WorldWideScience

Sample records for vortex method simulations

  1. Simulations of a single vortex ring using an unbounded, regularized particle-mesh based vortex method

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore

    2014-01-01

    , unbounded particle-mesh based vortex method is used to simulate the instability, transition to turbulence and eventual destruction of a single vortex ring. From the simulation data a novel method on analyzing the dynamics of the enstrophy is presented based on the alignment of the vorticity vector...... with the principal axis of the strain rate tensor. We find that the dynamics of the enstrophy density is dominated by the local flow deformation and axis of rotation, which is used to infer some concrete tendencies related to the topology of the vorticity field....

  2. A regularized vortex-particle mesh method for large eddy simulation

    Science.gov (United States)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  3. Review of Vortex Methods for Simulation of Vortex Breakdown

    National Research Council Canada - National Science Library

    Levinski, Oleg

    2001-01-01

    The aim of this work is to identify current developments in the field of vortex breakdown modelling in order to initiate the development of a numerical model for the simulation of F/A-18 empennage buffet...

  4. Simulation of bluff-body flows using iterative penalization in a multiresolution particle-mesh vortex method

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Hejlesen, Mads Mølholm; Walther, Jens Honore

    in the oncoming flow. This may lead to structural instability e.g. when the shedding frequency aligns with the natural frequency of the structure. Fluid structure interaction must especially be considered when designing long span bridges. A three dimensional vortex-in-cell method is applied for the direct......The ability to predict aerodynamic forces, due to the interaction of a fluid flow with a solid body, is central in many fields of engineering and is necessary to identify error-prone structural designs. In bluff-body flows the aerodynamic forces oscillate due to vortex shedding and variations...... numerical simulation of the flow past a bodies of arbitrary shape. Vortex methods use a simple formulation where only the trajectories of discrete vortex particles are simulated. The Lagrangian formulation eliminates the CFL type condition that Eulerian methods have to satisfy. This allows vortex methods...

  5. A regularized vortex-particle mesh method for large eddy simulation

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Walther, Jens Honore; Hejlesen, Mads Mølholm

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green’s function...... solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy...

  6. Examples of Applications of Vortex Methods to Wind Energy

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents wind-energy simulations obtained with the vortex code OmniVor (described in Chap. 44 ) and compared to BEM, CFD and measurements. The chapter begins by comparing rotor loads obtained with vortex methods, BEM and actuator-line simulations of wind turbines under uniform...... and yawed inflows. The second section compares wakes and flow fields obtained by actuator-disk simulations and a free-wake vortex code that uses vortex segments and vortex particles. The third section compares different implementations of viscous diffusion models and investigate their effects...

  7. Vortex methods and vortex statistics

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (''blobs'') and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ''blob'' methods provide the most promising path to the understanding of these phenomena

  8. Hybrid vortex simulations of wind turbines using a three-dimensional viscous-inviscid panel method

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Hejlesen, Mads Mølholm; Sørensen, Jens Nørkær

    2017-01-01

    adirect calculation, whereas the contribution from the large downstream wake is calculated using a mesh-based method. Thehybrid method is first validated in detail against the well-known MEXICO experiment, using the direct filament method asa comparison. The second part of the validation includes a study......A hybrid filament-mesh vortex method is proposed and validated to predict the aerodynamic performance of wind turbinerotors and to simulate the resulting wake. Its novelty consists of using a hybrid method to accurately simulate the wakedownstream of the wind turbine while reducing...

  9. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  10. A high order regularisation method for solving the Poisson equation and selected applications using vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm

    ring dynamics is presented based on the alignment of the vorticity vector with the principal axis of the strain rate tensor.A novel iterative implementation of the Brinkman penalisation method is introduced for the enforcement of a fluid-solid interface in re-meshed vortex methods. The iterative scheme...... is included to explicitly fulfil the kinematic constraints of the flow field. The high order, unbounded particle-mesh based vortex method is used to simulate the instability, transition to turbulence and eventual destruction of a single vortex ring. From the simulation data, a novel analysis on the vortex...

  11. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections...

  12. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  13. Scalable fast multipole methods for vortex element methods

    KAUST Repository

    Hu, Qi; Gumerov, Nail A.; Yokota, Rio; Barba, Lorena A.; Duraiswami, Ramani

    2012-01-01

    work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize

  14. The challenges of simulating wake vortex encounters and assessing separation criteria

    Science.gov (United States)

    Dunham, R. E.; Stuever, Robert A.; Vicroy, Dan D.

    1993-01-01

    During landings and take-offs, the longitudinal spacing between airplanes is in part determined by the safe separation required to avoid the trailing vortex wake of the preceding aircraft. Safe exploration of the feasibility of reducing longitudinal separation standards will require use of aircraft simulators. This paper discusses the approaches to vortex modeling, methods for modeling the aircraft/vortex interaction, some of the previous attempts of defining vortex hazard criteria, and current understanding of the development of vortex hazard criteria.

  15. Delayed detached-eddy simulation of vortex breakdown over a 70 .deg. delta wing

    International Nuclear Information System (INIS)

    Son, Mi So; Sa, Jeong Hwan; Park, Soo Hyung; Byun, Yung Hwan; Cho, Kum Won

    2015-01-01

    To investigate the vortex breakdown over the ONERA70 delta wing at an angle-of-attack of 27 .deg., unsteady simulations were performed using Reynolds-averaged Navier-Stokes and Spalart-Allmaras delayed detached-eddy simulations. A low-diffusive preconditioned Roe scheme with third-order MUSCL interpolation scheme was applied, along with second-order dual-time stepping combined with diagonalized alternating direction implicit method for unsteady simulation. Vortex breakdown was investigated through an examination of total pressure loss, axial velocity, and axial vorticity around the primary vortex. Delayed dtached-eddy simulation provided good agreement with experimental data and predicted all physical phenomena related to vortex breakdown well.

  16. Study on applicability of numerical simulation to evaluation of gas entrainment due to free surface vortex

    International Nuclear Information System (INIS)

    Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki

    2008-01-01

    An onset condition of gas entrainment (GE) due to free surface vortex has been studied to establish a design of sodium-cooled fast reactor with a higher coolant velocity than conventional designs. Numerous investigations have been conducted experimentally and theoretically; however, the universal onset condition of the GE has not been determined yet due to the nonlinear characteristics of the GE. Recently, we have been studying numerical simulation methods as a promising method to evaluate GE, instead of the reliable but costly real-scale tests. In this paper, the applicability of the numerical simulation methods to the evaluation of the GE is discussed. For the purpose, a quasi-steady vortex in a cylindrical tank and a wake vortex (unsteady vortex) in a rectangular channel were numerically simulated using the volume-of-fluid type two-phase flow calculation method. The simulated velocity distributions and free surface shapes of the quasi-steady vortex showed good (not perfect, however) agreements with experimental results when a fine mesh subdivision and a high-order discretization scheme were employed. The unsteady behavior of the wake vortex was also simulated with high accuracy. Although the onset condition of the GE was slightly underestimated in the simulation results, the applicability of the numerical simulation methods to the GE evaluation was confirmed. (author)

  17. Simulation of the Initial 3-D Instability of an Impacting Drop Vortex Ring

    DEFF Research Database (Denmark)

    Sigurdson, Lorenz; Wiwchar, Justin; Walther, Jens Honore

    2013-01-01

    , a Rayleigh centrifugal instability, or a vortex breakdown-type instability. Simulations which simply have a perturbed solitary ring result in an instability similar to that seen experimentally. Waviness of the core which would be expected from a Widnall instability is not visible. Adding an opposite......-signed secondary vortex ring or an image vortex ring to the initial conditions, to trigger a Rayleigh or breakdown respectively, does not appear to significantly change the instability from what is seen with a solitary ring. This suggests that a Rayleigh or vortex breakdown-type instability are not likely at work......Computational vortex particle method simulations of a perturbed vortex ring are performed to recreate and understand the instability seen in impacting water drop experiments. Three fundamentally different initial vorticity distributions are used to attempt to trigger a Widnall instability...

  18. Simulating Wake Vortex Detection with the Sensivu Doppler Wind Lidar Simulator

    Science.gov (United States)

    Ramsey, Dan; Nguyen, Chi

    2014-01-01

    In support of NASA's Atmospheric Environment Safety Technologies NRA research topic on Wake Vortex Hazard Investigation, Aerospace Innovations (AI) investigated a set of techniques for detecting wake vortex hazards from arbitrary viewing angles, including axial perspectives. This technical report describes an approach to this problem and presents results from its implementation in a virtual lidar simulator developed at AI. Threedimensional data volumes from NASA's Terminal Area Simulation System (TASS) containing strong turbulent vortices were used as the atmospheric domain for these studies, in addition to an analytical vortex model in 3-D space. By incorporating a third-party radiative transfer code (BACKSCAT 4), user-defined aerosol layers can be incorporated into atmospheric models, simulating attenuation and backscatter in different environmental conditions and altitudes. A hazard detection algorithm is described that uses a twocomponent spectral model to identify vortex signatures observable from arbitrary angles.

  19. Study of Flapping Flight Using Discrete Vortex Method Based Simulations

    Science.gov (United States)

    Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.

    2013-12-01

    In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.

  20. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    Science.gov (United States)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  1. Scalable fast multipole methods for vortex element methods

    KAUST Repository

    Hu, Qi

    2012-11-01

    We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.

  2. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  3. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  4. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  5. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  6. A Hardware-Accelerated Fast Adaptive Vortex-Based Flow Simulation Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Scientific Research has recently developed a Lagrangian vortex-boundary element method for the grid-free simulation of unsteady incompressible...

  7. Ultrafast vortex core dynamics investigated by finite-element micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gliga, Sebastian

    2010-07-01

    The investigations carried out in this thesis concern the ultrafast dynamics of a fundamental micromagnetic configuration: the vortex. Over the past decade, a detailed understanding of the dynamic and static properties of such magnetic nanostructures has been achieved as a result of close interplay between experiments, theory and numeric simulations. Here, micromagnetic simulations were performed based on the finite-element method. The vortex structure arises in laterally-confined ferromagnets, in particular in thin-film elements, and is characterized by an in-plane curling of the magnetic moments around a very stable and narrow core. In the present study, a novel process in micromagnetism was found: the ultrafast reversal of the vortex core. The possibility of easily switching the core orientation by means of short in-plane field pulses is surprising in view of the very high stability of the core. Moreover, the simulations presented here showed that this reversal process unfolds on a time scale of only a few tens of picoseconds, which leads to the prediction of the fastest and most complex micromagnetic reversal process known to date. Indeed, the vortex core is not merely switched: it is destroyed and recreated in the immediate vicinity with an opposite direction. This is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses and results in a sudden burst-like emission of spin waves. Equally fascinating is the ultrafast dynamics of an isolated magnetic antivortex, the topological counterpart of the vortex. The simulations performed here showed that the static complementarity between vortices and antivortices is equally reflected in their ultrafast dynamics, which leads to the reversal of the antivortex core. A promising means for the control of the magnetization on the nanoscale consists in exploiting the spin-transfer torque effect. The study of the current-induced dynamics of vortices showed that the core reversal can be

  8. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  9. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  10. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    International Nuclear Information System (INIS)

    Depondt, Ph.; Levy, J.-C.S.

    2011-01-01

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  11. Simulation of the vortex motion in the high Tc superconductors

    International Nuclear Information System (INIS)

    Dong Jinming.

    1992-11-01

    1d and 2d simulations of the single vortex dynamics in the presence of random pinning potential and periodical one have been carried out. It is shown that the randomness of the pinning sites distribution does not have considerable effect on the transport properties such as I-V characteristics of the high T c superconductors, which has been widely discussed in the approximation of a periodical pinning potential using analytical method. The randomness effect probably only reduces the vortex diffusing mobility more below the depinning current value, which is more obvious at lower temperature. (author). 12 refs, 4 figs

  12. Vortex flows in the solar chromosphere. I. Automatic detection method

    Science.gov (United States)

    Kato, Y.; Wedemeyer, S.

    2017-05-01

    Solar "magnetic tornadoes" are produced by rotating magnetic field structures that extend from the upper convection zone and the photosphere to the corona of the Sun. Recent studies show that these kinds of rotating features are an integral part of atmospheric dynamics and occur on a large range of spatial scales. A systematic statistical study of magnetic tornadoes is a necessary next step towards understanding their formation and their role in mass and energy transport in the solar atmosphere. For this purpose, we develop a new automatic detection method for chromospheric swirls, meaning the observable signature of solar tornadoes or, more generally, chromospheric vortex flows and rotating motions. Unlike existing studies that rely on visual inspections, our new method combines a line integral convolution (LIC) imaging technique and a scalar quantity that represents a vortex flow on a two-dimensional plane. We have tested two detection algorithms, based on the enhanced vorticity and vorticity strength quantities, by applying them to three-dimensional numerical simulations of the solar atmosphere with CO5BOLD. We conclude that the vorticity strength method is superior compared to the enhanced vorticity method in all aspects. Applying the method to a numerical simulation of the solar atmosphere reveals very abundant small-scale, short-lived chromospheric vortex flows that have not been found previously by visual inspection.

  13. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    International Nuclear Information System (INIS)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe; Lykholt-Ustrup, Flemming

    2017-01-01

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation

  14. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe [Institute of Fluid System Dynamics, Technische Universitaet, Berlin (Germany); Lykholt-Ustrup, Flemming [Grundfos Holding A/S, Bjerringbro (Denmark)

    2017-04-15

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation.

  15. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  16. Hybrid method based on embedded coupled simulation of vortex particles in grid based solution

    Science.gov (United States)

    Kornev, Nikolai

    2017-09-01

    The paper presents a novel hybrid approach developed to improve the resolution of concentrated vortices in computational fluid mechanics. The method is based on combination of a grid based and the grid free computational vortex (CVM) methods. The large scale flow structures are simulated on the grid whereas the concentrated structures are modeled using CVM. Due to this combination the advantages of both methods are strengthened whereas the disadvantages are diminished. The procedure of the separation of small concentrated vortices from the large scale ones is based on LES filtering idea. The flow dynamics is governed by two coupled transport equations taking two-way interaction between large and fine structures into account. The fine structures are mapped back to the grid if their size grows due to diffusion. Algorithmic aspects of the hybrid method are discussed. Advantages of the new approach are illustrated on some simple two dimensional canonical flows containing concentrated vortices.

  17. Internal scanning method as unique imaging method of optical vortex scanning microscope

    Science.gov (United States)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  18. Air mass exchange across the polar vortex edge during a simulated major stratospheric warming

    Directory of Open Access Journals (Sweden)

    G. Günther

    Full Text Available The dynamics of the polar vortex in winter and spring play an important role in explaining observed low ozone values. A quantification of physical and chemical processes is necessary to obtain information about natural and anthropogenic causes of fluctuations of ozone. This paper aims to contribute to answering the question of how permeable the polar vortex is. The transport into and out of the vortex ("degree of isolation" remains the subject of considerable debate. Based on the results of a three-dimensional mechanistic model of the middle atmosphere, the possibility of exchange of air masses across the polar vortex edge is investigated. Additionally the horizontal and vertical structure of the polar vortex is examined. The model simulation used for this study is related to the major stratospheric warming observed in February 1989. The model results show fair agreement with observed features of the major warming of 1989. Complex structures of the simulated polar vortex are illustrated by horizontal and vertical cross sections of potential vorticity and inert tracer. A three-dimensional view of the polar vortex enables a description of the vortex as a whole. During the simulation two vortices and an anticyclone, grouped together in a very stable tripolar structure, and a weaker, more amorphous anticyclone are formed. This leads to the generation of small-scale features. The results also indicate that the permeability of the vortex edges is low because the interior of the vortices remain isolated during the simulation.

  19. Air mass exchange across the polar vortex edge during a simulated major stratospheric warming

    Directory of Open Access Journals (Sweden)

    G. Günther

    1995-07-01

    Full Text Available The dynamics of the polar vortex in winter and spring play an important role in explaining observed low ozone values. A quantification of physical and chemical processes is necessary to obtain information about natural and anthropogenic causes of fluctuations of ozone. This paper aims to contribute to answering the question of how permeable the polar vortex is. The transport into and out of the vortex ("degree of isolation" remains the subject of considerable debate. Based on the results of a three-dimensional mechanistic model of the middle atmosphere, the possibility of exchange of air masses across the polar vortex edge is investigated. Additionally the horizontal and vertical structure of the polar vortex is examined. The model simulation used for this study is related to the major stratospheric warming observed in February 1989. The model results show fair agreement with observed features of the major warming of 1989. Complex structures of the simulated polar vortex are illustrated by horizontal and vertical cross sections of potential vorticity and inert tracer. A three-dimensional view of the polar vortex enables a description of the vortex as a whole. During the simulation two vortices and an anticyclone, grouped together in a very stable tripolar structure, and a weaker, more amorphous anticyclone are formed. This leads to the generation of small-scale features. The results also indicate that the permeability of the vortex edges is low because the interior of the vortices remain isolated during the simulation.

  20. Comparison of vortex-element and finite-volume simulations of low Reynolds number flow over a confined backward-facing step

    International Nuclear Information System (INIS)

    Barber, R.W.; Fonty, A.

    2003-01-01

    This paper describes a novel vortex element method for simulating incompressible laminar flow over a two-dimensional backward-facing step. The model employs an operator-splitting technique to compute the evolution of the vorticity field downstream of abrupt changes in flow geometry. During the advective stage of the computation, a semi-Lagrangian scheme is used to update the positions of the vortex elements, whilst an analytical diffusion algorithm employing Oseen vortices is implemented during the diffusive time step. Redistributing the vorticity analytically instead of using the more traditional random-walk method enables the numerical model to simulate steady flows directly and avoids the need to filter the results to remove the oscillations created by the random-walk procedure. Model validation has been achieved by comparing the length of the recirculating eddy behind a confined backward-facing step against data from experimental and alternative numerical investigations. In addition, results from the vortex element method are compared against predictions obtained using the commercial finite-volume computational fluid dynamics code, CFD-ACE+. The results show that the vortex element scheme marginally overpredicts the length of the downstream recirculating eddy, implying that the method may be associated with an artificial reduction in the vorticity diffusion rate. Nevertheless the results demonstrate that the proposed vortex redistribution scheme provides a practical alternative to traditional random-walk discrete vortex algorithms. (author)

  1. Coherent Vortex Simulation (CVS) of vortex-dipoles impinging on a no-slip wall

    Science.gov (United States)

    Schneider, Kai; Farge, Marie

    2004-11-01

    Recently, we have introduced a new wavelet-based method, called Coherent Vortex Simulation (CVS), to compute turbulent flows (Flow, Turbulence and Combustion 66(4), 2001). The main idea is to split the flow into two orthogonal parts, a coherent flow and an incoherent background flow, using a nonlinear wavelet filtering of vorticity (Phys. Fluids, 11(8), 1999). As the coherent flow is responsible for the nonlinear dynamics, its evolution is deterministically computed in an adaptive wavelet basis, while the incoherent background flow being noise-like, structureless and decorrelated, its influence on the coherent flow is statistically modelled. Since the coherent part is described by only few wavelets, it is possible to reduce the computational cost, both in terms of memory requirement and cpu time. In order to take into account no-slip boundary conditions, we coupled the adaptive wavelet solver with a volume penalization technique (ACHA, 12, 2002). Here, we present applications of the CVS method to compute vortex dipoles impinging on a no-slip wall in a square container at different Reynolds numbers, which is a challenging test case for numerical methods. We observe the creation of strong vorticity gradients and the production of enstrophy when the dipole hits the wall. We show that the computational grid is dynamically adapted to the dipole evolution, since the wavelet nonlinear filter automatically refines the grid in regions of strong gradients. Note that during the computation only 5% out of 1024^2 wavelet coefficients are thus used.

  2. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    International Nuclear Information System (INIS)

    Hauptmann, S; Bülk, M; Cheng, P W; Schön, L; Erbslöh, S; Boorsma, K; Grasso, F; Kühn, M

    2014-01-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK

  3. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    Science.gov (United States)

    Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.

    2014-12-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.

  4. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  5. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    Science.gov (United States)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  6. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    International Nuclear Information System (INIS)

    Kudela, Henryk; Kosior, Andrzej

    2014-01-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  7. A topological method for vortex identification in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Qiang; Chen, Huai; Li, Danxun [State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084 (China); Chen, Qigang, E-mail: lidx@mail.tsinghua.edu.cn [School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-15

    We present a novel vortex identification method based on structured vorticity ( ω {sub s}) of the direction field of flow (velocity vectors set to unit magnitude). As a direct measure of streamline curvature is insensitive to vortex strength, ω {sub s} is effective in detecting vortices of various strengths. The effectiveness has been tested against both analytical flows (pure shear flow, Oseen vortex flow, strong outward spiraling motion, straining flow, Taylor–Green flow) and experimental flows (closed cavity flow, closed and open channel flow). Comparison of the new method with the swirling-strength method indicates that the new method shows promise as being a simple and effective criterion for vortex identification. (paper)

  8. Numerical simulation of fuel mixing with air in laminar buoyant vortex rings

    International Nuclear Information System (INIS)

    Prasad, M. Jogendra; Sundararajan, T.

    2016-01-01

    Highlights: • At large Reynolds number, small vortex ring is formed due to thin boundary layer. • At higher stroke to diameter ratio, larger vortex is formed which travels farther. • After formation, trailing stem transfers circulation and fuel to the ring by buoyancy. • Formation number of buoyant vortex ring is higher than that of non-buoyant ring. • Buoyant fuel puffs entrain more air than non-buoyant air-premixed fuel puffs. - Abstract: The formation and evolution of vortex rings consisting of methane-air mixtures have been numerically simulated for different stroke to diameter (L/D) ratios (1.5, 3.5 and 6), Reynolds numbers (1000 and 2000) and initial mixture compositions (fuel with 0%, 15% and 30% of stoichiometric air). The numerical simulations are first validated by comparing with the results of earlier computational studies and also with in-house data from smoke visualization studies. In pure methane case, buoyancy significantly aids the upward rise of the vortex ring. The increase of vortex core height with time is faster for larger L/D ratio, contributed mainly by the larger initial puff volume. The radial size of the vortex also increases rapidly with time during the formation stage; this is followed by a slight shrinkage when piston comes to a stop. Later, a slow radial growth of the ring occurs due to the entrainment of ambient air, except during vortex pinch-off. The boundary layer thickness δ_e at orifice exit decreases as Re"−"0"."5 at a fixed L/D ratio; this in turn, results in a vortex of smaller size and circulation level, at a relatively higher Reynolds number. For L/D values greater than the critical value, a trailing stem is formed behind the ring vortex which feeds circulation and fuel into the vortex ring in the later stages of vortex evolution. Mass fraction contours indicate that fuel-air mixing is more effective within the vortex than in the stem. Ambient air entrainment is larger at higher L/D ratio and lower Re, for the

  9. Computer simulation of vortex pinning in type II superconductors. II. Random point pins

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1983-01-01

    Pinning of vortices in a type II superconductor by randomly positioned identical point pins is simulated using the two-dimensional method described in a previous paper (Part I). The system is characterized by the vortex and pin numbers (N/sub v/, N/sub p/), the vortex and pin interaction ranges (R/sub v/, R/sub p/), and the amplitude of the pin potential A/sub p/. The computation is performed for many cases: dilute or dense, sharp or soft, attractive or repulsive, weak or strong pins, and ideal or amorphous vortex lattice. The total pinning force F as a function of the mean vortex displacment X increases first linearly (over a distance usually much smaller than the vortex spacing and than R/sub p/) and then saturates, fluctuating about its averaging F-bar. We interpret F-bar as the maximum pinning force j/sub c/B of a large specimen. For weak pins the prediction of Larkin and Ovchinnikov for two-dimensional collective pinning is confirmed: F-bar = const. iW/R/sub p/c 66 , where W-bar is the mean square pinning force and c 66 is the shear modulus of the vortex lattice. If the initial vortex lattice is chosen highly defective (''amorphous'') the constant is 1.3--3 times larger than for the ideal triangular lattice. This finding may explain the often observed ''history effect.'' The function F-bar(A/sub p/) exhibits a jump, which for dilute, sharp, attractive pins occurs close to the ''threshold value'' predicted for isolated pins by Labusch. This jump reflects the onset of plastic deformation of the vortex lattice, and in some cases of vortex trapping, but is not a genuine threshold

  10. A vortex ring interacting with a vortex filament and its deformation near the two-dimensional stagnation point

    International Nuclear Information System (INIS)

    Kiya, M.; Sato, T.

    1986-01-01

    In this paper the interaction between vortex filaments and vortex rings and the deformation of vortex rings near the two-dimensional stagnation point are simulated by a three-dimensional vortex method. The two problems are respectively concerned with the effect of free-stream turbulence on turbulent plane mixing layers and the production of turbulence by the vortex stretching near saddles associated with large-scale coherent structures. The authors assume that the first step to understand the free-stream turbulence effect is to study the interaction between a vortex ring and a vortex filament and that the process of deformation of a vortex ring gives us a clue to understand physical processes occurring near the saddles

  11. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations

    Science.gov (United States)

    Beardsell, Guillaume; Dufresne, Louis; Dumas, Guy

    2016-09-01

    This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number (ReΓ ≡ circulation/viscosity = 104) and finer resolution (N3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale Trec is investigated in the range 500 ≤ ReΓ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as ReΓ is increased from T rec ˜ R eΓ - 1 to T rec ˜ R eΓ - 1 / 2 , thus providing quantitative support for previous claims that the reconnection

  12. A numerical study of viscous vortex rings using a spectral method

    Science.gov (United States)

    Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.

    1988-01-01

    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.

  13. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  14. Simulations of wind turbine rotor with vortex generators

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Sørensen, Niels N.

    2016-01-01

    This work presents simulations of the DTU 10MW wind turbine rotor equipped with vortex generators (VGs) on the inner part of the blades. The objective is to study the influence of different VG configurations on rotor performance and in particular to investigate the radial dependence of VGs, i...

  15. Some observations concerning blade-element-momentum (BEM) methods and vortex wake methods, including numerical experiments with a simple vortex model

    Energy Technology Data Exchange (ETDEWEB)

    Snel, H. [Netherlands Energy Research Foundation ECN, Renewable Energy, Wind Energy (Netherlands)

    1997-08-01

    Recently the Blade Element Momentum (BEM) method has been made more versatile. Inclusion of rotational effects on time averaged profile coefficients have improved its achievements for performance calculations in stalled flow. Time dependence as a result of turbulent inflow, pitching actions and yawed operation is now treated more correctly (although more improvement is needed) than before. It is of interest to note that adaptations in modelling of unsteady or periodic induction stem from qualitative and quantitative insights obtained from free vortex models. Free vortex methods and further into the future Navier Stokes (NS) calculations, together with wind tunnel and field experiments, can be very useful in enhancing the potential of BEM for aero-elastic response calculations. It must be kept in mind however that extreme caution must be used with free vortex methods, as will be discussed in the following chapters. A discussion of the shortcomings and the strength of BEM and of vortex wake models is given. Some ideas are presented on how BEM might be improved without too much loss of efficiency. (EG)

  16. Aerosol Effects on Microphysical Processes, Storm Structure, and Cold Pool Strength in Simulated Supercell Thunderstorms from VORTEX-2 and VORTEX-SE

    Science.gov (United States)

    Guo, M.; Dawson, D. T., II; Baldwin, M. E.; Mansell, E. R.

    2017-12-01

    The cloud condensation nuclei (CCN) concentration has been found to strongly affect microphysical, dynamical and thermodynamical processes in supercells and other deep convective storms. Moreover, recent simulation studies have shown aerosols effects differ between higher- and lower-CAPE environments. Owing to the known sensitivity of severe storms to microphysical differences, studying the impact of aerosols supercell storms different environments is of clear societal importance. Tornadic environments in the southwastern U.S. are generally characterized by lower magnitudes CAPE and deeper tropospheric moisture than those in the Great Plains. These two regions were the focus of Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX)-2 and VORTEX-Southeast (SE) field campaigns, respectively. In our study, we simulate several cases from VORTEX-2 and -SE with the Advanced Regional Prediction System (ARPS) Model at 6 different CCN concentrations (100-3000 cm-3). We use NSSL 3-moment microphysics parameterization schemeto explicitly predict precipitation particle size distributions and microphysirocess rates. Overall, storms under the higher-CAPE VORTEX-2 environments are more sensitiveto the change of CCN than those under the lower-CAPE VORTEX-SE environments. Updraft volume decreases as CCN increases for the VORTEX-2 cases, whereas the opposite is true but with a much weaker trend for the VORTEX-SE cases. Moreover, the cold pool strength drops dramatically as CCN surpasses 1000 cm-3n the VORTEX-2 cases but barely changes for the VORTEX-SE cases. Through a microphysics budget analysis, we show the change of the importance of ice processes is key to the differing sensitivities. in the VORTEX-2 cases, deposition to ice nuclei, cloud drop freezing and rain drop freezing in the upper levels (5-11km) contribute more to latent heating since more rain and cloud drops are lifted above the freezing level due to stronger updrafts. For CCN concentration over 1000

  17. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  18. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  19. Coupling of a 3-D vortex particle-mesh method with a finite volume near-wall solver

    Science.gov (United States)

    Marichal, Y.; Lonfils, T.; Duponcheel, M.; Chatelain, P.; Winckelmans, G.

