WorldWideScience

Sample records for vortex pyrolysis reactors

  1. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  2. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  3. Fast Pyrolysis of Lignin Using a Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sárossy, Zsuzsa

    2013-01-01

    Fast pyrolysis of lignin from an ethanol plant was investigated on a lab scale pyrolysis centrifuge reactor (PCR) with respect to pyrolysis temperature, reactor gas residence time, and feed rate. A maximal organic oil yield of 34 wt % dry basis (db) (bio-oil yield of 43 wt % db) is obtained...... at temperatures of 500−550 °C, reactor gas residence time of 0.8 s, and feed rate of 5.6 g/min. Gas chromatography mass spectrometry and size-exclusion chromatography were used to characterize the Chemical properties of the lignin oils. Acetic acid, levoglucosan, guaiacol, syringols, and p-vinylguaiacol are found...... to be major chemical components in the lignin oil. The maximal yields of 0.62, 0.67, and 0.38 wt % db were obtained for syringol, p-vinylguaiacol, and guaiacol, respectively. The reactor temperature effect was investigated in a range of 450−600 °C and has a considerable effect on the observed chemical...

  4. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Bech, Niels; Larsen, Morten Boberg; Jensen, Peter Arendt

    2009-01-01

    Less than a handful of solid-convective pyrolysis reactors for the production of liquid fuel from biomass have been presented and for only a single reactor a detailed mathematical model has been presented. In this article we present a predictive mathematical model of the pyrolysis process...... in the Pyrolysis Centrifuge Reactor, a novel solid-convective flash pyrolysis reactor. The model relies on the original concept for ablative pyrolysis of particles being pyrolysed through the formation of an intermediate liquid compound which is further degraded to form liquid organics, char, and gas. To describe...... that the reacting particle continuously shed the formed char layer....

  5. Pyrolysis of Rubber in a Screw Reactor

    Science.gov (United States)

    Lozhechnik, A. V.; Savchin, V. V.

    2016-11-01

    On the basis of an analysis of thermal methods described in the literature and from the results of experimental investigations of steam conversion, the authors have developed and created a facility for thermal processing of rubber waste. Rubber crumb was used as the raw material; the temperature in the reactor was 500°C; nitrogen, steam, and a mixture of light hydrocarbons (noncondensable part of pyrolysis products) represented the working medium. The pyrolysis yielded 36-38% of a solid fraction, 54-56% of a liquid hydrocarbon fraction, and 6-9% of noncondensable gases. Changes in the composition of the gas mixture have been determined at different stages of processing. Gas chromatography of pyrolysis gases has shown that the basic gases produced by pyrolysis are H2 and hydrocarbons C2H4, C3H6, C3H8, C4H8, C2H6, C3H6O2, and C4H10, and a small amount of H2S, CO, and CO2. Noncondensable gases will be used as a fuel to heat the reactor and to implement the process.

  6. Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations

    Science.gov (United States)

    2017-05-23

    NUMBER (Include area code) 23 May 2017 Briefing Charts 25 April 2017 - 23 May 2017 Improved Pyrolysis Micro-reactor Design via Computational Fluid... PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release...Approved for public release, distribution unlimited. PA Clearance 17247 Chen-Source (>240 references from SciFinder as of 5/1/17): Flash pyrolysis

  7. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Dmitry Yu. Murzin

    2008-09-01

    Full Text Available In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood, was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5°C/min was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.

  8. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  9. Simulation of hydrocarbons pyrolysis in a fast-mixing reactor

    Institute of Scientific and Technical Information of China (English)

    MG Ktalkherman; IG Namyatov

    2015-01-01

    Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals (ethylene, propyl-ene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of high-temperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature (up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas (LPG) and naphtha are used as a feedstock. The detailed data are obtain-ed on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases (LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantial y higher than in current technology.

  10. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    Science.gov (United States)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of

  11. Pyrolysis of cassava rhizome in a counter-rotating twin screw reactor unit.

    Science.gov (United States)

    Sirijanusorn, Somsak; Sriprateep, Keartisak; Pattiya, Adisak

    2013-07-01

    A counter-rotating twin screw reactor unit was investigated for its behaviour in the pyrolysis of cassava rhizome biomass. Several parameters such as pyrolysis temperature in the range of 500-700°C, biomass particle size of twin screw reactor was relatively low, whereas the solids content was relatively high, compared to some other reactor configurations.

  12. Applied thermal pyrolysis of cogongrass in twin screw reactor

    Science.gov (United States)

    Promdee, K.; Vitidsant, T.

    2014-08-01

    Thermal pyrolysis by heat transfer model can be solved the control temperature in twin screw feeder for produce bio-oil from Cogongrass by novel continuous pyrolysis reactor. In this study, all yield were expressed on a dry and their values were taken as the average of the thermal controlled. Thermal of pyrolysis were carried out at 400-500°C. The products yield calculation showed that the liquid yield of Cogongrass by pyrolysis was higher than that solid and gas yield, as highest of 52.62%, at 500°C, and the other of liquid yield obtained from Cogongrass were 40.56, and 46.45%, at 400, and 450°C, respectively. When separate liquid phase be composed of the bio-oil was highest 37.39%, at 500°C. Indicated that biomass from Cogongrass had good received yields because of low solid yield average and gas yield and high liquid yield average. The compounds detected in bio-oil from Cogongrass showed the functional group, especially; Phenol, Phenol 2,5-dimethyl, Benzene 1-ethyl-4-methoxy, 2-Cyclopenten-1-one, 2,3-dimethyl, Benzene 1-ethyl-3-methyl.

  13. Waste management of tar water from pyrolysis and gasification of biomass in biogas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mogensen, A.S.; Schmidt, J.E.; Angelidaki, R.; Ahring, B.K.

    1998-08-01

    The digestion and detoxification of pyrolysis condensate and wet oxidised pyrolysis condensate was studied in different reactor systems: combined anaerobic and denitrifying UASB reactors, conventional UASB reactors and CSTR`s. The pyrolysis condensate and the wet oxidised condensate have a biogas potential of 190 m{sup 3}/ton VS, and the low amount of suspended solids is allowing the waste water to be treated in the UASB reactor as well as in the CSTR. The pyrolysis condensate could successfully be degraded in a CSTR in a 5% concentration when co-digested with manure, and the wet oxidised pyrolysis condensate could be degraded when added at a concentration of 30%. The UASB reactor was preferred over the CSTR since the xenobiotic compounds present in the waste water might easily be absorbed in the co-substrate required when using the CSTR technology. Consequently, decreased degradation of xenobiotics would be observed in the CSTR. A combined anaerobic and denitrifying UASB reactor was successfully digesting 5.5% of wet oxidised pyrolysis condensate, but further loading increments deteriorated the anaerobic digestion process. However, when a UASB reactor was fed with pyrolysis condensate (up to 100%) good reactor operation was observed indicating that the waste could be used as substrate in the biogas process, even in very high concentrations. The detoxification of pyrolysis condensate was further studied and the toxicity of pyrolysis condensate was decreased more than 77 times in the UASB reactor that was operating on 100% pyrolysis condensate. Phenol, methyl and dimethyl phenols along with methoxyphenols were shown to be degraded within the rector systems. Degradation rates for phenol and substituted phenols were determined indicating that the biomass was selective towards the substrates. Maximum growth rates and half saturation constants for phenol, 4-Methylphenol and 2-Methoxy-4-methylphenol were determined in batch experiments. A UASB reactor concept was further

  14. Valorisation of forestry waste by pyrolysis in an auger reactor.

    Science.gov (United States)

    Puy, Neus; Murillo, Ramón; Navarro, María V; López, José M; Rieradevall, Joan; Fowler, G; Aranguren, Ignacio; García, Tomás; Bartrolí, Jordi; Mastral, Ana M

    2011-06-01

    Pyrolysis of forestry waste has been carried out in an auger reactor to study the influence of operational variables on the reactor performance and the properties of the related products. Pine woodchips were used for the first time as raw material and fed continuously into the reactor. Ten experiments were carried out under inert atmosphere at: (i) different reaction temperature (1073, 973, 873, 823 and 773 K); (ii) different solid residence time (5, 3, 2 and 1.5 min); and (iii) different biomass flow rate (3.9, 4.8 and 6.9 kg/h). Results show that the greatest yields for liquid production (59%) and optimum product characterisation were obtained at the lowest temperature studied (773 K) and applying solid residence times longer than 2 min. Regarding bio-oil properties, GC/MS qualitative identification show that the most abundant compounds are volatile polar compounds, phenols and benzenediols; and very few differences can be observed among the samples regardless of the pyrolysis operating conditions. On the whole, experimental results demonstrate that complete reaction of forest woodchips can be achieved in an auger reactor in most of the experimental conditions tested. Moreover, this study presents the initial steps for the future scaling up of the auger reactor with the aim of converting it into a mobile plant which will be able to remotely process biomass such as energy crops, forestry and agricultural wastes to obtain bio-oil that, in turn, can be used as energy vector to avoid high transport costs.

  15. Waste tyre pyrolysis: modelling of a moving bed reactor.

    Science.gov (United States)

    Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M

    2010-12-01

    This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model.

  16. Modelling of an ASR countercurrent pyrolysis reactor with nonlinear kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chiarioni, A.; Reverberi, A.P.; Dovi, V.G. [Universita degli Studi di Genova (Italy). Dipartimento di Ingegneria Chimica e di Processo ' G.B. Bonino' ; El-Shaarawi, A.H. [National Water Research Institute, Burlington, Ont. (Canada)

    2003-10-01

    The main objective of this work is focused on the modelling of a steady-state reactor where an automotive shredder residue (ASR) is subject to pyrolysis. The gas and solid temperature inside the reactor and the relevant density profiles of both phases are simulated for fixed values of the geometry of the apparatus and a lumped kinetic model is adopted to take into account the high heterogeneity of the ASR material. The key elements for the simulation are the inlet solid temperature and the outlet gas temperature. The problem is modelled by a system of first-order boundary-value ordinary differential equations and it is solved by means of a relaxation technique owing to the nonlinearities contained in the chemical kinetic expression. (author)

  17. Hydrous pyrolysis of crude oil in gold-plated reactors

    Science.gov (United States)

    Curiale, J.A.; Lundegard, P.D.; Kharaka, Y.K.

    1992-01-01

    Crude oils from Iraq and California have been pyrolyzed under hydrous conditions at 200 and 300??C for time periods up to 210 days, in gold-plated reactors. Elemental (vanadium, nickel), stable isotopic (carbon), and molecular (n-alkanes, acyclic isoprenoids, steranes, terpanes and aromatic steroid hydrocarbons) analyses were made on the original and pyrolyzed oils. Various conventional crude oil maturity parameters, including 20S/(20S + 20R)-24-ethylcholestane ratios and the side-chain-length distribution of aliphatic and aromatic steroidal hydrocarbons, were measured in an effort to assess the modification of molecular maturity parameters in clay-free settings, similar to those encountered in "clean" reservoirs. Concentrations of vanadium and nickel in the Iraq oil decrease significantly and the V/(V + Ni) ratio decreases slightly, with increasing pyrolysis time/temperature. Whole oil carbon isotope ratios remain fairly constant during pyrolysis, as do hopane/sterane ratios and carbon number distribution of 5??(H),14??(H),17??(H),20R steranes. These latter three parameters are considered maturity-invariant. The ratios of short side-chain components to long side-chain components of the regular steranes [C21/(C21 + C29R)] and the triaromatic steroid hydrocarbons [C21/(C21 + C28)] vary systematically with increasing pyrolysis time, indicating that these parameters may be useful as molecular maturity parameters for crude oils in clay-free reservoir rocks. In addition, decreases in bisnorhopane/hopane ratio with increasing pyrolysis time, in a clay-free and kerogen-free environment, suggest that the distribution of these compounds is controlled by either differential thermal stabilities or preferential release from a higher-molecular weight portion of the oil. ?? 1992.

  18. Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously

    Science.gov (United States)

    Aladin, Andi; Alwi, Ratna Surya; Syarif, Takdir

    2017-05-01

    The residues from the wood industry are the main contributors to biomass waste in Indonesia. The conventional pyrolysis process, which needs a large energy as well as to produce various toxic chemical to the environment. Therefore, a pyrolysis unit on the laboratory scale was designed that can be a good alternative to achieve zero-waste and low energy cost. In this paper attempts to discuss design and system of pyrolysis reactor to produce bio-oil and bio-char simultaneously.

  19. Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors

    NARCIS (Netherlands)

    Hoekstra, Elly; Hogendoorn, Kees J.A.; Wang, Xiaoquan; Westerhof, Roel J.M.; Kersten, Sascha R.A.; Swaaij, van Wim P.M.; Groeneveld, Michiel J.

    2009-01-01

    A system to remove in situ char/ash from hot pyrolysis vapors has been developed and tested at the University of Twente. The system consists of a continuous fluidized bed reactor (0.7 kg/h) with immersed filters (wire mesh, pore size 5 μm) for extracting pyrolysis vapors. Integration of the filter s

  20. Pyrolysis of sugar cane bagasse in a wire-mesh reactor

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, A.R.F.; Drummond, I.W. [Univ. of London (United Kingdom)

    1996-04-01

    Improved experimental techniques are described, using a wire mesh reactor; for determining the pyrolysis yields of lignocellulosic materials. In this apparatus pyrolysis tars are rapidly swept from the hot zone of the reactor and quenched, secondary reactions are thereby greatly diminished. Particular emphasis is placed upon the measurement of the pyrolysis yields for sugar cane bagasse, an abundant agricultural waste product. The role of the important pyrolysis parameters, peak temperature and heating rate, in defining the ultimate tar yield is investigated, with the value for bagasse being 54.6% at 500 C and 1,000 C/s. The pyrolysis yields, under similar conditions, of another biomass material, silver birch, are also reported and compared to those of bagasse.

  1. Fast pyrolysis in a novel wire-mesh reactor: decomposition of pine wood and model compounds

    NARCIS (Netherlands)

    Hoekstra, E.; Swaaij, van W.P.M.; Kersten, S.R.A.; Hogendoorn, J.A.

    2012-01-01

    In fast pyrolysis, biomass decomposition processes are followed by vapor phase reactions. Experimental results were obtained in a unique wire-mesh reactor using pine wood, KCl impregnated pine wood and several model compounds (cellulose, xylan, lignin, levoglucosan, glucose). The wire-mesh reactor w

  2. Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor

    Science.gov (United States)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.

    2017-01-01

    Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.

  3. Product Characterization and Kinetics of Biomass Pyrolysis in a Three-Zone Free-Fall Reactor

    Directory of Open Access Journals (Sweden)

    Natthaya Punsuwan

    2014-01-01

    Full Text Available Pyrolysis of biomass including palm shell, palm kernel, and cassava pulp residue was studied in a laboratory free-fall reactor with three separated hot zones. The effects of pyrolysis temperature (250–1050°C and particle size (0.18–1.55 mm on the distribution and properties of pyrolysis products were investigated. A higher pyrolysis temperature and smaller particle size increased the gas yield but decreased the char yield. Cassava pulp residue gave more volatiles and less char than those of palm kernel and palm shell. The derived solid product (char gave a high calorific value of 29.87 MJ/kg and a reasonably high BET surface area of 200 m2/g. The biooil from palm shell is less attractive to use as a direct fuel, due to its high water contents, low calorific value, and high acidity. On gas composition, carbon monoxide was the dominant component in the gas product. A pyrolysis model for biomass pyrolysis in the free-fall reactor was developed, based on solving the proposed two-parallel reactions kinetic model and equations of particle motion, which gave excellent prediction of char yields for all biomass precursors under all pyrolysis conditions studied.

  4. Numerical Approach to Wood Pyrolysis in Considerating Heat Transfer in Reactor Chamber

    Science.gov (United States)

    Idris, M.; Novalia, U.

    2017-03-01

    Pyrolysis is the decomposition process of solid biomass into gas, tar and charcoal through thermochemical methods. The composition of biomass consists of cellulose hemi cellulose and lignin, which each will decompose at different temperatures. Currently pyrolysis has again become an important topic to be discussed. Many researchers make and install the pyrolysis reactor to convert biomass waste into clean energy hardware that can be used to help supply energy that has a crisis. Additionally the clean energy derived from biomass waste is a renewable energy, in addition to abundant source also reduce exhaust emissions of fossil energy that causes global warming. Pyrolysis is a method that has long been known by humans, but until now little is known about the phenomenon of the pyrolysis process that occurs in the reactor. One of the Pyrolysis’s phenomena is the heat transfer process from the temperature of the heat source in the reactor and heat the solid waste of biomass. The solid waste of biomass question in this research is rubber wood obtained from one of the company’s home furnishings. Therefore, this study aimed to describe the process of heat transfer in the reactor during the process. ANSYS software was prepared to make the simulation of heat transfer phenomena at the pyrolysis reactor. That’s the numerical calculation carried out for 1200 seconds. Comparison of temperature performed at T1, T2 and T3 to ensure that thermal conductivity is calculated by numerical accordance with experimental data. The distribution of temperature in the reactor chamber specifies the picture that excellent heat conduction effect of the wood near or attached to wooden components, cellulose, hemicellulose and lignin down into gas.

  5. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.

    Science.gov (United States)

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2014-12-01

    A vacuum fixed bed reactor was applied to pyrolyze lignite, biomass (rice husk) and their blend with high temperature (900 °C) and low heating rate (10 °C/min). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2 h) for their interactions. Remarkable synergetic effects were observed. Addition of biomass obviously influenced the tar and char yields, gas volume yield, gas composition, char structure and tar composition during co-pyrolysis. It was highly possible that char gasification, gaseous phase interactions, and secondary tar cracking were facilitated when lignite and biomass were co-pyrolyzed.

  6. Chapter 8: Pyrolysis Mechanisms of Lignin Model Compounds Using a Heated Micro-Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, David J.; Nimlos, Mark R.; Ellison, G. Barney

    2015-10-03

    Lignin is an important component of biomass, and the decomposition of its thermal deconstruction products is important in pyrolysis and gasification. In this chapter, we investigate the unimolecular pyrolysis chemistry through the use of singly and doubly substituted benzene molecules that are model compounds representative of lignin and its primary pyrolysis products. These model compounds are decomposed in a heated micro-reactor, and the products, including radicals and unstable intermediates, are measured using photoionization mass spectrometry and matrix isolation infrared spectroscopy. We show that the unimolecular chemistry can yield insight into the initial decomposition of these species. At pyrolysis and gasification severities, singly substituted benzenes typically undergo bond scission and elimination reactions to form radicals. Some require radical-driven chain reactions. For doubly substituted benzenes, proximity effects of the substituents can change the reaction pathways.

  7. Fast pyrolysis in a novel wire-mesh reactor: design and initial results

    NARCIS (Netherlands)

    Hoekstra, E.; Swaaij, van W.P.M.; Kersten, S.R.A.; Hogendoorn, J.A.

    2012-01-01

    Pyrolysis is known to occur by decomposition processes followed by vapour phase reactions. The goal of this research is to develop a novel device to study the initial decomposition processes. For this, a novel wire-mesh reactor was constructed. A small sample (<0.1 g) was clamped between two meshes

  8. Development of a continuous rotating cone reactor pilot plant for the pyrolysis of polyethene and polypropene

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Waanders, J.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1998-01-01

    A pilot plant for the high-temperature pyrolysis of polymers to recycle plastic waste to valuable products was constructed based on the rotating cone reactor (RCR) technology. The RCR used in this pilot plant, termed the continuous RCR ([C]RCR) was an improved version of the bench-scale RCR ([B]RCR)

  9. Plate reactor as an analysis tool for rapid pyrolysis of biomass

    NARCIS (Netherlands)

    Sepman, A. V.; de Goey, L. P. H.

    2011-01-01

    This work presents a study of the performance of the modified plate reactor by rapid pyrolysis experiments with different biomass samples (MDF, bark pine and Avicel cellulose). The use of the plate instead of a grid allowed us to achieve a more homogeneous temperature distribution across the plate a

  10. Fast pyrolysis in a novel wire-mesh reactor: design and initial results

    NARCIS (Netherlands)

    Hoekstra, E.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; Hogendoorn, Kees

    2012-01-01

    Pyrolysis is known to occur by decomposition processes followed by vapour phase reactions. The goal of this research is to develop a novel device to study the initial decomposition processes. For this, a novel wire-mesh reactor was constructed. A small sample (<0.1 g) was clamped between two meshes

  11. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    Science.gov (United States)

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products.

  12. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.

    Science.gov (United States)

    Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin

    2015-11-01

    Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one.

  13. CFD Modeling of a Laser-Induced Ethane Pyrolysis in a Wall-less Reactor

    Science.gov (United States)

    Stadnichenko, Olga; Snytnikov, Valeriy; Yang, Junfeng; Matar, Omar

    2014-11-01

    Ethylene, as the most important feedstock, is widely used in chemical industry to produce various rubbers, plastics and synthetics. A recent study found the IR-laser irradiation induced ethane pyrolysis yields 25% higher ethylene production rates compared to the conventional steam cracking method. Laser induced pyrolysis is initiated by the generation of radicals upon heating of the ethane, then, followed by ethane/ethylene autocatalytic reaction in which ethane is converted into ethylene and other light hydrocarbons. This procedure is governed by micro-mixing of reactants and the feedstock residence time in reactor. Under mild turbulent conditions, the turbulence enhances the micro-mixing process and allows a high yield of ethylene. On the other hand, the high flow rate only allows a short residence time in the reactor which causes incomplete pyrolysis. This work attempts to investigate the interaction between turbulence and ethane pyrolysis process using large eddy simulation method. The modelling results could be applied to optimize the reactor design and operating conditions. Skolkovo Foundation through the UNIHEAT Project.

  14. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    Directory of Open Access Journals (Sweden)

    Kluska Jacek

    2014-03-01

    Full Text Available The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

  15. Characteristics and kinetics of cattle litter pyrolysis in a tubing reactor.

    Science.gov (United States)

    Ngo, Thanh-An; Kim, Jinsoo; Kim, Seung-Soo

    2010-01-01

    The kinetic parameters for the pyrolysis of cattle litter were evaluated by thermogravimetric analysis (TGA). The cattle litter was pyrolyzed in a tubing reactor at 340, 360 and 380 degrees C with various retention times from 4 to 20 min. The influence of the pyrolysis conditions on the product yields was also examined. The maximum yields of gas and liquid products, 16.1 and 17.2 wt%, respectively, were obtained after pyrolysis at 380 degrees C for 20 min. The gas products were mainly C(1)-C(4) hydrocarbons. The experimental results of the product distribution were well fitted with the lumped kinetic model. The reaction pathway was investigated based on the calculated kinetic constants.

  16. Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor

    Directory of Open Access Journals (Sweden)

    Papuga Saša V.

    2016-01-01

    Full Text Available Pyrolysis as a technique of chemical recycling of plastic materials is causing an increasing level of interest as an environmentally and economically acceptable option for the processing of waste materials. Studies of these processes are carried out under different experimental conditions, in different types of reactors and with different raw materials, which makes the comparison of different processes and the direct application of process parameters quite complex. This paper presents the results of investigation of the influence of temperature in the range of 450°C to 525°C, on the yield of the process of pyrolysis of waste plastics mixture, composed of 45% polypropylene, 35% low density polyethylene and 25% high density polyethylene. Also, this paper presents results of the investigation of the effect of the reaction, atintervals of 30-90 [min], on the yield of pyrolysis of the mentioned waste plastics mixture. Research was conducted in a fixed bed pilot reactor, which was developed for this purpose. The results of the research show that at a temperature of 500°C, complete conversion of raw materials was achieved, for a period of 45 [min], with a maximum yield of the pyrolysis oil of 32.80%, yield of the gaseous products of 65.75% and the solid remains of 1.46%. Afurther increase of temperature increases the yield of gaseous products, at the expense of reducing the yield of pyrolysis oil. Obtained pyrolysis oil has a high calorific value of 45.96 [MJ/kg], and in this regard has potential applications as an alternative fuel.

  17. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.

    Science.gov (United States)

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Olazar, Martin; Bilbao, Javier

    2015-10-01

    The fast pyrolysis of a forestry sector waste composed of Eucalyptus globulus wood, bark and leaves has been studied in a continuous bench-scale conical spouted bed reactor plant at 500°C. A high bio-oil yield of 75.4 wt.% has been obtained, which is explained by the suitable features of this reactor for biomass fast pyrolysis. Gas and bio-oil compositions have been determined by chromatographic techniques, and the char has also been characterized. The bio-oil has a water content of 35 wt.%, and phenols and ketones are the main organic compounds, with a concentration of 26 and 10 wt.%, respectively. In addition, a kinetic study has been carried out in thermobalance using a model of three independent and parallel reactions that allows quantifying this forestry waste's content of hemicellulose, cellulose and lignin.

  18. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    Science.gov (United States)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  19. CFD Simulation of a Hydrogen/Argon Plasma Jet Reactor for Coal Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    CHEN H. G.; XIE K. C.

    2004-01-01

    A Computational Fluid Dynamics (CFD) model was formulated for DC arc hydrogen/argon plasma jet reactors used in the process of the thermal H2/Ar plasma pyrolysis of coal to acetylene. In this model, fluid flow, convective heat transfer and conjugate heat conductivity are considered simultaneously. The error caused by estimating the inner-wall temperature of a reactor is avoided. The thermodynamic and transport properties of the hydrogen/argon mixture plasma system, which are usually expressed by a set of discrete dats, are fitted into expressions that can be easily implemented in the program. The effects of the turbulence are modeled by two standard k-s equations. The temperature field and velocity field in the plasma jet reactor were calculated by employing SIMPLEST algorithm. The knowledge and insight obtained are useful for the design improvement and scale-up of plasma reactors.

  20. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Juan Daniel, E-mail: juand.martinez@upb.edu.co [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain); Grupo de Investigaciones Ambientales, Instituto de Energía, Materiales y Medio Ambiente, Universidad Pontificia Bolivariana, Circular 1 N°70-01, Bloque 11, piso 2, Medellín (Colombia); Murillo, Ramón; García, Tomás; Veses, Alberto [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain)

    2013-10-15

    Highlights: • The continuous pyrolysis of waste tire has been demonstrated at pilot scale in an auger reactor. • More than 500 kg of waste tires were processed in 100 operational hours. • The yields and characteristics of the pyrolysis products remained constant. • Mass and energy balances for an industrial scale plant are provided. • The reaction enthalpy necessary to perform the waste tire pyrolysis was determined. -- Abstract: This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kW{sub th}. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550 °C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.

  1. Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high temperature pyrolysis

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Waanders, J.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1998-01-01

    The high-temperature pyrolysis of polyethene (PE), polypropene (PP), and mixtures of these polymers was studied in a novel bench-scale rotating cone reactor (RCR). Experiments showed that the effect of the sand or reactor temperature on the product spectrum obtained is large compared to the effect o

  2. Inlet effect on the coal pyrolysis to acetylene in a hydrogen plasma downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.; Chen, J.Q.; Ding, Y.L.; Jin, Y. [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology; Xiong, X.Y. [Xinjiang Tianye Corp., Shihezi (China)

    2008-06-15

    In this study a gas-solid downer reactor was used to characterize high temperature reactions of coal pyrolysis. The aim of the study was to examine the influence of the coal injection design on reactor performance in a 2 MW plasma reactor. Computational fluid dynamics (CFD) simulations were used to model complex reacting flows in the coal pyrolysis process in order to examine the effects of nozzle design on the initial distribution of the coal particles. A 2-fluid model was used to calculate solids viscosity and pressure from the kinetic theory of granular flow as well as to solve partial differential equations for granular temperatures. Results of the simulations showed that gas flow and particle jets through the nozzles played a significant role in the distribution of the coal particles. Coal dispersion at the inlet was dependent on flow conditions. Flat-shaped nozzles provided flexible control on gas-particle contacts during the initial stages. When the layout of the nozzles was tuned, solids flow formed either swirling or non-swirling actions in the reactor. It was concluded that the volume fraction of the acetylene in the product gas was increased by more than 20 per cent when the nozzles were optimally arranged. 9 refs., 1 tab., 8 figs.

  3. Co-pyrolysis of biomass and coal in a free fall reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhang; Shaoping Xu; Wei Zhao; Shuqin Liu [Dalian University of Technology, Dalian (China). State Key Laboratory of Fine Chemicals, Department of Chemical Engineering

    2007-02-15

    An experimental study on co-pyrolysis of biomass and coal was performed in a free fall reactor under atmospheric pressure with nitrogen as balance gas. The coal sample selected was Dayan lignite, while the biomass used was legume straw. The operation temperature was over a range of 500-700{sup o}C, and the blending ratio of biomass in mixtures was varied between 0 and 100 wt.%. The results indicated that there exist synergetic effects in the co-pyrolysis of biomass and coal. Under the higher blending ratio conditions, the char yields are lower than the theoretical values calculated on pyrolysis of each individual fuel, and consequently the liquid yields are higher. Moreover, the experimental results showed that the compositions of the gaseous products from blended samples are not all in accordance with those of their parent fuels. The CO{sub 2} reactivities of the chars obtained from the co-pyrolysis under the higher blending ratio (around 70 wt.%) conditions are about twice as high as those of coal char alone, even higher than those of biomass alone. 24 refs., 6 figs.,1 tab.

  4. Valorisation of waste tyre by pyrolysis in a moving bed reactor.

    Science.gov (United States)

    Aylón, E; Fernández-Colino, A; Murillo, R; Navarro, M V; García, T; Mastral, A M

    2010-07-01

    The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.

  5. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    Science.gov (United States)

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H2O, CH4, CO, and CO2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH4 and CO2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Modelingof Acetylene Pyrolysis under Steel Vacuum Carburizing Conditions in a Tubular Flow Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Reimert

    2007-03-01

    Full Text Available In the present work, the pyrolysis of acetylene was studied under steel vacuumcarburizing conditions in a tubular flow reactor. The pyrolysis temperature ranged from650 °C to 1050 °C. The partial pressure of acetylene in the feed mixture was 10 and 20mbar, respectively, while the rest of the mixture consisted of nitrogen. The total pressureof the mixture was 1.6 bar. A kinetic mechanism which consists of seven species andnine reactions has been used in the commercial computational fluid dynamics (CFDsoftware Fluent. The species transport and reaction model of Fluent was used in thesimulations. A comparison of simulated and experimental results is presented in thispaper.

  7. Modeling of acetylene pyrolysis under steel vacuum carburizing conditions in a tubular flow reactor.

    Science.gov (United States)

    Khan, Rafi Ullah; Bajohr, Siegfried; Graf, Frank; Reimert, Rainer

    2007-03-02

    In the present work, the pyrolysis of acetylene was studied under steel vacuum carburizing conditions in a tubular flow reactor. The pyrolysis temperature ranged from 650 degrees C to 1050 degrees C. The partial pressure of acetylene in the feed mixture was 10 and 20 mbar, respectively, while the rest of the mixture consisted of nitrogen. The total pressure of the mixture was 1.6 bar. A kinetic mechanism which consists of seven species and nine reactions has been used in the commercial computational fluid dynamics (CFD) software Fluent. The species transport and reaction model of Fluent was used in the simulations. A comparison of simulated and experimental results is presented in this paper.

  8. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor.

    Science.gov (United States)

    Song, Yuyao; Tahmasebi, Arash; Yu, Jianglong

    2014-12-01

    Co-pyrolysis characteristics of lignite and pine sawdust were studied in a TGA and a fixed-bed reactor. The effects of pyrolysis temperature and blending ratio on the yield and composition of pyrolysis products (gas, tar, and char) were investigated. TGA experiments showed that pine sawdust decomposition took place at lower temperatures compared to lignite. With increasing the pine sawdust content in the blend, the DTG peaks shifted towards lower temperatures due to synergetic effect. In fixed-bed experiments, the synergetic effect increased the yield of volatile matter compared to the calculated values. The major gases released at low temperatures were CO2 and CO. However, hydrogen was the primary gaseous product at higher temperatures. During co-pyrolysis, concentrations of benzene, naphthalene, and hydrocarbons in the tar decreased, accompanied by an increase in phenols and guaiacol concentrations. With increasing pyrolysis temperature, the OH, aliphatic CH, CO, and CO functional groups in char decomposed substantially.

  9. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.

    Science.gov (United States)

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2014-03-01

    Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition.

  10. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    Within the past decade, there has been an interest for pressurized combustion and gasification of solid fuels in power plants due to the potential for high efficiency. The utilization of new types of solid fuels for pressurized combustion and gasification depends on char yield and char reactivity...... at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique...

  11. Measurements of turbulence in a microscale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Shi, Yanxiang; Chungyin Cheng, Janine; Fox, Rodney O.; Olsen, Michael G.

    2013-07-01

    The microscale multi-inlet vortex reactor (MIVR) is designed for use in Flash NanoPrecipitation (FNP), a promising technique for producing nanoparticles within small particle size distribution. Fluid mixing is crucial in the FNP process, and due to mixing’s strong dependence upon fluid kinematics, investigating velocity and turbulence within the reactor is crucial to optimizing reactor design. To this end, microscopic particle image velocimetry has been used to investigate flow within the MIVR. Three Reynolds numbers are studied, namely, Rej = 53, 93 and 240. At Rej = 53, the flow is laminar and steady. Due to the strong viscous effects at this Reynolds number, distinct flow patterns are observed at different distances from the reactor top and bottom walls. The viscous effects also retard the tangential motions within the reactor, resulting in a weaker vortex than appears at the higher Reynolds numbers. As the Reynolds number is increased to 93, the flow becomes more homogeneous over the depth of the reactor due to weaker viscous effects, yet the flow is still steady. The diminishing effects of viscosity also result in a stronger vortex. At the highest Reynolds number investigated, the flow is turbulent. Turbulent statistics including tangential and radial velocity fluctuations and Reynolds shear stresses are analyzed for this case in addition to the mean velocity field. The tangential motions of the flow are strongest at Rej = 240. Both the tangential and radial velocity fluctuations increase as the flow spirals toward the center of the reactor. The magnitudes of the tangential and radial velocity fluctuations are similar, suggesting that the turbulence is locally isotropic.

  12. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.

    Science.gov (United States)

    Yuan, Ting; Tahmasebi, Arash; Yu, Jianglong

    2015-01-01

    Pyrolysis characteristics of four algal and lignocellulosic biomass samples were studied by using a thermogravimetric analyzer (TGA) and a fixed-bed reactor. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. The average activation energy for pyrolysis of biomass samples by FWO and KAS methods in this study were in the range of 211.09-291.19kJ/mol. CO2 was the main gas component in the early stage of pyrolysis, whereas H2 and CH4 concentrations increased with increasing pyrolysis temperature. Bio-oil from Chlorellavulgaris showed higher content of nitrogen containing compounds compared to lignocellulosic biomass. The concentration of aromatic organic compounds such as phenol and its derivatives were increased with increasing pyrolysis temperature up to 700°C. FTIR analysis results showed that with increasing pyrolysis temperature, the concentration of OH, CH, CO, OCH3, and CO functional groups in char decreased sharply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    Science.gov (United States)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  14. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    Science.gov (United States)

    Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney

    2016-07-01

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H513CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H513CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

  15. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Grant T. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA; National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Porterfield, Jessica P. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA; Kostko, Oleg [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Troy, Tyler P. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Robichaud, David J. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Nimlos, Mark R. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Daily, John W. [Department of Mechanical Engineering, Center for Combustion and Environmental Research, University of Colorado, Boulder, Colorado 80309-0427, USA; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA

    2016-07-05

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 us. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 13CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 13CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

  16. Unidimensional heat transfer analysis of elephant grass and sugar cane bagasse slow pyrolysis in a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesa-Perez, J.M.; Cortez, L.A.B. [Faculdade de Engenharia Agricola-FEAGRI/UNICAMP, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo, CP 6011, 13084-971, Campinas SP (Brazil); Rocha, J.D.; Olivares-Gomez, E. [Nucleo Interdisciplinar de Planejamento Energetico, NIPE/UNICAMP, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo, CP 6086, 13084-971, Campinas SP (Brazil); Brossard-Perez, L.E. [Faculdad de Ingenieria Quimica, Universidade de Oriente Sede Mella, ave, Las Americas sn, Ampliacion de Terraza, Santiago de Cuba, CP 90 600 (Cuba)

    2005-02-25

    Elephant grass (Pennicetum purpureum) and sugar cane bagasse slow pyrolysis experiments was carried out in a fixed bed reactor. A 20-cm internal diameter and 12-cm-long reactor was used. Particulate biomass filled up the reactor volume. Biomass was loaded into the reactor and heated in the axial direction using an electrical resistance located at the reactor's bottom. In order to control the temperature variation during the biomass pyrolysis process, four thermocouples were installed inside of the reactor. The remain residual mass was constant approximately after 73 min of heating; the running was stopped and remain carbonised; material was manually removed from the reactor. The residue formed three layer of biomass visually different described in detail here. Proximate analysis and higher heating value (HHV) tests were carried out to the material in each layer. Mass loss against time was recorded during experiments. The results indicated that the carbonisation ratio decreases in time because the carbon layer has low thermal conductivity and it does not permit proper heat transfer to the upper layer of biomass. It means that technology that avoids high-temperature gradients during the pyrolysis of bulk-dispersed biomass could avoid the problems described before.

  17. Thermal characteristics analysis of microwaves reactor for pyrolysis of used cooking oil

    Science.gov (United States)

    Anis, Samsudin; Shahadati, Laily; Sumbodo, Wirawan; Wahyudi

    2017-03-01

    The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to provide temperature of 480°C, heating rate of 18.2°C/min and thermal efficiency of 53% that is suitable to pyrolyze used cooking oil.

