigate the conventional wisdom relating the observed frequency to the area of an underlying Fermi surface. We also show that the oscillations in the DOS cross over to a √H behavior in the low field limit, in agreement with the recent specific heat measurements. [1] L. Taillefer, J. Phys. Cond. Mat. 21, 164212 (2009). [2] M. J. Stephen, Phys. Rev. B 45, 5481 (1992).

  14. Vortex rings from Sphagnum moss capsules

    Science.gov (United States)

    Whitaker, Dwight; Strassman, Sam; Cha, Jung; Chang, Emily; Guo, Xinyi; Edwards, Joan

    2010-11-01

    The capsules of Sphagnum moss use vortex rings to disperse spores to suitable habitats many kilometers away. Vortex rings are created by the sudden release of pressurized air when the capsule ruptures, and are an efficient way to carry the small spores with low terminal velocities to heights where they can be carried by turbulent wind currents. We will present our computational model of these explosions, which are carried out using a 2-D large eddy simulation (LES) on FLUENT. Our simulations can reproduce the observed motion of the spore clouds observed from moss capsules with high-speed videos, and we will discuss the roles of bursting pressure, cap mass, and capsule morphology on the formation and quality of vortex rings created by this plant.

  15. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  16. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    Science.gov (United States)

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  17. Vortex solitons at the interface separating square and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Jović Savić, Dragana, E-mail: jovic@ipb.ac.rs; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan

    2015-06-19

    Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.

  18. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  19. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  20. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available at exploring the methods of generating optical vortex beams. We will discuss a typical extra-cavity approach that harnesses digital holography through the use of a SLM. We consider vortex beam generation as the fundamental mode of a monolithic microchip laser...-cavity phase diffractive elements can result in the desired mode as the fundamental mode of the cavity with pure modal quality. This approach, although very attractive is insufficient for the generation of these modes in monolithic microchip lasers. A...

  1. Metamorphosis of a Hairpin Vortex into a Young Turbulent Spot

    Science.gov (United States)

    Singer, Bart A.; Joslin, Ronald D.

    1995-01-01

    Direct numerical simulation was used to study the formation and growth of a hairpin vortex in a flat-plate boundary layer and its later development into a young turbulent spot. Fluid injection through a slit in the wall triggered the initial vortex. The legs of the vortex were stretched into a hairpin shape as it traveled downstream. Multiple hairpin vortex heads developed between the stretched legs. New vortices formed beneath the streamwise-elongated vortex legs. The continued development of additional vortices resulted in the formation of a traveling region of highly disturbed ow with an arrowhead shape similar to that of a turbulent spot.

  2. PRELATIONSHIP BETWEEN TRANSFORMATIONAL LEADERSHIP, EMPOWERMENT AND FOLLOWERS’ PERFORMANCE: A EMPIRICAL STUDY IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    Azman Ismail

    2009-07-01

    Full Text Available Further research reveals that the effect of transformational leadership on followers’ performance is indirectly affected by empowerment. The nature of this relationship is less emphasized in organizational leadership literature. Therefore, this study was conducted to examine the effect of transformational leadership on followers’ performance and investigate the mediating effect of empowerment in the relationship between transformational leadership and followers’ performance. Findings showed that the relationship between empowerment and transformational leadership had increased followers’ performance. This result confirms that empowerment acts as a full mediating role in the leadership model of the studied organization.

  3. The challenges of simulating wake vortex encounters and assessing separation criteria

    Science.gov (United States)

    Dunham, R. E.; Stuever, Robert A.; Vicroy, Dan D.

    1993-01-01

    During landings and take-offs, the longitudinal spacing between airplanes is in part determined by the safe separation required to avoid the trailing vortex wake of the preceding aircraft. Safe exploration of the feasibility of reducing longitudinal separation standards will require use of aircraft simulators. This paper discusses the approaches to vortex modeling, methods for modeling the aircraft/vortex interaction, some of the previous attempts of defining vortex hazard criteria, and current understanding of the development of vortex hazard criteria.

  4. THE EFFECT TRANSFORMATIONAL LEADERSHIP, PERSONALITY AND JOB PERFORMANCE ADMINISTRATION EMPLOYEE

    OpenAIRE

    Andinasari, Andinasari; Sujanto, Bedjo; Mukhtar, Mukhneri

    2017-01-01

    The purpose of this study was determine the effect transformational leadership, personality and job performance administration employeeUniversity of Indonesian Teachers Union of Palembang (PGRI). This research try answer problems about job performance involving of 144 administration employee had been selected from the target population of 223 employee by using quantitative approach with path analysis methods.  The reseach of conclude show (1) transformational leadership had a direct effe...

  5. Topological dynamics of vortex-line networks in hexagonal manganites

    Science.gov (United States)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  6. Vortex properties of mesoscopic superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)

    2010-10-01

    In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).

  7. Vortex dynamics in magnetized plasmas

    International Nuclear Information System (INIS)

    Kono, M.; Krane, B.; Pecseli, H.L.; Trulsen, J.

    1998-01-01

    Low frequency dynamics of electrostatic fluctuations in strongly magnetized plasmas have been studied. It was found that perturbations in density and potential can be very localized, indicating the applicability of an approximate description based on a finite number of vortices. A model based on a few isolated vortical structures is discussed, with particular attention to vortex collapse, where three vortices merge together within a finite time, or to the converse process, i.e. a vortex explosion. Details of these particular types of vortex dynamics depend on the actual model used for describing the electrons, the presence of a Debye shielding in particular. A ''boomerang''-type of evolution was found, where three shielded vortices expand initially, just as their unshielded counterparts, but eventually the expansion is arrested, and they start converging to collapse ultimately. The study is extended by a numerical simulation where the point model is relaxed to a continuous, but localized, vorticity distribution with finite size vortices. (orig.)

  8. Uncovering the relationship between transformational leaders and followers' task performance.

    NARCIS (Netherlands)

    Breevaart, K.; Bakker, A. B.; Demerouti, E.; Sleebos, D. M.; Maduro, V.

    2015-01-01

    The purpose of the present study was to unravel the mechanisms underlying the relationship between transformational leadership, follower work engagement, and follower job performance and to investigate a possible boundary condition of transformational leadership. We used structural equation modeling

  9. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  10. Yaw-modelling using a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The cylindrical vortex wake model presented in Chap. 17 for the case of uniform inflow is extended in the current chapter to the case of yawed inflow. Generalities regarding yaw are presented in Sect. 6.1 and only the skewed cylindrical vortex model is presented in this chapter. The chapter starts...... with a literature review on the topic of yaw-models and vorticity-based methods. The description of the model follows. The novelty of the current model is that the assumption of infinite tip-speed ratio is relaxed. The bound vorticity is assumed to be identical to the case of uniform inflow but the vortex cylinder...... and the root vortex are skewed with respect to the normal of the rotor disk. Closed form formulae for the induced velocities are provided. They can only be evaluated analytically for a limited part of the domain. A numerical integration is required to obtain the velocity everywhere in the domain. The numerical...

  11. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    Science.gov (United States)

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-02-26

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.

  12. Formation and interference of two pairs of vortex streets

    International Nuclear Information System (INIS)

    Kamemoto, Kyoji

    1976-01-01

    A series of theoretical analysis were made on the mechanism of the formation and interference of two pairs of vortex streets appearing behind a pair of two long bars placed perpendicularly to uniform flow. In the first part, the flow model used for this study is explained. It was assumed that two pairs of vortex sheets having the same interval (h) were placed at the distance of g in non-viscous flow. Then small disturbance was given to the flow, and the behavior of the vortex sheets in course of time was analyzed by solving a set of linear simultaneous differential equations. Eight fundamental modes of small displacement were obtained as the independent solutions of the equations. The fundamental modes and the associated parameters are presented. In the second part, a set of non-linear differential equations were derived by substituting the vortex sheets with vortex streets with finite intensity. The set of equations were solved numerically. The results of numerical solutions for various conditions are presented. Main conclusions drawn from this study are that the condition of the existence of two pairs of vortex sheets is g/h >= 1, and that the mutual interference between two pairs of vortex streets becomes conspicuous for g/h <= 2. Some discussions made by other researchers and the author are also presented at the end of this paper. (Aoki, K.)

