Sample records for vortex lattice melting

  1. Vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.


    We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the small number of particles in the pancake

  2. Theory of vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.


    We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the

  3. Vortex-lattice melting in a one-dimensional optical lattice

    NARCIS (Netherlands)

    Snoek, M.; Stoof, H.T.C.


    We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice for realistic numbers of particles and vortices. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the

  4. Geometrical vortex lattice pinning and melting in YBaCuO submicron bridges (United States)

    Papari, G. P.; Glatz, A.; Carillo, F.; Stornaiuolo, D.; Massarotti, D.; Rouco, V.; Longobardi, L.; Beltram, F.; Vinokur, V. M.; Tafuri, F.


    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistance oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.

  5. Oscillatory behavior of vortex-lattice melting transition line in mesoscopic Bi_{2}Sr_{2}CaCu_{2}O_{8+y} superconductors. (United States)

    Ooi, S; Mochiku, T; Tachiki, M; Hirata, K


    The vortex-lattice melting transition of a limited number of vortices confined in mesoscopic square superconductors was studied by c-axis resistance measurements using stacks of intrinsic Josephson junctions in Bi_{2}Sr_{2}CaCu_{2}O_{8+y}. In contrast to the melting transition in bulk crystals, we have first found a clear oscillatory behavior in the field dependence of the melting temperature in small samples of 5-10  μm square. The periods of the oscillations roughly obey the regularity of the matching conditions of square vortex lattices surrounded by a square boundary and the melting temperatures are enhanced around the vortex number of i^{2} (where i is an integer). The results suggest that a confinement effect by the square boundary stabilizes square lattice structures which are realized around i^{2} vortex number even in competition with the favorable Abrikosov triangular lattice in the bulk.

  6. Vector Lattice Vortex Solitons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping


    @@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.

  7. Stepwise behavior of vortex-lattice melting transition in tilted magnetic fields in single crystals of Bi(2)Sr(2)CaCu(2)O(8 + delta). (United States)

    Mirković, J; Savel'ev, S E; Sugahara, E; Kadowaki, K


    The vortex-lattice melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) single crystals was studied using in-plane resistivity measurements in magnetic fields tilted away from the c axis to the ab plane. In order to avoid the surface barrier effect which hinders the melting transition in the conventional transport measurements, we used the Corbino geometry of electric contacts. The complete H(c) - H(ab) phase diagram of the melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) is obtained for the first time. The c-axis melting field component H(c)(melt) exhibits the novel, stepwise dependence on the in-plane magnetic fields H(ab) which is discussed on the basis of the crossing vortex-lattice structure. The peculiar resistance behavior observed near the ab plane suggests the change of phase transition character from first to second order.

  8. NMR and Vortex Lattice Melting in YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, C.; Martindale, J.; Pennington, C. [Department of Physics, The Ohio State University, 174 W. 18th Ave, Columbus, Ohio 43210 (United States); Hults, W.; Smith, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)


    We report {sup 89}Y and {sup 17}O NMR (9T) echo decays for YBa{sub 2}Cu{sub 3}O{sub 7} and correct for contributions from dipolar coupling {sup 63,65}Cu in order to isolate effects of vortex dynamics. We confirm vortex localization in the solid state with rms displacements consistent with Langevin dynamical theory, but with motional dynamics at time scales (10{endash}100{mu}s) some {approximately}10{sup 6} times slower than predicted. Vortex migration over longer time scales is restricted to distances less than 1/100 of an intervortex spacing over times as long as 100ms, in contrast with the rapid long range diffusion occurring in the liquid state. {copyright} {ital 1997} {ital The American Physical Society}

  9. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón


    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  10. Optical vortex array in spatially varying lattice

    CERN Document Server

    Kapoor, Amit; Senthilkumaran, P; Joseph, Joby


    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  11. Vortices and vortex lattices in quantum ferrofluids (United States)

    Martin, A. M.; Marchant, N. G.; O’Dell, D. H. J.; Parker, N. G.


    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition.

  12. Vortex lattice theory: A linear algebra approach (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  13. Crystalline Scaling Geometries from Vortex Lattices

    CERN Document Server

    Bao, Ning


    We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e. grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR.

  14. Melting of heterogeneous vortex matter: The vortex `nanoliquid'

    Indian Academy of Sciences (India)

    S S Banerjee; S Goldberg; Y Myasoedov; M Rappaport; E Zeldov; A Soibel; F de la Cruz; C J van der Beek; M Konczykowski; T Tamegai; V Vinokur


    Disorder and porosity are parameters that strongly influence the physical behavior of materials, including their mechanical, electrical, magnetic and optical properties. Vortices in superconductors can provide important insight into the effects of disorder because their size is comparable to characteristic sizes of nanofabricated structures. Here we present experimental evidence for a novel form of vortex matter that consists of inter-connected nanodroplets of vortex liquid caged in the pores of a solid vortex structure, like a liquid permeated into a nanoporous solid skeleton. Our nanoporous skeleton is formed by vortices pinned by correlated disorder created by high-energy heavy ion irradiation. By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered nanocrystals through either a first-order or a continuous transition, whereas at high temperatures a uniform liquid phase is formed upon delocalization-induced melt- ing of the solid skeleton. This new vortex nanoliquid displays unique properties and symmetries that are distinct from both solid and liquid phases.

  15. Vortices and vortex lattices in quantum ferrofluids

    CERN Document Server

    Martin, A M; O'Dell, D H J; Parker, N G


    The achievement of quantum-degenerate Bose gases composed of atoms with sizeable magnetic dipole moments has realized quantum ferrofluids, a form of fluid which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to circulate through vortices with quantized circulation. These excitations underpin a variety of rich phenomena, including vortex lattices, quantum turbulence, the Berenzinksii-Kosterlitz-Thouless transition and Kibble-Zurek defect formation. Here we provide a comprehensive review of the theory of vortices and vortex lattices in quantum ferrofluids created from dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. Our discussion is based on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, from analytic treatments based on the Thomas-Fermi and variational approaches to full numerical simula...

  16. Three-wave electron vortex lattices for measuring nanofields

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail:; Boothroyd, C.B.; Chang, S.L.Y.; Dunin-Borkowski, R.E.


    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. - Highlights: • We demonstrate how three-wave electron vortex lattices can be generated using two electron biprisms in the TEM. • The optical setup can be used to measure nanoscale electromagnetic fields via vortex interferometry. • The presence of vortices is verified explicitly by using a third biprism to perform phase measurements. • The accuracy of vortex position measurements and the requirements of spatial coherence are discussed.

  17. Investigating the vortex melting phenomenon in BSCCO crystals using magneto-optical imaging technique

    Indian Academy of Sciences (India)

    A Soibel; S S Banerjee; Y Myasoedov; M L Rappaport; E Zeldov; S Ooi; T Tamegai


    Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi2Sr2CaCu2O8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid–liquid interface with varying field ()/temperature (). We believe that the complex melting patterns are due to a random distribution of material disorder/inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature/field, we have constructed maps of the melting landscape m(, ), viz., the melting temperature (m) at a given location () in the sample at a given field (). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.

  18. Simulation of vortex matter two-step melting in an anisotropic superconductor with columnar defects

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Leonardo P. [Laboratorio de Metodos Numericos e Simulacao Computacional, Departamento de Tecnologia da Informacao, Universidade Federal de Alagoas, Maceio, AL 57072-970 (Brazil) and Laboratorio de Fisica Teorica e Computacional, Departamento de Fisica, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil)]. E-mail:; Raposo, E.P. [Laboratorio de Fisica Teorica e Computacional, Departamento de Fisica, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil)]. E-mail:; Coutinho-Filho, M.D. [Laboratorio de Fisica Teorica e Computacional, Departamento de Fisica, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil)]. E-mail:


    Columnar defects in high-temperature superconductors have been object of recent intense experimental and theoretical investigations. We report on the observation of a melting in two steps in a 3D vortex line system with randomly-placed columnar defects. We perform a Monte Carlo simulation using the Lawrence-Doniach model, with Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} parameters, in a magnetic field applied perpendicular to the CuO{sub 2} planes and parallel to the columnar defects. The Bose glass phase observed at low temperatures melts, as the temperature increases, through two steps: first it depins to a distorted Abrikosov lattice, in which the vortex matter presents some degree of hexatic order; in the sequence, further increment in the temperature causes the fusion of this distorted lattice.

  19. Vortex solitons at the interface separating square and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Jović Savić, Dragana, E-mail:; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan


    Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.

  20. Vortex lattice transitions in YNi2B2C

    Indian Academy of Sciences (India)

    S J Levett; C D Dewhurst; D McK Paul


    We have performed extensive small-angle neutron scattering (SANS) diffraction studies of the vortex lattice in single crystal YNi2B2C for $B||c$. High-resolution SANS, combined with a field-oscillation vortex lattice preparation technique, allows us to separate Bragg scattered intensities from two orthogonal domains and accurately determine the unit cell angle, . The data suggest that upon increasing field there is a finite transition width where both low- and high-field distorted hexagonal vortex lattice phases, mutually rotated by 45°, coexist. The smooth variation of diffracted intensity from each phase through the transition corresponds to a redistribution of populations between the two types of domains.

  1. Persistence of Metastable Vortex Lattice Domains in MgB2 in the Presence of Vortex Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rastovski, Catherine [University of Notre Dame, IN; Schlesinger, Kimberly [University of Notre Dame, IN; Gannon, William J [Northwestern University, Evanston; Dewhurst, Charles [Institut Laue-Langevin (ILL); Debeer-Schmitt, Lisa M [ORNL; Zhigadlo, Nikolai [ETH Zurich, Switzerland; Karpinski, Janusz [ETH Zurich, Switzerland; Eskildsen, Morten [University of Notre Dame, IN


    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  2. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion. (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R


    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  3. Neutron scattering from vortex lattices in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, A. [CEA Centre d' Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee


    In this chapter we concentrate on the most directly observable quality of a flux-line lattice, namely its geometry and orientation, touching on other aspects only in so much as they are relevant to this discussion. (orig.)

  4. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices (United States)

    Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.; Goldstein Lab Team


    In conventional electronic materials, spins can organize into ordered phases that give rise to ferromagnetic or antiferromagnetic behavior. Here, we report similar observations in a completely different system: a suspension of swimming bacteria. When a dense Bacillus subtilis suspension is confined to a small circular chamber, it can spontaneously form a stable vortex (``spin'') state that can persist for several minutes. By coupling up to 100 such chambers in microfluidic devices, we are able to realize bacterial spin lattices of different geometries. Depending on that geometry and the effective coupling strength between neighboring vortices, we observe the formation of stable ``antiferromagnetic'' and ``ferromagnetic'' bacterial vortex states, that appear to be controlled by the subtle competition between bacterial boundary layer flows and bulk dynamics.

  5. Regeneralized London free energy for high-Tc vortex lattices

    Directory of Open Access Journals (Sweden)

    M. A. Shahzamanian


    Full Text Available   The London free-energy is regeneralized by the Ginsburg-Landau free-energy density in the presence of both d and s order parameters. We have shown that the strength of the s-d coupling, makes an important rule to determine the form of the lattice vortex. Appearance of the ratios of the coherence length to penetration depth in the higher order corrections of the free-energy density will truncate these corrections for even large values of .

  6. Melting of the Abrikosov flux lattice in anisotropic superconductors (United States)

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.


    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  7. Fundamental and vortex solitons in a two-dimensional optical lattice

    CERN Document Server

    Yang, J; Yang, Jianke; Musslimani, Ziad


    Fundamental and vortex solitons in a two-dimensional optically induced waveguide array are reported. In the strong localization regime, the fundamental soliton is largely confined to one lattice site, while the vortex state comprises of four fundamental modes superimposed in a square configuration with a phase structure that is topologically equivalent to the conventional vortex. However, in the weak localization regime, both the fundamental and vortex solitons spread over many lattice sites. We further show that fundamental and vortex solitons are stable against small perturbations in the strong localization regime.

  8. Hard-Core Bosons on the Kagome Lattice: Valence-Bond Solids and Their Quantum Melting (United States)

    Isakov, S. V.; Wessel, S.; Melko, R. G.; Sengupta, K.; Kim, Yong Baek


    Using large scale quantum Monte Carlo simulations and dual vortex theory, we analyze the ground state phase diagram of hard-core bosons on the kagome lattice with nearest-neighbor repulsion. In contrast with the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid prevails at half filling, two novel solid phases emerge at densities ρ=1/3 and ρ=2/3. These solids exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the quantum melting point between these solid phases and the superfluid.

  9. Vortex Lattice Transition Dynamics in MgB2 (United States)

    Rastovski, C.; Das, P.; Schlesinger, K.; Eskildsen, M. R.; Gannon, W. J.; Dewhurst, C. D.; Zhigadlo, N. D.; Karpinski, J.


    We present small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in MgB2 with H c. This material has three different VL phases, all with triangular symmetry but oriented differently with respect to the crystalline axes. Furthermore, a high degree of metastability between the VL phases of MgB2 has been observed as the sample is cooled or heated across the equilibrium phase transitions. Here we present detailed studies of how the metastable (MS) VL phases transition to the ground state (GS), either driven by small changes of the DC magnetic field or by a transverse AC field. Our results show that the MS VL is not due to vortex pinning, and results are inconsistent with predictions based on the Bean model. Instead, we speculate that a ``jamming'' of counter rotated VL domains is responsible for the VL metastability. This is further supported by a power law dependence of the GS VL domain population upon the number of applied AC cycles. This work was supported by the Department of Energy, Basic Energy Sciences under Award No. DE-FG02-10ER46783.

  10. A stress field in the vortex lattice in the type-II superconductor

    Directory of Open Access Journals (Sweden)

    Maruszewski, Bogdan


    Full Text Available Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices (also called flux lines, flux tubes, or fluxons, each carrying a quantum of magnetic flux. These tiny vortices of supercurrent tend to arrange themselves in a triangular and/or quadratic flux-line lattice, which is more or less perturbed by material inhomogeneities that pin the flux lines. Pinning is caused by imperfections of the crystal lattice, such as dislocations, point defects, grain boundaries, etc. Hence, a honeycomb-like pattern of the vortex array presents some mechanical properties. If the Lorentz force of interactions between the vortices is much bigger than the pinning force, the vortex lattice behaves elastically. So we assume that the pinning force is negligible in the sequel and we deal with soft vortices. The vortex motion in the vortex lattice and/or creep of the vortices in the vortex fluid is accompanied by energy dissipation. Hence, except for the elastic properties, the vortex field is also of a viscous character. The main aim of the paper is a formulation of a thermoviscoelastic stress - strain constitutive law consisted of coexistence of the ordered and disordered states of the vortex field. Its form describes an auxetic-like thermomechanical (anomalous property of the vortex field.

  11. Extension of a vortex-lattice method to include the effects of leading-edge separation (United States)

    Mook, D. T.; Maddox, S. A.


    Vortex-lattice methods have been used successfully to obtain the aerodynamic coefficients of lifting surfaces without leading-edge separation. It is shown how an existing vortex-lattice method can be modified to include the effects of leading-edge separation. The modified version is then used to calculate the aerodynamic loads on a highly swept delta wing. The results are compared with Peckham's (1958) experimental data.

  12. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier


    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  13. Quasi-hexagonal vortex-pinning lattice using anodized aluminum oxide nanotemplates

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.


    The bottom barrier layer of well-ordered nanoporous alumina membranes reveals a previously unexploited nanostructured template surface consisting of a triangular lattice of hemispherical nanoscale bumps. Quasi-hexagonal vortex-pinning lattice arrays are created in superconducting Nb films deposit...

  14. The quasi-vortex-lattice method for wings with edge vortex separation (United States)

    Pao, J. L.; Lan, E.


    The aerodynamic characteristics of wings with leading-edge vortex separation were predicted using a method based on a flow model with free vortex elements which are allowed to merge into a concentrated core. The calculated pressure distribution is more accurate than that predicted by methods with discrete vortex filaments alone. In addition, the computer time is reduced approximately by half.

  15. Hall Effect in the Vortex Lattice of d-Wave Superconductors with Anisotropic Fermi Surfaces (United States)

    Kohno, Wataru; Ueki, Hikaru; Kita, Takafumi


    On the basis of the augmented quasiclassical theory of superconductivity with the Lorentz force, we study the magnetic field dependence of the charge distribution due to the Lorentz force in a d-wave vortex lattice with anisotropic Fermi surfaces. Owing to the competition between the energy-gap and Fermi surface anisotropies, the charge profile in the vortex lattice changes dramatically with increasing magnetic field because of the overlaps of each nearest vortex-core charge. In addition, the accumulated charge in the core region may reverse its sign as a function of magnetic field. This strong field dependence of the vortex-core charge cannot be observed in the model with an isotropic Fermi surface.

  16. Contrasting vortex-gyration dispersions for different lattice bases in one-dimensional magnetic vortex arrays (United States)

    Han, Dong-Soo; Jeong, Han-Byeol; Kim, Sang-Koog


    We performed micromagnetic numerical and analytical calculations in studying the effects of change in the primitive unit cells of one-dimensional (1D) vortex arrays on collective vortex-gyration dispersion. As the primitive basis, we consider alternating constituent materials (NiMnSb vs. Permalloy) and alternating dimensions including constituent disk diameter and thickness. In the simplest case, that of one vortex-state disk of given dimensions and single material in the primitive cell, only a single branch of collective vortex-gyration dispersion appears. By contrast, two constituent disks' different alternating materials, thicknesses, and diameters yield characteristic two-branch dispersions, the band widths and gaps of which differ in each case. This work offers not only an efficient means of manipulating collective vortex-gyration band structures but also a foundation for the development of a rich variety of 1D or 2D magnonic crystals and their band structures based on dipolar-coupled-vortex arrays.

  17. Formation of Vortex Lattices in Superfluid Bose Gases at Finite Temperatures (United States)

    Arahata, E.; Nikuni, T.


    We study the dynamics of a rotating trapped Bose-Einstein condensate (BEC) at finite temperatures. Using the Zaremba-Nikuni-Griffin formalism, based on a generalized Gross-Pitaevskii equation for the condensate coupled to a semiclassical kinetic equation for a thermal cloud, we numerically simulate vortex lattice formation in the presence of a time-dependent rotating trap potential. At low rotation frequency, the thermal cloud undergoes rigid body rotation, while the condensate exhibits irrotational flow. Above a certain threshold rotation frequency, vortices penetrate into the condensate and form a vortex lattice. Our simulation result clearly indicates a crucial role for the thermal cloud, which triggers vortex lattice formation in the rotating BEC.


    Institute of Scientific and Technical Information of China (English)



    The thermodynamics of the vortex lattice of high-temperature superconductors has been studied by solving the generalized Ginzburg-Landau equations derived microscopically. Our numerical simulation indicates that the structure of the vortex lattice is oblique at the temperature far away from the transition temperature Tc, where the mixed s-dx2-ya state is expected to have the lowest energy. Whereas, very close to Tc, the dx2-ya wave is slightly lower energetically, and a triangular vortex lattice recovers. The coexistence and the coupling between the s and d waves would account for the unusual dynamic behaviours such as the upward curvature of the upper critical field curve Hc2(T), as observed in dc magnetization measurements on single-crystal YBa2Cu307 samples.

  19. System Identification of a Vortex Lattice Aerodynamic Model (United States)

    Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.


    The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.

  20. Lattice cluster theory for polymer melts with specific interactions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)


    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  1. Vortex lattice ordering in the flux flow state of Nb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, Gaia, E-mail: gaia.grimaldi@cnr.i [CNR-SPIN, V. Ponte Don Melillo, Fisciano I-84084 (Italy); Leo, Antonio [CNR-SPIN, V. Ponte Don Melillo, Fisciano I-84084 (Italy); Nigro, Angela; Pace, Sandro [CNR-SPIN, V. Ponte Don Melillo, Fisciano I-84084 (Italy); Physics Department ' E. R. Caianiello' , University of Salerno, V. Ponte Don Melillo, Fisciano I-84084 (Italy)


    We measure current-voltage characteristics at high driving currents for different magnetic fields and temperatures in Nb thin films of rather strong pinning. In a definite range of the B-T phase diagram we find that a current induced transition occurs in the flux flow motion of the vortex lattice, namely a dynamic ordering (DO). Contrary to the case of weaker pinning materials, DO is observed only at low fields, due to the stronger intrinsic disorder that can deform plastically the moving vortex lattice even for small applied fields.

  2. Quasi-Long-Range Order and Vortex Lattice in the Three-State Potts Model. (United States)

    Bhattacharya, Soumyadeep; Ray, Purusattam


    We show that the order-disorder phase transition in the three-state Potts ferromagnet on a square lattice is driven by a coupled proliferation of domain walls and vortices. Raising the vortex core energy above a threshold value decouples the proliferation and splits the transition into two. The phase between the two transitions exhibits an emergent U(1) symmetry and quasi-long-range order. Lowering the core energy below a threshold value also splits the order-disorder transition but the system forms a vortex lattice in the intermediate phase.

  3. Vortex melting and the liquid state in YBa{sub 2}Cu{sub 3}O{sub x}.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.


    The experimental vortex phase diagram of YBa{sub 2}Cu{sub 3}O{sub x} is reviewed, with emphasis on first order vortex melting, the upper and lower critical points on the melting line, and the effect of disorder arising from twin boundary and point defect pinning.

  4. Vortex matter and ultracold superstrings in optical lattices

    NARCIS (Netherlands)

    Snoek, M.


    The combination of a rotating cigar-shaped Bose-Einstein condensate with a one-dimensional optical lattice gives rise to very interesting physics. The one-dimensional optical lattice splits the Bose-Einstein condensate into two-dimensional pancake-condensates, each containing a small number of

  5. Neutron diffraction from the vortex lattice in the heavy-fermion superconductor UPt3

    DEFF Research Database (Denmark)

    Kleiman, R.N.; Broholm, C.; Aeppli, G.


    We have used neutron diffraction to observe the vortex lattice of UPt3. This is the first such measurement in a heavy-fermion system, a superconductor below 1 K, or in a system with such a long magnetic penetration depth (6000 +/- 75 angstrom). It also provides the first value for the pair...

  6. Some applications of the quasi vortex-lattice method in steady and unsteady aerodynamics (United States)

    Lan, C. E.


    The quasi vortex-lattice method is reviewed and applied to the evaluation of backwash, with applications to ground effect analysis. It is also extended to unsteady aerodynamics, with particular interest in the calculation of unsteady leading-edge suction. Some applications in ornithopter aerodynamics are given.

  7. Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes (United States)

    Rossow, Vernon J.


    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.

  8. Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor. (United States)

    Reimann, T; Mühlbauer, S; Schulz, M; Betz, B; Kaestner, A; Pipich, V; Böni, P; Grünzweig, C


    Alike materials in the solid state, the phase diagram of type-II superconductors exhibit crystalline, amorphous, liquid and spatially inhomogeneous phases. The multitude of different phases of vortex matter has thence proven to act as almost ideal model system for the study of both the underlying properties of superconductivity but also of general phenomena such as domain nucleation and morphology. Here we show how neutron grating interferometry yields detailed information on the vortex lattice and its domain structure in the intermediate mixed state of a type-II niobium superconductor. In particular, we identify the nucleation regions, how the intermediate mixed state expands, and where it finally evolves into the Shubnikov phase. Moreover, we complement the results obtained from neutron grating interferometry by small-angle neutron scattering that confirm the spatially resolved morphology found in the intermediate mixed state, and very small-angle neutron scattering that confirm the domain structure of the vortex lattice.

  9. Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model. (United States)

    Yao, Xiaoyan; Dong, Shuai


    The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings.

  10. A method of studying the Bogoliubov-de Gennes equations for the superconducting vortex lattice state. (United States)

    Han, Qiang


    In this paper, we present a method to construct the eigenspace of the tight-binding electrons moving on a 2D square lattice with nearest-neighbor hopping in the presence of a perpendicular uniform magnetic field which imposes (quasi-)periodic boundary conditions for the wavefunctions in the magnetic unit cell. Exact unitary transformations are put forward to correlate the discrete eigenvectors of the 2D electrons with those of the Harper equation. The cyclic tridiagonal matrix associated with the Harper equation is then tridiagonalized by another unitary transformation. The obtained truncated eigenbasis is utilized to expand the Bogoliubov-de Gennes equations for the superconducting vortex lattice state, which shows the merit of our method in studying large-sized systems. To test our method, we have applied our results to study the vortex lattice state of an s-wave superconductor.

  11. Vortex lattices in superconducting niobium and skyrmion lattices in chiral MnSi. An investigation by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian C.


    In this thesis, we present a comprehensive small angle neutron scattering study of the vortex lattice (VL) in an ultra-pure Nb single crystal sample, characterized by a residual resistivity ratio of {proportional_to} 10{sup 4}. We systematically investigate the morphology of vortex structures with the magnetic field applied along a four-fold left angle 100 right angle axis. We succeed to deconvolute the general morphology of the VL and its orientation to three dominant mechanisms: First, non-local contributions, second, the transition between open and closed Fermi surface sheets and, third, the intermediate mixed state (IMS) between the Meissner and the Shubnikov phase. We present first time microscopic measurements of the intrinsic bulk VL tilt modulus c{sub 44} by means of time resolved stroboscopic small angle neutron scattering in combination with a tailored magnetic field setup. In our study we find that the VL in Nb responds to an external force - in the form of a changed magnetic field - with an exponential relaxation. As expected, the relaxation process shows increasing VL stiffness with increasing magnetic field and reduced damping with increasing temperature. Besides this general trend, we observe a dramatic changeover of the relaxation process associated with the non-trivial VL morphology in the IMS and the crossover from attractive to repulsive vortex-vortex interaction. Furthermore we use small angle neutron scattering to establish the existence of a skyrmion lattice in the A-phase of MnSi. Due to a parallel alignment of the magnetic field with respect to the neutron beam, we are able to resolve the complete magnetic structure of the A-phase: The structure in the A-phase, reminiscent of a vortex lattice, consists of topological knots of the magnetization with particle-like properties, arranged in a regular six-fold lattice. The orientation of this lattice is strictly driven by the orientation of the applied magnetic field, regardless of the underlying

  12. How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy. (United States)

    Zehetmayer, M


    Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations, and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.

  13. Static aeroelastic analysis of very flexible wings based on non-planar vortex lattice method

    Institute of Scientific and Technical Information of China (English)

    Xie Changchuan; Wang Libo; Yang Chao; Liu Yi


    A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper.A non-planar vortex lattice method herein is used to compute the non-planar aerodynamics of flexible wings with large deformation.The finite element method is introduced for structural nonlinear statics analysis.The surface spline method is used for structure/aerodynamics coupling.The static aeroelastic characteristics of the wind tunnel model of a flexible wing are studied by the nonlinear method presented,and the nonlinear method is also evaluated by comparing the results with those obtained from two other methods and the wind tunnel test.The results indicate that the traditional linear method of static aeroelastic analysis is not applicable for cases with large deformation because it produces results that are not realistic.However,the nonlinear methodology,which involves combining the structure finite element method with the non-planar vortex lattice method,could be used to solve the aeroelastic deformation with considerable accuracy,which is in fair agreement with the test results.Moreover,the nonlinear finite element method could consider complex structures.The non-planar vortex lattice method has advantages in both the computational accuracy and efficiency.Consequently,the nonlinear method presented is suitable for the rapid and efficient analysis requirements of engineering practice.It could be used in the preliminary stage and also in the detailed stage of aircraft design.

  14. Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates (United States)

    Orlova, Natalia V.; Kuopanportti, Pekko; Milošević, Milorad V.


    We show numerically that a harmonically trapped and coherently Rabi-coupled three-component Bose-Einstein condensate can host unconventional vortex lattices in its rotating ground state. The discovered lattices incorporate square and zig-zag patterns, vortex dimers and chains, and doubly quantized vortices, and they can be quantitatively classified in terms of a skyrmionic topological index, which takes into account the multicomponent nature of the system. The exotic ground-state lattices arise due to the intricate interplay of the repulsive density-density interactions and the Rabi couplings as well as the ubiquitous phase frustration between the components. In the frustrated state, domain walls in the relative phases can persist between some components even at strong Rabi coupling, while vanishing between others. Consequently, in this limit the three-component condensate effectively approaches a two-component condensate with only density-density interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that occurs neither in the two-component counterpart nor in the purely density-density-coupled three-component system.

  15. Lattice Boltzmann technique for heat transport phenomena coupled with melting process (United States)

    Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy


    In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

  16. Lattice Boltzmann technique for heat transport phenomena coupled with melting process (United States)

    Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy


    In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

  17. Propagation of an optical vortex in fiber arrays with triangular lattices (United States)

    Mushref, Muhammad Abdulrahman Abdulghani

    The propagation of optical vortices (OVs) in linear and nonlinear media is an important field of research in science and engineering. The most important goal is to explore the properties of guiding dynamics for potential applications such as sensing, all-optical switching, frequency mixing and modulation. In this dissertation, we present analytical methods and numerical techniques to investigate the propagation of an optical vortex in fiber array waveguides. Analytically, we model wave propagation in a waveguide by coupled mode Equations as a simplified approximation. The beam propagation method (BPM) is also employed to numerically solve the paraxial wave Equation by finite difference (FD) techniques. We will investigate the propagation of fields in a 2D triangular lattice with different core arrangements in the optical waveguide. In order to eliminate wave reflections at the boundaries of the computational area, the transparent boundary condition (TBC) is applied. In our explorations for the propagation properties of an optical vortex in a linear and a non-linear triangular lattice medium, images are numerically generated for the field phase and intensity in addition to the interferogram of the vortex field with a reference plane or Gaussian field. The finite difference beam propagation method (FD-BPM) with transparent boundary condition (TBC) is a robust approach to numerically deal with optical field propagations in waveguides. In a fiber array arranged in triangular lattices, new vortices vary with respect to the propagation distance and the number of cores in the fiber array for both linear and nonlinear regimes. With more cores and longer propagation distances, more vortices are created. However, they do not always survive and may disappear while other new vortices are formed at other points. In a linear triangular lattice, the results demonstrated that the number of vortices may increase or decrease with respect to the number of cores in the array lattice

  18. Experimental evidence for flux-lattice melting. [in high-Tc superconductors (United States)

    Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.