  18. Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Cho, C.H.; Shin, D.H. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Hong, Y.C., E-mail: ychong@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Shin, Y.W. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); School of Advanced Green Energy and Environments, Handong Global University, Heunghae-eup, Buk-gu, Pohang-city, Gyeongbuk (Korea, Republic of)

    2015-08-30

    Highlights: • We developed a microwave plasma torch with reverse vortex reactor (RVR). • We calculated a volume fraction and temperature distribution of discharge gas and waste. • The performance of reverse vortex reactor increased from 29% to 43% than conventional vortex reactor. - Abstract: Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45 GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF{sub 6}, NF{sub 3} by varying plasma power and N{sub 2} flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF{sub 3} was achieved without an additive gas at the N{sub 2} flow rate of 150 liter per minute (L/min) by applying a microwave power of 6 kW with RVR. Also, a DRE of SF{sub 6} was 99.99% at the N{sub 2} flow rate of 60 L/min using an applied microwave power of 6 kW. The performance of reverse vortex reactor increased about 43% of NF{sub 3} and 29% of SF{sub 6} abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  19. Rapid pyrolysis of wheat straw in a Bench-Scale circulating Fluidized-Bed downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ding, T. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Li, S.; Xie, J.; Song, W.; Yao, J.; Lin, W. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2012-12-15

    The effects of acid washing treatment on the pyrolysis product distribution and product properties were investigated in a bench-scale circulating fluidized-bed (CFB) downer reactor with wheat straw as feedstock. The acid treatment not only removes most of the inorganic species present in the biomass but also alters the distribution of the remaining organic constituents. It was found that the removal of the inorganic species increases the yield of liquid product and reduces char formation and gas yield. CO and CO{sub 2} are the dominant components in the gaseous product, accounting for over 90 %. The concentration of CO in the gaseous product increases after acid treatment, while the CO{sub 2} concentration decreases. The oxygen and water contents in the liquid product are decreased on acid treatment, leading to a relatively high heating value and viscosity. More volatiles can be found in the char derived from the acid-treated wheat straw than from the raw wheat straw. This may suggest that a longer residence time is needed for pyrolysis of the acid-treated wheat straw in order to obtain the maximal yield of volatile matter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Study of coal pyrolysis under pressure in fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yunming, Y.; Li Yonghua; Sha Xingzhong; Ren Deqing

    1987-06-01

    The influence of pressure and temperature on coal pyrolysis was studied using a small fixed-bed reactor. It is shown that in the pressure range 0.1-6.0 MPa, the yields of CH/sub 4/ and C/sub 2/H/sub 6/ and the coal conversion under inert atmosphere increased with pressure, on the contrary, the yield of C/sub 2/H/sub 4/ decreased. The rate of CH/sub 4/ formation of Yuxian coal gave three peaks during heating. The difference between effect of N/sub 2/ atmosphere and that of H/sub 2/ atmosphere was small at low pressure, but it became larger the higher the pressure. Raising the final temperature of pyrolysis from 600 C to 900 C, increased coal conversion, total gas yields, CH/sub 4/, H/sub 2/ and CO yields correspondingly, but yields of C/sub 2/H/sub 6/, C/sub 2/H/sub 4/, CO/sub 2/ and gas composition almost kept constant.

  1. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, D.K.; Kim, S.D.; Lee, S.H.; Lee, J.G. [Korean Advanced Institute of Science & Technology, Taejon (Republic of Korea)

    2010-08-15

    Co-pyrolysis characteristics of sawdust and coal blend were determined in TGA and a fixed bed reactor. The yield and conversion of co-pyrolysis of sawdust and coal blend based on volatile matters are higher than those of the sum of sawdust and coal individually. From TGA experiments, weight loss rate of sawdust and coal blend increases above 400{sup o}C and additional weight loss was observed at 700{sup o}C. In a fixed bed at isothermal condition, the synergy to produce more volatiles appeared at 500-700{sup o}C, and the maximum synergy exhibits with a sawdust blending ratio of 0.6 at 600{sup o}C. The gas product yields remarkably increase at lower temperature range by reducing tar yield. The CO yield increases up to 26% at 400{sup o}C and CH{sub 4} yield increases up to 62% at 600{sup o}C compared with the calculated value from the additive model.

  2. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.

    Science.gov (United States)

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto

    2013-10-15

    This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.

  3. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.

    Science.gov (United States)

    Park, Young-Hun; Kim, Jinsoo; Kim, Seung-Soo; Park, Young-Kwon

    2009-01-01

    In this work, pyrolysis characteristics were investigated using thermogravimetric analysis (TGA) at heating rates of 5-20 degrees C/min. Most of the materials were decomposed between 330 degrees C and 370 degrees C at each heating rate. The average activation energy was 236.2 kJ/mol when the pyrolytic conversion increased from 5% to 70%. The pyrolysis kinetics of oak trees was also investigated experimentally and mathematically. The experiments were carried out in a tubing reactor at a temperature range of 330-370 degrees C with a reaction time of 2-8 min. A lump model of combined series and parallel reactions for bio-oil and gas formation was proposed. The kinetic parameters were determined by nonlinear least-squares regression from the experimental data. It was found from the reaction kinetic constants that the predominant reaction pathway from the oak trees was to bio-oil formation rather than to gas formation at the investigated temperature range.

  4. Fuel gas and char from pyrolysis of waste paper in a microwave plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khongkrapan, Parin; Thanompongchart, Patipat; Tippayawong, Nakorn; Kiatsiriroat, Tanongkiat [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-01

    In this study, a microwave plasma reactor was used for pyrolysis of waste papers. The effects of different argon flow rates on char and gas generation were investigated. Changes in carbon and oxygen contents from those in paper to char were significant. Char yield of over 25 % was obtained with the heating value of about 38 MJ/kg. Average gas yield and total content of combustible fraction (CO, CH4 and H2) in the gas product were 2.56 m3/kg and 36 %, respectively. The heating value of gas product and carbon conversion efficiency of the process were maximum at 6.0 MJ/m3 and 73 %, respectively.

  5. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    Science.gov (United States)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  6. Fuel gas and char from pyrolysis of waste paper in a microwave plasma reactor

    Directory of Open Access Journals (Sweden)

    Parin Khongkrapan, Patipat Thanompongchart, Nakorn Tippayawong, Tanongkiat Kiatsiriroat

    2013-01-01

    Full Text Available In this study, a microwave plasma reactor was used for pyrolysis of waste papers. The effects of different argon flow rates on char and gas generation were investigated. Changes in carbon and oxygen contents from those in paper to char were significant. Char yield of over 25 % was obtained with the heating value of about 38 MJ/kg. Average gas yield and total content of combustible fraction (CO, CH4 and H2 in the gas product were 2.56 m3/kg and 36 %, respectively. The heating value of gas product and carbon conversion efficiency of the process were maximum at 6.0 MJ/m3 and 73 %, respectively.

  7. Particulate filtration from emissions of a plasma pyrolysis assembly reactor using regenerable porous metal filters

    Science.gov (United States)

    Berger, Gordon M.; Agui, Juan H.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary W.; West, Philip J.; Mitchell, Karen O.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  8. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    Science.gov (United States)

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials.

  9. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    OpenAIRE

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when work...

  10. Fast pyrolysis of palm kernel cake in a closed-tubular reactor: product compositions and kinetic model.

    Science.gov (United States)

    Ngo, Thanh-An; Kim, Jinsoo; Kim, Seung-Soo

    2011-03-01

    In this study, fast pyrolysis of palm kernel cake (PKC) was carried out in a closed-tubular reactor over a temperature range of 550 to 750°C with various retention times. The pyrolyzing gas products mainly included CO, CO(2), and light hydrocarbons; it is noted that no hydrogen was detected in the product. In order to investigate the reaction pathway, the kinetic lump model of Liden was applied to verify and calculate all rate constants. The results obtained at different temperatures indicated that the rate constant increased with pyrolysis temperature. Furthermore, the experimental results were in good agreement with the proposed mechanism.

  11. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    Science.gov (United States)

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability.

  12. Fluidized-bed reactor modeling for production of silicon by silane pyrolysis

    Science.gov (United States)

    Dudukovic, M. P.; Ramachandran, P. A.; Lai, S.

    1986-02-01

    An ideal backmixed reactor model (CSTR) and a fluidized bed bubbling reactor model (FBBR) were developed for silane pyrolysis. Silane decomposition is assumed to occur via two pathways: homogeneous decomposition and heterogeneous chemical vapor deposition (CVD). Both models account for homogeneous and heterogeneous silane decomposition, homogeneous nucleation, coagulation and growth by diffusion of fines, scavenging of fines by large particles, elutriation of fines and CVD growth of large seed particles. At present the models do not account for attrition. The preliminary comparison of the model predictions with experimental results shows reasonable agreement. The CSTR model with no adjustable parameter yields a lower bound on fines formed and upper estimate on production rates. The FBBR model overpredicts the formation of fines but could be matched to experimental data by adjusting the unkown jet emulsion exchange efficients. The models clearly indicate that in order to suppress the formation of fines (smoke) good gas-solid contacting in the grid region must be achieved and the formation of the bubbles suppressed.

  13. Thermodynamic analysis of coal pyrolysis to acetylene in hydrogen plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changning; Chen, Jiaqi; Cheng, Yi [Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A systematic re-examination of the thermodynamic study on the process of coal pyrolysis to acetylene in a hydrogen plasma reactor was performed with referenced pilot-plant data at the scale of 2-MW plasma. At the ultra-high temperature conditions, the gas phase composition may reach thermodynamic equilibrium immediately no matter whether the solid carbon exists or not. The mass ratio of C/H in the gaseous phase plays a significant role in the acetylene concentration at the thermodynamic equilibrium states. It is demonstrated either in thermodynamics calculation or in hot tests that a mass ratio of C/H near or above 2 is essential to gain an acceptable concentration of acetylene in the mixed gases, which indicates that the mixing efficiency between gas and coal particles near the coal injection point becomes pivotal to the yield of acetylene for its direct influence on the devolatilization of coal, i.e., the gaseous C/H ratio. Being consistent with the hot test experience, the extra amount of water added into the system may inhibit the production of acetylene. However, the addition of methane might impose a positive effect on the yield of acetylene and therefore on the overall reactor performance. (author)

  14. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    Science.gov (United States)

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.

  15. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor.

    Science.gov (United States)

    Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao

    2015-05-01

    A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900°C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production.

  16. Research into the pyrolysis of pure cellulose, lignin, and birch wood flour in the China Lake entrained-flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, J.

    1980-06-01

    This experimental program used the China Lake entrained-flow pyrolysis reactor to briefly investigate the pyrolysis of pure cellulose, pure lignin, and birch wood flour. The study determined that the cellulose and wood flour do pyrolyze to produce primarily gaseous products containing significant amounts of ethylene and other useful hydrocarbons. During attempts to pyrolyze powdered lignin, the material melted and bubbled to block the reactor entrance. The pure cellulose and wood flour produced C/sub 2/ + yields of 12% to 14% by weight, which were less than yields from an organic feedstock derived from processed municipal trash. The char yields were 0.1% by weight from cellulose and 1.5% from birch wood flour - one to two orders of magnitude less than were produced from the trash-derived feedstock. In scanning electron microscope photographs, most of the wood flour char had a sintered and agglomerated appearance, although some particles retained the gross cell characteristics of the wood flour. The appearance of the char particles indicated that the material had once been molten and possibly vapor before it formed spheroidal particles about 1 ..mu..m diameter which agglomerated to form larger char particles. The ability to completely melt or vaporize lignocellulosic materials under conditions of high heating rates has now been demonstrated in a continuous flow reactor and promises new techniques for fast pyrolysis. This char was unexpectedly attracted by a magnet, presumably because of iron contamination from the pyrolysis reactor tube wall. The production of water-insoluble tars was negligible compared to the tars produced from trash-derived feedstock. The production of water-soluble organic materials was fairly low and qualitatively appeared to vary inversely with temperature. This study was of a preliminary nature and additional studies are necessary to optimize ethylene production from these feedstocks.

  17. In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; Yung, Matthew M.; Johnson, David K.; ten Dam, Jeroen; Watson, Michael J.; Nimlos, Mark R.

    2016-03-17

    In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h-1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun. The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). High fractions of oxygen were rejected as water, CO, and CO2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.

  18. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  19. Catalytic pyrolysis of miscanthus × giganteus in a spouted bed reactor.

    Science.gov (United States)

    Du, Shoucheng; Sun, Yijia; Gamliel, David P; Valla, Julia A; Bollas, George M

    2014-10-01

    A conical spouted bed reactor was designed and tested for fast catalytic pyrolysis of miscanthus × giganteus over Zeolite Socony Mobil-5 (ZSM-5) catalyst, in the temperature range of 400-600 °C and catalyst to biomass ratios 1:1-5:1. The effect of operating conditions on the lumped product distribution, bio-oil selectivity and gas composition was investigated. In particular, it was shown that higher temperature favors the production of gas and bio-oil aromatics and results in lower solid and liquid yields. Higher catalyst to biomass ratios increased the gas yield, at the expense of liquid and solid products, while enhancing aromatic selectivity. The separate catalytic effects of ZSM-5 catalyst and its Al2O3 support were studied. The support contributes to increased coke/char formation, due to the uncontrolled spatial distribution and activity of its alumina sites. The presence of ZSM-5 zeolite in the catalyst enhanced the production of aromatics due to its proper pore size distribution and activity.

  20. Jute stick pyrolysis for bio-oil production in fluidized bed reactor.

    Science.gov (United States)

    Asadullah, M; Anisur Rahman, M; Mohsin Ali, M; Abdul Motin, M; Borhanus Sultan, M; Robiul Alam, M; Sahedur Rahman, M

    2008-01-01

    Pyrolysis of jute stick for bio-oil production has been investigated in a continuous feeding fluidized bed reactor at different temperatures ranging from 300 degrees C to 600 degrees C. At 500 degrees C, the yields of bio-oil, char and non-condensable gas were 66.70 wt%, 22.60 wt% and 10.70 wt%, respectively based on jute stick. The carbon based non-condensable gas was the mixture of carbon monoxide, carbon dioxide, methane, ethane, ethene, propane and propene. The density and viscosity of bio-oil were found to be 1.11 g/mL and 2.34 cP, respectively. The lower heating value (LHV) of bio-oil was found to be 18.2 5 MJ/kg. Since bio-oil contains some organic acids such as formic acid, acetic acid, etc., the pH and acid value of the bio-oil were found to be around 4 and 135 mg KOH/g, respectively. The water, lignin, solid and ash contents of bio-oil were determined and found to be around 15 wt%, 4.90 wt%, 0.02 wt% and 0.10 wt%, respectively.

  1. Turbulent velocity and concentration measurements in a macro-scale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Liu, Zhenping; Fox, Rodney; Hill, James; Olsen, Michael

    2013-11-01

    Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles. Microscale multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide rapid mixing and flexibility of inlet flow conditions. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in industry. In the presented research, the turbulent velocity field inside a scaled-up, macroscale MIVR is measured by particle image velocimetry (PIV). Within the reactor, velocity is measured using both two-dimensional and stereoscopic PIV at two Reynolds numbers (3500 and 8750) based on the flow at each inlet. Data have been collected at numerous locations in the inlet channels, the reaction chamber, and the reactor outlet. Mean velocity and Reynolds stresses have been obtained based on 5000 instantaneous velocity realizations at each measurement location. The turbulent mixing process has also been investigated with passive scalar planar laser-induced fluorescence and simultaneous PIV/PLIF. Velocity and concentration results are compared to results from previous experiments in a microscale MIVR. Scaled profiles of turbulent quantities are similar to those previously found in the microscale MIVR.

  2. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    Science.gov (United States)

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively.

  3. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  4. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.

    Science.gov (United States)

    Wang, Kaige; Brown, Robert C; Homsy, Sally; Martinez, Liliana; Sidhu, Sukh S

    2013-01-01

    In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%, respectively. Bio-oil from C. vulgaris remnants was a complex mixture of aromatics and straight-chain hydrocarbons, amides, amines, carboxylic acids, phenols, and other compounds with molecular weights ranging from 70 to 1200 Da. Structure and surface topography of the biochar were analyzed. The high inorganic content (potassium, phosphorous, and nitrogen) of the biochar suggests it may be suitable to provide nutrients for crop production. The bio-oil and biochar represented 57% and 36% of the energy content of the microalgae remnant feedstock, respectively.

  5. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.

    Science.gov (United States)

    Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y

    2014-06-01

    In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination.

  6. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition.

    Science.gov (United States)

    Haydary, J; Susa, D; Dudáš, J

    2013-05-01

    Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  7. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  8. Studies on Pyrolysis Kinetic of Newspaper Wastes in a Packed Bed Reactor: Experiments, Modeling, and Product Characterization

    Directory of Open Access Journals (Sweden)

    Aparna Sarkar

    2015-01-01

    Full Text Available Newspaper waste was pyrolysed in a 50 mm diameter and 640 mm long reactor placed in a packed bed pyrolyser from 573 K to 1173 K in nitrogen atmosphere to obtain char and pyro-oil. The newspaper sample was also pyrolysed in a thermogravimetric analyser (TGA under the same experimental conditions. The pyrolysis rate of newspaper was observed to decelerate above 673 K. A deactivation model has been attempted to explain this behaviour. The parameters of kinetic model of the reactions have been determined in the temperature range under study. The kinetic rate constants of volatile and char have been determined in the temperature range under study. The activation energies 25.69 KJ/mol, 27.73 KJ/mol, 20.73 KJ/mol and preexponential factors 7.69 min−1, 8.09 min−1, 0.853 min−1 of all products (solid reactant, volatile, and char have been determined, respectively. A deactivation model for pyrolysis of newspaper has been developed under the present study. The char and pyro-oil obtained at different pyrolysis temperatures have been characterized. The FT-IR analyses of pyro-oil have been done. The higher heating values of both pyro-products have been determined.

  9. Bio-Oil Production from Fast Pyrolysis of Corn Wastes and Eucalyptus Wood in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    M.A Ebrahimi-Nik

    2014-09-01

    Full Text Available Fast pyrolysis is an attractive technology for biomass conversion, from which bio-oil is the preferred product with a great potential for use in industry and transport. Corn wastes (cob and stover and eucalyptus wood are widely being produced throughout the world. In this study, fast pyrolysis of these two materials were examined under the temperature of 500 °C; career gas flow rate of 660 l h-1; particle size of 1-2 mm; 80 and 110 g h-1 of feed rate. The experiments were carried out in a continuous fluidized bed reactor. Pyrolysis vapor was condensed in 3 cooling traps (15, 0 and -40 °C plus an electrostatic one. Eucalyptus wood was pyrolyised to 12.4, 61.4, and 26.2 percent of bio-char, bio-oil and gas, respectively while these figures were as 20.15, 49.9, and 29.95 for corn wastes. In all experiments, the bio-oil obtained from electrostatic trap was a dark brown and highly viscose liquid.

  10. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  11. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  12. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water. The amounts of char (organic fraction and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis and high

  13. Natural gas pyrolysis in double-walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source

    Institute of Scientific and Technical Information of China (English)

    Stèphane Abanades; Stefania Tescari; Sylvain Rodat; Gilles Flamant

    2009-01-01

    The thermal pyrolysis of natural gas as a clean hydrogen production route is examined.The concept of a double-walled reactor tube is proposed and implemented.Preliminary experiments using an external plasma heating source are carded out to validate this concept.The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time.Simulations are performed to predict the conversion rate of CH4 at the reactor outlet,and are consistent with experimental tendencies.A solar reactor prototype featuring four independent double-walled tubes is then developed.The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy.The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window.The gas composition at the reactor outlet,the chemical conversion of CH4,and the yield to H2 are determined with respect to reaction temperature,inlet gas flow-rates,and feed gas composition.The longer the gas residence time,the higher the CH4 conversion and H2 yield,whereas the lower the amount of acetylene.A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms).A temperature increase from 1870 K to 1970 K does not improve the H2 yield.

  14. Radial pressure profiles in a cold‐flow gas‐solid vortex reactor

    Science.gov (United States)

    Pantzali, Maria N.; Kovacevic, Jelena Z.; Marin, Guy B.; Shtern, Vladimir N.

    2015-01-01

    A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015 PMID:27667827

  15. Radial pressure profiles in a cold-flow gas-solid vortex reactor.

    Science.gov (United States)

    Pantzali, Maria N; Kovacevic, Jelena Z; Heynderickx, Geraldine J; Marin, Guy B; Shtern, Vladimir N

    2015-12-01

    A unique normalized radial pressure profile characterizes the bed of a gas-solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950-1240 kg/m(3), 1-2 mm, 2 kg to maximum solids capacity, and 0.4-0.8 Nm(3)/s (corresponding to gas injection velocities of 55-110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized-with respect to the overall pressure drop-pressure profiles for different gas injection velocities in particle-free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 61: 4114-4125, 2015.

  16. Hydrocarbon pyrolysis reactor experimentation and modeling for the production of solar absorbing carbon nanoparticles

    Science.gov (United States)

    Frederickson, Lee Thomas

    Much of combustion research focuses on reducing soot particulates in emissions. However, current research at San Diego State University (SDSU) Combustion and Solar Energy Laboratory (CSEL) is underway to develop a high temperature solar receiver which will utilize carbon nanoparticles as a solar absorption medium. To produce carbon nanoparticles for the small particle heat exchange receiver (SPHER), a lab-scale carbon particle generator (CPG) has been built and tested. The CPG is a heated ceramic tube reactor with a set point wall temperature of 1100-1300°C operating at 5-6 bar pressure. Natural gas and nitrogen are fed to the CPG where natural gas undergoes pyrolysis resulting in carbon particles. The gas-particle mixture is met downstream with dilution air and sent to the lab scale solar receiver. To predict soot yield and general trends in CPG performance, a model has been setup in Reaction Design CHEMKIN-PRO software. One of the primary goals of this research is to accurately measure particle properties. Mean particle diameter, size distribution, and index of refraction are calculated using Scanning Electron Microscopy (SEM) and a Diesel Particulate Scatterometer (DPS). Filter samples taken during experimentation are analyzed to obtain a particle size distribution with SEM images processed in ImageJ software. These results are compared with the DPS, which calculates the particle size distribution and the index of refraction from light scattering using Mie theory. For testing with the lab scale receiver, a particle diameter range of 200-500 nm is desired. Test conditions are varied to understand effects of operating parameters on particle size and the ability to obtain the size range. Analysis of particle loading is the other important metric for this research. Particle loading is measured downstream of the CPG outlet and dilution air mixing point. The air-particle mixture flows through an extinction tube where opacity of the mixture is measured with a 532 nm

  17. Kinetics of lignite pyrolysis in fixed bed and entrained flow reactors. Technical report No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Scaroni, A. W.; Walker, Jr., P. L.

    1979-08-01

    A laminar flow isothermal furnace has been constructed and used to study lignite pyrolysis in nitrogen at temperatures between 700/sup 0/ and 1000/sup 0/C. Particles of a Texas lignite (Darco Seam) between 41 and 201 microns in mean diameter, are found to flow down the furnace tube with velocities approximated by the summation of the gas plug-flow velocity and particle free-fall velocities. Some particle shrinkage and density changes occur during pyrolysis. Pyrolysis rate is particle size independent and increases with increase in temperature over the range of operating conditions. Ultimate yield of volatiles in the isothermal furnace, which is calculated from the linear relationship between weight loss and change in proximate volatile matter, is 66% of the original dry-ash-free coal and is particle size independent and relatively temperature independent. Ultimate yields of volatiles from fixed beds of pulverized coal are smaller than for dispersed particles of the same size. Proximate volatile matter for the lignite is, for example, 51% of the original dry-ash-free coal. Heating rates drop from about 10,000/sup 0/C/s in the isothermal furnace to about 20/sup 0/C/s in the proximate volatile matter test. Pyrolysis rates decrease and display particle size dependency in fixed beds. This implication of physical rate control is attributed to heat transfer limitations. It is proposed that pyrolysis rate and therefore residence time of volatiles in the fixed bed are important parameters affecting the preponderance of secondary char forming reactions.Also important is the total particle external surface area in the bed. Secondary char formation is considered responsible for yields of volatiles lower than the true volatile content of the lignite as measured in the isothermal furnace.

  18. Numerical modeling of turbulent swirling flow in a multi-inlet vortex nanoprecipitation reactor using dynamic DDES

    Science.gov (United States)

    Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.

    2015-11-01

    The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.

  19. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    Science.gov (United States)

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure.

  20. Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst

    Directory of Open Access Journals (Sweden)

    Isah Yakub Mohammed

    2016-03-01

    Full Text Available The environmental impact from the use of fossil fuel cum depletion of the known fossil oil reserves has led to increasing interest in liquid biofuels made from renewable biomass. This study presents the first experimental report on the catalytic pyrolysis of Napier grass, an underutilized biomass source, using ZSM-5, 0.3HZSM-5 and zinc exchanged zeolite-A catalyst. Pyrolysis was conducted in fixed bed reactor at 600 °C, 30 °C/min and 7 L/min nitrogen flow rate. The effect of catalyst-biomass ratio was evaluated with respect to pyrolysis oil yield and composition. Increasing the catalyst loading from 0.5 to 1.0 wt % showed no significant decrease in the bio-oil yield, particularly, the organic phase and thereafter decreased at catalyst loadings of 2.0 and 3.0 wt %. Standard analytical methods were used to establish the composition of the pyrolysis oil, which was made up of various aliphatic hydrocarbons, aromatics and other valuable chemicals and varied greatly with the surface acidity and pore characteristics of the individual catalysts. This study has demonstrated that pyrolysis oil with high fuel quality and value added chemicals can be produced from pyrolysis of Napier grass over acidic zeolite based catalysts.

  1. Characterization of Carbon Particulates in the Exit Flow of a Plasma Pyrolysis Assembly (PPA) Reactor

    Science.gov (United States)

    Green, Robert D.; Meyer, Marit E.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary

    2015-01-01

    The ISS presently recovers oxygen from crew respiration via a Carbon Dioxide Reduction Assembly (CRA) that utilizes the Sabatier chemical process to reduce captured carbon dioxide to methane (CH4) and water. In order to recover more of the hydrogen from the methane and increase oxygen recovery, NASA Marshall Space Flight Center (MSFC) is investigating a technology, plasma pyrolysis, to convert the methane to acetylene. The Plasma Pyrolysis Assembly (or PPA), achieves 90% or greater conversion efficiency, but a small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. In this work, we present the experimental results of an initial characterization of the carbon particulates in the PPA exit gas stream. We also present several potential options to remove these carbon particulates via carbon traps and filters to minimize resupply mass and required downtime for regeneration.

  2. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor.

    Science.gov (United States)

    Zhang, Huiyan; Xiao, Rui; Huang, He; Xiao, Gang

    2009-02-01

    Fast pyrolysis of corncob with and without catalyst was investigated in a fluidized bed to determine the effects of pyrolysis parameters (temperature, gas flow rate, static bed height and particle size) and a HZSM-5 zeolite catalyst on the product yields and the qualities of the liquid products. The result showed that the optimal conditions for liquid yield (56.8%) were a pyrolysis temperature of 550 degrees C, gas flow rate of 3.4 L/min, static bed height of 10 cm and particle size of 1.0-2.0mm. The presence of the catalyst increased the yields of non-condensable gas, water and coke, while decreased the liquid and char yields. The elemental analysis showed that more than 25% decrease in oxygen content of the collected liquid in the second condenser with HZSM-5 was observed compared with that without catalyst. The H/C, O/C molar ratios and the higher heating value of the oil fraction in the collected liquid with the catalyst were 1.511, 0.149 and 34.6 MJ/kg, respectively. It was indicated that the collected liquid in the second condenser had high qualities and might be used as transport oil.

  3. Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor.

    Science.gov (United States)

    Funke, Axel; Richter, Daniel; Niebel, Andreas; Dahmen, Nicolaus; Sauer, Jörg

    2016-09-09

    Fast pyrolysis is being increasingly applied in commercial plants worldwide. They run exclusively on woody biomass, which has favorable properties for conversion with fast pyrolysis. In order to increase the synergies of food production and the energetic and/or material use of biomass, it is desirable to utilize residues from agricultural production, e.g., straw. The presented method is suitable for converting such a material on an industrial scale. The main features are presented and an example of mass balances from the conversion of several biomass residues is given. After conversion, fractionated condensation is applied in order to retrieve two condensates - an organic-rich and an aqueous-rich one. This design prevents the production of fast pyrolysis bio-oil that exhibits phase separation. A two phase bio-oil is to be expected because of the typically high ash content of straw biomass, which promotes the production of water of reaction during conversion. Both fractionated condensation and the use of biomass with high ash content demand a careful approach for establishing balances. Not all kind of balances are both meaningful and comparable to other results from the literature. Different balancing methods are presented, and the information that can be derived from them is discussed.

  4. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    Science.gov (United States)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  5. Altering bio-oil composition by catalytic treatment of pinewood pyrolysis vapors over zeolites using an auger - packed bed integrated reactor system

    Directory of Open Access Journals (Sweden)

    Vamshi Krishna Guda

    2016-09-01

    Full Text Available Pine wood pyrolysis vapors were catalytically treated using Zeolite catalysts. An auger fed reactor was used for the pinewood pyrolysis while a packed bed reactor mounted on the top of the auger reactor housed the catalyst for the treatment of pinewood pyrolytic vapors. The pyrolytic vapors produced at 450 oC were passed through zeolite catalysts maintained at 425 oC at a weight hourly space velocity (WHSV of 12 h-1. Five zeolites, including ZSM-5, mordenite, ferrierite, Zeolite-Y, and Zeolite-beta (all in H form, were used to study the effect of catalyst properties such as acidity, pore size, and pore structure on catalytic cracking of pinewood pyrolysis vapors. Product bio-oils were analyzed for their chemical composition using GC-MS, water content, density, viscosity, acid value, pH, and elemental compositions. Thermogravimetric analysis (TGA was performed to analyze the extent of coking on zeolite catalysts. Application of catalysis to biomass pyrolysis increased gas product yields at the expense of bio-oil yields. While all the zeolites deoxygenated the pyrolysis vapors, ZSM-5 was found to be most effective. The ZSM-5 catalyzed bio-oil, rich in phenolics and aromatic hydrocarbons, was less viscous, had relatively lower acid number and high pH, and possessed oxygen content nearly half that of un-catalyzed bio-oil. Brønsted acidity, pore size, and shape-selective catalysis of ZSM-5 catalyst proved to be the determining factors for its activity. TGA results implied that the pore size of catalysts highly influenced coking reactions. Regeneration of the used catalysts was successfully completed at 700 oC.

  6. Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer.

    Science.gov (United States)

    Mao, Yebing; Dong, Lei; Dong, Yuping; Liu, Wenping; Chang, Jiafu; Yang, Shuai; Lv, Zhaochuan; Fan, Pengfei

    2015-04-01

    The co-pyrolysis characteristic of biomass and lignite were investigated in a Micro Fluidized Bed Reaction Analyzer under isothermal condition. The synergetic effect was evaluated by comparing the experimental gas yields and distributions with the calculated values, and iso-conversional method was used to calculate the kinetic parameters of formation of each gas component. The results showed that synergetic effect was manifested in co-pyrolysis. For the range of conversion investigated, the activation energies for H2, CH4, CO and CO2 were 72.90 kJ/mol, 43.90 kJ/mol, 18.51 kJ/mol and 13.44 kJ/mol, respectively; the reactions for CH4 and CO2 conformed to 2 order chemical reaction model, and for H2 and CO conformed to 1.5 order chemical reaction model; the pre-exponential factors for CH4, CO2, H2 and CO were 249.0 S(-1), 5.290 S(-1), 237.4 S(-1) and 2.693 S(-1), respectively. The discrepancy of the kinetic parameters implied that there were different pathways for forming the different gas.

  7. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    Science.gov (United States)

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts.

  8. Catalyst Residence Time Distributions in Riser Reactors for Catalytic Fast Pyrolysis. Part 2: Pilot-Scale Simulations and Operational Parameter Study

    Energy Technology Data Exchange (ETDEWEB)

    Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth; Ciesielski, Peter; Nimlos, Mark R.; Robichaud, David J.

    2017-02-21

    Using the validated simulation model developed in part one of this study for biomass catalytic fast pyrolysis (CFP), we assess the functional utility of using this validated model to assist in the development of CFP processes in fluidized catalytic cracking (FCC) reactors to a commercially viable state. Specifically, we examine the effects of mass flow rates, boundary conditions (BCs), pyrolysis vapor molecular weight variation, and the impact of the chemical cracking kinetics on the catalyst residence times. The factors that had the largest impact on the catalyst residence time included the feed stock molecular weight and the degree of chemical cracking as controlled by the catalyst activity. Because FCC reactors have primarily been developed and utilized for petroleum cracking, we perform a comparison analysis of CFP with petroleum and show the operating regimes are fundamentally different.

  9. Improvement of bio-oil yield and quality in co-pyrolysis of corncobs and high density polyethylene in a fixed bed reactor at low heating rate

    Science.gov (United States)

    Supramono, D.; Lusiani, S.

    2016-11-01

    Over the past few decades, interest in developing biomass-derived fuel has been increasing rapidly due to the decrease in fossil fuel reserves. Bio-oil produced by biomass pyrolysis however contains high oxygen compounds resulting in low calorific-value fuel and therefore requiring upgrading. In co-pyrolysis of the feed blend of plastics of High Density Polyethylene (HDPE) and biomass of com cob particles, at some compositions free radicals from plastic decomposition containing more hydrogen radicals are able to bond oxygen radicals originating from biomass to reduce oxygenate compounds in the bio-oil thus increasing bio-oil quality. This phenomenon is usually called synergetic effect. In addition to that, the pattern of heating of the feed blend in the pyrolysis reactor is predicted to affect biooil quality and yield. In a batch reactor, co-pyrolysis of corncobs and HDPE requires low heating rate to reach a peak temperature at temperature rise period followed by heating for some time at peak temperature called holding time at constant temperature period. No research has been carried out to investigate how long holding time is set in co-pyrolysis of plastic and biomass to obtain high yield of bio-oil. Holding time may affect either crosslinking of free radicals in gas phase, which increases char product, or secondary pyrolysis in the gas phase, which increases non-condensable gas in the gas phase of pyrolysis reactor, both of which reduce bio-oil yield. Therefore, holding time of co-pyrolysis affects the mass rate of bio-oil formation as the pyrolysis proceeds and quality of the bio-oil. In the present work, effects of holding time on the yield and quality of bio-oil have been investigated using horizontal fixed bed of the feed blends at heating rate of 5°C, peak temperature of 500°C and N2 flow rate of 700 ml/minute. Holding time was varied from 0 to 70 minutes with 10 minutes interval. To investigate the effects of holding time, the composition of HDPE in the

  10. Fast Pyrolysis of Biomass in a Spout-fluidized Bed Reactor--Analysis of Composition and Combustion Characteristics of Liquid Product from Biomass

    Institute of Scientific and Technical Information of China (English)

    陈明强; 王君; 王新运; 张学才; 张素平; 任铮伟; 颜涌捷

    2006-01-01

    In order to gain insight into the fast pyrolysis mechanism of biomass and the relationship between bio-oil composition and pyrolysis reaction conditions, to assess the possibility for the raw bio-oil to be used as fuel, and to evaluate the concept of spout-fluidized bed reactor as the reactor for fast pyrolysis of biomass to prepare fuel oil, the composition and combustion characteristics of bio-oil prepared in a spout-fluidized bed reactor with a designed maximum capacity 5 kg/h of sawdust as feeding material, were investigated by GC-MS and thermogravimetry. 14 aromatic series chemicals were identified. The thermogravimetric analysis indicated that the bio-oil was liable to combustion, the combustion temperature increased with the heating rate, and only minute ash was generated when it burned. The kinetics of the combustion reaction was studied and the kinetic parameters were calculated by both Ozawa-Flynn-Wall and Popsecu methods. The results agree well with each other. The most probable combustion mechanism functions determined by Popescu method are f(α)=k(1-α)2(400~406 ℃), f(α)=1/2k(1-α)3 (406~416 ℃) and f( α)=2k(1-α)3/2 (416~430 ℃) respectively.

  11. Ex situ themo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor

    Science.gov (United States)

    Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...

  12. A reactor for high-temperature pyrolysis and oxygen isotopic analysis of cellulose via induction heating.

    Science.gov (United States)

    Evans, Michael N

    2008-07-01

    A reactor for converting cellulose into carbon monoxide for subsequent oxygen isotopic analysis via continuous flow isotope ratio mass spectrometry is described. The system employs an induction heater to produce temperatures >or=1500 degrees C within a molybdenum foil crucible positioned by boron nitride (BN) spacers within a quartz outer sleeve. For samples of a homogeneous working standard cellulose between 300 and 400 microg in size, the blank/signal ratio is <5%, and the long-term precision is 0.30 per thousand (N = 232). For samples of 30 to 100 microg in size, a gas pressure sintered silicon nitride (Si(3)N(4)) outer sleeve replaces the quartz sleeve, the BN spacers are not used, and 6.0-grade carrier He must be used to minimize the blank signal. With these modifications a blank/sample ratio of <5% and long-term precision of 0.30 per thousand (N = 144) are obtained. These results are similar to those achieved using standard high-temperature furnaces, but the reactor is simpler to pack, the system is more economical to run, and samples as small as 30 microg cellulose may be measured. For both reactors memory is significant in the subsequent sample and is believed to be due to exchange with reactor oxygen at temperatures above 1000 degrees C. Further applications might include online preparation of other materials requiring temperatures of 1500-2600 degrees C.

  13. Procedural investigations concerning the fast pyrolysis of lignocellulose in the Lurgi-Ruhrgas double-lead screw mixing reactor; Verfahrenstechnische Untersuchungen zur Schnellpyrolyse von Lignocellulose im Lurgi-Ruhrgas-Doppelschnecken-Mischreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Kornmayer, C.; Dinjus, E.; Henrich, E.; Weirich, F. [Forschungszentrum Karlsruhe (Germany); Reimert, R. [Karlsruhe Univ. (T.H.) (Germany). Engler-Bunte-Institut

    2008-07-01

    The 'Bioliq' technology (Froschungszentrum Karlsruhe) is a 2-step process to produce synthesis gas from lignocellulose. During the first decentralized step the biomass is liquefied by fast pyrolysis, the product is a coke/oil slurry or paste. Main part of the pyrolysis facility is the Lurgi-Ruhrgas mixing reactor with a circular flow of solid heat carriers. The paper describes the procedural characteristics of the reactor and the yield structure of the fast pyrolysis process for different typical biomasses. The specific heat requirement in the reactor for pyrolysis and the conversion of the product to 500 deg C is based on process data for different dry charges. The results are based on experimental data from a test facility with up to 15 kg/h biomass input.

  14. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.

    Science.gov (United States)

    Jung, Su-Hwa; Kim, Seon-Jin; Kim, Joo-Sik

    2012-06-01

    Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated using an effective carbon number (ECN) that was multiplied by the peak area of each component detected by a GC-FID. The predominant compounds in the bio-oils were methyl acetate, acids, hydroxyacetone, furfural, non-aromatic ketones, levoglucosan and phenolic compounds. The WOP-derived bio-oil showed it to have relatively high nitrogen content. Increasing the reaction temperature was shown to have little effect on nitrogen removal. The ash and solid contents of both bio-oils were below 0.1 wt.% due to the excellent performance of the char separation system.

  15. Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils.

    Science.gov (United States)

    Hossain, Mohammad M; Scott, Ian M; Berruti, Franco; Briens, Cedric

    2016-12-01

    Valuable chemicals can be separated from agricultural residues by chemical or thermochemical processes. The application of pyrolysis has already been demonstrated as an efficient means to produce a liquid with a high concentration of desired product. The objective of this study was to apply an insect and microorganism bioassay-guided approach to separate and isolate pesticidal compounds from bio-oil produced through biomass pyrolysis. Tobacco leaf (Nicotianata bacum), tomato plant (Solanum lycopersicum), and spent coffee (Coffea arabica) grounds were pyrolyzed at 10°C/min from ambient to 565°C using the mechanically fluidized reactor (MFR). With one-dimensional (1D) MFR pyrolysis, the composition of the product vapors varied as the reactor temperature was raised allowing for the selection of the temperature range that corresponds to vapors with a high concentration of pesticidal properties. Further product separation was performed in a fractional condensation train, or 2D MFR pyrolysis, thus allowing for the separation of vapor components according to their condensation temperature. The 300-400°C tobacco and tomato bio-oil cuts from the 1D MFR showed the highest insecticidal and anti-microbial activity compared to the other bio-oil cuts. The 300-350 and 350-400°C bio-oil cuts produced by 2D MFR had the highest insecticidal activity when the bio-oil was collected from the 210°C condenser. The tobacco and tomato bio-oil had similar insecticidal activity (LC50 of 2.1 and 2.2 mg/mL) when the bio-oil was collected in the 210°C condenser from the 300-350°C reactor temperature gases. The 2D MFR does concentrate the pesticidal products compared to the 1D MFR and thus can reduce the need for further separation steps such as solvent extraction.