    2011-11-01

    This coupling aims at improving the computational efficiency of high Reynolds number bluff body flow simulations by using two complementary methods and exploiting their respective advantages in distinct parts of the domain. Vortex particle methods are particularly well suited for free vortical flows such as wakes or jets (the computational domain -with non zero vorticity- is then compact and dispersion errors are negligible). Finite volume methods, however, can handle boundary layers much more easily due to anisotropic mesh refinement. In the present approach, the vortex method is used in the whole domain (overlapping domain technique) but its solution is highly underresolved in the vicinity of the wall. It thus has to be corrected by the near-wall finite volume solution at each time step. Conversely, the vortex method provides the outer boundary conditions for the near-wall solver. A parallel multi-resolution vortex particle-mesh approach is used here along with an Immersed Boundary method in order to take the walls into account. The near-wall flow is solved by OpenFOAM® using the PISO algorithm. We validate the methodology on the flow past a sphere at a moderate Reynolds number. F.R.S. - FNRS Research Fellow.

  20. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    Science.gov (United States)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  1. Superposition of vortex cylinders for steady and unsteady simulation of rotors of finite tip-speed ratio

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2015-01-01

    coefficient obtained with this model for the constant circulation rotor is assessed and compared with that of existing solutions. Results from prescribed thrust distributions are compared with that of actuator disk simulations. Steady simulations are performed to compare with the BEM algorithm. The model......Joukowski introduced in 1912 a helical vortex model to represent the vorticity of a rotor and its wake. For an infinite number of blades but finite tip-speed ratio, the model consists of a vortex cylinder of longitudinal and tangential vorticity, a root vortex and a bound vortex disk...... is also applied to compute the velocity field in the entire domain and perform unsteady simulations. Results for an unsteady simulation corresponding to a pitch change of the rotor is used to compare the model with measurements and a BEM code with a dynamic inflow model. Copyright © 2015 John Wiley & Sons...

  2. Vortex particle method in parallel computations on graphical processing units used in study of the evolution of vortex structures

    International Nuclear Information System (INIS)

    Kudela, Henryk; Kosior, Andrzej

    2014-01-01

    Understanding the dynamics and the mutual interaction among various types of vortical motions is a key ingredient in clarifying and controlling fluid motion. In the paper several different cases related to vortex tube interactions are presented. Due to problems with very long computation times on the single processor, the vortex-in-cell (VIC) method is implemented on the multicore architecture of a graphics processing unit (GPU). Numerical results of leapfrogging of two vortex rings for inviscid and viscous fluid are presented as test cases for the new multi-GPU implementation of the VIC method. Influence of the Reynolds number on the reconnection process is shown for two examples: antiparallel vortex tubes and orthogonally offset vortex tubes. Our aim is to show the great potential of the VIC method for solutions of three-dimensional flow problems and that the VIC method is very well suited for parallel computation. (paper)

  3. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  4. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    Science.gov (United States)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  5. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    Science.gov (United States)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  6. Proposed thermodynamic method to determine the vortex mass in layered superconductors

    International Nuclear Information System (INIS)

    Moler, K.A.; Fetter, A.L.; Kapitulnik, A.

    1995-01-01

    The authors describe a simple method to study vortex dynamics that can determine or set an upper limit on the vortex mass. The specific heat of the vortex lattice in layered superconductors has a classical limit of 1 k B per pancake vortex if the vortex mass is zero. If the vortex mass m v is finite, a new Einstein branch of normal modes will appear with a crossover temperature Θ E ∝ m v -1 , and the specific heat will saturate at a new classical limit of 2 k B per pancake vortex

  7. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  8. Studies of vortex dominated flows; Proceedings of the Symposium, Hampton, VA, July 9-11, 1985

    International Nuclear Information System (INIS)

    Hussaini, M.Y.; Salas, M.D.

    1987-01-01

    Papers are presented on waves and bifurcations in vortex filaments, a ring-vortex representation of an axisymmetric vortex sheet, and comparison of experiment with the dynamics of the von Karman vortex trail. Also considered are force-free and loss-free transitions between vortex flow states, a vortex breakdown simulation based on a nonlinear inviscid method, and the prediction of highly vortical flows using an Euler equation model. Other topics include the theory of high-Reynolds-number flow past a blunt body, progress on the calculation of large-scale separation at high Reynolds numbers, and viscous-inviscid interaction solvers and computation of highly separated flows. Papers are also presented on simulation studies of vortex dynamics of a leading edge vortex flap, methods for numerical simulation of leading edge vortex flow, and comparison of measured and computed pitot pressures in a leading edge vortex from a delta wing

  9. Vortex methods in aeronautics: how to make things work

    International Nuclear Information System (INIS)

    Voutsinas, S.G.

    2004-01-01

    Vortex methods constitute a particular class in CFD. They are grid-free, they use Lagrangian co-ordinates and most importantly they use vorticity as mail flow variable instead of the velocity. In aeronautics they are in use for over than 20 years with quite impressing results. However, rather a limited number of researchers would prefer them. This could be due to some particularities vortex methods have in their implementation. In view of trying to clarify thins, the present paper reviews the current state of art and details some of the 'difficult' points of vortex methods. Although the focus is mainly on rotor problems, the presented techniques can be used in other applications as well. (author)

  10. Numerical simulations of flying and swimming of biological systems with the viscous vortex particle method

    Science.gov (United States)

    Eldredge, Jeff

    2005-11-01

    Many biological mechanisms of locomotion involve the interaction of a fluid with a deformable surface undergoing large unsteady motion. Analysis of such problems poses a significant challenge to conventional grid-based computational approaches. Particularly in the moderate Reynolds number regime where many insects and fish function, viscous and inertial processes are both important, and vorticity serves a crucial role. In this work, the viscous vortex particle method is shown to provide an efficient, intuitive simulation approach for investigation of these biological systems. In contrast with a grid-based approach, the method solves the Navier--Stokes equations by tracking computational particles that carry smooth blobs of vorticity and exchange strength with one another to account for viscous diffusion. Thus, computational resources are focused on the physically relevant features of the flow, and there is no need for artificial boundary conditions. Building from previously-developed techniques for the creation of vorticity to enforce no-throughflow and no-slip conditions, the present method is extended to problems of coupled fluid--body dynamics by enforcement of global conservation of momenta. The application to several two-dimensional model problems is demonstrated, including single and multiple flapping wings and free swimming of a three-linkage fish.

  11. A vortex filament tracking method for the Gross–Pitaevskii model of a superfluid

    International Nuclear Information System (INIS)

    Villois, Alberto; Proment, Davide; Salman, Hayder; Krstulovic, Giorgio

    2016-01-01

    We present an accurate and robust numerical method to track quantised vortex lines in a superfluid described by the Gross–Pitaevskii equation. By utilising the pseudo-vorticity field of the associated complex scalar order parameter of the superfluid, we are able to track the topological defects of the superfluid and reconstruct the vortex lines which correspond to zeros of the field. Throughout, we assume our field is periodic to allow us to make extensive use of the Fourier representation of the field and its derivatives in order to retain spectral accuracy. We present several case studies to test the precision of the method which include the evaluation of the curvature and torsion of a torus vortex knot, and the measurement of the Kelvin wave spectrum of a vortex line and a vortex ring. The method we present makes no a priori assumptions on the geometry of the vortices and is therefore applicable to a wide range of systems such as a superfluid in a turbulent state that is characterised by many vortex rings coexisting with sound waves. This allows us to track the positions of the vortex filaments in a dense turbulent vortex tangle and extract statistical information about the distribution of the size of the vortex rings and the inter-vortex separations. In principle, the method can be extended to track similar topological defects arising in other physical systems. (paper)

  12. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    Science.gov (United States)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  13. Resistance scaling function for two-dimensional superconductors and Monte Carlo vortex-fluctuation simulations

    International Nuclear Information System (INIS)

    Minnhagen, P.; Weber, H.

    1985-01-01

    A Monte Carlo simulation of the Ginsburg-Landau Coulomb-gas model for vortex fluctuations is described and compared to the measured resistance scaling function for two-dimensional superconductors. This constitutes a new, more direct way of confirming the vortex-fluctuation explanation for the resistive tail of high-sheet-resistance superconducting films. The Monte Carlo data obtained indicate a striking accordance between theory and experiments

  14. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  15. Three-dimensional Ginzburg–Landau simulation of a vortex line ...

    Indian Academy of Sciences (India)

    pp. 295–304. Three-dimensional Ginzburg–Landau simulation of a vortex line displaced by a zigzag of pinning spheres. MAURO M DORIA1,∗, ANTONIO R de C ROMAGUERA1 and WELLES A M MORGADO2. 1Instituto de Fısica, Universidade Federal do Rio de Janeiro, C.P. 68528,. 21941-972, Rio de Janeiro RJ, Brazil.

  16. Iterative Brinkman penalization for remeshed vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time...

  17. Calculation of Pressure Distribution at Rotary Body Surface with the Vortex Element Method

    Directory of Open Access Journals (Sweden)

    S. A. Dergachev

    2014-01-01

    Full Text Available Vortex element method allows to simulate unsteady hydrodynamic processes in incompressible environment, taking into account the evolution of the vortex sheet, including taking into account the deformation or moving of the body or part of construction.For the calculation of the hydrodynamic characteristics of the method based on vortex element software package was developed MVE3D. Vortex element (VE in program is symmetrical Vorton-cut. For satisfying the boundary conditions at the surface used closed frame of vortons.With this software system modeled incompressible flow around a cylindrical body protection elongation L / D = 13 with a front spherical blunt with the angle of attack of 10 °. We analyzed the distribution of the pressure coefficient on the body surface of the top and bottom forming.The calculate results were compared with known Results of experiment.Considered design schemes with different number of Vorton framework. Also varied radius of VE. Calculation make possible to establish the degree of sampling surface needed to produce close to experiment results. It has been shown that an adequate reproducing the pressure distribution in the transition region spherical cylindrical surface, on the windward side requires a high degree of sampling.Based on these results Can be possible need to improve on the design scheme of body's surface, allowing more accurate to describe the flow vorticity in areas with abrupt changes of geometry streamlined body.

  18. Long-term Stable Conservative Multiscale Methods for Vortex Flows

    Science.gov (United States)

    2017-10-31

    Computing Department, Florida State (January 2016) - L. Rebholz, SIAM Southeast 2016, Special session on Recent advances in fluid flow and...Multiscale Methods for Vortex Flows (x) Material has been given an OPSEC review and it has been determined to be non sensitive and, except for...distribution is unlimited. UU UU UU UU 31-10-2017 1-Aug-2014 31-Jul-2017 Final Report: Long-term Stable Conservative Multiscale Methods for Vortex Flows

  19. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    International Nuclear Information System (INIS)

    Kajzer, A; Pozorski, J; Szewc, K

    2014-01-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  20. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  1. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  2. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  3. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    Science.gov (United States)

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  4. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    Science.gov (United States)

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  5. Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates

    OpenAIRE

    Schulte, T.; Santos, L.; Sanpera, A.; Lewenstein, M.

    2002-01-01

    We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.

  6. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    Science.gov (United States)

    Lawton, Stephen; Crawford, Curran

    2014-06-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.

  7. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    International Nuclear Information System (INIS)

    Lawton, Stephen; Crawford, Curran

    2014-01-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade

  8. Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.

    2015-01-01

    This article presents a comparison of CFD simulations of the DTU 10 MW reference wind turbine with and without vortex generators installed on the inboard part of the blades. The vortex generators are modelled by introducing body forces determined using a modified version of the so-called BAY mode...

  9. CFD simulation of the combustion process of the low-emission vortex boiler

    Science.gov (United States)

    Chernov, A. A.; Maryandyshev, P. A.; Pankratov, E. V.; Lubov, V. K.

    2017-11-01

    Domestic heat and power engineering needs means and methods for optimizing the existing boiler plants in order to increase their technical, economic and environmental work. The development of modern computer technology, methods of numerical modeling and specialized software greatly facilitates the solution of many emerging problems. CFD simulation allows to obtaine precise results of thermochemical and aerodynamic processes taking place in the furnace of boilers in order to optimize their operation modes and develop directions for their modernization. The paper presents the results of simulation of the combustion process of a low-emission vortex coal boiler of the model E-220/100 using the software package Ansys Fluent. A hexahedral grid with a number of 2 million cells was constructed for the chosen boiler model. A stationary problem with a two-phase flow was solved. The gaseous components are air, combustion products and volatile substances. The solid phase is coal particles at different burnup stages. The Euler-Lagrange approach was taken as a basis. Calculation of the coal particles trajectories was carried out using the Discrete Phase Model which distribution of the size particle of coal dust was accounted for using the Rosin-Rammler equation. Partially Premixed combustion model was used as the combustion model which take into account elemental composition of the fuel and heat analysis. To take turbulence into account, a two-parameter k-ε model with a standard wall function was chosen. Heat transfer by radiation was calculated using the P1-approximation of the method of spherical harmonics. The system of spatial equations was numerically solved by the control volume method using the SIMPLE algorithm of Patankar and Spaulding. Comparison of data obtained during the industrial-operational tests of low-emission vortex boilers with the results of mathematical modeling showed acceptable convergence of the tasks of this level, which confirms the adequacy of the

  10. Characterisation of vortex flow inside an entrained cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rambert, A.; Elcafsi, A.; Gougat, P. [Centre National de la Recherche Scientifique, 91 - Orsay (France). Lab. d' Informatique pour la Mecanique et les Sciences de l' Ingenieur

    2000-07-01

    A number of studies have referred to the existence of a vortex cell within an urban street canyon when ambient winds aloft are perpendicular to the street. The understanding of vortex dynamics or vorticity distribution in a such configuration is of great interest. Vortex structures play an important role in the dynamics of pollutant dispersion. This configuration was simulated by the interaction between a boundary layer and a cavity. Experimental characterisation of the vortex structures evolution was developed by flow velocity measurements inside and out of the cavity. Classical methods like hot wire and laser Doppler velocimetry (LDV) display only local measurements. Particle image velocimetry (PIV) method based on the optical flow technique permitted global velocity measurements. This technique emphasis the vortex structures inside the cavity which present small scales as well as large scales related to the cavity geometry. These vortices are usually non-stationary. (orig.)

  11. Vortex configuration and vortex-vortex interaction in nano-structured superconductors

    International Nuclear Information System (INIS)

    Kato, Masaru; Niwa, Yuhei; Suematsu, Hisataka; Ishida, Takekazu

    2012-01-01

    We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.

  12. An immersed interface vortex particle-mesh solver

    Science.gov (United States)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2014-11-01

    An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  13. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    Science.gov (United States)

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  14. Formation Number Of Laminar Vortex Rings. Numerical Simulations

    International Nuclear Information System (INIS)

    Rosenfeld, M.; Rambod, E.; Gharib, M.

    1998-01-01

    The formation time scale of axisymmetric vortex rings is studied numerically for relatively long discharge times. Experimental findings on the existence and universality of a formation time scale, referred to as the formation number, are confirmed. The formation number is indicative of the time a vortex ring acquires its maximal circulation. For vortex rings generated by impulsive motion of a piston, the formation number was found experimentally to be approximately 4. Numerical extension of the experimental study to thick shear layers indicates that the scaled circulation of the pinched-off vortex is relatively insensitive of the details of the formation process, such as the velocity program, velocity profile or vortex generator geometry. In contrast, the formation number does depend on the velocity profile

  15. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  16. A simple method for potential flow simulation of cascades

    Indian Academy of Sciences (India)

    vortex panel method to simulate potential flow in cascades is presented. The cascade ... The fluid loading on the blades, such as the normal force and pitching moment, may ... of such discrete infinite array singularities along the blade surface.

  17. An unsteady point vortex method for coupled fluid-solid problems

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, Sebastien [Jacobs School of Engineering, UCSD, Department of Mechanical and Aerospace Engineering, La Jolla, CA (United States); Ecole Nationale Superieure des Mines de Paris, Paris (France); Llewellyn Smith, Stefan G. [Jacobs School of Engineering, UCSD, Department of Mechanical and Aerospace Engineering, La Jolla, CA (United States)

    2009-06-15

    A method is proposed for the study of the two-dimensional coupled motion of a general sharp-edged solid body and a surrounding inviscid flow. The formation of vorticity at the body's edges is accounted for by the shedding at each corner of point vortices whose intensity is adjusted at each time step to satisfy the regularity condition on the flow at the generating corner. The irreversible nature of vortex shedding is included in the model by requiring the vortices' intensity to vary monotonically in time. A conservation of linear momentum argument is provided for the equation of motion of these point vortices (Brown-Michael equation). The forces and torques applied on the solid body are computed as explicit functions of the solid body velocity and the vortices' position and intensity, thereby providing an explicit formulation of the vortex-solid coupled problem as a set of non-linear ordinary differential equations. The example of a falling card in a fluid initially at rest is then studied using this method. The stability of broadside-on fall is analysed and the shedding of vorticity from both plate edges is shown to destabilize this position, consistent with experimental studies and numerical simulations of this problem. The reduced-order representation of the fluid motion in terms of point vortices is used to understand the physical origin of this destabilization. (orig.)

  18. Insights into the growth rate of spatially evolving plane turbulent free-shear layers from 2D vortex-gas simulations

    Science.gov (United States)

    Suryanarayanan, Saikishan; Narasimha, Roddam

    2017-02-01

    Although the free-shear or mixing layer has been a subject of extensive research over nearly a century, there are certain fundamental issues that remain controversial. These include the influence of initial and downstream conditions on the flow, the effect of velocity ratio across the layer, and the nature of any possible coupling between small scale dynamics and the large scale evolution of layer thickness. In the spirit of the temporal vortex-gas simulations of Suryanarayanan et al. ["Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics," Phys. Rev. E 89, 013009 (2014)], we revisit the simple 2D inviscid vortex-gas model with extensive computations and detailed analysis, in order to gain insights into some of the above issues. Simulations of the spatially evolving vortex-gas shear layer are carried out at different velocity ratios using a computational model based on the work of Basu et al. ["Vortex sheet simulation of a plane canonical mixing layer," Comput. Fluids 21, 1-30 (1992) and "Modelling plane mixing layers using vortex points and sheets," Appl. Math. Modell. 19, 66-75 (1995)], but with a crucial improvement that ensures conservation of global circulation. The simulations show that the conditions imposed at the origin of the free shear layer and at the exit to the computational domain can affect flow evolution in their respective downstream and upstream neighbourhoods, the latter being particularly strong in the single stream limit. In between these neighbourhoods at the ends is a regime of universal self-preserving growth rate given by a universal function of velocity ratio. The computed growth rates are generally located within the scatter of experimental data on plane mixing layers and closely agree with recent high Reynolds number experiments and 3D large eddy simulation studies. These findings support the view that observed free-shear layer growth can be largely explained by the 2D vortex dynamics of

  19. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  20. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  1. Comparison of the near-wake between actuator-line simulations and a simplified vortex model of a horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Sarmast, Sasan; Segalini, Antonio; Mikkelsen, Robert Flemming

    2016-01-01

    ). The vortex model matched the numerical simulation of the turbine with constant blade circulation in terms of the near-wake structure and local forces along the blade. The results from the Tjæreborg turbine case showed some discrepancies between the two approaches, but overall, the agreement is qualitatively...... good, validating the analytical method for more general conditions. The present results show that a simple vortex code is able to provide an estimation of the flow around the wind turbine similar to the actuator-line approach but with a negligible computational effort. Copyright © 2015 John Wiley...

  2. Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation

    Directory of Open Access Journals (Sweden)

    Ni Ketut Caturwati

    2017-01-01

    Full Text Available Cyclone separator is an equipment that separates particles contained in the fluid without using filters. The dust particles in the flue gases can be separated by utilizing centrifugal forces and different densities of particles, so that the exhaust gases to be cleaner before discharged into the environment. In this paper carried out a simulation by Computational of Fluids Dynamics to determine the number of particles that can be separated in several cyclone separator which has a ratio body diameter against vortex finder high varied as : 1:0.5 ; 1:0.75 ; 1:1 ; 1:1.25 and 1:1.5. Fluid inlet are air with antrachite impurity particles that are commonly found in the exhaust gases from tire manufacturers with inlet velocities varied as: 15 m/s and 30 m/s. The results of simulation show the fluids with 15 m/s of inlet velocity is generate particle separation value is higher than the fluids with 30 m/s inlet velocity for ratio of body diameter and height vortex finder a: 1:0.5 and 1:1.5. For both of inlet velocities the best ratio of body diameter and height vortex finder is 1:1.25, where it has the highest values of percentage trapped particles about 86% for 30 m/s input velocity and also for 15 m/s input velocity.

  3. Experimental and numerical studies in a vortex tube

    International Nuclear Information System (INIS)

    Sohn, Chang Hyun; Kim, Chang Soo; Gowda, B. H. L Lakshmana; Jung, Ui Hyun

    2006-01-01

    The present investigation deals with the study of the internal flow phenomena of the counter-flow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1 MPa to 0.3 MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments

  4. Parallel scalability and efficiency of vortex particle method for aeroelasticity analysis of bluff bodies

    Science.gov (United States)

    Tolba, Khaled Ibrahim; Morgenthal, Guido

    2018-01-01

    This paper presents an analysis of the scalability and efficiency of a simulation framework based on the vortex particle method. The code is applied for the numerical aerodynamic analysis of line-like structures. The numerical code runs on multicore CPU and GPU architectures using OpenCL framework. The focus of this paper is the analysis of the parallel efficiency and scalability of the method being applied to an engineering test case, specifically the aeroelastic response of a long-span bridge girder at the construction stage. The target is to assess the optimal configuration and the required computer architecture, such that it becomes feasible to efficiently utilise the method within the computational resources available for a regular engineering office. The simulations and the scalability analysis are performed on a regular gaming type computer.

  5. Vortex locking in direct numerical simulations of quantum turbulence.

    Science.gov (United States)

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  6. Effectiveness of Side Force Models for Flow Simulations Downstream of Vortex Generators

    NARCIS (Netherlands)

    Florentie, L.; van Zuijlen, A.H.; Hulshoff, S.J.; Bijl, H.

    2017-01-01

    Vortex generators (VGs) are a widely used means of flow control, and predictions of their influence are vital for efficient designs. However, accurate CFD simulations of their effect on the flow field by means of a body fitted mesh are computationally expensive. Therefore the BAY and jBAY models,

  7. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  8. Large-Eddy Simulation of turbulent vortex shedding

    International Nuclear Information System (INIS)

    Archambeau, F.

    1995-06-01

    This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author)

  9. Large-Eddy Simulation of turbulent vortex shedding

    Energy Technology Data Exchange (ETDEWEB)

    Archambeau, F

    1995-06-01

    This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author) 87 refs.

  10. Combining the Vortex Particle-Mesh method with a Multi-Body System solver for the simulation of self-propelled articulated swimmers

    Science.gov (United States)

    Bernier, Caroline; Gazzola, Mattia; Ronsse, Renaud; Chatelain, Philippe

    2017-11-01

    We present a 2D fluid-structure interaction simulation method with a specific focus on articulated and actuated structures. The proposed algorithm combines a viscous Vortex Particle-Mesh (VPM) method based on a penalization technique and a Multi-Body System (MBS) solver. The hydrodynamic forces and moments acting on the structure parts are not computed explicitly from the surface stresses; they are rather recovered from the projection and penalization steps within the VPM method. The MBS solver accounts for the body dynamics via the Euler-Lagrange formalism. The deformations of the structure are dictated by the hydrodynamic efforts and actuation torques. Here, we focus on simplified swimming structures composed of neutrally buoyant ellipses connected by virtual joints. The joints are actuated through a simple controller in order to reproduce the swimming patterns of an eel-like swimmer. The method enables to recover the histories of torques applied on each hinge along the body. The method is verified on several benchmarks: an impulsively started elastically mounted cylinder and free swimming articulated fish-like structures. Validation will be performed by means of an experimental swimming robot that reproduces the 2D articulated ellipses.

  11. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  12. The structure of Karman vortex streets in the atmospheric boundary layer derived from large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Rieke; Raasch, Siegfried; Etling, Dieter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-06-15

    Karman vortex streets generated in the wake of an idealized island are studied using large eddy simulation (LES). Simulations were carried out under conditions of a dry convective boundary layer, capped by an inversion below the island top. These conditions are more realistic compared to previous studies in which mesoscale models with a uniform stable stratification were used. Several properties of the vortex streets like the shedding period of the vortices and the distances between cyclonic and anti-cyclonic vortices were determined for various values of Froude number and surface heat flux. The main focus of the study was to identify the azimuthally averaged structure of fully developed single vortices, which is presented here for the first time. For this purpose a tracking mechanism was developed which allows to detect and to follow vortices automatically. Because the capping inversion is located below the obstacle top, the vortices extend throughout the whole depth of the mixed layer and their features are almost constant with height. They have a nearly upright vertical axis with a warm core, which is feeded by a convergent near-surface inflow of warm air. The vortex core is dominated by a continuous updraft in the order of 10 cm s{sup -1}, which is associated with a divergent outflow of air at the vortex' top. This flow divergence creates an additional increase in temperature due to a locally sinking inversion, which is probably responsible for the cloud-free eye of many observed vortices. An increase in the surface heat flux is causing a faster decay of the vortices due to stronger boundary layer turbulence. Other vortex features derived from the simulations are very similar to those from previous studies. (orig.)

  13. Plasmonic vortex generator without polarization dependence

    Science.gov (United States)

    Wang, Han; Liu, Lixia; Liu, Chunxiang; Li, Xing; Wang, Shuyun; Xu, Qing; Teng, Shuyun

    2018-03-01

    In view of the limitations of vortex generators with polarization dependence at present, we propose a plasmonic vortex generator composed of rectangular holes etched in silver film, in which the optical vortex can be generated under arbitrary linearly polarized light illumination. Two sets of rectangular holes are arranged equidistantly on a circle and rotate in postulate directions. Theoretical analysis provides the design principle for the vortex generator, and numerical simulations give guidance on designating the vortex generator parameters. Experimental measurements verify the performance of the proposed vortex generator. Moreover, two alternative structures for the generation of a plasmonic vortex are also provided in this paper. The resulting perfect vortex, compact structure and flexible illumination conditions will lead to wide applications of this plasmonic vortex generator.

  14. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    Science.gov (United States)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  15. A simulation study of the vortex structure in the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Wei, C.Q.; Lee, L.C.; La Belle-Hamer, A.L.

    1990-01-01

    Satellite observations indicate that the plasma density and the flow velocity are highly variable in the low-latitude boundary layer. The thickness of the boundary layer is also highly variable and appears to increase with increasing longitudinal distance from the subsolar point. In this paper plasma dynamics in the low-latitude boundary layer region is studied on the basis of a two-dimensional incompressible bydrodynamic numerical model. In the simulation, plasma is driven into the boundary layer region by imposing a diffusion flux along the magnetopause. The vortex motions associated with the Kelvin-Helmholtz instability are observed in the simulation. The resulting vortex structures in the plasma density and the flow velocity may coalesce as they are convected tailward, causing them to grow in size. The boundary layer thickness increases with increasing longitudinal distance from the subsolar point in accord with satellite observations. The plasma density and the flow velocity are positively correlated. A mixing region is formed where magnetosheath plasma and magnetospheric plasma mix due to the vortex motions. In the later stage of development, a density plateau is formed in the central part of the boundary layer. Many features of the satellite observations of the boundary layer can be explained using the numerical model. The simulation results also predict that the vortices generated in the postnoon (prenoon) boundary layer lead to the presence of localized upward (downward) field-aligned currents in both the northern and the southern polar ionospheres. The upward field-aligned currents in turn may lead to the formation of dayside auroral patches observed in the postnoon region

  16. Modeling Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  17. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  18. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  19. A Parrinello-Rahman approach to vortex lattices

    International Nuclear Information System (INIS)

    Carretero-Gonzalez, R.; Kevrekidis, P.G.; Kevrekidis, I.G.; Maroudas, D.; Frantzeskakis, D.J.

    2005-01-01

    We present a framework for studying vortex lattice patterns and their structural transitions, using the Parrinello-Rahman (PR) method for molecular-dynamics (MD) simulations. Assuming an interaction between vortices derived from a Ginzburg-Landau field-theoretic context, we extract the ground-state of a 'vortex gas' using the PR-MD technique and find it to be a triangular pattern. Other patterns are also obtained for special initial conditions. Generalizations of the technique, such as the inclusion of external potentials or excitation of quadrupolar modes, are also commented upon

  20. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  1. Hot-Wire Calibration at Low Velocities: Revisiting the Vortex Shedding Method

    Directory of Open Access Journals (Sweden)

    Sohrab S. Sattarzadeh

    2013-01-01

    Full Text Available The necessity to calibrate hot-wire probes against a known velocity causes problems at low velocities, due to the inherent inaccuracy of pressure transducers at low differential pressures. The vortex shedding calibration method is in this respect a recommended technique to obtain calibration data at low velocities, due to its simplicity and accuracy. However, it has mainly been applied in a low and narrow Reynolds number range known as the laminar vortex shedding regime. Here, on the other hand, we propose to utilize the irregular vortex shedding regime and show where the probe needs to be placed with respect to the cylinder in order to obtain unambiguous calibration data.