    A low-frequency torsional oscillator has been used to search for flux-lattice melting in an untwinned single crystal of YBa2Cu3O(7-delta). The damping of the oscillator was measured as a function of temperature, for applied magnetic fields in the range H = 0.1-2.3 T. A remarkably sharp damping peak has been located. It is suggested that the temperature of the peak corresponds to the melting point of the Abrikosov flux lattice.

  19. Flux-flow fingerprint of disorder: Melting versus tearing of a flux-line lattice

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, S.; Higgins, M.J. [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States)


    A steady-state inhomogeneous flow of a slowly moving flux-line lattice shows the fingerprint of the specific realization of dynamically generated disorder obtained through the interaction between the lattice and the quenched pinning centers. This is characteristic of ``tearing`` of a soft lattice and is pronounced in a narrow regime of the ({ital H},{ital T}) phase diagram where the system is neither a stiff lattice nor a fluid. A first-order depinning transition accompanying this nonequilibrium dynamical phenomenon is fundamentally different from an equilibrium ``melting`` of a flux-line lattice. A length scale is proposed to describe the dynamics.

  20. Computational Study of a Transverse Rotor Aircraft in Hover Using the Unsteady Vortex Lattice Method

    Directory of Open Access Journals (Sweden)

    Juan D. Colmenares


    Full Text Available This paper presents the simulation of a two-rotor aircraft in different geometric configurations during hover flight. The analysis was performed using an implementation of the unsteady vortex-lattice method (UVLM. A description of the UVLM is presented as well as the techniques used to enhance the stability of results for rotors in hover flight. The model is validated for an isolated rotor in hover, comparing numerical results to experimental data (high-Reynolds, low-Mach conditions. Results show that an exclusion of the root vortex generates a more stable wake, without affecting results. Results for the two-rotor aircraft show an important influence of the number of blades on the vertical thrust. Furthermore, the geometric configuration has a considerable influence on the pitching moment.

  1. New convergence criteria for the vortex-lattice models of the leading-edge separation (United States)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.


    The convergence criterion for the vortex-lattice technique which deals with delta wings exhibiting significant leading-edge separation was studied. It was shown that one can predict pressure distributions without irregularities which agree fairly well with experimental data (which show some irregularities of their own) by replacing the system of discrete vortex lines with a single concentrated core. This core has a circulation equal to the algebraic sum of the circulations around the discrete lines and is located at the centroid of these lines. Moreover, there is a requirement that the position and strength of the core must converge as the number of elements increases. Because the calculation of the position and strength of the core is much less involved than the calculation of the loads, this approach has the additional desirable feature of requiring less computational time.

  2. Vortex lattice modelling of winglets on wind turbine blades. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.


    The power production of wind turbines can be increased by the use of winglets without increasing the swept area. This makes them suitable for sites with restrictions in rotor diameter and in wind farms. The present project aims at understanding how winglets influences the flow and the aerodynamic forces on wind turbine blades. A free wake vortex lattice code and a fast design algorithm for a horizontal axis wind turbine under steady conditions has been developed. 2 winglet designs are treated in detail. (au)

  3. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation (United States)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  4. A new non-linear vortex lattice method:Applications to wing aerodynamic optimizations

    Institute of Scientific and Technical Information of China (English)

    Oliviu S? ugar Gabor; Andreea Koreanschi; Ruxandra Mihaela Botez


    This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.

  5. Dynamic and Structural Studies of Metastable Vortex Lattice Domains in MgB2 (United States)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. The VL can be driven to the GS through successive application of an AC magnetic field. Here we report on detailed studies of the transition kinetics and structure of the VL domains. Stroboscopic studies of the transition revealed a stretched exponential decrease of the metastable volume fraction as a function of the number of applied AC cycles, with subtle differences depending on whether the AC field is oriented parallel or perpendicular to the DC field used to create the VL. We speculate the slower transition kinetics for the transverse AC field may be due to vortex cutting. Spatial studies include scanning SANS measurements showing the VL domain distribution within the MgB2 single crystal as well as measurements of VL correlation lengths. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  6. Knotted Vortices: Entropic Lattice Boltzmann Method for Simulation of Vortex dynamics (United States)

    Boesch, Fabian; Chikatamarla, Shyam; Karlin, Ilya


    Knotted and interlinked vortex structures in real fluids are conjectured to play a major role in hydrodynamic flow dissipation. Much interest lies in determining their temporal stability and the mechanism through which knots dissolve. Kleckner and Irvine recently have shown the existence of such knotted vortices experimentally by accelerating hydrofoils in water. In the present work we employ the entropic lattice Boltzmann method (ELBM) to perform DNS simulations of the creation and dynamics of knotted vortex rings inspired by the experimental setup in. ELBM renders LBM scheme unconditionally stable by restoring the second law of thermodynamics (the Boltzmann H-theorem), and thus enables simulations of large domains and high Reynolds numbers with DNS quality. The results presented in this talk provide an in-depth study of the dynamics of knotted vortices and vortex reconnection events and confirm the existence of trefoil knots in silicio for the first time. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s347.

  7. A new non-linear vortex lattice method: Applications to wing aerodynamic optimizations

    Directory of Open Access Journals (Sweden)

    Oliviu Şugar Gabor


    Full Text Available This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.

  8. Supercooling of the disordered vortex lattice in Bi(2)Sr(2)CaCu(2)O(8+delta) (United States)

    van Der Beek CJ; Colson; Indenbom; Konczykowski


    Time-resolved local induction measurements near the vortex lattice order-disorder transition in optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta) crystals show that the high-field, disordered phase can be quenched to fields as low as half the transition field. Over an important range of fields, the electrodynamical behavior of the vortex system is governed by the coexistence of ordered and disordered vortex phases in the sample. We interpret the results as supercooling of the high-field phase and the possible first-order nature of the order-disorder transition at the "second magnetization peak."

  9. Lattice stability and high pressure melting mechanism of dense hydrogen up to 1.5 TPa

    CERN Document Server

    Geng, Hua Y; Wu, Q


    Lattice stability and metastability, as well as melting, are important features of the physics and chemistry of dense hydrogen. Using ab initio molecular dynamics (AIMD), the classical superheating limit and melting line of metallic hydrogen are investigated up to 1.5 TPa. The computations show that the classical superheating degree is about 100 K, and the classical melting curve becomes flat at a level of 350 K when beyond 500 GPa. This information allows us to estimate the well depth and the potential barriers that must be overcome when the crystal melts. Inclusion of nuclear quantum effects (NQE) using path integral molecular dynamics (PIMD) predicts that both superheating limit and melting temperature are lowered to below room temperature, but the latter never reach absolute zero. Detailed analysis indicates that the melting is thermally activated, rather than driven by pure zero-point motion (ZPM). This argument was further supported by extensive PIMD simulations, demonstrating the stability of Fddd stru...

  10. Lattice Boltzmann Method Simulation of 3-D Melting Using Double MRT Model with Interfacial Tracking Method

    CERN Document Server

    Li, Zheng; Zhang, Yuwen


    Three-dimensional melting problems are investigated numerically with Lattice Boltzmann method (LBM). Regarding algorithm's accuracy and stability, Multiple-Relaxation-Time (MRT) models are employed to simplify the collision term in LBM. Temperature and velocity fields are solved with double distribution functions, respectively. 3-D melting problems are solved with double MRT models for the first time in this article. The key point for the numerical simulation of a melting problem is the methods to obtain the location of the melting front and this article uses interfacial tracking method. The interfacial tracking method combines advantages of both deforming and fixed grid approaches. The location of the melting front was obtained by calculating the energy balance at the solid-liquid interface. Various 3-D conduction controlled melting problems are solved firstly to verify the numerical method. Liquid fraction tendency and temperature distribution obtained from numerical methods agree with the analytical result...

  11. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)


    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  12. Three-dimensional vortex solitons in quasi-two-dimensional lattices. (United States)

    Leblond, Hervé; Malomed, Boris A; Mihalache, Dumitru


    We consider the three-dimensional (3D) Gross-Pitaevskii or nonlinear Schrödinger equation with a quasi-2D square-lattice potential (which corresponds to the optical lattice trapping a self-attractive Bose-Einstein condensate, or, in some approximation, to a photonic-crystal fiber, in terms of nonlinear optics). Stable 3D solitons, with embedded vorticity S=1 and 2, are found by means of the variational approximation and in a numerical form. They are built, basically, as sets of four fundamental solitons forming a rhombus, with phase shifts piS2 between adjacent sites, and an empty site in the middle. The results demonstrate two species of stable 3D solitons, which were not studied before, viz., localized vortices ("spinning light bullets," in terms of optics) with S>1 , and vortex solitons (with any S not equal 0 ) supported by a lattice in the 3D space. Typical scenarios of instability development (collapse or decay) of unstable localized vortices are identified too.

  13. Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study

    DEFF Research Database (Denmark)

    Laver, M.; Bowell, C.J.; Forgan, E.M.;


    High-purity niobium exhibits a surprisingly rich assortment of vortex lattice (VL) structures for fields applied parallel to a fourfold symmetry axis, with all observed VL phases made up of degenerate domains that spontaneously break some crystal symmetry. Yet a single regular hexagonal VL domain...

  14. Vortex liquid in magnetic-field-induced superconducting vacuum of quenched lattice QCD

    CERN Document Server

    Braguta, V V; Chernodub, M N; Kotov, A Yu; Polikarpov, M I


    In the background of the strong magnetic field the vacuum is suggested to possess an electromagnetically superconducting phase characterised by the emergence of inhomogeneous quark-antiquark vector condensates which carry quantum numbers of the charged rho mesons. The rho-meson condensates are inhomogeneous due to the presence of the stringlike defects ("the rho vortices") which are parallel to the magnetic field (the superconducting vacuum phase is similar to the mixed Abrikosov phase of a type-II superconductor). In agreement with these expectations, we have observed the presence of the rho vortices in numerical simulations of the vacuum of the quenched two-color lattice QCD in strong magnetic field background. We have found that in the quenched QCD the rho vortices form a liquid. The transition between the usual (insulator) phase at low B and the superconducting vortex liquid phase at high B turns out to be very smooth, at least in the quenched QCD.

  15. Structural Studies of Metastable and Ground State Vortex Lattice Domains in MgB2 (United States)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.


    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. Application of an AC magnetic field to drive the VL to the ground state revealed a two-step power law behavior, indicating a slow nucleation of ground state domains followed by a faster growth. The dependence on the number of applied AC cycles is reminiscent of jamming of soft, frictionless spheres. Here, we report on detailed structural studies of both metastable and ground state VL domains. These include measurements of VL correlation lengths as well as spatially resolved SANS measurements showing the VL domain distribution within the MgB2 single crystal. We discuss these results and how they may help to resolve the mechanism responsible for stabilizing the metastable VL phases. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  16. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)


    A thermal lattice Boltzmann model is developed for the melting process of phase change material (PCM) embedded in open-cell metal foams. Natural convection in the melt PCM is considered. Under the condition of local thermal non-equilibrium between the metal matrix and PCM, two evolution equations of temperature distribution function are pre-sented through selecting an equilibrium distribution function and a nonlinear source term properly. The enthalpy-based method is employed to copy with phase change problem. Melting process in a cavity of the metal foams is simulated using the present model. The melting front locations and the temperature distributions in the metal foams filled with PCM are obtained by the lattice Boltzmann method. The effects of the porosity and pore size on the melting are also investigated and discussed. The re-sults indicate that the effects of foam porosity play important roles in the overall heat transfer. For the lower porosity foams, the melting rate is comparatively greater than the higher porosity foams, due to greater heat conduction from metal foam with high heat conductivity. The foam pore size has a limited effect on the melting rate due to two counteracting effects between conduction and convection heat transfer.

  17. The Relationship between Lattice Enthalpy and Melting Point in Magnesium and Aluminium Oxides. Science Notes (United States)

    Talbot, Christopher; Yap, Lydia


    This "Science Note" presents a study by Christopher Talbot and Lydia Yap, who teach IB Chemistry at Anglo-Chinese School (Independent), Republic of Singapore, to pre-university students. Pre-university students may postulate the correlation between the magnitude of the lattice enthalpy compound and its melting point, since both…

  18. The Relationship between Lattice Enthalpy and Melting Point in Magnesium and Aluminium Oxides. Science Notes (United States)

    Talbot, Christopher; Yap, Lydia


    This "Science Note" presents a study by Christopher Talbot and Lydia Yap, who teach IB Chemistry at Anglo-Chinese School (Independent), Republic of Singapore, to pre-university students. Pre-university students may postulate the correlation between the magnitude of the lattice enthalpy compound and its melting point, since both…

  19. A lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces

    NARCIS (Netherlands)

    Bitsanis, Ioannis A.; Brinke, Gerrit ten


    In this paper we present a comprehensive lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces. Segmental scale interfacial features, like the bond orientational distribution were found to be independent of surface-segment energetics, and statistically identical with

  20. A self-learning coupled map lattice for vortex shedding in cable and cylinder wakes. (United States)

    Balasubramanian, G; Olinger, D J; Demetriou, M A


    A coupled map lattice (CML) with self-learning features is developed to model flow over freely vibrating cables and stationary cylinders at low Reynolds numbers. Coupled map lattices that combine a series of low-dimensional circle maps with a diffusion model have been used previously to predict qualitative features of these flows. However, the simple nature of these CML models implies that there will be unmodeled wake features if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is first trained to precisely estimate wake patterns from a target numerical simulation. A new convective-diffusive map that includes additional wake dynamics is developed. The new self-learning CML uses an adaptive estimation scheme (multivariable least-squares algorithm). Studies of this approach are conducted using wake patterns from a Navier-Stokes solution (spectral element-based NEKTAR simulation) of freely vibrating cable wakes at Reynolds numbers Re=100. It is shown that the self-learning model accurately and efficiently estimates the simulated wake patterns. The self-learning scheme is then successfully applied to vortex shedding patterns obtained from experiments on stationary cylinders. This constitutes a first step toward the use of the self-learning CML as a wake model in flow control studies of laboratory wake flows.

  1. Magnetic-field-induced vortex-lattice transition in HgBa2CuO4 +δ (United States)

    Lee, Jeongseop A.; Xin, Yizhou; Stolt, I.; Halperin, W. P.; Reyes, A. P.; Kuhns, P. L.; Chan, M. K.


    Measurements of the 17O nuclear magnetic resonance (NMR) quadrupolar spectrum of apical oxygen in HgBa2CuO4 +δ were performed over a range of magnetic fields from 6.4-30 T in the superconducting state. Oxygen-isotope-exchanged single crystals were investigated with doping corresponding to superconducting transition temperatures from 74 K underdoped, to 78 K overdoped. The apical oxygen site was chosen since its NMR spectrum has narrow quadrupolar satellites that are well separated from any other resonance. Nonvortex contributions to the spectra can be deconvolved in the time domain to determine the local magnetic field distribution from the vortices. Numerical analysis using Brandt's Ginzburg-Landau theory was used to find structural parameters of the vortex lattice, penetration depth, and coherence length as a function of magnetic field in the vortex solid phase. From this analysis we report a vortex structural transition near 15 T from an oblique lattice with an opening angle of 73∘ at low magnetic fields to a triangular lattice with 60∘ stabilized at high field. The temperature for onset of vortex dynamics has been identified from spin-spin relaxation. This is independent of the magnetic field at sufficiently high magnetic field similar to that reported for YBa2Cu3O7 and Bi2Sr2CaCu2O8 +δ and is correlated with mass anisotropy of the material. This behavior is accounted for theoretically only in the limit of very high anisotropy.

  2. Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Luciano Lamberti


    Full Text Available The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456–0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.

  3. Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting. (United States)

    Contuzzi, Nicola; Campanelli, Sabina L; Casavola, Caterina; Lamberti, Luciano


    The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM) to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456-0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.

  4. Turbulence-induced melting of a nonequilibrium vortex crystal in a forced thin fluid film

    CERN Document Server

    Perlekar, Prasad


    To develop an understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that, as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially the temporal oscillations are periodic; this periodic behaviour becomes more and more complicated, with increasing Reynolds number, until the film enters a spatially disordered nonequilibrium statistical steady that is turbulent. We study this sequence of transitions by using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g., \\Poi...

  5. Molecular dynamics study on structure stability, lattice variation, and melting behavior of silver nanoparticles (United States)

    Chen, L.; Wang, Q.; Xiong, L.


    Molecular dynamics simulation is used to comparatively investigate the structure stability, lattice variation, and surface energy of Ag nanoparticles. It is revealed that the most stable structure of shapes transformed from an octahedron to a cuboctahedron with the cluster size increasing, and the energetically larger lattice contraction of particles should have higher surface energy. Simulation also shows that the cubic shapes have contributed highly to the lattice contractions of particles, and the lattice constants of octahedral shapes are the nearest to bulk Ag. In addition, a systematic work on the melting behavior of polyhedral shapes is carried out by shape factor, and the surface energy-dependent shape evolution of Ag particles is revealed. The present results agree well with experimental observations in the literature, and provide a deep understanding of the different physical and chemical properties of Ag nanoparticles.

  6. Manufacturing and Characterization of Ti6Al4V Lattice Components Manufactured by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Sabina L. Campanelli


    Full Text Available The paper investigates the fabrication of Selective Laser Melting (SLM titanium alloy Ti6Al4V micro-lattice structures for the production of lightweight components. Specifically, the pillar textile unit cell is used as base lattice structure and alternative lattice topologies including reinforcing vertical bars are also considered. Detailed characterizations of dimensional accuracy, surface roughness, and micro-hardness are performed. In addition, compression tests are carried out in order to evaluate the mechanical strength and the energy absorbed per unit mass of the lattice truss specimens made by SLM. The built structures have a relative density ranging between 0.2234 and 0.5822. An optimization procedure is implemented via the method of Taguchi to identify the optimal geometric configuration which maximizes peak strength and energy absorbed per unit mass.

  7. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)


    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.

  8. Intramolecular and Lattice Melting in n-Alkane Monolayers: An Analog of Melting in Lipid Bilayers

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Herwig, K.W.; Matthies, B.


    to 350 K above which a large thermal expansion and decrease in coherence length occurs. The MD simulations provide evidence that this behavior is due to a phase transition in the monolayer in which intramolecular and translational order are lost simultaneously. This melting transition is qualitatively...

  9. Control of a coupled map lattice model for vortex shedding in the wake of a cylinder

    Indian Academy of Sciences (India)

    G Balasubramanian; D J Olinger; M A Demetriou


    The flow behind a vibrating flexible cable at low Reynolds numbers can exhibit complex wake structures such as lace-like patterns, vortex dislocations and frequency cells. These structures have been observed in experiments and numerical simulations, and are predicted by a previously developed low-order coupled map lattice (CML). The discrete (in time and space) CML models consist of a series of diffusively coupled circle map oscillators along the cable span. Motivated by a desire to modify the complex wake patterns behind flexible vibrating cables, we have studied the addition of control terms into the highly efficient CML models and explored the resulting dynamics. Proportional, adaptive proportional and discontinuous non-linear (DNL) control methods were used to derive the control laws. The first method employed occasional proportional feedback. The adaptive method used spatio-temporal feedback control. The DNL method used a discontinuous feedback linearization procedure, and the controller was designed for the resulting linearized system using eigenvalue assignment. These techniques were applied to a modeled vortex dislocation structure in the wake of a vibrating cable in uniform freestream flow. Parallel shedding patterns were achieved for a range of forcing frequency-forcing amplitude combinations studied to validate the control theory. The adaptive proportional and DNL methods were found to be more effective than the proportional control method due to the incorporation of a spatially varying feedback gain across the cylinder span. The DNL method was found to be the most efficient controller of the low-order CML model. The required control level across the cable span was correlated to the 1/1 lock-on behavior of the temporal circle map.

  10. Vortex lattice mobility and effective pinning potentials in the peak effect region in YBCO crystals

    Indian Academy of Sciences (India)

    G Pasquini; V Bekeris


    The peak effect (PE) in the critical current density in both low and high temperature superconductors has been the subject of a large amount of experimental and theoretical work in the last few/several years. In the case of YBCO, crucial discussions describing a dynamic or a static picture are not settled. In that region of field and temperature the mobility of the vortex lattice (VL) is found to be dependent on the dynamical history. Recently we reported evidence that the VL reorganizes and accesses to robust VL configurations (VLCs) with different effective pinning potential wells arising in response to different system histories. One of the keys to understand the nature of the PE is to investigate the VL behavior in the vicinity of the various VLCs in the region of the PE. The stability of these VLCs was investigated and it was found that they have distinct characteristic relaxation times, which may be related to elastic or plastic creep processes. In this paper we review some of these results and propose a scenario to describe the PE in YBCO crystals.

  11. Fractional Matching Effect due to Pinning of the Vortex Lattice by an Array of Magnetic Dots (United States)

    Stoll, O. M.; Montero, M. I.; Jönsson-Åkerman, B. J.; Schuller, Ivan K.


    We have investigated the pinning of magnetic flux quanta by rectangular arrays of nanoscaled magnetic dots. We measured the resistivity vs. magnetic field characteristics using a high magnetic field resolution of up to 0.1 G over the full field range ( 2 kG to 2 kG). By this we the appearance of minima at half and third integer values of the matching field. It is well known that a reconfiguration of the vortex lattice from a rectangular to a square type geometry occurs in rectangular arrays of magnetic dots when the magnetic field is increased over a threshold value H_r. If we lower the magnetic field after crossing H_r, we find that some of the minima at the full integer matching field are missing. This hysteretic behavior occurs only when Hr is exceeded before the subsequent decrease of the magnetic field. We present the experimental results and discuss preliminary models for the explanation of these observations. This work was supported by the grants NSF and DOE. Two of us acknowledge postdoctoral fellowships by the DAAD (Deutscher Akademischer Austauschdienst) (O.M.S.) and the Secretaria De Estado De Educacion Y Universidades (M.I.M.) respectively.

  12. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan


    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  13. Effects of Nanoparticles on Melting Process with Phase-Change Using the Lattice Boltzmann Method

    KAUST Repository

    Ibrahem, Ahmed M.


    In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatangar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103to105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.

  14. Vortex melting in polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7} from {sup 17}O NMR

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, A.P.; Tang, X.P.; Bachman, H.N.; Halperin, W.P. [Northwestern University and Science and Technology Center for Superconductivity, Evanston, Illinois 60208 (United States); Martindale, J.A.; Hammel, P.C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)


    Line-shape analysis of {sup 17}O NMR spectra is used to probe vortex melting and dynamics in aligned powders of YBa{sub 2}O{sub 3}O{sub 7}. Vortex transitions are identified by comparing their dynamics with the NMR time scale. Line-shape changes indicate a well-defined melting transition at a temperature, T{sub m}. Below T{sub m} there is a coexistence regime of solid and liquid vortices with a lower bound, T{sub g}, which marks complete vortex freezing. {copyright} {ital 1997} {ital The American Physical Society}

  15. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)


    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  16. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties (United States)

    Xu, Wen-Sheng; Freed, Karl F.


    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  17. Melting of Three-Sublattice Order in Easy-Axis Antiferromagnets on Triangular and Kagome Lattices. (United States)

    Damle, Kedar


    When the constituent spins have an energetic preference to lie along an easy axis, triangular and kagome lattice antiferromagnets often develop long-range order that distinguishes the three sublattices of the underlying triangular Bravais lattice. In zero magnetic field, this three-sublattice order melts either in a two-step manner, i.e., via an intermediate phase with power-law three-sublattice order controlled by a temperature-dependent exponent η(T)∈(1/9,1/4), or via a transition in the three-state Potts universality class. Here, I predict that the uniform susceptibility to a small easy-axis field B diverges as χ(B)∼|B|^{-[(4-18η)/(4-9η)]} in a large part of the intermediate power-law ordered phase [corresponding to η(T)∈(1/9,2/9)], providing an easy-to-measure thermodynamic signature of two-step melting. I also show that these two melting scenarios can be generically connected via an intervening multicritical point and obtain numerical estimates of multicritical exponents.

  18. X-ray Tomography Characterisation of Lattice Structures Processed by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Everth Hernández-Nava


    Full Text Available Metallic lattice structures intentionally contain open porosity; however, they can also contain unwanted closed porosity within the structural members. The entrained porosity and defects within three different geometries of Ti-6Al-4V lattices, fabricated by Selective Electron Beam Melting (SEBM, is assessed from X-ray computed tomography (CT scans. The results suggest that horizontal struts that are built upon loose powder show particularly high (~20 × 10−3 vol % levels of pores, as do nodes at which many (in our case 24 struts meet. On the other hand, for struts more closely aligned (0° to 54° to the build direction, the fraction of porosity appears to be much lower (~0.17 × 10−3% arising mainly from pores contained within the original atomised powder particles.

  19. Hubbard Model for Atomic Impurities Bound by the Vortex Lattice of a Rotating Bose-Einstein Condensate. (United States)

    Johnson, T H; Yuan, Y; Bao, W; Clark, S R; Foot, C; Jaksch, D


    We investigate cold bosonic impurity atoms trapped in a vortex lattice formed by condensed bosons of another species. We describe the dynamics of the impurities by a bosonic Hubbard model containing occupation-dependent parameters to capture the effects of strong impurity-impurity interactions. These include both a repulsive direct interaction and an attractive effective interaction mediated by the Bose-Einstein condensate. The occupation dependence of these two competing interactions drastically affects the Hubbard model phase diagram, including causing the disappearance of some Mott lobes.

  20. Muon-spin rotation measurements of the vortex state in Sr$_2$RuO$_4$: type-1.5 superconductivity, vortex clustering and a crossover from a triangular to a square vortex lattice


    Ray, S. J.; Gibbs, A. S.; Bending, S. J.; Curran, P. J.; Babaev, E.; Baines, C.; Mackenzie, A. P.; Lee, S.L.


    The authors acknowledge the financial support of the EPSRC (Grant No. EP/J01060X). All μSR experiments were carried out courtesy of the Paul Scherrer Institute. E. Babaev was supported by the US NSF CAREER Award No. DMR-0955902 and by the Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences, Swedish Research Council. Muon-spin rotation has been used to probe the vortex state in Sr2RuO4. At moderate fields and temperatures a lattice of triangular symmetry is ob...

  1. Ordered vortex lattice and intrinsic vortex core states in Bi sub 2 Sr sub 2 CaCu sub 2 O sub x studied by scanning tunneling microscopy and spectroscopy

    CERN Document Server

    Matsuba, K; Kosugi, N; Nishimori, H; Nishida, N


    The ordered vortex lattice in Bi sub 2 Sr sub 2 CaCu sub 2 O sub x (overdoped, T sub c = 83 K) has been observed for the first time at 4.2 K in 8 T by scanning tunneling spectroscopy (STS). The vortex lattice is short-range ordered in the length scale of 100 nm. The vortices form an almost square lattice with the sides parallel to the diagonal direction of the CuO sub 2 square lattice, that is, the nodal direction of the d sub x sub sup 2 sub - sub y sub sup 2 superconductor. In all of the vortex cores of the ordered lattice, the localized states are observed at +- 9 meV symmetrically in the superconducting gap and are clearly determined to be intrinsic to the vortex in Bi sub 2 Sr sub 2 CaCu sub 2 O sub x. The intensity is found to be electron-hole asymmetric.

  2. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach (United States)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.


    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  3. Spin density wave induced disordering of the vortex lattice in superconducting La2xSrxCuO4

    DEFF Research Database (Denmark)

    Chang, J.; White, J.S.; Laver, M.


    We use small-angle neutron scattering to study the superconducting vortex lattice in La2-xSrxCuO4 as a function of doping and magnetic field. We show that near optimally doping the vortex lattice coordination and the superconducting coherence length. are controlled by a Van Hove singularity cross...

  4. Novel phases in a square-lattice frustrated ferromagnet : 1/3 -magnetization plateau, helicoidal spin liquid, and vortex crystal (United States)

    Seabra, Luis; Sindzingre, Philippe; Momoi, Tsutomu; Shannon, Nic


    A large part of the interest in magnets with frustrated antiferromagnetic interactions comes from the many new phases found in applied magnetic field. In this article, we explore some of the new phases which arise in a model with frustrated ferromagnetic interactions, the J1-J2-J3 Heisenberg model on a square lattice. Using a combination of classical Monte Carlo simulation and spin-wave theory, we uncover behavior reminiscent of some widely studied frustrated antiferromagnets, but with a number of new twists. We first demonstrate that, for a suitable choice of parameters, the phase diagram as a function of magnetic field and temperature is nearly identical to that of the Heisenberg antiferromagnet on a triangular lattice, including the celebrated 1 /3 -magnetization plateau. We then examine how this phase diagram changes when the model is tuned to a point where the classical ground state is highly degenerate. In this case, two new phases emerge: a classical, finite-temperature spin liquid, characterized by a "ring" in the spin structure factor S (q ) ; and a vortex crystal, a multiple-Q state with finite magnetization, which can be viewed as an ordered lattice of magnetic vortices. All of these new phases persist for a wide range of magnetic fields. We discuss the relationship between these results and published studies of frustrated antiferromagnets, together with some of the materials where these new phases might be observed in experiment.

  5. Application of the nonlinear vortex-lattice concept to aircraft-interference problems (United States)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.