  13. Phenotypic heterogeneity in the endothelium of the human vortex vein system.

    Science.gov (United States)

    Yu, Paula K; Tan, Priscilla E Z; Cringle, Stephen J; McAllister, Ian L; Yu, Dao-Yi

    2013-10-01

    The vortex vein system is the drainage pathway for the choroidal circulation and serves an important function in the effective drainage of the exceptionally high blood flow from the choroidal circulation. As there are only 4-6 vortex veins, a large volume of blood must be drained from many choroidal veins into each individual vortex vein. The vortex vein system must also cope with passing through tissues of different rigidity and significant pressure gradient as it transverses from the intrao-cular to the extra-ocular compartments. However, little is known about how the vortex vein system works under such complex situations in both physiological and pathological condition. Endothelial cells play a vital role in other vascular systems, but they have not been studied in detail in the vortex vein system. The purpose of this study is to characterise the intracellular structures and morphology in both the intra-and extra-ocular regions of the human vortex vein system. We hypothesise the presence of endothelial phenotypic heterogeneity through the vortex vein system. The inferior temporal vortex vein system from human donor eyes were obtained and studied histologically using confocal microscopy. The f-actin cytoskeleton and nuclei were labelled using Alexa Fluor conjugated Phalloidin and YO-PRO-1. Eight regions of the vortex vein system were examined with the venous endothelium studied in detail with quantitative data obtained for endothelial cell and nuclei size and shape. Significant endothelial phenotypic heterogeneity was found throughout the vortex vein system with the most obvious differences observed between the ampulla and its downstream regions. Variation in the distribution pattern of smooth muscle cells, in particular the absence of smooth muscle cells around the ampulla, was noted. Our results suggest the presence of significantly different haemodynamic forces in different regions of the vortex vein system and indicate that the vortex vein system may play

  14. Anisotropic response of the moving vortex lattice in superconducting Mo(1-x)Gex amorphous films

    International Nuclear Information System (INIS)

    Dolz, M.I.; Shalóm, D.E.; Pastoriza, H.; López, D.O.

    2012-01-01

    We have performed magnetic susceptibility measurements in Mo 1-x Ge x amorphous thin films biased with an electrical current using anisotropic coils. We tested the symmetry of the vortex response changing the relative orientation between the bias current and the susceptibility coils. We found a region in the DC current-temperature phase diagram where the dynamical vortex structures behave anisotropically. In this region the shielding capability of the superconducting currents measured by the susceptibility coils is less effective along the direction of vortex motion compared to the transverse direction. This anisotropic response is found in the same region where the peak effect in the critical current is developed. On rising temperature the isotropic behavior is recovered.

  15. Optical vortex discrimination with a transmission volume hologram

    Energy Technology Data Exchange (ETDEWEB)

    Gruneisen, Mark T [Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, NM 87117 (United States); Dymale, Raymond C; Stoltenberg, Kurt E [Boeing Company, PO Box 5670, Albuquerque, NM 87185 (United States); Steinhoff, Nicholas [Optical Sciences Company, 1341 S Sunkist St., Anaheim, CA 92806 (United States)

    2011-08-15

    Transmissive volume holograms are considered as mode-selective optical elements for the de-multiplexing and detecting of optical vortex modes according to the topological charge or mode number. Diffraction of vortex modes by a fundamental mode hologram is modeled using a physical optics model that treats the volume hologram as an angle-dependent transfer function. Diffracted irradiance profiles and diffraction efficiencies are calculated numerically as a function of the incident mode number. The results of the model are compared with experimental results obtained with volume holograms of fundamental and higher-order vortex modes. When considered as a function of detuning between the incident and recorded mode numbers, the measured diffraction efficiencies are found to be invariant with respect to the recorded mode number, provided that the order difference remains unchanged, and in close agreement with the predictions of the model. Measurements are made with a 1.3 mm thick permanent photo-thermo-refractive glass hologram and a 9 mm thick re-writable photorefractive lithium niobate hologram. A liquid-crystal spatial light modulator generates the vortex modes used to record and read the holograms. The results indicate that a simple volume hologram can discriminate between vortex modes; however, adjacent mode discrimination with low crosstalk would require a very thick hologram. Furthermore, broadening of the vortex angular spectrum, due to diffraction at a finite aperture, can adversely affect diffraction efficiencies.

  16. Optical vortex discrimination with a transmission volume hologram

    International Nuclear Information System (INIS)

    Gruneisen, Mark T; Dymale, Raymond C; Stoltenberg, Kurt E; Steinhoff, Nicholas

    2011-01-01

    Transmissive volume holograms are considered as mode-selective optical elements for the de-multiplexing and detecting of optical vortex modes according to the topological charge or mode number. Diffraction of vortex modes by a fundamental mode hologram is modeled using a physical optics model that treats the volume hologram as an angle-dependent transfer function. Diffracted irradiance profiles and diffraction efficiencies are calculated numerically as a function of the incident mode number. The results of the model are compared with experimental results obtained with volume holograms of fundamental and higher-order vortex modes. When considered as a function of detuning between the incident and recorded mode numbers, the measured diffraction efficiencies are found to be invariant with respect to the recorded mode number, provided that the order difference remains unchanged, and in close agreement with the predictions of the model. Measurements are made with a 1.3 mm thick permanent photo-thermo-refractive glass hologram and a 9 mm thick re-writable photorefractive lithium niobate hologram. A liquid-crystal spatial light modulator generates the vortex modes used to record and read the holograms. The results indicate that a simple volume hologram can discriminate between vortex modes; however, adjacent mode discrimination with low crosstalk would require a very thick hologram. Furthermore, broadening of the vortex angular spectrum, due to diffraction at a finite aperture, can adversely affect diffraction efficiencies.

  17. Transforming RNA-Seq data to improve the performance of prognostic gene signatures.

    Science.gov (United States)

    Zwiener, Isabella; Frisch, Barbara; Binder, Harald

    2014-01-01

    Gene expression measurements have successfully been used for building prognostic signatures, i.e for identifying a short list of important genes that can predict patient outcome. Mostly microarray measurements have been considered, and there is little advice available for building multivariable risk prediction models from RNA-Seq data. We specifically consider penalized regression techniques, such as the lasso and componentwise boosting, which can simultaneously consider all measurements and provide both, multivariable regression models for prediction and automated variable selection. However, they might be affected by the typical skewness, mean-variance-dependency or extreme values of RNA-Seq covariates and therefore could benefit from transformations of the latter. In an analytical part, we highlight preferential selection of covariates with large variances, which is problematic due to the mean-variance dependency of RNA-Seq data. In a simulation study, we compare different transformations of RNA-Seq data for potentially improving detection of important genes. Specifically, we consider standardization, the log transformation, a variance-stabilizing transformation, the Box-Cox transformation, and rank-based transformations. In addition, the prediction performance for real data from patients with kidney cancer and acute myeloid leukemia is considered. We show that signature size, identification performance, and prediction performance critically depend on the choice of a suitable transformation. Rank-based transformations perform well in all scenarios and can even outperform complex variance-stabilizing approaches. Generally, the results illustrate that the distribution and potential transformations of RNA-Seq data need to be considered as a critical step when building risk prediction models by penalized regression techniques.

  18. Transforming RNA-Seq data to improve the performance of prognostic gene signatures.

    Directory of Open Access Journals (Sweden)

    Isabella Zwiener

    Full Text Available Gene expression measurements have successfully been used for building prognostic signatures, i.e for identifying a short list of important genes that can predict patient outcome. Mostly microarray measurements have been considered, and there is little advice available for building multivariable risk prediction models from RNA-Seq data. We specifically consider penalized regression techniques, such as the lasso and componentwise boosting, which can simultaneously consider all measurements and provide both, multivariable regression models for prediction and automated variable selection. However, they might be affected by the typical skewness, mean-variance-dependency or extreme values of RNA-Seq covariates and therefore could benefit from transformations of the latter. In an analytical part, we highlight preferential selection of covariates with large variances, which is problematic due to the mean-variance dependency of RNA-Seq data. In a simulation study, we compare different transformations of RNA-Seq data for potentially improving detection of important genes. Specifically, we consider standardization, the log transformation, a variance-stabilizing transformation, the Box-Cox transformation, and rank-based transformations. In addition, the prediction performance for real data from patients with kidney cancer and acute myeloid leukemia is considered. We show that signature size, identification performance, and prediction performance critically depend on the choice of a suitable transformation. Rank-based transformations perform well in all scenarios and can even outperform complex variance-stabilizing approaches. Generally, the results illustrate that the distribution and potential transformations of RNA-Seq data need to be considered as a critical step when building risk prediction models by penalized regression techniques.

  19. Sufficient condition for confinement of static quarks by a vortex condensation mechanism

    International Nuclear Information System (INIS)

    Mack, G.; Petkova, V.B.

    1978-11-01

    We derive a sufficient condition for confinement of static quarks by a vortex condensation mechanism. It admits vortices that are thick at all times at the cost of constraining them to a finite volume Λi whose complement is not simply connected. The confining potential V(L) is estimated in terms of the change of free energy of a system enclosed in Λi which is induced by a change in vorticity (= singular gauge transformation applied to boundary conditions on deltaΛi). For Abelian gauge theories in 3 dimensions the confining Coulomb potential is reproduced as a lower bound. (orig.) [de

  20. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  1. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-Tc CaKFe4As4

    Science.gov (United States)

    Fente, Antón; Meier, William R.; Kong, Tai; Kogan, Vladimir G.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2018-04-01

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe4As4 . This material has a critical temperature of Tc=35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to Tc found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli-de Gennes-Matricon bound states. The peak is located above the Fermi level, showing that CaKFe4As4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. As a consequence, the vortex lattice is disordered up to 8 T.