  16. Large-scale synthesis of lipid-polymer hybrid nanoparticles using a multi-inlet vortex reactor.

    Science.gov (United States)

    Fang, Ronnie H; Chen, Kevin N H; Aryal, Santosh; Hu, Che-Ming J; Zhang, Kang; Zhang, Liangfang

    2012-10-02

    Lipid-polymer hybrid nanoparticles combine the advantages of both polymeric and liposomal drug carriers and have shown great promise as a controlled drug delivery platform. Herein, we demonstrate that it is possible to adapt a multi-inlet vortex reactor (MIVR) for use in the large-scale synthesis of these hybrid nanoparticles. Several parameters, including formulation, polymer concentration, and flow rate, are systematically varied, and the effects of each on nanoparticle properties are studied. Particles fabricated from this process display characteristics that are on par with those made on the lab-scale such as small size, low polydispersity, and excellent stability in both PBS and serum. Using this approach, production rates of greater than 10 g/h can readily be achieved, demonstrating that use of the MIVR is a viable method of producing hybrid nanoparticles in clinically relevant quantities.

  17. An integrated process for hydrogen-rich gas production from cotton stalks: The simultaneous gasification of pyrolysis gases and char in an entrained flow bed reactor.

    Science.gov (United States)

    Chen, Zhiyuan; Zhang, Suping; Chen, Zhenqi; Ding, Ding

    2015-12-01

    An integrated process (pyrolysis, gas-solid simultaneous gasification and catalytic steam reforming) was utilized to produce hydrogen-rich gas from cotton stalks. The simultaneous conversion of the pyrolysis products (char and pyrolysis gases) was emphatically investigated using an entrained flow bed reactor. More carbon of char is converted into hydrogen-rich gas in the simultaneous conversion process and the carbon conversion is increased from 78.84% to 92.06% compared with the two stages process (pyrolysis and catalytic steam reforming). The distribution of tar components is also changed in this process. The polycyclic aromatic compounds (PACs) of tar are converted into low-ring compounds or even chain compounds due to the catalysis of char. In addition, the carbon deposition yield over NiO/MgO catalyst in the steam reforming process is approximately 4 times higher without the simultaneous process. The potential H2 yield increases from 47.71 to 78.19g/kg cotton stalks due to the simultaneous conversion process.

  18. Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Oh, Seung-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2013-09-01

    Corncob was pyrolyzed using ZnCl2 in a pyrolysis plant equipped with a fluidized bed reactor to co-produce furfural and acetic acid. The effects of reaction conditions, the ZnCl2 content and contacting method of ZnCl2 with corncob on the yields of furfural and acetic acid were investigated. The pyrolysis was performed within the temperature range between 310 and 410°C, and the bio-oil yield were 30-60 wt% of the product. The furfural yield increased up to 8.2 wt%. The acetic acid yield was maximized with a value of 13.1 wt%. A lower feed rate in the presence of ZnCl2 was advantageous for the production of acetic acid. The fast pyrolysis of a smaller corncob sample mechanically mixed with 20 wt% of ZnCl2 gave rise to a distinct increase in furfural. A high selectivity for furfural and acetic acid in bio-oil would make the pyrolysis of corncob with ZnCl2 very economically attractive.

  19. Pyrolysis of oil-plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization.

    Science.gov (United States)

    Chen, Jianbiao; Fan, Xiaotian; Jiang, Bo; Mu, Lin; Yao, Pikai; Yin, Hongchao; Song, Xigeng

    2015-09-01

    Pyrolysis characteristics of four distinct oil-plant wastes were investigated using TGA and fixed-bed reactor coupled with GC. TGA experiments showed that the pyrolysis behaviors were related to biomass species and heating rates. As the heating rate increased, TG and DTG curves shifted to the higher temperatures, and the comprehensive devolatilization index obviously increased. The remaining chars from TGA experiments were higher than those obtained from the fixed-bed experiments. The crack of tars at high temperatures enhanced the formation of non-condensable gases. During the pyrolysis, C-O and CO2 were the major gases. Chars FTIR showed that the functional groups of O-H, C-H(n), C=O, C-O, and C-C gradually disappeared from 400 °C on. The kinetic parameters were calculated by Coats-Redfern approach. The results manifested that the most appropriate pyrolysis mechanisms were the order reaction models. The existence of kinetic compensation effect was evident.

  20. Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil.

    Science.gov (United States)

    Ellens, C J; Brown, R C

    2012-01-01

    A central composite design of experiments was performed to optimize a free-fall reactor for the production of bio-oil from red oak biomass. The effects of four experimental variables including heater set-point temperature, biomass particle size, sweep gas flow rate and biomass feed rate were studied. Heater set-point temperature ranged from 450 to 650 °C, average biomass particle size from 200 to 600 μm, sweep gas flow rate from 1 to 5 sL/min and biomass feed rate from 1 to 2 kg/h. Optimal operating conditions yielding over 70 wt.% bio-oil were identified at a heater set-point temperature of 575 °C, while feeding red oak biomass sized less than 300 μm at 2 kg/h into the 0.021 m diameter, 1.8m tall reactor. Sweep gas flow rate did not have significant effect on bio-oil yield over the range tested.

  1. Optimization of the pyrolysis process of empty fruit bunch (EFB) in a fixed-bed reactor through a central composite design (CCD)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed [School of Bioprocess Engineering, Jejawi Complex of Academics (3), UniMAP, 02600 Arau Perlis (Malaysia)

    2014-07-10

    The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R{sup 2} was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710–1000 μm and holding time of 483 seconds.

  2. Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor.

    Science.gov (United States)

    Kordoghli, Sana; Khiari, Besma; Paraschiv, Maria; Zagrouba, Fethi; Tazerout, Mohand

    2017-09-01

    The treatment and disposal of tyres from vehicles has long been of considerable environmental importance. Studies have been undertaken to reduce their environmental impact. In this study, an alternative gas was produced from automobile tyre wastes by the means of a controlled pyrolysis. To do so, a novel catalytic system was designed with the aim of increasing the rate of conversion and improving the quality of the pyrolysis products. This work aimed also to reduce the severity of the overall reactions, by using powder catalysts (MgO, Al2O3, CaCO3, and zeolite ZSM-5) uniformly distributed on two layers of oyster shells (OS) particles. The catalyst/tyres mass ratio was kept for all the tests at 1/30. The pyrolysis reactor was maintained at 500°C and the influence of each catalyst and of the number of shell beds (0, 1 or 2), on the yield and composition of the derived products, was examined. The gas yields could contribute by 1.2% of total consumption in Tunisia. Furthermore, some combinations could upgrade the derived gas and made it possible to use it as such or with the minimum of post-treatment. It was found that, with the use of supported catalyst, the gas produced is 45% greater compared to classical thermal pyrolysis. The Heating value of the produced gas was also improved by the use of supported catalysts; it was found 16% greater with the use of Al2O3/OS compared to non-catalytic pyrolysis. When compared to the gas obtained from only one catalytic supported bed, the sulfur content was reduced by 80% with the use of CaCO3/OS on two catalytic beds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optimization of the pyrolysis process of empty fruit bunch (EFB) in a fixed-bed reactor through a central composite design (CCD)

    Science.gov (United States)

    Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed

    2014-07-01

    The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R2 was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710-1000 μm and holding time of 483 seconds.

  4. Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2015-06-01

    Full Text Available Catalytic cracking is one of the most promising processes for thermochemical conversion of biomass to advanced biofuels in recent years. However, current effectiveness of catalysts and conversion efficiency still remain challenges. An investigation of directly catalytic upgrading bio-oil vapors produced in prairie cordgrass (PCG pyrolysis over Ni/HZSM-5 and HZSM-5 in a two stage packed-bed reactor was carried out. The Ni/HZSM-5 catalyst was synthesized using an impregnation method. Fresh and used catalysts were characterized by BET and XRD. The effects of catalysts on pyrolysis products yields and quality were examined. Both catalysts improved bio-oil product distribution compared to non-catalytic treatment. When PCG pyrolysis vapor was treated with absence of catalyst, the produced bio-oils contained higher alcohols (10.97% and furans (10.14%. In contrast, the bio-oils contained the second highest hydrocarbons (34.97%)and the highest phenols (46.97% when PCG pyrolysis vapor was treated with Ni/HZSM-5. Bio-oils containing less ketones and aldehydes were produced by both Ni/HZSM-5 and HZSM-5, but no ketones were found in Ni/HZSM-5 treatment compared to HZSM-5 (2.94%. The pyrolysis gas compositions were also affected by the presenting of HZSM-5 or Ni/HZSM-5 during the catalytic upgrading process. However, higher heating values and elemental compositions (C, H and N of bio-chars produced in all treatments had no significant difference.

  5. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    Science.gov (United States)

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment.

  6. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  7. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  8. Product yields and characteristics of rice husk, rice straw and corncob during fast pyrolysis in a drop-tube/fixed-bed reactor

    Directory of Open Access Journals (Sweden)

    Janewit Wannapeera

    2008-05-01

    Full Text Available Fast pyrolysis of rice husk, rice straw and corncob were investigated in a newly constructed drop-tube/fixed-bedreactor, which enables pyrolysis experiments under conditions closely simulating those occurring in commercial gasifierssuch as fluidised-bed gasifiers. Biomass samples were pyrolysed with a fast heating rate (i.e. > 1,000oC s-1, up to 850oC andholding times ranging from 1 to 10,800 seconds. Within 1 second after the biomass was injected into the reactor, considerableweight loss occurred instantaneously, leaving only a small amount of char, i.e. ~10-30 %. For all three samples, theweight loss continued throughout the range of holding times used but at an extremely slow rate, i.e. 1.3 % hr-1. The weightloss rates observed for the three biomass samples were affected by the proportion of the biomass chemical componentsas well as the metal species contents. Corncob, which had the lowest lignin content but highest cellulose content, had thehighest pyrolysis weight loss rate. On the other hand, rice husk containing a relatively high lignin content, had the lowestpyrolysis rate. The metal species (Na, K, Ca and Mg were found to increase devolatilisation yield depending on theircontents in biomass. The influence of the metal species was the most pronounced for rice straw, having the highest totalmetal species content. As the pyrolysis progressed, each biomass exhibited different char characteristics. Scanning electronmicroscopy (SEM pictures clearly showed the individual changes in geometry for all biomass-derived chars as well astheir decrease in combustion reactivities. The gas formation profiles for all three biomass samples showed almost the sametrend, with CO contributed by cellulose decomposition as the major gas product.

  9. 循环流化床内废轮胎的热解油化%PYROLYSIS OF WASTE TIRES IN CFB REACTOR

    Institute of Scientific and Technical Information of China (English)

    戴先文; 赵增立

    2000-01-01

    介绍了以循环流化床反应器为主体的废轮胎热解油化装置,实验过程,实验结果及分析。通过评价热解条件对气体成分及油、碳和气产物产率的影响,以及热解油品的成分分析,得出如下结论: (1) 较高的温度和较长的停留时间会生成过多的不凝气(主要成分为CH4,H2,C2H4和CO等),降低油的产率;过低的温度和加热速率导致严重的碳化,同样会降低油产率。(2) 热解油品的组成成分非常复杂,芳烃占了很大比例,其次是烷烃和非烃,沥青质的含量较少。%With the CFB as main reactor, an integrated facility was developed for the pyrolysis of waste tires, in which the main chemical processes can be modelled and the bed is divided into two zones corresponding to the pyrolysis and second reactions. Based on the effects of pyrolysis conditions on the gas composition and the yields of char, gas and oil, analysis of the experimental data shows the important effects of temperature, heating rate and residence time. The main trend is that (1) the higher temperature and longer residence time contribute to the secondary reaction; and (2) the lower heating rate favors the carbonization, both of which reduce the oil production. The component analysis of pyrolysis oil indicates that most compounds in oil are aromatics, then non-hydrocarbons and alkanes, while bitumen is relatively low.

  10. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor. Yields and structural analysis of bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Puetuen, A.E.; Oezcan, A.; Puetuen, E. [Department of Chemical Engineering, Faculty of Engineering and Architecture, Yunusemre Campus, Anadolu University, 26470 Eskisehir (Turkey)

    1999-09-01

    Fixed-bed pyrolysis experiments have been conducted on a sample of hazelnut shells to determine the possibility of being a potential source of renewable fuels and chemical feedstocks. The effects of pyrolysis temperature and well-sweep gas atmosphere (N{sub 2}) on the pyrolysis yields and chemical compositions have been investigated. The maximum bio-oil yield of 23.1 wt.% was obtained in N{sub 2} atmosphere at a pyrolysis temperature of 500C and heating rate of 7 K min{sup -1}. The pyrolysis products were characterised by elemental analysis and various chromatographic and spectroscopic techniques and also compared with currently utilised transport fuels by simulated distillation. Bio-oil was then fractionated into pentane soluble and insoluble compounds (asphaltenes). Pentane soluble was then solvent fractionated into pentane, toluene, ether and methanol subfractions by fractionated column chromatography. The aliphatic and low-molecular-weight aromatic subfractions of the bio-oil were then analyzed by capillary column gas-liquid chromatography and GC/MS. Further structural analysis of bio-oil and aromatic and polar subfractions FTIR and {sup 1}H-NMR spectra were obtained. The chemical characterization has shown that the bio-oil obtained from hazelnut shells was quite similar to the crude oil and shale oil

  11. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    Science.gov (United States)

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  12. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  13. Ketonization of Model Pyrolysis Oil Solutions in a Plug Flow Reactor over a Composite Oxide of Fe, Ce, and Al

    Science.gov (United States)

    The stabilization and upgrading of pyrolysis oil requires the neutralization of the acidic components of the oil. The conversion of small organic acids, particularly acetic acid, to ketones is one approach to addressing the instability of the oils caused by low pH. In the ketonization reaction, acet...

  14. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.

    Science.gov (United States)

    Qian, Yangyang; Zhang, Jie; Wang, Jie

    2014-12-01

    The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time".

  15. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.

    Science.gov (United States)

    Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa

    2016-11-01

    In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive.

  16. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.

    Science.gov (United States)

    Ben Hassen-Trabelsi, A; Kraiem, T; Naoui, S; Belayouni, H

    2014-01-01

    Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC-MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds...etc.), carboxylic acids, aldehydes, ketones, esters,...etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.

    Science.gov (United States)

    Kabir, G; Mohd Din, A T; Hameed, B H

    2017-10-01

    Oil palm mesocarp fiber (OPMF) and palm frond (PF) were respectively devolatilized by pyrolysis to OPMF-oil and PF-oil bio-oils and biochars, OPMF-char and PF-char in a slow-heating fixed-bed reactor. In particular, the OPMF-oil and PF-oil were produced to a maximum yield of 48wt% and 47wt% bio-oils at 550°C and 600°C, respectively. The high heating values (HHVs) of OPMF-oil and PF-oil were respectively found to be 23MJ/kg and 21MJ/kg, whereas 24.84MJ/kg and 24.15MJ/kg were for the corresponding biochar. The HHVs of the bio-oils and biochars are associated with low O/C ratios to be higher than those of the corresponding biomass. The Fourier transform infrared spectra and peak area ratios highlighted the effect of pyrolysis temperatures on the bio-oil compositions. The bio-oils are pervaded with numerous oxygenated carbonyl and aromatic compounds as suitable feedstocks for renewable fuels and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time.

    Science.gov (United States)

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2015-03-01

    Lignite and sewage sludge were co-pyrolyzed in a vacuum reactor with high temperature (900°C) and long contact time (more than 2h). Beneficial synergetic effect on gas yield was clearly observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The gas volume yield, gas lower heating value (LHV), fixed carbon conversion and H2/CO ratio were 1.42 Nm(3)/kg(blend fuel), 10.57 MJ/Nm(3), 96.64% and 0.88% respectively, which indicated this new method a feasible one for gas production. It was possible that sewage sludge acted as gasification agents (CO2 and H2O) and catalyst (alkali and alkaline earth metals) provider during co-pyrolysis, promoting CO2-char and H2O-char gasification which, as a result, invited the improvement of gas volume yield, gas lower heating value and fixed carbon conversion.

  19. Effect of hot vapor filtration on the characterization of bio-oil from rice husks with fast pyrolysis in a fluidized-bed reactor.

    Science.gov (United States)

    Chen, Tianju; Wu, Ceng; Liu, Ronghou; Fei, Wenting; Liu, Shiyu

    2011-05-01

    To produce high quality bio-oil from biomass using fast pyrolysis, rice husks were pyrolyzed in a 1-5 kg/h bench-scale fluidized-bed reactor. The effect of hot vapor filtration (HVF) was investigated to filter the solid particles and bio-char. The results showed that the total bio-oil yield decreased from 41.7% to 39.5% by weight and the bio-oil had a higher water content, higher pH, and lower alkali metal content when using HVF. One hundred and twelve different chemical compounds were detected by gas chromatography-mass spectrometry (GC-MS). The molecular weight of the chemical compounds from the condenser and the EP when the cyclone was coupled with HVF in the separation system decreased compared with those from the condenser and EP when only cyclone was used.

  20. Pyrolysis process and apparatus

    Science.gov (United States)

    Lee, Chang-Kuei

    1983-01-01

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  1. Techniques in Gas-Phase Thermolyses. Part 6. Pulse Pyrolysis: Gas Kinetic Studies in an Inductively Heated Flow Reactor

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Bo, P.; Carlsen, Lars

    1985-01-01

    A prototype of an inductively heated flow reactor for gas kinetic studies is presented. The applicability of the system, which is based on a direct coupling between the reactor and the ion source of a mass spectrometer, is illustrated by investigations of a series of simple bond fission reactions...

  2. 移动床中褐煤直接热解特性%In-situ pyrolysis behavior of lignite in a moving bed reactor

    Institute of Scientific and Technical Information of China (English)

    高豪杰; 朱跃钊; 杜杨; 吴昊; 陈海军; 范红途

    2016-01-01

    为了获得高含水率褐煤在移动床内不经预处理直接热解的可行性及其热解行为,建立管式炉移动床褐煤直接热解实验装置;考察含水率、热解温度和粒径等参数对褐煤热解损失质量、产物产率以及产气特性的影响。研究结果表明:褐煤在热解过程中蒸发出的原位水蒸气参与半焦的气化以及挥发分的重整反应;随着含水率的增加,褐煤的原位水蒸气气化反应加强,碳转化率逐渐提高,H2产率由277.13 mL/g增大至527.77 mL/g;提高热解温度使气体产率逐渐增大,液体和固体产率逐渐降低,碳转化率由38.19%增大至52.74%;增大粒径使煤中水分和挥发分在颗粒内部的停留时间延长,在一定程度上强化半焦的气化反应以及挥发分的重整反应;此外,增大粒径使挥发分在褐煤颗粒孔隙中的传质阻力增大,二次反应加强,褐煤直接热解的最佳粒径为1.6~3.2 mm。%In order to obtain the feasibility of in-situ pyrolysis of high moisture content lignite and its behavior of pyrolysis, a moving bed tubular experimental reactor used for the in situ pyrolysis of lignite was built. The effects of moisture content, temperature and particle size on the mass loss, product yields and gas characteristic of the lignite pyrolysis were studied. The results show that in-situ steam evaporates from the lignite participated the char gasification and volatile steam reforming reaction. With the increase of moisture content, the in-situ steam gasification reaction of lignite is strengthened, accompanied by the rise of carbon conversion ratio. The H2 yield increases from 277.13 mL/g to 527.77 mL/g. The gas yield increases with the rise of pyrolysis temperature, while the liquid and char yield show an opposite trend. The carbon conversion ratio increases from 38.19%to 52.74%. The increase of the particle size prolongs the residence time of moisture and volatile in the interior of the

  3. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  4. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Su-Hwa; Cho, Min-Hwan; Kang, Bo-Sung; Kim, Joo-Sik [Faculty of Environmental Engineering, University of Seoul, 90 Jeonnong-Dong, Dongdaemun-Gu, Seoul 130-743 (Korea)

    2010-03-15

    Fractions of waste polypropylene and polyethylene were pyrolyzed in a pyrolysis plant under different conditions. In this study, the influence of the reaction temperature (650-750 C), the feed rate, and the kind of fluidizing medium on the product spectrum were investigated. Pyrolysis of the PP fraction produced oils up to 43 wt. % of the product. With respect to the PE fraction, the maximum oil yield was above 60 wt. % of the product. The target compound was BTX aromatics, whose amount in the oils reached 53 wt.% for the PP fraction and 32 wt. % for the PE fraction. It was shown that the PE fraction yielded a higher liquid product compared to the PP fraction, and that the concentration of aromatics in the oil increased at higher reaction temperatures for both the PP and PE fractions. A higher feed rate and the use of a gas product as the fluidizing medium were favored for the production of oils for both the PP and PE fractions. The oils that were obtained in the experiments almost had no metal and chlorine contents. The maximum heating value of the gas obtained in the experiments was about 50 MJ/kg. (author)

  5. An optically accessible pyrolysis microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, J. H.; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); David, D. E. [Integrated Instrument Development Facility, CIRES, University of Colorado, Boulder, Colorado 80309-0216 (United States); Daily, J. W. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2016-01-15

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  6. Fast pyrolysis of biomass in fluidized bed reactor UNICAMP, Brazil: problems, causes and solutions; Pirolise rapida de biomassa em reator de leito fluidizado UNICAMP-Brasil: problemas, causas e solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Mesa Perez, Juan Miguel; Marin Mesa, Henry Ramon [Bioware Tecnologia, Campinas, SP (Brazil); Rocha, Jose Dilcio; Olivares Gomez, Edgardo [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico; Cortez, Luis Augusto Barbosa; Shimabukuro, Fabio Rodrigo; Vallin, Marco Jim Gui [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    The fluidized bed reactor developed by the researchers of the UNICAMP in the installations of the Sugar Cane Technology Center (CTC), in Piracicaba-SP, is the first reactor of biomass fast pyrolysis in Brazil to produce bio-oil. In this work the problems of operation with the reactor in functioning are presented as the emptying of gases produced in the pyrolysis by means of the biomass feeding system, the block of the thread of biomass feeding, the inert material sintering in the bed, etc. The possible causes are described. Thus it, the first ones could be solved, either by the reduction of the height of the inert bed, or by the increase of the wadding percentage of the thread, among others. These results of the exploratory tests make possible the steady work of the plant, greater knowledge of the phenomena that occur during the fast pyrolysis in flutizide bed, as well as the establishment of adjusted levels for the identified independent factors during the remaining experimental works. (author)

  7. Methods and apparatuses for deoxygenating pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph

    2017-09-12

    Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactor effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.

  8. Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Huang, Q.; Sui, M.; Yan, Y.; Wang, F. [Research Center for Biomass Energy, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2008-12-15

    Hydrogen production was prepared via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Low-cost catalyst dolomite was chosen for the primary steam reforming of bio-oil in consideration of the unavoidable deactivation caused by direct contact of metal catalyst and bio-oil itself. Nickel-based catalyst Ni/MgO was used in the second stage to increase the purity and the yield of desirable gas product further. Influential parameters such as temperature, steam to carbon ratio (S/C, S/CH{sub 4}), and material space velocity (W{sub B}HSV, GHSV) both for the first and the second reaction stages on gas product yield, carbon selectivity of gas product, CH{sub 4} conversion as well as purity of desirable gas product were investigated. High temperature (> 850 C) and high S/C (> 12) are necessary for efficient conversion of bio-oil to desirable gas product in the first steam reforming stage. Low W{sub B}HSV favors the increase of any gas product yield at any selected temperature and the overall conversion of bio-oil to gas product increases accordingly. Nickel-based catalyst Ni/MgO is effective in purification stage and 100% conversion of CH{sub 4} can be obtained under the conditions of S/CH{sub 4} no less than 2 and temperature no less than 800 C. Low GHSV favors the CH{sub 4} conversion and the maximum CH{sub 4} conversion 100%, desirable gas product purity 100%, and potential hydrogen yield 81.1% can be obtained at 800 C provided that GHSV is no more than 3600 h{sup -} {sup 1}. Carbon deposition behaviors in one-stage reactor prove that the steam reforming of crude bio-oil in a two-stage fixed bed reaction system is necessary and significant. (author)

  9. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    Science.gov (United States)

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization.

  10. Experimental and Modelling Studies of Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Ka Leung Lam; Adetoyese Olajire Oyedu~; Chi Wai Hui

    2012-01-01

    The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing, operating and optimizing pyrolysis processes. This work aims to utilize both experimental and modelling approaches to perform the analysis on three biomass feedstocks--wood sawdust, bamboo shred and Jatropha Curcas seed cake residue, and to provide insights for the design_and operation of pyro-lysis processes. For the experimental part, the study investigated the effect of heating rate, final pyrolysis tempera- ture and sample size on pyrolysis using common thermal analysis techniques. For the modelling part, a transient mathematical model that integrates the feedstock characteristic from the experimental study was used to simulate the pyrolysis progress of selected biomass feedstock particles for reactor scenarios. The model composes of several sub-models that describe pyrolysis kinetic and heat flow, particle heat transfer, particle shrinking and reactor opera-tion. With better understanding of the effects of process conditions and feedstock characteristics on pyrolysis through both experimental and modelling studies, this work discusses on the considerations of and interrelation between feedstock size, pyrolysis energy usage, processing time and product quality for the design and operation of pyrolysis processes.

  11. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Shun; Ebitani, Kohki, E-mail: ebitani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Miyazato, Akio [Nanotechnology Center, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-02-01

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H{sub 2}O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, {sup 13}C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.

  12. Hydrogen Recovery by ECR Plasma Pyrolysis of Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible Electron Cyclotron Resonance (ECR) Plasma Methane Pyrolysis Reactor is proposed to recover hydrogen which is...

  13. 无轴螺旋连续热解装置上的生物质热解特性%Biomass continuous pyrolysis characteristics on shaftless screw conveying reactor

    Institute of Scientific and Technical Information of China (English)

    王明峰; 吴宇健; 蒋恩臣; 陈晓堃

    2015-01-01

    连续热解是一种高效的生物质能转化技术,无轴螺旋式连续热解装置不仅可减轻送料部件的质量,而且为热解挥发性产物的排出提供了有效空间,是极具发展前景的连续热解装置。为了解无轴螺旋式生物质连续热解特性,该文在无轴螺旋连续热解装置上,开展了以稻壳、花生壳和木薯茎秆为生物质原料的热解试验,分析了3种生物质在不同热解温度下的三态产物分布特性、热解气体组分变化规律及热解炭的组织结构和表面形貌特征。结果表明:炭产率随热解温度升高逐渐下降,气体产率逐渐上升,液体产率先上升再下降,在450℃时达到最大,产物分布特性与其他热解反应器的一致;不同原料炭产率由高到低依次为:稻壳>花生壳>木薯茎秆,液体产率由高到低依次为:稻壳>花生壳>木薯茎秆,气体产率与液体产率相反。热解气体组分受温度影响较大,热解温度升高,可燃气体组分含量不断上升,不可燃气体组分含量不断下降,不同原料对气体组分含量影响较小。热解炭的工业分析结果与原料的工业分析结果存在相关性,热解温度升高,热解炭中挥发分含量逐渐下降,固定碳及灰分含量增加,木薯茎秆炭的挥发分含量最高,花生壳炭的固定碳含量最高,稻壳炭的灰分含量最高;低温热解炭的表面官能团较为丰富,随热解温度升高官能团种类逐渐减少;原料自身结构特性对热解炭的表面形貌影响较大,随着热解温度升高,生物质原料的表面结构不断被破坏,热解炭表面出现孔隙结构,花生壳炭与木薯茎秆炭表面孔隙结构比稻壳炭更为发达。%Technology of continuous pyrolysis is an effective method of disposing biomass, and the shaftless-screw-conveying pyrolysis reactor, which is a kind of device with great development prospects, can not

  14. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Yorgun, S.; Sensoz, S. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Chemical Engineering; Kockar, O.M. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2001-07-01

    Sunflower (Helianthus annus L.)-extracted bagasse pyrolysis experiments were performed in a fixed-bed reactor. The effects of heating rate, final pyrolysis temperature, particle size and pyrolysis atmosphere on the pyrolysis product yields and chemical compositions have been investigated. The maximum oil yield of 23% was obtained in N{sub 2} atmosphere at a pyrolysis temperature of 550 {sup o}C and a heating rate of 7 {sup o}C min {sup -1}. The chemical characterisation has shown that the oil obtained from sunflower-extracted bagasse may be potentially valuable as fuel and chemical feedstocks. (Author)

  15. Flash pyrolysis properties of algae and lignin residue

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sørensen, Hanne Risbjerg

    A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor. The product distributions and energy recoveries were measured and compared among these biomasses. The fast pyrolysis...

  16. Pyrolysis of biomass briquettes, modelling and experimental verification

    NARCIS (Netherlands)

    van der Aa, B; Lammers, G; Beenackers, AACM; Kopetz, H; Weber, T; Palz, W; Chartier, P; Ferrero, GL

    1998-01-01

    Carbonisation of biomass briquettes was studied using a dedicated single briquette carbonisation reactor. The reactor enabled continuous measurement of the briquette mass and continuous measurement of the radial temperature profile in the briquette. Furthermore pyrolysis gas production and compositi

  17. Suspension Combustion of Wood: Influence of Pyrolysis Conditions on Char Yield, Morphology, and Reactivity

    DEFF Research Database (Denmark)

    Dall'Ora, Michelangelo; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    Chars from pine and beech wood were produced by fast pyrolysis in an entrained flow reactor and by slow pyrolysis in a thermogravimetric analyzer. The influence of pyrolysis temperature, heating rate and particle size on char yield and morphology was investigated. The applied pyrolysis temperatur...

  18. Biomass fast pyrolysis in fluidized bed : product cleaning by in-situ filtration

    NARCIS (Netherlands)

    Wang, Xiaoquan

    2006-01-01

    This thesis is dedicated to the subject of fast pyrolysis in a fluid bed reactor. A large part of the work is related to reactor design aspects of fast pyrolysis, a subject that has not been considered sufficiently. Past research efforts were focussed mainly on the kinetics of wood pyrolysis and the

  19. Chapter 8: Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Baldwin, Robert M.; Arbogast, Stephen; Bellman, Don; Paynter, Dave; Wykowski, Jim

    2016-09-06

    Fast pyrolysis is heating on the order of 1000 degrees C/s in the absence of oxygen to 40-600 degrees C, which causes decomposition of the biomass. Liquid product yield from biomass can be as much as 80% of starting dry weight and contains up to 75% of the biomass energy content. Other products are gases, primarily carbon monoxide, carbon dioxide, and methane, as well as solid char and ash. Residence time in the reactor is only 0.5-2 s so that relatively small, low-capital-cost reactors can be used. The low capital cost combined with greenhouse gas emission reductions relative to petroleum fuels of 50-95% makes pyrolysis an attractive process. The pyrolysis liquids have been investigated as a refinery feedstock and as stand-alone fuels. Utilization of raw pyrolysis oil has proven challenging. The organic fraction is highly corrosive because of its high organic acid content. High water content lowers the net heating value and can increase corrosivity. It can be poorly soluble in petroleum or petroleum products and can readily absorb water. Distillation residues can be as high as 50%, viscosity can be high, oils can exhibit poor stability in storage, and they can contain suspended solids. The ignition quality of raw pyrolysis oils is poor, with cetane number estimates ranging from 0 to 35, but more likely to be in the lower end of that range. While the use of raw pyrolysis oils in certain specific applications with specialized combustion equipment may be possible, raw oils must be significantly upgraded for use in on-highway spark-ignition (SI) and compression-ignition (CI) engines. Upgrading approaches most often involve catalytic hydrodeoxygenation, one of a class of reactions known as hydrotreating or hydroprocessing. This chapter discusses the properties of raw and upgraded pyrolysis oils, as well as the potential for integrating biomass pyrolysis with a petroleum refinery to significantly reduce the hydroprocessing cost.

  20. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...... and shape, composition, reactivity and burnout depend significantly on the operating conditions of the fast pyrolysis. Biomass fast pyrolysis experiments were performed in a laboratory-scale wire mesh reactor and bench scale atmospheric pressure drop tube / entrained flow reactors with the aim...

  1. 固定床反应器中生物质/废塑料共热解制备燃料油%Co-pyrolysis of biomass and waste plastic for biofuel in fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    徐艺; 陈宇; 华德润; 吴玉龙; 杨明德; 陈镇; 唐娜

    2013-01-01

    Thermal pyrolysis of different biomass (sawdust, straw) and plastic (polypropylene, poly vinyl chloride) and synergistic effects of co-pyrolysis of biomass and plastic were investigated with TGA. In fixed-bed reactor the influence of plastic content on co-pyrolysis of biomass and plastic was discussed, and the produced bio-oil was analyzed with elemental analysis and GC-MS. The results showed that significant synergy was present in the co-pyrolysis process of biomass and plastic, especially in the co-pyrolysis process of sawdust and polypropylene the synergistic effect was the most prominent. When the content of polypropylene was 80%, bio-oil yield was the highest, obviously higher than that of separate pyrolysis. And the results of elemental and GC-MS analysis showed that the bio-oil had a higher hydrogen content and its calorific value was equal to that of the crude oil equivalent.%通过热重分析不同生物质(木屑和秸秆)单独热解以及与塑料(PP和dcPVC)共热解时的热解行为,研究了生物质与塑料共热解过程中的协同作用.在固定床反应器中考察了塑料的含量对生物质/塑料共热解的影响,最后通过元素分析和GC-MS对所得生物油进行了分析.研究结果表明:生物质和塑料共热解过程中存在明显的协同作用.木屑和PP共热解过程中的协同作用最为显著,当PP含量为80%时,所得生物油的产率最高,明显高于两者单独热解得到的生物油.元素分析和GC-MS分析结果表明:木屑和PP所得生物油的含氢量较高,所得到生物油的热值与石化燃油的相近.

  2. Pyrolysis of waste tyres: A review

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

    2013-08-15

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  3. Vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)

    2009-07-01

    This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)

  4. Vulcanized Vortex

    CERN Document Server

    Cho, Inyong

    2008-01-01

    We investigate vortex configurations with the "vulcanization" term introduced for renormalization of $\\phi_\\star^4$ theory in canonical $\\theta$-deformed noncommutativity. In the small-$\\theta$ limit, we perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  5. SIMULATION OF OLIVE PITS PYROLYSIS IN A ROTARY KILN PLANT

    Directory of Open Access Journals (Sweden)

    Giacobbe Braccio

    2011-01-01

    Full Text Available This work deals with the simulation of an olive pits fed rotary kiln pyrolysis plant installed in Southern Italy. The pyrolysis process was simulated by commercial software CHEMCAD. The main component of the plant, the pyrolyzer, was modelled by a Plug Flow Reactor in accordance to the kinetic laws. Products distribution and the temperature profile was calculated along reactor's axis. Simulation results have been found to fit well the experimental data of pyrolysis. Moreover, sensitivity analyses were executed to investigate the effect of biomass moisture on the pyrolysis process.

  6. Molecular products from the pyrolysis and oxidative pyrolysis of tyrosine.

    Science.gov (United States)

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2013-05-01

    The thermal degradation of tyrosine at a residence time of 0.2s was conducted in a tubular flow reactor in flowing N2 and 4% O2 in N2 for a total pyrolysis time of 3min. The fractional pyrolysis technique, in which the same sample was heated continuously at each pyrolysis temperature, was applied. Thermal decomposition of tyrosine between 350 and 550°C yielded predominantly phenolic compounds (phenol, p-cresol, and p-tyramine), while decomposition between 550 and 800°C yielded hydrocarbons such as benzene, toluene, and ethyl benzene as the major reaction products. For the first time, the identification of p-tyramine, a precursor for the on of formation of p-tyramine and its degradation to phenol and p-cresol, and toxicological discussion of some of the harmful reaction products is also presented.

  7. Effects of feedstockon co-pyrolysis of biomass and coal in a free fall reactor%原料对自由落下床中生物质与煤共热解行为的影响

    Institute of Scientific and Technical Information of China (English)

    魏立纲; 张丽; 徐绍平

    2011-01-01

    在500~700℃和生物质混合比0~100%(质量分数)条件下,利用自由落下床反应器考察原料对生物质与煤共热解行为的影响.所用煤原料为大雁褐煤(DY)和铁法烟煤(TF),而生物质原料为农业废弃物秸秆(LS)和木材加工余料白松木屑(SD).结果表明,即使在自由落下床中停留时间短的条件下,生物质与煤共热解的协同效应仍然发生.原料种类对共热解产品的产率和半焦反应性影响大:以综纤维素和灰分含量大的LS为原料时,共热解的协同效应比以SD为原料时明显;以高阶煤TF为原料时,共热解的液体产率高于以低阶煤DY为原料时的产率;在特定条件下共热解可提高半焦的反应性;与TF相比,DY存在下的共热解有利于提高半焦的反应性.在生物质与煤共热解过程中,通过选择适当原料可以制取目标产品.%Effects of feedstock on the co-pyrolysis of biomass and coal were investigated in a free fall reactor at 500°C~700°Cwith biomass blending ratio of 0 ~100%(mass ratio).The selected coal samples were Dayan brown coal (DY) and Tiefa bituminous coal(TF),and the biomass samples were agricultural residues legume straw (LS) and woody residues pine sawdust (SD).The results indicate that the synergy can occur even in a short gas residence time during the co-pyrolysis of biomass and coal in a free-fall reactor.The product yields and the CO2 reactivity of char from the co-pyrolysis are greatly influenced by the type of feedstock.The synergy in the presence of LS with high holocellulose and ash content is more significant than that in the presence of SD.The liquid yield of high rank TF co-pyrolysis is higher than that of low rank DY coal.The char reactivity can be improved by the co-pyrolysis at specific conditions.The co-pyrolysis in presence of DY can improve the reactivity of the produced char.