    A discrete-vortex model was developed to account for the hazardous effects of the vortex trail issued from the edges of separation of a large leading wing on a small trailing wing. The model is divided into three main parts: the leading wing and its near wake, the near and far wakes of the leading wing, and the trailing wing and the portion of the far wake in its vicinity. The normal force, pitching moment, and rolling moment coefficients for the trailing wing are calculated. The circulation distribution in the vortex trail is calculated in the first part of the model where the leading wing is far upstream and hence is considered isolated. A numerical example is solved to demonstrate the feasibility of using this method to study interference between aircraft. The numerical results show the correct trends: The following wing experiences a loss in lift between the wing-tip vortex systems of the leading wing, a gain outside this region, and strong rolling moments which can change sign as the lateral relative position changes. All the results are strongly dependent on the vertical relative position.

  6. Simultaneous evidence for Pauli paramagnetic effects and multiband superconductivity in KFe2As2 by small-angle neutron scattering studies of the vortex lattice (United States)

    Kuhn, S. J.; Kawano-Furukawa, H.; Jellyman, E.; Riyat, R.; Forgan, E. M.; Ono, M.; Kihou, K.; Lee, C. H.; Hardy, F.; Adelmann, P.; Wolf, Th.; Meingast, C.; Gavilano, J.; Eskildsen, M. R.


    We study the intrinsic anisotropy of the superconducting state in KFe2As2 by using small-angle neutron scattering to image the vortex lattice as the applied magnetic field is rotated towards the FeAs crystalline planes. The anisotropy is found to be strongly field dependent, indicating multiband superconductivity. Furthermore, the high-field anisotropy significantly exceeds that of the upper critical field, providing further support for Pauli limiting in KFe2As2 for fields applied in the basal plane. The effect of Pauli paramagnetism on the unpaired quasiparticles in the vortex cores is directly evident from the ratio of scattered intensities due to the longitudinal and transverse vortex lattice field modulation.

  7. Surface effects on the pancake vortex phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Col, Alvise de; Geshkenbein, Vadim B.; Menon, Gautam I.; Blatter, Gianni


    We discuss the effects of a surface on the vortex system in a layered superconductor with vanishingly small Josephson coupling. Within a London theory, we derive the modified pancake vortex interaction in samples with a finite number of layers. We discuss the implications of these modifications for the zero-field transition and for the melting transition in finite fields formulated within a substrate model [Phys. Rev. Lett. 84 (2000) 2698]. Close to the surface, the lattice becomes unstable below the bulk thermodynamic melting temperature. We analyze the resulting surface-induced melting using density functional theory.

  8. Observation of Well-ordered Metastable Vortex Lattice Phases in Superconducting MgB2 Using Small-Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Das, Pinaki [University of Notre Dame, IN; Rastovski, Catherine [University of Notre Dame, IN; O' Brien, Timothy [University of Illinois, Urbana-Champaign; Schlesinger, Kimberly [University of Notre Dame, IN; Dewhurst, Charles [Institut Laue-Langevin (ILL); Debeer-Schmitt, Lisa M [ORNL; Zhigadlo, Nikolai [ETH Zurich, Switzerland; Karpinski, Janusz [ETH Zurich, Switzerland; Eskildsen, Morten [University of Notre Dame, IN


    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2 for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  9. Observation of well-ordered metastable vortex lattice phases in superconducting MgB2 using small-angle neutron scattering. (United States)

    Das, P; Rastovski, C; O'Brien, T R; Schlesinger, K J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R


    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB(2) for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  10. High-performance sailboat hydrofoil optimization using vortex lattice methods, and the effects of free-stream turbulence (United States)

    Meneghello, Gianluca; Beyhaghi, Pooriya; Bewley, Thomas


    The identification of an optimized hydrofoil shape depends on an accurate characterization of both its geometry and the incoming, turbulent, free-stream flow. We analyze this dependence using the computationally inexpensive vortex lattice model implemented in AVL, coupled with the recently developed global, derivative-free optimization algorithm implemented in Δ - DOGS . Particular attention will be given to the effect of the free-stream turbulence level - as modeled by a change in the viscous drag coefficients - on the optimized values of the parameters describing the three dimensional shape of the foil. Because the simplicity of AVL, when contrasted with more complex and computationally expensive LES or RANS models, may cast doubts on its usefulness, its validity and limitations will be discussed by comparison with water tank measurement, and again taking into account the effect of the uncertainty in the free-stream characterization.

  11. Honeycomb-Lattice Heisenberg-Kitaev Model in a Magnetic Field: Spin Canting, Metamagnetism, and Vortex Crystals (United States)

    Janssen, Lukas; Andrade, Eric C.; Vojta, Matthias


    The Heisenberg-Kitaev model is a paradigmatic model to describe the magnetism in honeycomb-lattice Mott insulators with strong spin-orbit coupling, such as A2IrO3 (A =Na , Li ) and α -RuCl3 . Here, we study in detail the physics of the Heisenberg-Kitaev model in an external magnetic field. Using a combination of Monte Carlo simulations and spin-wave theory, we map out the classical phase diagram for different directions of the magnetic field. Broken SU(2) spin symmetry renders the magnetization process rather complex, with sequences of phases and metamagnetic transitions. In particular, we find various large-unit-cell and multi-Q phases including a vortex-crystal phase for a field in the [111 ] direction. We also discuss quantum corrections in the high-field phase.

  12. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds. (United States)

    Salahinejad, Maryam; Le, Tu C; Winkler, David A


    Accurate computational prediction of melting points and aqueous solubilities of organic compounds would be very useful but is notoriously difficult. Predicting the lattice energies of compounds is key to understanding and predicting their melting behavior and ultimately their solubility behavior. We report robust, predictive, quantitative structure-property relationship (QSPR) models for enthalpies of sublimation, crystal lattice energies, and melting points for a very large and structurally diverse set of small organic compounds. Sparse Bayesian feature selection and machine learning methods were employed to select the most relevant molecular descriptors for the model and to generate parsimonious quantitative models. The final enthalpy of sublimation model is a four-parameter multilinear equation that has an r(2) value of 0.96 and an average absolute error of 7.9 ± 0.3 kJ.mol(-1). The melting point model can predict this property with a standard error of 45° ± 1 K and r(2) value of 0.79. Given the size and diversity of the training data, these conceptually transparent and accurate models can be used to predict sublimation enthalpy, lattice energy, and melting points of organic compounds in general.

  13. Vortex free energies in SO(3) and SU(2) lattice gauge theory

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Jahn, Oliver


    Lattice gauge theories with gauge groups SO(3) and SU(2) are compared. The free energy of electric twist, an order parameter for the confinement-deconfinement transition which does not rely on centre-symmetry breaking, is measured in both theories. The results are used to calibrate the scale in SO(3).

  14. Melting of a nonequilibrium vortex crystal in a fluid film with polymers : elastic versus fluid turbulence

    CERN Document Server

    Gupta, Anupam


    We perform a direct numerical simulation (DNS) of the forced, incompressible two-dimensional Navier-Stokes equation coupled with the FENE-P equations for the polymer-conformation tensor. The forcing is such that, without polymers and at low Reynolds numbers $Re$, the film attains a steady state that is a square lattice of vortices and anti-vortices. We find that, as we increase the Weissenberg number ${\\mathcal Wi}$, this lattice undergoes a series of nonequilibrium phase transitions, first to spatially distorted, but temporally steady, crystals and then to a sequence of crystals that oscillate in time, periodically, at low ${\\mathcal Wi}$, and quasiperiodically, for slightly larger ${\\mathcal Wi}$. Finally, the system becomes disordered and displays spatiotemporal chaos and elastic turbulence. We then obtain the nonequilibrium phase diagram for this system, in the ${\\mathcal Wi} - Re$ plane, and show that (a) the boundary between the crystalline and turbulent phases has a complicated, fractal-type character ...

  15. Vortex-lattice pinning and critical current density in anisotropic high-temperature superconductors (United States)

    Li, Yingxu; Li, Xiangyu; Kang, Guozheng; Gao, Yuanwen


    The anisotropy of critical current density is an impressive manifestation in the physics of high-temperature superconductors. We develop an analytical characterization of anisotropic flux-lattice pinning and critical current density in a system of random point defects. The effect of superconducting anisotropy on the pinning force and critical current density is formulated. The in-plane/out-of-plane anisotropy and microscopic characteristic lengths are incorporated in the field and angular dependence of the critical current density. This is helpful in understanding the physical essence of the scaling behavior in the experiments for critical current anisotropy. We discuss the role of strong and weak point defects in the anisotropic flux-lattice pinning. Relevance of the theory to the critical-state model is dictated as well.

  16. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Chunlei, E-mail: [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yue, Sheng [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Adkins, Nicholas J.E.; Ward, Mark; Hassanin, Hany [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lee, Peter D., E-mail: [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Withers, Philip J., E-mail: [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Attallah, Moataz M., E-mail: [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)


    AlSi10Mg cellular lattice structures have been fabricated by selective laser melting (SLM) using a range of laser scanning speeds and powers. The as-fabricated strut size, morphology and internal porosity were investigated using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray microtomography (micro-CT) and correlated to the compressive properties of the structure. Strut diameter was found to increase monotonically with laser power while the porosity was largest at intermediate powers. Laser scanning speed was found to thicken the struts only at slow rates while the porosity was largest at intermediate speeds. High speed imaging showed the melt pool to be larger at high laser powers. Further the melt pool shape was found to vary cyclically over time, steadily growing before becoming increasingly instable and irregularly shaped before abruptly falling in size due to splashing of molten materials and the process repeating. Upon compressive loading, lattice deformation was homogeneous prior to the peak stress before falling sharply due to the creation of a (one strut wide) shear band at around 45° to the compression axis. The specific yield strength expressed as the yield stress/(yield stress of the aluminium × relative density) is not independent of processing conditions, suggesting that further improvements in properties can be achieved by process optimisation. Lattice struts failed near nodes by a mixture of ductile and brittle fracture.

  17. Evidence for a square vortex lattice in Sr{sub 2}RuO{sub 4} from muon-spin-rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aegerter, C.M.; Romer, S.; Keller, H. [Physik-Institut der Universitaet Zuerich, CH-8057 Zuerich (Switzerland); Lloyd, S.H.; Forgan, E.M. [School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ager, C.; Lee, S.L. [School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom)


    A muon-spin-rotation study of the flux-line lattice in Sr{sub 2}RuO{sub 4} is presented. For the field parallel to the crystallographic c-direction, the observed field distribution strongly indicates a square symmetry of the vortex lattice. We determine the value of the coherence length from the upper critical field and the Ginzburg-Landau parameter which is found to be {kappa} =1.2(1) from the field distribution. This gives a value for the penetration depth of {lambda} = 185(15) nm. The temperature dependence of the penetration depth is measured. (author)

  18. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces (United States)

    Galvis, J. A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.


    Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  19. Lattice stability and high-pressure melting mechanism of dense hydrogen up to 1.5 TPa

    KAUST Repository

    Geng, Hua Y.


    © 2015 American Physical Society. Lattice stability and metastability, as well as melting, are important features of the physics and chemistry of dense hydrogen. Using ab initio molecular dynamics (AIMD), the classical superheating limit and melting line of metallic hydrogen are investigated up to 1.5 TPa. The computations show that the classical superheating degree is about 100 K, and the classical melting curve becomes flat at a level of 350 K when beyond 500 GPa. This information allows us to estimate the well depth and the potential barriers that must be overcome when the crystal melts. Inclusion of nuclear quantum effects (NQE) using path integral molecular dynamics (PIMD) predicts that both superheating limit and melting temperature are lowered to below room temperature, but the latter never reaches absolute zero. Detailed analysis indicates that the melting is thermally activated, rather than driven by pure zero-point motion (ZPM). This argument was further supported by extensive PIMD simulations, demonstrating the stability of Fddd structure against liquefaction at low temperatures.

  20. Correlation of irreversibility and vortex solid melting for Ti nBa 2Ca 2Cu 3O x (n = 1, 2) thin films (United States)

    Hyun, O. B.; Suhara, H.; Nabatame, T.; Koike, S.; Hirabayashi, I.


    The transport measurements were performed for the Tl nBa 2Ca 2Cu 3O x (n = 1, 2) thin films in magnetic fields. The resistive state could be approximately described by the thermally activated form, ϱ ˜ exp[- {U(H,T)}/{k BT }] , where U(H,T) ∝ (const. + T)H -α with α ≈ 0.5 ˜ 0.6. This form, however, appreciably deviates from the data for low dissipation and high fields. As for the viscosity of the supercooled liquid, the divergence of U well described the behavior, particularly, of the low dissipation state for all fields, implying the presence of the vortex solid. The log(V) - log(I) characteristics revealed the curvature change, which defines the vortex solid (glass) - liquid melting temperature T m. Both the irreversibility line and the melting line showed approximately the same T dependence, H α ˜ T -1, which is from the thermally activated form. This correlation suggests that the irreversibility line appropriately figures the vortex solid (glass) - liquid melting line.

  1. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh


    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  2. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh


    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  3. Large-scaled simulation on the coherent vortex evolution of a jet in a cross-flow based on lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Shangguan Yanqin


    Full Text Available Large eddy simulation (LES is performed on a jet issued normally into a cross-flow using lattice Boltzmann method (LBM and multiple graphic processing units (multi-GPUs to study the flow characteristics of jets in cross-flow (JICF. The simulation with 8 1.50´10 grids is fulfilled with 6 K20M GPUs. With large-scaled simulation, the secondary and tertiary vortices are captured. The features of the secondary vortices and the tertiary vortices reveal that they have a great impact on the mixing between jet flow and cross-flow. The qualitative and quantitative results also indicate that the evolution mechanism of vortices is not constant, but varies with different situations. The hairpin vortex under attached jet regime originates from the boundary layer vortex of cross-flow. While, the origin of hairpin vortex in detached jet is the jet shear-layer vortex. The mean velocities imply the good ability of LBM to simulate JICF and the large loss of jet momentum in detached jet caused by the strong penetration. Besides, in our computation, a high computational performance of 1083.5 MLUPS is achieved.

  4. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus


    Additive manufacturing is rapidly developing and gaining popularity for direct metal fabrication systems like selective laser melting (SLM). The technology has shown significant improvement for high-quality fabrication of lightweight design-efficient structures such as conformal cooling channels...

  5. Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting (United States)

    Warmuth, Franziska; Osmanlic, Fuad; Adler, Lucas; Lodes, Matthias A.; Körner, Carolin


    A three-dimensional fully auxetic cellular structure with negative Poisson’s ratio is presented. Samples are fabricated from Ti6Al4V powder via selective electron beam melting. The influence of the strut thickness and the amplitude of the strut on the mechanical properties and the deformation behaviour of cellular structures is studied.

  6. Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting. (United States)

    Yan, Chunze; Hao, Liang; Hussein, Ahmed; Wei, Qingsong; Shi, Yusheng


    Ti-6Al-4V Gyroid triply periodic minimal surface (TPMS) lattices were manufactured by selective laser melting (SLM). The as-built Ti-6Al-4V lattices exhibit an out-of-equilibrium microstructure with very fine α' martensitic laths. When subjected to the heat treatment of 1050°C for 4h followed by furnace cooling, the lattices show a homogenous and equilibrium lamellar α+β microstructure with less dislocation and crystallographic defects compared with the as-built α' martensite. The as-built lattices present very rough strut surfaces bonded with plenty of partially melted metal particles. The sand blasting nearly removed all the bonded metal particles, but created many tiny cracks. The HCl etching eliminated these tiny cracks, and subsequent NaOH etching resulted in many small and shallow micro-pits and develops a sodium titanate hydrogel layer on the surfaces of the lattices. When soaked in simulated body fluid (SBF), the Ti-6Al-4V TPMS lattices were covered with a compact and homogeneous biomimetic hydroxyapatite (HA) layer. This work proposes a new method for making Ti-6Al-4V TPMS lattices with a homogenous and equilibrium microstructure and biomimetic HA coating, which show both tough and bioactive characteristics and can be promising materials usable as bone substitutes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.


    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  8. Vortex transmutation. (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández


    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  9. Anharmonic Noninertial Lattice Dynamics during Ultrafast Nonthermal Melting of InSb (United States)

    Zijlstra, Eeuwe S.; Walkenhorst, Jessica; Garcia, Martin E.


    We compute the potential energy surface of femtosecond-laser-excited InSb along the directions in which the crystal becomes soft. Using dynamical simulations the time dependence of the atomic coordinates is obtained. We find that at high excitation densities the anharmonicity of the potential energy surface becomes significant after ˜100fs. On the basis of our results we explain recent time-resolved x-ray diffraction experiments. We point out that an alternative model for ultrafast melting [A. M. Lindenberg , Science 308, 392 (2005)SCIEAS0036-807510.1126/science.1107996] is inconsistent with our calculations.

  10. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)


    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  11. Self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a two-dimensional strongly type-II superconductor at high magnetic fields (United States)

    Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar


    A self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a 2D strong type-II superconductor at high magnetic fields reveals a novel quantum mixed state around the semiclassical Hc 2, characterized by a well-defined Landau-Bloch band structure in the quasiparticle spectrum and suppressed order-parameter amplitude, which sharply crossover into the well-known semiclassical (Helfand-Werthamer) results upon decreasing magnetic field. Application to the 2D superconducting state observed recently on the surface of the topological insulator Sb2Te3 accounts well for the experimental data, revealing a strong type-II superconductor, with unusually low carrier density and very small cyclotron mass, which can be realized only in the strong coupling superconductor limit.

  12. Patterns beyond Faraday waves: observation of parametric crossover from Faraday instabilities to the formation of vortex lattices in open dual fluid strata (United States)

    Ohlin, Kjell; Berggren, Karl Fredrik


    Faraday first characterised the behaviour of a fluid in a container subjected to vertical periodic oscillations. His study pertaining to hydrodynamic instability, the ‘Faraday instability’, has catalysed a myriad of experimental, theoretical, and numerical studies shedding light on the mechanisms responsible for the transition of a system at rest to a new state of well-ordered vibrational patterns at fixed frequencies. Here we study dual strata in a shallow vessel containing distilled water and high-viscosity lubrication oil on top of it. At elevated driving power, beyond the Faraday instability, the top stratum is found to ‘freeze’ into a rigid pattern with maxima and minima. At the same time there is a dynamic crossover into a new state in the form of a lattice of recirculating vortices in the lower layer containing the water. Instrumentation and the physics behind are analysed in a phenomenological way together with a basic heuristic modelling of the wave field. The study, which is based on relatively low-budget equipment, stems from related art projects that have evolved over the years. The study is of value within basic research as well as in education, especially as more advanced collective project work in e.g. engineering physics, where it invites further studies of pattern formation, the emergence of vortex lattices and complexity.


    Energy Technology Data Exchange (ETDEWEB)



    In this paper we use London Langevin molecular dynamics simulations to investigate the vortex matter melting transition in the highly anisotropic high-temperature superconductor material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} in the presence of low concentration of columnar defects (CDs). We reproduce with further details our previous results obtained by using Multilevel Monte Carlo simulations that showed that the melting of the nanocrystalline vortex matter occurs in two stages: a first stage melting into nanoliquid vortex matter and a second stage delocalization transition into a homogeneous liquid. Furthermore, we report on new dynamical measurements in the presence of a current that identifies clearly the irreversibility line and the second stage delocalization transition. In addition to CDs aligned along the c-axis we also simulate the case of tilted CDs which are aligned at an angle with respect to the applied magnetic field. Results for CDs tilted by 45{degree} with respect to c-axis show that the locations of the melting and delocalization transitions are not affected by the tilt when the ratio of flux lines to CDs remains constant. On the other hand we argue that some dynamical properties and in particular the position of the irreversibility line should be affected.

  14. Vortex states in micron-sized Bi2Sr2CaCu2O8+y crystals (United States)

    Ooi, Shuuichi; Mochiku, Takashi; Tachiki, Minoru; Hirata, Kazuto


    Large thermal fluctuation, owing to high superconducting transition temperature, short coherence length and quasi-two-dimensionality, brings about a rich variety of vortex phases in Bi2Sr2CaCu2O8+y (Bi2212). To study how the vortex states and the transitions would be modified when vortices are confined in a small-sized crystal, we have measured the c-axis resistance using a stack of the intrinsic Josephson junctions (IJJs) of Bi2212. In tiny Bi2212 crystals of several micron, it is possible to observe the series of vorticity transitions using the c-axis resistance measurements. Combining the observation of vorticity changes and detection of a melting transition, we found an oscillating behavior of melting transition temperatures T m as a function of magnetic field (or number of vortices) in small squared Bi2212 with a lateral dimension of 5-10 μm. In the case of the square-shaped crystals, it seems that Tm is enhanced around the vortex numbers N v of i 2 (i: integer), indicating a matching of square vortex lattices in the square boundary. However, the frustration between the square boundary shape and vortex lattice that prefers a triangular lattice complicates the situation. A deformed square lattice without topological defects is probably realized at large i 2 as a geometrical matching state.

  15. Vortex patterns in moderately rotating Bose-condensed gas (United States)

    Imran, Mohd; Ahsan, M. A. H.


    Using exact diagonalization, we investigate the many-body ground state for regular vortex patterns in a rotating Bose-condensed gas of N spinless particles, confined in a quasi-two-dimensional harmonic trap and interacting repulsively via finite-range Gaussian potential. The N-body Hamiltonian matrix is diagonalized in given subspaces of quantized total angular momentum L z , to obtain the lowest-energy eigenstate. Further, the internal structure of these eigenstates is analyzed by calculating the corresponding conditional probability distribution. Specifically, the quantum mechanically stable as well as unstable states in a co-rotating frame are examined in the moderately rotating regime corresponding to angular momenta 4N≤slant {L}zimpressed rotation, the patterns of singly quantized vortices are formed, shaping into canonical polygons with a central vortex at the trap center. The internal structure of unstable states reveals the mechanism of entry, nucleation and pattern formation of vortices with structural phase transition, as the condensate goes from one stable vortical state to the other. The stable polygonal vortex patterns having discrete p-fold rotational symmetry with p = 5 and p = 6 are observed. The hexagonal vortex pattern with p = 6 symmetry is a precursor to the triangular vortex lattice of singly quantized vortices in the thermodynamic limit. For unstable states, quantum melting of vortex patterns due to uncertainty in positions of individual vortices, is also briefly discussed.

  16. Evolution of optical vortex distributions in stochastic vortex fields

    CSIR Research Space (South Africa)

    Roux, FS


    Full Text Available dipole,? Opt. Commun. 236, 433?440 (2004). [23] Dana, I. and Freund, I., ?Vortex-lattice wave fields,? Opt. Commun. . [24] Jenkins, R., Banerji, J., and Davies, A., ?The generation of optical vortices and shape preserving vortex arrays in hollow...

  17. Modified Pippard relationship describing the Raman frequency shifts of the rotatory lattice mode of ammonia solid II in the vicinity of its melting point

    Indian Academy of Sciences (India)

    H Karacali; H Yurtseven


    We relate in this study the thermal expansivity, , to the Raman frequency shift (1/)( /) for the rotatory lattice (librational) mode in ammonia solid II near its melting point. We have used our calculated Raman frequencies of this mode for pressures of 3.65, 5.02 and 6.57 kbars for this crystalline system. The values of the slope, d/d, which we deduced from our spectroscopic relation, are compared with those obtained experimentally. In particular, our computed slope value for the pressure of 5.02 kbar is in very good agreement with the empirical result.

  18. Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. (United States)

    Grosberg, Alexander Y


    A Flory theory is constructed for a long polymer ring in a melt of unknotted and non-concatenated rings. The theory assumes that the ring forms an effective annealed branched object and computes its primitive path. It is shown that the primitive path follows self-avoiding statistics and is characterized by the corresponding Flory exponent of a polymer with excluded volume. Based on that, it is shown that rings in the melt are compact objects with overall size proportional to their length raised to the 1/3 power. Furthermore, the contact probability exponent γcontact is estimated, albeit by a poorly controlled approximation, with the result close to 1.1 consistent with both numerical and experimental data.

  19. Plastic vortex-creep in $YBa_{2}Cu_{3}O_{7-x}$ crystals

    CERN Document Server

    Abulafia, Y; Wolfus, Y; Prozorov, R; Burlachkov, L; Yeshurun, Y; Zeldov, D M E; Wühl, H; Geshkenbein, B V; Vinokur, V M


    Local magnetic relaxation measurements in YBa$_2$Cu$_3$O$_{7-x}$ crystals show evidence for plastic vortex-creep associated with the motion of dislocations in the vortex lattice. This creep mechanism governs the vortex dynamics in a wide range of temperatures and fields below the melting line and above the field corresponding to the peak in the ''fishtail'' magnetization. In this range the activation energy $U_{pl}$, which decreases with field, drops below the elastic (collective) creep activation energy, $U_{el}$, which increases with field. A crossover in flux dynamics from elastic to plastic creep is shown to be the origin of the fishtail in YBa$_2$Cu$_3$O$_{7-x}$.

  20. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection (United States)

    Rojas, Roberto; Takaki, Tomohiro; Ohno, Munekazu


    In this study, a combination of the lattice Boltzmann method (LBM) and the phase-field method (PFM) is used for modeling simultaneous growth and motion of a dendrite during solidification. PFM is used as a numerical tool to simulate the morphological changes of the solid phase, and the fluid flow of the liquid phase is described by using LBM. The no-slip boundary condition at the liquid-solid interface is satisfied by adding a diffusive-forcing term in the LBM formulation. The equations of motion are solved for tracking the translational and rotational motion of the solid phase. The proposed method is easily implemented on a single Cartesian grid and is suitable for parallel computation. Two-dimensional benchmark computations show that the no-slip boundary condition and the shape preservation condition are satisfied in this method. Then, the present method is applied to the calculation of dendritic growth of a binary alloy under melt convection. Initially, the solid is stationary, and then, the solid moves freely due to the influence of fluid flow. Simultaneous growth and motion are effectively simulated. As a result, it is found that motion and melt convection enhance dendritic growth along the flow direction.

  1. Effects of surface anisotropy on magnetic vortex core

    Energy Technology Data Exchange (ETDEWEB)

    Pylypovskyi, Oleksandr V., E-mail: [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Sheka, Denis D. [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Kravchuk, Volodymyr P.; Gaididei, Yuri [Institute for Theoretical Physics, 03143 Kiev (Ukraine)


    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin–lattice simulations. - Highlights: • The shape of magnetic vortex core is essentially influenced by SA (surface anisotropy). • We predict barrel- or pillow-shaped deformation of the vortex depending on SA. • The variational approach fully describes the vortex core deformation. • We performed spin–lattice simulations to detect SA influence on the vortex core.

  2. Dynamics of vortex matter in YBCO sub-micron bridges

    Energy Technology Data Exchange (ETDEWEB)

    Papari, G., E-mail: [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); Carillo, F. [NEST, CNR-NANO and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Stornaiuolo, D.; Massarotti, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte SantAngelo, via Cinthia, 80126 Napoli (Italy); Longobardi, L. [American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [NEST, CNR-NANO and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte SantAngelo, via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell' informazione, Seconda Universit‘a di Napoli, via Roma 29, 81031 Aversa (CE) (Italy)


    Highlights: • Superconducting properties of YBCO nanowires in the width range ξvortex lattice melting temperature. • Magnetoresistence oscillations: entrance of vortex rows and modulation of screening currents. - Abstract: We have developed a fabrication process that allows us to realize pure YBCO nanowires displaying robust superconductivity at widths w as low as 160 nm. We can modify the process in order to maintain a Au protective layer. This allows us to scale our nanowires even further to widths as low as 50 nm. We have studied how the presence of vortices and the occurrence of phase slips affect the transport properties of nanowires in the width range ξVortex entry barrier is found to scale with the width. Our findings confirm that for widths ξvortex flow.

  3. Vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)


    This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)

  4. Vulcanized Vortex

    CERN Document Server

    Cho, Inyong


    We investigate vortex configurations with the "vulcanization" term introduced for renormalization of $\\phi_\\star^4$ theory in canonical $\\theta$-deformed noncommutativity. In the small-$\\theta$ limit, we perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  5. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors (United States)

    Meng, Qingyou; Varney, Christopher N.; Fangohr, Hans; Babaev, Egor


    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  6. Sculptured 3D twister superlattices embedded with tunable vortex spirals. (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby


    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  7. Theory of the vortex matter transformations in high-Tc superconductor YBCO. (United States)

    Li, Dingping; Rosenstein, Baruch


    Flux line lattice in type II superconductors undergoes a transition into a "disordered" phase such as vortex liquid or vortex glass, due to thermal fluctuations and random quenched disorder. We quantitatively describe the competition between the thermal fluctuations and the disorder using the Ginzburg-Landau approach. The following T-H phase diagram of YBCO emerges. There are just two distinct thermodynamical phases, the homogeneous and the crystalline one, separated by a single first order transition line. The line, however, makes a wiggle near the experimentally claimed critical point at 12 T. The "critical point" is reinterpreted as a (noncritical) Kauzmann point in which the latent heat vanishes and the line is parallel to the T axis. The magnetization, the entropy, and the specific heat discontinuities at melting compare well with experiments.

  8. Vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Chorin, A.J. [California Univ., Berkeley, CA (United States). Dept. of Mathematics]|[Lawrence Berkeley Lab., CA (United States)


    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  9. Flux lattice behavior in high- T sub c materials studied by neutron depolarization

    Energy Technology Data Exchange (ETDEWEB)

    Crow, M.L.; Goyette, R.J.; Nunes, A.C.; Pickart, S.J. (University of Rhode Island, Kingston, Rhode Island 02881 (USA)); McGuire, T.R.; Shinde, S.; Shaw, T.M. (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (USA))


    The depolarization of a neutron beam passing through a sample of the high-{ital T}{sub {ital c}} superconductor YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} has been measured as a function of temperature and applied field. The difference in behavior between field-cooled and zero-field-cooled states, the observation of hysteresis correlated with {ital H}{sub {ital c}1}, and the disappearance of the effect near 55 K (below {ital T}{sub {ital c}}) suggest an explanation in terms of vortex line lattice formation with possible connection to recently proposed flux line entanglement and melting.