  2. A new approach on anti-vortex devices at water intakes including a submerged water jet

    Science.gov (United States)

    Tahershamsi, Ahmad; Rahimzadeh, Hassan; Monshizadeh, Morteza; Sarkardeh, Hamed

    2018-04-01

    A new approach on anti-vortex methods as hydraulic-based anti-vortex was investigated experimentally in the present study. In the investigated method, a submerged water jet is used as the anti-vortex mechanism. The added jet acts as a source of external momentum. This leads to change the intake-induced hydrodynamic pattern in the near-field of the intake structure, which can prevent formation of undesirable intake vortices. The experiments were carried out on a horizontal pipe intake. By performing 570 test cases in two different categories, including the inclined jet with respect to the axis of the intake, and the inclined jet with respect to the water surface, the effects of the jet inclination angle on the anti-vortex performance were investigated. It was found that the inclined jet with respect to the water surface is the best alternative to consider as the water jet injection pattern. Results showed that using the inclined jet with respect to the water surface can simply reduce the amounts of the expected water jet momentum more than 50% compared to that of the similar condition of the horizontal injection pattern. Moreover, it was concluded that the intake critical submergence can easily be minimized using the inclined jet with respect to the water surface.

  3. Peristaltic modes of a single vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Kojo, Toru; Suganuma, Hideo; Tsumura, Kyosuke

    2007-01-01

    Using the Abelian Higgs model, we study the radial excitations of single vortex and their propagation modes along the vortex line. We call such beyond-stringy modes peristaltic modes of single vortex. With the profile of the static vortex, we derive the vortex-induced potential, i.e., single-particle potential for the Higgs and the photon field fluctuations around the static vortex, and investigate the coherently propagating fluctuations which correspond to the vibration of the vortex. We derive, analyze, and numerically solve the field equations of the Higgs and the photon field fluctuations around the static vortex with various Ginzburg-Landau parameter κ and topological charge n. Around the Bogomol'nyi-Prasad-Sommerfield value or critical coupling κ 2 =1/2, there appears a significant correlation between the Higgs and the photon field fluctuations mediated by the static vortex. As a result, for κ 2 =1/2, we find the characteristic new-type discrete pole of the peristaltic mode corresponding to the quasibound state of coherently fluctuating fields and the static vortex. We investigate its excitation energy, correlation energy of coherent fluctuations, spatial distributions, and the resulting magnetic flux behavior in detail. Our investigation covers not only usual type-II vortices with n=1 but also type-I and type-II vortices with n set-membership sign Z for the application to various general systems where the vortexlike objects behave as the essential degrees of freedom

  4. Internal scanning method as unique imaging method of optical vortex scanning microscope

    Science.gov (United States)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  5. Inertial mass of the Abrikosov vortex.

    Science.gov (United States)

    Chudnovsky, E M; Kuklov, A B

    2003-08-08

    We show that a large contribution to the inertial mass of the Abrikosov vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is M(l)=(m(2)(e)c(2)/64 pi alpha(2)mu lambda(4)(L))ln((lambda(L)/xi), where m(e) is the bare electron mass, c is the speed of light, alpha=e(2)/Planck's over 2 pi c approximately 1/137 is the fine structure constant, mu is the shear modulus of the solid, lambda(L) is the London penetration length, and xi is the coherence length. In conventional superconductors, this mass can be comparable to or even greater than the vortex core mass computed by Suhl [Phys. Rev. Lett. 14, 226 (1965)

  6. Versatile multi-layer Josephson junction process for vortex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Meckbach, Johannes Maximilian; Buehler, Simon; Merker, Michael; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, KIT (Germany); Buckenmaier, Kai; Gaber, Tobias; Kienzle, Uta; Neumaier, Benjamin; Goldobin, Edward; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut - Experimentalphysik II, Universitaet Tuebingen (Germany)

    2012-07-01

    In long Josephson junctions magnetic flux may penetrate the barrier resulting in a so-called Josephson-Vortex carrying one flux quantum Φ{sub 0}. In recent years a new type of Josephson-Vortex became available, which carries any arbitrary fraction Φ = -Φ{sub 0}κ/2π of magnetic flux. These fractional vortices (p-vortices) spontaneously appear at discontinuities of the Josephson phase along the junction, which in turn are created using a pair of current injectors. We present a new Nb/Al-AlO{sub x}/Nb process for the fabrication of Josephson junctions of very high quality. Placing two injector pairs along the strongly underdamped long junctions allows the investigation of fractional vortex molecules. The topological charge of each vortex and their interaction can be altered even during experiment by changing the individual injector currents. Vortex molecule states have been measured using asymmetric DC-SQUIDs coupled to the vortices by overlying pick-up loops. To uphold the p-vortices we use persistent currents, which can be altered using heat switches. Fractional vortex molecules are promising candidates for a new type of qubits.

  7. On the electron vortex beam wavefunction within a crystal.

    Science.gov (United States)

    Mendis, B G

    2015-10-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

    Science.gov (United States)

    Free, Brian A; Paley, Derek A

    2018-03-14

    Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

  9. Trailing Vortex-Induced Loads During Close Encounters in Cruise

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.

    2015-01-01

    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.

  10. Vortex Ring Interaction With a Coaxially Aligned Cylinderical Rod

    Science.gov (United States)

    Arakeri, Jaywant H.; Rajmanoharan, P.; Koochesfahani, Manoochehr

    1998-11-01

    We present results of experiments of a fully developed vortex ring interacting with a cylinderical rod, having a rounded nose, placed coaxially in line with the motion of the ring. The pressure field of the translating ring causes unsteady boundary layer separation and results in the formation of one or more ( secondary ) vortex rings, that subsequently interact. The nature and strength of the interaction depends on the ratio of the cylinder diameter to the ring diameter. For the larger diameter cylinders the vortex ring travels a few ring diameters before it breaks up. For the smaller diameter cylinders the vortex ring speed decreases slowly and, simultaneously, its diameter increases.

  11. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    Science.gov (United States)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  12. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  13. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  14. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  15. Hidden vortex lattices in a thermally paired superfluid

    International Nuclear Information System (INIS)

    Dahl, E. K.; Sudboe, A.; Babaev, E.

    2008-01-01

    We study the evolution of rotational response of a statistical mechanical model of two-component superfluid with a nondissipative drag interaction as the system undergoes a transition into a paired superfluid phase at finite temperature. The transition manifests itself in a change of (i) vortex-lattice symmetry and (ii) nature of the vortex state. Instead of a vortex lattice, the system forms a highly disordered tangle which constantly undergoes merger and reconnecting processes involving different types of vortices with a 'hidden' breakdown of translation symmetry

  16. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  17. A study on tip leakage vortex dynamics and cavitation in axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei; Zhang, Desheng; Jin, Yongxin; Shi, Weidong [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Esch, B P M van, E-mail: zds@ujs.edu.cn [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands)

    2017-06-15

    The tip leakage flows and related cavitation in the tip region of an axial-flow pump were investigated in detail using the numerical and experimental methods. The numerical results of the pump model performance were in good agreement with experimental data. The flow structures in the tip clearance were clarified clearly with detailed data involving the axial velocity and turbulent kinetic energy. When depicting the feature of vortex core, the advanced vortex identification method λ {sub 2}-criterion was used. Simultaneously, the minimum tension criterion was also applied to predict the cavitation inception for different flow rates and it is consistent with the distributions of vorticity and pressure in the vortex core. The roll-up process of TLV is highly three-dimensional and the entrainment would follow different paths. Then, both the numerical and experimental approaches show the cavitation patterns for different cavitation conditions, and it also finds that slight cavitation would promote the development of tip leakage vortex (TLV) while the TLV seems to be eliminated for a low cavitation number, especially before a specific location of blade tip due to the blade loading change induced by cavitation possibly. (paper)

  18. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  19. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    International Nuclear Information System (INIS)

    Reimann, Tommy

    2017-01-01

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  20. A New Dark Vortex on Neptune

    Science.gov (United States)

    Wong, Michael H.; Tollefson, Joshua; Hsu, Andrew I.; de Pater, Imke; Simon, Amy A.; Hueso, Ricardo; Sánchez-Lavega, Agustín; Sromovsky, Lawrence; Fry, Patrick; Luszcz-Cook, Statia; Hammel, Heidi; Delcroix, Marc; de Kleer, Katherine; Orton, Glenn S.; Baranec, Christoph

    2018-03-01

    An outburst of cloud activity on Neptune in 2015 led to speculation about whether the clouds were convective in nature, a wave phenomenon, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). The Hubble Space Telescope (HST) finally answered this question by discovering a new dark vortex at 45 degrees south planetographic latitude, named SDS-2015 for “southern dark spot discovered in 2015.” SDS-2015 is only the fifth dark vortex ever seen on Neptune. In this paper, we report on imaging of SDS-2015 using HST’s Wide Field Camera 3 across four epochs: 2015 September, 2016 May, 2016 October, and 2017 October. We find that the size of SDS-2015 did not exceed 20 degrees of longitude, more than a factor of two smaller than the Voyager dark spots, but only slightly smaller than previous northern-hemisphere dark spots. A slow (1.7–2.5 deg/year) poleward drift was observed for the vortex. Properties of SDS-2015 and its surroundings suggest that the meridional wind shear may be twice as strong at the deep level of the vortex as it is at the level of cloud-tracked winds. Over the 2015–2017 period, the dark spot’s contrast weakened from about -7 % to about -3 % , while companion clouds shifted from offset to centered, a similar evolution to some historical dark spots. The properties and evolution of SDS-2015 highlight the diversity of Neptune’s dark spots and the need for faster cadence dark spot observations in the future.