  2. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    Science.gov (United States)

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  3. Simulations of diocotron instability using a special-purpose computer, MDGRAPE-2

    International Nuclear Information System (INIS)

    Yatsuyanagi, Yuichi; Kiwamoto, Yasuhito; Ebisuzaki, Toshikazu; Hatori, Tadatsugu; Kato, Tomokazu

    2003-01-01

    The diocotron instability in a low-density non-neutral electron plasma is examined via numerical simulations. For the simulations, a current-vortex filament model and a special-purpose computer, MDGRAPE-2 are used. In the previous work, a simulation method based on the current-vortex filament model, which is called 'current-vortex method', is developed. It is assumed that electric current and vorticity have discontinuous filamentary distributions, and both point electric current and point vortex are confined in a filament, which is called 'current-vortex filament'. In this paper, the current-vortex method with no electric current is applied to simulations of the non-neutral electron plasma. This is equivalent to the traditional point-vortex method. MDGRAPE-2 was originally designed for molecular dynamics simulations. It accelerates calculations of the Coulomb interactions, the van der Waals interactions and so on. It can also be used to accelerate calculations of the Biot-Savart integral. The diocotron modes reproduced by the simulations agree with the result predicted by linear theory. This indicates that the current-vortex method is applicable to problems of the non-neutral plasma. The linear growth rates of the diocotron instability in the simulations also agree with the theoretical ones. This implies that MDGRAPE-2 gives the sufficiently accurate results for the calculations of the current-vortex method. A mechanism of merging of electron clumps is demonstrated by the simulations. It is concluded that the electric field induced by the conducting wall makes the nonlinear stage unstable and causes the clumps to merge

  4. Simulation of wing-body junction flows with hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Fu Song; Xiao Zhixiang; Chen Haixin; Zhang Yufei; Huang Jingbo

    2007-01-01

    In this paper, flows past two wing-body junctions, the Rood at zero angle of attack and NASA TN D-712 at 12.5 o angle of attack, are investigated with two Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods. One is detached eddy simulation (DES) and the other is delayed-DES, both are based on a weakly nonlinear two-equation k-ω model. While the RANS method can predict the mean flow behaviours reasonably accurately, its performance for the turbulent kinetic energy and shear stress, as compared with available experimental data, is not satisfactory. DES, through introducing a length scale in the dissipation terms of the turbulent kinetic energy equation, delivers flow separation, a vortex or the onset of vortex breakdown too early. DDES, with its delayed effect, shows a great improvement in flow structures and turbulence characteristics, and agrees well with measurements

  5. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  6. Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake

    Directory of Open Access Journals (Sweden)

    P. Chatelain

    2017-06-01

    Full Text Available A vortex particle-mesh (VPM method with immersed lifting lines has been developed and validated. Based on the vorticity–velocity formulation of the Navier–Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES of vertical axis wind turbine (VAWT flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters. The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  7. Alternative method for variable aspect ratio vias using a vortex mask

    Science.gov (United States)

    Schepis, Anthony R.; Levinson, Zac; Burbine, Andrew; Smith, Bruce W.

    2014-03-01

    Historically IC (integrated circuit) device scaling has bridged the gap between technology nodes. Device size reduction is enabled by increased pattern density, enhancing functionality and effectively reducing cost per chip. Exemplifying this trend are aggressive reductions in memory cell sizes that have resulted in systems with diminishing area between bit/word lines. This affords an even greater challenge in the patterning of contact level features that are inherently difficult to resolve because of their relatively small area and complex aerial image. To accommodate these trends, semiconductor device design has shifted toward the implementation of elliptical contact features. This empowers designers to maximize the use of free device space, preserving contact area and effectively reducing the via dimension just along a single axis. It is therefore critical to provide methods that enhance the resolving capacity of varying aspect ratio vias for implementation in electronic design systems. Vortex masks, characterized by their helically induced propagation of light and consequent dark core, afford great potential for the patterning of such features when coupled with a high resolution negative tone resist system. This study investigates the integration of a vortex mask in a 193nm immersion (193i) lithography system and qualifies its ability to augment aspect ratio through feature density using aerial image vector simulation. It was found that vortex fabricated vias provide a distinct resolution advantage over traditionally patterned contact features employing a 6% attenuated phase shift mask (APM). 1:1 features were resolvable at 110nm pitch with a 38nm critical dimension (CD) and 110nm depth of focus (DOF) at 10% exposure latitude (EL). Furthermore, iterative source-mask optimization was executed as means to augment aspect ratio. By employing mask asymmetries and directionally biased sources aspect ratios ranging between 1:1 and 2:1 were achievable, however, this

  8. Vortex dynamics during blade-vortex interactions

    Science.gov (United States)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  9. Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential

    Science.gov (United States)

    Haber, E.; Badea, R.; Berezovsky, J.

    2018-05-01

    The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.

  10. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence

    CERN Document Server

    Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6

    2008-01-01

    This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...

  11. Vortex Shedding Inside a Baffled Air Duct

    Science.gov (United States)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  12. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...

  13. Investigation of propagation dynamics of truncated vector vortex beams.

    Science.gov (United States)

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  14. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  15. A partial entropic lattice Boltzmann MHD simulation of the Orszag-Tang vortex

    Science.gov (United States)

    Flint, Christopher; Vahala, George

    2018-02-01

    Karlin has introduced an analytically determined entropic lattice Boltzmann (LB) algorithm for Navier-Stokes turbulence. Here, this is partially extended to an LB model of magnetohydrodynamics, on using the vector distribution function approach of Dellar for the magnetic field (which is permitted to have field reversal). The partial entropic algorithm is benchmarked successfully against standard simulations of the Orszag-Tang vortex [Orszag, S.A.; Tang, C.M. J. Fluid Mech. 1979, 90 (1), 129-143].

  16. Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach

    Science.gov (United States)

    Goldstein, D. E.; Vasilyev, O. V.; Wray, A. A.; Rogallo, R. S.

    2000-01-01

    The objective of this study is to investigate the use of the second generation bi-orthogonal wavelet transform for the field decomposition in the Coherent Vortex Simulation of turbulent flows. The performances of the bi-orthogonal second generation wavelet transform and the orthogonal wavelet transform using Daubechies wavelets with the same number of vanishing moments are compared in a priori tests using a spectral direct numerical simulation (DNS) database of isotropic turbulence fields: 256(exp 3) and 512(exp 3) DNS of forced homogeneous turbulence (Re(sub lambda) = 168) and 256(exp 3) and 512(exp 3) DNS of decaying homogeneous turbulence (Re(sub lambda) = 55). It is found that bi-orthogonal second generation wavelets can be used for coherent vortex extraction. The results of a priori tests indicate that second generation wavelets have better compression and the residual field is closer to Gaussian. However, it was found that the use of second generation wavelets results in an integral length scale for the incoherent part that is larger than that derived from orthogonal wavelets. A way of dealing with this difficulty is suggested.

  17. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    Science.gov (United States)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  18. Vortex wake investigation behind a wing-flap model with jet simulations

    NARCIS (Netherlands)

    Veldhuis, L.L.M.; De Kat, R.

    2008-01-01

    To get a better insight in the effect of jets on vortex development and decay, stereo-PIV measurements were performed in a towing tank behind a flapped aircraft model. The experimental data set yields the wake vortex behavior in a range that extends from the vortex formation stage up to the

  19. Vortex rings from Sphagnum moss capsules

    Science.gov (United States)

    Whitaker, Dwight; Strassman, Sam; Cha, Jung; Chang, Emily; Guo, Xinyi; Edwards, Joan

    2010-11-01

    The capsules of Sphagnum moss use vortex rings to disperse spores to suitable habitats many kilometers away. Vortex rings are created by the sudden release of pressurized air when the capsule ruptures, and are an efficient way to carry the small spores with low terminal velocities to heights where they can be carried by turbulent wind currents. We will present our computational model of these explosions, which are carried out using a 2-D large eddy simulation (LES) on FLUENT. Our simulations can reproduce the observed motion of the spore clouds observed from moss capsules with high-speed videos, and we will discuss the roles of bursting pressure, cap mass, and capsule morphology on the formation and quality of vortex rings created by this plant.

  20. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  1. Vortex mass in a superfluid

    Science.gov (United States)

    Simula, Tapio

    2018-02-01

    We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.

  2. A Numerical Study of Vortex and Precipitating Cloud Merging in Middle Latitudes

    Institute of Scientific and Technical Information of China (English)

    PING Fan; LUO Zhe-Xian; JU Jian-Hua

    2006-01-01

    @@ We mainly focus on the study of precipitating cloud merging associated with vortex merging. The vortex and precipitating cloud merging are simulated by the cloud resolving model from 0000 21 to 1800 23 July 2003. The results show that the model well simulates vortex circulation associated with precipitating clouds. It is also proven that the vortex merging follows the precipitating cloud merging although vortices show the spatial and temporal differences. The convection vorticity vector is introduced to describe the merging processes. Two merging cases are identified during the 42-h simulation and are studied.

  3. Decreasing vortex flux in channels

    International Nuclear Information System (INIS)

    Migaj, V.K.; Nosova, I.S.

    1979-01-01

    A new method for reducing vortex flow losses in power plant channels is suggested. The method is based on vortex splitting in vortex flow areas with transverse barriers placed on the channel walls. The upper barrier ends are at the level of the upper boundary of the vortex area and don't protrude to the active flow beyond this boundary. The effectiveness of the method suggested is illustrated taking as an example the investigation of square and flat channels with abrupt widening in one plane, diffusers with widening in one plane, or a rectangualr bend. It is shown that splitting the vortex areas with transverse barriers in the channels results in reduction of hydraulic losses by 10-25%. The above method is characteristic of an extreme simplicity, its application doesn't require changes in the channel shape nor installation of any devices in the flow

  4. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.

    Science.gov (United States)

    Hiejima, Toshihiko

    2014-05-01

    The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations, vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is important for classifying the breakdown configuration.

  5. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  6. Vortex breakdown incipience: Theoretical considerations

    Science.gov (United States)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  7. Vortex dynamics in superconducting Corbino disk at zero field

    International Nuclear Information System (INIS)

    Enomoto, Y.; Ohta, M.

    2007-01-01

    We study the radial current driven vortex dynamics in the Corbino disk sample at zero field, by using a logarithmically interacting point vortex model involving effect of temperature, random pinning centers, and disk wall confinement force. We also take into account both the current induced vortex pair nucleation and the vortex pair annihilation processes in the model. Simulation results demonstrate that the vortex motion induced voltage exhibits almost periodic pulse behavior in time, observed experimentally, for a certain range of the model parameters. Such an anomalous behavior is thought to originate from large fluctuations of the vortex number due to the collective dynamics of this vortex system

  8. Tunable magnetic vortex resonance in a potential well

    Science.gov (United States)

    Warnicke, P.; Wohlhüter, P.; Suszka, A. K.; Stevenson, S. E.; Heyderman, L. J.; Raabe, J.

    2017-11-01

    We use frequency-resolved x-ray microscopy to fully characterize the potential well of a magnetic vortex in a soft ferromagnetic permalloy square. The vortex core is excited with magnetic broadband pulses and simultaneously displaced with a static magnetic field. We observe a frequency increase (blueshift) in the gyrotropic mode of the vortex core with increasing bias field. Supported by micromagnetic simulations, we show that this frequency increase is accompanied by internal deformation of the vortex core. The ability to modify the inner structure of the vortex core provides a mechanism to control the dynamics of magnetic vortices.

  9. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  10. An Iterative Brinkman penalization for particle vortex methods

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Hejlesen, Mads Mølholm; Leonard, A.

    2013-01-01

    We present an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in vortex particle methods. This is achieved by implementing a penalization of the velocity field using iteration of the penalized vorticity. We show that using the conventional Brinkman...... condition. These are: the impulsively started flow past a cylinder, the impulsively started flow normal to a flat plate, and the uniformly accelerated flow normal to a flat plate. The iterative penalization algorithm is shown to give significantly improved results compared to the conventional penalization...

  11. Shock/vortex interaction and vortex-breakdown modes

    Science.gov (United States)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  12. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  13. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1998-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  14. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  15. Magnetic vortex racetrack memory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Liwei D.; Jin, Yongmei M., E-mail: ymjin@mtu.edu

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  16. An Organic Vortex Laser.

    Science.gov (United States)

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  17. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  18. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  19. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  20. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  1. Vortex-flow aerodynamics - An emerging design capability

    Science.gov (United States)

    Campbell, J. F.

    1981-01-01

    Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.

  2. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shixing; Li, Long, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Shi, Guangming, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Zhu, Cheng; Shi, Yan [National Key Laboratory of Antennas and Microwave Technology, School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi' an 710071 (China)

    2016-06-13

    In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.

  3. Vortex formation and instability in the left ventricle

    Science.gov (United States)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  4. Numerical simulation of the effects of variation of angle of attack and sweep angle on vortex breakdown over delta wings

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    In the present investigation of the vortical flowfield structure over delta wings at high angles of attack, three-dimensional Navier-Stokes numerical simulations were conducted to predict the complex leeward flowfield characteristics; these encompass leading-edge separation, secondary separation, and vortex breakdown. Attention is given to the effect on solution accuracy of circumferential grid-resolution variations in the vicinity of the wing leading edge, and well as to the effect of turbulence modeling on the solutions. When a critical angle-of-attack was reached, bubble-type vortex breakdown was found. With further angle-of-attack increase, a change from bubble-type to spiral-type vortex breakdown was predicted by the numerical solution.

  5. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating

    Science.gov (United States)

    Zhang, Xue-Dong; Su, Ya-Hui; Ni, Jin-Cheng; Wang, Zhong-Yu; Wang, Yu-Long; Wang, Chao-Wei; Ren, Fei-Fei; Zhang, Zhen; Fan, Hua; Zhang, Wei-Jie; Li, Guo-Qiang; Hu, Yan-Lei; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-08-01

    In this paper, we demonstrate that the superposition of two vortex beams with controlled topological charges can be realized by integrating two holographic plates with blazed grating. First, the holographic plate with blazed grating was designed and fabricated by laser direct writing for generating well-separated vortex beam. Then, the relationship between the periods of blazed grating and the discrete angles of vortex beams was systemically investigated. Finally, through setting the discrete angle and different revolving direction of the holographic plates, the composite fork-shaped field was realized by the superposition of two vortex beams in a particular position. The topological charges of composite fork-shaped field (l = 1, 0, 3, and 4) depend on the topological charges of compositional vortex beams, which are well agreed with the theoretical simulation. The method opens up a wide range of opportunities and possibilities for applying in optical communication, optical manipulations, and photonic integrated circuits.

  6. Application of Data Smoothing Method in Signal Processing for Vortex Flow Meters

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2017-01-01

    Full Text Available Vortex flow meter is typical flow measure equipment. Its measurement output signals can easily be impaired by environmental conditions. In order to obtain an improved estimate of the time-averaged velocity from the vortex flow meter, a signal filter method is applied in this paper. The method is based on a simple Savitzky-Golay smoothing filter algorithm. According with the algorithm, a numerical program is developed in Python with the scientific library numerical Numpy. Two sample data sets are processed through the program. The results demonstrate that the processed data is available accepted compared with the original data. The improved data of the time-averaged velocity is obtained within smoothing curves. Finally the simple data smoothing program is useable and stable for this filter.

  7. An Analysis of Dynamic Instability on TC-Like Vortex Using the Regularization-Based Eigenmode Linear Superposition Method

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2018-01-01

    Full Text Available In this paper, the eigenmode linear superposition (ELS method based on the regularization is used to discuss the distributions of all eigenmodes and the role of their instability to the intensity and structure change in TC-like vortex. Results show that the regularization approach can overcome the ill-posed problem occurring in solving mode weight coefficients as the ELS method are applied to analyze the impacts of dynamic instability on the intensity and structure change of TC-like vortex. The Generalized Cross-validation (GCV method and the L curve method are used to determine the regularization parameters, and the results of the two approaches are compared. It is found that the results based on the GCV method are closer to the given initial condition in the solution of the inverse problem of the vortex system. Then, the instability characteristic of the hollow vortex as the basic state are examined based on the linear barotropic shallow water equations. It is shown that the wavenumber distribution of system instability obtained from the ELS method is well consistent with that of the numerical analysis based on the norm mode. On the other hand, the evolution of the hollow vortex are discussed using the product of each eigenmode and its corresponding weight coefficient. Results show that the intensity and structure change of the system are mainly affected by the dynamic instability in the early stage of disturbance development, and the most unstable mode has a dominant role in the growth rate and the horizontal distribution of intense disturbance in the near-core region. Moreover, the wave structure of the most unstable mode possesses typical characteristics of mixed vortex Rossby-inertio-gravity waves (VRIGWs.

  8. Vortex-line fluctuations in model high-temperature superconductors

    International Nuclear Information System (INIS)

    Li, Y.; Teitel, S.

    1993-01-01

    We carry out Monte Carlo simulations of the uniformly frustrated three-dimensional XY model, as a model for vortex-line fluctuations in a high-T c superconductor in an external magnetic field. A density of vortex lines of f=1/25 is considered. We find two sharp phase transitions. The low-T superconducting phase is an ordered vortex-line lattice. The high-T normal phase is a vortex-line liquid, with much entangling, cutting, and loop excitations. An intermediate phase is found, which is characterized as a vortex-line liquid of disentangled, approximately straight, lines. In this phase, the system displays superconducting properties in the direction parallel to the magnetic field, but normal behavior in planes perpendicular to the field. A detailed analysis of the vortex structure function is carried out

  9. RANS computations of tip vortex cavitation

    Science.gov (United States)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  10. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    International Nuclear Information System (INIS)

    Ro, Ki Deok

    2014-01-01

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately

  11. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Ki Deok [Gyeongsang Nat' l Univ., Jinju (Korea, Republic of)

    2014-03-15

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

  12. Dynamics and chemistry of vortex remnants in late Arctic spring 1997 and 2000: Simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS

    Directory of Open Access Journals (Sweden)

    P. Konopka

    2003-01-01

    Full Text Available High-resolution simulations of the chemical composition of the Arctic stratosphere during late spring 1997 and 2000 were performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS. The simulations were performed for the entire northern hemisphere on two isentropic levels 450 K (~18 km and 585 K (~24 km. The spatial distribution and the lifetime of the vortex remnants formed after the vortex breakup in May 1997 display different behavior above and below 20 km. Above 20 km, vortex remnants propagate southward (up to 40°N and are "frozen in'' in the summer circulation without significant mixing. Below 20 km the southward propagation of the remnants is bounded by the subtropical jet. Their lifetime is shorter by a factor of 2 than that above 20 km, owing to significant stirring below this altitude. The behavior of vortex remnants formed in March 2000 is similar but, due to an earlier vortex breakup, dominated during the first 6 weeks after the vortex breakup by westerly winds, even above 20 km. Vortex remnants formed in May 1997 are characterized by large mixing ratios of HCl indicating negligible, halogen-induced ozone loss. In contrast, mid-latitude ozone loss in late boreal spring 2000 is dominated, until mid-April, by halogen-induced ozone destruction within the vortex remnants, and subsequent transport of the ozone-depleted polar air masses (dilution into the mid-latitudes. By varying the intensity of mixing in CLaMS, the impact of mixing on the formation of ClONO2 and ozone depletion is investigated. We find that the photochemical decomposition of HNO3 and not mixing with NOx-rich mid-latitude air is the main source of NOx within the vortex remnants in March and April 2000. Ozone depletion in the remnants is driven by ClOx photolytically formed from ClONO2. At the end of May 1997, the halogen-induced ozone deficit at 450 K poleward of 30°N amounts to ~12% with ~10% in the polar vortex and ~2% in well-isolated vortex remnants

  13. Vortex-Breakdown-Induced Particle Capture in Branching Junctions.

    Science.gov (United States)

    Ault, Jesse T; Fani, Andrea; Chen, Kevin K; Shin, Sangwoo; Gallaire, François; Stone, Howard A

    2016-08-19

    We show experimentally that a flow-induced, Reynolds number-dependent particle-capture mechanism in branching junctions can be enhanced or eliminated by varying the junction angle. In addition, numerical simulations are used to show that the features responsible for this capture have the signatures of classical vortex breakdown, including an approach flow aligned with the vortex axis and a pocket of subcriticality. We show how these recirculation regions originate and evolve and suggest a physical mechanism for their formation. Furthermore, comparing experiments and numerical simulations, the presence of vortex breakdown is found to be an excellent predictor of particle capture. These results inform the design of systems in which suspended particle accumulation can be eliminated or maximized.

  14. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  15. Vortex line topology during vortex tube reconnection

    Science.gov (United States)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  16. CFD Simulation of Vortex Induced Vibration for FRP Composite Riser with Different Modeling Methods

    Directory of Open Access Journals (Sweden)

    Chunguang Wang

    2018-04-01

    Full Text Available Steel risers are widely used in offshore oil and gas industry. However, the production capacity and depths are limited due to their extreme weight and poor fatigue and corrosion resistance. Nowadays, it is confirmed that fiber reinforced polymer (FRP composite risers have apparent advantages over steel risers. However, the study of vortex induced vibration (VIV for composite risers is rarely involved. Three different risers (one steel riser and two composite risers were compared for their VIV characteristics. The effects of 2D and 3D models and fluid–structure interaction (FSI were considered. The models of composite risers are established by effective modulus method (EMM and layered-structure method (LSM. It is found that 2D model are only suitable for ideal condition, while, for real situation, 3D model with FSI has to be considered. The results show that the displacements of the FRP composite risers are significantly larger than those of the steel riser, while the stresses are reversed. In addition, the distributions of the displacements and stresses depend on the geometries, material properties, top-tension force, constraints, etc. In addition, it is obvious that EMM are suitable to study the global working condition while LSM can be utilized to obtain the results in every single composite layer.

  17. Drift wave coherent vortex structures in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Su, X.N.

    1992-01-01

    Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations

  18. Propagation of optical vortex beams and nucleation of vortex-antivortex pairs in disordered nonlinear photonic lattices

    International Nuclear Information System (INIS)

    Cho, Yeong-Kwon; Kim, Ki-Hong

    2014-01-01

    The propagation of optical vortex beams through disordered nonlinear photonic lattices is numerically studied. The vortex beams are generated by using a superposition of several Gaussian laser beams arranged in a radially-symmetric manner. The paraxial nonlinear Schroedinger equation describing the longitudinal propagation of the beam array through nonlinear triangular photonic lattices with two-dimensional disorder is solved numerically by using the split-step Fourier method. We find that due to the spatial disorder, the vortex beam is destabilized after propagating a finite distance and new vortex-antivortex pairs are nucleated at the positions of perfect destructive interference. We also find that in the presence of a self-focusing nonlinearity, the vortex-antivortex pair nucleation is suppressed and the vortex beam becomes more stable, while a self-defocusing nonlinearity enhances the vortex-antivortex pair nucleation.

  19. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    Science.gov (United States)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  20. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  1. Oblique interaction of a laminar vortex ring with a non-deformable free surface: Vortex reconnection and breakdown

    International Nuclear Information System (INIS)

    Balakrishnan, S K; Thomas, T G; Coleman, G N

    2011-01-01

    Direct Numerical Simulation (DNS) is used to study the interaction of a laminar vortex ring with a non-deformable, free-slip surface at an oblique angle of incidence. The interaction leads to the well-known phenomenon of vortex reconnection. It was found that the reconnection process leads to rapid production of small-scale vortical structures. This phenomenon was found to be related to the kinematics of the reconection process.

  2. Vortex profiles and vortex interactions at the electroweak crossover

    OpenAIRE

    Chernodub, M. N.; Ilgenfritz, E. -M.; Schiller, A.

    1999-01-01

    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.

  3. Optical vortex scanning inside the Gaussian beam

    International Nuclear Information System (INIS)

    Masajada, J; Leniec, M; Augustyniak, I

    2011-01-01

    We discussed a new scanning method for optical vortex-based scanning microscopy. The optical vortex is introduced into the incident Gaussian beam by a vortex lens. Then the beam with the optical vortex is focused by an objective and illuminates the sample. By changing the position of the vortex lens we can shift the optical vortex position at the sample plane. By adjusting system parameters we can get 30 times smaller shift at the sample plane compared to the vortex lens shift. Moreover, if the range of vortex shifts is smaller than 3% of the beam radius in the sample plane the amplitude and phase distribution around the phase dislocation remains practically unchanged. Thus we can scan the sample topography precisely with an optical vortex

  4. Superconducting coherence in a vortex line liquid

    International Nuclear Information System (INIS)

    Chen, T.; Teitel, S.

    1995-01-01

    We carry out simulations of the anisotropic uniformly frustrated 3d XY model, as a model for vortex line fluctuations in high T c superconductors. We compute the phase diagram as a function of temperature and anisotropy, for a fixed applied magnetic field B. We find two distinct phase transitions. Upon heating, there is first a lower T c perpendicular where the vortex line lattice melts and super-conducting coherence perpendicular to the applied magnetic field vanishes. At a higher T cz , within the vortex line liquid, superconducting coherence parallel to the applied magnetic field vanishes. For finite anisotropy, both T c perpendicular and T cz lie well below the crossover from the vortex line liquid to the normal state

  5. Vortex lattice melting, pinning and kinetics

    International Nuclear Information System (INIS)

    Doniach, S.; Ryu, S.; Kapitulnik, A.

    1994-01-01

    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  6. Control of vortex breakdown in a closed cylinder with a small rotating rod

    DEFF Research Database (Denmark)

    Lo Jacono, D.; Sørensen, Jens Nørkær; Thompson, M.C.

    2008-01-01

    Effective control of vortex breakdown in a cylinder with a rotating lid was achieved with small rotating rods positioned on the stationary lid. After validation with accurate measurements using a novel stereoscopic particle image velocimetry (SPIV) technique, analysis of numerical simulations using...... a high-order spectral element method has been undertaken. The effect of a finite length rod creates additional source terms of vorticity as the rod rotates. These additional source terms and their spatial locations influence the occurrence of the vortex breakdown....

  7. Vortex dynamics in Josephson junctions arrays

    International Nuclear Information System (INIS)

    Shalom, Diego Edgar

    2005-01-01

    In this work we study the dynamics of vortices in two-dimensional overdamped Josephson Junctions Arrays (JJA) driven by dc current in a wide range of conditions varying magnetic field and temperature using experiments, numerical simulations and analytic studies.We develop the Fixed Phase method, a variation of numeric relaxation techniques in which we fix and control the phase of some islands, adjacent to the vortex center, while allowing all other phases in the system to relax.In this way we are able to pull and push the vortex uphill, as we are forcing the center of rotation of the vortex currents to be in a defined location, allowing us to calculate the potential energy of a vortex located in any arbitrary position.We use this method to study the potential energy of a vortex in a variety of situations in homogeneous and non-homogeneous JJA, such as arrays with defects, channel arrays and ratchets.We study the finite size effects in JJA by means of analytic and numerical tools.We implement the rings model, in which we replace the two-dimensional square array by a series of square, concentric, uncoupled rings. This is equivalent to disregarding the radial junctions that couple consecutive rings.In spite of its extreme simplicity, this model holds the main ingredients of the magnetic dependence of the energy.We combine this model with other terms that take into account the dependence in the position of the vortex to obtain a general expression for the potential energy of a vortex in a finite JJA with applied magnetic field.We also present an expression for the first critical field, corresponding to the value of the magnetic field in which the entrance of the first vortex becomes energetically favorable.We build and study JJA modulated to form periodic and asymmetrical potentials for the vortices, named ratchet potentials.The experimental results clearly show the existence of a rectification in the motion of vortices in these potentials.Under certain conditions we

  8. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect

    Science.gov (United States)

    Proctor, Fred H.

    2014-01-01

    This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.

  9. Modeling Thermally Driven Flow Problems with a Grid-Free Vortex Filament Scheme: Part 1

    Science.gov (United States)

    2018-02-01

    simulation FMM Fast Multipole Method GPUs graphic processing units LES Large Eddy Simulation M-O Monin-Obukhov MPI Message Passing Interface Re Reynolds...mail.mil>. Grid-free representation of turbulent flow via vortex filaments offers a means for large eddy simulations that faithfully and efficiently...particle, Lagrangian, turbulence, grid-free, large eddy simulation , natural convection, thermal bubble 56 Pat Collins 301-394-5617Unclassified

  10. Wake Vortex Avoidance System and Method

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  11. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  12. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    International Nuclear Information System (INIS)

    Galvis, J.A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-01-01

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  13. Topological dynamics of vortex-line networks in hexagonal manganites

    Science.gov (United States)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  14. Soliton on thin vortex filament

    International Nuclear Information System (INIS)

    Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.

    1990-12-01

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  15. BOOK REVIEW: Vortex Methods: Theory and Practice

    Science.gov (United States)

    Cottet, G.-H.; Koumoutsakos, P. D.

    2001-03-01

    The book Vortex Methods: Theory and Practice presents a comprehensive account of the numerical technique for solving fluid flow problems. It provides a very nice balance between the theoretical development and analysis of the various techniques and their practical implementation. In fact, the presentation of the rigorous mathematical analysis of these methods instills confidence in their implementation. The book goes into some detail on the more recent developments that attempt to account for viscous effects, in particular the presence of viscous boundary layers in some flows of interest. The presentation is very readable, with most points illustrated with well-chosen examples, some quite sophisticated. It is a very worthy reference book that should appeal to a large body of readers, from those interested in the mathematical analysis of the methods to practitioners of computational fluid dynamics. The use of the book as a text is compromised by its lack of exercises for students, but it could form the basis of a graduate special topics course. Juan Lopez

  16. Rotation and oscillation of nonlinear dipole vortex in the drift-unstable plasma

    International Nuclear Information System (INIS)

    Orito, Kohtaro; Hatori, Tadatsugu.

    1997-10-01

    The behaviors of the nonlinear dipole vortex in the drift unstable plasma are studied by numerical approaches. Model equations used in numerical simulation are derived from two-fluid model and are composed of two equations with respect to the electrostatic potential and the density perturbation. When the initial dipole vortex is inclined at some angle with respect to the direction of the drift velocity, the dipole vortex oscillates or rotates in the first stage. These phenomenon also happen in the stable system. In the second stage, one part of the dipole vortex grows and another decays because of the destabilization. The shrunk vortex rotates around the enlarged vortex. Consequently, a monopole vortex appears out of the dipole vortex. (author)

  17. Verification of an analytic fit for the vortex core profile in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Verhelst, Nick; Klimin, Serghei; Tempere, Jacques

    2017-01-01

    Highlights: • The vortex profile in an imbalanced Fermi condensate is investigated. • The analytic fit for the vortex profile is compared with numerical simulations. • The analytic fit excellently agrees with numeric results in the BCS-BEC crossover. - Abstract: A characteristic property of superfluidity and -conductivity is the presence of quantized vortices in rotating systems. To study the BEC-BCS crossover the two most common methods are the Bogoliubov-De Gennes theory and the usage of an effective field theory. In order to simplify the calculations for one vortex, it is often assumed that the hyperbolic tangent yields a good approximation for the vortex structure. The combination of a variational vortex structure, together with cylindrical symmetry yields analytic (or numerically simple) expressions. The focus of this article is to investigate to what extent this analytic fit truly reflects the vortex structure throughout the BEC-BCS crossover at finite temperatures. The vortex structure will be determined using the effective field theory presented in [Eur. Phys. Journal B 88, 122 (2015)] and compared to the variational analytic solution. By doing this it is possible to see where these two structures agree, and where they differ. This comparison results in a range of applicability where the hyperbolic tangent will be a good fit for the vortex structure.