  10. Effects of Surface Anisotropy on Magnetic Vortex Core


    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri


    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin-lattice simulations.

  11. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting (United States)

    Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano


    This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.

  12. Brownian vortexes (United States)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.


    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  13. A δ-function-like peak in the specific heat of two-dimensional vortex lattice: Monte carlo study

    Institute of Scientific and Technical Information of China (English)

    梁彦天; 曹义刚; 焦正宽


    A repulsive vortex-vortex interaction model was used to numerically study the melting transition of the two-dimensional vortex system with Monte Carlo method. Then a δ-function-like peak in the specific heat was observed and the internal energy showed a sharp drop at the melting temperature, whieh indicated that there exists a first-order melting transition at finite temperatures. The Lindemarm criterion was also investigated and valid, but different from previous simulation results.

  14. Aerodynamic optimizaiton for short range UAV using vortex lattice method and wind tunnel verification%基于涡格法的近程无人机气动优化与风洞实验验证

    Institute of Scientific and Technical Information of China (English)

    李大伟; 阎文成; 江峰


    According to the aerodynamic geometry of the UAV that operates at low Reynolds number, winglet was designed to improve the efficiency of the UAV by using vortex lattice meth-od(VLM). Optimized designs were validated by wind tunnel tests. First, several key parameters were analyzed for winglet design. Second, the optimized winglet was obtained by the VLM for UAV at cruising state. Last, a wind tunnel test for the UAV with and without winglet was carried out. Based on comparison of VLM results to full scale measured wind tunnel test data, it can be seen that they match well during linear segment. It means that the winglet was designed properly using VLM thus the lift to drag ratio of the UAV was increased by 12% , and the roll damping was increased but the yaw damping was not changed, on the other hand, these results should provide valuable guidance in designing winglet for UAV by using VLM.%针对低雷诺数的近程无人机,利用涡格法(VLM)对无人机气动特性进行了加装翼尖小翼优化设计,并通过风洞实验进行了验证.首先给出了翼尖小翼的几何参数并分析其对全机气动特性的影响,其次利用涡格法对小翼进行气动建模和优选,针对无人机巡航状态给出了小翼优化结果,最后利用风洞实验对优化前后的无人机进行了吹风实验对比验证,实验结果表明,涡格法和风洞实验结果在线性段相符,涡格法能够较准确地描述和预测翼尖小翼特性,加装翼尖小翼后的无人机巡航状态升阻比提高12%,全机滚转阻尼加大,偏航阻尼变化很小.

  15. Confining Bond Rearrangement in the Random Center Vortex Model

    CERN Document Server

    Altarawneh, Derar; Engelhardt, Michael


    We present static meson-meson and baryon--anti-baryon potentials in Z(2) and Z(3) random center vortex models for the infrared sector of Yang-Mills theory, i.e., hypercubic lattice models of random vortex world-surfaces. In particular, we calculate Polyakov loop correlators of two static mesons resp. (anti-)baryons in a center vortex background and observe that their expectation values follow the minimal area law and show bond rearrangement behavior. The static meson-meson and baryon--anti-baryon potentials are compared with theoretical predictions and lattice QCD simulations.

  16. Superfluid Vortex Cooler (United States)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.


    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  17. Nanostructuring superconducting vortex matter with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guillamón, I. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Suderow, H., E-mail: [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Kulkarni, P.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Córdoba, R.; Sesé, J. [Laboratorio de Microscopías Avanzadas (LMA) – Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza 50009 (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); and others


    Highlights: • Nanostructuring vortex matter with focused ion beams. • Nanofabrication produces high vortex density gradients. • Patterning gives nanocrystalline vortex lattice. - Abstract: Focused ion beams provide new opportunities to create small nanofabricated structures. Materials where this technique is successfully applied are different from those that are widely used in e-beam or photolithography processes. Arrays of holes have been fabricated in several layered superconductors, such as the transition metal dichalcogenides. A focused ion beam system can be also used to deposit superconducting material. A Ga beam is used to decompose a precusor W(CO){sub 6} molecule, giving an amorphous mixture of W–C–Ga–O which is superconducting below liquid helium temperatures. The amorphous nature of the deposit gives isotropic superconducting features, and vortex pinning is determined by the surface topography (or film thickness). Here we present vortex lattice images in an amorphous thin film with a nanofabricated array of dots. We find vortex confinement within the dots and inhomogeneous vortex distributions with large magnetic field gradients (around a Tesla in 10–20 nm). We discuss scaling behavior of the vortex lattice after nanofabrication.

  18. Vortex Lattice UXO Mobility Model Integration (United States)


    16  2.2  ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY .................... 17  3.0  PERFORMANCE OBJECTIVES...2  Figure 2. SCM for UXO showing the UXO MM analysis (lower left) as part of source quantification efforts...ordnance” (Johnson et al., 2002). A site conceptual model ( SCM ) was developed under this program and is shown schematically in Figure 2. After

  19. Analysis of wind turbine aerodynamics and aeroelasticity using vortex-based methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    Momentum analysis through Blade Element Momentum (BEM) and Computational Fluid Dynamics (CFD) are the two major paths commonly followed for wind turbine aerodynamic and aeroelastic research. Instead, the current PhD thesis focuses on the application of vortex-based methods. Vortex-based methods...... are understood as both simple vortex models and advanced numerical vortex methods. Prandtl’s tip-loss factor and Coleman’s yaw model are examples of features that were obtained using simple vortex models and implemented in BEM-based codes. Low-order vortex lattice codes and high-order vortex particle methods...... have regained interest in wind energy applications over the last two decades. The current work derives and illustrates some of the potential benefits of vortex-based analyses. The two key wake geometries used in this study to derive simple vortex models are the cylindrical and helical wake models. Both...

  20. Fractional vortex Hilbert's Hotel

    CERN Document Server

    Gbur, Greg


    We demonstrate how the unusual mathematics of transfinite numbers, in particular a nearly perfect realization of Hilbert's famous hotel paradox, manifests in the propagation of light through fractional vortex plates. It is shown how a fractional vortex plate can be used, in principle, to create any number of "open rooms," i.e. topological charges, simultaneously. Fractional vortex plates are therefore demonstrated to create a singularity of topological charge, in which the vortex state is completely undefined and in fact arbitrary.

  1. Sadovskii vortex in strain (United States)

    Freilich, Daniel; Llewellyn Smith, Stefan


    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  2. Streamwise Vortex Interaction with a Horseshoe Vortex

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Pawel Flaszynski; Franco Magagnato


    Flow control in turbomachinery is very difficult because of the complexity of its fully 3-D flow structure. The authors propose to introduce streamwise vortices into the control of internal flows. A simple configuration of vortices was investigated in order to better understand the flow control methods by means of streamwise vortices.The research presented here concerns streamwise vortex interaction with a horseshoe vortex. The effects of such an interaction are significantly dependent on the relative location of the streamwise vortex in respect to the leading edge of the profile. The streamwise vortex is induced by an air jet. The horseshoe vortex is generated by the leading edge of a symmetric profile. Such a configuration gives possibility to investigate the interaction of these two vortices alone. The presented analysis is based on numerical simulations by means of N-S compressible solver with a two-equation turbulence model.

  3. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego


    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  4. Vortex mechanism in hydrocyclones

    Institute of Scientific and Technical Information of China (English)

    徐继润; 刘正宁; 邢军; 李新跃; 黄慧; 徐海燕; 罗茜


    On the basis of analyzing the vortex characteristics, a new mechanism of the vortex formation in hydrocyclones is developed. The main concept of the mechanism is that the vortex flow in a hydrocyclone is resulted from the overlapping of container rotation and hole leakage. The model is then used to explain the compound distribution of free vortex and forced vortex, predict the similarity of tangential velocity at different input pressures, and make count of the principle of small hydrocyclone with lower cut-size than large one. Meanwhile a new possible approach to a large hydro-cyclone with lower cut-size by minimizing or eliminating the air core is discussed briefly.

  5. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals (United States)

    Han, Dong-Soo; Vogel, Andreas; Jung, Hyunsung; Lee, Ki-Suk; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Fischer, Peter; Meier, Guido; Kim, Sang-Koog


    Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices.

  6. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions (United States)

    Cheng, Szu-Cheng; Jheng, Shih-Da


    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.

  7. Superfluid-Mott transitions and vortices in the Jaynes-Cummings-Hubbard lattices with time-reversal-symmetry breaking (United States)

    Hayward, A. L. C.; Martin, A. M.


    We investigate the ground-state behavior of Jaynes-Cummings-Hubbard lattices in the presence of a synthetic magnetic field, via a Gutzwiller ansatz. Specifically, we study the superfluid-Mott transition and the formation of vortex lattices in the superfluid regime. We find a suppression of the superfluid fraction due to the frustration induced by the incommensurate magnetic and spacial lattice lengths. We also predict the formation of triangular vortex lattices inside the superfluid regime.

  8. Depicting Vortex Stretching and Vortex Relaxing Mechanisms

    Institute of Scientific and Technical Information of China (English)

    符松; 李启兵; 王明皓


    Different from many existing studies on the paranetrization of vortices, we investigate the effectiveness of two new parameters for identifying the vortex stretching and vortex relaxing mechanisms. These parameters are invariants and identify three-dimensional flow structures only, i.e. they diminish in two-dimensional flows. This is also unlike the existing vortex identification approaches which deliver information in two-dimensional flows. The present proposals have been successfully applied to identify the stretching and relaxing vortices in compressible mixing layers and natural convection flows.

  9. Rapid Estimation of Aircraft Performance Models using Differential Vortex Panel Method and Extended Kalman Filter Project (United States)

    National Aeronautics and Space Administration — The problem of estimating the aerodynamic models for flight control of damaged aircraft using an innovative differential vortex lattice method tightly coupled with...

  10. Rapid Estimation of Aircraft Performance Models using Differential Vortex Panel Method and Extended Kalman Filter Project (United States)

    National Aeronautics and Space Administration — Estimation of aerodynamic models for the control of damaged aircraft using an innovative differential vortex lattice method tightly coupled with an extended Kalman...

  11. Lattice Boltzmann simulation of conduction melting of phase change materials in metal foams%格子Boltzmann方法模拟泡沫金属内相变材料热传导融化传热过程

    Institute of Scientific and Technical Information of China (English)

    杲东彦; 陈振乾


    基于局部热非平衡条件下泡沫金属内热传导融化相变传热的非线性双温度方程,在表征单元尺度上构建双温度分布函数格子Boltzmann模型,其中相交非线性源项处理采用焓法迭代求解.数值模拟了金属骨架与相变材料的温度分布情况,重点分析了孔径、金属骨架与填充材料热传导比和Stefan数等对局部热非平衡效应的影响.模拟结果表明,孔径越大、金属骨架与填充材料热传导比越大,局部热非平衡效应越明显;相变过程的存在,加大了局部热非平衡效应,并且Stefan数越低局部热非平衡效应则越大.%A lattice Boltzmann model under local thermal non-equilibrium conditions based on double temperature equations is developed for simulation of melting governed by heat conduction of phase change materials in metal foams. Nonlinear phase change aspects are tackled by an enthalpy based method. The numerical simulation results show the non-equilibrium effect can not be neglected when the porous metal foam is with low porosity density, when the thermal conduction difference between the fluid and the porous metal foam is significant, and when the Stefan number of phase change material is relative small.

  12. Experimental adiabatic vortex ratchet effect in Nb films with asymmetric pinning trap

    Indian Academy of Sciences (India)

    J E Villegas; N O nunez; M P Gonzalez; E M Gonalez; J L Vicent


    Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC driven forces.

  13. Lattice Bosons

    CERN Document Server

    Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon


    Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.

  14. Matching of the Flux Lattice to Geometrically Frustrated Pinning Arrays (United States)

    Trastoy, J.; Bernard, R.; Briatico, J.; Villegas, J. E.; Lesueur, J.; Ulysse, C.; Faini, G.


    We use vortex dynamics on artificial nanoscale energy landscapes as a model to experimentally investigate a problem inspired by ``spin ice'' systems. In particular, we study the matching of the flux lattice to pinning arrays in which the geometrical frustration is expected to impede a unique stable vortex configuration and to promote metastability. This is done with YBCO films in which the nanoscale vortex energy landscape is fabricated via masked ion irradiation. Surprisingly, we found that minimal changes in the distance between pinning sites lead to the suppression of some of the magneto-resistance matching effects, that is, for certain well-defined vortex densities. This effect strongly depends on the temperature. We argue that this behavior can be explained considering the arrays' geometrical frustration and the thermally activated reconfiguration of the vortex lattice between isoenergetic states. Work supported by the French ANR via SUPERHYRBIDS-II and ``MASTHER,'' and the Galician Fundacion Barrie

  15. Quantitative theory of thermal fluctuations and disorder in the vortex matter

    Indian Academy of Sciences (India)

    Dingping Li; Rosenstein Baruch; P Lin


    A metastable supercooled homogeneous vortex liquid state exists down to zero fluctuation temperature in systems of mutually repelling objects. The zero-temperature liquid state therefore serves as a (pseudo) `fixed point' controlling the properties of vortex liquid below and even around the melting point. Based on this picture, a quantitative theory of vortex melting and glass transition in Type II superconductors in the framework of Ginzburg-Landau approach is presented. The melting line location is determined and magnetization and specific heat jumps are calculated. The point-like disorder shifts the line downwards and joins the order{disorder transition line. On the other hand, the disorder induces irreversible effects via replica symmetry breaking. The irreversibility line can be calculated within the Gaussian variational method. Therefore, the generic phase diagram contains four phases divided by the irreversibility line and melting line: liquid, solid, vortex glass and Bragg glass. We compare various experimental results with the theoretical formula.

  16. Fine tuned vortices in lattice SU(2) gluodynamics

    CERN Document Server

    Gubarev, F V; Polikarpov, M I; Syritsyn, S N; Zakharov, V I


    We report measurements of the action associated with center vortices in the lattice SU(2) pure gauge theory. In the lattice units the excess of the action on the plaquettes belonging to the vortex is approximately a constant, independent on the lattice spacing 'a'. Therefore the action of the center vortex is of order A/a^2, where 'A' is its area. Since the area A is known to scale in the physical units, the observation suggests that the suppression due to the surface action is balanced, or fine tuned to the entropy factor which is to be an exponential of A/a^2.

  17. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian;


    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws ...

  18. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;


    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  19. Method and apparatus for enhancing vortex pinning by conformal crystal arrays (United States)

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan


    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  20. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect (United States)

    Lan, C. Edward


    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  1. Vortex cutting in superconductors (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.


    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  2. Phase transitions and connectivity in three-dimensional vortex equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Akao, J.H.


    The statistical mechanics of collections of closed self avoiding vortex loops on a lattice are studied. The system is related to the vortex form of the three dimensional XY model and to lattice vortex equilibrium models of turbulence. The system exhibits vortex connectivity and screening effects, and models in vorticity variables the superfluid transition. The equilibrium states of the system are simulated by a grand canonical Monte Carlo method. A set of geometric transformations for self-avoiding loops is developed. The numerical method employs histogram sampling techniques and utilizes a modification to the Metropolis flow which enhances efficiency. Results are given for a region in the temperature-chemical potential plane, where the chemical potential is related to the vortex fugacity. A line of second order transitions is identified at low temperature. The transition is shown to be a percolation threshold at which connected vortex loops of infinite size appear in the system. The nature of the transition supports the assumption that the lambda transition in bulk superfluid helium is driven by vortices. An asymptotic analysis is performed for the energy and entropy scaling of the system as functions of the system size and the lattice spacing. These estimates indicate that the infinite temperature line is a phase boundary between small scale fractal vortices and large scale smooth vortices. A suggestion is made that quantum vortices have uniform structure on the scale of the lattice spacing and lie in the positive temperature regime, while classical vortices have uniform structure on the scale of the domain and lie in the negative temperature regime.

  3. The vortex-finding property of maximal center (and other) gauges

    Energy Technology Data Exchange (ETDEWEB)

    Faber, M.; Greensite, J.; Olejnik, S.; Yamada, D.


    The authors argue that the vortex-finding property of maximal center gauge, i.e. the ability of this gauge to locate center vortices inserted by hand on any given lattice, is the key to its success in extracting the vortex content of thermalized lattice configurations. The authors explain how this property comes about, and why it is expected not only in maximal center gauge, but also in an infinite class of gauge conditions based on adjoint-representation link variables. In principle, the vortex-finding property can be foiled by Gribov copies. This fact is relevant to a gauge-fixing procedure devised by Kovacs and Tomboulis, where they show that the loss of center dominance, found in their procedure, is explained by a corresponding loss of the vortex-finding property. The dependence of center dominance on the vortex-finding property is demonstrated numerically in a number of other gauges.

  4. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Energy Technology Data Exchange (ETDEWEB)

    de Diego, Peter


    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  5. Superradiance Lattice

    CERN Document Server

    Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O


    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.

  6. Topological fluid mechanics of point vortex motions

    CERN Document Server

    Boyland, P; Aref, H; Boyland, Philip; Stremler, Mark; Aref, Hassan


    Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. The reduction of each system using its symmetries is described in detail. Restricting to three vortices with zero net circulation, each reduced system is described by a one degree of freedom Hamiltonian. The phase portrait of this reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston-Nielsen theory is then used to analyse these isotopy classes, and in certain cases strong conclusions about the dynamics of the advection can be made.

  7. An optical vortex coronagraph (United States)

    Palacios, David M.


    An optical vortex may be characterized as a dark core of destructive interference in a beam of spatially coherent light. This dark core may be used as a filter to attenuate a coherent beam of light so an incoherent background signal may be detected. Applications of such a filter include: eye and sensor protection, forward-scattered light measurement, and the detection of extra-solar planets. Optical vortices may be created by passing a beam of light through a vortex diffractive optical element, which is a plate of glass etched with a spiral pattern, such that the thickness of the glass increases in the azimuthal direction. An optical vortex coronagraph may be constructed by placing a vortex diffractive optical element near the image plane of a telescope. An optical vortex coronagraph opens a dark window in the glare of a distant star so nearby terrestrial sized planets and exo-zodiacal dust may be detected. An optical vortex coronagraph may hold several advantages over other techniques presently being developed for high contrast imaging, such as lower aberration sensitivity and multi-wavelength operation. In this manuscript, I will discuss the aberration sensitivity of an optical vortex coronagraph and the key advantages it may hold over other coronagraph architectures. I will also provide numerical simulations demonstrating high contrast imaging in the presence of low-order static aberrations.

  8. Fast Josephson vortex

    Energy Technology Data Exchange (ETDEWEB)

    Malishevskii, A.S.; Silin, V.P.; Uryupin, S.A


    For the magnetically coupled waveguide and long Josephson junction we gave the analytic description of two separate velocity domains where the free motion of traveling vortex (2{pi}-kink) exists. The role of the mutual influence of waveguide and long Josephson junction is discussed. It is shown the possibility of the fast vortex motion with the velocity much larger than Swihart velocity of Josephson junction and close to the speed of light in the waveguide. The excitation of motion of such fast Josephson vortex is described.

  9. Topological properties of the SU(3) random vortex world-surface model

    CERN Document Server

    Engelhardt, M


    The random vortex world-surface model is an infrared effective model of Yang-Mills dynamics based on center vortex degrees of freedom. These degrees of freedom carry topological charge through writhe and self-intersection of their world-surfaces. A practical implementation of the model realizes the vortex world-surfaces by composing them of elementary squares on a hypercubic lattice. The topological charge for specifically such configurations is constructed in the case of SU(3) color. This necessitates a proper treatment of vortex color structure at vortex branchings, a feature which is absent in the SU(2) color case investigated previously. On the basis of the construction, the topological susceptibility is evaluated in the random vortex world-surface ensemble, both in the confined low-temperature as well as in the deconfined high-temperature phase.

  10. Vortex flow hysteresis (United States)

    Cunningham, A. M., Jr.


    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  11. Modeling gasodynamic vortex cooling (United States)

    Allahverdyan, A. E.; Fauve, S.


    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  12. Thick vortices in SU(2) lattice gauge theory


    Cheluvaraja, Srinath


    Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...

  13. Buoyant Norbury's vortex rings (United States)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder


    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  14. Small-angle neutron scattering study of the flux-line lattice in a single crystal of Bi2.15Sr1.95CaCu2O8+x

    DEFF Research Database (Denmark)

    Yethiraj, M.; Mook, H.A.; Forgan, E.M.;


    as the temperature is increased above a field‐dependent melting temperature. Diffracted intensity due to the vortex lattice also falls off as the applied field is increased. It is believed that this is a manifestation of the transition of the three‐dimensional flux lines into two‐dimensional pancake vortices...... field of 50 mT, the measured T dependence appears linear. The low‐T behavior is of great interest for an understanding of the underlying mechanism for superconductivity in these materials....

  15. Controlling vortex motion and vortex kinetic friction (United States)

    Nori, Franco; Savel'ev, Sergey


    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  16. Rotation of melting ice disks due to melt fluid flow. (United States)

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B


    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  17. Partitioning coefficients between olivine and silicate melts (United States)

    Bédard, J. H.


    Variation of Nernst partition coefficients ( D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO 2, H 2O, MgO and MgO/MgO + FeO total. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO 2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE-Sc-Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta-Hf-Zr-Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.

  18. Lattice theory

    CERN Document Server

    Donnellan, Thomas; Maxwell, E A; Plumpton, C


    Lattice Theory presents an elementary account of a significant branch of contemporary mathematics concerning lattice theory. This book discusses the unusual features, which include the presentation and exploitation of partitions of a finite set. Organized into six chapters, this book begins with an overview of the concept of several topics, including sets in general, the relations and operations, the relation of equivalence, and the relation of congruence. This text then defines the relation of partial order and then partially ordered sets, including chains. Other chapters examine the properti

  19. Reconnection of superfluid vortex bundles. (United States)

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F


    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.

  20. Nano magnetic vortex wall guide

    Directory of Open Access Journals (Sweden)

    H. Y. Yuan


    Full Text Available A concept of nano magnetic vortex wall guide is introduced. Two architectures are proposed. The first one is properly designed superlattices while the other one is bilayer nanostrips. The concept is verified by micromagnetic simulations. Both guides can prevent the vortex core in a magnetic vortex wall from colliding with sample surface so that the information stored in the vortex core can be preserved during its transportation from one location to another one through the guides.

  1. Vortex Characterization for Engineering Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R


    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  2. Jet vortex methods

    CERN Document Server

    Holm, Darryl D


    Vortex blob methods are typically characterized by a regularization length scale, below which the the dynamics are trivial for isolated blobs. In this article we will find that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularised Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularised Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also characterise the Hamiltonian dynamics of the higher-order singular vortices. Applications to the design of numerical meth- ods similar to vortex blob methods are also discussed. Such findings shed light onto the rich dynamics which occur below the regularization length scale and enlighten our perspective on the multiscale aspects of regularized fluid m...

  3. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)


    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  4. Magnetic vortex racetrack memory (United States)

    Geng, Liwei D.; Jin, Yongmei M.


    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  5. Low Temperature Limit of the Vortex Core Radius and the Kramer-Pesch Effect in NbSe2 (United States)

    Miller, R. I.; Kiefl, R. F.; Brewer, J. H.; Chakhalian, J.; Dunsiger, S.; Morris, G. D.; Sonier, J. E.; Macfarlane, W. A.


    Muon spin rotation ( μSR) has been used to measure the magnetic field distribution in the vortex state of the type-II superconductor NbSe2 ( Tc = 7.0 K) below T = 2 K. The distribution is consistent with a highly ordered hexagonal vortex lattice with a well resolved high-field cutoff associated with the finite size of the vortex cores. The temperature dependence of the core radius is much weaker than the temperature dependence predicted from the Bogoliubov-de Gennes theory. Furthermore, the vortex radius measured by μSR near the low temperature quantum limit is about an order of magnitude larger than predicted.

  6. Magnetic translation group on Abrikosov lattice (United States)

    Goto, Akira


    We investigate the magnetic translational symmetry of the Bogoliubov-de Gennes equation describing quasiparticles in the vortex lattice state. Magnetic translation group is formulated for the quasiparticles and the generalized Bloch theorem is established. Projection operators are obtained and used to construct the symmetry adopted basis functions. Careful treatment of the phase of the pair potential and its quasiperiodicity enable us to get the magnetic Wannier functions, which are utilized to justify a part of Canel's assertion about the effective Hamiltonian theory.

  7. Vortex solutions in axial or chiral coupled non-relativistic spinor- Chern-Simons theory

    CERN Document Server

    Németh, Z A


    The interaction of a spin 1/2 particle (described by the non-relativistic "Dirac" equation of Lévy-Leblond) with Chern-Simons gauge fields is studied. It is shown, that similarly to the four dimensional spinor models, there is a consistent possibility of coupling them also by axial or chiral type currents. Static self dual vortex solutions together with a vortex-lattice are found with the new couplings.

  8. Simulation of vortex motion in underdamped two-dimensional arrays of Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bobbert, P.A. (Department of Applied Physics, Delft University of Technology, Lorentweg 1, 2628 CJ Delft (Netherlands) Department of Physics and Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States))


    We report numerical simulations of classical vortex motion in two-dimensional arrays of underdamped Josephson junctions. A very efficient algorithm was developed, using a piecewise linear approximation for the Josephson current. We find no indication for ballistic motion, in square arrays nor in triangular arrays. Instead, in the limit of very low damping, there appears to be an effective viscosity due to excitation of the lattice behind the moving vortex.

  9. Vortex Crystals with Chiral Stripes in Itinerant Magnets (United States)

    Ozawa, Ryo; Hayami, Satoru; Barros, Kipton; Chern, Gia-Wei; Motome, Yukitoshi; Batista, Cristian D.


    We study noncoplanar magnetic ordering in frustrated itinerant magnets. For a family of Kondo square lattice models with classical local moments, we find that a double-Q noncoplanar vortex crystal has lower energy than the single-Q helical order expected from the Ruderman-Kittel-Kasuya-Yosida interaction when the lattice symmetry dictates four global maxima in the bare magnetic susceptibility. By expanding in the small Kondo exchange and the degree of noncoplanarity, we demonstrate that this noncoplanar state arises from a Fermi surface instability occurring in independent sections connected by two ordering wave vectors.

  10. Topological susceptibility in the SU(3) random vortex world-surface model

    CERN Document Server

    Engelhardt, M


    The topological charge is constructed for SU(3) center vortex world-surfaces composed of elementary squares on a hypercubic lattice. In distinction to the SU(2) case investigated previously, it is necessary to devise a proper treatment of the color structure at vortex branchings, which arise in the SU(3) case, but not for SU(2). The construction is used to evaluate the topological susceptibility in the random vortex world-surface model of infrared Yang-Mills dynamics. Results for the topological susceptibility are reported as a function of temperature, including both the confined as well as the deconfined phase.

  11. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.


    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  12. Passive Wake Vortex Control

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M


    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging

  13. Nanostructuring of high-T{sub C} superconductors via masked ion irradiation for efficient ordered vortex pinning

    Energy Technology Data Exchange (ETDEWEB)

    Trastoy, J. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Rouco, V. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, E-08193 Bellaterra (Spain); Ulysse, C. [CNRS, Phynano Team, Laboratoire de Photonique et de Nanostructures, route de Nozay, 91460 Marcoussis (France); Bernard, R. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Faini, G. [CNRS, Phynano Team, Laboratoire de Photonique et de Nanostructures, route de Nozay, 91460 Marcoussis (France); Lesueur, J. [LPEM, CNRS-ESPCI, 10 rue Vauquelin, 75231 Paris (France); Briatico, J. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Villegas, J.E., E-mail: [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France)


    Highlights: • Study of magneto-transport in YBCO films with a periodic pinning array. • Commensurability effects investigated as a function of vortex velocity. • At low temperatures, the periodic pinning is more efficient for low vortex velocities. • At high temperatures, the periodic pinning becomes stronger with increasing vortex velocity. - Abstract: We studied vortex dynamics in a YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin film with two different sources of pinning: intrinsic random defects and an artificial square array of defects created by masked ion irradiation. We study commensurability effects between the vortex lattice and the pinning array as a function of the vortex velocity v and the temperature. We find that at low temperatures the commensurability effects (magneto-resistance drop at the matching fields) are stronger at low velocities, in contrast with the behavior previously observed in low-critical-temperature superconductors.

  14. The shock-vortex interaction patterns affected by vortex flow regime and vortex models (United States)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong


    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  15. Experiments on Linear and Nonlinear Localization of Optical Vortices in Optically Induced Photonic Lattices

    Directory of Open Access Journals (Sweden)

    Daohong Song


    Full Text Available We provide a brief overview on our recent experimental work on linear and nonlinear localization of singly charged vortices (SCVs and doubly charged vortices (DCVs in two-dimensional optically induced photonic lattices. In the nonlinear case, vortex propagation at the lattice surface as well as inside the uniform square-shaped photonic lattices is considered. It is shown that, apart from the fundamental (semi-infinite gap discrete vortex solitons demonstrated earlier, the SCVs can self-trap into stable gap vortex solitons under the normal four-site excitation with a self-defocusing nonlinearity, while the DCVs can be stable only under an eight-site excitation inside the photonic lattices. Moreover, the SCVs can also turn into stable surface vortex solitons under the four-site excitation at the surface of a semi-infinite photonics lattice with a self-focusing nonlinearity. In the linear case, bandgap guidance of both SCVs and DCVs in photonic lattices with a tunable negative defect is investigated. It is found that the SCVs can be guided at the negative defect as linear vortex defect modes, while the DCVs tend to turn into quadrupole-like defect modes provided that the defect strength is not too strong.