  1. Low energy consumption vortex wave flow membrane bioreactor.

    Science.gov (United States)

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  2. Control of leading edge vortex breakdown by blowing

    Science.gov (United States)

    Visser, K. D.; Iwanski, K. P.; Nelson, R. C.; Ng, T. T.

    1988-01-01

    An investigation into the effects of using a jet of air to control the vortex breakdown position on a 70 degree delta wing is presented. The specific objectives focused on optimizing the blowing positions in terms of maximum lift increments obtained for minimum blowing rates. The tests were conducted at chord Reynolds numbers of 150,000, 200,000, and 250,000 at angles of incidence of 30 and 35 degrees. Visualization and force data is presented to show the effect of the jet on the wing aerodynamic characteristics. The results indicate a jet position located at and aligned parallel to the leading edge to be the optimum. Nearness to the apex and tangency to the upper surface were also crucial factors. The influence of the jet on the leading edge vortex structure was examined using laser Doppler anemometry. Velocity surveys through the vortex showed that at high blowing rates the parallel velocity in the outer swirling region of the vortex increased and the normal velocity decreased. This resulted in a decrease in the swirling angle in the outer region. The peak core velocity was reduced and the vortex breakdown was delayed.

  3. Oblique interaction of a laminar vortex ring with a non-deformable free surface: Vortex reconnection and breakdown

    International Nuclear Information System (INIS)

    Balakrishnan, S K; Thomas, T G; Coleman, G N

    2011-01-01

    Direct Numerical Simulation (DNS) is used to study the interaction of a laminar vortex ring with a non-deformable, free-slip surface at an oblique angle of incidence. The interaction leads to the well-known phenomenon of vortex reconnection. It was found that the reconnection process leads to rapid production of small-scale vortical structures. This phenomenon was found to be related to the kinematics of the reconection process.

  4. Vortex lattice melting, pinning and kinetics

    International Nuclear Information System (INIS)

    Doniach, S.; Ryu, S.; Kapitulnik, A.

    1994-01-01

    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  5. Kaplan turbine tip vortex cavitation – analysis and prevention

    International Nuclear Information System (INIS)

    Motycak, L; Skotak, A; Kupcik, R

    2012-01-01

    The work is focused on one type of Kaplan turbine runner cavitation – a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  6. The structure and dynamics of bubble-type vortex breakdown

    Science.gov (United States)

    Spall, R. E.; Ash, R. L.; Gatski, T. B.

    1990-01-01

    A unique discrete form of the Navier-Stokes equations for unsteady, three-dimensional, incompressible flow has been used to study vortex breakdown numerically. A Burgers-type vortex was introduced along the central axis of the computational domain, and allowed to evolve in space and time. By varying the strength of the vortex and the free stream axial velocity distribution, using a previously developed Rossby number criterion as a guide, the location and size of the vortex breakdown region was controlled. While the boundaries of the vortex breakdown bubble appear to be nominally symmetric, the internal flow field is not. Consequently, the mechanisms for mixing and entrainment required to sustain the bubble region are different from those suggested by earlier axisymmetric models. Results presented in this study, for a Reynolds number of 200, are in good qualitative agreement with higher Reynolds number experimental observations, and a variety of plots have been presented to help illuminate the fluid physics.

  7. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  8. Simulations of a single vortex ring using an unbounded, regularized particle-mesh based vortex method

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore

    2014-01-01

    , unbounded particle-mesh based vortex method is used to simulate the instability, transition to turbulence and eventual destruction of a single vortex ring. From the simulation data a novel method on analyzing the dynamics of the enstrophy is presented based on the alignment of the vorticity vector...... with the principal axis of the strain rate tensor. We find that the dynamics of the enstrophy density is dominated by the local flow deformation and axis of rotation, which is used to infer some concrete tendencies related to the topology of the vorticity field....

  9. Alteration of helical vortex core without change in flow topology

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    topology. The helical symmetry as such is preserved, although the characteristic parameters of helical symmetry of the vortex core transfer from a smooth linear variation to a different trend under the influence of a non-uniform pressure gradient, causing an increase in helical pitch without changing its......The abrupt expansion of the slender vortex core with changes in flow topology is commonly known as vortex breakdown. We present new experimental observations of an alteration of the helical vortex core in wall bounded turbulent flow with abrupt growth in core size, but without change in flow...

  10. Radiation from an excited vortex in the Abelian Higgs model

    Science.gov (United States)

    Arodź, H.; Hadasz, L.

    1996-09-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found.

  11. Transformational and Transactional Leadership Impact on Organizational Performance in Pharmaceutical Industry in Yemen

    Directory of Open Access Journals (Sweden)

    مراد محمد النشمي

    2017-12-01

    Full Text Available This study aimed at revealing the impact on transformational and transactional leadership in organizational performance of Pharmaceutical Industry in Yemen. The researchers have used descriptive analytical methods to answer the study questions and test the hypotheses. Questionnaire has been used for collecting quantitative data from the study sample which is a number of 227 middle and executive management in pharmaceutical companies. The study findings show that there is significant effect of all the dimensions of transformational and transactional leadership on organizational performance. Based on the regression analysis applied in the study, results indicated that transformational leadership is of the highest influencing variables on organizational performance. The study concluded that pharmaceutical companies adoption of modern leadership styles leads to distinguished performance. Keywords: Transformational leadership, Transactional leadership, Organizational performance, Pharmaceutical Industry.

  12. A topological method for vortex identification in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Qiang; Chen, Huai; Li, Danxun [State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084 (China); Chen, Qigang, E-mail: lidx@mail.tsinghua.edu.cn [School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-15

    We present a novel vortex identification method based on structured vorticity ( ω {sub s}) of the direction field of flow (velocity vectors set to unit magnitude). As a direct measure of streamline curvature is insensitive to vortex strength, ω {sub s} is effective in detecting vortices of various strengths. The effectiveness has been tested against both analytical flows (pure shear flow, Oseen vortex flow, strong outward spiraling motion, straining flow, Taylor–Green flow) and experimental flows (closed cavity flow, closed and open channel flow). Comparison of the new method with the swirling-strength method indicates that the new method shows promise as being a simple and effective criterion for vortex identification. (paper)

  13. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  14. Vortex pinning by point defect in superconductors

    International Nuclear Information System (INIS)

    Liao Hongyin; Zhou Shiping; Du Haochen

    2003-01-01

    We apply the periodic time-dependent Ginzburg-Landau model to study vortex distribution in type-II superconductors with a point-like defect and square pinning array. A defect site will pin vortices, and a periodic pinning array with right geometric parameters, which can be any form designed in advance, shapes the vortex pattern as external magnetic field varies. The maximum length over which an attractive interaction between a pinning centre and a vortex extends is estimated to be about 6.0ξ. We also derive spatial distribution expressions for the order parameter, vector potential, magnetic field and supercurrent induced by a point defect. Theoretical results and numerical simulations are compared with each other and they are consistent

  15. Elementary pinning force for a superconducting vortex

    International Nuclear Information System (INIS)

    Hyun, O.B.; Finnemore, D.K.; Schwartzkopf, L.; Clem, J.R.