  8. Physicochemical characterization of sludge obtained in a UASB reactor: influence on the energetic utilization in the pyrolysis process; Caracterizacao fisico-quimica de lodo obtido em um reator UASB: influencia no aproveitamento energetico em processo de pirolise

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Murillo Barros de [Universidade Federal do Tocantins (UFT), Palmas, TO (Brazil)], Email: murillopur@yahoo.com.br; Vieira, Glaucia Eliza Gama; Cardoso, Aderlanio da Silva; Silveira, Dyego Amaral; Figueiredo, Radson Lima [Universidade Federal do Tocantins (LEDBIO/UFT), Palmas, TO (Brazil). Lab. de Ensaios e Desenvolvimento de Biomassas e Biocombustiveis

    2010-07-01

    In biological treatment processes of domestic sewer it leaves of the organic matter is converted and another is absorbed being part of the microbial biomass denominated generic of mud biological or secondary composed mainly of biological solids, and that for that reason can also be denominated of sewage sludge. To give a maintainable final destiny for that residue has been one of the great challenges of the sanitation in the last years. Great part of that material is destined unproductive some are incinerated, others are disposed in sanitary embankments. This work had as objective the physiochemical characterization of the digested sludge, virgin and free from oxide of calcium (CaO), produced in the reactor UASB, of ETE Vila Uniao located in the city of Palmas-TO, for the destination as raw material for energy use in pyrolysis process. The collected sample was taken drought and stabilized to be analyzed at the laboratory LEDBIO/UFT where they were studied the particle, tenor of ashes, humidity and volatile density and sequential extraction for soxhlet. Found in the biomass loud tenor of volatile (56,72%), carbon fastens low (5,21%) and a considerable tenor of ashes (32,78%), what suggests that that sludge, in agreement with the comparisons of the literature, can obtain good incomes in pyrolysis process, especially incomes in bio-oil and coal. (author)

  9. Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Ali Najaf

    2016-09-01

    Full Text Available The yield and composition of pyrolysis products depend on the characteristics of feed stock and process operating parameters. Effect of particle size, reaction temperature and carrier gas flow rate on the yield of bio-oil from fast pyrolysis of Pakistani maize stalk was investigated. Pyrolysis experiments were performed at temperature range of 360-540°C, feed particle size of 1-2 mm and carrier gas fl ow rate of 7.0-13.0 m3/h (0.61.1 m/s superficial velocity. Bio-oil yield increased with the increase of temperature followed by a decreasing trend. The maximum yield of bio-oil obtained was 42 wt% at a temperature of 490°C with the particle size of around 1.0 mm and carrier gas flow rate of 11.0 m3/h (0.9 m/s superficial velocity. High temperatures resulted in the higher ratios of char and non-condensable gas.

  10. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  11. Three-dimensional simulation of gas-solid mixing behavior in thermal plasma reactor for coal pyrolysis%等离子体裂解煤反应器内气固混合行为的三维模拟

    Institute of Scientific and Technical Information of China (English)

    马传奇; 程党国; 陈丰秋; 詹晓力

    2013-01-01

    采用FLUENT对2 MW和5 MW等离子体裂解煤反应器内气固混合行为进行了三维数值模拟.结果表明,2 MW反应器内的煤粉颗粒能够射入气流中心,气固两相混合均匀,而5 MW反应器内的煤粉颗粒不能穿透射流,主要集中在壁面附近,反应器放大效应明显,所得模拟结果与热态试验结果吻合较好.进而应用此模型对不同粒径和入射速度进行了模拟计算,结果表明适当地增大粒径和颗粒入射速度都有利于提高气固两相的混合效率.%Three-dimensional simulations of gas-solid mixing behavior in thermal plasma reactor for coal pyrolysis with power of 2 MW and 5 MW are performed.The results show that in the 2 MW plasma reactor,coal particles can penetrate through the gas to the center of the reactor,and the two phases mixed well.While in the 5 MW plasma reactor coal particles fails to penetrate the gas,most of which concentrate on the wall.The evident scale-up effect can be observed.The simulation results agree well with experimental values.The simulations with different particle diameters and feeding rates are further carried out.It shows that appropriate increase in particle diameter and feeding rate can strengthen the contact of the two phrases.

  12. Pyrolysis of waste tyres: a review.

    Science.gov (United States)

    Williams, Paul T

    2013-08-01

    Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  13. Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  14. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  15. Hydrogen Recovery by ECR Plasma Pyrolysis of Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible microwave plasma methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  16. 下降管式生物质快速热解实验装置设计与实验%Design and Experiments of a Down-flow Tube Reactor for the Pyrolysis of Biomass

    Institute of Scientific and Technical Information of China (English)

    崔喜彬; 李志合; 李永军; 易维明; 柏雪源

    2011-01-01

    为了确定在固体热载体加热方式下反应温度和停留时间对生物质热解挥发特性的影响,设计了陶瓷球热载体加热下降管式生物质热解实验装置,并进行了生物质热解挥发特性实验.该实验装置能够对反应温度进行精确控制,实现生物质粉和陶瓷球热载体按比例连续均匀喂料及热解残炭样品的采集.实验物料为玉米秸秆粉,反应温度分别为450、500、550℃.停留时间通过反应物在反应管内下降距离间接测量,下降距离分别为150、550、850、1 150 mm.利用灰分示踪法计算得到了不同条件下生物质的热解挥发率.实验结果表明:玉米秸秆粉的热解挥发率随着热解温度的升高、下降距离的加长而非线性增大.%In order to investigate the effects of reaction temperature and reaction distance on the pyrolysis volatilization characteristics of biomass in a down-flow tube reactor, a ceramic ball heated down-flow tube reactor was designed and fabricated, and biomass pyrolysis experiments were conducted in the reactor. The experimental apparatus could control the reaction temperature precisely, feed the biomass and heat carrier evenly and continuously. Pulverized corn stalk powder was used as the feed stock. Reaction temperatures were 450℃ ,500t and 550℃. The falling distances, which was the indirect measure of the residence time, were 150 mm,550 mm,850 mm and 1 150 mm. Ash tracer method was used to calculate the volatilized fractions of the pyrolyzed biomass at different experimental conditions. The experimental results showed that the volatilized fraction of corn stalk powder increased nonlinearly with the increase of reaction temperature and residence time.

  17. Atmospheric Hydrodeoxygenation of Biomass Fast Pyrolysis Vapor by MoO3

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jensen, Peter Arendt; Le, Duy Michael

    2016-01-01

    MoO3 has been tested as a catalyst in hydrodeoxygenation (HDO) of both model compounds (acetone and guaiacol) and real biomass pyrolysis vapors under atmospheric pressure. The pyrolysis vapor was obtained by fast pyrolysis of wood or lignin in a continuous fast pyrolysis reactor at a fixed...... temperature of 500 °C, and it subsequently passed through a downstream, close coupled, fixed bed reactor containing the MoO3 catalyst. The influences of the catalyst temperature and the concentration of H2 on the HDO of the pyrolysis vapors were investigated. The level of HDO of the biomass pyrolysis vapors...... was not significant at temperatures below 400 °C. At 450 °C catalyst temperature and 93 vol % H2 concentration, the wood pyrolysis vapor was more active toward cracking forming gas species instead of performing the desired HDO forming hydrocarbons. The lignin pyrolysis vapor was more resistant to cracking and yielded...

  18. Kinetic investigation of wood pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Thurner, F.; Mann, U.; Beck, S. R.

    1980-06-01

    The objective of this investigation was to determine the kinetics of the primary reactions of wood pyrolysis. A new experimental method was developed which enabled us to measure the rate of gas, tar, and char production while taking into account the temperature variations during the wood heating up. The experimental method developed did not require any sophisticated instruments. It facilitated the collection of gas, tar and residue (unreacted wood and char) as well as accurate measurement of the temperature inside the wood sample. Expressions relating the kinetic parameters to the measured variables were derived. The pyrolysis kinetics was investigated in the range of 300 to 400/sup 0/C at atmospheric pressure and under nitrogen atmosphere. Reaction temperature and mass fractions of gas, tar, and residue were measured as a function of time. Assuming first-order reactions, the kinetic parameters were determined using differential method. The measured activation energies of wood pyrolysis to gas, tar, and char were 88.6, 112.7, and 106.5 kJ/mole, respectively. These kinetic data were then used to predict the yield of the various pyrolysis products. It was found that the best prediction was obtained when an integral-mean temperature obtained from the temperature-time curve was used as reaction temperature. The pyrolysis products were analyzed to investigate the influence of the pyrolysis conditions on the composition. The gas consisted mainly of carbon dioxide, carbon monoxide, oxygen, and C/sub 3//sup +/-compounds. The gas composition depended on reaction time as well as reactor temperature. The tar analysis indicated that the tar consisted of about seven compounds. Its major compound was believed to be levoglucosan. Elemental analysis for the char showed that the carbon content increased with increasing temperature.

  19. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    Science.gov (United States)

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-06-23

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, (1)H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pyrolysis Oil Biorefinery.

    Science.gov (United States)

    Meier, Dietrich

    2017-03-14

    In biorefineries several conversion processes for biomasses may be applied to obtain maximum value from the feed materials. One viable option is the liquefaction of lignocellulosic feedstocks or residues by fast pyrolysis. The conversion technology requires rapid heating of the biomass particles along with rapid cooling of the hot vapors and aerosols. The main product, bio-oil, is obtained in yields of up to 75 wt% on a dry feed basis, together with by-product char and gas which are used within the process to provide the process heat requirements; there are no waste streams other than flue gas and ash. Bio-oils from fast pyrolysis have a great potential to be used as renewable fuel and/or a source for chemical feedstocks. Existing technical reactor designs are presented together with actual examples. Bio-oil characterization and various options for bio-oil upgrading are discussed based on the potential end-use. Existing and potential utilization alternatives for bio-oils are presented with respect to their use for heat and power generation as well as chemical and material use.

  1. Pyrolysis of Indonesian coal

    Energy Technology Data Exchange (ETDEWEB)

    Rachimoellah; Endah [Institut Teknologi Sepuluh Nopemba, Surabaya (Indonesia). Department of Chemical Engineering; Karaman, N.; Kusuma, S.A. [UPN Surabaya, (Indonesia). Department of Chemical Engineering

    1997-04-01

    It has been estimated that there is 36 billion tons of coal resource potential in Indonesia. Over 21.4 billion tons is classified as low rank (lignitic) coal. The coal deposits are located mainly in Sumatra and Kalimantan. As an energy source, low rank coals are not widely used, because of their high moisture content, low calorific value and variable ash content. One of the key questions for utilizing low rank coal is whether lignite can be upgraded into another form which is more economically viable. In this study tests were carried out in a pilot plant fixed bed pyrolysis reactor unit provided with hopper, electric heater, coolers and product receivers. The yield of char, tar and gases was found to depend on temperature which also affected the composition of gas produced. Results also indicated the temperature and particle size giving maximum tar yield, gas concentration, and the atmosphere of inert nitrogen. 1 tab., 2 figs., 10 refs.

  2. Techno-economic evaluation of high temperature pyrolysis processes for mixed plastic waste.

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Koningsbruggen, van M.P.; Ham, van der A.G.J.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1998-01-01

    Three pyrolysis processes for Mixed Plastic Waste (MPW) with different reactors (Bubbling Fluidized Bed, Circulating Fluidized Bed and Rotating Cone Reactor, respectively BFB, CFB and RCR) were designed and evaluated. The estimated fixed capital investment for a 50 kton/year MPW pyrolysis plant buil

  3. Pyrolysis technologies for municipal solid waste: a review.

    Science.gov (United States)

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2014-12-01

    Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Reprint of: Pyrolysis technologies for municipal solid waste: a review.

    Science.gov (United States)

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2015-03-01

    Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Chorin, A.J. [California Univ., Berkeley, CA (United States). Dept. of Mathematics]|[Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  6. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    NARCIS (Netherlands)

    Ali Imran, A.; Bramer, Eduard A.; Seshan, Kulathuiyer; Brem, Gerrit

    2014-01-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis

  7. Producing Hydrogen by Plasma Pyrolysis of Methane

    Science.gov (United States)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  8. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Flensborg, Julie Pauline; Shoulaifar, Tooran Khazraie

    2014-01-01

    The release of chlorine (Cl) and sulfur (S) during biomass torrefaction and pyrolysis has been investigated via experiments in two laboratory-scale reactors: a rotating reactor and a fixed bed reactor. Six biomasses with different chemical compositions covering a wide range of ash content and ash...... reporting that biomasses with a lower chlorine content release a higher fraction of chlorine during the pyrolysis process. A significant sulfur release (about 60%) was observed from the six biomasses investigated at 350 degrees C. The initial sulfur content in the biomass did not influence the fraction...

  9. Molecular products and radicals from pyrolysis of lignin.

    Science.gov (United States)

    Kibet, J; Khachatryan, L; Dellinger, B

    2012-12-04

    Thermal degradation of lignin under two reaction regimes (pyrolysis in N(2) and oxidative pyrolysis in 4% O(2) in N(2)) has been investigated in a tubular, isothermal, flow-reactor over the temperature range 200-900 °C at a residence time of 0.2 s. Two experimental protocols were adopted: (1) Partial pyrolysis in which the same lignin sample was continuously pyrolyzed at each temperature and (2) conventional pyrolysis, in which new lignin samples were pyrolyzed at each pyrolysis temperature. The results identified common relationships between the two modes of experiments, as well as some differences. The majority of products from partial pyrolysis peaked between 300 and 500 °C, whereas for conventional pyrolysis reaction products peaked between 400 and 500 °C. The principal products were syringol (2,6-dimethoxy phenol), guaiacol (2-methoxy phenol), phenol, and catechol. Of the classes of compounds analyzed, the phenolic compounds were the most abundant, contributing over 40% of the total compounds detected. Benzene, styrene, and p-xylene were formed in significant amounts throughout the entire temperature range. Interestingly, six ringed polycyclic aromatic hydrocarbons were formed during partial pyrolysis. Oxidative pyrolysis did not result in large differences from pyrolysis; the main products still were syringol, guaiacol, phenol, the only significant difference being the product distribution peaked between 200 and 400 °C. For the first time, low temperature matrix isolation electron paramagnetic resonance was successfully interfaced with the pyrolysis reactor to elucidate the structures of the labile reaction intermediates. The EPR results suggested the presence of methoxyl, phenoxy, and substituted phenoxy radicals as precursors for formation of major products; syringol, guaiacol, phenols, and substituted phenols.

  10. Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor.

    Science.gov (United States)

    Wang, Yimeng; Wang, Jie

    2016-08-01

    The pinewood was pyrolyzed in the first reactor at a heating rate of 10°Cmin(-1) from room temperature to 700°C, and the vapor was allowed to be cracked through the second reactor in a temperature range of 450-750°C without and with HZSM-5. Attempts were made to determine a wide spectrum of gaseous and liquid products, as well as the mass and element partitions to gas, water, bio-oil, coke and char. HZSM-5 showed a preferential deoxygenation effect via the facilitated decarbonylation and decarboxylation with the inhibited dehydration at 550-600°C. This catalyst also displayed a high selectivity for the formations of aromatic hydrocarbons and olefins by the promoted hydrogen transfer to these products at 550-600°C. The bio-oil produced with HZSM-5 at 500-600°C had the yields of 14.5-16.8%, the high heat values of 39.1-42.4MJkg(-1), and the energy recoveries of 33-35% (all dry biomass basis).

  11. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.

    Science.gov (United States)

    Chang, Sheng; Zhao, Zengli; Zheng, Anqing; Li, Xiaoming; Wang, Xiaobo; Huang, Zhen; He, Fang; Li, Haibin

    2013-06-01

    Eucalyptus wood powder was first subjected to hydrothermal pretreatment in a high-pressure reactor at 160-190°C, and subsequently fast pyrolyzed in a fluidized bed reactor at 500°C to obtain high quality bio-oil. This study focused on investigating effect of hydrothermal pretreatment on bio-oil properties. Hemicellulose and some metals were effectively removed from eucalyptus wood, while cellulose content was enhanced. No significant charring and carbonization of constituents was observed during hydrothermal pretreatment. Thus pretreated eucalyptus wood gave higher bio-oil yield than original eucalyptus wood. Chemical composition of bio-oil was examined by GC/MS and (13)C NMR analyses. Bio-oil produced from pretreated eucalyptus wood exhibited lower contents of ketones and acids, while much higher levoglucosan content than bio-oil produced from original eucalyptus wood, which would help to improve thermal stability of bio-oil and extract levoglucosan from bio-oil. Hydrothermal pretreatment also improved bio-oil fuel quality through lowering water content and enhancing heating value.

  12. BIOMASS PYROLYSIS FOR LIQUIDS IN CIRCULATING FLUIDIZED BED(CFB)REACTOR%循环流化床反应器固体生物质的热解液化

    Institute of Scientific and Technical Information of China (English)

    戴先文; 吴创之; 周肇秋; 陈勇

    2001-01-01

    介绍了以循环流化床反应器为主体的固体生物质热解液化装置,实验过程,实验结果及分析。通过对气体产物的比较及油产物一般物性和油成分的分析,得出如下结论:1)较高的温度和较长的停留时间会降低油的产率,生成过多的不凝气;过低的温度和加热速率导致严重的碳化,同样会降低油产率,本实验的最高油产率可达63%。2)生物质热解油品的物性特点主要包括水分含量较高,pH值较低,粘度变化范围很大,热值与化石燃料相比为低,并且油品中因含氧量很高而极不稳定,油品的组成成分非常复杂,烷烃和非烃占据了相当的比例,芳烃和沥青质含量相对较少。3)在循环流化床中的固体生物质热解液化可模化为热解区和还原裂解区。%With the CFB as main reactor,an integrated facility was developed for the fast pyrolysis of biomass.In this facility,the bed is divided into two zones according to the pyrolysis and secondary reactions,the main chemical processes can be modelled.Based on the variation of the pyrolysis gas composition and the bio-oil ingredients,analysis of the experimental data highlights the important effects of temperature,heating rate and residence time.The main trend is that the higher temperature and longer residence time would contribute to the secondary reaction and the lower heating rate favors the carbonization,which both reduce the liquid production.In this study,the best bio-oil yield is 63%in weight.The component analysis of bio-oil shows that most compounds in bio-oil are nonhydrocarbons,while alkanes,aromatics and bitumen are relatively low.The physical properties of bio-oil include the high water and oxygen content,and the low pH and LHV.

  13. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor.

    Science.gov (United States)

    Meng, Haiyu; Wang, Shuzhong; Chen, Lin; Wu, Zhiqiang; Zhao, Jun

    2016-06-01

    The rapid co-pyrolytic behavior of platanus wood and Pingzhuang lignite was explored in a drop tube fixed-bed reactor under nitrogen atmosphere. Synergistic effects were evaluated using the deviations between experimental and predicted values of product yields and gas components. Surface morphology of residual chars were also investigated applying the scanning electron microscopy technique (SEM). This study found that the experimental values of gas volume yields were greater than the predicted, and the maximum gas volume yield exhibited with 50% biomass blending ratio at 1000°C. Positive or negative synergistic effects happened in gas components at different blending ratios and temperatures. The SEM results indicated that the differences of char surface morphology were evident. The fractal dimensions of residual chars increased with increasing biomass blending ratio, which may improve their gasification or combustion reactivity. The change in product yields and gas components was attributed to the secondary reactions and tar cracking.

  14. Pyrolysis and gasification behavior of black liquor under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.

    1997-11-01

    The purpose of this study has been to enhance the understanding of the processes involved in pressurized black liquor gasification. Gasification is known to occur in three stages: drying, pyrolysis and char gasification. The work presented here focuses on the pyrolysis and gasification stages. Experiments were carried out primarily in two laboratory-scale reactors. A pressurized grid heater was used to study black liquor pyrolysis under pressurized conditions. Char yields and the fate of elements in the liquor, as well as the degree of liquor swelling, were measured in this device. A pressurized thermogravimetric reactor was used to measure the rate of the char gasification process under different temperatures and pressures and in various gas atmospheres. Pyrolysis experiments were also carried out in this device, and data on swelling behavior, char yields and component release were obtained 317 refs.

  15. Brownian vortexes

    Science.gov (United States)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  16. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  17. A Comparative Study of Pelleted Broiler Litter Biochar Derived from Lab-Scale Pyrolysis Reactor with That Resulted from 200-Liter-Oil Drum Kiln to Ameliorate the Relations between Physicochemical Properties of Soil with Lower Organic Matter Soil and Soybean Yield

    Directory of Open Access Journals (Sweden)

    Chintana Sanvong

    2014-01-01

    Full Text Available Biochars can be used as soil amendments for improving soil properties and crop yield. In this study, a pot experiment was conducted to compare the efficiency of pelleted broiler litter biochar (PBLB derived from a lab-scale pyrolysis reactor (PBLBL with that resulted from 200-liter-oil drum kiln (PBLBO. The biochar generated from each reactor was applied to the pot that contained lower organics materials, sandy soil, and grown soybeans cv.Chiangmai-60 (Glycine max [L.] Merr. at the application rates of 5.00, 10.0, 15.0, and 20.0 t ha-1. The results showed that both types of pyrolysis reactors (PBLBL and PBLBO, at every application rate, significantly improved the physicochemical properties of soil and increased the growth and yield of soybean; their comparison with a control treatment of soybeans is p < 0.05. At the application rate of 15.0 t ha-1 the PBLBL showed the highest soybean yield. The application of PBLBL and PBLBO significantly led to increased pH, soil organic matter, C:N ration, N, P, K, Ca, Mg and CEC.

  18. Pyrolysis of furan in a microreactor

    Science.gov (United States)

    Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney

    2013-09-01

    A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.

  19. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  20. Thermal and hydraulic effects of coke deposit in hydrocarbon pyrolysis process

    OpenAIRE

    2012-01-01

    International audience; Fuel pyrolysis can be of benefit for regenerative cooling techniques due to its endothermic effect in ensuring the thermal resistance of hypersonic vehicles and structures. Among pyrolysis species production, there is that of coke formation. A numerical code is used in this paper to investigate the related phenomena, based on two experiments using Titanium (Ti) and Stainless Steel (SS) reactors, which present different pyrolysis rates under similar operating conditions...

  1. Methane Pyrolysis for Hydrogen & Carbon Nanotube Recovery from Sabatier Products Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible catalytic methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  2. Methane Pyrolysis for Hydrogen & Carbon Nanotube Recovery from Sabatier Products Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible catalytic methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  3. Biomass Fast Pyrolysis Reactors: A Review of a Few Scientific Challenges and of Related Recommended Research Topics Réacteur de pyrolyse rapide de la biomasse : une revue de quelques verrous scientifiques et d’actions de recherches recommandées

    Directory of Open Access Journals (Sweden)

    Lédé J.

    2013-06-01

    Full Text Available The use of biomass as an alternative energy resource requires its prior processing. Many options are possible. The present paper focuses on thermochemical routes and more specifically on fast pyrolysis carried out for the preparation of so called bio-oils. The optimization and scaling up of fast pyrolysis processes for improving bio oils yields and properties come up against several difficulties. The aim of the paper is to show that some of them are related to the lack of several basic scientific knowledges, more specifically at the level of the high temperature fast pyrolysis reactor. The analysis of these challenges (biomass sample thermal decomposition, biomass-reactor interactions, secondary reactions suggests the development of several research topics. L’utilisation de la biomasse en tant que ressource énergétique de substitution nécessite sa transformation préalable. De nombreuses options sont possibles. Cet article s’intéresse aux voies thermochimiques et plus spécifiquement à la pyrolyse rapide mise en oeuvre pour la préparation d’huiles de pyrolyse. L’optimisation et l’extrapolation des procédés de pyrolyse rapide pour améliorer les rendements et propriétés des huiles de pyrolyse se heurtent à plusieurs difficultés. Le but de cet article est de montrer que certaines sont liées au manque de certaines connaissances scientifiques de base, plus précisément au niveau du réacteur haute température. L’analyse de ces verrous (décomposition thermique d’un grain de biomasse, interactions biomasse-réacteur, réactions secondaires suggère le développement de plusieurs axes de recherche.

  4. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS.

    Science.gov (United States)

    Antonakou, E V; Kalogiannis, K G; Stephanidis, S D; Triantafyllidis, K S; Lappas, A A; Achilias, D S

    2014-12-01

    Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.

  5. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis......) into a mainly gaseous output. The specific output composition and relative amounts of the outputs greatly depend on the input fuel and the overall process configuration. Although pyrolysis processes in many cases also occur in gasification (however prior to the gasification processes), the overall technology...... may often be described as gasification only. Pyrolysis, however, can also be employed without proceeding with gasification. Gasification is by no means a novel process; in the 19th century so-called ‘town gas’ was produced by the gasification of coal and for example used for illumination purposes...

  6. Fast pyrolysis of lignin, macroalgae and sewage sludge

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung

    In the last twenty years, the fast pyrolysis process has been explored to produce bio-oil from biomass. Fast pyrolysis is a thermal conversion technology that is performed at a temperatures of 450 - 600 ºC, high biomass heating ratess (100 - 2000 K/s), a short gas residence time (less than 2 s......) with no presence of oxygen. Fast pyrolysis can convert a large fraction of the biomass to bio-oil, and smaller fractions of char and gas. The pyrolysis centrifuge reactor (PCR) has been developed at the CHEC center at DTU Department of Chemical Engineering. The reactor is a compact design that uses a low flow rate...... constructed as a mobile unit of a tractor-propelled vehicle that is used on straw fields. A lot of work on PCR straw and wood pyrolysis with respect to pyrolysis conditions, moisture feedstock content, bio-oil properties, and PCR modelling is done before this PhD project. The bio-oil yields of approximately...

  7. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.

    Science.gov (United States)

    Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang

    2016-08-01

    Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas.

  8. Bio-oil from Flash Pyrolysis of Agricultural Residues

    DEFF Research Database (Denmark)

    Ibrahim, Norazana

    bio-oils. Mainly the influence of feedstock type (wheat straw, rice husk and pine wood), feedstock water content and reactor temperature on the yield of char, bio-oil and gas were investigated. The storage stability of bio-oils with respect to changes in viscosity, water content and pH were...... liquid organics yield. In addition, the chemical compositions of the bio-oils and the chars of the investigated feedstocks were also analyzed. The utilization of the pyrolysis oil in static combustion equipments such as boilers and turbine have shown that the suitability of the pyrolysis oil...... to substitute fossil fuel. However, several limitations still arise due to the instability of the pyrolysis oil that may cause problems with transport and storage. Pyrolysis oil contains more than hundred of chemical compounds and has a wide range of volatility (different boiling points). The stability...

  9. Treatment of Lignin and Waste residues by Flash Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Trinh, Ngoc Trung; Dam-Johansen, Kim

    Lignin, sewage sludge and macroalg ae (nonconventional biomasses) fast pyrolysis properties has been studied through experimental investigations on a la boratory Pyrolysis Centrifugal Reactor (PCR) and a model on lignin pyrolysis have been developed. Fu rthermore the nonconventional biomass...... ethanol plant a bio-oil can be produced with oil yields of 36% (daf) and an oil en ergy recovery of 45%. This is a relatively low bio-oil yield compared to other feedstock’s, however, it may increase the value of the lignin residual product, such that the lignin char is used for combustion on the ethanol...... plant, and the bio-oil is sold for use on heavy oil burners. The macroalgae is a promising feedstock w ith a high bio-oil yield of 54 wt% daf and an energy recovery of 76 % in the liquid oil. Detailed characteriza tion of the pyrolysis products in the form of bio-oil, gas and char has been performed...

  10. Studies on Catalytic Pyrolysis of Daqing Atmospheric Residue

    Institute of Scientific and Technical Information of China (English)

    孟祥海; 徐春明; 张倩; 高金森

    2004-01-01

    Catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 was investigated in a confined fluidized bed reactor. The results show that reaction temperature, the mass ratios of catalyst to oil and steam to oil have significant effects on product distribution and yields of light olefins. The yields of light olefins show the maxima with the increase of reaction temperature, the mass ratios of catalyst to oil and steam to oil, respectively. The optimized operating conditions were determined in the laboratory, and under that condition the yields of ethylene, propylene and total light olefins by mass were 15.9%, 20.7% and 44.3% respectively. The analysis of pyrolysis gas and pyrolysis liquid indicates that CEP-1 has good capacity of converting heavy oils into light olefins, and there is a large amount of aromatics in pyrolysis liquid.

  11. Studies on characteristics of producer gas from sewage sludge pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Haiying; Zhang Guijie [Coll. of Metallurgy and Energy, Heibei Polytechnic Univ., Tangshan (China); Zhang Shuting; Chen Guanyi [School of Environment Science and Technology, Tianjin Univ., Nankai District, TJ (China)

    2008-07-01

    The pyrolysis experiments of sewage sludge at low and middle temperature range from 250 C to 700de;C were carried out in a {phi} 200mm laboratory fixed bed external-heat reactor. The influence of final pyrolysis temperature on product yield of gases was studied. It was found that the gases yield increased with increasing the final pyrolysis temperature. But the productive rate increased above 450 C. The results indicated the secondary pyrolysis of intermediate product occurred about 450 C. According to the analysis of NCG, the yield of CO{sub 2} was maximum at lower pyrolysis temperature but the yields of H{sub 2}, CO, CH{sub 4} were higher at elevated pyrolysis temperature and the maximum caloric value of gaseous emissions were 16712 kJ/m{sup 3}. According the TG-DTA curves the decomposition of sewage sludge had three stages. The first stage was deprivation of interstitial moisture (100 C-110 C), the second stage was the depolymerization reactions of lipid and the generation of large molecular intermediate fragments (110 C-325 C), the last stage was cracking of the large molecular and the decomposition of protein and saccharide (325 C-600 C). All the results can offer reliable base data for the application of pyrolysis technique of sewage sludge. (orig.)

  12. Biofuel from jute stick by pyrolysis technology

    Science.gov (United States)

    Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.

    2017-06-01

    In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.

  13. Bio-oil from Flash Pyrolysis of Agricultural Residues

    DEFF Research Database (Denmark)

    Ibrahim, Norazana

    -oil was around 525 °C to 550 °C for all straw moisture contents. It was investigated how differences in biomass composition influence pyrolysis products yields and the composition of char and bio-oils. Details about this investigation are explained in Paper II (Chapter 3). The used pine wood had a low ash...... at reactor temperatures ranging from 475 to 575 oC. It was observed that the formation of char and gas is affected by the biomass alkali content. Increasing biomass alkali content caused an increased feedstock conversion at low temperature, a lower maximum liquid organic yield temperature and a lower maximum......This thesis describes the production of bio-oils from flash pyrolysis of agricultural residues, using a pyrolysis centrifugal reactor (PCR). By thermal degradation of agricultural residues in the PCR, a liquid oil, char and non-condensable gases are produced. The yield of each fraction...

  14. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis....... Today gasification is used within a range of applications, the most important of which are conversion of coal into syngas for use as chemical feedstock or energy production; but also gasification of biomass and waste is gaining significant interest as emerging technologies for sustainable energy. From...

  15. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    KAUST Repository

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  16. Heterogeneous and homogeneous reactions of pyrolysis vapors from pine wood

    NARCIS (Netherlands)

    Hoekstra, E.; Westerhof, R.J.M.; Brilman, D.W.F.; Swaaij, van W.P.M.; Kersten, S.R.A.; Hogendoorn, J.A.; Windt, M.

    2012-01-01

    To maximize oil yields in the fast pyrolysis of biomass it is generally accepted that vapors need to be rapidly quenched. The influence of the heterogeneous and homogeneous vapor-phase reactions on yields and oil composition were studied using a fluidized-bed reactor. Even high concentrations of min

  17. Fast pyrolysis of biomass thermally pretreated by torrefaction

    Science.gov (United States)

    Torrefied biomass samples were produced from hardwood and switchgrass pellets using the biochar experimenter’s kit (BEK) reactor and analyzed for their utility as pretreated feedstock for biofuels production via fast pyrolysis. The energy efficiency for the BEK torrefaction process with propane gas ...

  18. Pyrolysis of waste electrical and electronic equipment: effect of antinomy trioxide on the pyrolysis of styrenic polymers.

    Science.gov (United States)

    Hall, W J; Bhaskar, T; Merpati, N M M; Muto, A; Sakata, Y; Williams, P T

    2007-09-01

    This work has investigated the effect that antimony trioxide has on the pyrolysis of styrenic polymers and the effect that different types of brominated flame retardants used in plastics have on the composition of the pyrolysis products. Brominated high impact polystyrene (Br-HIPS) which contained either 5% or 0% antimony trioxide and either decabromodiphenyl oxide (DDO) or decabromodiphenyl ethane (DDE) was pyrolysed in a fixed bed reactor at 430 degrees C. Some experiments on the fixed bed reactor involved mixing the Br-HIPS with polystyrene. The gaseous products were analysed by GC-FID and GC-TCD and it was found that antimony trioxide caused an increase in the proportion of ethane and ethene and suppressed the proportion of butane and butene. When DDE was the flame retardant increased proportions of ethane and ethene were found in the pyrolysis gas compared to when DDO used. When polystyrene was mixed with the Br-HIPS it suppressed the trends observed in the gas composition during the pyrolysis of Br-HIPS. The pyrolysis oils were characterised using FT-IR, GC-MS, GC-FID, and GC-ECD. It was found that the plastic which did not contain antimony trioxide pyrolysed to form mainly toluene, ethylbenzene, styrene, cumene, and alpha-methylstyrene. The oils produced from the pyrolysis of the plastic that contained antimony trioxide did not contain any styrene or alpha-methylstyrene, but instead contained greater concentrations of ethylbenzene and cumene. The absence of styrene and alpha-methylstyrene from the pyrolysis oil occurred even when the Br-HIPS was mixed with polystyrene. GC-ECD analysis of the oils showed that the plastics which did not contain antimony trioxide pyrolysed to form (1-bromoethyl)benzene, which was totally absent from the pyrolysis oils when antimony trioxide was present in the plastic.

  19. PYROLYSIS KINETICS OF WASHED PRECIPITATED LIGNIN

    Directory of Open Access Journals (Sweden)

    Christina Gustafsson

    2009-02-01

    Full Text Available This article describes the pyrolysis behavior of precipitated washed lignin in a Laminar Entrained Flow Reactor between 700 and 1000°C and at different residence times. Lignin was precipitated by acidification of softwood black liquor using CO2. After acid washing, the solid material was dried and sieved (80-100 μm. This material was then fed into the reactor at a rate of about 0.1 g/min. The formed gases were analyzed with respect to CO, CO2, and CH4, and char was collected and weighed. A traditional first order Arrhenius kinetic expression, based on the temperature of the particles with respect to residence time, was adapted to the experimental results. The activation energy was found to be 32.1 kJ/mol. The low ash content in the washed lignin gave a very low solid material residue after the reactor.

  20. Estimating the Temperature Experienced by Biomass Particles during Fast Pyrolysis Using Microscopic Analysis of Biochars

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Logan C. [National; Ciesielski, Peter N. [National; Jarvis, Mark W. [National; Mukarakate, Calvin [National; Nimlos, Mark R. [National; Donohoe, Bryon S. [National

    2017-07-12

    Biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large, heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.

  1. Formate-assisted pyrolysis

    Science.gov (United States)

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  2. Formate-assisted pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  3. Effect of temperature on pyrolysis product of empty fruit bunches

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati [School of Physics, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  4. Co-pyrolysis of sewage sludge and manure.

    Science.gov (United States)

    Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria

    2017-01-01

    The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525°C in a stirred batch reactor under N2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Vacuum pyrolysis of waste tires with basic additives.

    Science.gov (United States)

    Zhang, Xinghua; Wang, Tiejun; Ma, Longlong; Chang, Jie

    2008-11-01

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) approximately 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  6. Effect of temperature on pyrolysis product of empty fruit bunches

    Science.gov (United States)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-01

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  7. Fractional vortex Hilbert's Hotel

    CERN Document Server

    Gbur, Greg

    2015-01-01

    We demonstrate how the unusual mathematics of transfinite numbers, in particular a nearly perfect realization of Hilbert's famous hotel paradox, manifests in the propagation of light through fractional vortex plates. It is shown how a fractional vortex plate can be used, in principle, to create any number of "open rooms," i.e. topological charges, simultaneously. Fractional vortex plates are therefore demonstrated to create a singularity of topological charge, in which the vortex state is completely undefined and in fact arbitrary.

  8. Quality improvement of pyrolysis oil from waste rubber by adding sawdust.

    Science.gov (United States)

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q

    2014-12-01

    This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The co-pyrolysis of flame retarded high impact polystyrene and polyolefins

    Energy Technology Data Exchange (ETDEWEB)

    Hall, William J.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Mitan, Nona Merry M.; Muto, Akinori; Sakata, Yusaku [Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, 700-8530 Okayama (Japan); Bhaskar, Thallada [Catalytic Conversion Process Division, Indian Institute of Petroleum, Dehradun (India)

    2007-10-15

    The co-pyrolysis of brominated high impact polystyrene (Br-HIPS) with polyolefins using a fixed bed reactor has been investigated, in particular, the effect that different types of brominated aryl compounds and antimony trioxide have on the pyrolysis products. The pyrolysis products were analysed using FT-IR, GC-FID, GC-MS, and GC-ECD. Liquid chromatography was used to separate the oils/waxes so that a more detailed analysis of the aliphatic, aromatic, and polar fractions could be carried out. It was found that interaction occurs between Br-HIPS and polyolefins during co-pyrolysis and that the presence of antimony trioxide influences the pyrolysis mass balance. Analysis of the Br-HIPS + polyolefin co-pyrolysis products showed that the presence of polyolefins led to an increase in the concentration of alkyl and vinyl mono-substituted benzene rings in the pyrolysis oil/wax resulting from Br-HIPS pyrolysis. The presence of Br-HIPS also had an impact on the oil/wax products of polyolefin pyrolysis, particularly on the polyethylene oil/wax composition which converted from being a mixture of 1-alkenes and n-alkanes to mostly n-alkanes. Antimony trioxide had very little impact on the polyolefin wax/oil composition but it did suppress the formation of styrene and alpha-methyl styrene and increase the formation of ethylbenzene and cumene during the pyrolysis of the Br-HIPS. (author)

  10. Methane Pyrolysis and Disposing Off Resulting Carbon

    Science.gov (United States)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.

  11. Sadovskii vortex in strain

    Science.gov (United States)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  12. Plasma Pyrolysis Assembly Regeneration Evaluation

    Science.gov (United States)

    Medlen, Amber; Abney, Morgan B.; Miller, Lee A.

    2011-01-01

    In April 2010 the Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS). This technology requires hydrogen to recover oxygen from carbon dioxide. This results in the production of water and methane. Water is electrolyzed to provide oxygen to the crew. Methane is vented to space resulting in a loss of valuable hydrogen and unreduced carbon dioxide. This is not critical for ISS because of the water resupply from Earth. However, in order to have enough oxygen for long-term missions, it will be necessary to recover the hydrogen to maximize oxygen recovery. Thus, the Plasma Pyrolysis Assembly (PPA) was designed to recover hydrogen from methane. During operation, the PPA produces small amounts of carbon that can ultimately reduce performance by forming on the walls and windows of the reactor chamber. The carbon must be removed, although mechanical methods are highly inefficient, thus chemical methods are of greater interest. The purpose of this effort was to determine the feasibility of chemically removing the carbon from the walls and windows of a PPA reactor using a pure carbon dioxide stream.

  13. Streamwise Vortex Interaction with a Horseshoe Vortex

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Pawel Flaszynski; Franco Magagnato

    2003-01-01

    Flow control in turbomachinery is very difficult because of the complexity of its fully 3-D flow structure. The authors propose to introduce streamwise vortices into the control of internal flows. A simple configuration of vortices was investigated in order to better understand the flow control methods by means of streamwise vortices.The research presented here concerns streamwise vortex interaction with a horseshoe vortex. The effects of such an interaction are significantly dependent on the relative location of the streamwise vortex in respect to the leading edge of the profile. The streamwise vortex is induced by an air jet. The horseshoe vortex is generated by the leading edge of a symmetric profile. Such a configuration gives possibility to investigate the interaction of these two vortices alone. The presented analysis is based on numerical simulations by means of N-S compressible solver with a two-equation turbulence model.