  18. Verification of an analytic fit for the vortex core profile in superfluid Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Verhelst, Nick, E-mail: nick.verhelst@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Klimin, Serghei, E-mail: sergei.klimin@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Department of Theoretical Physics, State University of Moldova, Republic of Moldova (Moldova, Republic of); Tempere, Jacques [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University (United States)

    2017-02-15

    Highlights: • The vortex profile in an imbalanced Fermi condensate is investigated. • The analytic fit for the vortex profile is compared with numerical simulations. • The analytic fit excellently agrees with numeric results in the BCS-BEC crossover. - Abstract: A characteristic property of superfluidity and -conductivity is the presence of quantized vortices in rotating systems. To study the BEC-BCS crossover the two most common methods are the Bogoliubov-De Gennes theory and the usage of an effective field theory. In order to simplify the calculations for one vortex, it is often assumed that the hyperbolic tangent yields a good approximation for the vortex structure. The combination of a variational vortex structure, together with cylindrical symmetry yields analytic (or numerically simple) expressions. The focus of this article is to investigate to what extent this analytic fit truly reflects the vortex structure throughout the BEC-BCS crossover at finite temperatures. The vortex structure will be determined using the effective field theory presented in [Eur. Phys. Journal B 88, 122 (2015)] and compared to the variational analytic solution. By doing this it is possible to see where these two structures agree, and where they differ. This comparison results in a range of applicability where the hyperbolic tangent will be a good fit for the vortex structure.

  19. Metamorphosis of a Hairpin Vortex into a Young Turbulent Spot

    Science.gov (United States)

    Singer, Bart A.; Joslin, Ronald D.

    1995-01-01

    Direct numerical simulation was used to study the formation and growth of a hairpin vortex in a flat-plate boundary layer and its later development into a young turbulent spot. Fluid injection through a slit in the wall triggered the initial vortex. The legs of the vortex were stretched into a hairpin shape as it traveled downstream. Multiple hairpin vortex heads developed between the stretched legs. New vortices formed beneath the streamwise-elongated vortex legs. The continued development of additional vortices resulted in the formation of a traveling region of highly disturbed ow with an arrowhead shape similar to that of a turbulent spot.

  20. Focus detection by shearing interference of vortex beams for non-imaging systems.

    Science.gov (United States)

    Li, Xiongfeng; Zhan, Shichao; Liang, Yiyong

    2018-02-10

    In focus detection of non-imaging systems, the common image-based methods are not available. Also, interference techniques are seldom used because only the degree with hardly any direction of defocus can be derived from the fringe spacing. In this paper, we propose a vortex-beam-based shearing interference system to do focus detection for a focused laser direct-writing system, where a vortex beam is already involved. Both simulated and experimental results show that fork-like features are added in the interference patterns due to the existence of an optical vortex, which makes it possible to distinguish the degree and direction of defocus simultaneously. The theoretical fringe spacing and resolution of this method are derived. A resolution of 0.79 μm can be achieved under the experimental combination of parameters, and it can be further improved with the help of the image processing algorithm and closed-loop controlling in the future. Finally, the influence of incomplete collimation and the wedge angle of the shear plate is discussed. This focus detection approach is extremely appropriate for those non-imaging systems containing one or more focused vortex beams.

  1. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  2. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    Science.gov (United States)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  3. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  4. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    Science.gov (United States)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  5. Trailing Vortex-Induced Loads During Close Encounters in Cruise

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.

    2015-01-01

    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.

  6. Nonlinear Binormal Flow of Vortex Filaments

    Science.gov (United States)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  7. Simulation of Rayleigh--Taylor flows using vortex blobs

    International Nuclear Information System (INIS)

    Kerr, R.M.

    1988-01-01

    An inviscid boundary-integral method is modified in order to study the single-scale Rayleigh--Taylor instability for arbitrary Atwood number. The primary modification uses vortex blobs to smooth the Green's function and suppress a finite time singularity in the curvature. Additional modifications to earlier codes such as using second-order central differences along the interface to accommodate spikes in the vorticity and spreading the nodes evenly along the interface to suppress clustering of nodes are designed to maintain resolution and accuracy. To achieve second-order accuracy in time when the nodes are spread, an extra predictor step is needed that shifts the nodes before the variables are advanced. The method successfully follows the development of a single mode to states with asymptotic velocities for the bubble and spike that depend on the Atwood number and are independent of the blob size. Incipient droplet formation is observed. copyright 1988 Academic Press, Inc

  8. Study on the Temperature Separation Phenomenon in a Vortex Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ye, A Ran; Guang, Zhang; Kim, Heuy Dong [Andong National University, Andong (Korea, Republic of)

    2014-09-15

    A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

  9. Vortex filament method as a tool for computational visualization of quantum turbulence

    Science.gov (United States)

    Hänninen, Risto; Baggaley, Andrew W.

    2014-01-01

    The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear. PMID:24704873

  10. Mathematical aspects of vortex dynamics; Proceedings of the Workshop, Leesburg, VA, Apr. 25-27, 1988

    International Nuclear Information System (INIS)

    Caflisch, R.E.

    1989-01-01

    Various papers on the mathematical aspects of vortex dynamics are presented. Individual topics addressed include: mathematical analysis of vortex dynamics, improved vortex methods for three-dimensional flows, the relation between thin vortex layer and vortex sheets, computations of broadband instabilities in a class of closed-streamline flows, vortex-sheet dynamics and hyperfunction theory, free surface vortex method with weak viscous effects, iterative method for computing steady vortex flow systems, invariant measures for the two-dimensional Euler flow, similarity flows containing two-branched vortex sheets, strain-induced vortex stripping, convergence of the vortex method for vortex sheets, boundary conditions and deterministic vortex methods for the Navier-Stokes equations, vorticity creation boundary conditions, vortex dynamics of stratified flows, vortex breakdown, numerical studies of vortex reconnection, vortex lattices in theory and practice, dynamics of vortex structures in the wall region of a turbulent boundary layer, and energy of a vortex lattice configuration

  11. Vectorial diffraction properties of THz vortex Bessel beams.

    Science.gov (United States)

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  12. Controlling vortex chirality and polarity by geometry in magnetic nanodots

    OpenAIRE

    Agramunt Puig, Sebastià

    2014-01-01

    The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...

  13. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  14. On simulation of no-slip condition in the method of discrete vortices

    Science.gov (United States)

    Shmagunov, O. A.

    2017-10-01

    When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.

  15. Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval

    Science.gov (United States)

    Yamamoto, T.

    2012-02-01

    The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.

  16. Simulation of a three-dimensional vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Menne, Stefan

    1989-01-01

    The breakdown of a vortex flow in a tube is studied for a slightly diverging tube by means of a numerical solution of the Navier-Stokes equations for a quasi-stationary, incompressible, laminar flow. Numerical results are compared to experiments of Faler and Leibovich. The numerical data display features similar to the experimental results concerning breakdown conditions, location, and structure.

  17. Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings

    Directory of Open Access Journals (Sweden)

    Thomas Lambert

    2017-04-01

    Full Text Available Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load estimation techniques in order to predict the aerodynamic lift and drag time histories produced by flapping rectangular wings. The load estimation approaches are the Katz, Joukowski and simplified Leishman–Beddoes techniques. The simulations’ predictions are compared to experimental measurements from wind tunnel tests of a flapping and pitching wing. Three types of kinematics are investigated, pitch-leading, pure flapping and pitch lagging. It is found that pitch-leading tests can be simulated quite accurately using either the Katz or Joukowski approaches as no measurable flow separation occurs. For the pure flapping tests, the Katz and Joukowski techniques are accurate as long as the static pitch angle is greater than zero. For zero or negative static pitch angles, these methods underestimate the amplitude of the drag. The Leishman–Beddoes approach yields better drag amplitudes, but can introduce a constant negative drag offset. Finally, for the pitch-lagging tests the Leishman–Beddoes technique is again more representative of the experimental results, as long as flow separation is not too extensive. Considering the complexity of the phenomena involved, in the vast majority of cases, the lift time history is predicted with reasonable accuracy. The drag (or thrust time history is more challenging.

  18. Roles of pinning strength and density in vortex melting

    International Nuclear Information System (INIS)

    Obaidat, I M; Khawaja, U Al; Benkraouda, M

    2008-01-01

    We have investigated the role of pinning strength and density on the equilibrium vortex-lattice to vortex-liquid phase transition under several applied magnetic fields. This study was conducted using a series of molecular dynamic simulations on several samples with different strengths and densities of pinning sites which are arranged in periodic square arrays. We have found a single solid-liquid vortex transition when the vortex filling factor n>1. We have found that, for fixed pinning densities and strengths, the melting temperature, T m , decreases almost linearly with increasing magnetic field. Our results provide direct numerical evidence for the significant role of both the strength and density of pinning centers on the position of the melting line. We have found that the vortex-lattice to vortex-liquid melting line shifts up as the pinning strength or the pinning density was increased. The effect on the melting line was found to be more pronounced at small values of strength and density of pinning sites

  19. Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Iowa State University, Aerospace Engineering Department, Ames, IA (United States); University of Minnesota, Saint Anthony Falls Laboratory, Minneapolis, MN (United States); Sarkar, Partha P. [Iowa State University, Aerospace Engineering Department, Ames, IA (United States)

    2012-02-15

    The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03-0.3 (vane angle {theta}{sub v} = 15 -60 ), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, {theta}{sub v} = 15 ) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1-0.3, {theta}{sub v} = 30 -60 ). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio ({theta}{sub v} = 45 ) that at the low swirl ratio ({theta}{sub v} = 15 ), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the

  20. A multiresolution remeshed particle vortex method using patches

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Cottet, George-Henri; Walther, Jens Honore

    vortex particle-mesh VIC algorithm interpolates particle vorticity to a mesh, solves a Poisson equation for the stream function using FFTs and calculates velocities as the curl of the stream function. With both vorticity and velocity available on the mesh, values of the substantial derivative of particle...... implementation with patches of varying resolution, is applied to the two-dimensional flow past a cylinder. The vorticity field can be divided into two regions, an arbitrary patch of vorticity and the remaining exterior vorticity field. Due to the linearity of the Poisson equation the velocity field corresponding...... to the total vorticity field is the sum of the free space solutions to the Poisson equation to each region. Hereby the flow on the patch can be simulated at a higher resolution, while including the influence from the coarser exterior region. Particles are remeshed and interpolated only to the region from which...

  1. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2014-06-01

    Full Text Available An improved delayed detached eddy simulation (IDDES method based on the k-ω-SST (shear stress transport turbulence model was applied to predict the unsteady vortex breakdown past an 80°/65° double-delta wing (DDW, where the angles of attack (AOAs range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such measurements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36°, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.

  2. Vortex pinning by point defect in superconductors

    International Nuclear Information System (INIS)

    Liao Hongyin; Zhou Shiping; Du Haochen

    2003-01-01

    We apply the periodic time-dependent Ginzburg-Landau model to study vortex distribution in type-II superconductors with a point-like defect and square pinning array. A defect site will pin vortices, and a periodic pinning array with right geometric parameters, which can be any form designed in advance, shapes the vortex pattern as external magnetic field varies. The maximum length over which an attractive interaction between a pinning centre and a vortex extends is estimated to be about 6.0ξ. We also derive spatial distribution expressions for the order parameter, vector potential, magnetic field and supercurrent induced by a point defect. Theoretical results and numerical simulations are compared with each other and they are consistent

  3. Development of new tip-loss corrections based on vortex theory and vortex methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2014-01-01

    A new analytical formulation of the tip-loss factor is established based on helical vortex lament solutions. The derived tip-loss factor can be applied to wind-turbines, propellers or other rotary wings. Similar numerical formulations are used to assess the influence of wake expansion on tip...

  4. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  5. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  6. Thermal coupling effect on the vortex dynamics of superconducting thin films: time-dependent Ginzburg–Landau simulations

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2018-05-01

    In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.

  7. A Prescribed-Wake Vortex Line Method for Aerodynamic Analysis and Optimization of Multi-Rotor Wind Turbines

    OpenAIRE

    Rosenberg, Aaron; Sharma, Anupam

    2015-01-01

    The objective of this paper is to extend the xed wake vortex lattice method (VLM), used to evaluate the performance of single-rotor wind turbines (SRWT), for use in analyzing dual-rotor wind turbines (DRWT). VLM models wind turbine blades as bound vortex laments with helical trailing vortices. Using the Biot-Savart law, it is possible to calculate the induction in the plane of rotation allowing for a computationally inexpensive, yet accurate, prediction of blade loading and power performance....

  8. Crossflow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

    Science.gov (United States)

    Joslin, R. D.; Streett, C. L.

    1994-01-01

    The spatial evolution of cross flow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible Navier- Stokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to study the effect of initial amplitude on the disturbance evolution, to determine the role of traveling cross ow modes in transition, and to devise a correlation function to guide theories of transition prediction. In each simulation, the vortex packets first enter a chordwise region of linear independent growth, then, the individual packets coalesce downstream and interact with adjacent packets, and, finally, the vortex packets nonlinearly interact to generate inflectional velocity profiles. As the initial amplitude of the disturbance is increased, the length of the evolution to breakdown decreases. For this pressure gradient, stationary modes dominate the disturbance evolution. A two-coeffcient function was devised to correlate the simulation results. The coefficients, combined with a single simulation result, provide sufficient information to generate the evolution pattern for disturbances of any initial amplitude.

  9. Vortex dynamics in magnetized plasmas

    International Nuclear Information System (INIS)

    Kono, M.; Krane, B.; Pecseli, H.L.; Trulsen, J.

    1998-01-01

    Low frequency dynamics of electrostatic fluctuations in strongly magnetized plasmas have been studied. It was found that perturbations in density and potential can be very localized, indicating the applicability of an approximate description based on a finite number of vortices. A model based on a few isolated vortical structures is discussed, with particular attention to vortex collapse, where three vortices merge together within a finite time, or to the converse process, i.e. a vortex explosion. Details of these particular types of vortex dynamics depend on the actual model used for describing the electrons, the presence of a Debye shielding in particular. A ''boomerang''-type of evolution was found, where three shielded vortices expand initially, just as their unshielded counterparts, but eventually the expansion is arrested, and they start converging to collapse ultimately. The study is extended by a numerical simulation where the point model is relaxed to a continuous, but localized, vorticity distribution with finite size vortices. (orig.)

  10. Numerical modeling of turbulent swirling flow in a multi-inlet vortex nanoprecipitation reactor using dynamic DDES

    Science.gov (United States)

    Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.

    2015-11-01

    The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.

  11. Numerical simulation of an excited round jet under helical disturbances by three-dimensional discrete vortex method; Helical kakuran ni yoru reiki enkei funryu no uzuho simulation

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, S.; Kiya, M.; Mochizuki, O. [Hokkaido University, Sapporo (Japan)

    1998-09-25

    The evolution of vortical structure in an impulsively started round jet has been studied numerically by means of a three-dimensional vortex blob method. The viscous diffusion of vorticity is approximated by a core spreading model originally proposed by Leonard (1980). The jet is forced by axisymmetric, helical and multiple disturbances. The multiple disturbances are combinations of two helical disturbances of the same mode rotating in the opposite directions. The multiple disturbances are found to enhance both the generation of small-scale structures and the growth rate of the jet. The small-scale structures have highly organized spatial distributions. The core spreading method is effective in aquiring the core overlapping in regions of high extensional rate of strain. 21 refs., 12 figs.

  12. Reduced-order aeroelastic model for limit-cycle oscillations in vortex-dominated unsteady airfoil flows

    Science.gov (United States)

    Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok

    2017-11-01

    In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.

  13. The interaction of counter-rotating strained vortex pairs with a third vortex

    International Nuclear Information System (INIS)

    Higgins, Keith; Ooi, Andrew; Chong, M S; Ruetten, Markus

    2009-01-01

    The vortex dynamics caused by the interaction of counter-rotating Burgers vortex pairs with a third Burgers vortex in a straining flow is investigated numerically. These interactions blend vortex merging and cancellation effects, and the aim is to investigate how the third vortex might influence the evolution of the vortex pair. Many different choices of initial conditions for the pair and third vortex exist, so attention is restricted to a class of initial conditions in which the vortex pair initially moves in the general direction of vortex 3, and the distance from vortex 3 to the line of free propagation of the vortex pair is the 'offset' parameter δ. A series of calculations with 0≤δ≤4 reveals three types of intermediate-time vortex dynamics that are called merging, swapping and switching. The evolution of the vortex core separation and core vorticity level diagnostics are used to determine the points of transition from merging to swapping and switching. In the longer term, vortex merging, cancellation and straining reduces the three vortices to a single vortex. Other diagnostics of interest are also monitored, including the spatial distributions of the rate of viscous dissipation and terms contributing to the vorticity transport equation. During the merging phase for the case with δ=0, double-peak and double-trough structures are observed in the dissipation-rate contours. In addition, the diffusion of vorticity dominates the vortex-stretching effect near vortex 1 during its absorbtion by vortex 3. Finally, the dynamics of the three vortices are also examined by computing a co-rotating angular velocity and stream function. A series of peaks in the co-rotating angular velocity is found to be associated with the conservation of angular momentum and interactions with a 'ghost' vortex in the co-rotating stream function.

  14. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  15. Vortex Dynamics in Superconductors with Different Types of Pinning Potentials

    International Nuclear Information System (INIS)

    Laguna, Maria Fabiana

    2001-01-01

    In this work we study the behavior of the vortex system in the mixed state of a type II superconductor when it interacts with different kinds of pinning potentials. To do this, we perform numerical simulations in the presence of an external magnetic field, by making use of two different approaches.One corresponds to a Langevin simulation of the three dimensional XY model or Josephson-junction network, whereas the other corresponds to a Molecular dynamics simulation of two dimensional point-like vortices.We analyze the transport properties of highly anisotropic superconductors with different kinds of topological disorder in the configuration in which the external field is applied perpendicular to the CuO planes.We found that for systems with point defects the activation energy is the same for the two components of the resistivity, while in systems with columnar defects the activation energies can be different.We also study the structure, phase transitions and transport properties of the vortex system when the external magnetic field lies parallel to the planes in layered superconductors. We analyze the stability of different phases at low temperatures and show under which conditions the smectic phase is stable.Our results indicate the presence of the smectic phase in an intermediate range of temperatures.We have studied a vortex array in a periodic pinning potential with triangular and kagome geometries.We obtain the ground state vortex configurations and calculate some thermodynamic quantities for different magnetic fields.We observe several stages of lattice pinning and melting and we characterize different phases and transitions between them.Finally, simulating the Bitter pinning effect over the vortex system, we study static and dynamic properties of the vortex system in the presence of the surface Bitter pinning and the bulk pinning.We found low temperature structures similar to those obtained experimentally.We analyze the dynamics of the nucleation and growth

  16. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  17. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  18. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  19. Vortex Transmutation

    International Nuclear Information System (INIS)

    Ferrando, Albert; Garcia-March, Miguel-Angel; Zacares, Mario; Monsoriu, Juan A.; Cordoba, Pedro Fernandez de

    2005-01-01

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a 'transmutation pass rule' determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials

  20. Point vortex description of drift wave vortices: Dynamics and transport

    International Nuclear Information System (INIS)

    Kono, M.; Horton, W.

    1991-05-01

    Point-vortex description for drift wave vortices is formulated based on the Hasegawa-Mima equation to study elementary processes for the interactions of vortices as well as statistical properties like vortex diffusion. Dynamical properties of drift wave vortices known by numerical experiments are recovered. Furthermore a vortex diffusion model discussed by Horton based on numerical simulations is shown to be analytically obtained. A variety of phenomena arising from the short-range nature of the interaction force of point vortices are suggested. 12 refs., 10 figs

  1. Flows about a rotating circular cylinder by the discrete-vortex method

    Science.gov (United States)

    Kimura, Takeyoshi; Tsutahara, Michihisa

    1987-01-01

    A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.

  2. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  3. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    International Nuclear Information System (INIS)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.; Nutto, Ch.; Rezaei, R.; Schmidt, W.; Martinez Pillet, V.; Bonet Navarro, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Knoelker, M.

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  4. Study of three-dimensional effects on vortex breakdown

    Science.gov (United States)

    Salas, M. D.; Kuruvila, G.

    1988-01-01

    The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

  5. Precessing vortex core in a swirling wake with heat release

    International Nuclear Information System (INIS)

    Gorbunova, A.; Klimov, A.; Molevich, N.; Moralev, I.; Porfiriev, D.; Sugak, S.; Zavershinskii, I.

    2016-01-01

    Highlights: • Precessing vortex core is left-handed co-rotated bending single-vortex structure. • The precession frequency grows with the heat-source power. • Growth of the heat-source power decreases vortex core oscillations. • The left-handed bending mode is the most unstable mode in the low-density wake. - Abstract: Numerical simulation of the non-stationary three-dimensional swirling flow is presented for an open tube with a paraxial heat source. In the considered type of swirling flows, it is shown that a precessing vortex core (PVC) appears. The obtained PVC is a left-handed co-rotated bending single-vortex structure. The influence of the heat release enhancement on parameters of PVC is investigated. Using various turbulence models (the Spalart–Allmaras, k–ω and SST models), it is shown that an increase in the heat-source power leads to an increase in the PVC frequency and to a decrease in the amplitude of PVC oscillations. Moreover, we conduct the linear stability analysis of the simplified flow model with paraxial heating (the Rankine vortex with the piecewise axial flow and density) and demonstrate that its results correspond to the results of numerical simulations rather well. In particular, we prove that the left-handed bending mode (m = +1) is the most unstable one in the low-density wake and its frequency increases with a decrease of density ratio that is similar to the behavior of precession frequency with an increase of heat-source power.

  6. Vortex molecule in a nanoscopic square superconducting plate

    International Nuclear Information System (INIS)

    Suematsu, Hisataka; Kato, Masaru; Ishida, Takekazu; Koyama, Tomio; Machida, Masahiko

    2010-01-01

    Using the finite element method and solving the Bogoliubov-de Gennes equation, we have investigated magnetic field dependence of the stable vortex structures in a mesoscopic superconducting plate at low temperature (T = 0.1T c ). Because of the compactness of vortex configuration, there is interference between bound states around vortices and such quasi-particle structure affects the vortex configuration. Especially in two-vortices state, vortices form a molecule-like state, where bound states of each vortex form molecular orbital like bonding and anti-bonding states. The vortex configuration is different from that, which is expected from the repulsive interaction between vortices. (author)

  7. Vortex sorter for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik

    2004-01-01

    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing

  8. Magnetization reversal in circular vortex dots of small radius.

    Science.gov (United States)

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  9. On the electron vortex beam wavefunction within a crystal

    International Nuclear Information System (INIS)

    Mendis, B.G.

    2015-01-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2 rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the ‘free space’ vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the pendellösung, i.e. at a given depth probes with relatively constant can be in a more mixed state compared to those with more rapidly varying . This suggests that minimising oscillations in the pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. - Highlights: • Equations are derived for vortex decomposition due to scattering within a crystal. • There is no direct correlation between vortex decomposition and pendellösung. • Results are also discussed in the context of EMCD measurements

  10. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  11. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  12. Numerical and Experimental Study on a Model Draft Tube with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Tian Xiaoqing

    2013-01-01

    Full Text Available A model water turbine draft tube containing vortex generators (VG was studied. Numerical simulations were performed to investigate 55 design variations of the vortex generators in a draft tube. After analyzing the shapes of streamlines and velocity distributions in the tube and comparing static pressure recovery coefficients (SPRC in different design variations, an optimum vortex generator layout, which can raise SPRC of the draft tube by 4.8 percent, was found. To verify the effectiveness of the vortex generator application, a series of experiments were carried out. The results show that by choosing optimal vortex generator parameters, such as the installation type, installation position, blade-to-blade distance, and blade inclination angle, the draft tube equipped vortex generators can effectively raise their SPRC andworking stability.

  13. Vortex properties of mesoscopic superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)

    2010-10-01

    In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).

  14. Numerical Investigation on Vortex-Structure Interaction Generating Aerodynamic Noises for Rod-Airfoil Models

    Directory of Open Access Journals (Sweden)

    FeiFei Liu

    2017-01-01

    Full Text Available In past several decades, vortex-structure interaction generated aerodynamic noise became one of the main concerns in aircraft design. In order to understand the mechanism, the acoustic analogy method combined with the RANS-based nonlinear acoustics solver (NLAS is investigated. The numerical method is firstly evaluated by the experiment data of the classic rod-airfoil model. Compared with the traditional analogy methods, the RANS/NLAS can capture the nonlinear aerodynamic noise more accurately with lower gird requirements. Then different rod-airfoil configurations were simulated to investigate the aeroacoustic interaction effects. The numerical results are in good agreement with those of the earlier experimental research. It is found that the vortex-shedding crash to the airfoil is the main reason for the noise generation which is dependent on the configurations, distance, and flow conditions.

  15. A simple mass-conserved level set method for simulation of multiphase flows

    Science.gov (United States)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  16. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    Science.gov (United States)

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  17. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device.

    Science.gov (United States)

    Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De

    2015-09-20

    Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.

  18. A computational study of the topology of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  19. On the electron vortex beam wavefunction within a crystal.

    Science.gov (United States)

    Mendis, B G

    2015-10-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Vortex dynamics in ruptured and unruptured intracranial aneurysms

    Science.gov (United States)

    Trylesinski, Gabriel

    Intracranial aneurysms (IAs) are a potentially devastating pathological dilation of brain arteries that affect 1.5-5 % of the population. Causing around 500 000 deaths per year worldwide, their detection and treatment to prevent rupture is critical. Multiple recent studies have tried to find a hemodynamics predictor of aneurysm rupture, but concluded with distinct opposite trends using Wall Shear Stress (WSS) based parameters in different clinical datasets. Nevertheless, several research groups tend to converge for now on the fact that the flow patterns and flow dynamics of the ruptured aneurysms are complex and unstable. Following this idea, we investigated the vortex properties of both unruptured and ruptured cerebral aneurysms. A brief comparison of two Eulerian vortex visualization methods (Q-criterion and lambda 2 method) showed that these approaches gave similar results in our complex aneurysm geometries. We were then able to apply either one of them to a large dataset of 74 patient specific cases of intracranial aneurysms. Those real cases were obtained by 3D angiography, numerical reconstruction of the geometry, and then pulsatile CFD simulation before post-processing with the mentioned vortex visualization tools. First we tested the two Eulerian methods on a few cases to verify their implementation we made as well as compare them with each other. After that, the Q-criterion was selected as method of choice for its more obvious physical meaning (it shows the balance between two characteristics of the flow, its swirling and deformation). Using iso-surfaces of Q, we started by categorizing the patient-specific aneurysms based on the gross topology of the aneurysmal vortices. This approach being unfruitful, we found a new vortex-based characteristic property of ruptured aneurysms to stratify the rupture risk of IAs that we called the Wall-Kissing Vortices, or WKV. We observed that most ruptured aneurysms had a large amount of WKV, which appears to agree with

  1. A multilevel particle method for gas dynamics: application to multi-fluids simulation

    International Nuclear Information System (INIS)

    Weynans, Lisl

    2006-12-01

    In inertial confinement fusion, laser implosions require to know hydrodynamic flow in presence of shocks. This work is devoted to the evaluation of the ability of a particle-mesh method, inspired from Vortex-In-Cell methods, to simulate gas dynamics, especially multi-fluids. First, we develop a particle method, associated with a conservative re-meshing step, which is performed with high order interpolating kernels. We study theoretically and numerically this method. This analysis gives evidence of a strong relationship between the particle method and high order Lax-Wendroff-like finite difference schemes. We introduce a new scheme for the advection of particles. Then we implement a multilevel technique, inspired from AMR, which allows us to increase locally the accuracy of the computations. Finally we develop a level set-like technique, discretized on the particles, to simulate the interface between compressible flows. We use the multilevel technique to improve the interface resolution and the conservation of partial masses. (author)

  2. Hydrodynamic modelling of flow patterns in a vortex reactor - Application to the mixing study

    International Nuclear Information System (INIS)

    Zoppe, B.; Lebaigue, O.; Ducros, F.; Bertrand, M.

    2008-01-01

    In the fuel reprocessing industry, an un-baffled magnetic rod-stirred multiphase reactor was developed for a precipitation operation. The flow generated in such a reactor is complex and the rotating agitator at the bottom of tank creates a vortex on the liquid surface. A Computational Fluid Dynamics (CFD) modelling is developed based on a Large Eddy Scale (LES) approach for turbulence effect simulation. The numerical simulations are performed in 3-dimensions using the Trio-U code developed at the Commissariat a l'Energie Atomique (Cea). The vortex study is based on an interface tracking method and the rotating magnetic rod is taken into account through a free IBC immersed boundary. The hydrodynamic modelling is in good agreement with Nagata's theory and will be validated from experimental data obtained by laser doppler velocimetry (LDV) measurements. (authors)

  3. Auroral vortex street formed by the magnetosphere–ionosphere coupling instability

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2015-02-01

    Full Text Available By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  4. Auroral vortex street formed by the magnetosphere-ionosphere coupling instability

    Science.gov (United States)

    Hiraki, Y.