    1987-01-01

    The elementary pinning force f/sub p/ has been measured for a single vortex trapped in one of the superconducting layers of a cross-strip Josephson junction. At temperatures close to the transition temperature the vortex can be pushed across the junction by a transport current. The vortex is found to move in a small number of discrete steps before it exits the junction. The pinning force for each site is found to be asymmetric and to have a value of about 10/sup -6/ N/m at the reduced temperature, t = T/T/sub c/ = 0.95. As a function of temperature, f/sub p/ is found to vary approximately as (1-t)/sup 3/2/. .AE

  16. Development of a turbulence model for the modeling of a vortex flow; Developpement d`un modele de turbulence pour modeliser un ecoulement vortex

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, B.; Duhamel, Ph.; Cordonnier, A. [FCB Centre de Recherches, 59 - Lille (France); Florent, P. [LAMIH/LMFE, 59 - Valenciennes (France)

    1997-12-31

    The cyclones used in cement industry generally have a diameter of 4 to 6 m. However, tests on cyclones bigger than 4 m can hardly be performed and thus, it is important to study the influence of the size of the apparatus on the development of the generated vortex. A study of the structure and characteristics of the suspension inside a cyclone has been carried out. The results of the characterization of two cyclones (400 and 800 mm diameter) running without load are presented first in order to study the vortex behaviour. In parallel with this experimental study, a numerical study has been carried out and a calculation code called CYCLOP has been developed. The code, the equations of the gas flow inside the cyclone and the modifications given to the turbulent model are presented. (J.S.) 4 refs.

  17. Numerical investigation of a vortex ring impinging on a coaxial aperture

    Science.gov (United States)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr = 0.9 , and an increase in the vortex ring impulse is observed for 1.0 energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  18. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    Science.gov (United States)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  19. High-speed schlieren videography of vortex-ring impact on a wall

    Science.gov (United States)

    Kissner, Benjamin; Hargather, Michael; Settles, Gary

    2011-11-01

    Ring vortices of approximately 20 cm diameter are generated through the use of an Airzooka toy. To make the vortex visible, it is seeded with difluoroethane gas, producing a refractive-index difference with the air. A 1-meter-diameter, single-mirror, double-pass schlieren system is used to visualize the ring-vortex motion, and also to provide the wall with which the vortex collides. High-speed imaging is provided by a Photron SA-1 digital video camera. The Airzooka is fired toward the mirror almost along the optical axis of the schlieren system, so that the view of the vortex-mirror collision is normal to the path of vortex motion. Vortex-wall interactions similar to those first observed by Walker et al. (JFM 181, 1987) are recorded at high speed. The presentation will consist of a screening and discussion of these video results.

  20. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    International Nuclear Information System (INIS)

    Depondt, Ph.; Levy, J.-C.S.

    2011-01-01

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  1. Classical understanding of electron vortex beams in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yeong Deok [Department of Computer Science and Engineering, Woosuk University, Wanju, Cheonbuk, 565-701 (Korea, Republic of); Choi, Taeseung, E-mail: tschoi@swu.ac.kr [Division of Applied Food System, College of Natural Science, Seoul Women' s University, Seoul 139-774 (Korea, Republic of); School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of)

    2017-04-25

    Recently, interesting observations on electron vortex beams have been made. We propose a classical model that shows vortex-like motion due to suitably-synchronized motion of each electron's cyclotron motion in a uniform magnetic field. It is shown that some basic features of electron vortex beams in a uniform magnetic field, such as azimuthal currents, the relation between energy and kinetic angular momentum, and the parallel-axis theorem are understandable by using this classical model. We also show that the time-dependence of kinetic angular momentum of electron vortex beams could be understood as an effect of a specific nonuniform distribution of classical electrons. - Highlights: • A classical model for electron vortex beams is proposed. • The basic features of azimuthal currents could be understood by using this model. • The kinetic angular momentum of electron vortex beams is intuitively understandable.

  2. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects.

    Science.gov (United States)

    Calkoen, Emmeline E; Elbaz, Mohammed S M; Westenberg, Jos J M; Kroft, Lucia J M; Hazekamp, Mark G; Roest, Arno A W; van der Geest, Rob J

    2015-11-01

    During normal left ventricular (LV) filling, a vortex ring structure is formed distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient flow organization. We aimed to investigate whether LAVV abnormality in patients with a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring formation. Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early (E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and orientation of the vortex ring was defined, and the circularity index was calculated. Through-plane flow over the LAVV, and the vortex formation time (VFT), were quantified to analyze the relationship of vortex flow with the inflow jet. Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 19%; P = .015), and A-peak (healthy subjects 10% vs patients 44%; P = .008) was more frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients compared with controls, the vortex cores had a more-anterior and apical position, closer to the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the vortex core closely resembled the valve shape, and its orientation was related to the LV inflow direction. This study quantitatively shows the influence of abnormal LAVV and LV inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, compared with healthy subjects. Copyright © 2015. Published by Elsevier Inc.

  3. Vortex (particle) and antivortex (hole) doping into superconducting network

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Shimizu, Makoto; Matsushima, Yoshiaki; Hayashi, Masahiko; Ebisawa, Hiromichi; Sato, Osamu; Kato, Masaru; Satoh, Kazuo

    2007-01-01

    Superconducting finite-sized Pb square networks with 10 x 10 square holes fabricated by electron beam lithography have been investigated in view of particle (vortex) doping into superconducting networks. Vortex image observations were carried out by a SQUID microscope to compare with predictions from the Ginzburg-Landau theory. We found the exactly reversed pattern between the vortex-doping x and the antivortex doping 1 - x into the fully occupied network (x = 1/4)

  4. A Refined Model for Calculation of the Vortex Tube Thermal Characteristics

    Science.gov (United States)

    Biryuk, V. V.; Gorshkalev, A. A.; Uglanov, D. A.; Urlapkin, V. V.; Korneev, S. S.

    2018-01-01

    The article deals with the main types of vortex tubes, provides a brief description of the fundamental principles of the vortex interaction hypothesis. A physical process is represented reflecting the physical essence of the gas flow energetic separation process in the vortex tube due to the intensive turbulent heat exchange from the forced vortex to the free one. A method for refinement of the design characteristics for the cold and hot gas temperatures in a vortex tube through the employment of the gas-dynamic and thermodynamic corrections is proposed. A refined calculation method allows reaching close agreement between the cold gas temperature and the experimental values.

  5. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Porfiri, Maurizio [Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York 11201 (United States)

    2015-09-21

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.

  6. Vortex-ring-fractal Structure of Atom and Molecule

    International Nuclear Information System (INIS)

    Osmera, Pavel

    2010-01-01

    This chapter is an attempt to attain a new and profound model of the nature's structure using a vortex-ring-fractal theory (VRFT). Scientists have been trying to explain some phenomena in Nature that have not been explained so far. The aim of this paper is the vortex-ring-fractal modeling of elements in the Mendeleev's periodic table, which is not in contradiction to the known laws of nature. We would like to find some acceptable structure model of the hydrogen as a vortex-fractal-coil structure of the proton and a vortex-fractal-ring structure of the electron. It is known that planetary model of the hydrogen atom is not right, the classical quantum model is too abstract. Our imagination is that the hydrogen is a levitation system of the proton and the electron. Structures of helium, oxygen, and carbon atoms and a hydrogen molecule are presented too.

  7. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    Science.gov (United States)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  8. A numerical study of viscous vortex rings using a spectral method

    Science.gov (United States)

    Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.

    1988-01-01

    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.

  9. Evolution of a Network of Vortex Loops in He-II: Exact Solution of the Rate Equation

    International Nuclear Information System (INIS)

    Nemirovskii, Sergey K.

    2006-01-01

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact powerlike solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l)∝l -5/2 obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection

  10. Evolution of a network of vortex loops in He-II: exact solution of the rate equation.

    Science.gov (United States)

    Nemirovskii, Sergey K

    2006-01-13

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the "rate equation" for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact power-like solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l) proportional l(-5/2) obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection.

  11. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  12. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...... rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos....

  13. Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign

    Directory of Open Access Journals (Sweden)

    S. Lossow

    2009-07-01

    Full Text Available The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios.

    From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1 a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.

  14. Vortex ring state by full-field actuator disc model

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.N.; Shen, W.Z.; Munduate, X. [DTU, Dept. of Energy Engineering, Lyngby (Denmark)

    1997-08-01

    One-dimensional momentum theory provides a simple analytical tool for analysing the gross flow behavior of lifting propellers and rotors. Combined with a blade-element strip-theory approach, it has for many years been the most popular model for load and performance predictions of wind turbines. The model works well at moderate and high wind velocities, but is not reliable at small wind velocities, where the expansion of the wake is large and the flow field behind the rotor dominated by turbulent mixing. This is normally referred to as the turbulent wake state or the vortex ring state. In the vortex ring state, momentum theory predicts a decrease of thrust whereas the opposite is found from experiments. The reason for the disagreement is that recirculation takes place behind the rotor with the consequence that the stream tubes past the rotor becomes effectively chocked. This represents a condition at which streamlines no longer carry fluid elements from far upstream to far downstream, hence one-dimensional momentum theory is invalid and empirical corrections have to be introduced. More sophisticated analytical or semi-analytical rotor models have been used to describe stationary flow fields for heavily loaded propellers. In recent years generalized actuator disc models have been developed, but up to now no detailed computations of the turbulent wake state or the vortex ring state have been performed. In the present work the phenomenon is simulated by direct simulation of the Navier-Stokes equations, where the influence of the rotor on the flow field is modelled simply by replacing the blades by an actuator disc with a constant normal load. (EG) 13 refs.