  16. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing


    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  17. Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas (United States)

    Luo, Xuebing; Zhou, Kezhao; Zhang, Zhidong


    We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional (2D) Fermi superfluid system trapped in an optical lattice potential. Within the framework of mean-field theory, the cooper pair density, the atom number density, and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime. Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime. Meanwhile, the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional (3D) to 2D case. Furthermore, using a simple re-normalization procedure, we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G c which is obtained as a function of the lattice potential’s parameter. Finally, we investigate the vortex core size and find that it grows with increasing interaction strength. In particular, by analyzing the behavior of the vortex core size in both BCS and BEC regimes, we find that the vortex core size behaves quite differently for positive and negative chemical potentials. Project supported by the National Natural Science Foundation of China (Grant Nos. 51331006, 51590883, and 11204321) and the Project of Chinese Academy of Sciences (Grant No. KJZD-EW-M05-3).

  18. Simulations of vortex generators (United States)

    Koumoutsakos, P.


    We are interested in the study, via direct numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the stream direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators at NASA Ames and Stanford University (Saddoughi, 1994, and Jacobson and Reynolds, 1993). Jacobson and Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and he observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. Our task is to simulate the flows generated by these devices and to conduct a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. The results of the present simulations would help us assess some of the effects of three-dimensionality in experiments and investigate the role

  19. How good is the Lattice Boltzmann method? (United States)

    Kocheemoolayil, Joseph; Barad, Michael; Kiris, Cetin


    Conflicting opinions exist in literature regarding how efficient the lattice Boltzmann method is relative to high-order finite difference approximations of the Navier-Stokes equations on Cartesian meshes, especially at high Mach numbers. We address the question from the pragmatic viewpoint of a practitioner. Dispersion, dissipation and aliasing errors of various lattice Boltzmann models are systematically quantified. The number of floating point operations and memory required for a desired accuracy level are carefully compared for the two numerical methods. Turbulent kinetic energy budgets for several standard test cases such as the decaying Taylor-Green vortex problem are used to evaluate how effective the stabilization mechanisms necessary for lattice Boltzmann method at high Reynolds numbers are. Detailed comments regarding the cyclomatic complexity of the underlying software, scalability of the underlying algorithm on state-of-the-art high-performance computing platforms and wall clock times and relative accuracy for selected simulations conducted using the two approaches are also made.

  20. Discrete breathers in hexagonal dusty plasma lattices. (United States)

    Koukouloyannis, V; Kourakis, I


    The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.

  1. Multiply Phased Traveling BPS Vortex

    CERN Document Server

    Kimm, Kyoungtae; Cho, Y M


    We present the multiply phased current carrying vortex solutions in the U(1) gauge theory coupled to an $(N+1)$-component SU(N+1) scalar multiplet in the Bogomolny limit. Our vortex solutions correspond to the static vortex dressed with traveling waves along the axis of symmetry. What is notable in our vortex solutions is that the frequencies of traveling waves in each component of the scalar field can have different values. The energy of the static vortex is proportional to the topological charge of $CP^N$ model in the BPS limit, and the multiple phase of the vortex supplies additional energy contribution which is proportional to the Noether charge associated to the remaining symmetry.

  2. Control of diffusion of nanoparticles in an optical vortex lattice. (United States)

    Zapata, Ivar; Delgado-Buscalioni, Rafael; Sáenz, Juan José


    A two-dimensional periodic optical force field, which combines conservative dipolar forces with vortices from radiation pressure, is proposed in order to influence the diffusion properties of optically susceptible nanoparticles. The different deterministic flow patterns are identified. In the low-noise limit, the diffusion coefficient is computed from a mean first passage time and the most probable escape paths are identified for those flow patterns which possess a stable stationary point. Numerical simulations of the associated Langevin equations show remarkable agreement with the analytically deduced expressions. Modifications of the force field are proposed so that a wider range of phenomena could be tested.

  3. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices


    Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.


    This is the author accepted manuscript. The final version is available from Nature Publishing Group via Despite their inherently non-equilibrium nature [1] , living systems can self-organize in highly ordered collective states [2,3] that share striking similarities with the thermodynamic equilibrium phases [4,5] of conventional condensed-matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies [6,7], microb...

  4. A generalization of vortex lines

    CERN Document Server

    Fecko, Marian


    Helmholtz theorem states that, in ideal fluid, vortex lines move with the fluid. Another Helmholtz theorem adds that strength of a vortex tube is constant along the tube. The lines may be regarded as integral surfaces of an 1-dimensional integrable distribution (given by the vorticity 2-form). In general setting of theory of integral invariants, due to Poincare and Cartan, one can find $d$-dimensional integrable distribution whose integral surfaces show both properties of vortex lines: they move with (abstract) fluid and, for appropriate generalization of vortex tube, strength of the latter is constant along the tube.

  5. Aircraft Wake Vortex Deformation in Turbulent Atmosphere


    Hennemann, Ingo; Holzaepfel, Frank


    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  6. Periodic vortex pinning by regular structures in Nb thin films: magnetic vs. structural effects (United States)

    Montero, Maria Isabel; Jonsson-Akerman, B. Johan; Schuller, Ivan K.


    The defects present in a superconducting material can lead to a great variety of static and dynamic vortex phases. In particular, the interaction of the vortex lattice with regular arrays of pinning centers such as holes or magnetic dots gives rise to commensurability effects. These commensurability effects can be observed in the magnetoresistance and in the critical current dependence with the applied field. In recent years, experimental results have shown that there is a dependence of the periodic pinning effect on the properties of the vortex lattice (i.e. vortex-vortex interactions, elastic energy and vortex velocity) and also on the dots characteristics (i.e. dot size, distance between dots, magnetic character of the dot material, etc). However, there is not still a good understanding of the nature of the main pinning mechanisms by the magnetic dots. To clarify this important issue, we have studied and compared the periodic pinning effects in Nb films with rectangular arrays of Ni, Co and Fe dots, as well as the pinning effects in a Nb film deposited on a hole patterned substrate without any magnetic material. We will discuss the differences on pinning energies arising from magnetic effects as compared to structural effects of the superconducting film. This work was supported by NSF and DOE. M.I. Montero acknowledges postdoctoral fellowship by the Secretaria de Estado de Educacion y Universidades (Spain).

  7. Vortex-Surface Interactions: Vortex Dynamics and Instabilities (United States)


    a) Main vortex structures developing on a typical submarine hull; (b) Schematic illustrating a horseshoe vortex at a wing-body junction of a " Rood ...secondary vortices. Firstly, looking at Figure 7, showing only the secondary vortices being visualized by our technique , we see that a tongue of secondary

  8. Dual Lattice of ℤ-module Lattice

    Directory of Open Access Journals (Sweden)

    Futa Yuichi


    Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].

  9. Periodic oscillations of Josephson-vortex flow resistance in Bi(2)Sr(2)CaCu(2)O(8+y). (United States)

    Ooi, S; Mochiku, T; Hirata, K


    To study the Josephson-vortex system, we have measured the vortex-flow resistance as a function of magnetic field parallel to the ab plane in Bi(2)Sr(2)CaCu(2)O(8+y) single crystals. Novel periodic oscillations of the vortex-flow resistance have been observed in a wide range of temperatures and magnetic fields. The period of the oscillations corresponds to the field needed to add "one" vortex quantum per "two" intrinsic Josephson junctions. The flow velocity is related to a matching effect between the lattice spacing of Josephson vortices along the layers and the width of the sample. These results suggest that Josephson vortices form a triangular lattice in the ground state where the oscillations occur.

  10. Solitary vortexes in magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vainshtein, S.I.


    Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.

  11. Vortex Flow Correlation (United States)


    j . 1978. 93. Grabowski , W.J.; "Solutions of the Navier-Stokes Equations for Vortex Breakdown," NASA CR...including foreign nations. This technical report has been reviewed and is approved for publication. LAWRENCE W. ROGERS Q LOWELL C. KEEL, Major, USAF Project...or’ a w U - a LU LU U- LU C - J ’di 2 2 C LU I- 4 S Ua * - w x 2 40 20 I- 2 LU W S ~ 00 * U. 4 I- 𔃾 LU a 4 U 4 2 C C LU 4 a 4a 2 I- 4 a 3 9

  12. Robustness of a coherence vortex. (United States)

    Alves, Cleberson R; Jesus-Silva, Alcenisio J; Fonseca, Eduardo J S


    We study, experimentally and theoretically, the behavior of a coherence vortex after its transmission through obstacles. Notably, we find that such a vortex survives and preserves its effective topological charge. Despite suffering changes on the modulus of the coherence function, these changes disappear during propagation.

  13. Vortex duality in higher dimensions

    NARCIS (Netherlands)

    Beekman, Aron Jonathan


    A dynamic vortex line traces out a world sheet in spacetime. This thesis shows that the information of all its dynamic behaviour is completely contained in the world sheet. Furthermore a mathematical framework for order–disorder phase transitions in terms of the proliferation of such vortex world sh

  14. A preliminary study of the effects of vortex diffusers (winglets) on wing flutter (United States)

    Doggett, R. V., Jr.; Farmer, M. G.


    Some experimental flutter results are presented for a simple, flat-plate wing model and for the same wing model equipped with two different upper surface vortex diffusers over the Mach number range from about 0.70 to 0.95. Both vortex diffusers had the same planform, but one weighed about 0.3 percent of the basic wing weight, whereas the other weighed about 1.8 percent of the wing weight. The addition of the lighter vortex diffuser reduced the flutter dynamic pressure by about 3 percent; the heavier vortex diffuser reduced the flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet lattice and lifting surface (Kernel function) unsteady aerodynamic theories.

  15. Lift enhancement by trapped vortex (United States)

    Rossow, Vernon J.


    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  16. Flux-Vortex Pinning and Neutron Star Evolution (United States)

    Alpar, M. Ali


    G. Srinivasan et al. (1990) proposed a simple and elegant explanation for the reduction of the neutron star magnetic dipole moment during binary evolution leading to low mass X-ray binaries and eventually to millisecond pulsars: Quantized vortex lines in the neutron star core superfluid will pin against the quantized flux lines of the proton superconductor. As the neutron star spins down in the wind accretion phase of binary evolution, outward motion of vortex lines will reduce the dipole magnetic moment in proportion to the rotation rate. The presence of a toroidal array of flux lines makes this mechanism inevitable and independent of the angle between the rotation and magnetic axes. The incompressibility of the flux-line array (Abrikosov lattice) determines the epoch when the mechanism will be effective throughout the neutron star. Flux vortex pinning will not be effective during the initial young radio pulsar phase. It will, however, be effective and reduce the dipole moment in proportion with the rotation rate during the epoch of spindown by wind accretion as proposed by Srinivasan et al. The mechanism operates also in the presence of vortex creep.

  17. Three-dimensional topological solitons in PT-symmetric optical lattices

    CERN Document Server

    Kartashov, Yaroslav V; Huang, Guoxiang; Torner, Lluis


    We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials.

  18. A new method to detect the vortex glass phase and its evidence in YBCO. (United States)

    Adesso, M G; Polichetti, M; Pace, S


    The evidence of the vortex glass phase has been obtained by analysing the nonlinear magnetic response of type-II superconductors. The method introduced here is based on a combined frequency dependence analysis of the real and imaginary part of the 1st and 3rd harmonics of the AC magnetic susceptibility. The analysis has been performed by taking into account both the components and the Cole-Cole plots (i.e. the imaginary part as a function of the real part). Numerical simulations have been used to identify the fingerprints of the magnetic behaviour in the vortex glass phase. These characteristics allowed the vortex glass phase to be distinguished from the other disordered phases, even those showing similar electrical properties. Finally, this method has been successfully applied to detecting the vortex glass phase in an YBCO bulk melt-textured sample.

  19. Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids (United States)

    Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.


    We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.

  20. New vortex-matter size effect observed in Bi(2)Sr(2)CaCu(2)O(8 + delta). (United States)

    Wang, Y M; Fuhrer, M S; Zettl, A; Ooi, S; Tamegai, T


    The vortex-matter 3D to 2D phase transition is studied in micron-sized Bi(2)Sr(2)CaCu(2)O(8 + delta) single crystals using local Hall magnetization measurements. At a given temperature, the second magnetization peak, the signature of a possible 3D--2D vortex phase transition, disappears for samples smaller than a critical length. We suggest that this critical length should be equated with the 2D vortex lattice ab-plane correlation length R(2D)(c). The magnitude and temperature dependence of R(2D)(c) agree well with Larkin-Ovchinnikov collective pinning theory.

  1. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.


    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...

  2. Some discussions on Arctic vortex

    Institute of Scientific and Technical Information of China (English)

    Li Hai; Sun Lantao; Wu Huiding; Li Xiang


    The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation (AO) , relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.

  3. Motion of a helical vortex

    CERN Document Server

    Fuentes, Oscar Velasco


    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  4. Unitary Quantum Lattice Algorithms for Turbulence (United States)


    collision operator, based on the 3D relativistic Dirac particle dynamics theory of Yepez, ĈD = cosθ x( ) −i sinθ x( ) −i sinθ x( ) cosθ x... based algorithm it will result in a finite difference representation of the GP Eq. (24) provided the parameters are so chosen to yield diffusion-like...Fluid Dynamics, ed. H. W. Oh, ( InTech Publishers, Croatia, 2012) [20] “Unitary qubit lattice simulations of complex vortex structures

  5. Bathtub vortex induced by instability (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto


    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

  6. Free µ-Lattices

    DEFF Research Database (Denmark)

    Santocanale, Luigi


    A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...

  7. Vortex electronis and squids

    CERN Document Server


    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  8. Entangled vector vortex beams (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio


    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  9. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)


    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  10. Vortex state in ferromagnetic nanoparticles (United States)

    Betto, Davide; Coey, J. M. D.


    The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.

  11. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael


    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  12. Vortex migration in protoplanetary discs

    Directory of Open Access Journals (Sweden)

    Papaloizou John C. B.


    Full Text Available Vortices embedded in protoplanetary discs can act as obstacles to the unperturbed disc flow. The resulting velocity perturbations propagate away from the vortex in the form of density waves that transport angular momentum. Any asymmetry between the inner and the outer density wave means that the region around the vortex has to change its angular momentum. We find that this leads to orbital migration of the vortex. Asymmetric waves always arise except in the case of a disc with constant pressure, for isothermal as well as non-isothermal discs. Depending on the size and strength of the vortex, the resulting migration time scales can be as short as a few thousand orbits.

  13. Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows. (United States)

    Krämer, Andreas; Küllmer, Knut; Reith, Dirk; Joppich, Wolfgang; Foysi, Holger


    The lattice Boltzmann method is a simulation technique in computational fluid dynamics. In its standard formulation, it is restricted to regular computation grids, second-order spatial accuracy, and a unity Courant-Friedrichs-Lewy (CFL) number. This paper advances the standard lattice Boltzmann method by introducing a semi-Lagrangian streaming step. The proposed method allows significantly larger time steps, unstructured grids, and higher-order accurate representations of the solution to be used. The appealing properties of the approach are demonstrated in simulations of a two-dimensional Taylor-Green vortex, doubly periodic shear layers, and a three-dimensional Taylor-Green vortex.

  14. New omega vortex identification method (United States)

    Liu, ChaoQun; Wang, YiQian; Yang, Yong; Duan, ZhiWei


    A new vortex identification criterion called Ω-method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q-criterion and λ 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of Ω is clear while the interpretations of iso-surface values of Q and λ 2 chosen to visualize vortices are obscure; (3) being different from Q and λ 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, Ω is pretty universal and does not need much adjustment in different cases and the iso-surfaces of Ω=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and λ 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) Ω=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate Ω, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

  15. Formation number for vortex dipoles (United States)

    Sadri, Vahid; Krueger, Paul S.


    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  16. Vortex migration in protoplanetary disks

    CERN Document Server

    Paardekooper, S -J; Papaloizou, J C B


    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migrat...

  17. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.


    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  18. Lattice effects in the light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von [Los Alamos National Lab., NM (United States); Richardson, J.W. Jr. [Argonne National Lab., IL (United States)


    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated.

  19. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R


    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  20. Ultralocality on the lattice

    CERN Document Server

    Campos, R G; Campos, Rafael G.; Tututi, Eduardo S.


    It is shown that the nonlocal Dirac operator yielded by a lattice model that preserves chiral symmetry and uniqueness of fields, approaches to an ultralocal and invariant under translations operator when the size of the lattice tends to zero.

  1. New integrable lattice hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Andrew [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); Zhu Zuonong [Departamento de Matematicas, Universidad de Salamanca, Plaza de la Merced 1, 37008 Salamanca (Spain) and Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail:


    In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula.

  2. The Simulation of High Reynolds Number Cavity Flow Based on Fractional Volumetric Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    HAN Shan-ling; ZHU Ping; LIN Zhong-qin


    The fractional volumetric lattice Boltzmann method with much better stability was used to simulate two dimensional cavity flows. Because the effective viscosity was reduced by the fraction factor, it is very effective forsimulating high Reynolds number flows. Simulations were carried out on a uniform grids system. The stream lines and the velocity profiles obtained from the simulations agree well with the standard lattice Boltzmann method simulations. Comparisons of detailed flow patterns with other studies via location of vortex centers are also satisfactory.

  3. Quantum Phase Transitions of Hard-Core Bosons on the Kagome Lattice (United States)

    Isakov, S. V.; Melko, R. G.; Sengupta, K.; Wessel, S.; Kim, Yong Baek


    We study hard-core bosons with nearest-neighbor repulsion on the kagome lattice at different filling factors using quantum Monte Carlo simulations and a dual vortex theory. At half-filling, the ground state of the system is always a uniform superfluid in contrast to the case of the triangular lattice. There exists a quantum phase transition from a superfluid to a valence bond solid phase away from half-filling. The possibility of unusual quantum criticality is investigated.

  4. Sober Topological Molecular Lattices

    Institute of Scientific and Technical Information of China (English)

    张德学; 李永明


    A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.

  5. Infinite resistive lattices

    NARCIS (Netherlands)

    Atkinson, D; van Steenwijk, F.J.

    The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American

  6. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc


    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  7. Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

    Directory of Open Access Journals (Sweden)

    Ismael García Serrano


    Full Text Available We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C nanostructures grown by focused ion beam induced deposition (FIBID. By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current.

  8. The dynamics of straight vortex filaments in a Bose-Einstein condensate with a Gaussian density profile

    CERN Document Server

    Ruban, V P


    The dynamics of interacting quantized vortex filaments in a rotating trapped Bose-Einstein condensate, which is in the Thomas-Fermi regime at zero temperature and described by the Gross-Pitaevskii equation, is considered in the hydrodynamical "anelastic" approximation. In the presence of a smoothly inhomogeneous array of filaments (vortex lattice), a non-canonical Hamiltonian equation of motion is derived for the macroscopically averaged vorticity, with taking into account the spatial non-uniformity of the equilibrium condensate density determined by the trap potential. A minimum of the corresponding Hamiltonian describes a static configuration of deformed vortex lattice against a given density background. The minimum condition is reduced to a vector nonlinear partial differential equation of the second order, for which some approximate and exact solutions are found. It is shown that if the condensate density has an anisotropic Gaussian profile then equation of motion for the averaged vorticity admits solutio...

  9. Vortex states in a non-Abelian magnetic field (United States)

    Nikolić, Predrag


    A type-II superconductor survives in an external magnetic field by admitting an Abrikosov lattice of quantized vortices. This is an imprint of the Aharonov-Bohm effect created by the Abelian U(1) gauge field. The simplest non-Abelian analog of such a gauge field, which belongs to the SU(2) symmetry group, can be found in topological insulators. Here we discover a superconducting ground state with a lattice of SU(2) vortices in a simple two-dimensional model that presents an SU(2) "magnetic" field (invariant under time reversal) to attractively interacting fermions. The model directly captures the correlated topological insulator quantum well, and approximates one channel for instabilities on the Kondo topological insulator surface. Due to its simplicity, the model might become amenable to cold atom simulations in the foreseeable future. The vitality of low-energy vortex states born out of SU(2) magnetic fields is promising for the creation of incompressible vortex liquids with non-Abelian fractional excitations.

  10. Existence and stability of multisite breathers in honeycomb and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Koukouloyannis, V [Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kevrekidis, P G; Law, K J H [Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515 (United States); Kourakis, I [Centre for Plasma Physics, Queen' s University Belfast, BT7 1 NN (United Kingdom); Frantzeskakis, D J, E-mail: vkouk@physics.auth.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)


    We study the existence and stability of multisite discrete breathers in two prototypical non-square Klein-Gordon lattices, namely a honeycomb and a hexagonal one. In the honeycomb case we consider six-site configurations and find that for soft potential and positive coupling the out-of-phase breather configuration and the charge-two vortex breather are linearly stable, while the in-phase and charge-one vortex states are unstable. In the hexagonal lattice, we first consider three-site configurations. In the case of soft potential and positive coupling, the in-phase configuration is unstable and the charge-one vortex is linearly stable. The out-of-phase configuration here is found to always be linearly unstable. We then turn to six-site configurations in the hexagonal lattice. The stability results in this case are the same as in the six-site configurations in the honeycomb lattice. For all configurations in both lattices, the stability results are reversed in the setting of either hard potential or negative coupling. The study is complemented by numerical simulations which are in very good agreement with the theoretical predictions. Since neither the form of the on-site potential nor the sign of the coupling parameter involved have been prescribed, this description can accommodate inverse-dispersive systems (e.g. supporting backward waves) such as transverse dust-lattice oscillations in dusty plasma (Debye) crystals or analogous modes in molecular chains.

  11. Vortex Laser at Exceptional Point

    CERN Document Server

    Wang, Xing-Yuan; Li, Ying; Li, Bo; Ma, Ren-Min


    The optical vortices carrying orbital angular momentum (OAM) are commonly generated by modulating the available conventional light beam. This article shows that a micro-laser operates at the exceptional point (EP) of the non-Hermitian quantum system can directly emit vortex laser with well-defined OAM at will. Two gratings (the refractive index modulation and along azimuthal direction and the grating protruding from the micro-ring cavity) modulate the eigenmode of a micro-ring cavity to be a vortex laser mode. The phase-matching condition ensures that we can tune the OAM of the vortex beam to be arbitrary orders by changing the grating protruding from the micro-ring cavity while the system is kept at EP. The results are obtained by analytical analysis and confirmed by 3D full wave simulations.

  12. A Experimental Study of Viscous Vortex Rings. (United States)

    Dziedzic, Mauricio

    Motivated by the role played by vortex rings in the process of turbulent mixing, the work is focused on the problem of stability and viscous decay of a single vortex ring. A new classification is proposed for vortex rings which is based on extensive hot-wire measurements of velocity in the ring core and wake and flow visualization. Vortex rings can be classified as laminar, wavy, turbulence-producing, and turbulent. Prediction of vortex ring type is shown to be possible based on the vortex ring Reynolds number. Linear growth rates of ring diameter with time are observed for all types of vortex rings, with different growth rates occurring for laminar and turbulent vortex rings. Data on the viscous decay of vortex rings are used to provide experimental confirmation of the accuracy of Saffman's equation for the velocity of propagation of a vortex ring. Experimental data indicate that instability of the vortex ring strongly depends on the mode of generation and can be delayed by properly adjusting the generation parameters. A systematic review of the literature on vortex-ring interactions is presented in the form of an appendix, which helps identify areas in which further research may be fruitful.

  13. Fractional vortex dipole phase filter (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam


    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  14. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory


    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  15. Generation of nonlinear vortex precursors

    CERN Document Server

    Chen, Yue-Yue; Liu, Chengpu


    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex har- monics are generated in the transmitted field due to ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provide a straightforward way of measuring precursors. By the virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical informa- tion and communication fields where controllable loss, large information-carrying capacity and high speed communication are required.

  16. A multi-component evaporation model for beam melting processes (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin


    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  17. Backreaction of excitations on a vortex

    CERN Document Server

    Arodz, H; Arodz, Henryk; Hadasz, Leszek


    Excitations of a vortex are usually considered in a linear approximation neglecting their backreaction on the vortex. In the present paper we investigate backreaction of Proca type excitations on a straightlinear vortex in the Abelian Higgs model. We propose exact Ansatz for fields of the excited vortex. From initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the backreaction corrections. Their approximate solutions are found in the cases of plane wave and wave packet type excitations. We find that the excited vortex radiates vector field and that the Higgs field has a very broad oscillating component.

  18. Particle-vortex symmetric liquid (United States)

    Mulligan, Michael


    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  19. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne


    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Sur...

  20. Merger of Long Vortex Filaments

    CERN Document Server

    Khandekar, Akshay


    This fluid dynamics video demonstrates the merger of long vortex filaments is shown experimentally. Two counter-rotating vortices are generated using in a tank with very high aspect ratio. PIV demonstrates the merger of the vortices within a single orbit.

  1. Thermal inhomogeneities in vortex tubes (United States)

    Lemesh, N. I.; Senchuk, L. A.

    An experimental study of the effect of the temperature of the inlet gas on the temperature difference between the hot and cold streams discharged from a Ranque-Hilsch vortex tube is described. The experimental results are presented in graphical form. It is that the temperature difference increases with the temperature of the entering gas.

  2. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan


    pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  3. 150 Years of vortex dynamics

    DEFF Research Database (Denmark)

    Aref, Hassan


    An IUTAM symposium with the title of this paper was held on October 12-16, 2008, in Lyngby and Copenhagen, Denmark, to mark the sesquicentennial of publication of Helmholtz's seminal paper on vortex dynamics. This volume contains the proceedings of the Symposium. The present paper provides...

  4. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan


    The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density...... of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...... and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case...

  5. Entropic Lattice Boltzmann Methods for Fluid Mechanics (United States)

    Chikatamarla, Shyam; Boesch, Fabian; Sichau, David; Karlin, Ilya


    With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Our major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. We review here recent advances in ELBM as a practical, modeling-free tool for simulation of turbulent flows in complex geometries. We shall present recent simulations including turbulent channel flow, flow past a circular cylinder, knotted vortex tubes, and flow past a surface mounted cube. ELBM listed all admissible lattices supporting a discrete entropy function and has classified them in hierarchically increasing order of accuracy. Applications of these higher-order lattices to simulations of turbulence and thermal flows shall also be presented. This work was supported CSCS grant s437.

  6. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods (United States)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)


    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  7. Jammed lattice sphere packings


    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore


    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...

  8. On Traveling Waves in Lattices: The Case of Riccati Lattices (United States)

    Dimitrova, Zlatinka


    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  9. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC


    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  10. Two vortex-blob regularization models for vortex sheet motion (United States)

    Sohn, Sung-Ik


    Evolving vortex sheets generally form singularities in finite time. The vortex blob model is an approach to regularize the vortex sheet motion and evolve past singularity formation. In this paper, we thoroughly compare two such regularizations: the Krasny-type model and the Beale-Majda model. It is found from a linear stability analysis that both models have exponentially decaying growth rates for high wavenumbers, but the Beale-Majda model has a faster decaying rate than the Krasny model. The Beale-Majda model thus gives a stronger regularization to the solution. We apply the blob models to the two example problems: a periodic vortex sheet and an elliptically loaded wing. The numerical results show that the solutions of the two models are similar in large and small scales, but are fairly different in intermediate scales. The sheet of the Beale-Majda model has more spiral turns than the Krasny-type model for the same value of the regularization parameter δ. We give numerical evidences that the solutions of the two models agree for an increasing amount of spiral turns and tend to converge to the same limit as δ is decreased. The inner spiral turns of the blob models behave differently with the outer turns and satisfy a self-similar form. We also examine irregular motions of the sheet at late times and find that the irregular motions shrink as δ is decreased. This fact suggests a convergence of the blob solution to the weak solution of infinite regular spiral turns.

  11. Vortex tube reconnection at Re = 104 (United States)

    van Rees, Wim M.; Hussain, Fazle; Koumoutsakos, Petros


    We present simulations of the long-time dynamics of two anti-parallel vortex tubes with and without initial axial flow, at Reynolds number Re = Γ/ν = 104. Simulations were performed in a periodic domain with a remeshed vortex method using 785 × 106 particles. We quantify the vortex dynamics of the primary vortex reconnection that leads to the formation of elliptical rings with axial flow and report for the first time a subsequent collision of these rings. In the absence of initial axial flow, a -5/3 slope of the energy spectrum is observed during the first reconnection of the tubes. The resulting elliptical vortex rings experience a coiling of their vortex lines imparting an axial flow inside their cores. These rings eventually collide, exhibiting a -7/3 slope of the energy spectrum. Studies of vortex reconnection with an initial axial flow exhibit also the -7/3 slope during the initial collision as well as in the subsequent collision of the ensuing elliptical vortex rings. We quantify the detailed vortex dynamics of these collisions and examine the role of axial flow in the breakup of vortex structures.

  12. Influence of mesoscale topography on vortex intensity

    Institute of Scientific and Technical Information of China (English)


    The effect of mesoscale topography on multi-vortex self-organization is investigated numerically in this paper using a barotropic primitive equation model with topographic term. In the initial field there are one DeMaria major vortex with the maximum wind radius rm of 80 km at the center of the computational domain, and four meso-β vortices in the vicinity of rm to the east of the major vortex center.When there is no topography present, the initial vortices self-organize into a quasi-final state flow pattern, I.e. A quasi-axisymmetric vortex whose intensity is close to that of the initial major vortex. However, when a mesoscale topography is incorporated, the spatial scale of the quasi-final state vortex reduces, and the relative vorticity at the center of the vortex and the local maximum wind speed remarkably increase. The possible mechanism for the enhancement of the quasi-final state vortex might be that the negative relative vorticity lump,generated above the mesoscale topography because of the constraint of absolute vorticity conservation, squeezes the center of positive vorticity towards the mountain slope area, and thus reduces the spatial range of the major vortex. Meanwhile, because the total kinetic energy is basically conservative, the squeezing directly leads to the concentration of the energy in a smaller area, I.e. The strengthening of the vortex.