  14. Interactive Matching between the Temperature Profile and Secondary Reactions of Oil Shale Pyrolysis

    DEFF Research Database (Denmark)

    Zhang, Yu; Han, Zhennan; Wu, Hao;

    2016-01-01

    degrees C and a shale char bed operating at different temperatures. At low temperatures (550 degrees C), severe cracking occurred, converting both heavy and light oil to carbon and gas. The desirably matched reactor temperature profile for high oil yield is discussed via analysis of the tendency......This article investigates the effect of the reactor temperature profile on the distribution and characteristics of the products from fixed-bed pyrolysis of oil shale. Experiments were performed in a one-stage fixed-bed reactor and in a two-stage fixed-bed reactor. In the one-stage reactor......, the shale oil yield reached 7.40 wt % with a reactor temperature profile from 900 to 550 degrees C and decreased to 2.23 wt % with the reverse temperature profile. The effect of the temperature profile was investigated further in the two-stage fixed-bed reactor combining a pyrolysis stage operating at 550...

  15. 用废弃生物质快速生产生物燃油新工艺及转锥式裂解装置设计%Study on Fast Producting Bio-fuel-oil New Technology and Designon ZKR500 Rotating Cone Reactor for Flash Pyrolysis/Liquefaction of Biomass

    Institute of Scientific and Technical Information of China (English)

    王述洋; 谭文英; 陈爱军

    2000-01-01

    研究探讨了一种能够将废弃生物质快速液化转换成生物质液化燃油的新技术方法,并研究设计出适用于该工艺的关键设备"ZKR-500型转锥式废弃生物质快速裂解液化反应器"·%A new process for fast producing bio-fuel-oil by solid biomass and design of the key equipment of the process ZKR500 Rotating Cone Reactor for Flash Pyrolysis Liquefaction of Biomass were studied in the paper.

  16. Vortex mechanism in hydrocyclones

    Institute of Scientific and Technical Information of China (English)

    徐继润; 刘正宁; 邢军; 李新跃; 黄慧; 徐海燕; 罗茜

    2001-01-01

    On the basis of analyzing the vortex characteristics, a new mechanism of the vortex formation in hydrocyclones is developed. The main concept of the mechanism is that the vortex flow in a hydrocyclone is resulted from the overlapping of container rotation and hole leakage. The model is then used to explain the compound distribution of free vortex and forced vortex, predict the similarity of tangential velocity at different input pressures, and make count of the principle of small hydrocyclone with lower cut-size than large one. Meanwhile a new possible approach to a large hydro-cyclone with lower cut-size by minimizing or eliminating the air core is discussed briefly.

  17. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar

    Science.gov (United States)

    In this study, we used a commercial pilot-scale, skid-mounted pyrolysis reactor system to produce combustible gas and biochar at 620ºC from three sources (chicken litter, swine solids, mixture of swine solids with rye grass). Pyrolysis of swine solids produced gas with the greatest higher heating va...

  18. Mild pyrolysis of P3HB/Switchgrass blends for the production of bio-oil enriched with crotonic acid

    Science.gov (United States)

    The mild pyrolysis of switchgrass/poly-3-hydroxybutyrate (P3HB) blends that mimic P3HB-producing switchgrass lines was studied in a pilot scale fluidized bed reactor with the goal of simultaneously producing crotonic acid and switchgrass-based bio-oil. Factors such as pyrolysis temperature, residenc...

  19. Experimental and Kinetic Modeling Study of Nitroethane Pyrolysis at a Low Pressure: Competition Reactions in the Primary Decomposition

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Glarborg, Peter; Zhou, Xueyao

    2016-01-01

    The pyrolysis of nitroethane has been investigated over the temperature range of 682-1423 K in a plug flow reactor at a low pressure. The major species in the pyrolysis process have been identified and quantified using tunable synchrotron vacuum ultraviolet photoionization mass spectrometry and m...

  20. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  1. Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization

    Science.gov (United States)

    Krumm, Christoph

    Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order

  2. Distinguishing primary and secondary reactions of cellulose pyrolysis.

    Science.gov (United States)

    Patwardhan, Pushkaraj R; Dalluge, Dustin L; Shanks, Brent H; Brown, Robert C

    2011-04-01

    The objective of this study was to elucidate primary and secondary reactions of cellulose pyrolysis, which was accomplished by comparing results from a micro-pyrolyzer coupled to a GC-MS/FID system and a 100 g/hr bench scale fluidized bed reactor system. The residence time of vapors in the micro-pyrolyzer was only 15-20 ms, which precluded significant secondary reactions. The fluidized bed reactor had a vapor residence time of 1-2 s, which is similar to full-scale pyrolysis systems and is long enough for secondary reactions to occur. Products from the fluidized bed pyrolyzer reactor were analyzed using a combination of micro-GC, GC-MS/FID, LC-MS and IC techniques. Comparison between the products from the two reactor systems revealed that the oligomerization of leglucosan and decomposition of primary products such as 5-hydroxymethyl furfural, anhydro xylopyranose and 2-furaldehyde were the major secondary reactions occurring in the fluidized bed reactor. This study can be used to build more descriptive pyrolysis models that can predict yield of specific compounds.

  3. Pyrolysis decomposition of tamarind seed for alternative fuel.

    Science.gov (United States)

    Kader, M A; Islam, M R; Parveen, M; Haniu, H; Takai, K

    2013-12-01

    The conversion of tamarind seed into bio-oil by pyrolysis has been taken into consideration in the present work. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collector. The crushed tamarind seed in particle form was pyrolyzed in an electrically heated fixed bed reactor. The products were liquid, char and gasses. The parameters varied were reactor temperature, running time, gas flow rate and feed particle size. The maximum liquid yield was 45 wt% at 400°C for a feed size of 3200 μm diameter at a gas flow rate of 6l/min with a running time of 30 min. The obtained pyrolysis liquid at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel. The results show the potential of tamarind seed as an important source of alternative fuel and chemicals as well.

  4. Current issues and future directions in pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Preto, F. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2005-02-01

    Biomass is a diverse grouping of low energy content, low density and high moisture heterogenous materials. An overview of pyrolysis processes and procedures was presented with a list of potential applications for industrial processes and power generation. The chemical energy content of various fuels was presented and with the advantages of pyrolysis with reference to improved transport, handling and storage. Details of technical requirements were outlined along with some of the undesirable characteristics of biofuel including the highly corrosive nature of the fuel, pungency, high solids content, immiscibility with hydrocarbon fuels and the fact that over time, chemical composition shifts, resulting in increased viscosity and decreased volatility. Various issues concerning pyrolysis regarding current technologies, composition and standards, applications and biorefinery feedstock were summarized. A flow chart presenting the conversion of biomass to biofuel was provided. Various reactor types were also overviewed and included such as fluidized beds, transport, heated augers, vacuum pyrolysis and ablative and rotating cones. Details of pilot plants in Erie and Renfrew, Ontario were provided along with details of a plant in Alabama operating entirely on chicken litter. Various specifications for pyrolysis oils were presented. A chart of biofuel composition in mass fractions was provided, with an accompanying list of commonly quoted pyrolysis oil properties. A series of biofuel combustion tests conducted at CANMET Energy Technology Centre (CETC) in Ottawa were described. Photographs of the pre-test refractory were exhibited. Details of current research on drying kiln applications were outlined. The suitability of pyrolytic biofuel for producing microemulsion fuels was discussed. A biorefinery model was included. Challenges to biomass pyrolysis include feed preparation, scale-up issues, heat transfer to reactor rates, char separation, liquid collection, liquid quality

  5. Production and characterization of chars from cherry pulp via pyrolysis.

    Science.gov (United States)

    Pehlivan, E; Özbay, N; Yargıç, A S; Şahin, R Z

    2017-12-01

    Pyrolysis is an eco-friendly process to achieve valuable products like bio-oil, char and gases. In the last decades, biochar production from pyrolysis of a wide variety of industrial and agricultural wastes become popular, which can be utilized as adsorbent instead of the expensive activated carbons. In this study, cherry pulp was pyrolyzed in a fixed bed tubular reactor at five different temperatures (400, 500,550, 600 and 700 °C) and three different heating rates (10, 100 and 200 °C/min) to obtain biochar. Proximate, ultimate, nitrogen adsorption/desorption isotherms, scanning electron microscopy, thermogravimetric analysis, x-ray fluorescence, x-ray diffraction, and Fourier transform infrared spectroscopy were performed on cherry pulp and its chars to examine the chemical alterations after the pyrolysis process. Biochar yields were decreased with increasing pyrolysis temperature and heating rate, based on experimental results. Porous biochars are carbon rich and includes high potassium content. The aromaticity of biochars increased and O/C mass ratio reduced with an increase in the pyrolysis temperature as a result of the development of compact aromatic structure in char. Pyrolysis provides a promising conversion procedure for the production of high energy density char which has promising applications in existing coal-fired boilers without any upgrading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study on pyrolysis and gasification of wood in MSW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to develop municipal solid waste(MSW) pyrolysis/gasification and melting technology with low emission and high efficiency, it was planed that all the main components in MSW and some typical kinds of MSW were pyrolyzed/gasified to propose an expert system for raw MSW. In this paper, wood, which was a prevalent component in MSW, was pyrolyzed and gasified in fluidized-bed reactors at different apparent excess air ratios (EARs), temperatures and fluidizing velocities. For pyrolysis, with temperature increasing from 400℃ to 700℃, the yield of pyrolysis char decreased while that of pyrolysis gas increased (in this paper respectively from 28% to 20% and from 10% to 35%), and when temperature was 500℃, the yield of pyrolysis tar reached the highest,up to 38% in this paper. It was the optimum for gasification when temperature was 600℃ and apparent EAR was 0.4. Under the experimental conditions of this paper, gasification efficiency achieved 73%, lower heat value(LHV) reached 5800 kJ/(Nm3) and yield of syngas was 2.01 Nm3/kg. Lower fluidizing velocity was useful to upgrade gasification efficiency and LHV of syngas for wood gasification. Based on the results, the reactive courses and mechanism were analyzed respectively for wood pyrolysis and gasification.

  7. Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria; Brilman, Derk Willem Frederik; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.

    2010-01-01

    Pine wood was pyrolyzed in a 1 kg/h fluidized bed fast pyrolysis reactor that allows a residence time of pine wood particles up to 25 min. The reactor temperature was varied between 330 and 580 °C to study the effect on product yields and oil composition. Apart from the physical−chemical analysis, a

  8. Effect of Temperature in Fluidized Bed Fast Pyrolysis of Biomass: Oil Quality Assessment in Test Units

    NARCIS (Netherlands)

    Westerhof, R.J.M.; Brilman, D.W.F.; Swaaij, van W.P.M.; Kersten, S.R.A.

    2010-01-01

    Pine wood was pyrolyzed in a 1 kg/h fluidized bed fast pyrolysis reactor that allows a residence time of pine wood particles up to 25 min. The reactor temperature was varied between 330 and 580 °C to study the effect on product yields and oil composition. Apart from the physical−chemical analysis, a

  9. Influence of gas-phase reactions on the product yields obtained in the pyrolysis of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Cozzani, V.; Tognotti, L. [Univ. degli Studi di Pisa (Italy); Nicolella, C.; Rovatti, M. [Univ. degli Studi di Genova (Italy). Ist. di Ingegneria Chimica e di Processo G.B. Bonino

    1997-02-01

    The amount of plastic wastes is growing year after year, and the fraction of plastics in municipal solid wastes (MSW) and in refuse-derived fuels (RDF) is progressively increasing. Pyrolysis and gasification processes appear to be promising routes for the upgrading of solid wastes to more usable and energy dense materials such as gas fuel and/or fuel oil or to high-value feedstocks for the chemical industry. The characterization of the product fractions obtained from the pyrolysis of polyethylene (PE) in a laboratory-scale fixed bed reactor was performed. The experimental system allowed quantitative information to be obtained on the global tar, char, and gas yields. Pyrolysis runs were performed using reactor temperatures ranging between 500 and 800 C. The influence of the residence times in the reactor of the primary volatiles generated by the pyrolysis process was also discussed. The secondary reactivity of the tar originated from PE pyrolysis was examined. A lumped-parameters approach was used in order to evaluate the global kinetic parameters for the gas-phase tar-cracking process. PE tars resulted to be more refractory to thermal decomposition than those obtained in the pyrolysis of biomass and lignocellulosic materials, but more reactive than tars obtained in the pyrolysis of coal.

  10. Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L. and energy cane (Saccharum complex in an inductively heated reactor

    Directory of Open Access Journals (Sweden)

    Gustavo Aguilar

    2015-12-01

    Full Text Available In the face of fluctuating petroleum costs and a growing demand for energy, the need for an alternative and sustainable energy source has increased. A viable solution for this problem can be attained by using thermochemical conversion, pyrolysis, of existing biomass sources for the production of liquid fuels. This study focuses on the effect that biomass particle size has on the conversion of biomass into liquid pyrolysis oil. Energy cane and Chinese tallow tree biomass were pyrolyzed at 550 ℃. The particle size ranges studied were < 0.5, 0.5 to 1.4, 1.4 to 2.4 and, 2.4 to 4.4 mm. The results indicate that the range from 0.5-1.4 mm is a better range for optimizing bio-oil production while keeping water content low.

  11. Depicting Vortex Stretching and Vortex Relaxing Mechanisms

    Institute of Scientific and Technical Information of China (English)

    符松; 李启兵; 王明皓

    2003-01-01

    Different from many existing studies on the paranetrization of vortices, we investigate the effectiveness of two new parameters for identifying the vortex stretching and vortex relaxing mechanisms. These parameters are invariants and identify three-dimensional flow structures only, i.e. they diminish in two-dimensional flows. This is also unlike the existing vortex identification approaches which deliver information in two-dimensional flows. The present proposals have been successfully applied to identify the stretching and relaxing vortices in compressible mixing layers and natural convection flows.

  12. A new approach to study fast pyrolysis of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Yao, J.; Lin, W. [Chinese Academy of Sciences, Institute of Chemical Metallurgy Fast Reactions Laboratory, Beijing, BJ (China)

    2002-07-01

    An experimental study of the effects of varying bed temperature and coal particle size on the fast pyrolysis of pulverized coal in a downer reactor is described. A Datong bituminous coal (particle size 0.5 and 0.34 mm) was studied at temperatures ranging from 592{sup o} C to 720{sup o} C. The experiments were conducted in a batch apparatus. An on-line gas analyzer was used to measure carbon dioxide release curves. The experimental data were used to develop a pyrolysis model that quantifies the fast heating of fine coal particles. 14 refs., 4 figs., 2 tabs.

  13. Refining fast pyrolysis of biomass

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria

    2011-01-01

    Pyrolysis oil produced from biomass is a promising renewable alternative to crude oil. Such pyrolysis oil has transportation, storage, and processing benefits, none of which are offered by the bulky, inhomogeneous solid biomass from which it originates. However, pyrolysis oil has both a different

  14. Refining fast pyrolysis of biomass

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria

    2011-01-01

    Pyrolysis oil produced from biomass is a promising renewable alternative to crude oil. Such pyrolysis oil has transportation, storage, and processing benefits, none of which are offered by the bulky, inhomogeneous solid biomass from which it originates. However, pyrolysis oil has both a different co

  15. Kinetics of scrap tyre pyrolysis under vacuum conditions.

    Science.gov (United States)

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier

    2009-10-01

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  16. Pyrolysis and co-pyrolysis of coal and oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Qiumin Zhang; Demin He; Jun Guan [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2007-07-01

    Pyrolysis and co-pyrolysis of coal and oil shale was investigated by using Yilan oil shale, Longkou oil shale, Huolinhe lignite, Taiji gas coal and Ruqigou anthracite as raw materia1s. A fixed-bed pyrolysis and co-pyrolysis of these coal and oil shale were investigated. The results indicated that synergetic effect existed with the oil yield increased, water yield decreased, and the synergetic effect varied with the mass percentage of coal differed. The co-pyrolysis oil yield of Yilan oil shale and Ruqigou anthracite is a little higher than the linear sum of their oil yield in the pyrolysis process. But for the co-pyrolysis of Taiji gas coal and Yilan oil shale, no significant change of the oil yield was found. Huolinhe lignite and Longkou oil shale were chosen as the material for the solid heat carrier experiment. Synergetic effect analyses of both the fixed-bed pyrolysis and the retorting process with solid heat carrier were given. Huolinhe lignite is an ideal material for oil recovery by pyrolysis, with high volatile and low ash, its oil content is 8.55%. Longkou oil shale is an ideal material for oil recovery by pyrolysis, with high oil content of 14.38%. The optimum co-pyrolysis temperature for Huolinhe lignite and Longkou oil shale is 510{sup o}C. Synergetic effect was found with the oil increased 9% and water decreased 36%. 5 refs., 2 figs., 10 tabs.

  17. Carbon Nanotube Synthesis Using Coal Pyrolysis.

    Science.gov (United States)

    Moothi, Kapil; Simate, Geoffrey S; Falcon, Rosemary; Iyuke, Sunny E; Meyyappan, M

    2015-09-01

    This study investigates carbon nanotube (CNT) production from coal pyrolysis wherein the output gases are used in a chemical vapor deposition reactor. The carbon products are similar to those using commercial coal gas as feedstock, but coal is a relatively cheaper feedstock compared to high purity source gases. A Gibbs minimization model has been developed to predict the volume percentages of product gases from coal pyrolysis. Methane and carbon monoxide were the largest carbon components of the product stream and thus formed the primary source for CNT synthesis. Both the model and the observations showed that increasing the furnace temperature led to a decrease in the absolute quantities of "useful" product gases, with the optimal temperature between 400 and 500 °C. Based on the experimental data, a kinetic rate law for CNT from coal pyrolysis was derived as d[CNT]/dt = K([CO][CH4])(1/2), where K is a function of several equilibrium constants representing various reactions in the CNT formation process.

  18. Olive bagasse (Olea europa L.) pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sensoz, S.; Demiral, I. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Chemical Engineering; Gercel, H.F. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2006-02-15

    Olive bagasse (Olea europea L.) was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 350 and 550 {sup o}C with heating rates of 10 and 50 {sup o}C min{sup -} {sup 1}. The particle size and sweep gas flow rate varied in the ranges 0.224-1.8 mm and 50-200 cm{sup 3} min {sup -1}, respectively. The bio-oil obtained at 500 {sup o}C was analysed and at this temperature the liquid product yield was the maximum. The various characteristics of bio-oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of the bio-oil with heating value of 31.8 MJ kg{sup -1} was established as CH{sub 1.65}O{sub 0.25}N{sub 0.03}. The chemical characterization showed that the bio-oil obtained from olive bagasse may be potentially valuable as a fuel and chemical feedstock. (author)

  19. Pyrolysis of waste plastic crusts of televisions.

    Science.gov (United States)

    Liu, Xinmin; Wang, Zhen; Xu, Dongyan; Guo, Qingjie

    2012-09-01

    The disposal of waste plastic crusts of televisions is an issue that is gaining increasing interest around the world. In this investigation, the pyrolysis and catalytic cracking of the waste television crusts mainly composed of acrylonitrile--butadiene-styrene copolymer was studied. Thermogravimetric analysis was used for initial characterization of the pyrolysis of the waste plastic, but most of the investigations were carried out using a 600 mL tubing reactor. Effects of temperature, reaction time and catalyst on the pyrolysis of the waste television crusts were investigated. The results showed that the oil yield increased with increasing temperature or with prolongation of reaction time. With increasing temperature, the generating percentage of gasoline and diesel oil increased, but the heavy oil yield decreased. Zinc oxide, iron oxide and fluid catalytic cracking catalyst (FCC catalyst) were employed to perform a series of experiments. It was demonstrated that the liquid product was markedly improved and the reaction temperature decreased 100 degrees C when FCC was used. The composition ofpyrolysis oils was analysed using gas chromatography-mass spectrometry, and they contained 36.49% styrene, 19.72% benzenebutanenitrile, 12.1% alpha-methylstyrene and 9.69% dimethylbenzene.

  20. Thermogravimetric analysis and fast pyrolysis of Milkweed.

    Science.gov (United States)

    Kim, Seung-Soo; Agblevor, Foster A

    2014-10-01

    Pyrolysis of Milkweed was carried out in a thermogravimetric analyzer and a bubbling fluidized bed reactor. Total liquid yield of Milkweed pyrolysis was between 40.74% and 44.19 wt% between 425 °C and 550 °C. The gas yield increased from 27.90 wt% to 33.33 wt% with increasing reaction temperature. The higher heating values (HHV) of the Milkweed bio-oil were relatively high (30.33-32.87 MJ/kg) and varied with reaction temperature, feeding rate and fluidization velocity. The selectivity for CO2 was highest within non-condensable gases, and the molar ratio of CO2/CO was about 3 at the different reaction conditions. The (13)C NMR analysis, of the bio-oil showed that the relative concentration carboxylic group and its derivatives was higher at 425 °C than 475 °C, which resulted in slightly higher oxygen content in bio-oil. The pH of aqueous phase obtained at 475 °C was 7.37 which is the highest reported for any lignocellulosic biomass pyrolysis oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hall, William J.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2008-03-15

    Two flame retarded plastics have been pyrolysed in the presence of two zeolite catalysts to remove the organobromine compounds from the derived pyrolysis oil. The flame retarded plastics were, acrylonitrile-butadiene-styrene (ABS) that was flame retarded with tetrabromobisphenol A and high impact polystyrene (HIPS) that was flame retarded with decabromodiphenyl ether. The two catalysts investigated were zeolite ZSM-5 and zeolite Y-Zeolite. Pyrolysis was carried out in a fixed bed reactor at a final pyrolysis temperature of 440 C. The pyrolysis gases were passed immediately to a fixed bed of the catalyst. It was found that the presence of zeolite catalysts increased the amount of gaseous hydrocarbons produced during pyrolysis but decreased the amount of pyrolysis oil produced. In addition, significant quantities of coke were formed on the surface of the catalysts during pyrolysis. The zeolite catalysts were found to reduce the formation of some valuable pyrolysis products such as styrene and cumene, but other products such as naphthalene were formed instead. The zeolite catalysts, especially Y-Zeolite, were found to be very effective at removing volatile organobromine compounds. However, they were less effective at removing antimony bromide from the volatile pyrolysis products, although some antimony bromide was found on the surfaces of the spent catalysts. (author)

  2. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  3. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  4. Evolution of volatile species from the combustion of coal pyrolysis volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma, E.B. [Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde (Australia). Div. of Coal and Energy Technology]|[Sydney Univ. (Australia). School of Chemistry; Li, C.Z. [Monash Univ., Clayton, VIC (Australia). Dept. of Chemical Engineering; Nelson, P.F. [Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde (Australia). Div. of Coal and Energy Technology; Mackie, J.C. [Sydney Univ. (Australia). School of Chemistry

    1997-12-31

    The combustion of coal pyrolysis volatiles at 900 and 1000 C has been studied using a quartz two-stage reactor consisting of a tubular flow reactor in series with a fluidised bed reactor. HNCO was found to be a significant N-containing product at low O{sub 2} concentrations. An increase in C=O functionality was observed in the partially oxidised tars with increasing O{sub 2} concentration. (orig.)

  5. Pyrolysis of Pine Wood

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    2005-01-01

    In this study, pinewood has been pyrolyzed using a fixed heating rate with a variable end-temperature. The pyrolysis process has been simulated using a mechanism with three parallel reactions for the formation of char, gas and tar. First order irreversible kinetics is assumed. This kind of model...

  6. ENGINEERING BULLETIN: PYROLYSIS TREATMENT

    Science.gov (United States)

    Pyrolysis is formally defined as chemical decomposition induced in organic materials by heat in the absence of oxygen. In practice, it is not possible to achieve a completely oxygen-free atmosphere; actual pyrolytic systems are operated with less than stoichiometric quantities of...

  7. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    Science.gov (United States)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  8. A Preliminary Study of the Plasma Pyrolysis of Waste Tyres

    Institute of Scientific and Technical Information of China (English)

    唐兰; 黄海涛; 赵增立; 吴创之

    2003-01-01

    Thermal plasma pyrolysis of waste tyres for recovering energy was performed in a nitrogen plasma reactor. The main gaseous products were identified by chromatography as H2, CO, CH4, C2H2 and so on. From a series of experiments, the effects of the process parameters of thermal plasma pyrolysis were investigated. Under our experimental conditions with steam injection, the total contents of H2 and CO reached up to 38.3% in the gas product, C2H2 up to 4%, and the maximum calorific value of the pyrolysis gas was 8.96 MJ/m3. The results indicate that plasma-assisted thermal decomposition of waste tyre particles may be a useful way for recovering energy and useful chemicals.

  9. Co-pyrolysis characteristics of coal and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kang, L.R.; Zhang, J.M.; Lian, H.; Luo, M. [Shanghai University of Science & Technology, Shanghai (China)

    2007-05-15

    A co-pyrolysis experiment of coal and natural gas was investigated on a fixed-bed reactor. SEM was used to study the structure changes of the exterior surface of char prepared in this co-pyrolysis experiment, while GC was also utilized to analyze the associated gas. The result showed that, with increasing temperature, the coal char tended to agglomerate. GC and SEM results show that the CH{sub 4} decomposition on the exterior surface of char was turned to filamentous char and extended around like coral. It was also proved that the co-pyrolysis of coal and natural gas promoted syngas production. A synergistic effect of coal and natural gas does exist during this process.

  10. 生物质连续热解反应装置的变螺距螺旋输送器设计%Design of Variable Pitch Spiral Conveyor for Biomass Continual Pyrolysis Reactor

    Institute of Scientific and Technical Information of China (English)

    蒋恩臣; 苏旭林; 王明峰; 熊磊明; 赵创; 许细微

    2013-01-01

    The biomass continuous pyrolysis reaction device with a variable pitch spiral conveyor was developed. To be more specific, the special screw conveyer was designed and optimized. Cold experiments showed that pyrolysis volatiles could be smoother to the end by way of combining the variable pitch with pros and cons screw. For general biomass, the productivity of the device was about 30 kg/h, and stay time was 5-10 min, which can meet the needs of pyrolysis reaction stably and continuously. Experimental research for various agriculture and forestry biomass could be carried out.%研制了带有变螺距螺旋输送器的生物质连续热解反应实验装置,对变螺距螺旋输送器参数进行了设计.冷态实验结果表明,变螺距与正、反向螺旋相结合的物料输送方式,更易于热解挥发物顺畅地由尾端排出,保证了连续热解反应的正常进行.该装置对一般生物质处理量约为30 kg/h,停留时间5~ 10 min,能满足连续稳定热解反应的要求,可开展多种农林生物质连续热解反应的实验研究.

  11. Solid waste utilization: pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.; Mixon, W.R.; Dean, C.; Lizdas, D.J.

    1977-08-01

    As a part of the Integrated Community Energy System (ICES) Program, a number of technology evaluations are being prepared on various current and emerging sources of energy. This evaluation considers the use of pyrolysis as a method of producing energy from municipal solid waste. The energy can be in the form of a gas, oil, chars, or steam. Pyrolysis, the decomposition of organic matter in the absence of oxygen (or in an oxygen-deficient atmosphere), has been used to convert organic matter to other products or fuels. This process is also described as ''destructive distillation''. Four processes are described in detail: the ''Landgard'' System (Monsanto Environ-Chem Systems, Inc.); the Occidental Research Corporation Process (formerly the Garrett Research and Development Company; The ''Purox'' System (Union Carbide Corporation); and the ''Refu-Cycler'' (Hamilton Standard Corporation). ''Purox'' and ''Refu-Cycler'' produce a low-Btu gas; the Occidental process produces an oil, and the ''Landgard'' process produces steam using on-site auxiliary boilers to burn the fuel gases produced by the pyrolysis unit. Also included is a listing of other pyrolysis processes currently under development for which detailed information was not available. The evaluation provides information on the various process flowsheets, energy and material balances, product characteristics, and economics. Pyrolysis of municipal solid waste as an energy source can be considered a potential for the future; however little operational or economic information is available at this time.

  12. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali

    2015-11-24

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatment of the pyrolysis vapors. The in-situ catalytic pyrolysis was carried out in an entrained flow reactor system using a premixed feedstock of Na2CO3 and biomass and post treatment of biomass pyrolysis vapor was conducted in a downstream fixed bed reactor of Na2CO3/γ-Al2O3. Results have shown that both Na2CO3 and Na2CO3/γ-Al2O3 can be used for the production of a high quality bio-oil from catalytic pyrolysis of oil-impregnated-wood and jatropha cake. The catalytic bio-oil had very low oxygen content, water content as low as 1wt.%, a neutral pH, and a high calorific value upto 41.8MJ/kg. The bio-oil consisted of high value chemical compounds mainly hydrocarbons and undesired compounds in the bio-oil were either completely removed or considerably reduced. Increasing the triglycerides content (vegetable oil) in the wood enhanced the formation of hydrocarbons in the bio-oil. Post treatment of the pyrolysis vapor over a fixed bed of Na2CO3/γ-Al2O3 produced superior quality bio-oil compared to in-situ catalytic pyrolysis with Na2CO3. This high quality bio-oil may be used as a precursor in a fractionating process for the production of alternative fuels. © 2015 Elsevier B.V.

  13. Analysis of design parameters and flow characteristics of the vortex valve for SIT flow control

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Chang, Moon Hee; Kim, Seong O.; Kim, Young In

    1997-01-01

    This study was performed to provide a technical basis for the development of the vortex valve which will be adopted in Korean Advanced Reactor. The influence of nondimensional and geometrical parameters of the vortex valve were investigated by analyzing the flow field of the vortex chamber, and the performance related parameters were evaluated by utilizing of the published experimental and analytical data. Also the level transients of the stand pipe were investigated by using of the simplified analytical model. In order to obtain the more detailed information on the vortex flow field, three dimensional preliminary analyses for the vortex valve design were conducted by FLUENT code. This study were carried out by using the simplified analytical model of the vortex valve and downstream pipe. However, the detailed analysis on the integrated system of the vortex valve with the as built design data and the required operating conditions should be performed to obtain the more accurate results on the vortex valve behavior. Also the experimental study over a wide range of operating conditions to develop the correlation of the design parameters and the performance verification should be performed for the practical design and engineering applications of the vortex valve. The results of this study can be used as a basic information for the development of the vortex valve design for the SIT of Korean Advanced Reactor. (author). 12 refs., 5 tabs., 33 figs.

  14. Pyrolysis as a key process in biomass combustion and thermochemical conversion

    Directory of Open Access Journals (Sweden)

    Gvero Petar M.

    2016-01-01

    Full Text Available Biomass is a fuel with a highly volatile content and due to that, pyrolysis as a part of the combustion process, has a dominant role in the overall process development, as well as on final products and the process efficiency. It is of key importance to investigate the influence of the process parameters; as temperature, furnace/reactor environment, fuel properties, type, particle size, geometry, and the structure of the pyrolysis process has an influence regards the design of the combustion/pyrolysis equipment and the final products of the processes. This paper gives some results of the investigation’s related to this problem, mainly focussing on wooden biomass as the most important biomass type, as well as a comparison with relevant documented literature. Besides that, pyrolysis based technologies are one of the key directions in synthetic fuels production based on biomass. Biomass pyrolysis process parameters are crucial in reactor design as well as the quantity and quality of the final products. This paper provides discussion dedicated to this aspect with a focus on slow pyrolysis, targeting charcoal as the key product, and fast pyrolysis, targeting synthetic gas as the key product.

  15. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough.

  16. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian;

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws ...

  17. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  18. A Comparison of Lignin, Macroalgae, Wood and Straw Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    with respect to carbon and oxygen contents, HHV, thermal behaviors and mean molecular weight. The HHV of wood, straw, lignin and algae oils were 24.0, 23.7, 29.7 and 25.7 MJ/kg db, respectively. The distributions of metals, Cl and S in char and bio-oil were investigated for the biomasses. Almost all the metals......A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor at pyrolysis temperature of 550 ºC. The product distributions and energy recoveries were measured and compared among...... these biomasses. The fast pyrolysis of macroalgae showed a promising result with a bio-oil yield of 65 wt% dry ash free basis (daf) and 76 % energy recovery in the bio-oil while the lignin fast pyrolysis provides a bio-oil yield of 47 wt% daf and energy recovery in bio-oil of 45 %. The physiochemical properties...

  19. Synergies in co-pyrolysis of Thai lignite and corncob

    Energy Technology Data Exchange (ETDEWEB)

    Sonobe, Taro [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Road, Bangmod, Tungkru, Bangkok, 10140 (Thailand); Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Worasuwannarak, Nakorn; Pipatmanomai, Suneerat [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Road, Bangmod, Tungkru, Bangkok, 10140 (Thailand)

    2008-12-15

    The results from TGA experiments at the temperature range of 300-600 C evidently distinguished the different pyrolysis behaviours of lignite and corncob; however, no clear synergistic effects could be observed for the mixture. The investigation of co-pyrolysis in a fixed-bed reactor, however, found significant synergies in both pyrolysis product yields and gas product compositions. The solid yield of the 50:50 lignite/corncob blend was much lower (i.e. 9%) than expected from the calculated value based on individual materials under the range of temperatures studied, and coincided with the higher liquid and gas yield. The synergistic effect in product gas composition was highly pronouncing for CH{sub 4} formation, i.e. three times higher than the calculated value at 400 C. Possible mechanisms were described including the interaction between corncob volatiles and lignite particles, and the effect of the heat profiles of lignite and corncob pyrolysis on the temperature dependent reactions. The enhanced devolatilisation of the blend was explained by the transfer of hydrogen from biomass to coal as well as the promotion of low-temperature thermal decomposition of lignite by exothermic heat released from corncob pyrolysis. Moreover, water, which was one of the major components in corncob volatiles produced mainly at around 200-375 C, can also be expected to act as a reactive agent to promote the secondary tar cracking producing more CH{sub 4}. (author)

  20. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  1. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-01-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  2. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-03-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  3. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    Science.gov (United States)

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282

  4. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).

    Science.gov (United States)

    Kim, Kwang Ho; Kim, Jae-Young; Cho, Tae-Su; Choi, Joon Weon

    2012-08-01

    The aim of this study was to investigate the influence of pyrolysis temperature on the physicochemical properties and structure of biochar. Biochar was produced by fast pyrolysis of pitch pine (Pinus rigida) using a fluidized bed reactor at different pyrolysis temperatures (300, 400 and 500 °C). The produced biochars were characterized by elemental analysis, Brunauer-Emmett-Teller (BET) surface area, particle size distributions, field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, solid-state (13)C nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). The yield of biochar decreased sharply from 60.7% to 14.4%, based on the oven-dried biomass weight, when the pyrolysis temperature rose from 300 °C to 500 °C. In addition, biochars were further carbonized with an increase in pyrolysis temperature and the char's remaining carbons were rearranged in stable form. The experimental results suggested that the biochar obtained at 400 and 500 °C was composed of a highly ordered aromatic carbon structure.

  5. Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-12-01

    Full Text Available In this study, sewage sludge and mycelial waste from antibiotic production were pyrolyzed in a batch scale fixed-bed reactor as examples of two kinds of typical industrial biomass wastes with high nitrogen content. A series of experiments were conducted on the rapid pyrolysis and the slow pyrolysis of these wastes in the temperature range from 500–800 °C to investigate the Fuel-N transformation behavior among pyrolysis products. The results showed that Fuel-N conversion to Char-N intimately depended on the pyrolysis temperature and the yield of Char-N reduced with the increase of the pyrolysis temperature. Under the same pyrolysis conditions, Tar-N production mainly depended on complex properties of the different biomasses, including volatile matter, nitrogen content and biomass functional groups. HCN was the predominant NOx precursor in the rapid pyrolysis of biomass, whereas in the slow pyrolysis of mycelial waste, more NH3 was produced than HCN due to the additional NH3 formation through the hydrogenation reaction of Char-N, HCN and H radicals. At the same time, some part of the char was analyzed by Fourier Transform infrared spectroscopy (FTIR to get more information on the nitrogen functionality changes and the tar was also characterized by Gas Chromatography and Mass Spectrometry (GCMS to identify typical nitrogenous tar compounds. Finally, the whole nitrogen distribution in products was discussed.

  6. A study of paint sludge deactivation by pyrolysis reactions

    Directory of Open Access Journals (Sweden)

    Muniz L.A.R.

    2003-01-01

    Full Text Available The production of large quantities of paint sludge is a serious environmental problem. This work evaluates the use of pyrolysis reaction as a process for deactivating paint sludge that generates a combustible gas phase, a solvent liquid phase and an inert solid phase. These wastes were classified into three types: water-based solvent (latex resin and solvents based on their resins (alkyd and polyurethane. An electrically heated stainless steel batch reactor with a capacity of 579 mL and a maximum pressure of 30 atm was used. Following the reactor, a flash separator, which was operated at atmospheric pressure, partially condensed and separated liquid and gas products. Pressure and temperature were monitored on-line by a control and data acquisition system, which adjusted the heating power supplied to the pyrolysis reactor. Reactions followed an experimental design with two factors (reaction time and temperature and three levels (10, 50 and 90 minutes; 450, 550 and 650degreesC. The response variables were liquid and solid masses and net heat of combustion. The optimal operational range for the pyrolysis process was obtained for each response variable. A significant reduction in total mass of solid waste was obtained.

  7. An optical vortex coronagraph

    Science.gov (United States)

    Palacios, David M.

    2005-08-01

    An optical vortex may be characterized as a dark core of destructive interference in a beam of spatially coherent light. This dark core may be used as a filter to attenuate a coherent beam of light so an incoherent background signal may be detected. Applications of such a filter include: eye and sensor protection, forward-scattered light measurement, and the detection of extra-solar planets. Optical vortices may be created by passing a beam of light through a vortex diffractive optical element, which is a plate of glass etched with a spiral pattern, such that the thickness of the glass increases in the azimuthal direction. An optical vortex coronagraph may be constructed by placing a vortex diffractive optical element near the image plane of a telescope. An optical vortex coronagraph opens a dark window in the glare of a distant star so nearby terrestrial sized planets and exo-zodiacal dust may be detected. An optical vortex coronagraph may hold several advantages over other techniques presently being developed for high contrast imaging, such as lower aberration sensitivity and multi-wavelength operation. In this manuscript, I will discuss the aberration sensitivity of an optical vortex coronagraph and the key advantages it may hold over other coronagraph architectures. I will also provide numerical simulations demonstrating high contrast imaging in the presence of low-order static aberrations.

  8. Influence of granularity on coal pyrolysis in Ar/H{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Tian, Y.; Wang, D.; Xie, K.; Zhu, S. [Taiyuan University of Technology, Taiyuan (China). State Key Lab of C1 Chemistry and Technology, Shanxi key Lab of Coal Science and Technology

    2002-06-01

    Coal pyrolysis in arc plasma is very complex. These are many factors affecting this process, such as coal particle size, type of coal, proportion of working gases (Ar/H{sub 2}) and input powders. Coal pyrolysis in H{sub 2}-rich Ar plasma jet reactor was performed. The effect of granularity on coal conversion, acetylene yield, acetylene molar ratio in product gas and coke formation at the wall of reactor was studied. According to the coke formation mechanism in which the granularity is the key factor, the new way of coal feeding with double apex distribution granularity was put forward to eliminate the coke formation. 10 refs., 2 figs., 6 tabs.