    2015-02-01

    By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  5. Numerical research of the swirling supersonic gas flows in the self-vacuuming vortex tube

    Science.gov (United States)

    Volov, V. T.; Lyaskin, A. S.

    2018-03-01

    This article presents the results of simulation for a special type of vortex tubes – self-vacuuming vortex tube (SVVT), for which extreme values of temperature separation and vacuum are realized. The main results of this study are the flow structure in the SVVT and energy loss estimations on oblique shock waves, gas friction, instant expansion and organization of vortex bundles in SVVT.

  6. A computational study of the taxonomy of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1990-01-01

    The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.

  7. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Numerical Study of a Southwest Vortex Rainstorm Process Influenced by the Eastward Movement of Tibetan Plateau Vortex

    Directory of Open Access Journals (Sweden)

    Xiaoli Liu

    2018-01-01

    Full Text Available A number of studies revealed the possible eastward movement of the Tibetan Plateau low-pressure system in summer and indicated the enhancement effect of this process on the southwest vortex in the Sichuan Basin, which can induce strong convective precipitation and flood events in China. In this study, a numerical simulation of a southwest vortex rainstorm process was performed. The results show that the low-pressure system originated from the Tibetan Plateau affects the southwest vortex mainly at the middle level, causing the strength increase of southwest vortex (SWV, and acts as a connection between the positive vorticity centers at the upper and lower layers. For the microscopic cloud structure, the vertical updraft of the cloud cluster embedded in the SWV increases as the low-pressure system from the plateau arrives at the Sichuan Basin. Vapor and liquid cloud water at the lower level are transported upward, based on which the ice cloud at the upper level and the warm cloud at the lower level are joined to create favorable conditions for the growth of ice crystals. As the ice crystals grow up, snow and graupel particles form, which substantially elevates the precipitation. This effect leads to the rapid development of SWV rainstorm clouds and the occurrence of precipitation. In addition to the effect of the plateau vortex, the subsequent merging of the convective clouds is another important factor for heavy rainfall because it also leads to development of convective clouds, causing heavy rainfall.

  9. Vortex lattices in different configurations of periodic pinning line-arrays

    International Nuclear Information System (INIS)

    Lima, Clessio Leao S.; Cabral, Leonardo R.E.; Souza Silva, Clecio C. de; Aguiar, J. Albino

    2006-01-01

    The vortex lattice (VL) ground-state configurations are found using Monte Carlo (MC) simulated annealing with a local molecular dynamics (MD) in the London limit. We study the field dependence of the melting temperature for commensurate and incommensurate vortex lattices interacting with different periodic arrays of pinning. We also investigated the proliferation of topological defects and its dependence on the periodic pinning array symmetry and temperature

  10. Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.

    Science.gov (United States)

    Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore

    2018-05-01

    We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

  11. Large Eddy Simulation of Sydney Swirl Non-Reaction Jets

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    The Sydney swirl burner non-reaction case was studied using large eddy simulation. The two-point correlation method was introduced and used to estimate grid resolution. Energy spectra and instantaneous pressure and velocity plots were used to identify features in flow field. By using these method......, vortex breakdown and precessing vortex core are identified and different flow zones are shown....

  12. Identification of vortexes obstructing the dynamo mechanism in laboratory experiments

    Science.gov (United States)

    Limone, A.; Hatch, D. R.; Forest, C. B.; Jenko, F.

    2013-06-01

    The magnetohydrodynamic dynamo effect explains the generation of self-sustained magnetic fields in electrically conducting flows, especially in geo- and astrophysical environments. Yet the details of this mechanism are still unknown, e.g., how and to which extent the geometry, the fluid topology, the forcing mechanism, and the turbulence can have a negative effect on this process. We report on numerical simulations carried out in spherical geometry, analyzing the predicted velocity flow with the so-called singular value decomposition, a powerful technique that allows us to precisely identify vortexes in the flow which would be difficult to characterize with conventional spectral methods. We then quantify the contribution of these vortexes to the growth rate of the magnetic energy in the system. We identify an axisymmetric vortex, whose rotational direction changes periodically in time, and whose dynamics are decoupled from those of the large scale background flow, that is detrimental for the dynamo effect. A comparison with experiments is carried out, showing that similar dynamics were observed in cylindrical geometry. These previously unexpected eddies, which impede the dynamo effect, offer an explanation for the experimental difficulties in attaining a dynamo in spherical geometry.

  13. Comment on ''Negative temperature of vortex motion''

    International Nuclear Information System (INIS)

    O'Neil, K.; Campbell, L.J.

    1993-01-01

    In a recent Brief Report and subsequently [Phys. Rev. A 43, 2050 (1991); 44, 8439 (1991)], Berdichevsky, Kunin, and Hussain claim that the ''Boltzmann temperature'' of a bounded point vortex system is always positive, and that the spatial inhomogeneities that evolve at high energies in such a system are incompatible with ergodicity of the dynamics. The argument given to support these claims neglected the presence of the fluid boundary. We prove that the Boltzmann temperature is in fact always negative, and present evidence that the vortex clumping that has been observed in simulations is consistent with ergodic dynamics

  14. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  15. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  16. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  17. A mass conserving level set method for detailed numerical simulation of liquid atomization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kun; Shao, Changxiao [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China); Yang, Yue [State Key Laboratory of Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Fan, Jianren, E-mail: fanjr@zju.edu.cn [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2015-10-01

    An improved mass conserving level set method for detailed numerical simulations of liquid atomization is developed to address the issue of mass loss in the existing level set method. This method introduces a mass remedy procedure based on the local curvature at the interface, and in principle, can ensure the absolute mass conservation of the liquid phase in the computational domain. Three benchmark cases, including Zalesak's disk, a drop deforming in a vortex field, and the binary drop head-on collision, are simulated to validate the present method, and the excellent agreement with exact solutions or experimental results is achieved. It is shown that the present method is able to capture the complex interface with second-order accuracy and negligible additional computational cost. The present method is then applied to study more complex flows, such as a drop impacting on a liquid film and the swirling liquid sheet atomization, which again, demonstrates the advantages of mass conservation and the capability to represent the interface accurately.

  18. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; Ragni, D.; van Bussel, G.J.W.

    2016-01-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the in_nite vortex cascade, a numerical model of four base-vortices is chosen to represent

  19. A Refined Model for Calculation of the Vortex Tube Thermal Characteristics

    Science.gov (United States)

    Biryuk, V. V.; Gorshkalev, A. A.; Uglanov, D. A.; Urlapkin, V. V.; Korneev, S. S.

    2018-01-01

    The article deals with the main types of vortex tubes, provides a brief description of the fundamental principles of the vortex interaction hypothesis. A physical process is represented reflecting the physical essence of the gas flow energetic separation process in the vortex tube due to the intensive turbulent heat exchange from the forced vortex to the free one. A method for refinement of the design characteristics for the cold and hot gas temperatures in a vortex tube through the employment of the gas-dynamic and thermodynamic corrections is proposed. A refined calculation method allows reaching close agreement between the cold gas temperature and the experimental values.

  20. Electron vortex beams prepared by a spiral aperture with the goal to measure EMCD on ferromagnetic films via STEM

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Darius, E-mail: d.pohl@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, d-01171 Dresden (Germany); Schneider, Sebastian [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, d-01171 Dresden (Germany); TU Dresden, Institute for Solid State Physics, d-01069 Dresden (Germany); Rusz, Jan [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, SE-75120 Uppsala (Sweden); Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, d-01171 Dresden (Germany)

    2015-03-15

    X-ray magnetic circular dichroism is a well established method to study element specific magnetic properties of a material, while electron magnetic circular dichroism (EMCD), which is the electron wave analogue to XMCD, is scarcely used today. Recently discovered electron vortex beams, that carry a discrete orbital angular momentum (OAM) L, are also predicted to reveal dichroic signals. Since electron beams can be easily focused down to sub-nanometer diameters, this novel technique promises the possibility to quantitatively determine local magnetic properties with unrivalled lateral resolution. As the spiralling wave front of the electron vortex beam has an azimutally growing phase shift of up to 2π and a phase singularity in its axial center, specially designed apertures are needed to generate such non-planar electron waves. We report on the preparation and successful implementation of spiral apertures into the condenser lens system of an aberration-corrected FEI Titan{sup 3} 80-300 transmission electron microscope (TEM). This setup allows to perform scanning TEM (STEM) with vortex beams carrying user-selected OAM. First experiments on the interaction of the vortex beam with a poly-crystalline sample are presented. Within the achieved signal to noise ratio no EMCD signal has been detected. This finding is supported by simulations of inelastic scattering of a beam generated by spiral aperture. - Highlights: • We show the implementation of a spiral aperture into a FEI Titan{sup 3} 80-300. • Experiments and simulations on the interaction of the vortex beam with a Ni sample are presented. • Both, simulations and experiments show no (or a not detectable small) EMCD signal. • The absence of an EMCD signal is explained by the superposition of different vortex states.

  1. Observation of an optical vortex beam from a helical undulator in the XUV region.

    Science.gov (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  2. Investigation of vortex breakdown on delta wings using Navier-Stokes equations

    Science.gov (United States)

    Hsu, C.-H.; Liu, C. H.

    1992-01-01

    An efficient finite-difference scheme solving for the three-dimensional incompressible Navier-Stokes equations is described. Numerical simulations of vortex breakdown are then carried out for a sharp-edged delta wing and a round-edged double-delta wing at high Reynolds numbers. Computed results show that several major features of vortex breakdown are qualitatively in agreement with observations made in experiments.

  3. Decay of the vortex tangle at zero temperature and quasiclassical turbulence

    International Nuclear Information System (INIS)

    Nemirovskii, Sergej K.

    2013-01-01

    We review and analyze a series of works, both experimental and numerical and theoretical, dealing with the decay of quantum turbulence at zero temperature. Free decay of the vortex tangle is a key argument in favor of the idea that a chaotic set of quantum vortices can mimic classical turbulence, or at least reproduce many of the basic features. The corresponding topic is referred as the quasiclassical turbulence. Appreciating significance of the challenging problem of classical turbulence it can be expressed that the idea to study it in terms of quantized line is indeed very important and may be regarded as a breakthrough. For this reason, the whole theory, together with the supporting experimental results and numerical simulations should be carefully scrutinized. One of the main arguments, supporting the idea of quasiclassical turbulence is the fact that vortex tangle decays at zero temperature, when the mutual friction is absent. Since all other possible mechanisms of dissipation of the vortex energy, discussed in literature, are related to the small scales, it is natural to suggest that the Kolmogorov cascade takes place with the flow of the energy in space of scales, just like as in the classical turbulence. In the present work we discuss an alternative mechanism of decay of the vortex tangle, which is not associated with dissipation at small scales. This mechanism is a diffusive-like spreading of the vortex tangle due to evaporation of small vortex loops. We discuss a number of experiments and numerical simulations, considering them from the point of view of alternative mechanism.

  4. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  5. A Coaxial Vortex Ring Model for Vortex Breakdown

    OpenAIRE

    Blackmore, Denis; Brons, Morten; Goullet, Arnaud

    2008-01-01

    A simple - yet plausible - model for B-type vortex breakdown flows is postulated; one that is based on the immersion of a pair of slender coaxial vortex rings in a swirling flow of an ideal fluid rotating around the axis of symmetry of the rings. It is shown that this model exhibits in the advection of passive fluid particles (kinematics) just about all of the characteristics that have been observed in what is now a substantial body of published research on the phenomenon of vortex breakdown....

  6. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  7. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    International Nuclear Information System (INIS)

    Reimann, Tommy

    2017-01-01

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  8. Effects of parallel dynamics on vortex structures in electron temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Nakata, M.; Watanabe, T.-H.; Sugama, H.; Horton, W.

    2011-01-01

    Vortex structures and related heat transport properties in slab electron temperature gradient (ETG) driven turbulence are comprehensively investigated by means of nonlinear gyrokinetic Vlasov simulations, with the aim of elucidating the underlying physical mechanisms of the transition from turbulent to coherent states. Numerical results show three different types of vortex structures, i.e., coherent vortex streets accompanied with the transport reduction, turbulent vortices with steady transport, and a zonal-flow-dominated state, depending on the relative magnitude of the parallel compression to the diamagnetic drift. In particular, the formation of coherent vortex streets is correlated with the strong generation of zonal flows for the cases with weak parallel compression, even though the maximum growth rate of linear ETG modes is relatively large. The zonal flow generation in the ETG turbulence is investigated by the modulational instability analysis with a truncated fluid model, where the parallel dynamics such as acoustic modes for electrons is incorporated. The modulational instability for zonal flows is found to be stabilized by the effect of the finite parallel compression. The theoretical analysis qualitatively agrees with secondary growth of zonal flows found in the slab ETG turbulence simulations, where the transition of vortex structures is observed.

  9. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  10. A counter-rotating vortex pair in inviscid fluid

    Science.gov (United States)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  11. The intraventricular filling vortex under heightened aortic blood pressure

    Science.gov (United States)

    Nelsen, Nicholas; Gaddam, Manikantam; Santhanakrishnan, Arvind

    2017-11-01

    Hypertension, or high aortic blood pressure, can induce structural changes in the left ventricle (LV) such as concentric hypertrophy. Previous studies have identified that the intraventricular filling vortex serves as an effective means of blood transport during diastolic filling. However, a fundamental understanding of how hypertension affects this vortex is unavailable. This knowledge can be useful for improving diagnosis and treatment of related heart disease conditions, including hypertensive heart failure. In this experimental study, we hypothesized that the circulation of the filling vortex would diminish with increased aortic pressure. Using a LV physical model within a left heart simulator, we performed hemodynamic measurements to acquire pressure and volumetric inflow profiles and 2D particle image velocimetry to visualize the intraventricular flow fields. Peak aortic pressures of 120 mm Hg, 140 mm Hg, and 160 mm Hg were each tested at heart rates of 70, 100, and 110 beats per minute, under: 1) reduced ejection fraction (EF), and 2) constant EF. Our results indicate that peak vortex circulation is reduced under elevated aortic pressures. Hemodynamics and characteristics of the intraventricular filling vortex in all examined experimental cases will be presented.

  12. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication.

    Science.gov (United States)

    Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting

    2018-05-14

    Orbital angular momentum (OAM) mode crosstalk induced by atmospheric turbulence is a challenging phenomenon commonly occurring in OAM-based free-space optical (FSO) communication. Recent advances have facilitated new practicable methods using abruptly autofocusing light beams for weakening the turbulence effect on the FSO link. In this work, we show that a circular phase-locked Airy vortex beam array (AVBA) with sufficient elements has the inherent ability to form an abruptly autofocusing light beam carrying OAM, and its focusing properties can be controlled on demand by adjusting the topological charge values and locations of these vortices embedded in the array elements. The performance of a tailored Airy vortex beam array (TAVBA) through atmospheric turbulence is numerically studied. In a comparison with the ring Airy vortex beam (RAVB), the results indicate that TAVBA can be a superior light source for effectively reducing the intermodal crosstalk and vortex splitting, thus leading to improvement in the FSO system performance.

  13. Vortex rings and jets recent developments in near-field dynamics

    CERN Document Server

    Yu, Simon

    2015-01-01

    In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vor...

  14. Temporal chaotic behaviour of vortex motion in a type-II superconductors with periodically-distributed pinning centres

    International Nuclear Information System (INIS)

    Lin, H.T.; Ke, C.; Cheng, C.H.

    2010-01-01

    Temporal chaotic character of vortex motion in systems where defects are arranged in periodic arrays has been investigated by computer simulation. Due to the high nonlinearity of the vortex-defect interaction, the temporal evolution of the vortex motion is chaotic with a power spectrum similar to what have been observed in the experiments. It is found that the strength of both the vortex-vortex and vortex-defect interactions have no significant effects on the chaotic motion of the vortices, however, the mismatch between these two interactions causes attractor crisis of the system. Different from them, the Lorentz force is not the origin of the attractor crisis, but it causes a divergent motion of the vortex (i.e., the flux flow).

  15. Temporal chaotic behaviour of vortex motion in a type-II superconductors with periodically-distributed pinning centres

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.T. [Faculty of Information Management, Cheng Shiu University, Kaoshuing, Taiwan (China); Ke, C. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H., E-mail: c.cheng@unsw.edu.a [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)

    2010-11-01

    Temporal chaotic character of vortex motion in systems where defects are arranged in periodic arrays has been investigated by computer simulation. Due to the high nonlinearity of the vortex-defect interaction, the temporal evolution of the vortex motion is chaotic with a power spectrum similar to what have been observed in the experiments. It is found that the strength of both the vortex-vortex and vortex-defect interactions have no significant effects on the chaotic motion of the vortices, however, the mismatch between these two interactions causes attractor crisis of the system. Different from them, the Lorentz force is not the origin of the attractor crisis, but it causes a divergent motion of the vortex (i.e., the flux flow).

  16. Generation and detection of vortex rings in superfluid 4He at very low temperature

    International Nuclear Information System (INIS)

    Yano, H; Nishijima, A; Yamamoto, S; Ogawa, T; Nago, Y; Obara, K; Ishikawa, O; Tsubota, M; Hata, T

    2012-01-01

    Motions of vortices are fundamental characteristics of quantum turbulence. These motions are expected to be governed only by quantized circulations in superfluids at the zero temperature limit. In the present paper, we report the motions of vortex rings emitted from a quantum turbulence in superfluid 4 He, by detecting vortex rings using a vortex-free vibrating wire as a detector. The time of flights of vortex rings are distributed, because vortex rings are emitted in any direction from a turbulent region and the detector can respond only to a reachable vortex ring. By measuring time-of-flights many times, we find an exponential distribution of time-of-flights with a non-detection period, which corresponds to the fastest time of flights of vortex rings. For a larger generation power of vortex rings, a distribution of time-of-flights still shows a single exponential distribution, but a non-detection period becomes shorter. This result implies that sizes of emitted vortex rings are distributed dependently on the generation power of turbulence. The observed exponential distributions are confirmed by numerical simulations of the dynamics of vortex rings.

  17. Self-Similarity and helical symmetry in vortex generator flow simulations

    DEFF Research Database (Denmark)

    Fernandez, U.; Velte, Clara Marika; Réthoré, Pierre-Elouan

    2014-01-01

    According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (uz) and azimuthal (uӨ) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry...

  18. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available at exploring the methods of generating optical vortex beams. We will discuss a typical extra-cavity approach that harnesses digital holography through the use of a SLM. We consider vortex beam generation as the fundamental mode of a monolithic microchip laser...-cavity phase diffractive elements can result in the desired mode as the fundamental mode of the cavity with pure modal quality. This approach, although very attractive is insufficient for the generation of these modes in monolithic microchip lasers. A...

  19. Linear Strength Vortex Panel Method for NACA 4412 Airfoil

    Science.gov (United States)

    Liu, Han

    2018-03-01

    The objective of this article is to formulate numerical models for two-dimensional potential flow over the NACA 4412 Airfoil using linear vortex panel methods. By satisfying the no penetration boundary condition and Kutta condition, the circulation density on each boundary points (end point of every panel) are obtained and according to which, surface pressure distribution and lift coefficients of the airfoil are predicted and validated by Xfoil, an interactive program for the design and analysis of airfoil. The sensitivity of results to the number of panels is also investigated in the end, which shows that the results are sensitive to the number of panels when panel number ranges from 10 to 160. With the increasing panel number (N>160), the results become relatively insensitive to it.

  20. Vortex sheet approximation of boundary layers

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1978-01-01

    a grid free method for approximating incomprssible boundary layers is introduced. The computational elements are segments of vortex sheets. The method is related to the earlier vortex method; simplicity is achieved at the cost of replacing the Navier-Stokes equations by the Prandtl boundary layer equations. A new method for generating vorticity at boundaries is also presented; it can be used with the earlier voartex method. The applications presented include (i) flat plate problems, and (ii) a flow problem in a model cylinder- piston assembly, where the new method is used near walls and an improved version of the random choice method is used in the interior. One of the attractive features of the new method is the ease with which it can be incorporated into hybrid algorithms

  1. Structures of single vortex and vortex lattice in a d-wave superconductor

    International Nuclear Information System (INIS)

    Xu, J.; Ren, Y.; Ting, C.

    1996-01-01

    The structures of a single vortex and vortex lattice in a superconductor with d x 2 -y 2 symmetry are studied self-consistently employing a recently developed Ginzburg-Landau theory. Near a single vortex, we found that an s-wave component of the order parameter is always induced, and it causes the local magnetic-field distribution and the d-wave order parameter to have a fourfold anisotropy. It is shown that there is a strong correlation between the structure of a single vortex and the shape of the vortex lattice. Our numerical calculation indicates that the structure of the vortex lattice is always oblique except for temperatures very close to T c where it becomes triangular. The possible connection of the result with experiment is also discussed. copyright 1996 The American Physical Society

  2. Identification of vortex structures in a cohort of 204 intracranial aneurysms.

    Science.gov (United States)

    Varble, Nicole; Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui

    2017-05-01

    An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q -criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction ( vVF ) and the surface vortex fraction ( sVF ). Computational fluid dynamics simulations showed that the sVF , but not the vVF , discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. © 2017 The Author(s).

  3. Dynamics of a vortex ring moving perpendicularly to the axis of a rotating fluid

    NARCIS (Netherlands)

    Eisenga, A.H.M.; Verzicco, R.; Heijst, van G.J.F.

    1998-01-01

    The dynamics of a vortex ring moving orthogonally to the rotation vector of a uniformly rotating fluid is analysed by laboratory experiments and numerical simulations. In the rotating system the vortex ring describes a curved trajectory, turning in the opposite sense to the system's anti-clockwise

  4. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  5. Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.

  6. A Rotor Tip Vortex Tracing Algorithm for Image Post-Processing

    Science.gov (United States)

    Overmeyer, Austin D.

    2015-01-01

    A neurite tracing algorithm, originally developed for medical image processing, was used to trace the location of the rotor tip vortex in density gradient flow visualization images. The tracing algorithm was applied to several representative test images to form case studies. The accuracy of the tracing algorithm was compared to two current methods including a manual point and click method and a cross-correlation template method. It is shown that the neurite tracing algorithm can reduce the post-processing time to trace the vortex by a factor of 10 to 15 without compromising the accuracy of the tip vortex location compared to other methods presented in literature.

  7. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  8. Particle Methods in Bluff Body Aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj

    . The implementation is two-dimensional and sequential. The implementation is validated against the analytic solution to the Perlman test case and by free-space simulations of the onset flow around fixed and rotating circular cylinders and bluff body flows around bridge sections. Finally a three-dimensional vortex...... is important. This dissertation focuses on the use of vortex particle methods and computational efficiency. The work is divided into three parts. A novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics is presented. The method involves a model for describing oncoming...... section during the construction phase and the swimming motion of the medusa Aurelia aurita....

  9. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  10. Vortex Tube: A Comparison of Experimental and CFD Analysis Featuring Different RANS Models

    Directory of Open Access Journals (Sweden)

    Chýlek Radomír

    2018-01-01

    Full Text Available The Ranque–Hilsch vortex tube represents a device for both cooling and heating applications. It uses compressed gas as drive medium. The temperature separation is affected by fluid flow behaviour inside the tube. It has not been sufficiently examined in detail yet and has the potential for further investigation. The aim of this paper is to compare results of numerical simulations of the vortex tube with obtained experimental data. The numerical study was using computational fluid dynamics (CFD, namely computational code STAR-CCM+. For the numerical study, a three-dimensional geometry model, and various turbulence physics models were used. For the validation of carried out calculations, an experimental device of the vortex tube of identical geometrical and operating conditions was created and tested. The numerical simulation results have been obtained for five different turbulence models, namely Standard k-ε, Realizable k-ε, Standard k-ω, SST k-ω and Reynolds stress model (RSM, were compared with experimental results. The most important evaluation factor was the temperature field in the vortex tube. All named models of turbulence were able to predict the general flow behaviour in the vortex tube with satisfactory precision. Standard k-ε turbulence model predicted temperature distribution in the best accordance with the obtained experimental data.

  11. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  12. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Caprace, D-G; Winckelmans, G; Marichal, Y

    2016-01-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features. (paper)

  13. Prediction of vortex breakdown on a delta wing

    Science.gov (United States)

    Agrawal, S.; Robinson, B. A.; Barnett, R. M.

    1992-01-01

    Recent studies of leading-edge vortex flows with computational fluid dynamics codes using Euler or Navier-Stokes formulations have shown fair agreement with experimental data. These studies have concentrated on simulating the flowfields associated with a sharp-edged flat plate 70 deg delta wing at angles of attack where vortex breakdown or burst is observed over the wing. There are, however, a number of discrepancies between the experimental data and the computed flowfields. The location of vortex breakdown in the computational solutions is seen to differ from the experimental data and to vary with changes in the computational grid and freestream Mach number. There also remain issues as to the validity of steady-state computations for cases which contain regions of unsteady flow, such as in the post-breakdown regions. As a partial response to these questions, a number of laminar Navier-Stokes solutions were examined for the 70 deg delta wing. The computed solutions are compared with an experimental database obtained at low subsonic speeds. The convergence of forces, moments and vortex breakdown locations are also analyzed to determine if the computed flowfields actually reach steady-state conditions.

  14. Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2017-10-01

    Full Text Available Wind velocity distribution and the vortex around the wind turbine present a significant challenge in the development of straight-bladed vertical axis wind turbines (VAWTs. This paper is intended to investigate influence of tip vortex on wind turbine wake by Computational Fluid Dynamics (CFD simulations. In this study, the number of blades is two and the airfoil is a NACA0021 with chord length of c = 0.265 m. To capture the tip vortex characteristics, the velocity fields are investigated by the Q-criterion iso-surface (Q = 100 with shear-stress transport (SST k-ω turbulence model at different tip speed ratios (TSRs. Then, mean velocity, velocity deficit and torque coefficient acting on the blade in the different spanwise positions are compared. The wind velocities obtained by CFD simulations are also compared with the experimental data from wind tunnel experiments. As a result, we can state that the wind velocity curves calculated by CFD simulations are consistent with Laser Doppler Velocity (LDV measurements. The distribution of the vortex structure along the spanwise direction is more complex at a lower TSR and the tip vortex has a longer dissipation distance at a high TSR. In addition, the mean wind velocity shows a large value near the blade tip and a small value near the blade due to the vortex effect.

  15. Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2006-01-01

    Full Text Available A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.

  16. Mapping degenerate vortex states in a kagome lattice of elongated antidots via scanning Hall probe microscopy

    Science.gov (United States)

    Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.

    2017-07-01

    We investigate the degeneracy of the superconducting vortex matter ground state by directly visualizing the vortex configurations in a kagome lattice of elongated antidots via scanning Hall probe microscopy. The observed vortex patterns, at specific applied magnetic fields, are in good agreement with the configurations obtained using time-dependent Ginzburg-Landau simulations. Both results indicate that the long-range interaction in this nanostructured superconductor is unable to lift the degeneracy between different vortex states and the pattern formation is mainly ruled by the nearest-neighbor interaction. This simplification makes it possible to identify a set of simple rules characterizing the vortex configurations. We demonstrate that these rules can explain both the observed vortex distributions and the magnetic-field-dependent degree of degeneracy.

  17. Vortex structure and characterization of quasiperiodic functions

    International Nuclear Information System (INIS)

    Dana, Itzhack; Chernov, Vladislav E

    2002-01-01

    Quasiperiodic functions (QPFs) are characterized by their full vortex structure in one unit cell. This characterization is much finer and more sensitive than the topological one given by the total vorticity per unit cell (the 'Chern index'). It is shown that QPFs with an arbitrarily prescribed vortex structure exist by constructing explicitly such a 'standard' QPF. Two QPFs with the same vortex structure are equivalent, in the sense that their ratio is a function which is strictly periodic, nonvanishing and at least continuous. A general QPF can then be approximately reconstructed from its vortex structure on the basis of the standard QPF and the equivalence concept. As another application of this concept, a simple method is proposed for calculating the quasiperiodic eigenvectors of periodic matrices. Possible applications to the quantum-chaos problem on a phase-space torus are briefly discussed

  18. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  19. Beating motion of a circular cylinder in vortex-induced vibrations

    Science.gov (United States)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan

    2018-04-01

    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  20. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  1. Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack

    Science.gov (United States)

    Luckring, James M.

    2003-01-01

    A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

  2. Dissipative Vortex Solitons in Defocusing Media with Spatially Inhomogeneous Nonlinear Absorption

    Science.gov (United States)

    Lai, Xian-Jing; Cai, Xiao-Ou; Zhang, Jie-Fang

    2018-02-01

    In this paper, by solving a complex nonlinear Schrödinger equation, radially symmetric dissipative vortex solitons are obtained analytically and are tested numerically. We find that spatially inhomogeneous nonlinear absorption gives rise to the stability of dissipative vortex solitons in self-defocusing nonlinear medium in the presence of constant linear gain. Numerical simulation reveals the interaction effect among linear gain and nonlinear loss in the azimuthal modulation instabilities of these vortices suppression. Apart from the uniform linear gain indeed affects the stability of vortex in this media, another noticeable feature of current setup is that the steep spatial modulation of the nonlinear absorption can suppress sidelobes effectively and support stable vortex solitons in situations with uniform linear gain. Under appropriate conditions, the vortex solitons can propagate stably and feature no symmetry breaking, although the beams exhibit radical compression and amplification as they propagate. Supported by the National Natural Science Foundation of China under Grant No. 11705164 and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ16A040003

  3. Study on wake structure characteristics of a slotted micro-ramp with large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangrui; Chen, Yaohui; Dong, Gang; Liu, Yixin, E-mail: cyh873@163.com [National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2017-06-15

    In this paper, a novel slotted ramp-type micro vortex generator (slotted micro-ramp) for flow separation control is simulated in the supersonic flow of Ma = 1.5, based on large eddy simulation combined with the finite volume method. The wake structure characteristics and control mechanisms of both slotted and standard micro-ramps are presented and discussed. The results show that the wake of standard micro-ramp includes a primary counter-rotating streamwise vortex pair, a train of vortex rings, and secondary vortices. The slotted micro-ramp has more complicated wake structures, which contain a confluent counter-rotating streamwise vortex pair and additional streamwise vortices, with the same rotation generated by slot and the vortex rings enveloping the vortex pair. The additional vortices generated by the slot of the micro-ramp can mix with the primary counter-rotating vortex pair, extend the life time, and strengthen the vortex intensity of primary vortex pair. Moreover, the slot can effectively alleviate, or even eliminate the backflow and decrease the profile drag induced by the standard micro-ramp, therefore improving the efficiency of separation control. (paper)

  4. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    Science.gov (United States)

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  5. Origin and dynamics of vortex rings in drop splashing.