  13. Phases of d-orbital bosons in optical lattices (United States)

    Pinheiro, Fernanda; Matrikainen, Jani-Petri; Larson, Jonas


    We explore the properties of bosonic atoms loaded into the d bands of an isotropic square optical lattice. Following the recent experimental success reported in Zhai et al (2013 Phys. Rev. A 87 063638), in which populating d bands with a 99 % fidelity was demonstrated, we present a theoretical study of the possible phases that can appear in this system. Using the Gutzwiller ansatz for the three d band orbitals we map the boundaries of the Mott insulating phases. For not too large occupation, two of the orbitals are predominantly occupied, while the third, of a slightly higher energy, remains almost unpopulated. In this regime, in the superfluid phase we find the formation of a vortex lattice, where the vortices come in vortex/anti-vortex pairs with two pairs locked to every site. Due to the orientation of the vortices time-reversal symmetry is spontaneously broken. This state also breaks a discrete {{{Z}}2}-symmetry. We further derive an effective spin-1/2 model that describe the relevant physics of the lowest Mott-phase with unit filling. We argue that the corresponding two dimensional phase diagram should be rich with several different phases. We also explain how to generate anti-symmetric spin interactions that can give rise to novel effects like spin canting.

  14. Vortex scattering by step topography (United States)

    Hinds, A. K.; Johnson, E. R.; McDonald, N. R.

    The scattering at a rectilinear step change in depth of a shallow-water vortex pair consisting of two patches of equal but opposite-signed vorticity is studied. Using the constants of motion, an explicit relationship is derived relating the angle of incidence to the refracted angle after crossing. A pair colliding with a step from deep water crosses the escarpment and subsequently propagates in shallow water refracted towards the normal to the escarpment. A pair colliding with a step from shallow water either crosses and propagates in deep water refracted away from the normal or, does not cross the step and is instead totally internally reflected by the escarpment. For large depth changes, numerical computations show that the coherence of the vortex pair is lost on encountering the escarpment.

  15. Perturbations of vortex ring pairs

    CERN Document Server

    Gubser, Steven S; Parikh, Sarthak


    We study pairs of co-axial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  16. Collisions of Vortex Filament Pairs (United States)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne


    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  17. Divergence of optical vortex beams

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P


    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  18. Nuclear lattice simulations

    Directory of Open Access Journals (Sweden)

    Epelbaum E.


    Full Text Available We review recent progress on nuclear lattice simulations using chiral effective field theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb effects, and the binding energy of light nuclei.

  19. Dust vortex flows in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K


    Coherent nonlinear structures in the form of dust vortex flows have been observed in unmagnetized laboratory dusty plasmas. Our objective here is show that the dynamics of such dust vortices is governed by a modified Navier-Stokes equation (MNSE) and that the stationary solutions of the MNSE can be represented as monopolar as well as a row of identical Stuart and a row of counter-rotating vortices.

  20. Experimental characteristics of vortex heaters (United States)

    Piralishvili, Sh. A.; Novikov, N. N.

    The performance of a Ranque-Hilsch vortex tube is investigated experimentally for the case where the tube operates as a heater, with the mass of the heated gas remaining constant. The results obtained indicate that energy separation zones with sufficiently high (50 percent) relative heating effects can be achieved for a gas flow ratio of unity. A nomogram is presented for calculating the relative and absolute heating effects as a function of the tube geometry.

  1. Prediction and Control of Vortex Dominated and Vortex-wake Flows (United States)

    Kandil, Osama


    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  2. Birth and evolution of an optical vortex

    CERN Document Server

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo


    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  3. Topology of Vortex-Wing Interaction (United States)

    McKenna, Chris; Rockwell, Donald


    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  4. Vortex rings impinging on permeable boundaries (United States)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen


    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  5. Vortex dynamics in nonrelativistic Abelian Higgs model

    Directory of Open Access Journals (Sweden)

    A.A. Kozhevnikov


    Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.

  6. An axisymmetric steady state vortex ring model

    CERN Document Server

    Wang, Ruo-Qian


    Based on the solution of Atanasiu et al. (2004), a theoretical model for axisymmetric vortex flows is derived in the present study by solving the vorticity transport equation for an inviscid, incompressible fluid in cylindrical coordinates. The model can describe a variety of axisymmetric flows with particular boundary conditions at a moderately high Reynolds number. This paper shows one example: a high Reynolds number laminar vortex ring. The model can represent a family of vortex rings by specifying the modulus function using a Rayleigh distribution function. The characteristics of this vortex ring family are illustrated by numerical methods. For verification, the model results compare well with the recent direct numerical simulations (DNS) in terms of the vorticity distribution and streamline patterns, cross-sectional areas of the vortex core and bubble, and radial vorticity distribution through the vortex center. Most importantly, the asymmetry and elliptical outline of the vorticity profile are well capt...

  7. Magnetism near Vortex Cores of Cuprate Superconductors (United States)

    Lee, J. C.; Prudchenko, K.; Launspach, B.; Ruiz, E. J.; Boekema, C.


    We examined muon-spin-resonance (μSR) vortex data of Bi2212, Tl2223, and YBCO to search for antiferromagnetism (AF) near the vortex cores. [1] Field distributions were obtained from μSR data using Maximum-Entropy analysis. The grainboundary and vortex signals were fitted by Gaussian and Lorentzian curves, the latter suggestive of extra AF ordering. Narrow Gaussians fit the grainboundary signals well, independent of temperature. For T B17 (2003) 3436.

  8. Astronomical demonstration of an optical vortex coronagraph. (United States)

    Swartzlander, Grover A; Ford, Erin L; Abdul-Malik, Rukiah S; Close, Laird M; Peters, Mary A; Palacios, David M; Wilson, Daniel W


    Using an optical vortex coronagraph and simple adaptive optics techniques, we have made the first convincing demonstration of an optical vortex coronagraph that is coupled to a star gazing telescope. We suppressed by 97% the primary star of a resolvable binary system, Cor Caroli. The stars had an angular separation of 1.9lambda/D at our imaging camera. The secondary star suffered no suppression from the vortex lens.

  9. Quarkonia at $T>0$ and lattice QCD

    CERN Document Server

    Rothkopf, Alexander


    We report here on recent progress in the determination of S-wave and P-wave heavy-quarkonium states at finite temperature. Our results are based on the combination of effective field theories with numerical lattice QCD simulations. These non-perturbative tools allow us to compute the heavy-quarkonium in-medium spectral functions, from which we in turn determine the melting temperatures of individual states and estimate phenomenologically relevant observables, such as the $\\psi^\\prime$ to J/$\\psi$ ratio in heavy-ion collisions.

  10. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier


    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  11. Recent Advances in Study of Oceanic Vortex

    Institute of Scientific and Technical Information of China (English)

    FU Gang; LI Li; LIU Qinyu


    In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the Kuroshio, the South China Sea and the Japan Sea regions are depicted based upon the observations and numerical modeling results. Generally, the lifetime of these oceanic vortices ranges from several weeks to several months, and their horizontal scales vary from tens of kilometers to hundreds of kilometers. Their vertical scales are on the order of thousands of meters. Finally, some theoretical studies, mainly on the splitting of a cyclonic vortex and the merging of anticyclonic vortices, are introduced.

  12. Topological Lattice Actions for the 2d XY Model

    CERN Document Server

    Bietenholz, W; Niedermayer, F; Pepe, M; Rejón-Barrera, F G; Wiese, U -J


    We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. Thus our study underscores the robustness of universality, which persists even when basic principles of classical physics are violated. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. In the massless phase, the BKT value of the critical exponent eta_c is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT be...

  13. GaInSn melt flow structure variation with crucible size in an isothermal electromagnetic stirring configuration (United States)

    Negrila, Radu Andrei; Popescu, Alexandra; Vizman, Daniel


    Based on the idea of melt stirring from electromagnetic Czochralski method, a method for electromagnetic field stirring (EMF) of molten silicon was proposed for a rectangular melt: a configuration with two electrodes in contact with the melt surface in a vertical magnetic field. In order to understand the basic features of the melt flow in such a configuration time-dependent numerical computations were performed with STHAMAS3D for an isothermal model experiment in a rectangular crucible filled with a room temperature GaInSn melt, very similar with liquid silicon. Numerical parametrical studies were performed for different values of I and B using various crucible sizes, for a symmetrical electrode positioning along the diagonal of the free melt surface. The results have revealed that the flow structure can be described in terms of a vortex or a poloidal recirculation dominance or of a transition between the two. It was found that, for a larger crucible size, the transition from the vortex to the poloidal flow structure installs at higher current intensities than in the case of a smaller melt size. The results offer an understanding of the impact of the increase in melt volume on the flow structures and are therefore important for the upscaling of the melt geometry to sizes relevant for industrial application.


    Directory of Open Access Journals (Sweden)

    Sahil Bansode* and S. S. Poddar


    Full Text Available Starting from plastic industry, today melt extrusion has found its place in the array of pharmaceutical manufacturing processes. Melt extrusion processes are currently applied in the pharmaceutical field for the formulation of variety of dosage forms such as granules, pellets, tablets, implants, transdermal systems & ophthalmic inserts. This technology represents an efficient pathway for increasing the solubility of poorly soluble drugs. The process forms a solid dispersion where the drug is presented in an amorphous & molecularly dispersed state in a carrier. This leads to an increase in solubility, as no lattice energy has to be overcome during dissolution. Melt extrusion is considered to be an efficient technology in the field of formulation of solid dispersions to improve bioavailability with particular advantages over solvent processes. This article highlights on the technology of Hot Melt Extrusion (HME.

  15. Fabrication and Mechanical Characterisation of Titanium Lattices with Graded Porosity

    Directory of Open Access Journals (Sweden)

    William van Grunsven


    Full Text Available Electron Beam Melting (EBM is an Additive Manufacturing technique which can be used to fabricate complex structures from alloys such as Ti6Al4V, for example for orthopaedic applications. Here we describe the use of EBM for the fabrication of a novel Ti6Al4V structure of a regular diamond lattice incorporating graded porosity, achieved via changes in the strut cross section thickness. Scanning Electron Microscopy and micro computed tomography analysis confirmed that generally EBM reproduced the CAD design of the lattice well, although at smaller strut sizes the fabricated lattice produced thicker struts than the model. Mechanical characterisation of the lattice in uniaxial compression showed that its behaviour under compression along the direction of gradation can be predicted to good accuracy with a simple rule of mixtures approach, knowing the properties and the behaviour of its constituent layers.

  16. Vortex structure in superfluid color-flavor locked quark matter

    CERN Document Server

    Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas


    The core region of a neutron star may feature quark matter in the color-flavor- locked (CFL) phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.

  17. Small angle neutron diffraction studies of vortex structures in high temperature superconductors

    DEFF Research Database (Denmark)

    Cubitt, R.; Forgan, E.M.; Wylie, M.T.


    We have used neutron scattering to provide direct information about flux structures in the bulk of crystals of the superconductor Bi2Sr2CaCu2O8. Its extremely high effective mass anisotropy, makes the flux lattice susceptable to melting and also to decomposition into 'pancake' vortices, which would...

  18. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło


    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  19. Melting of sodium clusters

    CERN Document Server

    Reyes-Nava, J A; Beltran, M R; Michaelian, K


    Thermal stability properties and the melting-like transition of Na_n, n=13-147, clusters are studied through microcanonical molecular dynamics simulations. The metallic bonding in the sodium clusters is mimicked by a many-body Gupta potential based on the second moment approximation of a tight-binding Hamiltonian. The characteristics of the solid-to-liquid transition in the sodium clusters are analyzed by calculating physical quantities like caloric curves, heat capacities, and root-mean-square bond length fluctuations using simulation times of several nanoseconds. Distinct melting mechanisms are obtained for the sodium clusters in the size range investigated. The calculated melting temperatures show an irregular variation with the cluster size, in qualitative agreement with recent experimental results. However, the calculated melting point for the Na_55 cluster is about 40 % lower than the experimental value.

  20. Modified Lattice Landau Gauge

    CERN Document Server

    Von Smekal, L; Sternbeck, A; Williams, A G


    We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.

  1. Jammed lattice sphere packings. (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore


    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  2. Jammed lattice sphere packings (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore


    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  3. Force induced DNA melting

    Energy Technology Data Exchange (ETDEWEB)

    Santosh, Mogurampelly; Maiti, Prabal K [Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-12 (India)], E-mail:, E-mail:


    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f{sub m}, at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  4. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise (United States)

    Fontana, Richard Remo


    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  5. Vortex diffusion and vortex-line hysteresis in radial quantum turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Saluto, L., E-mail: [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Jou, D., E-mail: [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Mongiovi, M.S., E-mail: [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy)


    We study the influence of vortex diffusion on the evolution of inhomogeneous quantized vortex tangles. A simple hydrodynamical model to describe inhomogeneous counterflow superfluid turbulence is used. As an illustration, we obtain solutions for these effects in radial counterflow of helium II between two concentric cylinders at different temperatures. The vortex diffusion from the inner hotter cylinder to the outer colder cylinder increases the vortex length density everywhere as compared with the non-diffusive situation. The possibility of hysteresis in the vortex line density under cyclical variations of the heat flow is explored.

  6. Lattice Gerbe Theory

    CERN Document Server

    Lipstein, Arthur E


    We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.

  7. Root lattices and quasicrystals (United States)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.


    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.


    Energy Technology Data Exchange (ETDEWEB)



    I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.

  9. Superalloy Lattice Block Structures (United States)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.


    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  10. Pinch-off of axisymmetric vortex pairs in the limit of vanishing vortex line curvature (United States)

    Sadri, V.; Krueger, P. S.


    Pinch-off of axisymmetric vortex pairs generated by flow between concentric cylinders with radial separation ΔR was studied numerically and compared with planar vortex dipole behavior. The axisymmetric case approaches planar vortex dipole behavior in the limit of vanishing ΔR. The flow was simulated at a jet Reynolds number of 1000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio ( /L Δ R ) in the range 10-20, and gap-to-outer radius ratio ( /Δ R R o ) in the range 0.01-0.1. Contrary to investigations of strictly planar flows, vortex pinch-off was observed for all gap sizes investigated. This difference was attributed to the less constrained geometry considered, suggesting that even very small amounts of vortex line curvature and/or vortex stretching may disrupt the absence of pinch-off observed in strictly planar vortex dipoles.

  11. Simulations of Active Vortex Generators (United States)

    Mansour, N. N.; Koumoutsakos, P.; Merriam, Marshal (Technical Monitor)


    We are interested in the study, via numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the streamwise direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise voracity is generated and ejected due to the oscillatory motion of the lid. The present simulations c Implement relevant experimental investigations of active vortex generators that have been conducted at NASA Ames Research Center and Stanford University. Jacobson and Reynolds used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. More recently, Lachowiez and Wlezien are investigating the flow generated by an electro-mechanically driven lid to be used for assertion control in aerodynamic applications. We are simulating the flows generated by these devices and we are conducting a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin. The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands ol'particle's allow for high resolution simulations

  12. Technicolor on the Lattice

    CERN Document Server

    Pica, C; Lucini, B; Patella, A; Rago, A


    Technicolor theories provide an elegant mechanism for dynamical electroweak symmetry breaking. We will discuss the use of lattice simulations to study the strongly-interacting dynamics of some of the candidate theories, with matter fields in representations other than the fundamental. To be viable candidates for phenomenology, such theories need to be different from a scaled-up version of QCD, which were ruled out by LEP precision measurements, and represent a challenge for modern lattice computations.

  13. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher


    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  14. Permutohedral Lattice CNNs


    Kiefel, Martin; Jampani, Varun; Gehler, Peter V.


    This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....

  15. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes. (United States)

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor


    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.

  16. Neutron scattering studies of the flux line lattice in ErNi{sub 2}B{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T. E-mail:; Yano, F.; Habuta, E.; Kawano-Furukawa, H.; Nagao, M.; Yoshizawa, H.; Furukawa, N.; Takeya, H.; Kadowaki, K


    We examined the flux line lattice in ErNi{sub 2}{sup 11}B{sub 2}C by small angle neutron scattering technique. On field cooling process, effective field (H{sub eff}) determined by the observed vortex distance increased by 200 Oe below the weak ferromagnetic transition temperature T{sub WFM}.

  17. Delaying vortex breakdown by waves (United States)

    Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.


    The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.

  18. Anatomy of a bathtub vortex. (United States)

    Andersen, A; Bohr, T; Stenum, B; Rasmussen, J Juul; Lautrup, B


    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Surrounding this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the container. This flow structure leads us to a theoretical model similar to one obtained earlier by Lundgren [J. Fluid Mech. 155, 381 (1985)

  19. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.


    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  20. Tight Focusing of Partially Coherent Vortex Beams

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh


    Full Text Available Tight focusing of partially polarized vortex beams has been studied. Compact form of the coherence matrix has been derived for polarized vortex beams. Effects of topological charge and polarization distribution of the incident beam on intensity distribution, degree of polarization, and coherence have been investigated.

  1. The linear stability of swirling vortex rings (United States)

    Gargan-Shingles, C.; Rudman, M.; Ryan, K.


    The stability of vortex rings with an azimuthal component of velocity is investigated numerically for various combinations of ring wavenumber and swirl magnitude. The vortex rings are equilibrated from an initially Gaussian distribution of azimuthal vorticity and azimuthal velocity, at a circulation-based Reynolds number of 10 000, to a state in which the vortex core is qualitatively identical to that of the piston generated vortex rings. The instability modes of these rings can be characterised as Kelvin instability modes, analogous to instability modes observed for Gaussian and Batchelor vortex pairs. The shape of an amplified mode typically depends only on the azimuthal wavenumber at the centre of the vortex core and the magnitude of the corresponding velocity component. The wavenumber of a particular sinuous instability varies with radius from the vortex ring centre for rings of finite aspect ratio. Thicker rings spread the amplification over a wider range of wavenumbers for a particular resonant mode pair, while the growth rate and the azimuthal wavenumber corresponding to the peak growth both vary as a function of the wavenumber variation. Normalisation of the wavenumber and the growth rate by a measure of the wavenumber variation allows a coherent description of stability modes to be proposed, across the parameter space. These results provide a framework for predicting the development of resonant Kelvin instabilities on vortex rings with an induced component of swirling velocity.

  2. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.;


    or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  3. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)


    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  4. Vortex attraction and the formation of sunspots (United States)

    Parker, E. N.


    A downdraft vortex ring in a stratified atmosphere exhibits universal attraction for nearby vertical magnetic flux bundles. It is speculated that the magnetic fields emerging through the surface of the sun are individually encircled by one or more subsurface vortex rings, providing an important part of the observed clustering of magnetic fibrils to form pores and sunspots.

  5. Investigation of Wake-Vortex Aircraft Encounters (United States)

    Smith, Sonya T.


    The National Aeronautics and Space Administration is addressing airport capacity enhancements during instrument meteorological conditions though the Terminal Area Productivity (TAP) program. The major goal of the TAP program is to develop the technology that will allow air traffic levels during instrument meteorological condition to approach those achieved during visual operations. The Reduced Spacing Operations (RSO) subelement of TAP at the NASA Langley Research Center (LaRC) will develop the Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to integrate current and predicted weather conditions, wake vortex transport and decay knowledge, wake vortex sensor data, and operational definitions of acceptable strengths for vortex encounters to produce dynamic wake vortex separation criteria. The proposed research is in support of the wake vortex hazard definition component of the LaRC AVOSS development research. The research program described in the next section provided an analysis of the static test data and uses this data to evaluate the accuracy vortex/wake-encounter models. The accuracy of these models has not before been evaluated using experimental data. The research results also presented the first analysis of the forces and moments imparted on an airplane during a wake vortex encounter using actual flight test data.

  6. On a few Aspects of Vortex Motion

    Directory of Open Access Journals (Sweden)

    Prantik Sinha


    Full Text Available Intricacies of vortex motion have been drawing the attention of scientists for many years. A number of works both experimental and numerical have been conducted to understand the various features of vortex motion and its effects on drag, etc. In the present experimental work we have made an attempt to visualize the patterns of both Forced and Free vortex motion. Here colored die has been used to understand the profiles and an arrow shaped strip marks the difference between irrotational and rotational flow. In the Forced vortex motion it has been observed that the parabolic profile remains invariant with the flow rate (speed of paddle, height of the lowest point of the profile decreases with the increase in flow rate (paddle speed. In the Free Vortex motion observations, the hyperbolic profile doesn’t change with the change in flow rate. In this case, suction is created towards the centre where as in the case of Force vortex no such suction arises. With the reduction in the size of the orifice diameter, the profile becomes less steep for Free vortex. In this case the velocity profile in the core region is straight, as the radius increases the profile becomes rectangular hyperbola where as in the case of Forced vortex the velocity profile maintains its linear nature for the entire range of radii.

  7. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.


    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  8. Lattice gauge theories and spin models (United States)

    Mathur, Manu; Sreeraj, T. P.


    The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.

  9. Reversible ultrafast melting in bulk CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenzhi [School of Electronic Engineering, Heilongjiang University, Harbin 150080 (China); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); He, Feng; Wang, Yaguo, E-mail: [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); The Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States)


    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm{sup 2}, ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe.


    Institute of Scientific and Technical Information of China (English)

    LI Hai-feng; CHEN Hong-xun; MA Zheng; ZHOU Yi


    An experimental model was set up to investigate the formation and evolution of the free surface vortex. A Particle Image Velocimetry (PIV) was used to measure the free surface vortex flow field at different development stages. Flow visualization was used to locate the vortex position and find its structure. Empirical formulas about the critical submergence and the whole field structure were obtained. It is found that the tangential velocity distribution is similar to that of the Rankine vortex and the radial velocity changes little in the vortex functional scope. Vortex starts from the free surface and gradually intensifies to air entrainment vortex. The vortex core moves during the formation and evolution of the free surface vortex. Based on the experimental model, the vortex position and structure were predicted by numerical simulation combined with a vortex model and compared with that of the experiments, which shows satisfactory agreement.


    Directory of Open Access Journals (Sweden)

    L. V. Golubeva


    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  12. Bifurcation and instability problems in vortex wakes

    Energy Technology Data Exchange (ETDEWEB)

    Aref, H [Center for Fluid Dynamics and Department of Physics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Broens, M [Center for Fluid Dynamics and Department of Mathematics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Stremler, M A [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)


    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal-Reynolds number relation for vortex wakes, the bifurcation diagram for 'exotic' wake patterns behind an oscillating cylinder first determined experimentally by Williamson and Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices in a periodic strip is considered. The classical results of von Karman concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued to be relevant to the wake behind an oscillating body.

  13. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.


    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  14. Solitons in spiraling Vogel lattices

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis


    We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally-rich structure of Vogel lattices allows generation of spiraling soliton motion.

  15. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps (United States)

    Grantz, A. C.


    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  16. Probing the center-vortex area law in d=3: The role of inert vortices

    CERN Document Server

    Cornwall, J M


    In center vortex theory, beyond the simplest picture of confinement several conceptual problems arise that are the subject of this paper. Confinement arises through averaging of phase factors which are gauge-group center elements raised to the power of the Gauss linking numbers of vortices. The simplest approach to confinement counts this link number by counting the number of vortices, considered in d=3 as infinitely-long closed self-avoiding random walks on a cubical lattice, piercing any surface spanning the Wilson loop. A given vortex, however, may pierce the spanning surface multiply with a link number smaller than the number of piercings. We call such vortices inert (although they may be only partially-inert). We estimate the dilution factor from inert vortices that reduces the ratio of fundamental string tension to vortex areal piercing density as roughly 0.6. Next we show how inert vortices resolve the old problem that the link number of a given vortex configuration is the same for any choice of spanni...

  17. High-Alfa Aerodynamics with Separated Flow Modeled as a Single Nascent Vortex (United States)

    Antony, Samuel B.; Mukherjee, Rinku


    A numerical iterative vortex lattice method is developed to study flow past wing(s) at high angles of attack where the separated flow is modelled using NY nascent vortex filaments. The wing itself is modelled using NX × NY bound vortex rings, where NX and NY are the number of sections along the chord and span of the wing respectively. The strength and position of the nascent vortex along the chord corresponding to the local effective angle of attack are evaluated from the residuals in viscous and potential flow, i.e. (Cl)visc - (Cl)pot and (Cm)visc - (Cm)pot. Hence, the 2D airfoil viscous Cl - α and Cm - α is required as input (from experiment, numerical analysis or CFD). Aerodynamic characteristics and section distribution along span are predicted for 3D wings at a high angle of attack. Effect of initial conditions and existence of multiple solutions in the post-stall region is studied. Results are validated with experiment.

  18. Vortex formation and dynamics in two-dimensional driven-dissipative condensates (United States)

    Hebenstreit, F.


    We investigate the real-time evolution of lattice bosons in two spatial dimensions whose dynamics is governed by a Markovian quantum master equation. We employ the Wigner-Weyl phase space quantization and derive the functional integral for open quantum many-body systems that determines the time evolution of the Wigner function. Using the truncated Wigner approximation, in which quantum fluctuations are only taken into account in the initial state whereas the dynamics is governed by classical evolution equations, we study the buildup of long-range correlations due to the action of non-Hermitean quantum jump operators that constitute a mechanism for dissipative cooling. Starting from an initially disordered state corresponding to a vortex condensate, the dissipative process results in the annihilation of vortex-antivortex pairs and the establishment of quasi-long-range order at late times. We observe that a finite vortex density survives the cooling process, which disagrees with the analytically constructed vortex-free Bose-Einstein condensate at asymptotic times. This indicates that quantum fluctuations beyond the truncated Wigner approximation need to be included to fully capture the physics of dissipative Bose-Einstein condensation.

  19. Chirality selection in the vortex state of magnetic nanodisks with a screw dislocation

    Directory of Open Access Journals (Sweden)

    Rößler U. K.


    Full Text Available Structural defects in magnetic crystalline materials may locally change magnetic properties and can significantly influence the behavior of magnetic nanostructures. E.g., surface-induced Dzyaloshinskii-Moriya interactions can strongly affect vortex structures in magnetic nanodisks causing a chirality selection. Near lattice defects, the spin-orbit interactions induce local antisymmetric Dzyaloshinskii-Moriya exchange and cause effective anisotropies, which can result in spin canting. Broken inversion symmetry near a defect leads to locally chiral exchange. We present a phenomenological approach for dislocation-induced Dzyaloshinskii-Moriya couplings. As an example we investigate effects of a screw dislocation at the center of a magnetic nanodisk with a vortex state. By numerical calculations on vortex profiles we analyze equilibrium parameters of the vortex as functions of applied magnetic field and the material and geometrical parameters. It is proposed that magnetic nanodisks with defects provide a suitable experimental setting to study induced chirality by spin-orbit effects.

  20. Inelastic neutron scattering and lattice dynamics of minerals

    Indian Academy of Sciences (India)

    Narayani Choudhury; S L Chaplot


    We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in various thermodynamic properties. The role of theoretical lattice dynamics calculations in the planning, interpretation and analysis of neutron experiments are discussed. These studies provide important insights in understanding various anomalous behaviour including pressure-induced amorphization, phonon and elastic instabilities, prediction of novel high pressure phase transitions, high pressure{temperature melting, etc.

  1. Zero-temperature transition and correlation-length exponent of the frustrated XY model on a honeycomb lattice (United States)

    Granato, Enzo


    Phase coherence and vortex order in the fully frustrated XY model on a two-dimensional honeycomb lattice are studied by extensive Monte Carlo simulations using the parallel tempering method and finite-size scaling. No evidence is found for an equilibrium order-disorder or a spin/vortex-glass transition, suggested in previous simulation works. Instead, the scaling analysis of correlations of phase and vortex variables in the full equilibrated system is consistent with a phase transition where the critical temperature vanishes and the correlation lengths diverge as a power law with decreasing temperatures and corresponding critical exponents νph and νv. This behavior and the near agreement of the critical exponents suggest a zero-temperature transition scenario where phase and vortex variables remain coupled on large length scales.

  2. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi


    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  3. The VORTEX coronagraphic test bench

    CERN Document Server

    Jolivet, Aissa; Huby, Elsa; Absil, Olivier; Delacroix, Christian; Mawet, Dimitri; Surdej, Jean; Habraken, Serge


    In this paper, we present the infrared coronagraphic test bench of the University of Li\\`ege named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also ai...

  4. Vortex dynamics in $R^4$

    CERN Document Server

    Shashikanth, Banavara N


    The vortex dynamics of Euler's equations for a constant density fluid flow in $R^4$ is studied. Most of the paper focuses on singular Dirac delta distributions of the vorticity two-form $\\omega$ in $R^4$. These distributions are supported on two-dimensional surfaces termed {\\it membranes} and are the analogs of vortex filaments in $R^3$ and point vortices in $R^2$. The self-induced velocity field of a membrane is shown to be unbounded and is regularized using a local induction approximation (LIA). The regularized self-induced velocity field is then shown to be proportional to the mean curvature vector field of the membrane but rotated by 90 degrees in the plane of normals. Next, the Hamiltonian membrane model is presented. The symplectic structure for this model is derived from a general formula for vorticity distributions due to Marsden and Weinstein (1983). Finally, the dynamics of the four-form $\\omega \\wedge \\omega$ is examined. It is shown that Ertel's vorticity theorem in $R^3$, for the constant density...

  5. Modeling of Wake-vortex Aircraft Encounters. Appendix B (United States)

    Smith, Sonya T.