  15. Radiation from an excited vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Arodz, H.; Hadasz, L.

    1996-01-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found. copyright 1996 The American Physical Society

  16. On the dynamics of a plasma vortex street and its topological signatures

    International Nuclear Information System (INIS)

    Siregar, E.; Stribling, W.T.; Goldstein, M.L.

    1994-01-01

    A plasma vortex street configuration can evolve when two velocity and one magnetic shear layer interact strongly. A study of the interaction between two- and three-dimensional plasma modes and a mean sheared magnetic field is undertaken using a three-dimensional magnetohydrodynamic spectral Galerkin computation. The initial state is a simple magnetic shear in a plane perpendicular to the plasma velocity shear plane. In a very weak magnetic field, secondary instabilities (three-dimensional modes), expressed by the kinking of vortex tubes, lead to plasma flow along and around the axes of the vortex cores, creating characteristic patterns of kinetic helicity and linkages between vortex filaments. Three-dimensionality leads to the vortex breakdown process. A strong sheared magnetic field inhibits the kinking of vortex tubes, maintaining two-dimensionality. This inhibits vortex breakdown over long dynamical times. There is an anticorrelation in time between linkage indices of the vortex filament (related to kinetic helicity), suggesting that the ellipticity axes of the vortex cores along the street undergo a global inphase evolution. This anticorrelation has a dynamical interpretation. It extends to a relaxing plasma in the Navier--Stokes flow notion that helical regions of opposite helicities interact and screen each other off so that the global helicity remains bounded

  17. Electromagnetic radiation from vortex flow in type-II superconductors

    OpenAIRE

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, $\\omega_0=2\\pi v/a$, up to a superconducting gap, $\\Delta/\\hbar$. Here $v$ is the velocity of the vortex lattice and $a$ is the intervortex spacing. We compute radiation power and show that this effect can be used for generation of terahertz radiation and for characterization of moving vortex lattices.

  18. Possible nodal vortex state in CeRu2

    International Nuclear Information System (INIS)

    Kadono, R.; Higemoto, W.; Koda, A.; Ohishi, K.; Yokoo, T.; Akimitsu, J.; Hedo, M.; Inada, Y.; Onuki, Y.; Yamamoto, E.

    2001-01-01

    The microscopic property of magnetic vortices in the mixed state of a high-quality CeRu 2 crystal has been studied by muon spin rotation. We have found that the spatial distribution of magnetic induction B(r) probed by muons is perfectly described by the London model for the triangular vortex lattice with appropriate modifications to incorporate the high-field cutoff around the vortex core and the effect of long-range defects in the vortex lattice structure at lower fields. The vortex core radius is proportional to H (β-1)/2 with β≅0.53 (H being the magnetic field), which is in good agreement with the recently observed nonlinear field dependence of the electronic specific heat coefficient γ∝H β . In particular, the anomalous increase of magnetic penetration depth in accordance with the peak effect in dc magnetization (≥H * ≅3 T at 2.0 K) has been confirmed; this cannot be explained by the conventional pair-breaking effect due to magnetic field. In addition, the spontaneous enhancement of flux pinning, which is also associated with the peak effect, has been demonstrated microscopically. These results strongly suggest the onset of collective pinning induced by a new vortex state having an anomalously enhanced quasiparticle density of states for H≥H *

  19. Towards a string formulation of vortex dynamics

    International Nuclear Information System (INIS)

    Elsebeth Schroeder; Ola Toernkvist

    1998-01-01

    We derive an exact equation of motion for a non-relativistic vortex in two- and three-dimensional models with a complex field. The velocity is given in terms of gradients of the complex field at the vortex position. We discuss the problem of reducing the field dynamics to a closed dynamical system with non-locally interacting strings as the fundamental degrees of freedom

  20. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  1. Vortex-flow aerodynamics - An emerging design capability

    Science.gov (United States)

    Campbell, J. F.

    1981-01-01

    Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.

  2. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor

    2008-01-01

    a wind turbine blade. The low Reynolds number is chosen on the basis that this is a fundamental investigation of the structures of the flow induced by vortex generators and the fact that one obtains a thicker boundary layer and larger structures evoked by the actuating devices, which are easier...... generators are applied. The idea behind the experiments is that the results will be offered for validation of modeling of the effect of vortex generators using various numerical codes. Initial large eddy simulation (LES) computations have been performed that show the same qualitative behaviour...

  3. Ion-pair vortex assisted liquid-liquid microextraction with back extraction coupled with high performance liquid chromatography-UV for the determination of metformin in plasma.

    Science.gov (United States)

    Alshishani, Anas; Makahleh, Ahmad; Yap, Hui Fang; Gubartallah, Elbaleeq Adam; Salhimi, Salizawati Muhamad; Saad, Bahruddin

    2016-12-01

    A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r 2 >0.99 over the range of 20-2000µgL -1 . The limits of detection and quantitation were 1.4 and 4.1µgL -1 , respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.

    Science.gov (United States)

    Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan

    2017-11-01

    The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.

  5. Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams.

    Science.gov (United States)

    Porras, Miguel A; Ramos, Francisco

    2017-09-01

    The applications of vortex solitons are severely limited by the diffraction and self-defocusing spreading of the background beam where they are nested. Nonlinear Bessel beams in self-defocusing media are nondiffracting, flattop beams where the nested vortex solitons can survive for propagation distances that are one order of magnitude larger than in the Gaussian or super-Gaussian beams. The dynamics of the vortex solitons is studied numerically and found to approach that in the ideal, uniform background, preventing vortex spiraling and decay, which eases vortex steering for applications.

  6. Classical hydrodynamics of an ideal incompressible fluid and vortex motion in helium II

    International Nuclear Information System (INIS)

    Mamaladze, Y.G.; Kiknadze, L.V.

    1982-01-01

    Vortex motion in the vicinity of a protuberance at a bounding surface in rotating helium II and in plane slits is considered from the standpoint of the vortex-formation mechanism, the equilibrium spatial vortex distribution, and the possibility of supercritical quasidissipationless vortex flow

  7. Experimental parameter study for passive vortex generators on a 30% thick airfoil

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; De Tavernier, D.A.M.; Timmer, W.A.; van Bussel, G.J.W.

    2018-01-01

    Passive vane-type vortex generators (VGs) are commonly used on wind turbine blades to mitigate the effects of flow separation. However, significant uncertainty surrounds VG design guidelines. Understanding the influence of VG parameters on airfoil performance requires a systematic approach

  8. Non-ionic detergent Triton X-114 Based vortex- synchronized matrix solid-phase dispersion method for the simultaneous determination of six compounds with various polarities from Forsythiae Fructus by ultra high-performance liquid chromatography.

    Science.gov (United States)

    Du, Kunze; Li, Jin; Tian, Fei; Chang, Yan-Xu

    2018-02-20

    A simple nonionic detergent - based vortex- synchronized matrix solid-phase dispersion (ND-VSMSPD) method was developed to extract bioactive compounds in Forsythiae Fructus coupled with ultra high-performance liquid chromatography (UHPLC). Nonionic detergent Triton 114 was firstly used as a green elution reagent in vortex- synchronized MSPD procedure. The optimum parameters were investigated to attain the best results, including Florisil as sorbent, 2mL 10% (v/v) nonionic detergent Triton X-114 as the elution reagent, 1:1 of sample/sorbent ratio, grinding for 3min, and whirling for 2min. The recoveries of the six compounds in Forsythiae Fructus were in the range of 95-104% (RSD arctigenin (r≥0.999). It was proved that the extraction yields of almost all compounds attained by the established vortex- synchronized MSPD, which required lower sample, reagent and time, were higher than the normal MSPD and the traditional ultrasonic-assisted extraction. Consequently, this developed vortex- synchronized MSPD coupled with simple UHPLC method could be efficiently applies to extract and analyze the target compounds in real Forsythiae Fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Featured Image: A New Dark Vortex on Neptune

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This remarkable series of images by the Hubble Space Telescope (click for the full view) track a dark vortex only the fifth ever observed on Neptune as it evolves in Neptunes atmosphere. These Hubble images, presented in a recent study led by Michael Wong (University of California, Berkeley), were taken in 2015 September, 2016 May, 2016 October, and 2017 October; the observations have monitored the evolution of the vortex as it has gradually weakened and drifted polewards. Confirmation of the vortex solved a puzzle that arose in 2015, when astronomers spotted an unexplained outburst of cloud activity on Neptune. This outburst was likely a group of bright companion clouds that form as air flows over high-pressure dark vortices, causing gases to freeze into methane ice crystals. To learn more about what the authors have since learned by studying this vortex, check out the paper below.CitationMichael H. Wong et al 2018 AJ 155 117. doi:10.3847/1538-3881/aaa6d6

  10. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence

    CERN Document Server

    Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6

    2008-01-01

    This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...