    Science.gov (United States)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  6. Phase locking of vortex cores in two coupled magnetic nanopillars

    Directory of Open Access Journals (Sweden)

    Qiyuan Zhu

    2014-11-01

    Full Text Available Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  7. Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

    Directory of Open Access Journals (Sweden)

    Maxim E. Stebliy

    2015-03-01

    Full Text Available Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.

  8. Diffusion and dispersion characteristics of hybridized discontinuous Galerkin methods for under-resolved turbulence simulations

    Science.gov (United States)

    Moura, Rodrigo; Fernandez, Pablo; Mengaldo, Gianmarco

    2017-11-01

    We investigate the dispersion and diffusion characteristics of hybridized discontinuous Galerkin (DG) methods. This provides us with insights to develop robust and accurate high-order DG discretizations for under-resolved flow simulations. Using the eigenanalysis technique introduced in (Moura et al., JCP, 2015 and Mengaldo et al., Computers & Fluids, 2017), we present a dispersion-diffusion analysis for the linear advection-diffusion equation. The effect of the accuracy order, the Riemann flux and the viscous stabilization are investigated. Next, we examine the diffusion characteristics of hybridized DG methods for under-resolved turbulent flows. The implicit large-eddy simulation (iLES) of the inviscid and viscous Taylor-Green vortex (TGV) problems are considered to this end. The inviscid case is relevant in the limit of high Reynolds numbers Re , i.e. negligible molecular viscosity, while the viscous case explores the effect of Re on the accuracy and robustness of the simulations. The TGV cases considered here are particularly crucial to under-resolved turbulent free flows away from walls. We conclude the talk with a discussion on the connections between hybridized and standard DG methods for under-resolved flow simulations.

  9. Formation of quasistationary vortex and transient hole patterns through vortex merger

    International Nuclear Information System (INIS)

    Ganesh, R.; Lee, J.K.

    2002-01-01

    Collection of point-like intense vortices arranged symmetrically outside of a uniform circular vortex patch, both enclosed in a free-slip circular boundary, are numerically time evolved for up to 10-15 patch turnover times. These patterns are found to merge with the patch by successively inducing nonlinear dispersive modes (V-states) on the surface of the patch, draw off fingers of vorticity (filamentation), trap the irrotational regions as the fingers symmetrize under the shear flow of the patch and point-like vortices (wave breaking) followed by the vortex-hole capture. While the hole patterns are observed to break up over several turnover periods the vortex patterns appear to evolve into quasistationary patterns for some cases of an initial number of point-like vortices N pv . The bounded V-states, filamentation, and vortex (hole) pattern formation are discussed in some detail and their possible connection to recently observed vortex 'crystals' is pointed out

  10. Deflection of a vortex pair by an interface in easy-plane ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, J-G [Laboratoire de Mathematiques, INSA de Rouen, BP 8, 76131 Mont-Saint-Aignan Cedex (France); Zagorodny, J P [Physics Institute, University of Bayreuth, Bayreuth (Germany); Gaididei, Yu [Bogoliubov Institute of Theoretical Physics, Academy of Sciences of Ukraine, Kiev, Ukraine (Ukraine); Mertens, F G [Physics Institute, University of Bayreuth, Bayreuth (Germany)

    2003-04-18

    We study the motion of a vortex-antivortex pair in easy-plane ferromagnets crossing an interface between two media with different anisotropy. A simple description based on the Thiele approach is obtained. The collective variables are the vortex centres and core radii, the latter are assumed to be slaved to the former. For a normal crossing of the interface by the vortex pair, a simple estimate of the ratio of the separation distances is obtained from energy conservation. This prediction is validated by direct numerical simulations of the Landau-Lifshitz equations for the anisotropic Heisenberg model, on a spin lattice divided into two regions which have different anisotropies.

  11. Collapsing vortex filaments and the spectrum of quantum turbulence

    Science.gov (United States)

    Andryushchenko, V. A.; Nemirovskii, S. K.

    2017-01-01

    The method of correlation functions and the method of quantum vortex configurations are used to calculate the energy spectrum of a three-dimensional velocity field that is induced by collapsing (immediately before reconnection) vortex filaments. The formulation of this problem is motivated by the idea of modeling classical turbulence by a set of chaotic quantized vortex filaments. Among the various arguments that support the idea of quasi-classical behavior for quantum turbulence, the most persuasive is probably the resulting Kolmogorov energy spectrum resembling E ( k ) ∝ k - 5 / 3 that was obtained in a number of numerical studies. Another goal is associated with an important and intensely studied theme that relates to the role of hydrodynamic collapse in the formation of turbulence spectra. Calculations have demonstrated that vortex filaments create a velocity field at the moment of contact, which has a singularity. This configuration of vortex filaments generates the spectrum E(k), which bears the resemblance to the Kolmogorov law. A possible cause for this observation is discussed, as well as the likely reasons behind any deviations. The obtained results are discussed from the perspective of both classical and quantum turbulence.

  12. Full scale wind turbine test of vortex generators mounted on the entire blade

    DEFF Research Database (Denmark)

    Bak, Christian; Skrzypinski, Witold Robert; Gaunaa, Mac

    2016-01-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements...... are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean...

  13. The singing vortex

    Science.gov (United States)

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  14. DNS of droplet-vortex interaction with a Karman vortex street

    International Nuclear Information System (INIS)

    Burger, M.; Schmehl, R.; Koch, R.; Wittig, S.; Bauer, H.-J.

    2006-01-01

    Predicting fuel spray interaction with large scale vortex structures still is a major challenge for state-of-the-art CFD codes. In order to elucidate the mechanisms involved, a fundamental study has been carried out in which the interaction of water droplets with a Karman vortex street is investigated. The disperse two-phase flow around a cylinder has been computed taking into account the mass, momentum and heat transfer between both phases. Flow conditions are chosen such that large scale vortices are generated by periodic flow separations of the well known Karman vortex street. A homogeneous distribution of water droplets is injected into the hot air up-stream of the computational domain. The mixing process as well as the impact of the droplets on the gas phase instabilities is analyzed in the downstream region where large scale vortex structures are present

  15. The influence of shape anisotropy on vortex nucleation in Pacman-like nanomagnets

    International Nuclear Information System (INIS)

    Cambel, V.; Tóbik, J.; Šoltýs, J.; Fedor, J.; Precner, M.; Gaži, Š.; Karapetrov, G.

    2013-01-01

    In this paper we explore magnetic properties of Permalloy Pacman-like (PL) nanomagnets in external in-plain magnetic field. PL nanomagnets represent unique magnetic systems with broken symmetry, which are perspective as non-volatile memory elements. In these nanomagnets both bits, chirality and polarity of a single vortex state, can be easily read and written by in-plane magnetic field only. In the experimental part of this work we show that namely chirality of the∼1-μm large PL nanomagnet can be red easily by magnetic force microscopy method. The easy bit reading is enabled due to coupling of the polarity magnetization vector to the magnetic charges located at the surface of the PL missing sector. Using micromagnetic simulations we show the influence of spatial anisotropy on vortex nucleation and annihilation fields in the PL nanomagnets. Angular dependence of the vortex nucleation field is analysed in detail for PL nanomagnets of different diameter, thickness, and missing-sector dimensions. Best control of the ground state can be achieved for diameters not exceeding 100 nm, thicknesses from 40 to 45 nm, and for the missing sector angles from 30 to 60°. - Highlights: ► We explore magnetization dynamics in mesoscopic magnets with broken symmetry. ► We explain how to read and write chirality and polarity into such systems. ► Angular dependence of the vortex nucleation field in the systems is analysed

  16. Magnetic interaction of hypothetical particles moving beneath the electrode/electrolyte interface to elucidate evolution mechanism of vortex appeared on Pd surface after long-term evolution of deuterium in 0.1M LiOD

    International Nuclear Information System (INIS)

    Numata, Hiroo; Ban, Masanobu

    2006-01-01

    Long-term electrolysis for well-annealed thick Pd rod (9.0 mmφ) in 0.1M LiOD was performed. Microscopic observation of a postelectrolysis Pd surface showed that long-term electrolysis did not result in any cracking but surface voids, two long faults, voids arranged in a straight line and peculiar surface traces: vortex. N-cycle model was developed to explain the cold fusion reaction and the related phenomena resulting in improved reproducibility of cold fusion experiments. An important process in that model is the motion of deuterium from a vessel to other ones, which might occur the observed vortex patterns on a postelectrolysis Pd surface. However, there has been remained unsolved yet a phenomenological explanation for the process of the vortex formation. The lattice gas cellular automata method was utilized for simulating a simple 2D flow with the boundary conditions incorporating the motion of the coincidental flow of the hypothetical particles. The vortex pattern was obtained behind the obstacle, though the axis appeared along the electrode surface. However, by comparing the vortex patterns obtained by the Lattice gas cellular automata method simulation and a postelectrolysis Pd surface the vortex with the leaned axis along the electrode can only be acceptable to describe the motion of the hypothetical particles. The vortex of the massive electron appeared to be modified by Lorenz force during traveling the interface assuming a 2D circular motion. (author)

  17. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer.

    Science.gov (United States)

    Sun, Yanzhao; Zhang, Tao; Zheng, Dandan

    2018-04-10

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.

  18. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Science.gov (United States)

    Zhang, Tao; Zheng, Dandan

    2018-01-01

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577

  19. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Directory of Open Access Journals (Sweden)

    Yanzhao Sun

    2018-04-01

    Full Text Available Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD, wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments.

  20. Yaw-modelling using a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The cylindrical vortex wake model presented in Chap. 17 for the case of uniform inflow is extended in the current chapter to the case of yawed inflow. Generalities regarding yaw are presented in Sect. 6.1 and only the skewed cylindrical vortex model is presented in this chapter. The chapter starts...... with a literature review on the topic of yaw-models and vorticity-based methods. The description of the model follows. The novelty of the current model is that the assumption of infinite tip-speed ratio is relaxed. The bound vorticity is assumed to be identical to the case of uniform inflow but the vortex cylinder...... and the root vortex are skewed with respect to the normal of the rotor disk. Closed form formulae for the induced velocities are provided. They can only be evaluated analytically for a limited part of the domain. A numerical integration is required to obtain the velocity everywhere in the domain. The numerical...

  1. Cylindrical vortex wake model: right cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Gaunaa, Mac

    2015-01-01

    The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios....... For each vortex element, the velocity components in all directions and in the entire domain are computed analytically in a novel approach. In particular, the velocity field from the vortex actuator disk is derived for the first time. The induction from the entire vortex system is studied and is seen...

  2. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  3. Imaging of artificially induced vortex structures

    International Nuclear Information System (INIS)

    Fasano, Yanina; Menghini, M.; Cruz, F. de la

    2004-01-01

    The combination of engineered pinning potentials in superconducting crystals, the detection of the liquid-solid vortex transition and the observation of the vortex structure with single vortex sensitivity allow the microscopic analysis of the response of 3D elastic systems to the presence of these potentials. In this work we review recent results obtained by a combination of those techniques studying different vortex structure induced transformations. On the one hand, we have visualized the transformation, along the vortex direction, of a bulk vortex single crystal with hexagonal symmetry into another crystal with square symmetry induced by an engineered Fe-dot lattice deposited on a surface of the vortex single crystal. On the other hand, we found an infrequent first-order phase transition where a vortex liquid under the presence of a random correlated potential (columnar defects) transforms into a vortex solid with no change of topological order

  4. Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor-Green flows

    Science.gov (United States)

    Peng, Naifu; Yang, Yue

    2018-01-01

    We investigate the evolution of vortex-surface fields (VSFs) in compressible Taylor-Green flows at Mach numbers (Ma) ranging from 0.5 to 2.0 using direct numerical simulation. The formulation of VSFs in incompressible flows is extended to compressible flows, and a mass-based renormalization of VSFs is used to facilitate characterizing the evolution of a particular vortex surface. The effects of the Mach number on the VSF evolution are different in three stages. In the early stage, the jumps of the compressive velocity component near shocklets generate sinks to contract surrounding vortex surfaces, which shrink vortex volume and distort vortex surfaces. The subsequent reconnection of vortex surfaces, quantified by the minimal distance between approaching vortex surfaces and the exchange of vorticity fluxes, occurs earlier and has a higher reconnection degree for larger Ma owing to the dilatational dissipation and shocklet-induced reconnection of vortex lines. In the late stage, the positive dissipation rate and negative pressure work accelerate the loss of kinetic energy and suppress vortex twisting with increasing Ma.

  5. Vortex instability in turbulent free-space propagation

    Science.gov (United States)

    Lavery, Martin P. J.

    2018-04-01

    The spatial structuring of optical fields is integral within many next generation optical metrology and communication techniques. A verifiable physical model of the propagation of these optical fields in a turbulent environment is important for developing effective mitigation techniques for the modal degradation that occurs in a free-space link. We present a method to simulate this modal degradation that agrees with recently reported experimental findings. A 1.5 km free-space link is emulated by decomposing the optical turbulence that accumulates over a long distance link, into many, weakly perturbing steps of 10 m. This simulation shows that the high-order vortex at the centre of the helical phase profiles in modes that carry orbital angular momentum of | {\\ell }| ≥slant 2{\\hslash } are unstable and fracture into many vortices when they propagate over the link. This splitting presents issues for the application of turbulence mitigation techniques. The usefulness of pre-correction, post-correction, and complex field conjugation techniques are discussed.

  6. Water-contained surfactant-based vortex-assisted microextraction method combined with liquid chromatography for determination of synthetic antioxidants from edible oil.

    Science.gov (United States)

    Amlashi, Nadiya Ekbatani; Hadjmohammadi, Mohammad Reza; Nazari, Seyed Saman Seyed Jafar

    2014-09-26

    For the first time, a novel water-contained surfactant-based vortex-assisted microextraction method (WSVAME) was developed for the extraction of two synthetic antioxidants (t-butyl hydroquinone (TBHQ) and butylated hydroxyanisole (BHA)) from edible oil samples. The novel microextraction method is based on the injection of an aqueous solution of non-ionic surfactant, Brij-35, into the oil sample in a conical bottom glass tube to form a cloudy solution. Vortex mixing was applied to accelerate the dispersion process. After extraction and phase separation by centrifugation, the lower sediment phase was directly analyzed by HPLC. The effects of the four experimental parameters including volume and concentration of extraction solvent (aqueous solution of Brij-35), percentage of acetic acid added to the oil sample and vortex time on the extraction efficiency were studied with a full factorial design. The central composite design and multiple linear regression method were applied for the construction of the best polynomial model based on experimental recoveries. The proposed method showed good linearity within the range of 0.200-200 μg mL(-1), the square of correlation coefficient higher than 0.999 and appropriate limit of detection (0.026 and 0.020 μg mL(-1) for TBHQ and BHA, respectively), while the precision for inner-day was ≤ 3.0 (n=5) and it was ≤ 3.80 (n=5) for inter-day assay. Under the optimal condition (30 μL of 0.10 mol L(-1) Brij-35 solution as extraction solvent and vortex time 1 min), the method was successfully applied for determination of TBHQ and BHA in different commercial edible oil samples. The recoveries in all cases were above 95%, with relative standard deviations below 5%. This approach is considered as a simple, sensitive and environmentally friendly method because of biodegradability of the extraction phase and no use of organic solvent in the extraction procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  8. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  9. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  10. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan

    2016-01-01

    by a bound vorticity lifting line while the turbine wake vorticity and the turbulence vorticity are projected onto vortex particles. In the present work the rotor blades are stiff leaving aero-elastic interactions for future work. Inflow turbulence is generated with the model of Mann and converted to vortex......? Is it acceptable to neglect the influence of the wake and the wind turbine on the turbulent inflow? Is there evidence to justify the extra cost of a method capable of including these effects correctly? To this end, a unified vorticity representation of the flow is used: the wind turbine model is represented......A vortex particle representation of turbulent fields is devised in order to address the following questions: Does a wind turbine affect the statistics of the incoming turbulence? Should this imply a change in the way turbulence boxes are used in wind turbine aero-elastic simulations...

  11. The nonlinear dirac equation in Bose-Einstein condensates: vortex solutions and spectra in a weak harmonic trap

    Science.gov (United States)

    Haddad, L. H.; Carr, Lincoln D.

    2015-11-01

    We analyze the vortex solution space of the (2+1)-dimensional nonlinear Dirac equation for bosons in a honeycomb optical lattice at length scales much larger than the lattice spacing. Dirac point relativistic covariance combined with s-wave scattering for bosons leads to a large number of vortex solutions characterized by different functional forms for the internal spin and overall phase of the order parameter. We present a detailed derivation of these solutions which include skyrmions, half-quantum vortices, Mermin-Ho and Anderson-Toulouse vortices for vortex winding {\\ell }=1. For {\\ell }≥slant 2 we obtain topological as well as non-topological solutions defined by the asymptotic radial dependence. For arbitrary values of ℓ the non-topological solutions include bright ring-vortices which explicitly demonstrate the confining effects of the Dirac operator. We arrive at solutions through an asymptotic Bessel series, algebraic closed-forms, and using standard numerical shooting methods. By including a harmonic potential to simulate a finite trap we compute the discrete spectra associated with radially quantized modes. We demonstrate the continuous spectral mapping between the vortex and free particle limits for all of our solutions.

  12. Crossover from three - to two-dimensional behavior of the vortex energies in layered XY-models for high Tc superconductors

    International Nuclear Information System (INIS)

    Weber, H.; Jensen, H.J.

    1992-01-01

    We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature regime. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)

  13. Crossover from three- to two-dimensional behavior of the vortex energies in layered XY-models for high Tc superconductors

    International Nuclear Information System (INIS)

    Weber, H.; Tekniska Hoegskolan, Luleaa; Jeldtoft Jensen, H.

    1991-01-01

    We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high T c superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature region. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High T c superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)

  14. Corotational and Compressibility aspects leading to a modification of the vortex-identification Q-criterion

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav; Šístek, Jakub

    2015-01-01

    Roč. 53, č. 8 (2015), s. 2406-2410 ISSN 0001-1452 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985874 ; RVO:67985840 Keywords : vortex * vortex identification * vortex-identification criterion * vortex-identification method * vortical structures Subject RIV: BK - Fluid Dynamics; BA - General Mathematics (MU-W) Impact factor: 1.326, year: 2015

  15. Mind the gap - tip leakage vortex in axial turbines

    International Nuclear Information System (INIS)

    Dreyer, M; Farhat, M; Decaix, J; Münch-Alligné, C

    2014-01-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex

  16. Mind the gap - tip leakage vortex in axial turbines

    Science.gov (United States)

    Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.

    2014-03-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.

  17. A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle

    Science.gov (United States)

    Yang, H. Q.; Peugeot, John W.; West, Jeff S.

    2017-01-01

    An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6-DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has a significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to the conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.

  18. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    Science.gov (United States)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical

  19. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    Science.gov (United States)

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  20. Vortex-averaged Arctic ozone depletion in the winter 2002/2003

    Directory of Open Access Journals (Sweden)

    T. Christensen

    2005-01-01

    Full Text Available A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge, 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar. Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4. We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

  1. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    Science.gov (United States)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  2. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  3. Vortex dynamics in two-dimensional Josephson junction arrays with asymmetrically bimodulated potential

    International Nuclear Information System (INIS)

    Nie, Qing-Miao; Zhang, Sha-Sha; Chen, Qing-Hu; Zhou, Wei

    2012-01-01

    On the basis of resistively-shunted junction dynamics, we study vortex dynamics in two-dimensional Josephson junction arrays with asymmetrically single and bimodulated periodic pinning potential for the full range of vortex density f. The ratchet effect occurring at a certain range of temperature, current, and f, is observed in our simulation. We explain the microscopic behavior behind this effect by analyzing the vortex distribution and interaction. The reversal of the ratchet effect can be observed at several f values for a small driven current. This effect is stronger when the asymmetric potential is simultaneously introduced in two directions. -- Highlights: ► The ratchet effect in Josephson junction arrays strongly depends on vortex density. ► The reversed ratchet effect can be observed at several f for a small current. ► The interaction between vortices can explain the reversed ratchet effect. ► The ratchet effect is enhanced by injecting the bimodulated asymmetric potential.

  4. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    International Nuclear Information System (INIS)

    Baldacchino, D; Ferreira, C; Florentie, L; Timmer, N; Van Zuijlen, A; Manolesos, M; Chaviaropoulos, T; Diakakis, K; Papadakis, G; Voutsinas, S; González Salcedo, Á; Aparicio, M; García, N R.; Sørensen, N N.; Troldborg, N

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30% thick DU97W300 and an 18% thick NTUA T18 have been used for benchmarking several simulation tools. These tools span low-to-high complexity, ranging from engineering-level integral boundary layer tools to fully-resolved computational fluid dynamics codes. Results indicate that with appropriate calibration, engineering-type tools can capture the effects of vortex generators and outperform more complex tools. Fully resolved CFD comes at a much higher computational cost and does not necessarily capture the increased lift due to the VGs. However, in lieu of the limited experimental data available for calibration, high fidelity tools are still required for assessing the effect of vortex generators on airfoil performance. (paper)

  5. Evolution of an electron plasma vortex in a strain flow

    Science.gov (United States)

    Danielson, J. R.

    2016-10-01

    Coherent vortex structures are ubiquitous in fluids and plasmas and are examples of self-organized structures in nonlinear dynamical systems. The fate of these structures in strain and shear flows is an important issue in many physical systems, including geophysical fluids and shear suppression of turbulence in plasmas. In two-dimensions, an inviscid, incompressible, ideal fluid can be modeled with the Euler equations, which is perhaps the simplest system that supports vortices. The Drift-Poisson equations for pure electron plasmas in a strong, uniform magnetic field are isomorphic to the Euler equations, and so electron plasmas are an excellent test bed for the study of 2D vortex dynamics. This talk will describe results from a new experiment using pure electron plasmas in a specially designed Penning-Malmberg (PM) trap to study the evolution of an initially axisymmetric 2D vortex subject to externally imposed strains. Complementary vortex-in-cell simulations are conducted to validate the 2D nature of the experimental results and to extend the parameter range of these studies. Data for vortex destruction using both instantaneously applied and time dependent strains with flat (constant vorticity) and extended radial profiles will be presented. The role of vortex self-organization will be discussed. A simple 2D model works well for flat vorticity profiles. However, extended profiles exhibit more complicated behavior, such as filamentation and stripping; and these effects and their consequences will be discussed. Work done in collaboration with N. C. Hurst, D. H. E. Dubin, and C. M. Surko.

  6. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    Science.gov (United States)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  7. Large eddy simulations of isothermal confined swirling flow in an industrial gas-turbine

    International Nuclear Information System (INIS)

    Bulat, G.; Jones, W.P.; Navarro-Martinez, S.

    2015-01-01

    Highlights: • We conduct a large eddy simulation of an industrial gas turbine. • The results are compared with measurements obtained under isothermal conditions. • The method reproduces the observed precessing vortex and central vortex cores. • The profiles of mean and rms velocities are found to be captured to a good accuracy. - Abstract: The paper describes the results of a computational study of the strongly swirling isothermal flow in the combustion chamber of an industrial gas turbine. The flow field characteristics are computed using large eddy simulation in conjunction with a dynamic version of the Smagorinsky model for the sub-grid-scale stresses. Grid refinement studies demonstrate that the results are essentially grid independent. The LES results are compared with an extensive set of measurements and the agreement with these is overall good. The method is shown to be capable of reproducing the observed precessing vortex and central vortex cores and the profiles of mean and rms velocities are found to be captured to a good accuracy. The overall flow structure is shown to be virtually independent of Reynolds number

  8. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvi......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  9. On the effects of leading edge vortex generators on an OA209 airfoil

    OpenAIRE

    Heine, Benjamin; Mulleners, Karen; Gardner, Anthony; Mai, Holger

    2009-01-01

    Leading edge vortex generators have been found to significantly increase the aerodynamic performance of an airfoil under dynamic stall conditions. However, the principle of operation of these devices is still unclear. Therefore static wind and water tunnel experiments as well as CFD simulations have been conducted on a rotary aircraft wing profile OA209. A POD analysis applied to the vector fields generated by PIV measurements showed that the vortex generators break larger flow structures...

  10. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.

    Science.gov (United States)

    Garfinkel, C I; Schwartz, C

    2017-10-16

    The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.

  11. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws...

  12. Vortex survival in 3D self-gravitating accretion discs

    Science.gov (United States)

    Lin, Min-Kai; Pierens, Arnaud

    2018-04-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  13. Dynamic phases of low-temperature low-current driven vortex matter in superconductors

    International Nuclear Information System (INIS)

    Benkraouda, M; Obaidat, I M; Khawaja, U Al; Mulaa, N M J

    2006-01-01

    Using molecular dynamics simulations of vortices in a high-temperature superconductor with square periodic arrays of pinning sites, dynamic phases of the low-current driven vortices are studied at low temperatures. A rough vortex phase diagram of three distinct regimes of vortex flow is proposed. At zero temperature, we obtain a coupled-channel regime where rows of vortices flow coherently in the direction of the driving force. As the temperature is increased, a smooth crossover into an uncoupled-channel regime occurs where the coherence between the flowing rows of vortices becomes weaker. Increasing the temperature further leads to a plastic vortex regime, where the channels of flowing vortices completely disappear. The temperatures of the crossovers between these regimes were found to decrease with the driving force

  14. Spectroscopy of the eigenfrequencies of a fractional Josephson vortex molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kienzle, Uta; Gaber, Tobias; Buckenmaier, Kai; Koelle, Dieter; Kleiner, Reinhold; Goldobin, Edward [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Universitaet Karlsruhe (Germany)

    2008-07-01

    Using a pair of tiny current injectors one can create an arbitrary {kappa} discontinuity of the phase in a long Josephson junction (LJJ). To compensate this discontinuity a {kappa} vortex spontaneously appears. This vortex carries an arbitrary fraction {proportional_to}{kappa} of the magnetic flux quantum {phi}{sub 0} and is a generalization of a semifluxon observed in 0-{pi} LJJs. Such a vortex is pinned at the discontinuity point, but in an underdamped system it is able to oscillate around its equilibrium position with an eigenfrequency. In annular LJJs with two injector pairs two coupled {kappa} vortices, forming a molecule, can be studied. The dependence of the eigenfrequency on temperature and {kappa} of one and two coupled vortices was measured in the range from 300 mK up to 4.2 K. We discuss the results and compare them with simulations based on the perturbed sine-Gordon equation.

  15. Inverse crystallization if Abrikosov vortex system at periodic pinning

    CERN Document Server

    Zyubin, M V; Kashurnikov, V A

    2002-01-01

    The vortex system in the quasi-two-dimensional HTSC plate is considered in the case of the periodic pinning. The M(H) magnetization curves by various values of the external magnetic field and different temperatures are calculated through the Monte Carlo method. It is shown that in the case of the periodic pinning the crystallization of the vortex system is possible by the temperature increase. A number of peculiarities conditioned by the impact of the pinning centers periodic lattice are identified on the magnetization curves. The pictures of the vortex distribution corresponding to various points on the M(H) curve are obtained

  16. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Directory of Open Access Journals (Sweden)

    Qyyum Muhammad Abdul

    2017-01-01

    Full Text Available This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG. A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD model was used to simulate the vortex tube with nitrogen (N2 as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  17. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong

    2017-11-01

    This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  18. Transition de dépiégeage élastique de vortex supraconducteurs*

    Directory of Open Access Journals (Sweden)

    Fily Yaouen

    2012-04-01

    Full Text Available We present 2D numerical simulation results of superconductor vortex lattices driven over a random disorder. The vortex dynamics at the depinning threshold Fc is studied at zero temperature in the case of weak disorder. The dynamics is elastic and the depinning transition is analysed in the framework of a second order phase transition where the velocity response v to the driving force F behaves like v ~ (F − Fcβ. The analysis of the critical region of several large lattice sizes leads to the result that β = 0.27 ± 0.04. Nous présentons des résultats de simulations numériques à deux dimensions sur des réseaux de vortex dans les supraconducteurs que l’on met en mouvement dans un potentiel aléatoire. On étudie la dynamique des vortex au seuil de dépiégeage Fc dans le cas d’un faible désordre à température nulle. Les régimes élastiques au seuil de dépiégeage sont analysés dans le cadre des transitions de phase continues (transitions du second ordre. La réponse en vitesse v à la force d’entraînement F se comporte comme v ~ (F − Fcβ au voisinage immédiat du seuil de dépiégeage. Dans la région critique obtenue pour différentes grandes tailles du système simulé, nous mesurons l’exposant critique β = 0.27 ± 0.04.