    There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal

  6. Order-disorder transition of vortex matter in Mg{sub 0.95}B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, SP (Brazil)], E-mail:; Sharma, P.A.; Hur, N.; Cheong, S-W. [Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers, NJ (United States); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, SP (Brazil)


    Third-harmonic susceptibility has been employed to probe the order-disorder transition of vortex matter of a good-quality sample of MgB{sub 2} with random disorder. In the major part of the temperature interval, the measured boundary line can be adjusted by a power-law function, in accordance with theoretical models for the melting of the ordered phase of a 3D vortex-glass. For larger temperatures, however, thermally-induced depinning anticipates disorder, which is also predictable for the vortex matter behavior of a clean system with small amounts of randomly distributed disorder, as is the case of the Mg{sub 0.95}B{sub 2} sample studied here.

  7. Vortex bursting and tracer transport of a counter-rotating vortex pair (United States)

    Misaka, T.; Holzäpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F.


    Large-eddy simulations of a coherent counter-rotating vortex pair in different environments are performed. The environmental background is characterized by varying turbulence intensities and stable temperature stratifications. Turbulent exchange processes between the vortices, the vortex oval, and the environment, as well as the material redistribution processes along the vortex tubes are investigated employing passive tracers that are superimposed to the initial vortex flow field. It is revealed that the vortex bursting phenomenon, known from photos of aircraft contrails or smoke visualization, is caused by collisions of secondary vortical structures traveling along the vortex tube which expel material from the vortex but do not result in a sudden decay of circulation or an abrupt change of vortex core structure. In neutrally stratified and weakly turbulent conditions, vortex reconnection triggers traveling helical vorticity structures which is followed by their collision. A long-lived vortex ring links once again establishing stable double rings. Key phenomena observed in the simulations are supported by photographs of contrails. The vertical and lateral extents of the detrained passive tracer strongly depend on environmental conditions where the sensitivity of detrainment rates on initial tracer distributions appears to be low.

  8. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation (United States)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee


    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  9. The method to control the submarine horseshoe vortex by breaking the vortex core

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-hua; XIONG Ying; TU Cheng-xu


    The quality of the inflow across the propeller is closely related with the hydrodynamic performance and the noise characteristics of the propeller. For a submarine, with a horseshoe vortex generated at the junction of the main body and the appendages, the submarine wake is dominated by a kind of highly non-uniform flow field, which has an adverse effect on the performance of the submarine propeller. In order to control the horseshoe vortex and improve the quality of the submarine wake, the flow field around a submarine model is simulated by the detached eddies simulation (DES) method, and the vortex configuration is displayed using the second invariant of the velocity derivative tensor. The state and the transition process of the horseshoe vortex are analyzed, then a modified method to break the vortex core by a vortex baffle is proposed. The flow numerical simulation is carried out to study the effect of this method. Numerical simulations show that, with the breakdown of the vortex core, many unstable vortices are shed and the energy of the horseshoe vortex is dissipated quickly, and the uniformity of the submarine wake is improved. The submarine wake test in a wind tunnel has verified the effect of the method to control the horseshoe vortex. The vortex baffle can improve the wake uniformity in cases of high Reynolds numbers as well, and it does not have adverse effects on the maneuverability and the speed ability of the submarine.

  10. Lattice realization of the generalized chiral symmetry in two dimensions (United States)

    Kawarabayashi, Tohru; Aoki, Hideo; Hatsugai, Yasuhiro


    While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low-energy Hamiltonian. Here we show that the generalized chiral symmetry can be rigorously defined for lattice fermions as well. A key concept is a continuous "algebraic deformation" of Hamiltonians, which generates lattice models with the generalized chiral symmetry from those with the conventional chiral symmetry. This enables us to explicitly express zero modes of the deformed Hamiltonian in terms of that of the original Hamiltonian. Another virtue is that the deformation can be extended to nonuniform systems, such as fermion-vortex systems and disordered systems. Application to fermion vortices in a deformed system shows how the zero modes for the conventional Dirac fermions with vortices can be extended to the tilted case.

  11. A Bijection between Lattice-Valued Filters and Lattice-Valued Congruences in Residuated Lattices

    Directory of Open Access Journals (Sweden)

    Wei Wei


    Full Text Available The aim of this paper is to study relations between lattice-valued filters and lattice-valued congruences in residuated lattices. We introduce a new definition of congruences which just depends on the meet ∧ and the residuum →. Then it is shown that each of these congruences is automatically a universal-algebra-congruence. Also, lattice-valued filters and lattice-valued congruences are studied, and it is shown that there is a one-to-one correspondence between the set of all (lattice-valued filters and the set of all (lattice-valued congruences.

  12. Vortex Structures in a Rotating BEC Dark Matter Component

    Directory of Open Access Journals (Sweden)

    N. T. Zinner


    Full Text Available We study the effects of a dark matter component that consists of bosonic particles with ultralight masses in the condensed state. We compare previous studies for both noninteracting condensates and with repulsive two-body terms and show consistency between the proposals. Furthermore, we explore the effects of rotation on a superfluid dark matter condensate, assuming that a vortex lattice is formed as seen in ultracold atomic gas experiments. The influence of such a lattice in virialization of gravitationally bound structures and on galactic rotation velocity curves is explored. With fine-tuning of the bosonic particle mass and the two-body repulsive interaction strength, we find that one can have substructure on rotation curves that resembles some observations in spiral galaxies. This occurs when the dark matter halo has an array of hollow cylinders. This can cause oscillatory behavior in the galactic rotation curves in similar fashion to the well-known effect of the spiral arms. We also consider how future experiments and numerical simulations with ultracold atomic gases could tell us more about such exotic dark matter proposals.

  13. Measuring on Lattices (United States)

    Knuth, Kevin H.


    Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.

  14. Thermodynamics of Gauge-Invariant U(1) Vortices from Lattice Monte Carlo Simulations

    CERN Document Server

    Kajantie, Keijo; Laine, Mikko; Peisa, J; Rajantie, A


    We study non-perturbatively and from first principles the thermodynamics of vortices in 3d U(1) gauge+Higgs theory, or the Ginzburg-Landau model, which has frequently been used as a model for cosmological topological defect formation. We discretize the system and introduce a gauge-invariant definition of a vortex passing through a loop on the lattice. We then study with Monte Carlo simulations the total vortex density, extract the physically meaningful part thereof, and demonstrate that it has a well-defined continuum limit. The total vortex density behaves as a pseudo order parameter, having a discontinuity in the regime of first order transitions and behaving continuously in the regime of second order transitions. Finally, we discuss further gauge-invariant observables to be measured.

  15. Microscale vortex laser with controlled topological charge (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min


    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  16. Nonlinear ion acoustic waves scattered by vortexes (United States)

    Ohno, Yuji; Yoshida, Zensho


    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.


    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU


    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.


    Directory of Open Access Journals (Sweden)

    Němec L.


    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  19. Lattice Boltzmann Stokesian dynamics. (United States)

    Ding, E J


    Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.

  20. Lattice gauge theories (United States)

    Weisz, Peter; Majumdar, Pushan


    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  1. Improved Lattice Radial Quantization

    CERN Document Server

    Brower, Richard C; Fleming, George T


    Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.

  2. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels


    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  3. Digital lattice gauge theories

    CERN Document Server

    Zohar, Erez; Reznik, Benni; Cirac, J Ignacio


    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...

  4. Evaluation of travelling vortex speed by means of vortex tracking and dynamic mode decomposition (United States)

    Hyhlík, Tomáš


    The article deals with the analysis of unsteady periodic flow field related to synthetic jet creation. The analyses are based on the data obtained using ANSYS Fluent solver. Numerical results are validated by hot wire anemometry data measured along the jet centerline. The speed of travelling vortex ring is evaluated by using vortex tracking method and by using dynamic mode decomposition method. Vortex identification is based on residual vorticity which allows identifying regions in the flow field where fluid particles perform the rotational motion. The regime of the synthetic jet with Re = 329 and S = 19.7 is chosen. Both the vortex tracking and the dynamic mode decomposition based vortex speed evaluation indicate an increase in the vortex speed close to the orifice and then decrease with maximum reaching almost one and half of orifice centerline velocity. The article contains extended version the article presented at the conference AEaNMiFMaE 2016.

  5. Optical Lattice Clocks (United States)

    Oates, Chris


    Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nature Photonics 5, 158 (2011).

  6. Transition de dépiégeage élastique de vortex supraconducteurs*

    Directory of Open Access Journals (Sweden)

    Fily Yaouen


    Full Text Available We present 2D numerical simulation results of superconductor vortex lattices driven over a random disorder. The vortex dynamics at the depinning threshold Fc is studied at zero temperature in the case of weak disorder. The dynamics is elastic and the depinning transition is analysed in the framework of a second order phase transition where the velocity response v to the driving force F behaves like v ~ (F − Fcβ. The analysis of the critical region of several large lattice sizes leads to the result that β = 0.27 ± 0.04. Nous présentons des résultats de simulations numériques à deux dimensions sur des réseaux de vortex dans les supraconducteurs que l’on met en mouvement dans un potentiel aléatoire. On étudie la dynamique des vortex au seuil de dépiégeage Fc dans le cas d’un faible désordre à température nulle. Les régimes élastiques au seuil de dépiégeage sont analysés dans le cadre des transitions de phase continues (transitions du second ordre. La réponse en vitesse v à la force d’entraînement F se comporte comme v ~ (F − Fcβ au voisinage immédiat du seuil de dépiégeage. Dans la région critique obtenue pour différentes grandes tailles du système simulé, nous mesurons l’exposant critique β = 0.27 ± 0.04.

  7. Symmetry-constrained electron vortex propagation

    CERN Document Server

    Clark, L; Béché, A; Lubk, A; Verbeeck, J


    Electron vortex beams hold great promise for development in transmission electron microscopy, but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM and topology. We present multiple simulations, alongside experimental data to study the behaviour of a variety of electron vortex beams after interacting with apertures of different symmetries, and investigate the effect on their OAM and vortex structure, both in the far-field and under free-space propagation.

  8. Dynamic Optimization for Vortex Shedding Suppression

    Directory of Open Access Journals (Sweden)

    Bonis Ioannis


    Full Text Available Flows around structures exhibiting vortex shedding induce vibrations that can potentially damage the structure. A way to avoid it is to suppress vortex shedding by controlling the wake. Wake control of laminar flow behind a rotating cylinder is formulated herein as a dynamic optimization problem. Angular cylinder speed is the manipulated variable that is adjusted to suppress vortex shedding by minimizing lift coefficient variation. The optimal angular speed is assumed to be periodic like wake formation. The control problem is solved for different time horizons tH. The impact of tH to control is evaluated and the need for feedback is assessed.

  9. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)


    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  10. Viscosity Measurement for Tellurium Melt (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.


    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  11. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat


    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  12. Belief functions on lattices

    CERN Document Server

    Grabisch, Michel


    We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer.

  13. Superconducting Josephson vortex flow transistors

    CERN Document Server

    Tavares, P A C


    The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.

  14. Vortex disruption by magnetohydrodynamic feedback

    CERN Document Server

    Mak, Julian; Hughes, D W


    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...

  15. Thermoacoustic Streaming and Ultrasonic Processing of Low Melting Melts (United States)

    Trinh, E. H.


    Ultrasonic levitation allows the processing of low melting materials both in 1 G as well as in microgravity. The free suspension of the melts also facilitates undercooling, permitting the measurements of the physical properties of the metastable liquids.

  16. Majorana modes and topological superfluids for ultracold fermionic atoms in anisotropic square optical lattices (United States)

    Wu, Ya-Jie; Li, Ning; Kou, Su-Peng


    Motivated by the recent experimental realization of two-dimensional spin-orbit coupling through optical Raman lattice scheme, we study attractive interacting ultracold gases with spin-orbit interaction in anisotropic square optical lattices, and find that rich s-wave topological superfluids can be realized, including Z2 topological superfluids beyond the characterization of "tenfold way" in addition to chiral topological superfluids. The topological defects-superfluid vortex and edge dislocations-may host Majorana modes in some topological superfluids, which are helpful for realizing topological quantum computation and Majorana fermionic quantum computation. In addition, we also discuss the Berezinsky-Kosterlitz-Thouless phase transitions for different topological superfluids.

  17. Vortex Dynamics in Anisotropic Superconductors (United States)

    Steel, David Gordon

    Measurements of the ac screening response and resistance of superconducting Bi_2Sr _2CaCu_2O _8 (BSCCO) crystals have been used to probe the dynamics of the magnetic flux lines within the mixed state as a function of frequency, temperature, and applied dc field. For the particular range of temperature and magnetic field in which measurements were made, the systematic behavior of the observed dissipation peak in the screening response is consistent with electromagnetic skin size effects rather than a phase transition. According to microscopic theories of the interaction between the flux lines and a driving ac field, such a skin size effect is expected for the case when the vortex motion is diffusive in nature. However, diffusive motion is inconsistent with simple activation models that use a single value for the pinning energy (derived from direct measurement of the dc resistance). This contradiction suggests a distribution of pinning energies within the sample. Interlayer vortex decoupling has been directly observed as a function of temperature and applied magnetic field using electronic transport perpendicular to the layers in synthetic amorphous MoGe/Ge multilayer samples. Perpendicular transport has been shown to be a far more sensitive measure of the phase coupling between layers than in-plane properties. Below the decoupling temperature T_{D} the resistivity anisotropy collapses and striking nonlinearities appear in the perpendicular current-voltage behavior, which are not observed in parallel transport. A crossover in behavior is also observed at a field H _{x}, in accordance with theory. The data suggest the presence of a phase transition into a state with finite in-plane resistivity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  18. Lattice of ℤ-module

    Directory of Open Access Journals (Sweden)

    Futa Yuichi


    Full Text Available In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].

  19. Prediction and control of vortex-dominated and vortex-wake flows (United States)

    Kandil, Osama


    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  20. Scattering of a vortex pair by a single quantum vortex in a Bose-Einstein condensate (United States)

    Smirnov, L. A.; Smirnov, A. I.; Mironov, V. A.


    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose-Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex-antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross-Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex-antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  1. An Algorithm on Generating Lattice Based on Layered Concept Lattice

    Directory of Open Access Journals (Sweden)

    Zhang Chang-sheng


    Full Text Available Concept lattice is an effective tool for data analysis and rule extraction, a bottleneck factor on impacting the applications of concept lattice is how to generate lattice efficiently. In this paper, an algorithm LCLG on generating lattice in batch processing based on layered concept lattice is developed, this algorithm is based on layered concept lattice, the lattice is generated downward layer by layer through concept nodes and provisional nodes in current layer; the concept nodes are found parent-child relationships upward layer by layer, then the Hasse diagram of inter-layer connection is generated; in the generated process of the lattice nodes in each layer, we do the pruning operations dynamically according to relevant properties, and delete some unnecessary nodes, such that the generating speed is improved greatly; the experimental results demonstrate that the proposed algorithm has good performance.

  2. Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model (United States)

    Hayata, Tomoya; Yamamoto, Arata


    We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.

  3. Quantum melting of two-component Rydberg crystals

    CERN Document Server

    Lan, Zhihao; Lesanovsky, Igor


    We investigate the quantum melting of one dimensional crystals that are realized in an atomic lattice in which ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and inter-state density-density interactions as well as coherent exchange interactions contribute. We determine stable crystalline phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser as well as two-body exchange. We find that quantum fluctuations introduced by the laser give rise to a devil's staircase structure which one might associate with transitions in the classical limit. The melting through exchange interactions is shown to also proceed in a step-like fashion, in case of mesoscopic crystals, due to the proliferation of Rydberg spinwaves.

  4. Simulation of temperature and flow fields in an inductively heated melt growth system

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.H.; Mohammadi-Manesh, E.; Omid, S. [Physics Department, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)


    The goal of the research presented here is to apply a global analysis of an inductively heated Czochralski furnace for a real sapphire crystal growth system and predict the characteristics of the temperature and flow fields in the system. To do it, for the beginning stage of a sapphire growth process, influence of melt and gas convection combined with radiative heat transfer on the temperature field of the system and the crystal-melt interface have been studied numerically using the steady state two-dimensional finite element method. For radiative heat transfer, internal radiation through the grown crystal and surface to surface radiation for the exposed surfaces have been taken into account. The numerical results demonstrate that there are a powerful vortex which arises from the natural convection in the melt and a strong and large vortex that flows upwards along the afterheater side wall and downwards along the seed and crystal sides in the gas part. In addition, a wavy shape has been observed for the crystal-melt interface with a deflection towards the melt. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. The JKJ Lattice (United States)

    Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro


    The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.

  6. Quantum lattice problems

    NARCIS (Netherlands)

    de Raedt, Hans; von der Linden, W.; Binder, K


    In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and gi

  7. Measuring on Lattices

    CERN Document Server

    Knuth, Kevin H


    Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well in...

  8. Lattice Multiverse Models


    Williamson, S. Gill


    Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.

  9. Phenomenology from lattice QCD

    CERN Document Server

    Lellouch, L P


    After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.

  10. Noetherian and Artinian Lattices

    Directory of Open Access Journals (Sweden)

    Derya Keskin Tütüncü


    Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.

  11. The Life of a Vortex Knot

    CERN Document Server

    Kleckner, Dustin; Irvine, William T M


    The idea that the knottedness (hydrodynamic Helicity) of a fluid flow is conserved has a long history in fluid mechanics. The quintessential example of a knotted flow is a knotted vortex filament, however, owing to experimental difficulties, it has not been possible until recently to directly generate knotted vortices in real fluids. Using 3D printed hydrofoils and high-speed laser scanning tomography, we generate vortex knots and links and measure their subsequent evolution. In both cases, we find that the vortices deform and stretch until a series of vortex reconnections occurs, eventually resulting several disjoint vortex rings. This article accompanies a fluid dynamics video entered into the Gallery of Fluid Motion at the 66th Annual Meeting of the APS Division of Fluid Dynamics.

  12. Vortex Shedding From a Flexible Hydrofoil


    Dreyer, Matthieu; Farhat, Mohamed


    Video of vortex shedding in the wake of a Naca0009 hydrofoil made of polyoxymethylene type C (POM C). This video was submitted as part of the Gallery of Fluid Motion 2011 which is showcase of fluid dynamics videos.

  13. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  14. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  15. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)


    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  16. 'Optimal' vortex rings and aquatic propulsion mechanisms (United States)

    Linden, Paul; Turner, Stewart


    Fish swim by flapping their tail and other fins. Other sea creatures, such as squid and salps, eject fluid intermittently as a jet. We discuss the fluid mechanics behind these propulsion mechanisms, and show that these animals produce optimal vortex rings, which give the maximum thrust for a given energy input. We show fish optimise both their steady swimming and their ability to accelerate and turn by producing an individual optimal ring with each flap of the tail or fin. Salps produce vortex rings directly by ejecting a volume of fluid through a rear orifice, and these are also optimal. An important implication of this paper is that the repetition of vortex production is not necessary for an individual vortex to have the `optimal' characteristics.

  17. Experiments with vortex rings in air (United States)

    Hernández, R. H.; Cibert, B.; Béchet, C.


    We report quantitative experimental measurements of the instability of vortex rings generated in air. Vortex rings are created by pushing air through the circular orifice of a cylindrical cavity with a flat piston driven by a loudspeaker. Hot-wire anemometry provides accurate measurements of the velocity profile at all stages of the ring formation including stable and unstable rings. Flow visualization using a laser light sheet shows that the initially undisturbed vortex ring is progressively deformed in the azimuthal direction giving rise to a wavy azimuthal and periodic pattern in the circumference of the ring. The wavy pattern is steady, i.e., it does not rotate or translate during the ring's motion. However as the vortex motion progresses in the axial direction, the displaced portions of the ring are convected away from the initial undisturbed position and the wavy pattern grows with local Reynolds number.

  18. Cockpit-based Wake Vortex Visualization Project (United States)

    National Aeronautics and Space Administration — To prevent aircraft accidents due to wake vortex hazards, FAA procedures specify the minimum separation required between different categories of aircraft. However, a...

  19. Development of gas pressure vortex regulator (United States)

    Uss, A. Yu.; Chernyshyov, A. V.; Krylov, V. I.


    The present paper describes the applications of vortex regulators and the current state of the issue on the use and development of such devices. A patent review has been carried out. Automatic control systems using a vortex regulator are considered. Based on the analysis and preliminary numerical calculation of gas flow in the working cavity of the regulator, a new design of a vortex gas pressure regulator has been developed. An experimental sample of the device was made using additive technologies and a number of tests were carried out. The results of experimental studies confirmed the adequacy of the created mathematical model. Based on further numerical studies a new design of a vortex regulator with a distributed feed of the process control flow as well as with the regulated swirl of the supply and control process flows has been developed.

  20. Investigation of aircraft vortex wake structure (United States)

    Baranov, N. A.; Turchak, L. I.


    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  1. Interaction and merging of vortex filaments (United States)

    Liu, C. H.; Weston, R. P.; Ishii, K.; Ting, L.; Visintainer, J. A.


    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized with special emphasis placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the marging of the filament(s) are described with a focus on the development of the approximate boundary conditions for the computational domain. An efficiency study employing a model problem is used to assess the advantages of the present approximate boundary condition method over previously used techniques. Applications of the present method are presented for the motion and decay of a 3:1 elliptic vortex ring, and for the merging process of a pair of coaxial vortex rings. A numerical procedure for the problem of local merging of vortex filaments, which requires the asymptotic analysis as well as the numerical Navier-Stokes solver, is also presented.

  2. Spatial line nodes and fractional vortex pairs in the Fulde-Ferrell-Larkin-Ovchinnikov phase


    Agterberg, D. F.; Zheng, Z.; Mukherjee, S.


    A Zeeman magnetic field can induce a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in spin-singlet superconductors. Here we argue that there is a non-trivial solution for the FFLO vortex phase that exists near the upper critical field in which the wavefunction has only spatial line nodes that form intricate and unusual three-dimensional structures. These structures include a crisscrossing lattice of two sets of non-parallel line nodes. We show that these solutions arise from the decay of conv...

  3. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær


    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  4. Structure of a Steady Bathtub Vortex (United States)

    Andersen, Anders; Bøhling, Lasse; Fabre, David


    Bathtub vortex flows constitute an important class of concentrated vortex flows which are characterised by intense axial down-flow and stress free surface. We use direct numerical simulations to explore the flow structure of a steady bathtub vortex in a cylindrical tank with a central drain-hole. We find that the qualitative structure of the meridional flow does not depend on the radial Reynolds number, whereas we observe a weak overall rotation at low radial Reynolds number and a concentrated vortex above the drain-hole at high radial Reynolds number. We present a simple analytical model which shows the same qualitative dependence on the radial Reynolds number as the simulations and which compares favourably with the results for the radial velocity and the azimuthal velocity at the surface. Finally, we describe the height dependence of the radius of the vortex core and the maximum of the azimuthal velocity at high radial Reynolds number, and we show that the data on the radius of the vortex core and the maximum of the azimuthal velocity as functions of height collapse on single curves by appropriate scaling.

  5. Application of vortex method; Uzuho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Tsukiji, T. [Ashikaga Inst. of Technology, Tochigi (Japan); Shimizu, S. [Hiroshima Univ., Hiroshima (Japan). Faculty of Engineering


    Basic jets such as two dimensional free jet, impact jet, axisymmetric circular free jet, and jet flowing out from a nozzle equipped with a collar at the outlet, as well as flow in such valves as disc valves, spool valves, and poppet valves are taken up to discuss their applications using the vortex method, and the results of studies made using vortex method on the analysis of jet and conditions inside valves are reported. The state of the development of large scale vortex structure in the shear layer can be simulated comparatively simply by using the vortex method. The effects of the radius and the lift of a valve on the fluid outlet angle of jet and on the discharge coefficient of orifice are analyzed. Although the shape of the spool valve near the throttle is very complicated, simplified models are used for numerical analysis. An example of calculated result in the case where the spool reciprocates is introduced. Actual vibrating phenomena can be simulated well by the vortex method for minute vibration of the poppet caused by the discharge of lump vortex. 17 refs., 16 figs., 1 tab.

  6. Boundary Layers in Laminar Vortex Flows. (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  7. Thermodynamics of Oligonucleotide Duplex Melting (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.


    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  8. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.


    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  9. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.


    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  10. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.


    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  11. Numerical Study of Mechanism of U-shaped Vortex Formation

    CERN Document Server

    Lu, Ping; Liu, Chaoqun


    This paper illustrates the mechanism of U-shaped vortex formation which is found both by experiment and DNS. The main goal of this paper is to explain how the U-shaped vortex is formed and further develops. According to the results obtained by our direct numerical simulation with high order accuracy, the U-shaped vortex is part of the coherent vortex structure and is actually the tertiary streamwise vortices induced by the secondary vortices. The new finding is quite different from existing theories which describe that the U-shaped vortex is newly formed as the head of young turbulence spot and finally break down to small pieces. In addition, we find that the U-shaped vortex has the same vorticity sign as the original {\\lambda}-shaped vortex tube legs and serves as a second neck to supply vorticity to the ringlike vortex when the original vortex tube is stretched and multiple rings are generated.

  12. Experimental Investigation of wing-tip vortex evolution in turbulence (United States)

    Bailey, Sean; Ghimire, Hari


    Towing tank experiments were conducted to examine the evolution of a wing-tip vortex in grid-generated turbulence. Measurements using particle image velocimetry (PIV) were conducted of the velocity field generated by towing a semi-span symmetric wing oriented at 8 degree angle of attack. Turbulence of different kinetic energy and length scales was produced by simultaneously towing grids of different mesh sizes upstream of the wing. Results showed that wing-tip vortex wandering increased with the increase in turbulence kinetic energy, ultimately leading to spontaneous collapse of the vortex. During this process, a measurable diffusion of overall vortex circulation was observed, with the rate of diffusion leading to the collapse of the vortex dependent on the turbulence intensity. Interestingly, the radius of the vortex core remained largely unchanged during the diffusion process, Evidence suggests that the breakdown of vortex was enhanced by entrainment of fluid inside vortex core due to vortex stripping in presence of turbulence.

  13. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting. (United States)

    Mun, Jiwon; Ju, Jaehyung; Thurman, James


    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  14. Basis reduction for layered lattices

    NARCIS (Netherlands)

    Torreão Dassen, Erwin


    We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be interpre

  15. Spin qubits in antidot lattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;


    and density of states for a periodic potential modulation, referred to as an antidot lattice, and find that localized states appear, when designed defects are introduced in the lattice. Such defect states may form the building blocks for quantum computing in a large antidot lattice, allowing for coherent...

  16. Vortex sound in confined flows (United States)

    Hofmans, Gerardus Carolus Johannus

    The interaction of vortex structures with the acoustic velocity field is prerequisite for the production or absorption of acoustic energy. When the source region in which this interaction occurs is much smaller than the wavelength of the acoustic wave, it is possible to neglect wave propagation in the source region itself. Such a source region is called 'compact' and it results in a simplified description of the acoustic source. We have restricted ourselves to compact source regions. Three relevant applications have been studied: speech modelling, damping of acoustic waves by means of diaphragms, and the prediction of flow-induced resonances in bifurcated pipe systems with T-shaped junctions. Experimental as well as numerical work has been carried out for rigid in vitro models of the vocal folds. It was found that it is possible to use a simplified quasi- steady model, which describes the boundary-layer flow in the glottis, to reasonably predict the separation point during a part of one cycle of the vocal-fold movement. This results in a reasonable prediction of the source of sound in voiced speech. Furthermore, it was found that the instability of the jet, that is formed downstream of the glottis, can be a significant source of broad-band sound. A diaphragm used as a constriction in a pipe is a common element in mufflers. This configuration is investigated theoretically, numerically, and experimentally. Results of the quasi-steady flow model and of the numerical calculations are in good agreement with results of experiments. Theory also correctly describes the limit of high frequencies. For the intermediate frequencies we found some deviation between theory and experiments, which is not yet fully understood. The flow through T-joints, with sharp edges, has been numerically investigated as a function of the acoustic amplitude, the Strouhal number, and the flow configuration. In the limit of low frequencies the acoustic source in a T-joint can be described by means

  17. Effect of Dzyaloshinskii–Moriya interaction on magnetic vortex

    Directory of Open Access Journals (Sweden)

    Y. M. Luo


    Full Text Available The effect of the Dzyaloshinskii–Moriya (DM interaction on the vortex in magnetic microdisk was investigated by micro-magnetic simulation based on the Landau–Lifshitz–Gilbert equation. Our results show that the DM interaction modifies the size of the vortex core, and also induces an out-of-plane magnetization component at the edge and inside the disk. The DM interaction can destabilizes one vortex handedness, generate a bias field to the vortex core and couple the vortex polarity and chirality. This DM-interaction-induced coupling can therefore provide a new way to control vortex polarity and chirality.

  18. Vortex loops entry into type-II superconductors

    CERN Document Server

    Samokhvalov, A V


    The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex loop near a flat surface of type--II superconductors are calculated in the London approximation. The shape of such a vortex line is a semicircle of arbitrary radius. The interaction of the vortex half--ring and an external homogeneous magnetic field applied along the surface is studied. The magnitude of the energy barrier against the vortex expansion into superconductor is found. The possibilities of formation of an equilibrium vortex line determined by the structure of the applied magnetic field by creating the expanding vortex loops near the surface of type--II superconductor are discussed.