  11. Scalable fast multipole methods for vortex element methods

    KAUST Repository

    Hu, Qi

    2012-11-01

    We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.

  12. Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels

    Directory of Open Access Journals (Sweden)

    Saluto Lidia

    2016-06-01

    Full Text Available We investigate the evolution equation for the average vortex length per unit volume L of superfluid turbulence in inhomogeneous flows. Inhomogeneities in line density L andincounterflowvelocity V may contribute to vortex diffusion, vortex formation and vortex destruction. We explore two different families of contributions: those arising from asecondorder expansionofthe Vinenequationitself, andthose whichare notrelated to the original Vinen equation but must be stated by adding to it second-order terms obtained from dimensional analysis or other physical arguments.

  13. Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition

    International Nuclear Information System (INIS)

    Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.

    2015-01-01

    In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30° angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50 and 100%) and four water mass flow rates (50, 40, 30 and 20 g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition. - Highlights: • A vortex generator heat exchanger is used for diesel exhaust heat recovery. • A thermodynamic analysis is performed for experimental data. • Exergy recovery, irreversibility are calculated in different exhaust gases amount. • Optimization study is performed using response surface method

  14. Uncovering the underlying relationship between transformational leaders and followers’ task performance

    NARCIS (Netherlands)

    Breevaart, K.; Bakker, A.B.; Demerouti, E.; Sleebos, D.M.; Maduro, V.

    2014-01-01

    The purpose of the present study was to unravel the mechanisms underlying the relationship between transformational leadership, follower work engagement, and follower job performance and to investigate a possible boundary condition of transformational leadership. We used structural equation modeling

  15. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    Science.gov (United States)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron

  16. Electromagnetic radiation from vortex flow in Type-II superconductors.

    Science.gov (United States)

    Bulaevskii, L N; Chudnovsky, E M

    2006-11-10

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, omega(0)=2pi v/a, up to a superconducting gap, Delta/variant Planck's over 2pi. Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  17. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, ω 0 =2πv/a, up to a superconducting gap, Δ/(ℎ/2π). Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices

  18. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Directory of Open Access Journals (Sweden)

    Qyyum Muhammad Abdul

    2017-01-01

    Full Text Available This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG. A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD model was used to simulate the vortex tube with nitrogen (N2 as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  19. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong

    2017-11-01

    This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  20. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.

    Science.gov (United States)

    Lukin, Igor P

    2016-04-20

    The orbital angular momentum of vortex Bessel-Gaussian beams propagating in turbulent atmosphere is studied theoretically. The field of an optical beam is determined through the solution of the paraxial wave equation for a randomly inhomogeneous medium with fluctuations of the refraction index of the turbulent atmosphere. Peculiarities in the behavior of the total power of the vortex Bessel-Gaussian beam at the receiver (or transmitter) are examined. The dependence of the total power of the vortex Bessel-Gaussian beam on optical beam parameters, namely, the transverse wave number of optical radiation, amplitude factor radius, and, especially, topological charge of the optical beam, is analyzed in detail. It turns out that the mean value of the orbital angular momentum of the vortex Bessel-Gaussian beam remains constant during propagation in the turbulent atmosphere. It is shown that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam propagating in turbulent atmosphere calculated with the "mean-intensity" approximation is equal to zero identically. Thus, it is possible to declare confidently that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam in turbulent atmosphere is not very large.

  1. Suppression of vortex shedding around a square cylinder using ...

    Indian Academy of Sciences (India)

    control of vortex shedding of square cylinders using blowing or suction. ... also showed complete suppression of vortex shedding if suction velocity falls between 0.40 .... equations such that mass balance (continuity) is satisfied simultaneously.

  2. The vortex-finding property of maximal center (and other) gauges

    International Nuclear Information System (INIS)

    Faber, M.; Greensite, J.; Olejnik, S.; Yamada, D.

    1999-01-01

    The authors argue that the vortex-finding property of maximal center gauge, i.e. the ability of this gauge to locate center vortices inserted by hand on any given lattice, is the key to its success in extracting the vortex content of thermalized lattice configurations. The authors explain how this property comes about, and why it is expected not only in maximal center gauge, but also in an infinite class of gauge conditions based on adjoint-representation link variables. In principle, the vortex-finding property can be foiled by Gribov copies. This fact is relevant to a gauge-fixing procedure devised by Kovacs and Tomboulis, where they show that the loss of center dominance, found in their procedure, is explained by a corresponding loss of the vortex-finding property. The dependence of center dominance on the vortex-finding property is demonstrated numerically in a number of other gauges

  3. Activation energy of fractional vortices and spectroscopy of a vortex molecule in long Josephson junction; Aktivierungsenergie fraktionaler Flusswirbel und Spektroskopie an Vortex-Molekuelen in langen Josephsonkontakten

    Energy Technology Data Exchange (ETDEWEB)

    Buckenmaier, Kai

    2010-06-09

    This thesis is divided into two parts, the measurement of the activation energy of a fractional vortex and the spectroscopy of a vortex-molecule. Fractional vortices can be studied in long 0-{kappa} Josephson junctions, where a jump of the Josephson phase is created artificially with a pair of tiny current injectors. To compensate for this phase discontinuity, a {rho} vortex is formed. Here, {rho} describes the vortex's so called topological charge. The {rho} vortices are pinned at the discontinuity and they carry the fraction ({rho}/2).{phi}{sub 0} of magnetic flux, with the magnetic flux quantum {phi}{sub 0} 2.07.10{sup -15}. Two stable vortex configurations are possible, a direct Vortex and a complementary one. {rho} depends on the injector current. When the bias current of the junction exceeds a characteristic threshold, which dependents on {rho}, the Lorentz force is bigger than the pinning force of the vortex and a fluxon is pulled away. In this case a complementary ({rho}-2{pi}) vortex is left behind. This switching of the {rho} vortex and the resulting emission of a fluxon can be described as a Kramers like escape of a particle out of a tilted washboard potential. The washboard potential is tilted to the point where the barrier is small enough, so that the particle can escape via thermal or quantum fluctuations. In the case of thermal fluctuations the barrier height is called activation energy. The activation energy can be determined by measuring the junction's switching current statistics. In this thesis, the activation energy, necessary for the vortex escape, was measured as a function of {rho} and a homogenous external magnetic field perpendicular to the junction. The main focus was the investigation of 0-{pi} junctions. The temperature dependence of the activation energy was investigated, too. It turns out, that the transition-state-theory is convenient to describe the switching probability of the standard Nb-AlO{sub x}-Nb junctions at 4.2 K

  4. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  5. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  6. Numerical study on physical mechanism of vortex breakdown occurrence in spin-up process

    OpenAIRE

    "小出, 輝明"; Teruaki", "Koide

    2008-01-01

    "A Numerical study presented on a vortex breakdown in spin-up process in an enclosed cylindrical container. In a transitional state, momentary vortex breakdowns can occur for particular parameter values ofthe Reynolds number and aspect ratio where no vortex breakdown appears in a steady state. This transient vortex breakdown flow is convenient to consider a mechanism for the occurrence of a vortex breakdown. It isdiscussed that periodical increase and decrease of angular momentum in upstream ...

  7. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    International Nuclear Information System (INIS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles. - Highlights: • States of polarization of vortex beams affect the optically induced orbital motion of particles. • The dependences of the force and orbital torque on the topological charge, the size and the absorptivity of particles were calculated. • Focused vortex beams with circular, radial or azimuthal polarizations induce a uniform orbital motion on particles. • Particles experience a non-uniform orbital motion in the focused linearly polarized vortex beam. • The circularly polarized vortex beam is a superior candidate for rotating particles.

  8. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders

    Science.gov (United States)

    Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng

    2018-03-01

    The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.

  9. Performance versus Values in Sustainability Transformation of Food Systems

    Directory of Open Access Journals (Sweden)

    Hugo F. Alrøe

    2017-02-01

    Full Text Available Questions have been raised on what role the knowledge provided by sustainability science actually plays in the transition to sustainability and what role it may play in the future. In this paper we investigate different approaches to sustainability transformation of food systems by analyzing the rationale behind transformative acts-the ground that the direct agents of change act upon- and how the type of rationale is connected to the role of research and how the agents of change are involved. To do this we employ Max Weber’s distinction between instrumental rationality and value-rationality in social action. In particular, we compare two different approaches to the role of research in sustainability transformation: (1 Performance-based approaches that measure performance and set up sustainability indicator targets and benchmarks to motivate the agents in the food system to change; (2 Values-based approaches that aim at communicating and mediating sustainability values to enable coordinated and cooperative action to transform the food system. We identify their respective strengths and weaknesses based on a cross-case analysis of four cases, and propose that the two approaches, like Weber’s two types of rationality, are complementary-because they are based on complementary observer stances—and that an optimal in-between approach therefore cannot be found. However, there are options for reflexive learning by observing one perspective-and its possible blind spots-from the vantage point of the other, so we suggest that new strategies for sustainability transformation can be found based on reflexive rationality as a third and distinct type of rationality.