  9. Characterization of Carbon Deposits Formed During Plasma Pyrolysis of Xinjiang Candle Coal

    Science.gov (United States)

    Zhu, Guilin; Meng, Yuedong; Shu, Xingsheng; Fang, Shidong

    2009-08-01

    Carbon deposits were formed on the reactor wall during plasma pyrolysis of the Xinjiang candle coal in our V-style plasma pyrolysis pilot-plant. The carbon deposits were studied using a scanning electronic microscope (SEM) and the X-ray diffraction (XRD) method. It was found that carbon deposits located at different parts in the reactor exhibited different microscopic patterns. The formation mechanism of the carbon deposits was deduced. The downward increase in the graphitization degree of the carbon deposits was found and interpreted.

  10. Characterization of carbon deposits formed during plasma pyrolysis of Xinjiang candle coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G.L.; Meng, Y.D.; Shu, X.S.; Fang, S.D. [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2009-08-15

    Carbon deposits were formed on the reactor wall during plasma pyrolysis of the Xinjiang candle coal in our V-style plasma pyrolysis pilot-plant. The carbon deposits were studied using a scanning electronic microscope (SEM) and the X-ray diffraction (XRD) method. It was found that carbon deposits located at different parts in the reactor exhibited different microscopic patterns. The formation mechanism of the carbon deposits was deduced. The down ward increase in the graphitization degree of the carbon deposits was found and interpreted

  11. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja; van de Beld, Bert; Bridgwater, Anthony V.; Marklund, Magnus

    2017-04-06

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.

  12. Fast Josephson vortex

    Energy Technology Data Exchange (ETDEWEB)

    Malishevskii, A.S.; Silin, V.P.; Uryupin, S.A

    2002-12-30

    For the magnetically coupled waveguide and long Josephson junction we gave the analytic description of two separate velocity domains where the free motion of traveling vortex (2{pi}-kink) exists. The role of the mutual influence of waveguide and long Josephson junction is discussed. It is shown the possibility of the fast vortex motion with the velocity much larger than Swihart velocity of Josephson junction and close to the speed of light in the waveguide. The excitation of motion of such fast Josephson vortex is described.

  13. Techniques in gas-phase thermolyses - Part 7. Direct surface participation in gas-phase Curie-point pyrolysis: The pyrolysis of phenyl azide

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1986-01-01

    The possible direct participation of the hot reactor surface in the formation of pyrolysis products was elucidated through the pyrolytic decomposition of phenyl azide. It is demonstrated that the intermediate phenyl nitrene generated reacts with elemental carbon at the filament surface, leading...

  14. One-Dimensional Biomass Fast Pyrolysis Model with Reaction Kinetics Integrated in an Aspen Plus Biorefinery Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, David; Trendewicz, Anna; Braun, Robert; Dutta, Abhijit

    2017-01-27

    A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gas losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. This integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.

  15. Microwave Heating Applied to Pyrolysis

    OpenAIRE

    Fernandez, Yolanda; Arenillas, Ana; Menendez, J. Angel

    2011-01-01

    the MW pyrolysis as an original thermochemical process of materials is presented. This chapter comprises a general overview of the thermochemical and quantifying aspects of the pyrolysis process, including current application togethe with a compilation of the most frequently used materials

  16. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  17. Time resolved pyrolysis of char

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    pyrolysis, and slow heating in direct combination with mass spectrometry, gas chromatography/mass spectrometry and flame ionization detection, respectively. Characteristic ions derived from the flash pyrolysis-gas chromatography/mass spectrometry data enable the release of volatiles to be time and, hence...

  18. Vortex flow hysteresis

    Science.gov (United States)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  19. Modeling gasodynamic vortex cooling

    Science.gov (United States)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  20. Vector Lattice Vortex Solitons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping

    2005-01-01

    @@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.

  1. Buoyant Norbury's vortex rings

    Science.gov (United States)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder

    2014-11-01

    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  2. Problems of Vortex Dynamics in the Thermal Physics of Power Plants

    NARCIS (Netherlands)

    Mitrofanova, O. V.

    2006-01-01

    The first section gives examples of flows with the formation of determinate vortex structures characteristic of power-generating plants. An approach to the solution of collector problems for nuclear reactors of the type of fast-neutron and water-moderated water-cooled power reactors is proposed. It

  3. Problems of Vortex Dynamics in the Thermal Physics of Power Plants

    NARCIS (Netherlands)

    Mitrofanova, O. V.

    2006-01-01

    The first section gives examples of flows with the formation of determinate vortex structures characteristic of power-generating plants. An approach to the solution of collector problems for nuclear reactors of the type of fast-neutron and water-moderated water-cooled power reactors is proposed. It

  4. MODELING OF NAPHTHA PYROLYSIS WITH USING GENETIC ALGORITM

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2015-01-01

    Full Text Available Summary. In operation of industrial pyrolysis furnaces, the main task is the selection of the optimal mode of thermal decomposition of the feedstock, depending on the yield of the desired products under conditions of technological limitations on the process. To solve this problem for an operating reactor, this paper considers the SRT-VI Large-Capacity industrial Furnace , the mathematical model of the pyrolysis process was constructed, using a kinetic scheme which consists of primary reaction of decomposition of raw materials and secondary elementary reactions of interaction of the considered mixture components, the heat balance equation and hydrodynamics of flow in the coil. The raw material for the selected installation type is naphtha (straight-run petrol. Output parameters of the model are the molar costs of marketable hydrocarbons. The reactor is described by the equation of ideal displacement in the static mode of operation. It is assumed that all reactions have a temperature dependence that follows the Arrhenius law. The activation energies of chemical processes were estimated using the PolanyiSemenov equation and identification of pre-exponential factors was carried out using a genetic algorithm (GA. This task requires solving simultaneous system of differential equations describing the pyrolysis process and a search for a large number of unknown parameters, and therefore it is proposed to modify the GA. Optimal scheme includes Gray encoding arithmetic operators, tournament selection, with tournament ranking more than 4, crossover with partial random choice of alleys, mutations with a high probability of occurring and elitism with competitive global competition. Using the proposed approach, the parametric identification of model process is accomplished. The analysis of the simulation results with the data of operating reactor showed its suitability for use in order to control the pyrolysis process.

  5. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  6. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  7. Kinetics Analysis of Coconut Shell Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    LIU; Xue-mei; JIANG; Jian-chun; SUN; Kang; XU; Fan; XU; Yu

    2012-01-01

    [Objective] The paper aimed to study kinetics analysis of coconut shell pyrolysis. [Method] Thermo gravimetric analysis was used to study the pyrolysis characteristic of coconut shell at different pyrolysis rates (5, 10, 20 K/min). [Result] The pyrolysis process included 3 stages, water loss, pyrolysis, and thermal condensation. The pyrolysis process can be described through first-order reaction model. With the increasing pyrolysis rate, activation energy in the first stage rose, but activation energy in the second stage reduced. [Conclusion] The study provided theoretical basis for the promotion and application of biomass energy.

  8. Coal flash pyrolysis. 5. Pyrolysis in an atmosphere of methane

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, W.H.; Bonifaz, C.

    1984-12-01

    Flash pyrolysis of coal at temperatures above 700/sup 0/C and in the presence of methane produces substantially more ethylene and other low molecular weight hydrocarbons than are produced by pyrolysis of coal in the presence of nitrogen alone. Evidence is presented to show that the increase is due to pyrolysis of the methane quite independently of the coal, except with the possible catalysis by the coal, coke or mineral matter in the coal ash. This is contrary to recent reports in the literature.

  9. Limonene ethers from tire pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Stanciulescu, Maria; Ikura, Michio [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON (Canada)

    2006-03-01

    Tire pyrolysis oil was produced by EnerVision Inc., Halifax, Canada using the continuous ablative reactor (CAR) system. The tire oil was separated by distillation into several fractions. Naphtha and limonene enriched naphtha were reacted with methanol over different catalysts. Batch experiments were carried out to separate limonene as methyl limonene ethers. Whole tire pyrolysis oil was distilled and the resulting distillates were redistilled to separate the limonene (bp about 176{sup o}C). Vacuum distillation yielded on average 25.5wt% naphtha containing 16.3wt% limonene (average). Redistillation increased the limonene concentration to approximately 32-37wt%. The conversion of limonene (mono-terpene) to limonene ethers (terpenoides) shifted the boiling point of the limonene derivatives out of the naphtha boiling range (IBP -190{sup o}C). This allowed the separation of fragrant limonene ethers from foul smelling naphtha. Alkoxylation reactions were performed mostly using methanol and acidic catalysts. The methyl ether [1-methyl-4-({alpha}-methoxy-isopropyl)-1-cyclohexene] has a boiling point of about 198{sup o}C which is higher than the end boiling point of the naphtha cut. Five heterogeneous catalysts (four zeolites and one ion exchange resin) were tested in a batch reactor. {beta}-Zeolite produced excellent results. The reaction of R-(+)-limonene with methanol in the presence of activated {beta}-zeolite yielded methyl ether, 87.5% at selectivity 89.7% with a maximum of 2h reaction time. Limonene conversion from whole naphtha to ethers was also high. (author)

  10. Fast pyrolysis of sunflower-pressed bagasse: effects of sweeping gas flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Gercel, H.F.; Putun, E.

    2002-05-01

    Sunflower (Helianthus annus L.)-pressed bagasse pyrolysis experiments were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions have been investigated. The maximum bio-oil yield of 52.85 wt% was obtained in a nitrogen atmosphere and a nitrogen flow rate of 50 cm{sup 3} min{sup -1} and at a pyrolysis temperature of 550{sup o}C and heating rate of 5{sup o}C s{sup -1}. The chemical characterization has shown that the oil obtained from sunflower-pressed bagasse may be potentially valuable as fuel and chemical feedstocks. (author)

  11. Production and characterization of pyrolysis liquids from sunflower-pressed bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Gercel, H.F. [Anadolu University (Turkey). Dept. of Chemical Engineering

    2002-11-01

    Pyrolysis experiments on sunflower (Helianthus annus L.)-pressed bagasse were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions were investigated. The maximum bio-oil yield of 52.10 wt.% was obtained in a nitrogen atmosphere with flow rate of 50 ml min{sup -1} and at a pyrolysis temperature of 550{sup o}C with a heating rate of 5{sup o}C s{sup -1}. The chemical characterization results showed that the oil obtained from sunflower-pressed bagasse may be a potentially valuable source as fuel or chemical feedstocks. (author)

  12. The effect of a sweeping gas flow rate on the fast pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gercel, H.F.

    2002-07-01

    Sunflower (Helianthus annus L.)-pressed bagasse pyrolysis experiments were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions have been investigated. The maximum bio-oil yield of 46.62 wt% was obtained in a nitrogen atmosphere with a nitrogen flow rate of 25 cm{sup 3}min{sup -1} and at a pyrolysis temperature of 550{sup o}C with a heating rate of 300{sup o}C min{sup -1}. The chemical characterization showed that the oil obtained from sunflower-pressed bagasse may be potentially valuable as fuel and chemical feedstocks. (author)

  13. CO-PYROLYSIS OF POLYPROPYLENE WITH PETROLEUM OF BACIA DE CAMPOS

    Directory of Open Access Journals (Sweden)

    DE ASSUMPÇÃO, Luiz Carlos Fonte Nova; MARQUES, Mônica Regina da Costa; CARBONELL, Montserrat Motas

    2009-01-01

    Full Text Available In this study, the process of co-pyrolysis of polypropylene (PP residues with gas-oil was evaluated, varying thetemperature and the amount of polypropylene fed to the reactor. The polypropylene samples and gas-oil weresubmitted to the thermal co-pyrolysis in an inert atmosphere, varying the temperature and the amount of PP.The influence of the gas-oil was evaluated carrying the co-pyrolysis in the absence of PP. The pyrolysed liquidsproduced by this thermal treatment were characterized by modified gaseous chromatography in order toevaluate the yield in the range of distillation of diesel. As a result, the increase of PP amount lead to a reductionin the yield of the pyrolytic liquid and to an increase of the amount of solid generated. The effect of temperatureincrease showed an inverse result. The results show that plastic residue co-pyrolysys is a potential method forchemical recycling of plastic products.

  14. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    Science.gov (United States)

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  15. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao

    2017-05-01

    The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pyrolysis oil production, properties, and utilization; Pyrolyysioeljyn valmistus, ominaisuudet ja kaeyttoe

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Oasmaa, A.; Arpiainen, V.; Kuoppala, E.; Leppaemaeki, E.; Solantausta, Y.; Levander, J. VTT Energia

    1995-12-31

    The main tasks for 1995 were: design and assembling of experimental reactors, and physical and chemical characterisation of pyrolysis oils. A PDU-unit (20 kg/h) has been designed and it will be assembled in April 1996. A 1 kg/h pyrolyzer has been constructed with a hot-filtration system (a ceramic candle filter) and direct quenching with a hydrocarbon oil. The equipment has worked well. Pine saw dust has been used as a feed and a good-quality solids-free product oil has been obtained. In addition to this, a smaller (150 g/h) pyrolyzer has been bought from Canada (University of Waterloo). The small equipment will be used for example for catalytic upgrading of pyrolysis vapours. Chemical characterisation of pyrolysis oil has been carried out 1995. Water extraction has been developed for a fractionation method. Pyrolysis oil samples produced from mixed hardwood, eucalyptus and straw have been employed. The objective of the study has been to develop a simple characterisation method for comparison of different pyrolysis oils. For example reactive compounds have been identified. Main analytical method for analysing the water-soluble fraction has been GC-MS. The research will be continued 1996. A literature review of chemical and physical characterization of pyrolysis oils has been published 1995. Testing of fuel oil analyses has been continued within the IEA pyrolysis project. VTT Energy is responsible for fuel oil analytical methods

  17. Pyrolysis Characteristics and Kinetics of Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste (MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric (TG) analysis at rates of 4.8, 6.6, 8.4, 12.0 and 13.2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150 ℃-200 ℃; the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric (DTG) curves have shoulder peaks at about 300 ℃; the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃-600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over 0.99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.

  18. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  19. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    DEFF Research Database (Denmark)

    Bruun, Esben; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana;

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation......, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast...... in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO2...

  20. Online upgrading of organic vapors from the fast pyrolysis of biomass

    Institute of Scientific and Technical Information of China (English)

    LI Hong-yu; YAN Yong-jie; REN Zheng-wei

    2008-01-01

    The online upgrading process that combined the fast pyrolysis of biomass and catalytic cracking of bio-oil was developed to produce a high quality liquid product from the biomass. The installation consisted of a fluidized bed reactor for pyrolysis and a packed bed reactor for upgrading. The proper pyrolysis processing conditions with a temperature of 500℃ and a flow rate of 4m3·h-1 were determined in advance. Under such conditions, the effects of temperature and weight hourly space velocity (WHSV) on both the liquid yields and the oil qualities of the online catalytic cracking process were investigated. The results showed that such a combined process had the superiority of increasing the liquid yield and improving the product quality over the separate processes. Furthermore, when the temperature was 500℃, with a WHSV of 3h-1, the liquid yield reached the maximum and the oxygenic compounds also decreased obviously.

  1. Simulation of coal pyrolysis in plasma jet by CPD model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y.; Xie, K.; Zhu, S.; Fletcher, T.H. [Taiyuan University of Technology, Taiyuan (China). State Key Lab. of C1 Chemistry and Technology

    2001-12-01

    Reaction of coal in a plasma jet is complex and extremely rapid, and acetylene and carbon monoxide are the main products in the pyrolysis gas. Coal pyrolysis is assumed as the first step reaction when coal is injected into hot plasma jet with initial average temperature of 3700 K. Chemical percolation devolatalization (CPD) is employed first to simulate this procedure in mechanism. The calculation results indicate coal pyrolysis rate in plasma jet is very fast and the retention time of coal staying in reactor is only several milliseconds. Comparing the calculation with experiment result, it was concluded that the CPD agree with the experiment well when the coal feed rate is larger than about 2.0 g s{sup -1}. As the coal feed rate was increased, the average temperature of coal particle during staying in reactor was reduced and the residual time became long, but it was not found that the residual time influenced the coal conversion evidently. 15 refs., 6 figs., 3 tabs.

  2. Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar.

    Science.gov (United States)

    Chen, Dengyu; Chen, Xiaojuan; Sun, Jun; Zheng, Zhongcheng; Fu, Kexin

    2016-09-01

    A lab-scale pyrolysis reactor was utilized to investigate the effect of pyrolysis temperature (300-700°C) on the yield, quality, and energy distribution of products issued from the pyrolysis polygeneration of pine nut shells. Afterward, activated carbon was prepared from biochar using the steam activation method. Pyrolysis temperatures ranging from 500 to 600°C were found to be optimal in inducing products with improved properties, such as higher heating values of non-condensable gas, lower water content and elevated heating values of bio-oil, and substantial fixed carbon content and greater specific surface area of biochar. In addition, it was noticed that the activation conditions had a significant effect on the yield and adsorption performance of the activated carbon. As a result, activated carbon with elevated specific surface area reaching 1057.8m(2)/g was obtained at the optimal conditions of 850°C activation temperature, 80min activation time, and 1.5 steam/biochar ratio.

  3. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    NARCIS (Netherlands)

    Babych, Igor V.; van der Hulst, M.; Lefferts, Leonardus; Moulijn, J.A.; Seshan, Kulathuiyer; O'Connor, P.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na2CO3) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor

  4. SEM study on the deposition of coal pyrolysis in arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y.J.; Chen, H.G.; Yan, Y.L.; Lu, Y.K.; Li, F.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China). Shanxi Key Lab of Coal Science and Technology

    1999-07-01

    During coal pyrolysis in hydrogen plasma, residue was deposited on the reactor wall. Scanning electron microscopy indicated that metaplast were formed during the process. The mechanism of formation of deposits, their morphology, porosity and mechanical properties are discussed. It was shown that particles do not blend with plasma under these operation conditions. 4 refs., 5 figs., 2 tabs.

  5. Effect of biomass ash in catalytic fast pyrolysis of pine wood

    NARCIS (Netherlands)

    Yildiz, G.; Ronsse, F.; Venderbosch, R.H.; Duren, van R.; Kersten, S.R.A.; Prins, W.

    2015-01-01

    Fast pyrolysis experiments of pine wood have been performed in a continuously operated mechanically stirred bed reactor at 500 °C. The effects of the pine wood ash were studied by comparing non-catalytic and catalytic experiments (using a ZSM-5 based catalyst) with their ash-added counterparts. To s

  6. Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst

    NARCIS (Netherlands)

    Wildschut, Jelle; Iqbal, Muhammad; Mahfud, Farchad H.; Melian-Cabrera, Ignacio; Venderbosch, Robbie H.; Heeres, Hero J.

    2010-01-01

    The use of Ru/C (5%-wt.) as a catalyst for the hydrogenation of fast pyrolysis oil was explored at 350 degrees C and 200 bar pressure in a batch reactor set-up with the main objective to determine the effect of the reaction time on the oil yield and elemental compositions of the product phases. High

  7. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    details the catalytic partial oxidation of glycerol without preheat: droplets of glycerol are sprayed directly onto the top of the catalyst bed, where they react autothermally with contact times on the order of tau ≈ 30 ms. The reactive flash volatilization of glycerol results in equilibrium syngas production over Rh-Ce catalysts. In addition, water can be added to the liquid glycerol, resulting in true autothermal reforming. This highly efficient process can increase H2 yields and alter the H2 to CO ratio, allowing for flexibility in syngas quality depending on the purpose. Chapter 5 details the results of a time on stream experiment, in which optimal syngas conditions are chosen. Although conversion is 100% for 450 hours, these experiments demonstrate the deactivation of the catalyst over time. Deactivation is exhibited by decreases in H2 and CO 2 production accompanied by a steady increase in CO and temperature. These results are explained as a loss of water-gas shift equilibration. SEM images suggest catalyst sintering may play a role; EDS indicates the presence of impurities on the catalyst. In addition, the instability of quartz in the reactor is demonstrated by etching, resulting in a hole in the reactor tube at the end of the experiment. These results suggest prevaporization may be desirable in this application, and that quartz is not a suitable material for the reactive flash volatilization of oxygenated fuels. In Chapter 6, pyrolysis oil samples from three sources - poplar, pine, and hardwoods - are explored in the context of catalytic partial oxidation. Lessons derived from the tests with model compounds are applied to reactor design, resulting in the reactive flash vaporization of bio oils. Syngas is successfully produced, though deactivation due to coke and ash deposition keeps H2 below equlibrium. Coke formation is observed on the reactor walls, but is avoided between the fuel injection site and catalyst by increasing the proximity of these in the reactor

  8. Reconnection of superfluid vortex bundles.

    Science.gov (United States)

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F

    2008-11-21

    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.

  9. Nano magnetic vortex wall guide

    Directory of Open Access Journals (Sweden)

    H. Y. Yuan

    2015-11-01

    Full Text Available A concept of nano magnetic vortex wall guide is introduced. Two architectures are proposed. The first one is properly designed superlattices while the other one is bilayer nanostrips. The concept is verified by micromagnetic simulations. Both guides can prevent the vortex core in a magnetic vortex wall from colliding with sample surface so that the information stored in the vortex core can be preserved during its transportation from one location to another one through the guides.

  10. Vortex Characterization for Engineering Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  11. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.

    Science.gov (United States)

    Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X

    2013-02-01

    values. When impurities were involved, the shape of BR curves showed that intense decomposition started earlier but morphological characteristics remained the same. In addition, compared to parameters such as pressure, the BR reflects reaction stages better and its change with pyrolysis process of PE/PP plastics with or without impurities was more intrinsically process correlated; therefore it can be adopted as a signal for pyrolysis process characterization, as well as offering guide to process improvement and reactor design.

  12. Jet vortex methods

    CERN Document Server

    Holm, Darryl D

    2015-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the the dynamics are trivial for isolated blobs. In this article we will find that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularised Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularised Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also characterise the Hamiltonian dynamics of the higher-order singular vortices. Applications to the design of numerical meth- ods similar to vortex blob methods are also discussed. Such findings shed light onto the rich dynamics which occur below the regularization length scale and enlighten our perspective on the multiscale aspects of regularized fluid m...

  13. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)

    1999-11-01

    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  14. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  15. Co-Pyrolysis Behaviors of the Cotton Straw/PP Mixtures and Catalysis Hydrodeoxygenation of Co-Pyrolysis Products over Ni-Mo/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Derun Hua

    2015-12-01

    Full Text Available The doping of PP (polypropylene with cotton straw improved the bio-oil yield, which showed there was a synergy in the co-pyrolysis of the cotton straw and PP at the range of 380–480 °C. In a fixed-bed reactor, model compounds and co-pyrolysis products were used for reactants of hydrodeoxygenation (HDO over Ni-Mo/Al2O3. The deoxygenation rate of model compounds decreased over Ni-Mo/Al2O3 in the following order: alcohol > aldehyde > acetic acid > ethyl acetate. The upgraded oil mainly consisted of C11 alkane.

  16. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.

    Science.gov (United States)

    Yan, Feng; Luo, Si-yi; Hu, Zhi-quan; Xiao, Bo; Cheng, Gong

    2010-07-01

    Steam gasification experiments of biomass char were carried out in a fixed-bed reactor. The experiments were completed at bed temperature of 600-850 degrees C, a steam flow rate of 0-0.357 g/min/g of biomass char, and a reaction time of 15min. The aim of this study is to determine the effects of bed temperature and steam flow rate on syngas yield and its compositions. The results showed that both high gasification temperature and introduction of proper steam led to higher yield of dry gas and higher carbon conversion efficiency. However, excessive steam reduced gas yield and carbon conversion efficiency. The maximum dry gas yield was obtained at the gasification temperature of 850 degrees C and steam flow rate of 0.165 g/min/g biomass char.

  17. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  18. Characterisation of coking activity during supercritical hydrocarbon pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoin, Nicolas; Gillard, Philippe; Bernard, Stephane [Laboratoire Energetique, Explosion, Structure, UPRES-EA 1205, 63, avenue de Lattre de Tassigny, 18020 Bourges Cedex (France); Bouchez, Marc [MBDA France, 8, rue Le Brix, 18000 Bourges (France)

    2008-12-15

    The active cooling of the Supersonic Combustion Ramjet engine, for hypersonic flight purpose, is ensured thanks to fuel, n-dodecane for the present study. The endothermic fuel pyrolysis, starting above 800 K, could generate an unwanted coke formation. Experimental tests up to 1125 K and between 1 MPa and 6 MPa have been performed on the hydrocarbon fuel pyrolysis to evaluate the coking activity. 316L stainless steel, low carbon steel and titanium reactors have been considered. A witness of the coke formation, based on its thermal insulation and pressure loss effects, has been found. A correlation between methane production and coke deposit was found. The coke has been studied with Scanning Electron Microscope (SEM), Energy Dispersion Spectroscopy (EDS), X-ray diffractometer and Fourier Transform Infrared (FTIR) spectroscopy. The porosity, the density and the permeability of the coke have been estimated. (author)

  19. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  20. Formation and fate of PAH during the pyrolysis and fuel-rich combustion of coal primary tar

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma, E.B.; Kalish, M.A.; Nelson, P.F.; Wornat, M.J.; Mackie, J.C. [CSIRO, North Ryde, NSW (Australia). Division of Energy Technology

    2000-11-01

    The formation and fate of polycyclic aromatic hydrocarbons (PAH) during the pyrolysis and fuel-rich combustion of primary tar generated under rapid heating conditions have been studied. Experiments were performed using a quartz two-stage reactor consisting of a fluidized-bed reactor coupled to a tubular-flow reactor. Primary tar was produced in the fluidized-bed reactor by rapid coal pyrolysis at 600{degree}C. The freshly generated tar was subsequently reacted in the tubular-flow reactor at 1000{degree}C under varying oxygen concentrations covering the range from pyrolysis to stoichiometric oxidation. PAH species present in the tars recovered from the tubular-flow reactor were analysed by high performance liquid chromatography (HPLC). Twenty-seven PAH species varying from 2-ring to 9-ring structures, were identified, including benzenoid PAH, fluoranthene benzologues and indene benzologues. The majority of PAH species identified from pyrolysis were also identified in the samples collected from oxidation experiments. However, three products, 9-fluorenone, cyclopenta(def)phenanthrene and indeno (1,2,3-cd) fluoranthene, were produced only during oxidizing conditions. The addition of a small amount of oxygen brought about measurable increases in the yields of the indene benzologues and 9-fluorenone, but the yields of all PAH products decreased at high oxygen concentrations, in accordance with their destruction by oxidation. Possible formation and destruction mechanisms of PAH under fuel-rich conditions have been discussed. 46 refs., 9 figs., 2 tabs.

  1. Laboratory Reactor for Processing Carbon-Containing Sludge

    Science.gov (United States)

    Korovin, I. O.; Medvedev, A. V.

    2016-10-01

    The paper describes a reactor for high-temperature pyrolysis of carbon-containing sludge with the possibility of further development of environmentally safe technology of hydrocarbon waste disposal to produce secondary products. A solution of the urgent problem has been found: prevention of environmental pollution resulting from oil pollution of soils using the pyrolysis process as a method of disposal of hydrocarbon waste to produce secondary products.

  2. Study on the Pyrolysis Behavior of Polycarbosilane

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenyi; ZHOU Jian

    2015-01-01

    The pyrolysis behavior of polycarbosilane (PCS) and chemical reaction mechanism during the pyrolysis process were studied by thermogravimetric-mass spectrometry (TG-MS) combined with X-ray diffraction and infrared spectroscopic analysis methods. The experimental results indicate that the main gas phase products generated during pyrolysis of PCS in nitrogen atmosphere include H2, -CH3 and CH4. The heating rate has a large effect on the pyrolysis process of PCS, the lower heating rate releases more small molecule gases and gets bigger rate of pyrolysis mass loss, demonstrating that the lower heating rate is beneifcial to fully pyrolysis of PCS and obtain ceramics products with better microstructure.

  3. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.

    2016-01-01

    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  4. Passive Wake Vortex Control

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging

  5. Influence of Partial Combustion on Rapid Pyrolysis of Wood Biomass

    Science.gov (United States)

    Yasuda, Hajime; Yamada, Osamu; Kaiho, Mamoru; Shinagawa, Takuya; Matsui, Satoshi; Iwasaki, Toshihiko; Shimada, Sohei

    A batch reactor was made and used in this work. In an actual rapid pyrolyzer/gasifier, each biomass is thrown into high temperature zone in the reactor. In order to simulate the reaction occurred in a fluidized bed rapid pyrolyzer/gasifier, the reactor was designed to inject samples into reaction zone directly and to control the reaction time optionally. Rapid pyrolysis of wood biomasses, such as Konara, bagasse, and EFB (Empty Fruit Bunch), was carried out at 1073K in nitrogen with the reaction time range of 2-20s. Difference in product distribution with varying reaction time was observed apparently among Konara, bagasse, and EFB. The difference in the reactivity among sorts of biomass should be considered even when their elemental composition and/or components ratio are similar. Rapid pyrolysis of wood biomass (Japanese cedar) with small amount of oxygen as gasification agent was also carried out. The amount of product gas was decreased through 1s to 2s and the decreasing rate was higher with increase in the amount of oxygen.

  6. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge.

    Science.gov (United States)

    Chen, Jianbiao; Mu, Lin; Jiang, Bo; Yin, Hongchao; Song, Xigeng; Li, Aimin

    2015-09-01

    The pyrolysis characteristics of petrochemical wastewater sludge (PS) were evaluated using TG/DSC-FTIR and fixed-bed reactor with GC. TGA experiments indicated that the pyrolysis of PS proceeded in three phases, and the thermographs shifted to higher temperatures with increasing heating rate. Chars FTIR showed that the absorption of O-H, C-H, C=O and C-C decreased with pyrolysis temperatures increasing. Gases FTIR correspondingly showed that H2O, CO, and CH4 generated at higher temperatures. For the fixed-bed reactor tests, H2 and CO were relatively higher in the pyrolysis gases, and CH4 was negligible at 436K. The kinetic triplets of PS pyrolysis were estimated by Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and integral master-plots method. The results suggested that the most potential kinetic models for the first and second phase were the order reaction model, while the random nucleation and nuclei growth model for the third phase.

  7. The effect of mixing ratio on co-pyrolysis of lignite and rapeseed

    Energy Technology Data Exchange (ETDEWEB)

    Onay, O [Anadolu Univ., Eskisehir (Turkey). Porsuk Vocational School; Usta, C.; Kockar, O.M. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2007-07-01

    This study was conducted to determine the influence of lignite on the yield and chemical structure of bio-oil produced from rapeseed using a fast pyrolysis technique. The rapeseed and lignite mixtures were pyrolyzed in a fixed bed reactor. Heating rates and temperatures were controlled by a PID controller. Char yield after pyrolysis was determined from the overall weight losses of the reactor tube, while the liquid phase was collected in a glass liner. Experiments were conducted using a range of blending ratios. While final pyrolysis temperatures were set at 550 degrees C. An elemental analyzer was used to characterize the rapeseed and pyrolysis bio-oils. Fourier transform infrared analysis (FTIR) was used to conduct functional group compositional analyses. The study showed that conversion degree increased with temperature increases. Yields of both conversion and oil increased with biomass concentration. However, distribution between conversion and oil was influenced by the blending ratio. A maximum yield of oil was obtained with a 5 per cent blending ratio of lignite. It was concluded that the co-pyrolysis of rapeseed and coal at a temperature of 550 degrees C increases production by more than 11 per cent. 14 refs., 3 tabs., 3 figs.

  8. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  9. Experimental and modeling study on pyrolysis of n-decane initiated by nitromethane

    KAUST Repository

    Jia, Zhenjian

    2016-01-15

    Initiator could accelerate the rate of hydrocarbon pyrolysis and reduce the required material temperatures for a hypersonic aircraft heat exchanger/reactor. Nitroalkanes were proposed as the effective initiator because of the lower CN bond dissociation energy. In order to investigate the initiation mechanism of nitroalkanes on hydrocarbon pyrolysis, the pyrolysis of n-decane, nitromethane and their binary mixture were carried out at 30, 150 and 760 Torr in a flow reactor with synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The identified and quantified pyrolysis species include C1C2 alkanes, C2C10 alkenes, C3C6 dialkenes, C2C3 alkynes, nitrogen oxides such as NO and NO2, benzene, and radicals including CH3, C3H3, and C3H5, which shed light on the mechanism of n-decane and nitromethane pyrolysis, as well as the interactions of these two fuels. The experimental results indicate that the addition of nitromethane decreases the initial decomposition temperature of n-decane, and a stronger promotion effect could be obtained as the experimental pressure increases. The distributions of alkanes, alkenes, dialkenes, alkynes and benzene are also influenced by the addition of nitromethane. A detailed kinetic model with 266 species and 1648 reactions was developed and validated against the mole fraction profiles of reactants, major products and important intermediates during the pyrolysis of each fuel and their binary mixture. The satisfactory model prediction to the experimental measurements permits the analysis of the kinetic effect of nitromethane initiation on the pyrolysis of n-decane. So that, the increase of the conversion rate at a lower temperature, the selectivity of decomposition products, and reduction of benzene formation are better understood.

  10. The shock-vortex interaction patterns affected by vortex flow regime and vortex models

    Science.gov (United States)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong

    2009-08-01

    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  11. Thermo-Catalytic Pyrolysis of Waste Plastics from End of Life Vehicle

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert

    2016-01-01

    Full Text Available Pyrolysis of waste plastics is widely used recycling method. Owing to the end-of-life vehicles regulations, 95% of passenger cars and vehicles must reused/recovered after the dismantling. Pyrolysis of waste polyethylene and polypropylene obtained from end-of-life vehicles was investigated in a continuously stirred batch reactor using 500 and 600°C temperatures. To ensure the pyrolysis reactions the tested catalysts (5% of ZSM-5, HZSM-5, Ni-ZSM-5 and Fe-ZSM-5 were added directly to the mixtures of raw materials. Products of pyrolysis were separated into gases, pyrolysis oil and heavy oil, which was further analyzed by gas-chromatography, Fourier transformed infrared spectroscopy and other standardized methods. Based on the results it was concluded, that the catalysts significantly increase the yields of volatile products, and modify their composition. Especially the alkane/alkene ratio, the methane concentration and the concentration of branched hydrocarbon could be affected by the applied catalysts. Ni-ZSM-5 catalyst had the highest activity in methane production, while HZSM-5 catalyst proved effective in isomerization reactions. Using H-ZSM-5, Ni-ZSM-5, and Fe-ZSM-5 catalyst notably decreased average molecular weight of pyrolysis oils and significantly higher aromatic content was observed.

  12. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

    Directory of Open Access Journals (Sweden)

    Heidi S. Nygård

    2015-07-01

    Full Text Available A tubular electrostatic precipitator (ESP was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm. The voltage-current (V-I characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃, followed by a decrease with increasing reactor temperature. The temperature had nearly no effect on the oil yield for pyrolysis in (LiNaK2CO3 (19.0-22.5 wt%. Possible hydration reactions and formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software and measurements of the outlet gas (FTIR, but no significant amounts of HF were detected.

  13. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    Science.gov (United States)

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  14. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: Effect of operating parameters and mechanism.

    Science.gov (United States)

    Zhang, Jun; Zuo, Wei; Tian, Yu; Yin, Linlin; Gong, Zhenlong; Zhang, Jie

    2017-06-05

    The effects of sludge characteristics, pyrolysis temperature, heating rate and catalysts on the release of H2S and mechanism of H2S formation during sludge pyrolysis were investigated in a microwave heating reactor (MHR). The evolution of sulfur-containing compounds in the pyrolysis chars obtained at temperature range of 400-800°C was characterized by XPS. For a given temperature, the maximum concentration of H2S appeared at moisture content of 80%. Compared to the influence of heating rate on the H2S yields, pyrolysis temperature and catalyst played a more significant role on the release of H2S during microwave pyrolysis process. The H2S concentration increased with increasing temperature from 400°C to 800°C while decreased with increasing heating rate. Both the Nickel-based catalyst and Dolomite displayed significant desulfurization effect and Ni-based catalyst exhibited the larger desulfurization capability than that of Dolomite. The organic sulfur compounds accounted for about 60% of the total sulfur in the sludge which was the main reason for the formation of H2S. The mechanism analysis indicated that the cleavage reactions of mercaptan and aromatic-S compounds at temperatures below 600°C and the cracking reaction of sulfate above 700°C respectively were responsible for the H2S release during sludge pyrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Catalytic gasification of char from co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkui [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University, Chinese Academy of Sciences, Beijing 100080 (China); Song, Wenli; Lin, Weigang [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO{sub 2}, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 C have the highest alkali concentration and reactivity. (author)

  16. Co-pyrolysis of a Ukrainian low-grade coal (brown) with plastics

    Energy Technology Data Exchange (ETDEWEB)

    V.N. Shevkoplyas [National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2003-07-01

    An effective pathway of the wastes plastics utilization can be its co-pyrolysis with a low-grade (brown) coal. The Dneprovsky deposit brown coal (Ukraine) and waste plastics as a polyethyleneterephthalate in this investigation were taken. The brown coal-plastics mixed used: 19:1; 9:1 and 4:1 ratio that was as 5, 10 and 20 % plastics additive to the brown coal. The co-pyrolysis mix prepared in the temperature region 450-800{sup o}C in a fixed bed reactor has been carried out. The process time was 0, 60 and 120 min., heating rate - 25{sup o}C/min. The influence plastics additive on the co-pyrolysis yield has been estimated. The influence of the co-pyrolysis isothermal time on the yield and properties of the tars produced has been studied. The mass balances of co-pyrolysis brown coal with plastics have been calculated. It was concluded that the co-pyrolysis brown coal with plastics is a way to utilize organic pollutants. 3 refs., 1 fig., 6 tabs.

  17. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  18. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  19. Products from the high temperature pyrolysis of RDF at slow and rapid heating rates

    OpenAIRE

    2015-01-01

    The high-temperature pyrolysis behaviour of a sample of refuse derived fuel (RDF) as a model of municipal solid waste (MSW) was investigated in a horizontal tubular reactor between 700 and 900 °C, at varying heating rates, and at an extended vapour residence time. Experiments were designed to evaluate the influence of process conditions on gas yields as well as gas and oil compositions. Pyrolysis of RDF at 800 °C and at rapid heating rate resulted in the gas yield with the highest CV of 24.8 ...

  20. Effect of fast pyrolysis conditions on biomass solid residues at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    Fast pyrolysis of wood and straw was conducted in a drop tube furnace (DTF) and compared with corresponding data from a wire mesh reactor (WMR) to study the influence of temperature (1000-1400)°C, biomass origin (pinewood, beechwood, wheat straw, alfalfa straw), and heating rate (103 °C/s, 104 °C...... in its half-width with respect to the parental fuel, whereas the alfalfa straw char particle size remained unaltered at higher temperatures. Soot particles in a range from 60 to 300 nm were obtained during fast pyrolysis. The soot yield from herbaceous fuels was lower than from wood samples, possibly due...