  19. Multi-GPUs parallel computation of dendrite growth in forced convection using the phase-field-lattice Boltzmann model (United States)

    Sakane, Shinji; Takaki, Tomohiro; Rojas, Roberto; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki


    Melt flow drastically changes dendrite morphology during the solidification of pure metals and alloys. Numerical simulation of dendrite growth in the presence of the melt flow is crucial for the accurate prediction and control of the solidification microstructure. However, accurate simulations are difficult because of the large computational costs required. In this study, we develop a parallel computational scheme using multiple graphics processing units (GPUs) for a very large-scale three-dimensional phase-field-lattice Boltzmann simulation. In the model, a quantitative phase field model, which can accurately simulate the dendrite growth of a dilute binary alloy, and a lattice Boltzmann model to simulate the melt flow are coupled to simulate the dendrite growth in the melt flow. By performing very large-scale simulations using the developed scheme, we demonstrate the applicability of multi-GPUs parallel computation to the systematical large-scale-simulations of dendrite growth with the melt flow.

  20. Introduction to lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.


    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  1. Lattice Quantum Chromodynamics (United States)

    Sachrajda, C. T.


    I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.

  2. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander


    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  3. Fractional lattice charge transport (United States)

    Flach, Sergej; Khomeriki, Ramaz


    We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302

  4. Lattice QCD for Cosmology

    CERN Document Server

    Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K


    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  5. Solitons in nonlinear lattices

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis


    This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...

  6. Parametric lattice Boltzmann method (United States)

    Shim, Jae Wan


    The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.

  7. Varieties of lattices

    CERN Document Server

    Jipsen, Peter


    The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.

  8. Lattice Quantum Chromodynamics

    CERN Document Server

    Sachrajda, C T


    I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.

  9. Vortex imaging with varying temperature revealed by SHPM on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y}

    Energy Technology Data Exchange (ETDEWEB)

    Mihalache, V. [National Institute of Materials Physics, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania)], E-mail:; Dede, M.; Oral, A. [Bilkent University, Ankara (Turkey); Sandu, V. [National Institute of Materials Physics, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania)


    Scanning Hall probe microscopy with an effective spatial resolution of {approx}1 {mu}m has been used to investigate the vortex structures in superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals in the temperature range 77.3-81.3 K and zero applied field (in the presence of the earth field). The vortex images were obtained in real time mode as the temperature increased slowly for 3.36 h. At 77.3 K, the vortices were arranged in a chain structure. With the increase of the temperature, two jumps in the vortex array occur at 77.3 K, immediately when the temperature starts to rise, and at 79.2 K with a good stability between jumps. The second jump is accompanied by the jump in the average magnetic induction when bundles of 4-5 additional vortices enter the scanning area and the vortex array get disordered. These directly visualized transitions in the vortex lattice are consistent with a vortex creep over the surface barriers at high temperatures. A short movie is presented.

  10. Multiply-interacting Vortex Streets

    CERN Document Server

    Oskouei, Babak G; Newton, Paul K


    We investigate the behavior of an infinite array of (reverse) von K'arm'an streets. Our primary motivation is to model the wake dynamics in large fish schools. We ignore the fish and focus on the dynamic interaction of multiple wakes where each wake is modeled as a reverse von K'arm'an street. There exist configurations where the infinite array of vortex streets is in relative equilibrium, that is, the streets move together with the same translational velocity. We examine the topology of the streamline patterns in a frame moving with the same translational velocity as the streets which lends insight into fluid transport through the mid-wake region. Fluid is advected along different paths depending on the distance separating two adjacent streets. Generally, when the distance between the streets is large enough, each street behaves as a single von K'arm'an street and fluid moves globally between two adjacent streets. When the streets get closer to each other, the number of streets that enter into partnership in...

  11. Experimental study of radium partitioning between anorthite and melt at 1 atm

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S; Burnett, D; Asimow, P; Phinney, D; Hutcheon, I


    We present the first experimental radium mineral/melt partitioning data, specifically between anorthite and a CMAS melt at atmospheric pressure. Ion microprobe measurement of coexisting anorthite and glass phases produces a molar D{sub Ra} = 0.040 {+-} 0.006 and D{sub Ra}/D{sub Ba} = 0.23 {+-} 0.05 at 1400 C. Our results indicate that lattice strain partitioning models fit the divalent (Ca, Sr, Ba, Ra) partition coefficient data of this study well, supporting previous work on crustal melting and magma chamber dynamics that has relied on such models to approximate radium partitioning behavior in the absence of experimentally determined values.

  12. International Lattice Data Grid

    CERN Document Server

    Davies, C T H; Kenway, R D; Maynard, C M


    We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.

  13. Weakly deformed soliton lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovin, B. (Moskovskij Gosudarstvennyj Univ., Moscow (USSR). Dept. of Mechanics and Mathematics)


    In this lecture the author discusses periodic and quasiperiodic solutions of nonlinear evolution equations of phi{sub t}=K (phi, phi{sub x},..., phi{sup (n)}), the so-called soliton lattices. After introducing the theory of integrable systems of hydrodynamic type he discusses their Hamiltonian formalism, i.e. the theory of Poisson brackets of hydrodynamic type. Then he describes the application of algebraic geometry to the effective integration of such equations. (HSI).

  14. Crystallographic Lattice Boltzmann Method (United States)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh


    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  15. Topological Lattice Actions

    CERN Document Server

    Bietenholz, W; Pepe, M; Wiese, U -J


    We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge $Q$. Irrespective of this, in the 2-d O(3) model the topological susceptibility $\\chi_t = \\l/V$ is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some cla...

  16. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew


    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  17. Hadroquarkonium from lattice QCD (United States)

    Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang


    The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.

  18. Digital lattice gauge theories (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio


    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  19. Analysis of Axial Flow Ventilation Fans by Vortex - Method. (United States)

    Hardin, Richard Anthony

    A steady vortex-lattice method is used to solve the lifting surface equation for an axial flow fan. The type of fan studied is designed for industrial and ventilation applications and in thermofluid systems such as cooling towers. The fan blades are thin cambered surfaces manufactured from metal sheets. The numerical approach is inviscid and results in a boundary value problem with viscous effects partially accounted for by application of drag coefficient data. A non-linear wake alignment procedure is used to account for the effects of vorticity shedding in the wake and variation in wake geometry with operating conditions. The wake alignment procedure is semi-free with wake input parameters required for accurate use of the technique. A study of the wake parameters was conducted and gave trends in the variation of their values with flow rate. At "free-air" conditions, flow visualization estimates of these parameters were found to agree with those from the computations. Comparisons are made between the measured and predicted fan performance with and without a surrounding duct. The comparison of the results were especially good at the "free-air" condition using wake parameters determined from flow visualization and an inlet velocity profile measured using hot-wire anemometry. To enable better understanding of basic flow phenomena and to provide data for verification of numerical analyses, a method for measuring unsteady surface pressure on a rotating axial-flow fan blade was devised. Unsteadiness of pressure on the blade surfaces is due to the effects of upstream fan motor supports and other installation features. A pressure transducer and signal amplification circuit were mounted on a circuit board at the rotating hub with signals taken off the rotating shaft through copper disk-mercury slip rings. The pressure difference across the blade was determined and the data were corrected for time lag and distortion caused by the length of tubing. The pressure difference

  20. A Mechanical Lattice Aid for Crystallography Teaching. (United States)

    Amezcua-Lopez, J.; Cordero-Borboa, A. E.


    Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)

  1. Kenneth Wilson and lattice QCD

    CERN Document Server

    Ukawa, Akira


    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...

  2. Analysis of Vortex Line Cutting and Reconnection by a Blade (United States)

    Saunders, Curtis; Marshall, Jeffrey


    The essence of vortex reconnection involves the cutting of vortex lines originating from one region and reconnecting to vortex lines originating from another region via the diffusion-regulated annihilation of vorticity. Vortex cutting by a blade is a special case of the more general class of vortex reconnection problems, with an important difference being that vorticity is generated at the reconnection site. In this study, a series of Navier-Stokes simulations of orthogonal vortex cutting by a blade with different values of vortex strength are reported. The three phases of vortex reconnection identified in the literature are found to have counterparts for the vortex cutting problem. However numerous differences between the mechanics of vortex cutting and reconnection within each phase are discussed. In addition, comparisons are made between the temporal changes of the maximum and minimum components of vorticity for vortices of differing strength but still within the vortex cutting regime. The vortex cutting results are also compared with predictions of a simple analytical model that incorporates the key elements of a stretched vorticity field interacting with a solid surface, which is representative of the vortex cutting mechanism near the blade leading edge. Funded by National Science Foundation project DGE-1144388.

  3. In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing

    Directory of Open Access Journals (Sweden)

    A-F. Obaton


    Full Text Available Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 μm were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conformed to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 μm lattice cell size is more favourable to bone penetration than the 1200 μm lattice cell size, as the bone penetration is 84% for 900 μm against 54% for 1200 μm cell structures. The lower bone penetration value for the 1200 μm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration.

  4. Vortex-Based Aero- and Hydrodynamic Estimation (United States)

    Hemati, Maziar Sam

    Flow control strategies often require knowledge of unmeasurable quantities, thus presenting a need to reconstruct flow states from measurable ones. In this thesis, the modeling, simulation, and estimator design aspects of flow reconstruction are considered. First, a vortex-based aero- and hydrodynamic estimation paradigm is developed to design a wake sensing algorithm for aircraft formation flight missions. The method assimilates wing distributed pressure measurements with a vortex-based wake model to better predict the state of the flow. The study compares Kalman-type algorithms with particle filtering algorithms, demonstrating that the vortex nonlinearities require particle filters to yield adequate performance. Furthermore, the observability structure of the wake is shown to have a negative impact on filter performance regardless of the algorithm applied. It is demonstrated that relative motions can alleviate the filter divergence issues associated with this observability structure. In addition to estimator development, the dissertation addresses the need for an efficient unsteady multi-body aerodynamics testbed for estimator and controller validation studies. A pure vortex particle implementation of a vortex panel-particle method is developed to satisfy this need. The numerical method is demonstrated on the impulsive startup of a flat plate as well as the impulsive startup of a multi-wing formation. It is clear, from these validation studies, that the method is able to accommodate the unsteady wake effects that arise in formation flight missions. Lastly, successful vortex-based estimation is highly dependent on the reliability of the low-order vortex model used in representing the flow of interest. The present treatise establishes a systematic framework for vortex model improvement, grounded in optimal control theory and the calculus of variations. By minimizing model predicted errors with respect to empirical data, the shortcomings of the baseline vortex model

  5. Vortex-based line beam optical tweezers (United States)

    Cheng, Shubo; Tao, Shaohua


    A vortex-based line beam, which has a straight-line shape of intensity and possesses phase gradient along the line trajectory is developed and applied for optical manipulation in this paper. The intensity and phase distributions of the beam in the imaging plane of the Fourier transform are analytically studied. Simulation results show that the length of the line and phase gradient possessed by a vortex-based line beam are dependent on the topological charge and the azimuthal proportional constant. A superposition of multiple phase-only holograms with elliptical azimuthal phases can be used to generate an array of vortex-based line beams. Optical trapping with the vortex-based line beams has been implemented. Furthermore, the automatic transportation of microparticles along the line trajectory perpendicular to the optical axis is realized with an array of the beams. The generation method for the vortex-based line beam is simple. The beam would have potential applications in fields such as optical trapping, laser machining, and so on.

  6. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji


    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  7. Vortex lift augmentation by suction on a 60 deg swept Gothic wing (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.


    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  8. Transport anisotropy as a probe of the interstitial vortex state in superconductors with artificial pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory


    We show using simulations that when interstitial vortices are present in superconductors with periodic pinning arrays, the transport in two perpendicular directions can be anisotropic. The degree of the anisotropy varies as a function of field due to the fact that the interstitial vortex lattice has distinct orderings at different matching fields. The anisotropy is most pronounced at the matching fields but persists at incommensurate fields, and it is most prominent for triangular, honeycomb, and kagome pinning arrays. Square pinning arrays can also show anisotropic transport at certain fields in spite of the fact that the perpendicular directions of the square pinning array are identical. We show that the anisotropy results from distinct vortex dynamical states and that although the critical depinning force may be lower in one direction, the vortex velocity above depinning may also be lower in the same direction for ranges of external drives where both directions are depinned. For honeycomb and kagome pinning arrays, the anisotropy can show multiple reversals as a function of field. We argue that when the pinning sites can be multiply occupied such that no interstitial vortices are present, the anisotropy is strongly reduced or absent.

  9. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates (United States)

    Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim


    We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.

  10. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. (United States)

    Spandler, C; O'Neill, H St C; Kamenetsky, V S


    The chemical composition of basaltic magma erupted at the Earth's surface is the end product of a complex series of processes, beginning with partial melting and melt extraction from a mantle source and ending with fractional crystallization and crustal assimilation at lower pressures. It has been proposed that studying inclusions of melt trapped in early crystallizing phenocrysts such as Mg-rich olivine and chromite may help petrologists to see beyond the later-stage processes and back to the origin of the partial melts in the mantle. Melt inclusion suites often span a much greater compositional range than associated erupted lavas, and a significant minority of inclusions carry distinct compositions that have been claimed to sample melts from earlier stages of melt production, preserving separate contributions from mantle heterogeneities. This hypothesis is underpinned by the assumption that melt inclusions, once trapped, remain chemically isolated from the external magma for all elements except those that are compatible in the host minerals. Here we show that the fluxes of rare-earth elements through olivine and chromite by lattice diffusion are sufficiently rapid at magmatic temperatures to re-equilibrate completely the rare-earth-element patterns of trapped melt inclusions in times that are short compared to those estimated for the production and ascent of mantle-derived magma or for magma residence in the crust. Phenocryst-hosted melt inclusions with anomalous trace-element signatures must therefore form shortly before magma eruption and cooling. We conclude that the assumption of chemical isolation of incompatible elements in olivine- and chromite-hosted melt inclusions is not valid, and we call for re-evaluation of the popular interpretation that anomalous melt inclusions represent preserved samples of unmodified mantle melts.

  11. Lattice topology dictates photon statistics. (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A


    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  12. Coherent lateral-growth of Ge over insulating film by rapid-melting-crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Sadoh, T., E-mail: [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Kurosawa, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); JSPS Research Fellow, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Toko, K.; Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)


    In rapid-melting-crystallization of network Ge-on-insulator (GOI), coalescence of growth-fronts inevitably occurs. To clarify crystallinity of the coalesced regions of two growth-fronts in GOI stripes, scanning electron microscopy and transmission electron microscopy analyses are performed. These analyses reveal that lattice planes of two growth-fronts coherently align without strains for short growth-distance (≤ 5 μm). The lattice planes at growth-fronts start to tilt gradually for growth-distance above 5 μm. For intermediate growth-distance (5–150 μm), slightly-tilting lattice-planes coherently align without generating any defects, where locally-distributed strains are induced in the coalesced regions. On the other hand, for long growth-distance (≥ 150 μm), grain-boundaries are generated in coalesced regions, and the locally-distributed strains are relaxed. The coherent lattice-alignment for growth-distance below 150 μm is attributed to atomic reordering in the coalesced regions, where coalescence occurs at high temperatures around the solidification point of Ge. - Highlights: • Coalesced regions of growth-fronts in melting-grown Ge-on-insulator are investigated. • Lattice planes of growth-fronts coherently align. • The coherent alignment is attributed to atomic reordering in coalesced regions. • Here, coalescence occurs at high temperatures around solidification point of Ge. • This high-quality demonstrates significant advantage of melting growth.

  13. Vortex matter in the presence of an array of pinning centers of variable strength

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, J.S.; Zadorosny, R.; Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Lepienski, C.M. [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil); Patino, E.J.; Blamire, M.G. [Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail:


    This contribution reports on the magnetic response of a 200 nm thick Nb film, pierced with a set of 900 columnar indentations of nearly triangular cross section, forming a square lattice. The column effective diameter is 1 {mu}m and the array lattice parameter is 10 {mu}m. To probe the interaction of vortex matter with the array of antidots, we have excited the sample with an AC-field, so that flux trapped by the columns could be unpinned and admitted into the superconducting sea surrounding the defects. An order-disorder line was determined for this system, with a kink separating two regimes, suggesting a crossover from the efficient pinning regime, at lower temperatures, to a temperature-induced depinning. To exploit the influence of pinning efficiency on vortex dynamics, we have determined the order-disorder line at different angles between the applied field and the plane of the film. A plot of the field component perpendicular to the film versus temperature, gives a collapsed response near T{sub c}, which splits for lower temperatures, as a consequence of pinning weakening due to the component of the applied AC-field perpendicular to the columns. Consistently, the kink tends to progressively disappear as the pinning strength decreases.

  14. Melting of Ice under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schwegler, E; Sharma, M; Gygi, F; Galli, G


    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  15. Scattering by a draining bathtub vortex (United States)

    Dolan, Sam R.; Oliveira, Ednilton S.


    We present an analysis of scattering by a fluid-mechanical “black hole analogue,” known as the draining bathtub vortex: a two-dimensional flow that possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular “orbiting” oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulas for both effects and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex and highlight the prospects for experimental investigation.

  16. Scattering by a draining bathtub vortex

    CERN Document Server

    Dolan, Sam R


    We present an analysis of scattering by a fluid-mechanical `black hole analogue', known as the draining bathtub (DBT) vortex: a two-dimensional flow which possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular `orbiting' oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulae for both effects, and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex, and highlight the prospects for experimental investigation.

  17. Alternate powers in Serrin's swirling vortex solutions

    CERN Document Server

    Bělík, Pavel; Scholz, Kurt; Shvartsman, Mikhail M


    We consider a modification of the fluid flow model for a swirling vortex developed by J. Serrin, where velocity decreases as the reciprocal of the distance from the vortex axis. Recent studies, based on radar data of selected severe weather events, indicate that the angular momentum in a tornado may not be constant with the radius, and thus suggest a different scaling of the velocity/radial distance dependence. Motivated by this suggestion, we consider Serrin's approach with the assumption that the velocity decreases as the reciprocal of the distance from the vortex axis to the power b with a general b>0. This leads to a boundary-value problem for a system of nonlinear differential equations. We analyze this problem for particular cases, both with nonzero and zero viscosity, discuss the question of existence of solutions, and use numerical techniques to describe those solutions that we cannot obtain analytically.

  18. Holographic Vortex Pair Annihilation in Superfluid Turbulence

    CERN Document Server

    Du, Yiqiang; Tian, Yu; Zhang, Hongbao


    We make a first principles investigation of the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid by holography through numerically solving its highly non-trivial gravity dual. With the randomly placed vortices and antivortices prepared as initial states, we find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process remarkably from a very early time on. In particular, subtracted by the universal offset, the power law fit indicates that our holographic turbulent superfluid exhibits an apparently different decay pattern from the superfluid recently experimented in highly oblate Bose-Einstein condensates.

  19. Vortex knots in tangled quantum eigenfunctions

    CERN Document Server

    Taylor, Alexander J


    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic 3-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex 3-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose-Einstein condensates.

  20. Vortex noise from nonrotating cylinders and airfoils (United States)

    Schlinker, R. H.; Amiet, R. K.; Fink, M. R.


    An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.

  1. Convectively driven vortex flows in the Sun

    CERN Document Server

    Bonet, J A; Almeida, J Sanchez; Cabello, I; Domingo, V


    We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

  2. Downstream Thermal Evolution of Vortex Cores (United States)

    Gómez-Barea, A.; Herrada, M. A.; Pérez-Saborid, M.; Barrero, A.


    The downstream evolution of the total temperature field in a quasi-incompressible axisymmetric vortex core has been computed. Starting at an initial station (z=0) with velocity profiles of the Burgers type and given temperature distributions, the numerical results of the evolution show that, according to experimental results, the total temperature in the near-axis region decreases substantially due to the work done by pressure and viscous forces together with the effect of both convection and conduction of heat. Depending on the values of the parameters characterizing the initial profiles and on the value of the Prandtl number, the vortex either breaks down or eventually reaches a self-similar regime. The results obtained shed light on the basic physics involved in the thermal separation phenomenon which appears inside Ranque-Hilsch vortex tubes.

  3. Chiral specific electron vortex beam spectroscopy

    CERN Document Server

    Yuan, J; Babiker, M


    Electron vortex beams carry well-defined orbital angular momentum (OAM) about the propagation axis. Such beams are thus characterised by chirality features which make them potentially useful as probes of magnetic and other chiral materials. An analysis of the inelastic processes in which electron vortex beams interact with atoms and which involve OAM exchange is outlined, leading to the multipolar selection rules governing this chiral specific electron vortex beam spectroscopy. Our results show clearly that the selection rules are dependent on the dynamical state and location of the atoms involved. In the most favorable scenario, this form of electron spectroscopy can induce magnetic sublevel transitions which are commonly probed using circularly polarized photon beams.

  4. Introduction to vortex filaments in equilibrium

    CERN Document Server

    Andersen, Timothy D


    This book presents fundamental concepts and seminal results to the study of vortex filaments in equilibrium. It also presents new discoveries in quasi-2D vortex structures with applications to geophysical fluid dynamics and magnetohydrodynamics in plasmas.  It fills a gap in the vortex statistics literature by simplifying the mathematical introduction to this complex topic, covering numerical methods, and exploring a wide range of applications with numerous examples. The authors have produced an introduction that is clear and easy to read, leading the reader step-by-step into this topical area. Alongside the theoretical concepts and mathematical formulations, interesting applications are discussed. This combination makes the text useful for students and researchers in mathematics and physics.

  5. Hard and thermal probes of QGP from the perspective of lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Heng-Tong


    In this talk I review the current status of lattice QCD results on the hard and thermal probes of QGP, including jet quenching parameters, the melting of quarkonia and open heavy flavors, thermal photon/dilepton rates, electrical conductivity as well as heavy quark diffusion coefficients.

  6. Ordered sets and lattices

    CERN Document Server

    Drashkovicheva, Kh; Igoshin, V I; Katrinyak, T; Kolibiar, M


    This book is another publication in the recent surveys of ordered sets and lattices. The papers, which might be characterized as "reviews of reviews," are based on articles reviewed in the Referativnyibreve Zhurnal: Matematika from 1978 to 1982. For the sake of completeness, the authors also attempted to integrate information from other relevant articles from that period. The bibliography of each paper provides references to the reviews in RZhMat and Mathematical Reviews where one can seek more detailed information. Specifically excluded from consideration in this volume were such topics as al

  7. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.


    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... by consideration of electrostatic forces or by further anisotropy in the dispersion forces not described in the atom‐atom model. Anharmonic effects are shown to be large, but the dominant features in the temperature variation of frequencies are describable by a quasiharmonic model....

  8. Vortex ventilation in the laboratory environment. (United States)

    Meisenzahl, Lawrence R


    Assured containment at low airflow has long eluded the users of ventilated enclosures including chemical fume hoods used throughout industry. It is proposed that containment will be enhanced in a hood that has a particular interior shape that causes a natural vortex to occur. The sustained vortex improves the containment of contaminants within the enclosure at low airflow. This hypothesis was tested using the ASHRAE 110 tracer gas test. A known volume of tracer gas was emitted in the hood. A MIRAN SapphIRe infrared spectrometer was used to measure the concentration of tracer gas that escapes the enclosure. The design of the experiment included a written operating procedure, data collection plan, and statistical analysis of the data. A chemical fume hood of traditional design was tested. The hood interior was then reconstructed to enhance the development of a vortex inside the enclosure. The hood was retested using the same method to compare the performance of the traditional interior shape with the enhanced vortex shape. In every aspect, the vortex hood showed significant improvement over the traditional hood design. Use of the Hood Index characterizing the dilution of gas in an air stream as a logarithmic function indicates a causal relationship between containment and volumetric airflow through an enclosure. Use of the vortex effect for ventilated enclosures can provide better protection for the user and lower operating cost for the owner. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a data collection spreadsheet, data analysis, and data collection procedure.].

  9. Reactive Flow Control of Delta Wing Vortex (Postprint) (United States)


    Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...width. The dynamic test parameters are summarized in Table 2. The composite duty cycle input signal is denoted ( ) ( )ou t u u tδ= + in which ou

  10. Correlated phases of bosons in the flat lowest band of the dice lattice. (United States)

    Möller, G; Cooper, N R


    We study correlated phases occurring in the flat lowest band of the dice-lattice model at flux density one-half. We discuss how to realize this model, also referred to as the T(3) lattice, in cold atomic gases. We construct the projection of the model to the lowest dice band, which yields a Hubbard Hamiltonian with interaction-assisted hopping processes. We solve this model for bosons in two limits. In the limit of large density, we use Gross-Pitaevskii mean-field theory to reveal time-reversal symmetry breaking vortex lattice phases. At low density, we use exact diagonalization to identify three stable phases at fractional filling factors ν of the lowest band, including a classical crystal at ν = 1/3, a supersolid state at ν = 1/2, and a Mott insulator at ν = 1.


    Institute of Scientific and Technical Information of China (English)

    FU Shuren; CHEN Taoyung


    Multiple melting behavior of nylon 1010 has been investigated by using DSC instrument. Effects of partial scanning, partial scanning and annealing, heating rate, cooling rate and stepwise annealing on the melting curve were studied. Experimental results indicate that the sample undergoes a process of continuous melting and recrystallization during DSC scanning. Nylon 1010 contains a distribution of crystallites of different degrees of perfection which is strongly dependent on its previous thermal history. From the structural reorganization point of view, the origin of double and multiple peaks of the melting curve is explained.

  12. Acoustics of finite-aperture vortex beams

    CERN Document Server

    Mitri, F G


    A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.

  13. Characterization of Vortex Generator Induced Flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika

    The aim of this thesis is the characterization and modeling of the longitudinal structures actuated by vortex generators. Results from generic studies performed at low Reynolds numbers have shown that the device induced vortices possess helical structure of the vortex core. Further, their ability...... to control separation and downstream evolution across the chord of a circular sector have been studied. Similar flow structures to the ones found in the generic experiments have been found in a higher Reynolds number setting, more applicable to realistic cases common to, e.g., aeronautical applications...

  14. Paramagnetic excited vortex states in superconductors (United States)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.


    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  15. Center-vortex loops with one selfintersection

    CERN Document Server

    Moosmann, Julain


    We investigate the 2D behavior of one-fold selfintersecting, topologically stabilized center-vortex loops in the confining phase of an SU(2) Yang-Mills theory. This coarse-graining is described by curve-shrinking evolution of center-vortex loops immersed in a flat 2D plane driving the renormalization-group flow of an effective `action'. We observe that the system evolves into a highly ordered state at finite noise level, and we speculate that this feature is connected with 2D planar high $T_c$ superconductivity in $FeAs$ systems.

  16. On Stratified Vortex Motions under Gravity. (United States)


    AD-A156 930 ON STRATIFIED VORTEX MOTIONS UNDER GRAVITY (U) NAVAL i/i RESEARCH LAB WASHINGTON DC Y T FUNG 20 JUN 85 NRL-MIR-5564 UNCLASSIFIED F/G 20/4...Under Gravity LCn * Y. T. Fung Fluid Dynamics Branch - Marine Technologyv Division June 20, 1985 SO Cyk. NAVAL RESEARCH LABORATORY Washington, D.C...DN880-019 TITLE (Include Security Classification) On Stratified Vortex Motions Under Gravity 12 PERSONAL AUTHOR(S) Funa, Y.T. 13a. TYPE OF REPORT 13b

  17. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl


    Full Text Available ? per photon, and may be found as beams expressed in several basis functions, including Laguerre-Gaussian (LGpl) beams1, Bessel-Gaussian beams3 and Airy beams4 to name but a few. LG0l are otherwise known as vortex beams and LG0l beams are routinely... are represented by ?petals? and we show that through a full modal decomposition, the ?petal? fields are a superposition of two LG0l modes. Keywords: Vortex beams, SLM, Laguerre-Gaussian beams, Porro-prism resonator, Petals. 1. INTRODUCTION It is well...

  18. Vortex gyroscope imaging of planar superfluids. (United States)

    Powis, A T; Sammut, S J; Simula, T P


    We propose a robust imaging technique that makes it possible to distinguish vortices from antivortices in quasi-two-dimensional Bose-Einstein condensates from a single image of the density of the atoms. Tilting the planar condensate prior to standard absorption imaging excites a generalized gyroscopic mode of the condensate, revealing the sign and location of each vortex. This technique is anticipated to enable experimental measurement of the incompressible kinetic energy spectrum of the condensate and the observation of a negative-temperature phase transition of the vortex gas, driven by two-dimensional superfluid turbulence.

  19. Zero-energy states bound to a magnetic {pi}-flux vortex in a two-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Mesaros, Andrej, E-mail: [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States); Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden (Netherlands); Slager, Robert-Jan; Zaanen, Jan; Juricic, Vladimir [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden (Netherlands)


    We show that the existence of a pair of zero-energy modes bound to a vortex carrying a {pi}-flux is a generic feature of the topologically non-trivial phase of the M-B model, which was introduced to describe the topological band insulator in HgTe quantum wells. We explicitly find the form of the zero-energy states of the corresponding Dirac equation, which contains a novel momentum-dependent mass term and describes a generic topological transition in a band insulator. The obtained modes are exponentially localized in the vortex-core, with the dependence of characteristic length on the parameters of the model matching the dependence extracted from a lattice version of the model. We consider in full generality the short-distance regularization of the vector potential of the vortex, and show that a particular choice yields the modes localized and simultaneously regular at the origin. Finally, we also discuss a realization of two-dimensional spin-charge separation through the vortex zero-modes.

  20. Vortex Dynamics Studies in Type II Superconductors (United States)

    Xu, Zhigang


    } copper oxides. We found multiple peaks in the dissipation of a vibrating reed carrying a crystalline sample. The high temperature features only appear in the single-crystal, and the low temperature anomaly is found in both ceramic and single crystal. We suggest that the high temperature anomalies might be due to the Flux Line Lattice (FLL) depinning in the bulk sample of single crystal, whereas the lower one is likely due to the FLL melting in the grains. (Abstract shortened by UMI.).