Sample records for vortex flow meter

  1. Development of a novel vortex flow meter for downhole use

    NARCIS (Netherlands)

    Schiferli, W.; Cheng, L.K.


    Due to the increasing complexity of oil and gas wells, the demand for instrumentation to measure conditions inside well tubing below the surface is growing rapidly. A robust meter was designed to measure liquid flows at downhole conditions. The meter is based on a specially-designed bluff body to

  2. Application of Data Smoothing Method in Signal Processing for Vortex Flow Meters

    Directory of Open Access Journals (Sweden)

    Zhang Jun


    Full Text Available Vortex flow meter is typical flow measure equipment. Its measurement output signals can easily be impaired by environmental conditions. In order to obtain an improved estimate of the time-averaged velocity from the vortex flow meter, a signal filter method is applied in this paper. The method is based on a simple Savitzky-Golay smoothing filter algorithm. According with the algorithm, a numerical program is developed in Python with the scientific library numerical Numpy. Two sample data sets are processed through the program. The results demonstrate that the processed data is available accepted compared with the original data. The improved data of the time-averaged velocity is obtained within smoothing curves. Finally the simple data smoothing program is useable and stable for this filter.

  3. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases (United States)

    Ford, C. L.; Winroth, M.; Alfredsson, P. H.


    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method.

  4. Theoretical analysis of an oscillatory plane Poiseuille flow—A link to the design of vortex flow meter (United States)

    Ma, Huai-Lung; Kuo, Cheng-Hsiung


    Theoretical analysis on an oscillatory plane Poiseuille flow is conducted in terms of a non-dimensional ratio (η) of the channel half-width to Stokes' layer thickness. The cyclic velocity profiles, the phase shifts and the magnitudes among the driving pressure gradient, the induced wall shear stress, and the volume flux are investigated. Also, the flow physics at a different ratio η is demonstrated. In this study, the mechanism of the driving pressure gradient and the oscillating volume flux is similar to and can be employed to demonstrate the slit flow in the application of the novel vortex flow meter using a slit cylinder as a shedder. When applied to the novel vortex flow meter, the non-dimensional ratio η can be expressed as the relation of the slit width ratio (S/D), the Strouhal number, and the Reynolds number. Finally, a range of η between 0.97 design stage. Large values of η are employed at a high Reynolds number, and small η is used for low Reynolds number applications. In the novel vortex flow meters, a cylinder with a normal axial slit of width (S) is employed as the shedder. Due to the primary lock-on, the process of vortex shedding synchronizes with the rhythm of slit flow leading to a stable shedding frequency. The value η is well correlated by the value of ηopt obtained by experiments and shows a one-to-one correspondence to the slit ratio at each Reynolds number. Once the design value of ηopt is determined, the optimal slit ratio can be estimated for a fixed applied Reynolds number at the design stage.

  5. Data-driven optimal filtering for phase and frequency of noisy oscillations: Application to vortex flow metering. (United States)

    Rossberg, A G; Bartholomé, K; Timmer, J


    A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the strength of mode locking is proposed.

  6. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.


    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  7. Peak flow meter (image) (United States)

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  8. Vortex dominated flows

    CERN Document Server

    Ting, Lu; Knio, Omar M


    Addressed to both graduate students and researchers this monograph provides in-depth analyses of vortex dominated flows via matched and multiscale asymptotics, and it demonstrates how insight gained through these analyses can be exploited in the construction of robust, efficient, and accurate numerical techniques. The dynamics of slender vortex filaments is discussed in detail, including fundamental derivations, compressible core structure, weakly non-linear limit regimes, and associated numerical methods. Similarly, the volume covers asymptotic analysis and computational techniques for weakly compressible flows involving vortex generated sound and thermoacoustics.

  9. Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime


    Karapetrov, G.; Yefremenko, V.; Mihajlović, G; Pearson, J. E.; Iavarone, M.; Novosad, V.; Bader, S. D.


    We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectification) with respect to the direction of vortex flow is evidence that vortex jamming strongly moderates vortex dynamics in mesoscopic geometries. The findings can be applied to superconducting devices exploiting vortex dynamics and vortex manipula...

  10. Peak flow meter use - slideshow (United States)

    ... page: // Peak flow meter use - Series—Peak flow meter use - part one To use the sharing ... slide 7 out of 7 Overview A peak flow meter helps you check how well your asthma ...

  11. Manipulation of vortex rings for flow control

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Kuniaki; Hiramoto, Riho [Mechanical Systems Engineering, Hokkaido Institute of Technology, Maeda 7-15-4-1, Teine-ku, Sapporo 006-855 (Japan)], E-mail:


    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  12. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.


    particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator.......A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...


    Directory of Open Access Journals (Sweden)

    Mircea Dimitrie CAZACU


    Full Text Available We present the theoretical calculus of a patented flow meter, concerning such the thermodynamic and aerodynamic calculus, as well as the offered precision to measure the flow of the air in any meteorological conditions. In the same time we remark that the proposed flow meter, by its positioning, has not loss of head.