  1. Correlation Models for Light Olefin Yields from Catalytic Pyrolysis of Petroleum Residue

    Institute of Scientific and Technical Information of China (English)

    DongXiaoli; MengXianghai; GaoJinsen; XuChunming

    2005-01-01

    Correlation models for light olefin yields from residue catalytic pyrolysis are studied. Experiments are carried out in a confined fluidized bed reactor for Daqing (China) atmospheric residue catalytic pyrolysis over LCM-5 pyrolyzing catalyst. The influences of reaction temperature, residence time and the weight ratios of catalyst-to-oil and steam-to-oil on light olefin yields are researched. Correlation models for light olefin yields are established, and the model parameters obtained, with the least square method. Results for error analysis and the F-statistical test show that the correlation models have high calculation precision.

  2. Exploratory studies on fast pyrolysis oil upgrading

    NARCIS (Netherlands)

    Mahfud, Farchad Husein

    2007-01-01

    Pyrolysis oil is a dark brown liquid which can be produced in high yield from different kind of biomass sources by means of fast pyrolysis. Pyrolysis oil is considered as a promising second generation energy carrier and may play an important role in the future of "biobased economies". The energy

  3. Pyrolysis of phenols from lignite semicoking tar

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Ryltsova, S.V.; Proskuryakov, V.A.; Rozental, D.A.; Polovetskaya, O.S.; Martynov, V.Y.; Chilachava, K.B.

    2000-07-01

    Pyrolysis of phenols from lignite semicoking tar at 750-900 {degree}C and contact time of 0.5-6.0 s was studied. The yields of pyrocarbon, pyrolysis gas, and liquid products and the group and component composition of the liquid products and pyrolysis gas were determined. The main groups of compounds in liquid products were analysed.

  4. Exploratory studies on fast pyrolysis oil upgrading

    NARCIS (Netherlands)

    Mahfud, Farchad Husein

    2007-01-01

    Pyrolysis oil is a dark brown liquid which can be produced in high yield from different kind of biomass sources by means of fast pyrolysis. Pyrolysis oil is considered as a promising second generation energy carrier and may play an important role in the future of "biobased economies". The energy con

  5. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.

    Science.gov (United States)

    Uçar, Suat; Karagöz, Selhan

    2017-05-01

    The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg(-1) and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg(-1). It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.

  6. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.

    Science.gov (United States)

    Carrier, Marion; Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony

    2017-08-24

    The transformation of lignocellulosic biomass into bio-based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic-rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio-compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and (13) C-enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of "primary" fast pyrolysis volatiles detected by using GC-MS between two small-scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid-state (13) C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.

    Science.gov (United States)

    Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang

    2010-11-01

    In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining.

  8. Simulations of vortex generators

    Science.gov (United States)

    Koumoutsakos, P.

    1995-01-01

    We are interested in the study, via direct numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the stream direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators at NASA Ames and Stanford University (Saddoughi, 1994, and Jacobson and Reynolds, 1993). Jacobson and Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and he observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. Our task is to simulate the flows generated by these devices and to conduct a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. The results of the present simulations would help us assess some of the effects of three-dimensionality in experiments and investigate the role

  9. Multiply Phased Traveling BPS Vortex

    CERN Document Server

    Kimm, Kyoungtae; Cho, Y M

    2016-01-01

    We present the multiply phased current carrying vortex solutions in the U(1) gauge theory coupled to an $(N+1)$-component SU(N+1) scalar multiplet in the Bogomolny limit. Our vortex solutions correspond to the static vortex dressed with traveling waves along the axis of symmetry. What is notable in our vortex solutions is that the frequencies of traveling waves in each component of the scalar field can have different values. The energy of the static vortex is proportional to the topological charge of $CP^N$ model in the BPS limit, and the multiple phase of the vortex supplies additional energy contribution which is proportional to the Noether charge associated to the remaining symmetry.

  10. Ignition of DME and DME/CH4 at High Pressure: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    The pyrolysis and oxidation of dimethyl ether (DME) and its mixtures with methane were investigated at high pressures (50 and 100 bar) and intermediate temperatures (450–900 K) in a laminar flow reactor. DME pyrolysis started at 825 K (at 50 bar). The onset of DME reaction was detected at 525–550 K...

  11. Ignition of DME and DME/CH4 at High Pressure: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    The pyrolysis and oxidation of dimethyl ether (DME) and its mixtures with methane were investigated at high pressures (50 and 100 bar) and intermediate temperatures (450―900 K) in a laminar flow reactor. DME pyrolysis started at 825 K (at 50 bar). The onset of DME reaction was detected at 525―550 K...

  12. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Science.gov (United States)

    Galvis, J. A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-02-01

    Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  13. CHARACTERIZATION OF BIO-OIL FROM PALM KERNEL SHELL PYROLYSIS

    Directory of Open Access Journals (Sweden)

    R. Ahmad

    2014-12-01

    Full Text Available Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 µm, 300–600 µm, 600µm–1.18 mm and 1.18–2.36 mm under a heating rate of 50 °C min-1 were investigated. The maximum bio-oil yield was 38.40% at 450 °C with a heating rate of 50 °C min-1 and a nitrogen sweep gas flow rate of 50 ml min-1. The bio-oil products were analysed by Fourier transform infra-red spectroscopy (FTIR and gas chromatography–mass spectroscopy (GCMS. The FTIR analysis showed that the bio-oil was dominated by oxygenated species. The phenol, phenol, 2-methoxy- and furfural that were identified by GCMS analysis are highly suitable for extraction from the bio-oil as value-added chemicals. The highly oxygenated oils need to be upgraded in order to be used in other applications such as transportation fuels.

  14. Effects of temperature on pyrolysis products of oil sludge

    Institute of Scientific and Technical Information of China (English)

    Jianguo LIU; Wei SONG; Yongfeng NIE

    2008-01-01

    Temperature is the determining factor of pyrolysis, which is one of the alternative technologies for oil sludge treatment. The effects of final:operating temperature ranging from 350 to 550℃ on pyrolysis products of oil sludge were studied in an externally-heating fixed bed reactor. With an increase of temperature, the mass fraction of solid residues, liquids, and gases in the final product is 67.00%-56.00%, 25.60%-32.35%, and 7.40%-11.65%, and their coresponding heat values are 34.4-13.8 MJ/kg, 44.41-46.6 MJ/kg, and 23.94-48.23 MJ/Nm3, respectively. The mass and energy tend to shift from solid to liquid and gas phase (especially to liquid phase) during the process, and the optimum temperature for oil sludge pyrolysis is 500℃. The liquid phase is mainly composed of alkane and alkene (C5.-C29), and the gas phase is dominantly HCs and H2.

  15. Flash co-pyrolysis of biomass with polyhydroxybutyrate: Part 1. Influence on bio-oil yield, water content, heating value and the production of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    T. Cornelissen; M. Jans; J. Yperman; G. Reggers; S. Schreurs; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-09-15

    Bio-oil obtained via flash pyrolysis shows potential to be applied as a renewable fuel. However, bio-oil often contains high amounts of water, which is a major drawback for its application. The influence of a biopolymer - polyhydroxybutyrate (PHB) on the pyrolysis of willow is investigated using a semi-continuous home-built pyrolysis reactor. The flash co-pyrolysis of willow/PHB blends (w/w ratio 7:1, 3:1, 2:1 and 1:1) clearly shows particular merits: a synergetic increase in pyrolysis yield, a synergetic reduction of the water content in bio-oil, an increase in heating value, and a production of easily separable chemicals. The occurrence of synergetic interactions is observed based on a comparison between the actual pyrolysis results of the willow/PHB blends, the theoretical pyrolysis results calculated from the reference pyrolysis experiments (pure willow and pure PHB) and their respective w/w ratio. The co-pyrolysis of 1:1 willow/PHB shows the best overall results. 24 refs., 9 figs., 5 tabs.

  16. Methods and apparatuses for preparing upgraded pyrolysis oil

    Science.gov (United States)

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  17. A generalization of vortex lines

    CERN Document Server

    Fecko, Marian

    2016-01-01

    Helmholtz theorem states that, in ideal fluid, vortex lines move with the fluid. Another Helmholtz theorem adds that strength of a vortex tube is constant along the tube. The lines may be regarded as integral surfaces of an 1-dimensional integrable distribution (given by the vorticity 2-form). In general setting of theory of integral invariants, due to Poincare and Cartan, one can find $d$-dimensional integrable distribution whose integral surfaces show both properties of vortex lines: they move with (abstract) fluid and, for appropriate generalization of vortex tube, strength of the latter is constant along the tube.

  18. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  19. Coal pyrolysis in plasma and thermodynamic analysis for model compound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Pang, X.; Bao, W.; Xie, K. [Shanxi Key Laboratory of Coal Science and Technology, Taiyuan (China)

    2001-02-01

    On the basis of study on coal and graphite pyrolysis in hydrogen-enriched argon plasma jet reactor, thermodynamic analysis for reactions producing acetylene was carried out by the means of selecting model compounds including various gaseous aliphatic and liquid aromatic hydrocarbons, which were regarded as similar to the primary volatile of coal, and by calculating the changes of Gibbs functions under deferent temperatures. The fact that the reactions of the volatiles releasing from coal play an essential part in acetylene formation from coal in H{sub 2}-Ar plasma was verified. The result that acetylene can be produced easily in high temperature can be deduced from entropy effects by theoretical analysis and experiment. These results are of significance for mechanism investigation of acetylene formation in plasma reactor. 7 refs., 1 fig., 3 tabs.

  20. Production, properties and utilisation of pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Oasmaa, A.; Arpiainen, V.; Solantausta, Y.; Leppaemaeki, E.; Kuoppala, E.; Levander, J.; Kleemola, J.; Saarimaeki, P. [VTT Energy, Jyvaeskylae (Finland). Energy Production Technologies

    1997-12-01

    In this project VTT Energy co-ordinates the EU JOULE Project `Biofuel oil for power plants and boilers` supporting the development projects of Finnish enterprises, and participates in the Pyrolysis Project of IEA Bioenergy Agreement. Presently two pyrolysis devices with capacities of 150 g/h and 1 kg/h are used for the project. Hot gas filtering tests by using one ceramic candle equipment have been carried out with the 1 kg/h device for pyrolysis oil. The solids and alkali contents of the product oil were reduced clearly. Suitable conditions are being defined for continuous hot gas filtering. A PDU device of 20 kg/h is being commissioned. The main aim of the chemical characterisation of pyrolysis oil was to develop as simple a method as possible for differentiating pyrolysis oils and for finding correlations between the characteristics and behaviour of pyrolysis oils. Pyrolysis oils produced from various raw materials (hardwood, pine, straw) were analysed and compared with each other. VTT Energy participates in the pyrolysis network (EU/PYNE) of EU, the aim of which is to collect and disseminate research results of pyrolysis studies, i.e., through a journal with a wide circulation. VTT also participates in the pyrolysis activity of IEA (PYRA), the other partners being Great Britain, EU, Canada and the United States. I.e., quality criteria and improvement, occupational safety and pyrolysis kinetics are discussed in IEA/PYRA

  1. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  2. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes.

    Science.gov (United States)

    Çepelioğullar, Özge; Pütün, Ayşe E

    2014-10-01

    In this study, thermochemical conversion of plastic wastes (PET and PVC) together with an agricultural waste (hazelnut shell) was investigated. In order to determine the thermal and kinetic behaviours, pyrolysis experiments were carried out from room temperature to 800 °C, with a heating rate of 10 °C min(-1) in the presence of a N2 atmosphere in a thermogravimetric analyzer. With the obtained thermogravimetric data, an appropriate temperature was specified for the pyrolysis of biomass-plastic wastes in a fixed-bed reactor. At the second step, pyrolysis experiments were carried out at the same conditions with the thermogravimetric analyzer, except the final temperature which was up to 500 °C in this case. After pyrolysis experiments, pyrolysis yields were calculated and characterization studies for bio-oil were investigated. Experimental results showed that co-pyrolysis has an important role in the determination of the pyrolysis mechanism and the process conditions while designing/implementing a thermochemical conversion method where biomass-plastic materials were preferred as raw materials. © The Author(s) 2014.

  3. Effect of Fast Pyrolysis Conditions on Structural Transformation and Reactivity of Herbaceous Biomasses at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt

    Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content and part......Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content...... and particle size on the char yield. X-ray diffractometry (XRD), N-adsorption (BET), scanning electron microscopy (SEM), particle size analysis (CAMSIZER XT), nuclear magnetic resonance spectroscopy (29Si NMR; 13C NMR) and electron spinning resonance spectroscopy (ESR) were conducted to investigate the effect...... of organic and inorganic matter on the char structural transformations. The results indicate no influence of the free radicals on char reactivity and burnout. The formation of free radicals in fast pyrolysis is related to the differences in the ash composition, namely presence of K+ ions in the wheat straw...

  4. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    Science.gov (United States)

    2015-10-16

    a) Main vortex structures developing on a typical submarine hull; (b) Schematic illustrating a horseshoe vortex at a wing-body junction of a " Rood ...secondary vortices. Firstly, looking at Figure 7, showing only the secondary vortices being visualized by our technique , we see that a tongue of secondary

  5. Evolution of optical vortex distributions in stochastic vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-01-01

    Full Text Available dipole,? Opt. Commun. 236, 433?440 (2004). [23] Dana, I. and Freund, I., ?Vortex-lattice wave fields,? Opt. Commun. . [24] Jenkins, R., Banerji, J., and Davies, A., ?The generation of optical vortices and shape preserving vortex arrays in hollow...

  6. Soot morphology in laser pyrolysis

    Science.gov (United States)

    Sandu, Ion C.; Pasuk, I.; Morjan, Ion G.; Voicu, Ion N.; Alexandrescu, Rodica; Fleaca, Claudiu T.; Ciupina, Victor; Dumitrache, Florian V.; Soare, Iuliana; Ploscaru, Mihaela I.; Daniels, H.; Westwood, A.; Rand, B.

    2004-10-01

    Soots obtained by laser pyrolysis of different gaseous/vapor hydrocarbons were investigated. The morphology variation of carbon soot versus process parameters and nature of reactants was analyzed and discussed. The role of oxygen is essential in obtaining soot particles having considerable curved-layer content.

  7. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    Science.gov (United States)

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content.

  8. FAST PYROLYSIS – EFFECT OF WOOD DRYING ON THE YIELD AND PROPERTIES OF BIO-OIL

    Directory of Open Access Journals (Sweden)

    Eriks Samulis

    2007-11-01

    Full Text Available The composition and properties of the products of fast pyrolysis of hardwood, obtained in a two-chamber (drying and pyrolytic ablation type reactor in the temperature range 450-600ºС, were investigated. It has been found that, upon the additional drying of wood at 200ºС and subsequent pyrolysis, the quality of bio-oil is improved owing to the decrease in the amount of water and acids. It has been shown that the increase of the drying temperature to 240ºС decreases the yield of the main product. Optimum parameters of the drying conditions and the temperature of the pyrolysis of wood, at which the bio-oil yield exceeds 60% and its calorific value makes up 17-20 МJ/kg, have been determined.

  9. Characterization of biomass fast pyrolysis. Advantages and drawbacks of different possible criteria

    Energy Technology Data Exchange (ETDEWEB)

    Lede, Jacques [LRGP-CNRS-INPL, 1, rue Grandville, BP 20451, Nancy Cedex (France); Authier, Olivier [LRGP-CNRS-INPL, 1, rue Grandville, BP 20451, Nancy Cedex (France); EDF-R and D, Departement Mecanique des Fluides, Energies et Environnement, 6, quai Watier, BP 49, Chatou Cedex (France)

    2011-09-15

    The literature shows that different possible criteria are used for defining biomass fast pyrolysis. On the basis of a simplified modeling of a cellulose (biomass model compound) particle pyrolysis, the present paper points out that the most often considered parameters (i.e., temperature and heating rate) are inappropriate. They are very difficult to define and measure, and according to their definitions, important errors can be made (kinetic measurements and reactor scaling up). Other possible parameters are also examined such as particle initial size, available heat flux density, heat transfer coefficient, and products elimination efficiency. In order to be able to compare different experimental conditions on a similar basis, it is shown that at the biomass sample level, fast pyrolysis is favoured (enhancement of bio-oil fractions) if two necessary conditions are simultaneously fulfilled. They include high external heat transfer coefficient and efficient products removal. (orig.)

  10. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs.

    Science.gov (United States)

    Zheng, Anqing; Zhao, Zengli; Chang, Sheng; Huang, Zhen; Zhao, Kun; Wei, Guoqiang; He, Fang; Li, Haibin

    2015-01-01

    Wet and dry torrefaction of corncobs was conducted in high-pressure reactor and tube-type reactor, respectively. Effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs was compared. The results showed that hemicellulose could be effectively removed from corncobs by torrefaction. However, dry torrefaction caused severe degradation of cellulose and the cross-linking and charring of corncobs. X-ray diffraction analysis revealed that crystallinity degree of corncobs was evidently enhanced during wet torrefaction, but reduced during dry torrefaction as raising treatment temperature. In thermogravimetric analysis, wet torrefied corncobs produced less carbonaceous residues than raw corncobs, while dry torrefied corncobs gave much more residues owing to increased content of acid insoluble lignin. Pyrolysis-gas chromatography/mass spectroscopy analysis indicated that wet torrefaction significantly promoted levoglucosan yield owing to the removal of alkali metals. Therefore, wet torrefaction can be considered as a more effective pretreatment method for fast pyrolysis of biomass.

  11. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    Science.gov (United States)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  12. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  13. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  14. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  15. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  16. Solitary vortexes in magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vainshtein, S.I.

    1985-12-01

    Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.

  17. Vortex Flow Correlation

    Science.gov (United States)

    1981-01-01

    j . 1978. 93. Grabowski , W.J.; "Solutions of the Navier-Stokes Equations for Vortex Breakdown," NASA CR...including foreign nations. This technical report has been reviewed and is approved for publication. LAWRENCE W. ROGERS Q LOWELL C. KEEL, Major, USAF Project...or’ a w U - a LU LU U- LU C - J ’di 2 2 C LU I- 4 S Ua * - w x 2 40 20 I- 2 LU W S ~ 00 * U. 4 I- 𔃾 LU a 4 U 4 2 C C LU 4 a 4a 2 I- 4 a 3 9

  18. Robustness of a coherence vortex.

    Science.gov (United States)

    Alves, Cleberson R; Jesus-Silva, Alcenisio J; Fonseca, Eduardo J S

    2016-09-20

    We study, experimentally and theoretically, the behavior of a coherence vortex after its transmission through obstacles. Notably, we find that such a vortex survives and preserves its effective topological charge. Despite suffering changes on the modulus of the coherence function, these changes disappear during propagation.

  19. Vortex duality in higher dimensions

    NARCIS (Netherlands)

    Beekman, Aron Jonathan

    2011-01-01

    A dynamic vortex line traces out a world sheet in spacetime. This thesis shows that the information of all its dynamic behaviour is completely contained in the world sheet. Furthermore a mathematical framework for order–disorder phase transitions in terms of the proliferation of such vortex world sh

  20. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  1. Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q. (Energy Systems)

    2011-12-01

    natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.

  2. Change of physical and chemical properties of the solid phase during biomass pyrolysis; Aenderung der physikalisch-chemischen Eigenschaften des Feststoffs waehrend der Biomassepyrolyse

    Energy Technology Data Exchange (ETDEWEB)

    Klose, Wolfgang [Kassel Univ. (Germany). Inst. fuer Thermische Energietechnik; Rincon, Sonia; Gomez, Alexander [Universidad Nacional de Colombia, Bogota (Colombia). Dept. de Ingenieria Mecanica y Mecatronica

    2009-01-15

    The effects of the final pyrolysis temperature on the development of the chemical composition and on the porosity of biomass undergoing pyrolysis are investigated through experiments in a thermobalance at laboratory scale of grams. Changes in the grain size of individual particles of biomass during pyrolysis are also investigated as a function of temperature in a microscope equipped with heating and camera. Oil palm shells are selected as raw materials due to their availability as biomass residue and their physical and chemical characteristics. These experiments are important for reactor design purposes in the field of thermochemical conversion, offering important information for the mathematical modelling of the processes. (orig.)

  3. Energy efficiency analysis of reactor for torrefaction of biomass with direct heating

    Science.gov (United States)

    Kuzmina, J. S.; Director, L. B.; Shevchenko, A. L.; Zaichenko, V. M.

    2016-11-01

    Paper presents energy analysis of reactor for torrefaction with direct heating of granulated biomass by exhaust gases. Various schemes of gas flow through the reactor zones are presented. Performed is a comparative evaluation of the specific energy consumption for the considered schemes. It has been shown that one of the most expensive processes of torrefaction technology is recycling of pyrolysis gases.

  4. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  5. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  6. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  7. Analytical Investigations of Kinetic and Heat Transfer in Slow Pyrolysis of a Biomass Particle

    Directory of Open Access Journals (Sweden)

    S.J Ojolo

    2013-06-01

    Full Text Available The utilization of biomass for heat and power generation has aroused the interest of most researchers especially those of energy .In converting solid fuel to a usable form of energy,pyrolysis plays an integral role. Understanding this very important phenomenon in the thermochemical conversion processes and representing it with appropriate mathematical models is vital in the design of pyrolysis reactors and biomass gasifiers. Therefore, this study presents analytical solutions to the kinetic and the heat transfer equations that describe the slow pyrolysis of a biomass particle. The effects of Biot number, temperature and residence time on biomass particle decomposition were studied. The results from the proposed analytical models are in good agreement with the reported experimental results. The developed analytical solutions to the heat transfer equations which have been stated to be “analytically involved” showed average percentageerror and standard deviations 0.439 and 0.103 from the experimental results respectively as compared with previous model in literature which gives average percentage error and standard deviations 0.75 and 0.106 from the experimental results respectively. This work is of great importance in the design of some pyrolysis reactors/units and in the optimal design of the biomass gasifiers.

  8. Pyrolysis characteristics of blends of Thai agricultural residues and woods with lignite

    Energy Technology Data Exchange (ETDEWEB)

    Taro Sonobe; Nakorn Worasuwannarak [King Mongkut' s University of Technology Thonburi, Bangkok (Thailand). Joint Graduate School of Energy and Environment (JGSEE)

    2005-07-01

    The pyrolysis characteristics of Thai lignite and biomass as well as lignite/biomass blend have been investigated under slow heating rate condition by use of a TGA and a fixed bed reactor. It was found that the pyrolysis behaviors of biomass can be separated by two steps at the region of cellulose decomposition in biomass: sharp devolatilization region between 300 and 400{sup o}C at the range of cellulose decomposition, and slow devolatilization region between 400 and 600{sup o}C after the cellulose decomposition. For the co-pyrolysis of lignite/corncob blend, we have observed the slight difference between experimental and calculated char yields, which obtained from both the TGA and the fixed bed reactor. This weight loss discrepancy at above 400{sup o}C was accompanied by the significant change in the CH{sub 4} production behavior. Based on these results, synergetic effects between lignite and biomass during the co-pyrolysis were discussed. 12 refs., 8 figs., 2 tabs.

  9. Red Mud Catalytic Pyrolysis of Pinyon Juniper and Single-Stage Hydrotreatment of Oils

    Energy Technology Data Exchange (ETDEWEB)

    Agblevor, Foster A.; Elliott, Douglas C.; Santosa, Daniel M.; Olarte, Mariefel V.; Burton, Sarah D.; Swita, Marie; Beis, Sedat H.; Christian, Kyle; Sargent, Brandon

    2016-10-20

    Pinyon juniper biomass feedstocks, which cover a large acreage of rangeland in the western United States, are being eradicated and, therefore, considered as a convenient biomass feedstock for biofuel production. Pinyon juniper whole biomass (wood, bark, and leaves) were pyrolyzed in a pilot-scale bubbling fluidized-bed reactor at 450 °C, and the noncondensable gases were recycled to fluidize the reactor. Red mud was used as the in situ catalyst for the pyrolysis of the pinyon juniper biomass. The pyrolysis products were condensed in three stages, and products were analyzed for physicochemical properties. The condenser oil formed two phases with the aqueous fraction, whereas the electrostatic precipitator oils formed a single phase. The oil pH was 3.3; the higher heating value (HHV) was 28 MJ/kg; and the viscosity was less than 100 cP. There was a direct correlation between the viscosity of the oils and the alcohol/ether content of the oils, and this was also related to the aging rate of the oils. The catalytic pyrolysis oils were hydrotreated in a continuous single-stage benchtop hydrotreater to produce hydrocarbon fuels with a density of 0.80$-$0.82 cm3/g. The hydrotreater ran continuously for over 300 h with no significant catalyst deactivation or coke formation. This is the first time that such a long single-stage hydrotreatment has been demonstrated on biomass catalytic pyrolysis oils.

  10. Superfluid Vortex Cooler

    Science.gov (United States)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

    2004-06-01

    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  11. Fast pyrolysis of wheat straw combined with SI-MCM-41 catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Funda; Putun, Ayse Eren [Anadolu University, Department of Chemical Engineering, Faculty of Engineering and Architecture (Turkey)], e-mail: fdivrikl@anadolu.edu.tr, email: aeputun@anadolu.edu.tr; Tophanecioglu, Sibel [Erkurt Holding (Turkey)], email: sibel8888@gmail.com

    2011-07-01

    The purpose of this paper is to give the results of an experiment in which the respective results from fast pyrolysis of wheat straw catalyzed with Si-MCM-4, and in the non-catalytic condition were compared. This experiment was carried out in a well-swept fixed-bed reactor with a heating rate of 300 degree C/min and in a nitrogen atmosphere after which, the main characteristics of pyrolyzed feedstock were determined by proximate, ultimate and component analysis. As the results of this experiment show, the maximum oil yield was 31.9% in a non-catalytic pyrolysis procedure and this gas yield increased in the pyrolysis experiment with catalyst, although the bio-oil yield decreased. On the other hand, the use of catalyst had the benefit of reducing the percentage of oxygen, the presence of which in the fuel is not desirable. Through testing pyrolysis oils, it was established that the use of a catalyst in the pyrolysis can improve fuel quality and produce valuable chemicals.

  12. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect.

    Science.gov (United States)

    Chen, Wei; Chen, Yingquan; Yang, Haiping; Xia, Mingwei; Li, Kaixu; Chen, Xu; Chen, Hanping

    2017-09-06

    Co-pyrolysis of biomass has a potential to change the quality of pyrolytic bio-oil. In this work, co-pyrolysis of bamboo, a typical lignocellulosic biomass, and Nannochloropsis sp. (NS), a microalgae, was carried out in a fixed bed reactor at a range of mixing ratio of NS and bamboo, to find out whether the quality of pyrolytic bio-oil was improved. A significant improvement on bio-oil after co-pyrolysis of bamboo and NS was observed that bio-oil yield increased up to 66.63wt% (at 1:1) and the content of long-chain fatty acids in bio-oil also dramatically increased (the maximum up to 50.92% (13.57wt%) at 1:1) whereas acetic acid, O-containing species, and N-containing compounds decreased greatly. Nitrogen transformation mechanism during co-pyrolysis also was explored. Results showed that nitrogen in microalgae preferred to transform into solid char and gas phase during co-pyrolysis, while more pyrrolic-N and quaternary-N generated with diminishing protein-N and pyridinic-N in char. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Production and Characterization of Bio-Char from the Pyrolysis of Empty Fruit Bunches

    Directory of Open Access Journals (Sweden)

    Mohamad A. Sukiran

    2011-01-01

    Full Text Available Problem statement: The palm oil industry generates an abundance of oil palm biomass such as the Empty Fruit Bunch (EFB, shell, frond, trunk and Palm Oil Mill Effluent (POME. For 88 million tones of Fresh Fruit Bunch (FFB processed in 2008, the amount of oil palm biomass was more than 26 million tones. Studies about production of bio-char from oil palm biomass are still lacking in Malaysia. So, this study was aimed to: (i determine the effect of pyrolysis temperatures on bio-char yield (ii characterize the bio-char obtained under different pyrolysed temperatures. Approach: In this study, pyrolysis of EFB was conducted using a fluidized fixed bed reactor. The effect of pyrolysis temperatures on bio-char yield was investigated. The pyrolysis temperature used ranged from 300-700°C. The elemental analysis, calorific value, surface area and total pore volume of the bio-char were determined. Results: The highest bio char yield of 41.56% was obtained at an optimum pyrolysis temperature of 300°C with particle size of 91-106 μm and the heating rate of 30°C min-1. The calorific values of bio-char ranged from 23-26 MJ kg-1. Conclusion: It was found that the bio-char products can be characterized as carbon rich, high calorific value and potential solid biofuels.

  14. Flash pyrolysis of sunflower oil cake for production of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yorgun, S.; Sensoez, S. [Department of Chemical Engineering, Faculty of Engineering, Osmangazi University, 26480 Eskisehir (Turkey); Kockar, O.M. [Department of Chemical Engineering, Faculty of Engineering, Anadolu University, 26470 Eskisehir (Turkey)

    2001-06-01

    Flash pyrolysis experiments of sunflower (Helianthus annuus L.) press oil cake were performed in a tubular transport reactor at atmospheric pressure under nitrogen atmosphere. The effects of pyrolysis temperature, particle size and sweep gas flow rate on the yields of products were investigated. The temperature of pyrolysis, particle size and sweep gas flow rate were varied in the ranges 450-700C, D{sub p}<0.224, 0.224-0.425, 0.425-0.850 mm and 25-600 cm{sup 3} min{sup -1}, respectively. The maximum oil yield of ca. 45% was obtained at a pyrolysis temperature of 550C, with the sweep gas flow rate of 300 cm{sup 3} min{sup -1} and particle size of 0.425-0.850 mm. The elemental analysis and calorific value of the pyrolysis oil were determined, and then the chemical composition of the oil was investigated using chromatographic and spectroscopic techniques (1H NMR, IR, column chromatography and GC). The chemical characterization has shown that the oil obtained from sunflower oil cake can be used as a renewable fuel and chemical feedstock.

  15. Research on Pyrolysis Experiment of Huolinhe Lignite and Pyrolysis Tar Tube Furnace%霍林河褐煤及其热解焦油管式炉热解试验研究

    Institute of Scientific and Technical Information of China (English)

    崔丽杰; 李欣; 李松庚; 林伟刚

    2012-01-01

    为深入了解褐煤热解过程,并与霍林河褐煤的喷动载流床快速热解进行对比,对霍林河褐煤及其热解焦油进行了管式炉反应器热解试验研究,利用在线连接的傅里叶红外光谱仪对热解逸出的气体进行了检测。结果表明,霍林河褐煤的管式炉反应器中速热解与喷动载流床快速热解的变化规律基本相同,对于低温热解,煤粉粒径的影响更大。热解焦油的受热反应包括裂解和缩聚两部分,裂解反应生成了CO、CH4、H2等气体,而缩聚反应转化为炭黑,热解过程中焦油在600℃前所发生的二次反应较弱。%In order to deeply understand the pyrolysis process of the lignite and in comparison with the spouted bed rapid pyrolysis of the lignite, a research was conducted on the tube reactor pyrolysis experiments with Huolinhe lignite and the pyrolysis tar. The on-line con- nected Fourier infrared spectrometer was applied to detect the pyrolysis released gas. The results showed that the Huolinhe lignite rapid pyrolysis in the tube reactor and the rapid pyrolysis in the spouted bed were basically the same in the variation law. When the low temper- ature pyrolysis applied, the particle diameter of the lignite powder would have high influences. The thermal reaction of the pyrolysis tar would include the cracking and condensation. With the cracking reaction, the pyrolysis tar would generate CO, CH4, H2 and other gas and with the condensation reaction, the pyrolysis tar would be converted to carbon black. Before reached at 600℃, the tar in the pyroly- sis process would have twice weak reactions.

  16. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars

    Science.gov (United States)

    Pyrolysis of waste biomass is a promising technology to produce sterile and renewable organic phosphorus fertilizers. Systematic studies are necessary to understand how different pyrolysis platforms influence the chemical speciation of dissolved (bioavailable) phosphorus. This study employed solut...

  17. An economic analysis of mobile pyrolysis for northern New Mexico forests.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick D.; Brown, Alexander L.; Mowry, Curtis Dale; Borek, Theodore Thaddeus, III

    2011-12-01

    In the interest of providing an economically sensible use for the copious small-diameter wood in Northern New Mexico, an economic study is performed focused on mobile pyrolysis. Mobile pyrolysis was selected for the study because transportation costs limit the viability of a dedicated pyrolysis plant, and the relative simplicity of pyrolysis compared to other technology solutions lends itself to mobile reactor design. A bench-scale pyrolysis system was used to study the wood pyrolysis process and to obtain performance data that was otherwise unavailable under conditions theorized to be optimal given the regional problem. Pyrolysis can convert wood to three main products: fixed gases, liquid pyrolysis oil and char. The fixed gases are useful as low-quality fuel, and may have sufficient chemical energy to power a mobile system, eliminating the need for an external power source. The majority of the energy content of the pyrolysis gas is associated with carbon monoxide, followed by light hydrocarbons. The liquids are well characterized in the historical literature, and have slightly lower heating values comparable to the feedstock. They consist of water and a mix of hundreds of hydrocarbons, and are acidic. They are also unstable, increasing in viscosity with time stored. Up to 60% of the biomass in bench-scale testing was converted to liquids. Lower ({approx}550 C) furnace temperatures are preferred because of the decreased propensity for deposits and the high liquid yields. A mobile pyrolysis system would be designed with low maintenance requirements, should be able to access wilderness areas, and should not require more than one or two people to operate the system. The techno-economic analysis assesses fixed and variable costs. It suggests that the economy of scale is an important factor, as higher throughput directly leads to improved system economic viability. Labor and capital equipment are the driving factors in the viability of the system. The break

  18. Decoupling HZSM-5 catalyst activity from deactivation during upgrading of pyrolysis oil vapors.

    Science.gov (United States)

    Wan, Shaolong; Waters, Christopher; Stevens, Adam; Gumidyala, Abhishek; Jentoft, Rolf; Lobban, Lance; Resasco, Daniel; Mallinson, Richard; Crossley, Steven

    2015-02-01

    The independent evaluation of catalyst activity and stability during the catalytic pyrolysis of biomass is challenging because of the nature of the reaction system and rapid catalyst deactivation that force the use of excess catalyst. In this contribution we use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate catalyst activity and deactivation rates independently both on a constant surface area and constant acid site basis. Results show that there is an optimum catalyst-bed temperature for the production of aromatics, above which the production of light gases increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give comparable initial rates for aromatics production, but far more rapid catalyst deactivation rates than those with higher Si/Al ratios.

  19. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...

  20. Effect of synergism between biomass and coal during co-pyrolysis in a free fall reactor on tar components%自由落下床中生物质与煤共热解的协同效应对焦油组成的影响

    Institute of Scientific and Technical Information of China (English)

    魏立纲; 张丽; 徐绍平

    2012-01-01

    The liquid products from co-pyrolysis of Dayan lignite (DY) and legume straw (LS) and from pyrolysis of the single fuel were classified into asphalts, phenols, aliphatic, aromatics and polar fractions by solvent extraction-column chromatography. Compared with the calculated yield of asphalts, i. e. the mass weighted mean value 19. 0% from pyrolysis of the single coal and biomass, the experimental yield from co-pyrolysis decreased to 11.4% , and the aromaticity of the co-pyrolysis asphalts increased. At the same time, the yield of light molecular weight phenols, methylphenol, dimethylphenol and their derivatives increased at about 5% during the co-pyrolysis; while the content of aliphatic hydrocarbons with long chains decreased. The content of decalins was 43.37% in aromatic fraction of the co-pyrolysis tar, whereas it was almost not found in the tars from pyrolysis of the individual fuel. These results verified that the synergy existed during co-pyrolysis of coal and biomass under the experimental conditions. It was contributed to the reactions such as hydropyrolysis and hydrogenation during co-pyrolysis of coal and biomass under the hydrogen atmosphere mainly supplied by biomass pyrolysis. Co-pyrolysis of coal and biomass favors producing low molecular weight compounds and improving the quality of the liquid product.%利用溶剂萃取-柱层析方法,将自由落下床中豆秸与大雁褐煤共热解以及单种原料热解的液体产品分为沥青烯、酚类、脂肪烃类、芳香烃类和极性物等组分.结果表明,共热解的沥青烯产率为11.4%,低于根据煤和生物质单独热解的质量加权平均计算值19.0%,且芳香性增大;与计算值相比,低分子量的酚类、甲基苯酚、二甲基苯酚及其衍生物的含量提高了5%;而且长侧链的脂肪烃含量减少.共热解焦油的芳香类组分中十氢萘的质量分数是43.37%,但其在单一原料热解焦油中并没有被检测到.热解油分析结果表

  1. A numerical study on gas–liquid mass transfer in the rotor–stator spinning disc reactor

    NARCIS (Netherlands)

    Eeten, van K.M.P.; Verzicco, R.; Schaaf, van der J.; Heijst, van G.J.F.; Schouten, J.C.

    2015-01-01

    The gas–liquid mass transfer coefficient was investigated in a novel multiphase reactor: the rotor–stator spinning disc reactor. Direct Numerical Simulations of the flow field around a single bubble in the reactor showed that vortex stretching invoked the presence of turbulence inside the thin liqui

  2. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  3. Some discussions on Arctic vortex

    Institute of Scientific and Technical Information of China (English)

    Li Hai; Sun Lantao; Wu Huiding; Li Xiang

    2006-01-01

    The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation (AO) , relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.

  4. Motion of a helical vortex

    CERN Document Server

    Fuentes, Oscar Velasco

    2015-01-01

    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  5. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  6. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  7. Pyrolysis of hydrocarbons from lignite semicoking tar

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Ryl' tsova, S.V.; Proskuryakov, V.A.; Rozental, D.A.; Polovetskaya, O.S.

    2000-07-01

    Pyrolysis of hydrocarbons from lignite semicoking tar in the range 750-900{degree}C at a contact time within 0.5-6.0 s was studied. The yields of pyrocarbons, pyrolysis gas, and liquid products and the group and component compositions of the liquid and gaseous products were determined. The optimal pyrolysis parameters from the viewpoint of obtaining the maximal yield of particular 'secondary' hydrocarbons were recommended.

  8. Pyrolysis of asphaltenes from lignite semicoking tar

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Ryl' tsova, S.V.; Rozental, D.A.; Proskuryakov, V.A.; Polovetskaya, O.S.

    2000-07-01

    Pyrolysis of asphaltenes from lignite semicoking tar in the range 750-900{degree}C at a contact time within 0.5-6.0 s was studied. The yields of pyrocarbons, pyrolysis gas, and liquid products and the group composition of the liquid products were determined. The total analysis of the major groups of compounds present in the liquid products was performed, and the optimal conditions of pyrolysis, from the viewpoint of preparation of particular compounds, were recommended.

  9. Modeling pyrolysis of charring material in fire

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated.