  19. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  20. Kinematic vorticity number – a tool for estimating vortex sizes and circulations

    Directory of Open Access Journals (Sweden)

    Lisa Schielicke

    2016-02-01

    Full Text Available The influence of extratropical vortices on a global scale is mainly characterised by their size and by the magnitude of their circulation. However, the determination of these properties is still a great challenge since a vortex has no clear delimitations but is part of the flow field itself. In this work, we introduce a kinematic vortex size determination method based on the kinematic vorticity number Wk to atmospheric flows. Wk relates the local rate-of-rotation to the local rate-of-deformation at every point in the field and a vortex core is identified as a simply connected region where the rotation prevails over the deformation. Additionally, considering the sign of vorticity in the extended Wk-method allows to identify highs and lows in different vertical layers of the atmosphere and to study vertical as well as horizontal vortex interactions. We will test the Wk-method in different idealised -D (superposition of two lows/low and jet and real -D flow situations (winter storm affecting Europe and compare the results with traditional methods based on the pressure and the vorticity fields. In comparison to these traditional methods, the Wk-method is able to extract vortex core sizes even in shear-dominated regions that occur frequently in the upper troposphere. Furthermore, statistics of the size and circulation distributions of cyclones will be given. Since the Wk-method identifies vortex cores, the identified radii are subsynoptic with a broad peak around 300–500 km at the 1000 hPa level. However, the total circulating area is not only restricted to the core. In general, circulations are in the order of 107 m2/s with only a few cyclones in the order of 108 m2/s.

  1. Analysis of the Suppression Device as Vortex Induced Vibration (VIV Reducer on Free Span using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dwi Priyanta

    2016-12-01

    Full Text Available Subsea pipeline is a transportation infrastructure of oil and gas as an alternative for ship tanker. The uneven topography surface of the sea floor resulting the pipe undergoes free span. The free span is a condition endured by the pipe where the pipe position has  distance or gap with the seabed supported by two pivot. The free span is at risk of experiencing a vibration caused by the presence of dynamic load that is current and the wave. The vibration that occurs is the impact of the presence of the phenomenon of Vortex Induced Vibration (VIV. The Phenomenon Of VIV occur on a cylindrical component caused by ocean currents, causing the occurrence of vibration by the movement of fluid on the pipe so that it raises the vortex at the rear of the direction of oncoming flow. One way to dampen or reduce the impact of VIV is by adding suppresion device. VIV suppression device is a tool that is installed on the pipeline on offshore piping installationcthat serves to dampen or reduce the impact of VIV. One of the simulations used to know the characteristics of a fluid is to use (CFD Computational Fluid Dynamic. With the addition of suppression device can add the rest of the operating time on a free span of affected VIV, on the condition of free span critical exposed VIV (Vortex Induced Vibration value has a life time on plain pipe 44.21 years, on pipe with 53.09 years and Fairing on the pipe with the Helical strike 52.95 year.

  2. Vortex-induced dynamic loads on a non-spinning volleyball

    Science.gov (United States)

    Qing-ding, Wei; Rong-sheng, Lin; Zhi-jie, Liu

    1988-09-01

    An experiment on vortex-induced dynamic loads on a non-spinning Volleyball was conducted in a wind tunnel. The flow past the Volleyball was visualized, and the aerodynamic load was measured by use of a strain gauge balance. The separation on the Volleyball was measured with hot-film. The experimental results suggest that under the action of an unstable tail vortex system the separation region is changeable, and that the fluctuation of drag and lateral forces is the same order of magnitude as the mean drag, no matter whether the seam of the Volleyball is symmetric or asymmetric, with regard to the flow. Based on the experimental data a numerical simulation of Volleyball swerve motion was made.

  3. Computing the flow past Vortex Generators : Comparison between RANS Simulations and Experiments

    NARCIS (Netherlands)

    Manolesos, M.; Sorensen, NN; Troldborg, N.; Florentie, L.; Papadakis, G; Voutsinas, S.

    2016-01-01

    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental

  4. Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    In order to evaluate aerodynamic loads on floating oshore wind turbines, advanced dynamic analysis tools are required. As a unied model that can represent both dynamic in ow and skewed in ow effects in it basic formulation, a wake model based on a vortex ring formulation is discussed. Such a model...... presents a good intermediate solution between computationally efficient but simple momentum balance methods and computationally expensive but complete computational fluid dynamics models. The model introduced is shown to be capable of modelling typical steady and unsteady test cases with reasonable...

  5. Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

    International Nuclear Information System (INIS)

    Vaal, J B de; Moan, T; Hansen, M O L

    2014-01-01

    In order to evaluate aerodynamic loads on floating offshore wind turbines, advanced dynamic analysis tools are required. As a unified model that can represent both dynamic inflow and skewed inflow effects in it basic formulation, a wake model based on a vortex ring formulation is discussed. Such a model presents a good intermediate solution between computationally efficient but simple momentum balance methods and computationally expensive but complete computational fluid dynamics models. The model introduced is shown to be capable of modelling typical steady and unsteady test cases with reasonable accuracy

  6. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    Science.gov (United States)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron

  7. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    Science.gov (United States)

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and

  8. Vortex Formation in the Wake of Dark Matter Propulsion

    Science.gov (United States)

    Robertson, G. A.; Pinheiro, M. J.

    Future spaceflight will require a new theory of propulsion; specifically one that does not require mass ejection. A new theory is proposed that uses the general view that closed currents pervade the entire universe and, in particular, there is a cosmic mechanism to expel matter to large astronomical distances involving vortex currents as seen with blazars and blackholes. At the terrestrial level, force producing vortices have been related to the motion of wings (e.g., birds, duck paddles, fish's tail). In this paper, vortex structures are shown to exist in the streamlines aft of a spaceship moving at high velocity in the vacuum. This is accomplished using the density excitation method per a modified Chameleon Cosmology model. This vortex structure is then shown to have similarities to spacetime models as Warp-Drive and wormholes, giving rise to the natural extension of Hawking and Unruh radiation, which provides the propulsive method for space travel where virtual electron-positron pairs, absorbed by the gravitational expansion forward of the spaceship emerge from an annular vortex field aft of the spaceship as real particles, in-like to propellant mass ejection in conventional rocket theory.

  9. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    Science.gov (United States)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  10. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  11. Tailoring optical complex field with spiral blade plasmonic vortex lens

    Science.gov (United States)

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  12. Interpreting Brightness Asymmetries in Transition Disks: Vortex at Dead Zone or Planet-carved Gap Edges?

    Science.gov (United States)

    Regály, Zs.; Juhász, A.; Nehéz, D.

    2017-12-01

    Recent submillimeter observations show nonaxisymmetric brightness distributions with a horseshoe-like morphology for more than a dozen transition disks. The most-accepted explanation for the observed asymmetries is the accumulation of dust in large-scale vortices. Protoplanetary disks’ vortices can form by the excitation of Rossby wave instability in the vicinity of a steep pressure gradient, which can develop at the edges of a giant planet–carved gap or at the edges of an accretionally inactive zone. We studied the formation and evolution of vortices formed in these two distinct scenarios by means of two-dimensional locally isothermal hydrodynamic simulations. We found that the vortex formed at the edge of a planetary gap is short-lived, unless the disk is nearly inviscid. In contrast, the vortex formed at the outer edge of a dead zone is long-lived. The vortex morphology can be significantly different in the two scenarios: the vortex radial and azimuthal extensions are ∼1.5 and ∼3.5 times larger for the dead-zone edge compared to gap models. In some particular cases, the vortex aspect ratios can be similar in the two scenarios; however, the vortex azimuthal extensions can be used to distinguish the vortex formation mechanisms. We calculated predictions for vortex observability in the submillimeter continuum with ALMA. We found that the azimuthal and radial extent of the brightness asymmetry correlates with the vortex formation process within the limitations of α-viscosity prescription.

  13. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  14. Control of vortex state in cobalt nanorings with domain wall pinning centers

    Directory of Open Access Journals (Sweden)

    Manohar Lal

    2018-05-01

    Full Text Available Magnetic rings at the mesoscopic scale exhibit new spin configuration states and switching behavior, which can be controlled via geometrical structure, material composition and applied field. Vortex states in magnetic nanorings ensure flux closure, which is necessary for low stray fields in high packing density in memory devices. We performed magnetoresistance measurements on cobalt nanoring devices and show that by attaching nanowires to the ring, the vortex state can be stabilized. When a square pad is attached to the free end of the wire, the domain wall nucleation field in the nanowire is reduced. In addition, the vortex state persists over a larger range of magnetic fields, and exists at all in-plane orientations of the magnetic field. These experimental findings are well supported by our micromagnetic simulations.

  15. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  16. A vortex dynamics perspective on stratospheric sudden warmings

    OpenAIRE

    Matthewman, N. J.

    2009-01-01

    A vortex dynamics approach is used to study the underlying mechanisms leading to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observational data are used in chapter 2 to construct climatologies of the Arctic polar vortex structure during vortex-splitting and vortex-displacement SSWs occurring between 1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to be typically independent of height (barotropic), whereas breakdown during vor...

  17. Controlling vortex motion and vortex kinetic friction

    International Nuclear Information System (INIS)

    Nori, Franco; Savel'ev, Sergey

    2006-01-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves

  18. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  19. Theory and simulations of electron vortices generated by magnetic pushing

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A. S.; Angus, J. R.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Ottinger, P. F. [An Independent Consultant through ENGILITY, Chantilly, Virginia 20151 (United States)

    2013-08-15

    Vortex formation and propagation are observed in kinetic particle-in-cell (PIC) simulations of magnetic pushing in the plasma opening switch. These vortices are studied here within the electron-magnetohydrodynamic (EMHD) approximation using detailed analytical modeling. PIC simulations of these vortices have also been performed. Strong v×B forces in the vortices give rise to significant charge separation, which necessitates the use of the EMHD approximation in which ions are fixed and the electrons are treated as a fluid. A semi-analytic model of the vortex structure is derived, and then used as an initial condition for PIC simulations. Density-gradient-dependent vortex propagation is then examined using a series of PIC simulations. It is found that the vortex propagation speed is proportional to the Hall speed v{sub Hall}≡cB{sub 0}/4πn{sub e}eL{sub n}. When ions are allowed to move, PIC simulations show that the electric field in the vortex can accelerate plasma ions, which leads to dissipation of the vortex. This electric field contributes to the separation of ion species that has been observed to occur in pulsed-power experiments with a plasma-opening switch.

  20. Compensation for the orbital angular momentum of a vortex beam in turbulent atmosphere by adaptive optics

    Science.gov (United States)

    Li, Nan; Chu, Xiuxiang; Zhang, Pengfei; Feng, Xiaoxing; Fan, ChengYu; Qiao, Chunhong

    2018-01-01

    A method which can be used to compensate for a distorted orbital angular momentum and wavefront of a beam in atmospheric turbulence, simultaneously, has been proposed. To confirm the validity of the method, an experimental setup for up-link propagation of a vortex beam in a turbulent atmosphere has been simulated. Simulation results show that both of the distorted orbital angular momentum and the distorted wavefront of a beam due to turbulence can be compensated by an adaptive optics system with the help of a cooperative beacon at satellite. However, when the number of the lenslet of wavefront sensor (WFS) and the actuators of the deform mirror (DM) is small, satisfactory results cannot be obtained.

  1. Interaction of Vortex Ring with Cutting Plate

    Science.gov (United States)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  2. Electric vortex in MHD flow

    International Nuclear Information System (INIS)

    Garcia, M.

    1995-01-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low β flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion

  3. Non-coaxial superposition of vector vortex beams.

    Science.gov (United States)

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  4. Nonequilibriun Dynamic Phases of Driven Vortex Lattices in Superconductors with Periodic Pinning Arrays

    Science.gov (United States)

    Reichhardt, C.; Olson, C. J.; Nori, F.

    1998-03-01

    We present results from extensive simulations of driven vortex lattices interacting with periodic pinning arrays. Changing an applied driving force produces an exceptionally rich variety of distinct dynamic phases which include over a dozen well defined plastic flow phases. Transitions between different dynamical phases are marked by sharp jumps in the V(I) curves that coincide with distinct changes in the vortex trajectories and vortex lattice order. A series of dynamical phase diagrams are presented which outline the onset of the different dynamical phases (C. Reichhardt, C.J. Olson, and F. Nori, Phys. Rev. Lett. 78), 2648 (1997); and to be published. Videos are avaliable at http://www-personal.engin.umich.edu/ñori/. Using force balance arguments, several of the phase boundaries can be derived analyticaly.

  5. Vortex flow in a torus - a method for arc stabilization

    International Nuclear Information System (INIS)

    Polman, R.W.

    1976-08-01

    Experiments on ring vortices inside a torus and experiments on semi-toroidal arcs stabilized by such vortices are described. The studies were performed in two separate devices. One of the toroidal vortex chambers - 'Cogion', with R = 0.45 m and r = 0.10 m - permits the establishment of a gas flow only. In the other device - 'Tovorex', with R = 0.19 m and r = 0.04 m - it is also possible to draw a semi-toroidal arc. The measurements surprisingly show that it is possible to describe the radial distribution of the poloidal flow in terms of a plane turbulent wall jet discharging in an external stream. The velocity profile and the growth of the width of the jet are in accordance with experimental data on this subject. A different behaviour is found for the decay of the maximum velocity. The core of the flow proves to be almost stagnant; the axis of rotation is displaced outwardly with respect to the centre of the cross-section over a distance of 6 mm. In 'Tovorex' information about the rotating flow is obtained without the presence of an arc in the vortex core. The velocity profiles prove to be independent of the pressure (50-400 Torr). For experiments with arcs nitrogen is used. It has been found that the semi-toroidal DC-arc, surrounded by a continuous metal wall can be stabilized by the toroidal vortices in the experimental range30 -1 , 0.6 -1 , depends on the current and on the pressure and is independent of Usub(j) and a. Temperatures of the discharge are estimated at approximately 6000 K. The velocity profiles in both vortex chambers are obtained with a hot-wire anemometer operated at constant resistance

  6. Some observations of tip-vortex cavitation

    Science.gov (United States)

    Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.

    1991-08-01

    Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

  7. Optimization of steam-vortex plasma-torch start-up

    Science.gov (United States)

    Mikhailov, B. I.

    2011-12-01

    We propose a new optimal method of steam-vortex plasma-torches start-up; this method completely prevents the danger of water steam condensation in the arc chamber and all undesirable consequences of it.

  8. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    Science.gov (United States)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  9. Development of a High-Order Navier-Stokes Solver Using Flux Reconstruction to Simulate Three-Dimensional Vortex Structures in a Curved Artery Model

    Science.gov (United States)

    Cox, Christopher

    Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the

  10. Instabilities and vortex dynamics in shear flow of magnetized plasmas

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.

    1990-03-01

    Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab

  11. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...... particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator....

  12. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    International Nuclear Information System (INIS)

    Speetjens, M F M; Meleshko, V V; Van Heijst, G J F

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)

  13. Estimates of the effectiveness of automatic control in alleviating wake vortex induced roll excursions

    Science.gov (United States)

    Tinling, B. E.

    1977-01-01

    Estimates of the effectiveness of a model following type control system in reducing the roll excursion due to a wake vortex encounter were obtained from single degree of freedom computations with inputs derived from the results of wind tunnel, flight, and simulation experiments. The analysis indicates that the control power commanded by the automatic system must be roughly equal to the vortex induced roll acceleration if effective limiting of the maximum bank angle is to be achieved.

  14. Polar night vortex breakdown and large-scale stirring in the southern stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Alvaro de la [Universidad Complutense de Madrid, Departamento de Geofisica y Meteorologia, Madrid (Spain); University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Mechoso, C.R. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Ide, K. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); University of Maryland, Department of Atmospheric and Oceanic Science, Collage Park, MD (United States); Walterscheid, R. [The Aerospace Corporation, Space Sciences Department, Los Angeles, CA (United States); Schubert, G. [University of California, Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States)

    2010-11-15

    The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Strateole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex. (orig.)

  15. Numerical simulation on quantum turbulence created by an oscillating object

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp

    2009-02-01

    We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.

  16. On-chip generation and control of the vortex beam

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Aiping; Wang, Qin [College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210000, China and Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Zou, Chang-Ling, E-mail: clzou321@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Electric Engineering, Yale University, New Haven, Connecticut 06511 (United States); Ren, Xifeng, E-mail: renxf@ustc.edu.cn; Guo, Guang-Can [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-05-02

    A method to generate and control the amplitude and phase distributions of an optical vortex beam is proposed. By introducing a holographic grating on the top of a dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be converted to each other. This microscale holographic grating is very robust against the variation of geometry parameters. The designed vortex beam generator can produce the target beam with a fidelity up to 0.93, and the working bandwidth is about 175 nm with the fidelity larger than 0.80. In addition, a multiple generator composed of two holographic gratings on two parallel waveguides is studied, which can perform an effective and flexible modulation on the vortex beam by controlling the phase of the input light. Our work opens an available avenue towards the integrated orbital angular momentum devices with multiple degrees of optical freedom, which can be used for optical tweezers, micronano imaging, information processing, and so on.

  17. Control of a coupled map lattice model for vortex shedding in the ...

    Indian Academy of Sciences (India)

    The DNL method was found to be the most efficient controller of the low-order CML model. The .... these techniques to the vortex shedding process using CML models is an additional moti- ..... near the cable vibration nodes (figure 3a). Vortex ...

  18. Numerical research of the compressible flow in a vortex tube using OpenFOAM software

    Directory of Open Access Journals (Sweden)

    Burazer Jela M.

    2017-01-01

    Full Text Available The work presented in this paper is dealing with numerical simulation of energy separation mechanism and flow phenomena within a Ranque-Hilsch vortex tube. Simulation of turbulent, compressible, highly swirling flow inside vortex tube is performed using RANS approach, with Favre averaged conservation equations. For turbulence closure, k-ε and k-ω shear-stress transport models are used. It is assumed that the mean flow is axisymmetric, so the 2-D computational domain is used. Computations were performed using open-source CFD software Open- FOAM. All compressible solvers available within OpenFOAM were tested, and it was found that most of the solvers cannot predict energy separation. Code of two chosen solvers, which proved as the most robust, is modified in terms of mean energy equation implementation. Newly created solvers predict physically accepted behavior in vortex tube, with good agreement with experimental results. Comparison between performances of solvers is also presented. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046

  19. Backreaction of excitations on a vortex

    OpenAIRE

    Arodz, Henryk; Hadasz, Leszek

    1996-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their backreaction on the vortex. In the present paper we investigate backreaction of Proca type excitations on a straightlinear vortex in the Abelian Higgs model. We propose exact Ansatz for fields of the excited vortex. From initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the backreaction corrections. Their approximate solutions are found ...

  20. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation.......We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  1. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  2. A simple mechanism for controlling vortex breakdown in a closed flow

    OpenAIRE

    Cabeza, C.; Sarasua, Gustavo; Marti, Arturo C.; Bove, Italo

    2005-01-01

    This work is focused to study the development and control of the laminar vortex breakdown of a flow enclosed in a cylinder. We show that vortex breakdown can be controlled by the introduction of a small fixed rod in the axis of the cylinder. Our method to control the onset of vortex breakdown is simpler than those previously proposed, since it does not require any auxiliary device system. The effect of the fixed rods may be understood using a simple model based on the failure of the quasi-cyl...

  3. Detection of mixed OAM states via vortex breakup

    Energy Technology Data Exchange (ETDEWEB)

    Shutova, Mariia, E-mail: mariia.shutova@physics.tamu.edu; Zhdanova, Alexandra A.; Sokolov, Alexei V.

    2017-01-30

    We study the tilted lens technique for measuring the topological charge (TC) of an optical vortex and investigate how this technique works for optical vortices in mixed orbital angular momentum states (i.e. when one beam contains several components with different values of TC). We present experimental results and theoretical simulations for the measurement of the TC of mixed states. We investigate two different cases: when coherent interference (or addition) between components is present and when it is absent (incoherent addition). We discover that this technique is suitable for measuring the TC of the dominant component of a mixed state. - Highlights: • A tilted lens technique was used to detect and analyze the optical vortex in a mixed OAM state. • Two cases of mixed states were investigated: coherent and incoherent. • The theoretical results were in agreement with the experimental ones.

  4. Analysis of Optical Fiber Complex Propagation Matrix on the Basis of Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We propose and experimentally demonstrate a novel method for reconstruction of the complex propagation matrix of optical fibers supporting propagation of multiple vortex modes. This method is based on the azimuthal decomposition approach and allows the complex matrix elements to be determined...... by direct calculations. We apply the proposed method to demonstrate the feasibility of optical compensation for coupling between vortex modes in optical fiber....

  5. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  6. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  7. Simulation of flow around a slender body at high angles of attack

    Directory of Open Access Journals (Sweden)

    Obeid Osama

    2017-01-01

    Full Text Available LES of the flow around an ogive-cylinder body at high angles of attack were carried out to investigate the possibility of the development of asymmetric wake-vortex without the introduction of artificial perturbations. The study investigated the effect of grid resolution and scheme bias on the solution. The numerical solution was found to be sensitive to the bias in the numerical scheme. The simulation was carried for angles of attack α = 30°, 40°, 50°, 55°, and 60°. The simulation at α = 30° − 40° produced symmetric wake-vortex. At α = 50°, the wake-vortex is also symmetric but with vortex separation. At α = 60°, the wake-vortex becomes asymmetric. At 60°, the wake-vortex is highly asymmetric with vortex separation and breakdown. It was concluded that asymmetric flow around slender bodies at high angles of attack can be simulated in the absence geometrical or flow perturbations.

  8. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  9. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  10. von Kármán Vortex Street within an Impacting Drop

    KAUST Repository

    Thoraval, Marie-Jean

    2012-06-29

    The splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets. At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular splashing. At higher Reynolds numbers, its base becomes unstable, shedding vortex rings into the liquid from the free surface in an axisymmetric von Kármán vortex street, thus breaking the ejecta sheet as it forms.

  11. von Kármán Vortex Street within an Impacting Drop

    KAUST Repository

    Thoraval, Marie-Jean; Takehara, Kohsei; Etoh, Takeharu Goji; Popinet, Sté phane; Ray, Pascal; Josserand, Christophe; Zaleski, Sté phane; Thoroddsen, Sigurdur T

    2012-01-01

    The splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets. At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular splashing. At higher Reynolds numbers, its base becomes unstable, shedding vortex rings into the liquid from the free surface in an axisymmetric von Kármán vortex street, thus breaking the ejecta sheet as it forms.

  12. Moving vortex matter with coexisting vortices and anti-vortices

    International Nuclear Information System (INIS)

    Carneiro, Gilson

    2009-01-01

    Moving vortex matter, driven by transport currents independent of time, in which vortices and anti-vortices coexist is investigated theoretically in thin superconducting films with nanostructured defects. A simple London model is proposed for the vortex dynamics in films with periodic arrays of nanomagnets or cylindrical holes (antidots). Common to these films is that vortex anti-vortex pairs may be created in the vicinity of the defects by relatively small transport currents, because it adds to the current generated by the defects - the nanomagnets screening current, or the antidots backflow current - and may exceed locally the critical value for vortex anti-vortex pair creation. The model assumes that vortex matter dynamics is governed by Langevin equations, modified to account for creation and annihilation of vortex anti-vortex pairs. For pair creation, it is assumed that whenever the total current at some location exceeds a critical value, equal to that needed to separate a vortex from an anti-vortex by a vortex core diameter, a pair is created instantaneously around this location. Pair annihilation occurs by vortex anti-vortex collisions. The model is applied to films at zero external magnetic field and low temperatures. It is found that several moving vortex matter steady-states with equal numbers of vortices and anti-vortices are possible.

  13. Meissner effects, vortex core states, and the vortex glass phase transition

    International Nuclear Information System (INIS)

    Huang, Ming.

    1991-01-01

    This thesis covers three topics involving Meissner effects and the resulting defect structures. The first is a study of Meissner effects in superconductivity and in systems with broken translational symmetry. The Meissner effect in the superconductors is a rigidity against external magnetic field caused by the breaking of the gauge symmetry. Other condensed matter systems also exhibit rigidities like this: The breaking of the translational symmetry in a cubic-liquid-crystal causes the system to expel twist deformations and the breaking of the translational symmetry in a nematic liquid crystal gives it a tendency to expel twist and bend deformations. In this thesis, the author studies these generalized Meissner effects in detail. The second is a study of the quasiparticle states bound to the vortex defect in superconductors. Scanning-tunneling-microscope measurements by Harald Hess et al. of the local density of states in a vortex core show a pronounced peak at small bias. These measurements contradict with previous theoretical calculations. Here, he solves the Bogoliubov equations to obtain the local density of states in the core and satisfactorily explain the experimental observations. He also predicted additional structure in the local density of states which were later observed in experiments. The third is a study of vortex dynamics in the presence of disorder. A mean field theory is developed for the recently proposed normal to superconducting vortex glass transition. Using techniques developed to study the critical dynamics of spin glasses, he calculates the mean field vortex glass phase boundary and the critical exponents

  14. Shape induced magnetic vortex state in hexagonal ordered cofe nanodot arrays using ultrathin alumina shadow mask

    Science.gov (United States)

    Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.

    2018-04-01

    The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.

  15. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  16. Experiments concerning the theories of vortex breakdown

    Science.gov (United States)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the stagnation and wave guide theories of vortex breakdown. Three different wings were used to produce a trailing vortex which convected downstream without undergoing breakdown. Disturbances were then introduced onto the vortex using a moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. A downstream traveling wave was observed to produce a structure similar in appearance to a vortex breakdown. An upstream traveling wave produced a moving turbulent region. The upstream disturbance moved into an axial velocity profile that had a wake-like defect while the downstream moving vortex breakdown moved against a jet-like overshoot. The longitudinal and swirl velocity profiles were documented by LDV measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  17. Computational investigation of large-scale vortex interaction with flexible bodies

    Science.gov (United States)

    Connell, Benjamin; Yue, Dick K. P.

    2003-11-01

    The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.

  18. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  19. Persistent magnetic vortex flow at a supergranular vertex

    Science.gov (United States)

    Requerey, Iker S.; Cobo, Basilio Ruiz; Gošić, Milan; Bellot Rubio, Luis R.

    2018-03-01

    Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims: We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods: We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results: One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions: This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow. A movie attached to Fig. 2 is available at http://https://www.aanda.org

  20. Numerical solution of viscous flow around an airfoil with a flap via the random vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Ghadiri, B.; Nazari, D. [Tarbiat Modares Univ., Dept. of Mechancial Engineering, Tehran (Iran, Islamic Republic of)]. E-mail: Ghadirib@modares.ac.ir; Nazari_d@yahoo.com

    2003-07-01

    The unsteady and incompressible flow around an airfoil with a flap is analyzed via a random vortex method. The Navier-Stokes equations, in the form of vorticity, is split into diffusion and convection parts according to the fractional step method. A random Walk method is used to solve the diffusion equation and the Cloud-in-Cell (CIC) method to solve the Euler's equation. The sequence mapping transformations is used to map the uniform flow around an airfoil with a flap onto a circular cylinder with a uniform flow velocity. The pressure and force coefficients are computed for an airfoil with a flap attached for different angle of attack; agreement with experimental data is good. (author)

  1. Numerical solution of viscous flow around an airfoil with a flap via the random vortex method

    International Nuclear Information System (INIS)

    Ghadiri, B.; Nazari, D.

    2003-01-01

    The unsteady and incompressible flow around an airfoil with a flap is analyzed via a random vortex method. The Navier-Stokes equations, in the form of vorticity, is split into diffusion and convection parts according to the fractional step method. A random Walk method is used to solve the diffusion equation and the Cloud-in-Cell (CIC) method to solve the Euler's equation. The sequence mapping transformations is used to map the uniform flow around an airfoil with a flap onto a circular cylinder with a uniform flow velocity. The pressure and force coefficients are computed for an airfoil with a flap attached for different angle of attack; agreement with experimental data is good. (author)

  2. Vortex-ring-induced large bubble entrainment during drop impact

    KAUST Repository

    Thoraval, Marie-Jean

    2016-03-29

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  3. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  4. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Energy Technology Data Exchange (ETDEWEB)

    Vermeire, B.C., E-mail: brian.vermeire@concordia.ca; Witherden, F.D.; Vincent, P.E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  5. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    Science.gov (United States)

    Vermeire, B. C.; Witherden, F. D.; Vincent, P. E.

    2017-04-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier-Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor-Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  6. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools

    International Nuclear Information System (INIS)

    Vermeire, B.C.; Witherden, F.D.; Vincent, P.E.

    2017-01-01

    First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier–Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor–Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

  7. Neptune's New Dark Vortex: Aerosol Properties from Optical Data

    Science.gov (United States)

    Tollefson, J.; Luszcz-Cook, S.; Wong, M. H.; De Pater, I.

    2016-12-01

    Over the past year, amateur and professional astronomers alike have monitored the appearance of a new dark vortex on Neptune, dubbed SDS-2015 for "southern dark spot discovered in 2015" (Wong et al. 2016; CBET 4278). The discovery of SDS-2015 is fortuitous, being one of only five dark spots observed on Neptune since Voyager 2 imaged the Great Dark Spot (Smith et al. 1989, Science 246, 1422). A companion abstract (Wong et al., this meeting) will present Hubble Space Telescope images of SDS-2015, showcasing the discovery of the vortex in September 2015 and subsequent observations in May 2016. These observations span the optical regime. Longer wavelengths track bright companion clouds thought to form as air is diverted around SDS-2015. Shorter wavelengths reveal the dark spot itself. Combined, these data probe the vertical extent of the dark spot and Neptune's surrounding upper atmosphere. We present preliminary radiative transfer analyses of SDS-2015 using our multispectral data. Our model is the same as that in Luszcz-Cook et al. (2016, Icarus 276, 52) but extended to optical wavelengths. Prior to this work, little was known about the composition and vertical extent of Neptune's dark spots. Only data at optical wavelengths reveal these vortices, suggesting they consist of clearings in the background of fine, evenly-distributed haze particle. Alternatively, the spots may consist of low-albedo aerosols, causing their apparent darkness. Radiative transfer modeling is also one way to determine the vortex top altitude. Simulations of the Great Dark Spot by Stratman et al. (2001, Icarus 151, 275) found that the vortex top altitude is coupled to the brightness of companion clouds, where cloud opacity weakened as the top of the vortex reached higher into the tropopause region. The modeling presented here will compare these hypotheses and provide the first glimpses into the vertical structure of SDS-2015.