  14. Flow field measurement around vortex cavitation

    NARCIS (Netherlands)

    Pennings, P.C.; Westerweel, J.; Van Terwisga, T.J.C.


    Models for the center frequency of cavitating-vortex induced pressure-fluctuations, in a flow around propellers, require knowledge of the vortex strength and vapor cavity size. For this purpose, stereoscopic particle image velocimetry (PIV) measurements were taken downstream of a fixed half-wing

  15. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.


    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  16. Soft-sensing, non-intrusive multiphase flow meter

    NARCIS (Netherlands)

    Wrobel, K.; Schiferli, W.


    For single phase flow meters more and better non-intrusive or even clamp-on meters become available. This allows for a wider use of meters and for easier flow control. As the demand for multiphase meters is increasing, the current aim is to develop a non-intrusive multiphase flow meter. The

  17. Sequential transitions of bathtub vortex flow (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto


    The bathtub vortex has been found to autonomously arise owing to instability of a symmetric flow in a rectangular vessel when water is drained. We consider a model flow through a vessel with a rectangular horizontal cross section and a drain hole at the center of the bottom to investigate the physical mechanism for generation of swirling fluid motion like the bathtub vortex and the sequential transitions of the flow by numerical simulations and the linear stability analyses. The water surface is assumed to be flat even after instability. If the flow becomes unstable under this assumption, it assures that the surface deformation is irrelevant to the instability. It is emphasized that our interest is not limited to the real bathtub vortex but directed to occurrence of a large vortex in a flow having two reflectional symmetries. The configuration of the vessel has the double plane symmetry (DPS), which allows the flow have the same DPS at small Reynolds numbers. It is found that the instabilities and hence transitions occur accompanying symmetry-breaking of the flow field. Namely, the DPS flow experiences instability to yield vortical motion above a critical Reynolds number, losing the DPS but retaining the π -rotational (twofold rotational) symmetry around the center axis. The vortical flow also becomes unstable at a higher Reynolds number, makes a transition, and loses the π -rotational symmetry, but still keeps the time-translation symmetry, i.e., steadiness. The steadiness is broken at an even higher Reynolds number, owing to instability caused by an oscillatory mode of disturbance. The first and second transitions of the flow are identified as pitchfork bifurcations, and the third transition is identified as a Hopf bifurcation.


    Directory of Open Access Journals (Sweden)

    В. Воскобійник


    Full Text Available The results of experimental researches of the forming features of the vortex flow which is formed at the turbulentflow above of the deep spherical dimple are presented. Visualization shows that inclined asymmetric large-scale vortices are generated inside the dimple. These vortex structures are switched from one tilt in other, exciting lowfrequencyoscillations. During an evolution the asymmetric vortices are broken up above an aft wall of the dimple andthe angle of their incline and break up is increased with the growth of Reynolds number.

  19. Comparison of five portable peak flow meters

    Directory of Open Access Journals (Sweden)

    Glaucia Nency Takara


    Full Text Available OBJECTIVE: To compare the measurements of spirometric peak expiratory flow (PEF from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS: Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05, Spearman's correlation test and Bland-Altman's agreement test. RESULTS: The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263-688 L/min, 450 (350-800 L/min, 420 (310-720 L/min, 380 (300-735 L/min, 400 (310-685 L/min and 415 (335-610 L/min, respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001 and Galemed ® (p<0.01 meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS: The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  20. Comparison of five portable peak flow meters. (United States)

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio


    To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone, Assess, Galemed, Personal Best and Vitalograph peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05), Spearman's correlation test and Bland-Altman's agreement test. The median and interquartile ranges for the spirometric values and the Air Zone, Assess, Galemed, Personal Best and Vitalograph meters were 428 (263-688 L/min), 450 (350-800 L/min), 420 (310-720 L/min), 380 (300-735 L/min), 400 (310-685 L/min) and 415 (335-610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone(R) (p<0.001) and Galemed (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. The results suggest that the values recorded from Galemed meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  1. The Interaction Vortex Flow Around Two Bluff Cylinders

    Directory of Open Access Journals (Sweden)

    Hirao K.


    Full Text Available In this study, the interaction vortex flow features around a pair of parallel arranged bluff cylinders were observed by visualizing water flow experiment at the range of the gap ratio G/d=0~3. It was obtained that the result of established wind tunnel test and the result of this water tank test agreed about the characteristics of vortex shedding when varying the distance of circular cylinder gap. The flow pattern and vortex shedding frequency of another type bluff cylinder (triangular and square cylinder were also investigated. As a result of the experiment, it was shown that the flow pattern of wake flow was divided into three kinds (coupled vortex streets, biased gap flow and single vortex street regardless of the cylinder section shape and cylinder size. Then, the region of the appearance of flow pattern was shown about each case. In the case where two each other independent vortex streets were formed, three typical flow patterns of vortex formation (in-phase coupled vortex streets, out-of-phase coupled vortex streets and complication coupled vortex streets were observed. It was known that three configuration of vortex formation appear intermittently and alternatively.