  10. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    International Nuclear Information System (INIS)

    Candel, I; Ioana, C; Bunea, F; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Dunca, G; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Bucur, D M; Division Technique Générale, Grenoble (France))" data-affiliation=" (Electricité de France, Division Technique Générale, Grenoble (France))" >Reeb, B; Ciocan, G D

    2014-01-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system

  11. Athlete Characteristics and Team Competitive Performance as Moderators for the Relationship Between Coach Transformational Leadership and Athlete Performance.

    Science.gov (United States)

    Bormann, Kai C; Schulte-Coerne, Paul; Diebig, Mathias; Rowold, Jens

    2016-06-01

    The goal of this study is to examine the effects of coaches' transformational leadership on player performance. To advance existing research, we examine (a) effects on individual and team performance and (b) consider joint moderating effects of players' win orientation and teams' competitive performance on the leadership- individual performance link. In a three-source sample from German handball teams, we collected data on 336 players and 30 coaches and teams. Results showed positive main effects of transformational leadership's facet of articulating a vision (AV) on team and individual performance and negative main effects of providing an appropriate model (PAM) on team performance. With regard to moderating effects, AV increased and PAM decreased individual performance when both moderators were low, and intellectual stimulation had a positive effect when both were high. This study expands insights into the potential and limitation of transformational leadership with a strong focus on the role of situational contingencies.

  12. Numerical simulation of fuel mixing with air in laminar buoyant vortex rings

    International Nuclear Information System (INIS)

    Prasad, M. Jogendra; Sundararajan, T.

    2016-01-01

    Highlights: • At large Reynolds number, small vortex ring is formed due to thin boundary layer. • At higher stroke to diameter ratio, larger vortex is formed which travels farther. • After formation, trailing stem transfers circulation and fuel to the ring by buoyancy. • Formation number of buoyant vortex ring is higher than that of non-buoyant ring. • Buoyant fuel puffs entrain more air than non-buoyant air-premixed fuel puffs. - Abstract: The formation and evolution of vortex rings consisting of methane-air mixtures have been numerically simulated for different stroke to diameter (L/D) ratios (1.5, 3.5 and 6), Reynolds numbers (1000 and 2000) and initial mixture compositions (fuel with 0%, 15% and 30% of stoichiometric air). The numerical simulations are first validated by comparing with the results of earlier computational studies and also with in-house data from smoke visualization studies. In pure methane case, buoyancy significantly aids the upward rise of the vortex ring. The increase of vortex core height with time is faster for larger L/D ratio, contributed mainly by the larger initial puff volume. The radial size of the vortex also increases rapidly with time during the formation stage; this is followed by a slight shrinkage when piston comes to a stop. Later, a slow radial growth of the ring occurs due to the entrainment of ambient air, except during vortex pinch-off. The boundary layer thickness δ_e at orifice exit decreases as Re"−"0"."5 at a fixed L/D ratio; this in turn, results in a vortex of smaller size and circulation level, at a relatively higher Reynolds number. For L/D values greater than the critical value, a trailing stem is formed behind the ring vortex which feeds circulation and fuel into the vortex ring in the later stages of vortex evolution. Mass fraction contours indicate that fuel-air mixing is more effective within the vortex than in the stem. Ambient air entrainment is larger at higher L/D ratio and lower Re, for the

  13. Copepods' Response to Burgers' Vortex: Deconstructing Interactions of Copepods with Turbulence.

    Science.gov (United States)

    Webster, D R; Young, D L; Yen, J

    2015-10-01

    This study examined the behavioral response of two marine copepods, Acartia tonsa and Temora longicornis, to a Burgers' vortex intended to mimic the characteristics of a turbulent vortex that a copepod is likely to encounter in the coastal or near-surface zone. Behavioral assays of copepods were conducted for two vortices that correspond to turbulent conditions with mean dissipation rates of turbulence of 0.009 and 0.096 cm(2) s(-3) (denoted turbulence level 2 and level 3, respectively). In particular, the Burgers' vortex parameters (i.e., circulation and rate of axial strain rate) were specified to match a vortex corresponding to the median rate of dissipation due to viscosity for each target level of turbulence. Three-dimensional trajectories were quantified for analysis of swimming kinematics and response to hydrodynamic cues. Acartia tonsa did not significantly respond to the vortex corresponding to turbulence level 2. In contrast, A. tonsa significantly altered their swimming behavior in the turbulence-level-3 vortex, including increased relative speed of swimming, angle of alignment of the trajectory with the axis of the vortex, ratio of net-to-gross displacement, and acceleration during escape, along with decreased turn frequency (relative to stagnant control conditions). Further, the location of A. tonsa escapes was preferentially in the core of the stronger vortex, indicating that the hydrodynamic cue triggering the distinctive escape behavior was vorticity. In contrast, T. longicornis did not reveal a behavioral response to either the turbulence level 2 or the level 3 vortex. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Transforming and Turning around Low-Performing Schools: The Role of Online Learning

    Science.gov (United States)

    Corry, Michael; Carlson-Bancroft, Angela

    2014-01-01

    This review of the literature examines online learning as a core strategy for bold, dramatic curricular reform within transformational or turnaround models in improving low-performing K-12 schools. The analysis of the literature in this area found benefits of online learning in transforming and turning around low-performing schools to include: (a)…

  15. Longitudinal disordering of vortex lattices in anisotropic superconductors

    International Nuclear Information System (INIS)

    Harshman, D.R.; Brandt, E.H.; Fiory, A.T.; Inui, M.; Mitzi, D.B.; Schneemeyer, L.F.; Waszczak, J.V.

    1993-01-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi 2 Sr 2 CaCu 2 O 8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa 2 Cu 3 O 7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction

  16. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  17. Transformational leadership and employee safety performance: a within-person, between-jobs design.

    Science.gov (United States)

    Inness, Michelle; Turner, Nick; Barling, Julian; Stride, Chris B

    2010-07-01

    We investigated the extent to which the safety performance (i.e., self-reported safety compliance and safety participation) of employees with 2 jobs was predicted by their respective supervisors' transformational leadership behaviors. We compared 2 within-person models: a context-specific model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance only in that context) and a context-spillover model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance in the same and other contexts). Our sample comprised 159 "moonlighters" (73 men, 86 women): employees who simultaneously hold 2 different jobs, each with a different supervisor, providing within-person data on the influence of different supervisors on employee safety performance across 2 job contexts. Having controlled for individual differences (negative affectivity and conscientiousness) and work characteristics (e.g., hours worked and length of relationship with supervisor), the context-specific model provided the best fit to the data among alternative nested models. Implications for the role of transformational leadership in promoting workplace safety are discussed.

  18. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  19. Copepod behavior response to Burgers' vortex treatments mimicking turbulent eddies

    Science.gov (United States)

    Elmi, D.; Webster, D. R.; Fields, D. M.

    2017-11-01

    Copepods detect hydrodynamic cues in the water by their mechanosensory setae. We expect that copepods sense the flow structure of turbulent eddies in order to evoke behavioral responses that lead to population-scale distribution patterns. In this study, the copepods' response to the Burgers' vortex is examined. The Burgers' vortex is a steady-state solution of three-dimensional Navier-Stokes equations that allows us to mimic turbulent vortices at the appropriate scale and eliminate the stochastic nature of turbulence. We generate vortices in the laboratory oriented in the horizontal and vertical directions each with four intensity levels. The objective of including vortex orientation as a parameter in the study is to quantify directional responses that lead to vertical population distribution patterns. The four intensity levels correspond to target vortex characteristics of eddies corresponding to the typical dissipative vortices in isotropic turbulence with mean turbulent dissipation rates in the range of 0.002 to 0.25 cm2/s3. These vortices mimic the characteristics of eddies that copepods most likely encounter in coastal zones. We hypothesize that the response of copepods to hydrodynamic features depends on their sensory architecture and relative orientation with respect to gravity. Tomo-PIV is used to quantify the vortex circulation and axial strain rate for each vortex treatment. Three-dimensional trajectories of the copepod species Calanus finmarchicus are analyzed to examine their swimming kinematics in and around the vortex to quantify the hydrodynamic cues that trigger their behavior.

  20. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    A detailed comparison between four different models of vortex generators is presented in this paper. To that end, a single Vortex Generator on a flat plate test case has been designed and solved by the following models. The first one is the traditional mesh-resolved VG and the second one, called...