  8. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  9. A note on integral vortex strength

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2010-01-01

    Roč. 58, č. 1 (2010), s. 23-28 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : circulation * unsteady Taylor vortex * vortex intensity * vortex strength * vorticity * vorticity decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  10. Obstacle-induced spiral vortex breakdown

    OpenAIRE

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-01-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by...

  11. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  12. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  13. Effect of cavitation on flow structure of a tip vortex

    Science.gov (United States)

    Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed

    2013-11-01

    Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.

  14. Theory of Vortex Crystal Formation in Two-Dimensional Turbulence

    Science.gov (United States)

    Jin, D. Z.

    1999-11-01

    the background by the strong vortices. Setting these two rates equal, we obtain an estimate for Nc in terms of the initial number of strong vortices, their total circulation, the area of the flow, and two exponents associated with the merger dynamics. The relation is confirmed by the experiments and by vortex-in-cell simulations.(This work was done in collaboration with Daniel H.E. Dubin, and was supported by grants from the National Science Foundation and the Office of Naval Research.)

  15. Vortex shaking study of REBCO tape with consideration of anisotropic characteristics

    Science.gov (United States)

    Liang, Fei; Qu, Timing; Zhang, Zhenyu; Sheng, Jie; Yuan, Weijia; Iwasa, Yukikazu; Zhang, Min

    2017-09-01

    The second generation high temperature superconductor, specifically REBCO, has become a new research focus in the development of a new generation of high-field (>25 T) magnets. One of the main challenges in the application of the magnets is the current screening problem. Previous research shows that for magnetized superconducting stacks and bulks the application of an AC field in plane with the circulating current will lead to demagnetization due to vortex shaking, which provides a possible solution to remove the shielding current. This paper provides an in-depth study, both experimentally and numerically, to unveil the vortex shaking mechanism of REBCO stacks. A new experiment was carried out to measure the demagnetization rate of REBCO stacks exposed to an in-plane AC magnetic field. Meanwhile, 2D finite element models, based on the E-J power law, are developed for simulating the vortex shaking effect of the AC magnetic field. Qualitative agreement was obtained between the experimental and the simulation results. Our results show that the applied in-plane magnetic field leads to a sudden decay of trapped magnetic field in the first half shaking cycle, which is caused by the magnetic field dependence of critical current. Furthermore, the decline of demagnetization rate with the increase of tape number is mainly due to the cross-magnetic field being screened by the top and bottom stacks during the shaking process, which leads to lower demagnetization rate of inner layers. We also demonstrate that the frequency of the applied AC magnetic field has little impact on the demagnetization process. Our modeling tool and findings perfect the vortex shaking theory and provide helpful guidance for eliminating screening current in the new generation REBCO magnets.

  16. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    Science.gov (United States)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  17. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    Science.gov (United States)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  18. Vortex-induced phase slip dissipation in a torioidal Bose-Einstein condensate flowing through a barrier

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Lee A [Los Alamos National Laboratory

    2009-01-01

    We study the phase slips superfluid dissipation mechanism with a BEC flowing through a repulsive barrier inside a torus. The barrier is adiabatically raised across the annulus while the condensate is flowing with a finite quantized angular momentum. We found that, at a critical height, a vortex reaches the barrier moving radially from the inner region to eventually circulate along the annulus. At a slightly higher barrier, an anti-vortex also enters into the annulus from the outward region. The vortex and anti-vortex decrease the total angular momentum by leaving behind their respective paths a 2{pi} phase slip. When they collide or orbit along the same loop, the condensate suffers a global 2{pi} phase slip and the total angular momentum decreases by one quantum. The analysis is based on numerical simulations of the dynamical Gross-Pitaevskii equation both in two- and three-dimensions, the latter with the experimental parameters of the torus trap recently created at the NIST institute.

  19. Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale

    Science.gov (United States)

    Fang, Yiqi; Lu, Qinghong; Wang, Xiaolei; Zhang, Wuhong; Chen, Lixiang

    2017-02-01

    The study of vortex dynamics is of fundamental importance in understanding the structured light's propagation behavior in the realm of singular optics. Here, combining with the large-angle holographic lithography in photoresist, a simple experiment to trace and visualize the vortex birth and splitting of light fields induced by various fractional topological charges is reported. For a topological charge M =1.76 , the recorded microstructures reveal that although it finally leads to the formation of a pair of fork gratings, these two vortices evolve asynchronously. More interestingly, it is observed on the submicron scale that high-order topological charges M =3.48 and 3.52, respectively, give rise to three and four characteristic forks embedded in the samples with one-wavelength resolution of about 450 nm. Numerical simulations based on orbital angular momentum eigenmode decomposition support well the experimental observations. Our method could be applied effectively to study other structured matter waves, such as the electron and neutron beams.

  20. Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube

    Directory of Open Access Journals (Sweden)

    Rahbar Nader

    2015-01-01

    Full Text Available There are a few experimental and numerical studies on the behaviour of micro-scale vortex tubes. The intention of this work is to investigate the energy separation phenomenon in a micro-scale vortex tube by using the computational fluid dynamic. The flow is assumed as steady, turbulent, compressible ideal gas, and the shear-stress transport sst k-w is used for modeling of turbulence phenomenon. The results show that 3-D CFD simulation is more accurate than 2-D axisymmetric one. Moreover, optimum cold-mass ratios to maximize the refrigeration-power and isentropicefficiency are evaluated. The results of static temperature, velocity magnitude and pressure distributions show that the temperature-separation in the micro-scale vortex tube is a function of kinetic-energy variation and air-expansion in the radial direction.

  1. Three-vortex configurations in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Seman, J. A.; Henn, E. A. L.; Shiozaki, R. F.; Ramos, E. R. F.; Caracanhas, M.; Castilho, P.; Castelo Branco, C.; Tavares, P. E. S.; Poveda-Cuevas, F. J.; Magalhaes, K. M. F.; Bagnato, V. S.; Haque, M.; Roati, G.

    2010-01-01

    We report on the creation of three-vortex clusters in a 87 Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.

  2. A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets

    Directory of Open Access Journals (Sweden)

    William G. Pichel

    2008-05-01

    Full Text Available The sea surface imprints of Atmospheric Vortex Street (AVS off Aleutian Volcanic Islands, Alaska were observed in two RADARSAT-1 Synthetic Aperture Radar (SAR images separated by about 11 hours. In both images, three pairs of distinctive vortices shedding in the lee side of two volcanic mountains can be clearly seen. The length and width of the vortex street are about 60-70 km and 20 km, respectively. Although the AVS’s in the two SAR images have similar shapes, the structure of vortices within the AVS is highly asymmetrical. The sea surface wind speed is estimated from the SAR images with wind direction input from Navy NOGAPS model. In this paper we present a complete MM5 model simulation of the observed AVS. The surface wind simulated from the MM5 model is in good agreement with SAR-derived wind. The vortex shedding rate calculated from the model run is about 1 hour and 50 minutes. Other basic characteristics of the AVS including propagation speed of the vortex, Strouhal and Reynolds numbers favorable for AVS generation are also derived. The wind associated with AVS modifies the cloud structure in the marine atmospheric boundary layer. The AVS cloud pattern is also observed on a MODIS visible band image taken between the two RADARSAT SAR images. An ENVISAT advance SAR image taken 4 hours after the second RADARSAT SAR image shows that the AVS has almost vanished.

  3. Vortex Dynamics in Superconductors with Different Types of Pinning Potentials; Dinamica de Vortices en Superconductores con Diferentes tipos de Anclaje

    Energy Technology Data Exchange (ETDEWEB)

    Laguna, Maria Fabiana [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, San Carlos de Bariloche (Argentina)

    2001-07-01

    In this work we study the behavior of the vortex system in the mixed state of a type II superconductor when it interacts with different kinds of pinning potentials. To do this, we perform numerical simulations in the presence of an external magnetic field, by making use of two different approaches.One corresponds to a Langevin simulation of the three dimensional XY model or Josephson-junction network, whereas the other corresponds to a Molecular dynamics simulation of two dimensional point-like vortices.We analyze the transport properties of highly anisotropic superconductors with different kinds of topological disorder in the configuration in which the external field is applied perpendicular to the CuO planes.We found that for systems with point defects the activation energy is the same for the two components of the resistivity, while in systems with columnar defects the activation energies can be different.We also study the structure, phase transitions and transport properties of the vortex system when the external magnetic field lies parallel to the planes in layered superconductors. We analyze the stability of different phases at low temperatures and show under which conditions the smectic phase is stable.Our results indicate the presence of the smectic phase in an intermediate range of temperatures.We have studied a vortex array in a periodic pinning potential with triangular and kagome geometries.We obtain the ground state vortex configurations and calculate some thermodynamic quantities for different magnetic fields.We observe several stages of lattice pinning and melting and we characterize different phases and transitions between them.Finally, simulating the Bitter pinning effect over the vortex system, we study static and dynamic properties of the vortex system in the presence of the surface Bitter pinning and the bulk pinning.We found low temperature structures similar to those obtained experimentally.We analyze the dynamics of the nucleation and growth

  4. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    International Nuclear Information System (INIS)

    Candel, I; Ioana, C; Bunea, F; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Dunca, G; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Bucur, D M; Division Technique Générale, Grenoble (France))" data-affiliation=" (Electricité de France, Division Technique Générale, Grenoble (France))" >Reeb, B; Ciocan, G D

    2014-01-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system

  5. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    Science.gov (United States)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  6. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  7. On the evolution of vortex rings with swirl

    International Nuclear Information System (INIS)

    Naitoh, Takashi; Okura, Nobuyuki; Gotoh, Toshiyuki; Kato, Yusuke

    2014-01-01

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions

  8. On the evolution of vortex rings with swirl

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Takashi, E-mail: naitoh.takashi@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: ohkura@meijo-u.ac.jp [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: gotoh.toshiyuki@nitech.ac.jp [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  9. Phase diagram of a lattice of pancake vortex molecules

    International Nuclear Information System (INIS)

    Tanaka, Y.; Crisan, A.; Shivagan, D.D.; Iyo, A.; Shirage, P.M.; Tokiwa, K.; Watanabe, T.; Terada, N.

    2009-01-01

    On a superconducting bi-layer with thickness much smaller than the penetration depth, λ, a vortex molecule might form. A vortex molecule is composed of two fractional vortices and a soliton wall. The soliton wall can be regarded as a Josephson vortex missing magnetic flux (degenerate Josephson vortex) due to an incomplete shielding. The magnetic energy carried by fractional vortices is less than in the conventional vortex. This energy gain can pay a cost to form a degenerate Josephson vortex. The phase diagram of the vortex molecule is rich because of its rotational freedom.

  10. Phenomenological Model of Vortex Generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Westergaard, C.

    1995-01-01

    For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....

  11. Rewritable ferroelectric vortex pairs in BiFeO3

    Science.gov (United States)

    Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook

    2017-08-01

    Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.

  12. A 3D vortex formed by trajectories of the Navier–Stokes equation

    International Nuclear Information System (INIS)

    Wang, Peng; Wang, Xu-Ming

    2015-01-01

    The 3D Navier–Stokes equation for incompressible fluid is resolved by using the Lie group analysis method. The solution shows a spiral vortex structure and some strange related aspects. There are two running modes of the vortex, up-spiral or down-spiral, and the modes are determined by the viscosity of fluid. The calculated z-directional curl of the velocity presents a zero-piercing, which indicates that the variation from the up-spiral structure to the down-spiral may correspond to the state change of the fluid from gas to liquid. In the corresponding parameter region, there is likely a so-called two-phase-coexistence of gas and liquid. Within the vortex, the dependence of the angle velocity of a mass particle on its radial position is dominated by a Gaussian-like curve in the plane of angle velocity versus radial position. This work provides a vivid description of the vortex that is in accordance with a real vortex structure. (paper)

  13. Three-dimensional parallel vortex rings in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis

    2004-01-01

    We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability

  14. Navier-Stokes prediction of a delta wing in roll with vortex breakdown

    Science.gov (United States)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1993-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate vortical flow about a 65 degree sweep delta wing. Subsonic turbulent flow computations are presented for this delta wing at 30 degrees angle of attack and static roll angles up to 42 degrees. This work is part of an on going effort to validate the RANS approach for predicting high-incidence vortical flows, with the eventual application to wing rock. The flow is unsteady and includes spiral-type vortex breakdown. The breakdown positions, mean surface pressures, rolling moments, normal forces, and streamwise center-of-pressure locations compare reasonably well with experiment. In some cases, the primary vortex suction peaks are significantly underpredicted due to grid coarseness. Nevertheless, the computations are able to predict the same nonlinear variation of rolling moment with roll angle that appeared in the experiment. This nonlinearity includes regions of local static roll instability, which is attributed to vortex breakdown.

  15. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor

    2008-01-01

    a wind turbine blade. The low Reynolds number is chosen on the basis that this is a fundamental investigation of the structures of the flow induced by vortex generators and the fact that one obtains a thicker boundary layer and larger structures evoked by the actuating devices, which are easier...... generators are applied. The idea behind the experiments is that the results will be offered for validation of modeling of the effect of vortex generators using various numerical codes. Initial large eddy simulation (LES) computations have been performed that show the same qualitative behaviour...

  16. Structure of a steady drain-hole vortex in a viscous fluid

    DEFF Research Database (Denmark)

    Bøhling, Lasse; Andersen, Anders Peter; Fabre, D.

    2010-01-01

    We use direct numerical simulations to study a steady bathtub vortex in a cylindrical tank with a central drain-hole, a fiat stress-free surface and velocity prescribed at the inlet. We find that the qualitative structure of the meridional flow does not depend on the radial Reynolds number, where...

  17. Vortex ring state by full-field actuator disc model

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.N.; Shen, W.Z.; Munduate, X. [DTU, Dept. of Energy Engineering, Lyngby (Denmark)

    1997-08-01

    One-dimensional momentum theory provides a simple analytical tool for analysing the gross flow behavior of lifting propellers and rotors. Combined with a blade-element strip-theory approach, it has for many years been the most popular model for load and performance predictions of wind turbines. The model works well at moderate and high wind velocities, but is not reliable at small wind velocities, where the expansion of the wake is large and the flow field behind the rotor dominated by turbulent mixing. This is normally referred to as the turbulent wake state or the vortex ring state. In the vortex ring state, momentum theory predicts a decrease of thrust whereas the opposite is found from experiments. The reason for the disagreement is that recirculation takes place behind the rotor with the consequence that the stream tubes past the rotor becomes effectively chocked. This represents a condition at which streamlines no longer carry fluid elements from far upstream to far downstream, hence one-dimensional momentum theory is invalid and empirical corrections have to be introduced. More sophisticated analytical or semi-analytical rotor models have been used to describe stationary flow fields for heavily loaded propellers. In recent years generalized actuator disc models have been developed, but up to now no detailed computations of the turbulent wake state or the vortex ring state have been performed. In the present work the phenomenon is simulated by direct simulation of the Navier-Stokes equations, where the influence of the rotor on the flow field is modelled simply by replacing the blades by an actuator disc with a constant normal load. (EG) 13 refs.

  18. Vortex phase diagram and vortex dynamics at low temperature in a thick a-MgxB1-x film

    International Nuclear Information System (INIS)

    Okuma, S.; Kohara, M.

    2007-01-01

    We report on the equilibrium vortex phase diagram and vortex dynamics at low temperature T in a thick amorphous (a-)Mg x B 1-x film based on the measurements of the dc resistivity ρ and time (t)-dependent component of the flux-flow voltage, δV(t), respectively. Both ρ(T) in perpendicular fields and the vortex phase diagram are qualitatively similar to those for the a-Mo x Si 1-x films, in which evidence for the quantum-vortex-liquid (QVL) phase has been obtained. In either material system we observe anomalous vortex flow with the asymmetric distribution of δV(t) in the QVL phase, suggesting that the anomalous flow is a universal phenomenon commonly observed for disordered amorphous films, independent of material

  19. Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil

    Science.gov (United States)

    Xia, X.; Mohseni, K.

    2017-11-01

    Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.

  20. Effect of vortex generators on the closing transient flow of bileaflet mechanical heart valves

    Science.gov (United States)

    Murphy, David; Dasi, Lakshmi; Yoganathan, Ajit; Glezer, Ari

    2006-11-01

    The time-periodic closing of bileaflet mechanical heart valves is accompanied by a strong flow transient that is associated with the formation of a counter-rotating vortex pair near the b-datum line of leaflet edges. The strong transitory shear that is generated by these vortices may be damaging to blood elements and may result in platelet activation. In the present work, these flow transients are mitigated using miniature vortex generator arrays that are embedded on the surface of the leaflets. Two vortex generator designs were investigated: one design comprised staggered rectangular fins and the other one staggered hemispheres. The closing transients in the absence and presence of the passive vortex generators are characterized using phase locked PIV measurements. The study utilizes a 25 mm St. Jude Medical valve placed in the aortic position of the Georgia Tech left heart simulator. Measurements of the velocity field in the center plane of the leaflets demonstrate that the dynamics of the transient vortices that precede the formation of the leakage jets can be significantly altered and controlled by relatively simple passive modifications of existing valve designs. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  1. Numerical method to calculate flow-induced vibration in turbulent flow. 3rd Report. Analysis of vortex-induced vibration in an array of elastically supported tubes; Ranryuba ni okeru ryutai kozotai rensei shindo kaiseki shuho no kaihatsu. 3. Kangun ni okeru uzu reiki shindo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sadaoka, N.; Umegaki, K. [Hitachi, Ltd., Tokyo (Japan)

    1996-01-25

    A vortex-induced vibration of an array of elastically supported tubes is simulated in two-dimension by using a flow-induced vibration analysis program, which was developed in order to evaluate flow-induced vibration in various components such as heat exchangers. From a comparison of calculated results and experimental data, the following points are observed. (1) For the calculated results in a 5 {times} 5 square array, the flow pattern surrounding the first-row tubes is markedly different from that observed in the second-row or third-row tubes. This flow pattern is the same as that obtained from the experiment. (2) All tubes begin to oscillate due to unsteady fluid force and the oscillating mode is different for each row of tubes. These oscillation patterns show the same tendency in the experiments and it is concluded that the developed method can simulate vortex-induced vibration in an array of elastically supported tubes. 19 refs., 10 figs., 1 tab.

  2. Green functions of vortex operators

    International Nuclear Information System (INIS)

    Polchinski, J.; California Univ., Berkeley

    1981-01-01

    We study the euclidean Green functions of the 't Hooft vortex operator, primarly for abelian gauge theories. The operator is written in terms of elementary fields, with emphasis on a form in which it appears as the exponential of a surface integral. We explore the requirement that the Green functions depend only on the boundary of this surface. The Dirac veto problem appears in a new guise. We present a two-dimensional solvable model of a Dirac string, which suggests a new solution of the veto problem. The renormalization of the Green functions of the abelian Wilson loop and abelian vortex operator is studied with the aid of the operator product expansion. In each case, an overall multiplication of the operator makes all Green functions finite; a surprising cancellation of divergences occurs with the vortex operator. We present a brief discussion of the relation between the nature of the vacuum and the cluster properties of the Green functions of the Wilson and vortex operators, for a general gauge theory. The surface-like cluster property of the vortex operator in an abelian Higgs theory is explored in more detail. (orig.)

  3. Evolution and breakdown of helical vortex wakes behind a wind turbine

    International Nuclear Information System (INIS)

    Nemes, A; Jacono, D Lo; Sheridan, J; Blackburn, H M; Sherry, M

    2014-01-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable

  4. Single vortex states in a confined Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Komineas, S.; Cooper, N. R.; Papanicolaou, N.

    2005-01-01

    It has been demonstrated experimentally that non-axisymmetric vortices precess around the center of a Bose-Einstein condensate. Two types of single vortex states have been observed, usually referred to as the S vortex and the U vortex. We study theoretically the single vortex excitations in spherical and elongated condensates as a function of the interaction strength. We solve numerically the Gross-Pitaevskii equation and calculate the angular momentum as a function of precession frequency. The existence of two types of vortices means that we have two different precession frequencies for each angular momentum value. As the interaction strength increases the vortex lines bend and the precession frequencies shift to lower values. We establish that for given angular momentum the S vortex has higher energy than the U vortex in a rotating elongated condensate. We show that the S vortex is related to the solitonic vortex, which is a nonlinear excitation in the nonrotating system. For small interaction strengths the S vortex is related to the dark soliton. In the dilute limit a lowest Landau level calculation provides an analytic description of these vortex modes in terms of the harmonic oscillator states

  5. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2017-05-08

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  6. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.; Chuvilin, Andrey; Lopatin, Sergei; Mohammed, Hanan; Kosel, Jü rgen

    2017-01-01

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  7. Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories

    Science.gov (United States)

    Marble, Erik; Morton, Christopher; Yarusevych, Serhiy

    2018-05-01

    Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.

  8. An integral boundary layer method for modelling the effects of vortex generators

    NARCIS (Netherlands)

    Baldacchino, D.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.

    2015-01-01

    In this work, the measured modulated integral boundary layer (IBL) characteristics of low-profile vortex generators (VGs) are used to validate new developments in a viscousinviscid interaction code which is modified to incorporate the effect of the passive mixing devices. The motivations are laid

  9. A new scaling approach for the mesoscale simulation of magnetic domain structures using Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B., E-mail: radhakrishnb@ornl.gov; Eisenbach, M.; Burress, T.A.

    2017-06-15

    Highlights: • Developed new scaling technique for dipole–dipole interaction energy. • Developed new scaling technique for exchange interaction energy. • Used scaling laws to extend atomistic simulations to micrometer length scale. • Demonstrated transition from mono-domain to vortex magnetic structure. • Simulated domain wall width and transition length scale agree with experiments. - Abstract: A new scaling approach has been proposed for the spin exchange and the dipole–dipole interaction energy as a function of the system size. The computed scaling laws are used in atomistic Monte Carlo simulations of magnetic moment evolution to predict the transition from single domain to a vortex structure as the system size increases. The width of a 180° – domain wall extracted from the simulated structures is in close agreement with experimentally values for an F–Si alloy. The transition size from a single domain to a vortex structure is also in close agreement with theoretically predicted and experimentally measured values for Fe.

  10. Dynamics of vortex domain walls in ferromagnetic nanowires - A possible method for chirality manipulation

    Science.gov (United States)

    Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.

    2018-06-01

    The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.

  11. Vortex-based spatiotemporal characterization of nonlinear flows

    Science.gov (United States)

    Byrne, Gregory A.

    Although the ubiquity of vortices in nature has been recognized by artists for over seven centuries, it was the work of artist and scientist Leonardo da Vinci that provided the monumental transition from an aesthetic form to a scientific tool. DaVinci used vortices to describe the motions he observed in air currents, flowing water and blood flow in the human heart. Five centuries later, the Navier-Stokes equations allow us to recreate the swirling motions of fluid observed in nature. Computational fluid dynamic (CFD) simulations have provided a lens through which to study the role of vortices in a wide variety of modern day applications. The research summarized below represents an effort to look through this lens and bring into focus the practical use of vortices in describing nonlinear flows. Vortex-based spatiotemporal characterizations are obtained using two specific mathematical tools: vortex core lines (VCL) and proper orthogonal decomposition (POD). By applying these tools, we find that vortices continue to provide new insights in the realm of biofluids, urban flows and the phase space of dynamical systems. The insights we have gained are described in this thesis. Our primary focus is on biofluids. Specifically, we seek to gain new insights into the connection between vortices and vascular diseases in order to provide more effective methods for clinical diagnosis and treatment. We highlight several applications in which VCL and POD are used to characterize the flow conditions in a heart pump, identify stenosis in carotid arteries and validate numerical models against PIV-based experimental data. Next, we quantify the spatial complexity and temporal stability of hemodynamics generated by a database of 210 patient-specific aneurysm geometries. Visual classifications of the hemodynamics are compared to the automated, quantitative classifications. The quantities characterizing the hemodynamics are then compared to clinical data to determine conditions that are

  12. Vortex matter stabilized by many-body interactions

    Science.gov (United States)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  13. Back reaction of excitations on a vortex

    Science.gov (United States)

    Arodź, Henryk; Hadasz, Leszek

    1997-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their back reaction on the vortex. In the present paper we investigate back reaction of Proca-type excitations on a straight linear vortex in the Abelian Higgs model. We propose an exact ansatz for fields of the excited vortex. From an initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the back reaction corrections. Their approximate solutions are found in the cases of plane wave and wave-packet-type excitations. We find that the excited vortex radiates the vector field and that the Higgs field has a very broad oscillating component.

  14. Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model

    Directory of Open Access Journals (Sweden)

    Bai Chenyuan

    2014-02-01

    Full Text Available For purpose of easy identification of the role of free vortices on the lift and drag and for purpose of fast or engineering evaluation of forces for each individual body, we will extend in this paper the Kutta–Joukowski (KJ theorem to the case of inviscid flow with multiple free vortices and multiple airfoils. The major simplification used in this paper is that each airfoil is represented by a lumped vortex, which may hold true when the distances between vortices and bodies are large enough. It is found that the Kutta–Joukowski theorem still holds provided that the local freestream velocity and the circulation of the bound vortex are modified by the induced velocity due to the outside vortices and airfoils. We will demonstrate how to use the present result to identify the role of vortices on the forces according to their position, strength and rotation direction. Moreover, we will apply the present results to a two-cylinder example of Crowdy and the Wagner example to demonstrate how to perform fast force approximation for multi-body and multi-vortex problems. The lumped vortex assumption has the advantage of giving such kinds of approximate results which are very easy to use. The lack of accuracy for such a fast evaluation will be compensated by a rigorous extension, with the lumped vortex assumption removed and with vortex production included, in a forthcoming paper.

  15. Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow

    Science.gov (United States)

    Zhu, Hong-jun; Lin, Peng-zhi

    2018-06-01

    A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.

  16. Passive scalar transport mediated by laminar vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, R H; Rodríguez, G, E-mail: rohernan@ing.uchile.cl [LEAF-NL, Depto. Ingeniería Civil Mecánica, Universidad de Chile, Casilla 2777, Santiago (Chile)

    2017-04-15

    Numerical simulations were used to study the dynamics of a passive conserved scalar quantity entrained by a self-propelling viscous vortex ring. The transport and mixing process of the passive scalar variable were studied considering two initial scalar distributions: (i) The scalar substance was introduced into the ring during its formation, further focusing in the shedding into the wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path where the entrainment of the scalar substance into the ring bubble was studied as a function of the ring strength. In both cases, the scalar concentration inside the vortex bubble exhibits a steady decay with time. In the second case, it was shown that the entrained scalar mass grows with both the Reynolds number of the ring and the thickness of the scalar layer in the propagation direction. The ring can be viewed as a mechanism for scalar transportation along important distances. (paper)

  17. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Desheng; Shi, Lei; Zhao, Ruijie; Shi, Weidong; Pan, Qiang [Jiangsu University, Zhenjiang (China); Esch, B. P. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2017-02-15

    The aim of the present investigation is to simulate and analyze the tip leakage flow structure and instantaneous evolution of tip vortex cavitation in a scaled axial-flow pump model. The improved filter-based turbulence model based on the density correction and a homogeneous cavitation model were used for implementing this work. The results show that when entering into the tip clearance, the backward flow separates from the blade tip near the pressure side, resulting in the generation of a corner vortex with high magnitude of turbulence kinetic energy. Then, at the exit of the tip clearance, the leakage jets would re-attach on the blade tip wall. Moreover, the maximum swirling strength method was employed in identifying the TLV core and a counter-rotating induced vortex near the end-wall successfully. The three dimensional cavitation patterns and in-plain cavitation structures obtained by the improved numerical method agree well with the experimental results. At the sheet cavitation trailing edge in the tip region, the perpendicular cavitation cloud induced by TLV sheds and migrates toward the pressure side of the neighboring blade. During its migration, it breaks down abruptly and generates a large number of smallscale cavities, leading to severe degradation of the pump performance, which is similar with the phenomenon observed by Tan et al.

  18. Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

    Directory of Open Access Journals (Sweden)

    E. Peet

    2004-12-01

    Full Text Available In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes. Key words. Meteorology and atmospheric dynamics polar meteorology – Atmospheric composition and structure (middle atmosphere–composition and chemistry

  19. Vortex Ring Interaction with a Heated Screen

    Science.gov (United States)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  20. Pumping vortex into a Bose-Einstein condensate of heteronuclear molecules

    International Nuclear Information System (INIS)

    Xu, Z F; Wang, R Q; You, L

    2009-01-01

    Heteronuclear molecules have attracted wide attention due to their permanent electric dipole moments. Analogous to atoms with magnetic dipoles, the existence of nonzero electric dipoles significantly enhances the possibilities and mechanisms for the control and design of quantum degenerate molecule systems with electric (E) fields. This work proposes a vortex creation mechanism inside a condensate of heteronuclear molecules through the adiabatic flipping of the axial bias of an analogous E-field Ioffe-Pritchard trap (IPT), extending the original protocol of Isoshima et al (2000 Phys. Rev. A 61 063610) for an atomic spinor condensate inside a magnetic (B)-field IPT. We provide both analytic proof and numerical simulations to illustrate the high fidelity operation of this vortex pump protocol. We hope our work provides stimulating experimental possibilities for active investigations in quantum degenerate molecule systems.