  10. Thermal and catalytic pyrolysis of plastic waste

    OpenAIRE

    Débora Almeida; Maria de Fátima Marques

    2016-01-01

    Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolit...

  11. Development and Commercial Application of DZC Ⅱ-1 Type Catalyst for Hydrogenation of Pyrolysis Gasoline

    Institute of Scientific and Technical Information of China (English)

    Zhao Ye; Wang Fucun

    2006-01-01

    Commercial application of the DZC Ⅱ-1 catalyst developed on the basis of the DZ-1 catalyst was introduced. The application tests of the catalyst under overload had proved that this catalyst demon-strated satisfactory adaptability to feedstock after continued operation for 20 months with little changes in the bed pressure drop, the reactor inlet temperature and the bed temperature rise. The DZC Ⅱ-1 catalyst was regarded as the best catalyst for the second-stage hydrogenation of pyrolysis gasoline.

  12. Fast Pyrolysis Process Development Unit for Validating Bench Scale Data

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C. [Iowa State Univ., Ames, IA (United States). Biorenewables Research Lab.. Center for Sustainable Environmental Technologies. Bioeconomy Inst.; Jones, Samuel T. [Iowa State Univ., Ames, IA (United States). Biorenewables Research Lab.. Center for Sustainable Environmental Technologies. Bioeconomy Inst.

    2010-03-31

    The purpose of this project was to prepare and operate a fast pyrolysis process development unit (PDU) that can validate experimental data generated at the bench scale. In order to do this, a biomass preparation system, a modular fast pyrolysis fluidized bed reactor, modular gas clean-up systems, and modular bio-oil recovery systems were designed and constructed. Instrumentation for centralized data collection and process control were integrated. The bio-oil analysis laboratory was upgraded with the addition of analytical equipment needed to measure C, H, O, N, S, P, K, and Cl. To provide a consistent material for processing through the fluidized bed fast pyrolysis reactor, the existing biomass preparation capabilities of the ISU facility needed to be upgraded. A stationary grinder was installed to reduce biomass from bale form to 5-10 cm lengths. A 25 kg/hr rotary kiln drier was installed. It has the ability to lower moisture content to the desired level of less than 20% wt. An existing forage chopper was upgraded with new screens. It is used to reduce biomass to the desired particle size of 2-25 mm fiber length. To complete the material handling between these pieces of equipment, a bucket elevator and two belt conveyors must be installed. The bucket elevator has been installed. The conveyors are being procured using other funding sources. Fast pyrolysis bio-oil, char and non-condensable gases were produced from an 8 kg/hr fluidized bed reactor. The bio-oil was collected in a fractionating bio-oil collection system that produced multiple fractions of bio-oil. This bio-oil was fractionated through two separate, but equally important, mechanisms within the collection system. The aerosols and vapors were selectively collected by utilizing laminar flow conditions to prevent aerosol collection and electrostatic precipitators to collect the aerosols. The vapors were successfully collected through a selective condensation process. The combination of these two mechanisms

  13. Charcoal Production via Multistage Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Adetoyese Olajire Oyedun; Ka Leung Lam; Chi Wai Hui

    2012-01-01

    Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonged heating time and cooling time which contribute to the process completing in one to several days. Wood py-rolysis consists of both endothermic and exothermic reactions as well as the decomposition of the different components at different temperature range (hemicellulose: 200-260℃; cellulose: 240-350℃ and lignin: 280-500℃). Inthis study we propose a multistagepyrolysis which is an approach to carry out pyrolysis with multiple heating stages so as to gain certain processing benefits. We propose a three-stage approach which includes rapid stepwise heating stage to a variable target temperatures of 250 ℃, 300℃, 350 ℃ and 400 ℃, slow and gradual heatingstage to a tinal temperature of 400℃ and adiabatic with cooling stage. The multi-stage pyrolysis process can save 30% energy and the processing time by using a first temperature target of 300 ℃and heating rate of 5℃.min-1 to produce a fixed-carbon yield of 25.73% as opposed to the base case with a fixed-carbon yield of23.18%.

  14. Pyrolysis process for producing fuel gas

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  15. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  16. Pyrolysis processing for solid waste resource recovery

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  17. Bathtub vortex induced by instability

    Science.gov (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2014-10-01

    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

  18. Novel sorbent materials for environmental remediation via Pyrolysis of biomass

    Science.gov (United States)

    Zabaniotou, Anastasia

    2013-04-01

    One of the major challenges facing society at this moment is the transition from a non-sustainable, fossil resources-based economy to a sustainable bio-based economy. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. The high-value products enhance profitability, the high-volume fuel helps meet national energy needs, and the power production reduces costs and avoids greenhouse-gas emissions From pyrolysis, besides gas and liquid products a solid product - char, is derived as well. This char contains the non converted carbon and can be used for activated carbon production and/or as additive in composite material production. Commercially available activated carbons are still considered expensive due to the use of non-renewable and relatively expensive starting material such as coal. The present study describes pyrolysis as a method to produce high added value carbon materials such as activated carbons (AC) from agricultural residues pyrolysis. Olive kernel has been investigated as the precursor of the above materials. The produced activated carbon was characterized by proximate and ultimate analyses, BET method and porosity estimation. Furthermore, its adsorption of pesticide compound in aqueous solution by was studied. Pyrolysis of olive kernel was conducted at 800 oC for 45min in a fixed reactor. For the production of the activated carbon the pyrolytic char was physically activated under steam in the presence of CO2 at 970oC for 3 h in a bench scale reactor. The active carbons obtained from both scales were characterized by N2 adsorption at 77 K, methyl-blue adsorption (MB adsorption) at room temperature and SEM analysis. Surface area and MB adsorption were found to increase with the degree of burn-off. The surface area of the activated carbons was found to increase up to 1500 m2/g at a burn-off level of 60-65wt.%, while SEM analysis

  19. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  20. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  1. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  2. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  3. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; B. Moghtaderi; R. Gupta; T.F. Wall [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2004-11-01

    The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure. 29 refs., 18 figs., 2 tabs.

  4. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  5. SIMULATION OF WAKE VORTEX AIRCRAFT IN GROUND EFFECT

    Directory of Open Access Journals (Sweden)

    Pamfil ŞOMOIAG

    2011-03-01

    Full Text Available The problem developed in this paper is encountered in airplane aerodynamics and concernsthe influence of long life longitudinal wake vortices generated by wing tips or by external obstaclessuch as reactors or landing gears. More generally it concerns 3D bodies of finite extension in crossflow. At the edge of such obstacles, longitudinal vortices are created by pressure differences inside theboundary layers and rotate in opposite senses. It can constitute a danger to another aircraft that fliesin this wake, especially during takeoff and landing. In this case the wake vortex trajectories andstrengths are altered by ground interactions. This study presents the results of a Large EddySimulation of wake vortex in ground effect providing the vorticity flux behavior.

  6. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  7. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.

    Science.gov (United States)

    Alvarez, Jon; Lopez, Gartzen; Amutio, Maider; Bilbao, Javier; Olazar, Martin

    2014-10-01

    The overall valorization of rice husk char obtained by flash pyrolysis in a conical spouted bed reactor (CSBR) has been studied in a two-step process. Thus, silica has been recovered in a first step and the remaining carbon material has been subjected to steam activation. The char samples used in this study have been obtained by continuous flash pyrolysis in a conical spouted bed reactor at 500°C. Extraction with Na2CO3 allows recovering 88% of the silica contained in the rice husk char. Activation of the silica-free rice husk char has been carried out in a fixed bed reactor at 800°C using steam as activating agent. The porous structure of the activated carbons produced includes a combination of micropores and mesopores, with a BET surface area of up to 1365m(2)g(-1) at the end of 15min.

  8. Vortex state in ferromagnetic nanoparticles

    Science.gov (United States)

    Betto, Davide; Coey, J. M. D.

    2014-05-01

    The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.

  9. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  10. Vortex migration in protoplanetary discs

    Directory of Open Access Journals (Sweden)

    Papaloizou John C. B.

    2013-04-01

    Full Text Available Vortices embedded in protoplanetary discs can act as obstacles to the unperturbed disc flow. The resulting velocity perturbations propagate away from the vortex in the form of density waves that transport angular momentum. Any asymmetry between the inner and the outer density wave means that the region around the vortex has to change its angular momentum. We find that this leads to orbital migration of the vortex. Asymmetric waves always arise except in the case of a disc with constant pressure, for isothermal as well as non-isothermal discs. Depending on the size and strength of the vortex, the resulting migration time scales can be as short as a few thousand orbits.

  11. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis.

    Science.gov (United States)

    Chihobo, Chido H; Chowdhury, Arindrajit; Kuipa, Pardon K; Simbi, David J

    2016-12-01

    Pyrolysis is an attractive thermochemical conversion technology that may be utilised as a safe disposal option for acid tar waste. The kinetics of acid tar pyrolysis were investigated using thermogravimetry coupled with mass spectrometry under a nitrogen atmosphere at different heating rates of 10, 15 and 20 K min(-1) The thermogravimetric analysis shows three major reaction peaks centred around 178 °C, 258 °C, and 336 °C corresponding to the successive degradation of water soluble lower molecular mass sulphonic acids, sulphonated high molecular mass hydrocarbons, and high molecular mass hydrocarbons. The kinetic parameters were evaluated using the iso-conversional Kissinger-Akahira-Sunose method. A variation in the activation energy with conversion revealed that the pyrolysis of the acid tar waste progresses through complex multi-step kinetics. Mass spectrometry results revealed a predominance of gases such as hydrogen, methane and carbon monoxide, implying that the pyrolysis of acid tar waste is potentially an energy source. Thus the pyrolysis of acid tar waste may present a viable option for its environmental treatment. There are however, some limitations imposed by the co-evolution of corrosive gaseous components for which appropriate considerations must be provided in both pyrolysis reactor design and selection of construction materials. © The Author(s) 2016.

  12. New omega vortex identification method

    Science.gov (United States)

    Liu, ChaoQun; Wang, YiQian; Yang, Yong; Duan, ZhiWei

    2016-08-01

    A new vortex identification criterion called Ω-method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q-criterion and λ 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of Ω is clear while the interpretations of iso-surface values of Q and λ 2 chosen to visualize vortices are obscure; (3) being different from Q and λ 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, Ω is pretty universal and does not need much adjustment in different cases and the iso-surfaces of Ω=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and λ 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) Ω=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate Ω, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

  13. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.

    Science.gov (United States)

    Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina

    2016-12-25

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.

  14. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    Directory of Open Access Journals (Sweden)

    Sensho Honma

    2014-01-01

    Full Text Available The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.

  15. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    Science.gov (United States)

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  16. Formation number for vortex dipoles

    Science.gov (United States)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  17. Vortex migration in protoplanetary disks

    CERN Document Server

    Paardekooper, S -J; Papaloizou, J C B

    2010-01-01

    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migrat...

  18. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis

    Science.gov (United States)

    Bu, Hongling; Yuan, Peng; Liu, Hongmei; Liu, Dong; Liu, Jinzhong; He, Hongping; Zhou, Junming; Song, Hongzhe; Li, Zhaohui

    2017-09-01

    The stability and persistence of organic matter (OM) in source rocks are of great significance for hydrocarbon generation and the global carbon cycle. Clay-OM associations commonly occur in sedimentation and diagenesis processes and can influence the pyrolytic behaviors of OM. In this study, clay-OM complexes, i.e., interlayer clay-OM complexes and clay-OM mixture, were prepared and exposed to high-pressure pyrolysis conditions in confined gold capsule reactors to assess variations in OM pyrolysis products in the presence of clay minerals. Three model organic compounds, octadecanoic acid (OA), octadecy trimethyl ammonium bromide (OTAB), and octadecylamine (ODA), were employed and montmorillonite (Mt) was selected as the representative clay mineral. The solid acidity of Mt plays a key role in affecting the amount and composition of the pyrolysis gases generated by the clay-OM complexes. The Brønsted acid sites significantly promote the cracking of hydrocarbons through a carbocation mechanism and the isomerization of normal hydrocarbons. The Lewis acid sites are primarily involved in the decarboxylation reaction during pyrolysis and are responsible for CO2 generation. Mt exhibits either a catalysis effect or pyrolysis-inhibiting during pyrolysis of a given OM depending on the nature of the model organic compound and the nature of the clay-OM complexation. The amounts of C1-5 hydrocarbons and CO2 that are released from the Mt-OA and Mt-ODA complexes were higher than those of the parent OA and ODA, respectively, indicating a catalysis effect of Mt. In contrast, the amount of C1-5 hydrocarbons produced from the pyrolysis of Mt-OTAB complexes was lower than that of OTAB, which we attribute to an inhibiting effect of Mt. This pyrolysis-inhibiting effect works through the Hoffmann elimination that is promoted by the catalysis of the Brønsted acid sites of Mt, therefore releasing smaller amounts of gas hydrocarbons than the nucleophilic reaction that is induced by the

  19. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  20. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Science.gov (United States)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  1. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  2. PLASMA PYROLYSIS OF BROWN COAL

    OpenAIRE

    Plotczyk, W.; Resztak, A.; A.; Szymanski

    1990-01-01

    The specific energy of the substrate is defined as the ratio of the plasma jet energy to the mass of the coal. The influence of the specific energy of the brown coal (10 - 35 MJ/kg) on the yield and selectivity of the gaseous products formation was determined. The pyrolysis was performed in d.c. arc hydrogen plasma jet with the 25 kW power delivered to it. The higher specific energies of coal correlated to the higher conversion degrees of the substrates to C2H2 and CO as well as to the higher...

  3. STUDY ON PYROLYSIS OF POLYPHENYLSILSESQUIOXANE

    Institute of Scientific and Technical Information of China (English)

    Jun Ma; Liang-he Shi; Jian-min Zhang; Bai-yu Li; De-yan Shen; Jian Xu

    2002-01-01

    X-ray photoelectron spectroscopy and Raman spectroscopy were used to determine the chemical change ofpolyphenylsilsesquioxane (PPSQ) during pyrolysis in flowing nitrogen. Two temperature ranges were found for pyrolysedPPSQ below and above 600℃, respectively. The former is related to the rearrangement of PPSQ backbone and the latterreflects that most of backbone structure of PPSQ might be broken down and unorganized. Carbon formed in carbonization ofPPSQ sample pyrolysed at 900℃ should be sp3 bonded carbon with crystallite size effects or defects.

  4. Chemical recycling of mixed waste plastics by selective pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumoto, K.; Meglen, R.; Evans, R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The goal of this work is to use selective pyrolysis to produce high-value chemicals from waste plastics mixtures. Selectivity is achieved by exploiting differences in reaction rates, catalysis, and coreactants. Target wastes are molecular mixtures such as; blends or composites, or mixtures from manufactured products such as; carpets and post-consumer mixed-plastic wastes. The experimental approach has been to use small-scale experiments using molecular beam mass spectrometry (MBMS), which provides rapid analysis of reaction products and permits rapid screening of process parameters. Rapid screening experiments permit exploration of many potential waste stream applications for the selective pyrolysis process. After initial screening, small-scale, fixed-bed and fluidized-bed reactors are used to provide products for conventional chemical analysis, to determine material balances, and to test the concept under conditions that will be used at a larger scale. Computer assisted data interpretation and intelligent chemical processing are used to extract process-relevant information from these experiments. An important element of this project employs technoeconomic assessments and market analyses of durables, the availability of other wastes, and end-product uses to identify target applications that have the potential for economic success.

  5. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  6. Biopolymers production from mixed cultures and pyrolysis by-products.

    Science.gov (United States)

    Moita, R; Lemos, P C

    2012-02-20

    Polyhydroxyalkanoates (PHAs) production from low value substrates and/or byproducts represents an economical and environmental promising alternative to established industrial manufacture methods. Bio-oil resulting from the fast-pyrolysis of chicken beds was used as substrate to select a mixed microbial culture (MMC) able to produce PHA under feast/famine conditions. In this study a maximum PHA content of 9.2% (g/g cell dry weight) was achieved in a sequencing batch reactor (SBR) operated for culture selection. The PHA obtained with bio-oil as a carbon source was a copolymer composed by 70% of hydroxybutyrate (HB) and 30% of hydroxyvalerate (HV) monomers. Similar results have been reported by other studies that use real complex substrates for culture selection indicating that bio-oil can be a promising feedstock to produce PHAs using MMC. To the best of our knowledge this is the first study that demonstrated the use of bio-oil resulting from fast pyrolysis as a possibly feedstock to produce short chain length polyhydroxyalkanoates.

  7. Structural and Compositional Transformations of Biomass Chars during Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    In this work the physical and chemical transformations of biomass chars during fast pyrolysis, considered as a 2nd stage of combustion, has been investigated. Seven biomasses containing different amount of ash and organic components were reacted at up to 1673 K with high heating rates in a wire......-mesh reactor and the resulting chars were retrieved. In order to obtain information on the structural and compositional transformations of the biomass chars, samples were subjected to elemental analysis, scanning electron microcopy with EDX and Raman spectrometry. The results show that there are significant...... changes in both the organic and inorganic constituents of the chars.Under high heating rates (> 100 K/s) char particles underwent different types of melting and pores of different size were developed in dependency on the temperature and biomass composition. The Si-rich rice husks char did not show any...

  8. Studies on Catalytic Pyrolysis of Daqing Atmospheric Residue%大庆常压催化裂解动力学研究

    Institute of Scientific and Technical Information of China (English)

    孟祥海; 徐春明; 张倩; 高金森

    2004-01-01

    Catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 was investigated in a confined fluidized bed reactor. The results show that reaction temperature, the mass ratios of catalyst to oil and steam to oil have significant effects on product distribution and yields of light olefins. The yields of light olefins show the maxima with the increase of reaction temperature, the mass ratios of catalyst to oil and steam to oil, respectively.The optimized operating conditions were determined in the laboratory, and under that condition the yields of ethylene, propylene and total light olefins by mass were 15.9%, 20.7% and 44.3% respectively. The analysis of pyrolysis gas and pyrolysis liquid indicates that CEP-1 has good capacity of converting heavy oils into light olefins,and there is a large amount of aromatics in pyrolysis liquid.

  9. Flash Vacuum Pyrolysis - Techniques and Reactions.

    Science.gov (United States)

    Wentrup, Curt

    2017-07-04

    While pyrolysis reactions have been performed since ancient times and been crucial for the invention of several technologies, the methodology now commonly known as flash vacuum pyrolysis, FVP (or flash vacuum thermolysis, FVT) had its early beginnings in the 1940s and1950s, mainly through mass spectrometric detection of pyrolytically formed free radicals. In the 1960s many organic chemists started performing FVP experiments with the purpose of isolating new and interesting compounds and understanding pyrolysis processes. Meanwhile, many different types of apparatus and techniques have been developed, and it is the purpose of this review to present the most important methods as well as a survey of typical reactions and observations that can be achieved with the various techniques. This includes preparative FVP, chemical trapping reactions, matrix isolation and low temperature spectroscopy of reactive intermediates and unstable molecules, the use of online mass, photoelectron, microwave and millimeterwave spectroscopies, gas-phase laser pyrolysis, pulsed pyrolysis with supersonic jet expansion, very low pressure pyrolysis for kinetic investigations, solution-spray and falling-solid FVP for involatile compounds, and pyrolysis over solid supports and reagents. Moreover, the combination of FVP with matrix isolation and photochemistry is a powerful tool for investigations of reaction mechanism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Directory of Open Access Journals (Sweden)

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process.Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed.Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3.Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  11. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification.

    Science.gov (United States)

    Donaj, Pawel; Yang, Weihong; Błasiak, Włodzimierz; Forsgren, Christer

    2010-10-15

    Presently, there is a growing need for handling automobile shredder residues--ASR or "car fluff". One of the most promising methods of treatment ASR is pyrolysis. Apart of obvious benefits of pyrolysis: energy and metals recovery, there is serious concern about the residues generated from that process needing to be recycled. Unfortunately, not much work has been reported providing a solution for treatment the wastes after pyrolysis. This work proposes a new system based on a two-staged process. The ASR was primarily treated by microwave pyrolysis and later the liquid and solid products become the feedstock for the high temperature gasification process. The system development is supported within experimental results conducted in a lab-scale, batch-type reactor at the Royal Institute of Technology (KTH). The heating rate, mass loss, gas composition, LHV and gas yield of producer gas vs. residence time are reported for the steam temperature of 1173 K. The sample input was 10 g and the steam flow rate was 0.65 kg/h. The conversion reached 99% for liquids and 45-55% for solids, dependently from the fraction. The H(2):CO mol/mol ratio varied from 1.72 solids and 1.4 for liquid, respectively. The average LHV of generated gas was 15.8 MJ/Nm(3) for liquids and 15 MJ/Nm(3) for solids fuels.

  12. Catalytic properties of mesoporous Al–La–Mn oxides prepared via spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Goun; Jung, Kyeong Youl; Lee, Choul-Ho [Department of Chemical Engineering, Kongju National University, Cheonan 330-717 (Korea, Republic of); Han, Jeong-Sik; Jeong, Byung-Hun [Agency for Defense Development, Daejeon 305-152 (Korea, Republic of); Park, Young-Kwon [School of Environmental Engineering, University of Seoul, Seoul 130-743 (Korea, Republic of); Jeon, Jong-Ki, E-mail: jkjeon@kongju.ac.kr [Department of Chemical Engineering, Kongju National University, Cheonan 330-717 (Korea, Republic of)

    2016-10-15

    Highlights: • Al–La–Mn oxides were prepared using spray pyrolysis. • Al–La–Mn oxides exhibit large and uniform pore sizes. • Mesoporous Al–La–Mn oxides were compared with those prepared by conventional precipitation. • Mesoporous Al–La–Mn oxides show superior activity in decomposition of hydrogen peroxide. - Abstract: Mesoporous Al–La–Mn oxides are prepared via spray pyrolysis and are applied to the catalytic decomposition of hydrogen peroxide. The characteristics of the mesoporous Al–La–Mn oxides are examined using N{sub 2} adsorption, X-ray diffraction, and X-ray fluorescence measurements. The surface area and pore size of the Al–La–Mn oxides prepared via spray pyrolysis are larger than those of the Al–La–Mn oxides prepared using a precipitation method. The catalytic performance of the materials during the decomposition of hydrogen peroxide is examined in a pulse-injection reactor. It is confirmed that the mesoporous Al–La–Mn oxides prepared via spray pyrolysis exhibit higher catalytic activity and stability in the decomposition of hydrogen peroxide than Al–La–Mn oxides prepared using a conventional precipitation method.

  13. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    centrifugel reactor (PCR) at 475, 525, 575, and 625 °C. Maxima of both organic oil yield of 41 wt % on a dry ash free feedstock basis (daf) and a sludge oil energy recovery of 50% were obtained at 575 °C. The water-insoluble fraction, molecular-weight distribution, higher heating value (HHV), and thermal......Fast pyrolysis may be used for sewage sludge treatment with the advantages of a significant reduction of solid waste volume and production of a bio-oil that can be used as fuel. A study of the influence of the reaction temperature on sewage sludge pyrolysis has been carried out using a pyrolysis...... behaviors of sludge oils were found to be considerably influenced by the applied pyrolysis temperatures. The sludge oil properties obtained at the optimal temperature of 575 °C were a HHV of 25.5 MJ/kg, a water-insoluble fraction of 18.7 wt %, a viscosity of 43.6 mPa s at 40 °C, a mean molecular weight...

  14. Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions.

    Science.gov (United States)

    López, A; de Marco, I; Caballero, B M; Laresgoiti, M F; Adrados, A; Torres, A

    2011-01-01

    In this work, the results obtained in catalytic pyrolysis of three plastic waste streams which are the rejects of an industrial packing wastes sorting plant are presented. The samples have been pyrolysed in a 3.5 dm(3) reactor under semi-batch conditions at 440 °C for 30 min in nitrogen atmosphere. Commercial ZSM-5 zeolite has been used as catalyst in liquid phase contact. In every case, high HHV gases and liquids which can be useful as fuels or source of chemicals are obtained. A solid fraction composed of the inorganic material contained in the raw materials and some char formed in the pyrolysis process is also obtained. The zeolite has shown to be very effective to produce liquids with great aromatics content and C3-C4 fraction rich gases, even though the raw material was mainly composed of polyolefins. The characteristics of the pyrolysis products as well as the effect of the catalyst vary depending on the composition of the raw material. When paper rich samples are pyrolysed, ZSM-5 zeolite increases water production and reduces CO and CO(2) generation. If stepwise pyrolysis is applied to such sample, the aqueous liquid phase can be separated from the organic liquid fraction in a first low temperature step.

  15. Tar reduction in pyrolysis vapours from biomass over a hot char bed.

    Science.gov (United States)

    Gilbert, P; Ryu, C; Sharifi, V; Swithenbank, J

    2009-12-01

    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 degrees C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 degrees C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 degrees C, compared to that for pyrolysis at 500 degrees C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 degrees C to 8.0 wt% at 800 degrees C, forming CO, H(2) and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 degrees C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction.

  16. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil.

    Science.gov (United States)

    Quan, Cui; Li, Aimin; Gao, Ningbo

    2010-07-15

    The possibility and feasibility of using pyrolysis oil from printed circuit board (PCB) waste as a precursor for advanced carbonaceous materials is presented. The PCB waste was first pyrolyzed in a laboratory scale fixed bed reactor at 600 degrees C to prepare pyrolysis oil. The analysis of pyrolysis oil by gas chromatography-mass spectroscopy indicated that it contained a very high proportion of phenol and phenol derivatives. It was then polymerized in formaldehyde solution to synthesize pyrolysis oil-based resin which was used as a precursor to prepare carbon nanotubes (CNTs) and porous carbons. Scanning electron microscopy and transmission microscopy investigation showed that the resulting CNTs had hollow cores with outer diameter of approximately 338 nm and wall thickness of approximately 86 nm and most of them were filled with metal nanoparticles or nanorods. X-ray diffraction reveals that CNTs have an amorphous structure. Nitrogen adsorption isotherm analysis indicated the prepared porous carbons had a Brunauer-Emmett-Teller surface area of 1214 m(2)/g. The mechanism of the formation of the CNTs and porous carbons was discussed.

  17. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2011-12-01

    Full Text Available Thermal degradation of waste plastics in an inert atmosphere has been regarded as a productive method, because this process can convert waste plastics into hydrocarbons that can be used either as fuels or as a source of chemicals. In this work, waste high-density polyethylene (HDPE plastic was chosen as the material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse waste HDPE with the objective of optimizing the liquid product yield at a temperature range of 400ºC to 550ºC. Results of pyrolysis experiments showed that, at a temperature of 450ºC and below, the major product of the pyrolysis was oily liquid which became a viscous liquid or waxy solid at temperatures above 475ºC. The yield of the liquid fraction obtained increased with the residence time for waste HDPE. The liquid fractions obtained were analyzed for composition using FTIR and GC-MS. The physical properties of the pyrolytic oil show the presence of a mixture of different fuel fractions such as gasoline, kerosene and diesel in the oil.

  18. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  19. Utilization possibilities of hydrocarbon fractions obtained by waste plastic pyrolysis: energetic utilization and applications in polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Miskolczi, Norbert; Borsodi, Nikolett; Angyal, Andras [University of Pannonia, MOL Department of Hydrocarbon and Coal Processing (Hungary)], email: mnorbert@almos.uni-pannon.hu, email: borsodinikolett@almos.uni-pannon.hu, email: angyala@almos.uni-pannon.hu

    2011-07-01

    With the energy crisis and the rising concerns about the environment, energy-saving measures are urgently needed. Each year about 300M tons of plastic wastes are produced world-wide and governments are now focusing on recycling and reusing these products to save significant amounts of energy. The aim of this paper was to analyze the products which can be obtained from waste plastic and determine their possible uses. Pyrolysis of commercial waste plastics was done in a reactor at 500-600 degree celsius and the products were then analyzed using several methods. Results showed that the pyrolysis produces gases, naphtha, middle distillates and heavy oils. The properties of these products were also determined and it was found that they have the potential to be used in fuel-like and additive producing applications. This study highlighted that pyrolysis of waste polymers can yield useful products.

  20. Aerosol spray pyrolysis & solution phase synthesis of nanostructures

    Science.gov (United States)

    Zhang, Hongwang

    This dissertation focuses on the synthesis of nanomaterials by both solution phase and gas phase methods. By the solution phase method, we demonstrate the synthesis of Au/CdS binary hybrid nanoparticles and the Au-induced growth of CdS nanorods. At higher reaction temperature, extremely uniform CdS nanorods were obtained. The size of the Au seed nanoparticles has an important influence on the length and diameter of the nanorods. In addition, preparation of peanut-like FePt-CdS hybrid nanoparticles by spontaneous epitaxial nucleation and growth of CdS onto FePt-seed nanoparticles in high-temperature organic solution is reported. The FePt-CdS hybrid nanoparticles reported here are an example of a bifunctional nanomaterial that combines size-dependent magnetic and optical properties. In the gas phase method, a spray pyrolysis aerosol synthesis method was used to produce tellurium dioxide nanoparticles and zinc sulfide nanoparticles. Tellurite glasses (amorphous TeO2 based materials) have two useful optical properties, high refractive index and high optical nonlinearity, that make them attractive for a range of applications. In the work presented here, TeO2 nanoparticles were prepared by spray pyrolysis of an aqueous solution of telluric acid, Te(OH)6. This laboratory-scale process is capable of producing up to 80 mg/hr of amorphous TeO2-nanoparticles with primary particle diameters from 10 to 40 nm, and allows their synthesis in significant quantities from an inexpensive and environmentally friendly precursor. Furthermore, both Er3+ doped and Er3+ and Yb3+ co-doped tellurium dioxide nanoparticles were synthesized by spray pyrolysis of an aqueous mixture of telluric acid with erbium/ytterbium salts, which exhibit the infrared to green visible upconversion phenomena. ZnS nanoparticles (NPs) were prepared by spray pyrolysis using zinc diethyldithiocarbamate as a single-source precursor. The home-built scanning mobility particle spectrometer (SMPS) is a useful tool for

  1. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  2. Vortex Laser at Exceptional Point

    CERN Document Server

    Wang, Xing-Yuan; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-01-01

    The optical vortices carrying orbital angular momentum (OAM) are commonly generated by modulating the available conventional light beam. This article shows that a micro-laser operates at the exceptional point (EP) of the non-Hermitian quantum system can directly emit vortex laser with well-defined OAM at will. Two gratings (the refractive index modulation and along azimuthal direction and the grating protruding from the micro-ring cavity) modulate the eigenmode of a micro-ring cavity to be a vortex laser mode. The phase-matching condition ensures that we can tune the OAM of the vortex beam to be arbitrary orders by changing the grating protruding from the micro-ring cavity while the system is kept at EP. The results are obtained by analytical analysis and confirmed by 3D full wave simulations.

  3. Pyrolysis Model of Single Biomass Pellet in Downdraft Gasifier

    Institute of Scientific and Technical Information of China (English)

    薛爱军; 潘继红; 田茂诚; 伊晓璐

    2016-01-01

    By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a one-dimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyro-lysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.

  4. PYROLYSIS OF TOBACCO RESIDUE: PART 1. THERMAL

    OpenAIRE

    2011-01-01

    The pyrolysis of two types of tobacco residue was carried out at different pyrolysis temperatures between 300 and 600 °C and a residence time of 1 h in a nitrogen atmosphere. The effect of pyrolysis temperature on the product distributions was investigated and the composition of the bio-oils identified. The variation in product distribution depended on both the temperature and the type of tobacco residues. The maximum liquid yields were obtained at 400°C for one sample and at 500°C for the ot...

  5. Vacuum pyrolysis of waste print circuit board

    Institute of Scientific and Technical Information of China (English)

    GAN Ge; CHEN Lie-qiang; PENG Shao-hong; CAI Ming-zhao

    2005-01-01

    Waste print circuit board containing 11.38% Br was pyrolyzed in vacuum.Thermal stability of waste print circuit board was studied under vacuum condition by thermo-gravimetry(TG). Vacuum pyrolysis of WPCB was studied emphasizing on the kinetics of WPCB pyrolysis reactions. Based on the TG results, a kinetic model was proposed. Kinetic parameters were calculated for reaction with this model including all stages of decomposition. The average activation energy is 68 k J/mol with reaction order 3. These findings provide new insights into the WPCB thermal decomposition and useful data for rational design and operation of pyrolysis.

  6. Catalytic pyrolysis of tars. A kinetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Faundez, J.; Garcia, X.; Gordon, A. [Universidad de Concepcion (Chile). Dept. de Ingeniera Quimica

    1997-12-31

    A kinetic model to describe the catalytic pyrolysis of tars is proposed and validated through pyrolysis of two tars of different characteristics and origin. Calcinated limestone (11 m{sup 2}/g) was used as catalyst. The model assumes that tars are composed of two pseudo-components: (i) heavy tar, and (ii) light tar. Tar pyrolysis is described by two simultaneous chemical reactions; catalyst deactivation due to carbon deposition is also considered. After mathematical resolution, expressions for product`s concentration as functions of residence time, selectivity and the deactivation were obtained. (orig.)

  7. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  8. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali

    2016-03-11

    Bio-oil produced from conventional flash pyrolysis has poor quality and requires expensive upgrading before it can be used as a transportation fuel. In this work, a high quality bio-oil has been produced using a novel approach where flash pyrolysis, catalysis and fractionation of pyrolysis vapors using two stage condensation are combined in a single process unit. A bench scale unit of 1 kg/h feedstock capacity is used for catalytic pyrolysis in an entrained down-flow reactor system equipped with two-staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low catalyst/biomass ratios did not show any significant improvements in the bio-oil quality, while high catalyst/biomass ratios showed an effective deoxygenation of the bio-oil. The application of zeolites decreased the organic liquid yield due to the increased production of non-condensables, primarily hydrocarbons. The catalytically produced bio-oil was less viscous and zeolites were effective at cracking heavy molecular weight compounds in the bio-oil. Acidic zeolites, H-Y and H-ZSM5, increased the desirable chemical compounds in the bio-oil such as phenols, furans and hydrocarbon, and reduced the undesired compounds such as acids. On the other hand reducing the acidity of zeolites reduced some of the undesired compounds in the bio-oil such as ketones and aldehydes. The performance of H-Y was superior to that of the rest of zeolites studied: bio-oil of high chemical and calorific value was produced with a high organic liquid yield and low oxygen content. H-ZSM5 was a close competitor to H-Y in performance but with a lower yield of bio-oil. Online fractionation of catalytic pyrolysis vapors was employed by controlling the condenser temperature and proved to be a successful process parameter to tailor the

  9. A Experimental Study of Viscous Vortex Rings.

    Science.gov (United States)

    Dziedzic, Mauricio

    Motivated by the role played by vortex rings in the process of turbulent mixing, the work is focused on the problem of stability and viscous decay of a single vortex ring. A new classification is proposed for vortex rings which is based on extensive hot-wire measurements of velocity in the ring core and wake and flow visualization. Vortex rings can be classified as laminar, wavy, turbulence-producing, and turbulent. Prediction of vortex ring type is shown to be possible based on the vortex ring Reynolds number. Linear growth rates of ring diameter with time are observed for all types of vortex rings, with different growth rates occurring for laminar and turbulent vortex rings. Data on the viscous decay of vortex rings are used to provide experimental confirmation of the accuracy of Saffman's equation for the velocity of propagation of a vortex ring. Experimental data indicate that instability of the vortex ring strongly depends on the mode of generation and can be delayed by properly adjusting the generation parameters. A systematic review of the literature on vortex-ring interactions is presented in the form of an appendix, which helps identify areas in which further research may be fruitful.

  10. Fractional vortex dipole phase filter

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2014-10-01

    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  11. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  12. Generation of nonlinear vortex precursors

    CERN Document Server

    Chen, Yue-Yue; Liu, Chengpu

    2016-01-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex har- monics are generated in the transmitted field due to ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provide a straightforward way of measuring precursors. By the virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical informa- tion and communication fields where controllable loss, large information-carrying capacity and high speed communication are required.

  13. Pyrolysis of fast-growing aquatic biomass -Lemna minor (duckweed): Characterization of pyrolysis products.

    Science.gov (United States)

    Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C; T-Raissi, Ali

    2010-11-01

    The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass -Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as a function of pyrolysis temperature and the sweep gas (Ar) flow rate. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of duckweed samples in inert (helium gas) and oxidative (air) atmosphere revealed differences in the TG/DTG patterns obtained for duckweed and typical plant biomass. The bio-oil samples produced by duckweed pyrolysis at different reaction conditions were analyzed using GC-MS technique. It was found that pyrolysis temperature had minor effect on the bio-oil product slate, but exerted major influence on the relative quantities of the individual pyrolysis products obtained. While, the residence time of the pyrolysis vapors had negligible effect on the yield and composition of the duckweed pyrolysis products.

  14. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    Science.gov (United States)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  15. Biomass pyrolysis: thermal decomposition mechanisms of furfural and benzaldehyde.

    Science.gov (United States)

    Vasiliou, AnGayle K; Kim, Jong Hyun; Ormond, Thomas K; Piech, Krzysztof M; Urness, Kimberly N; Scheer, Adam M; Robichaud, David J; Mukarakate, Calvin; Nimlos, Mark R; Daily, John W; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G Barney

    2013-09-14

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  16. Melting of heterogeneous vortex matter: The vortex `nanoliquid'

    Indian Academy of Sciences (India)

    S S Banerjee; S Goldberg; Y Myasoedov; M Rappaport; E Zeldov; A Soibel; F de la Cruz; C J van der Beek; M Konczykowski; T Tamegai; V Vinokur

    2006-01-01

    Disorder and porosity are parameters that strongly influence the physical behavior of materials, including their mechanical, electrical, magnetic and optical properties. Vortices in superconductors can provide important insight into the effects of disorder because their size is comparable to characteristic sizes of nanofabricated structures. Here we present experimental evidence for a novel form of vortex matter that consists of inter-connected nanodroplets of vortex liquid caged in the pores of a solid vortex structure, like a liquid permeated into a nanoporous solid skeleton. Our nanoporous skeleton is formed by vortices pinned by correlated disorder created by high-energy heavy ion irradiation. By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered nanocrystals through either a first-order or a continuous transition, whereas at high temperatures a uniform liquid phase is formed upon delocalization-induced melt- ing of the solid skeleton. This new vortex nanoliquid displays unique properties and symmetries that are distinct from both solid and liquid phases.

  17. Waste tire recycling by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  18. Waste tire recycling by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  19. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  20. PYROLYSIS OF TOBACCO RESIDUE: PART 1. THERMAL

    Directory of Open Access Journals (Sweden)

    Mehmet K. Akalin

    2011-03-01

    Full Text Available The pyrolysis of two types of tobacco residue was carried out at different pyrolysis temperatures between 300 and 600 °C and a residence time of 1 h in a nitrogen atmosphere. The effect of pyrolysis temperature on the product distributions was investigated and the composition of the bio-oils identified. The variation in product distribution depended on both the temperature and the type of tobacco residues. The maximum liquid yields were obtained at 400°C for one sample and at 500°C for the other. The compositions of bio-oils from the pyrolysis of the two samples were found to be very similar. N-containing compounds were found to be the major compounds identified in ether extracts for both samples.