  2. Subsonic vortex-flow design study for slender wings (United States)

    Lamar, J. E.


    A theoretical study describing the effects of spanwise camber on the lift dependent drag of slender delta wings having leading-edge-vortex-flow is presented. The earlier work by Barsby, using conical flow, indicated that drag levels similar to those in attached flow could be obtained. This is reexamined and then extended to the more practical case of nonconical flow by application of the vortex-lattice method coupled with the suction-analogy and the recently developed Boeing free-vortex-sheet method. Lastly, a design code is introduced which employs the suction analogy in an attempt to define 'optimum' camber surfaces for minimum lift dependent drag for vortex flow conditions

  3. Vortex statistics in turbulent channel flows (United States)

    Elsas, José Hugo; Augusto Moriconi, Luca Roberto


    In order to address the role of coherent structures in wall bounded turbulence, we study the statistics of morphological and kinematic properties of vortices, such as circulation, radius and height distributions. To accomplish that, we introduce a novel vortex identification method named as "vorticity curvature criterion" which is based on the local properties of the vorticity field. We furthermore employ a background subtraction procedure to remove shearing background effects expected to be present in the topology of the streamwise/wall-normal plane flow configurations. We discuss, through a comparative study of performance with the usual swirling strength criterion, and extending the previous analyses to the detection of coherent structures in the spanwise/wall normal planes, isotropization issues for the paradigmatic case of numerical turbulent channel flows. We acknowledge the funding from CNPq, CAPES and Faperj.

  4. A Numerical Study of Taylor-Vortex Flow. (United States)


    Keller (1980). Calculations of the finite cylinder case have been made by Alziary de Roquefort and Grillaud (1978) at Reynolds I. numbers and aspect...of motion for Taylor vortex flow, Comput. Fluids, 1, 301-316. (2] Alziary de Roquefort , T. and G. Grillaud, 1978, Computation of Taylor Vortex Flow by


    Directory of Open Access Journals (Sweden)

    K.V. Santhosh


    Full Text Available This paper proposes a technique for measurement of liquid flow using venturi and ultrasonic flow meter(UFM to have following objectives a to design a multi-sensor data fusion (MSDF architecture for using both the sensors, b improve sensitivity and linearity of venturi and ultrasonic flow meter, and c detect and diagnosis of faults in sensor if any. Fuzzy logic algorithm is used to fuse outputs of both the sensor and train the fuzzy block to produces output which has an improved characteristics in terms of both sensitivity and linearity. For identification of sensor faults a comparative test algorithm is designed. Once trained proposed technique is tested in real life, results show successful implementation of proposed objectives.

  6. Excitation of vortex meandering in shear flow


    Schröttle, Josef; Dörnbrack, Andreas; Schumann, Ulrich


    This paper investigates the evolution of a streamwise aligned columnar vortex with vorticity ω in an axial background shear of magnitude Ω by means of linear stability analysis and numerical simulations. A long wave mode of vorticity normal to the plane spanned by the background shear vector Ω and the vorticity of the vortex are excited by an instability. The stationary wave modes of the vertical and lateral vorticity are amplified. In order to form a helical vortex, the lat...

  7. Characterising stationary and translating vortex flow using magnetic resonance (United States)

    Vallatos, Antoine; Wilson, Mark C. T.; Taylor, Annette F.; Britton, Melanie M.


    We report magnetic resonance (MR) velocity and diffusion maps in three directions for stationary vortices (Taylor vortex flow —TVF) and velocity maps for translating vortices (vortex flow reactor —VFR) produced in a Couette cell. Motion artefacts in the translating vortex flow are removed by synchronising data acquisition with the translation period of the vortices. MR propagator experiments, which measure the conditional probability density for displacement, were performed to characterise molecular displacements in these systems. Simulations were performed using the experimental velocity and diffusion maps to aid interpretation of experimentally measured propagators and enable characterisation of the macro-mixing and transport properties within TVF and VFR systems. These simulations enabled molecular transport and mixing to be assessed over longer-time scales than are accessible experimentally, allowing plug flow, by-pass flow and inter-vortex mixing to be quantified.

  8. Solid-liquid separation by Taylor vortex flow


    河合, 秀樹; 高橋, 洋志


    Rotary filter, which avoided the cake sedimentation in the solid-liquid separation by Taylor vortex, was devised. The aspect ratio is less than 3 in the vortex generator, and the effect of the top and bottom boundary edge is not negligible. The alumna particle of 100μm was used as removed material as well as the tracer for the flow visualization. Vortex mode in the test of the rotational filter was the normal 2 cell mode, and the penetration flow rate was constantly to be 180ml/min. Reynolds ...

  9. The analysis of flow stability in a vortex furance model

    Directory of Open Access Journals (Sweden)

    Anufriev Igor S.


    Full Text Available Results of experimental study of the pulsation characteristics of a flow in isothermal model of vortex furnace with vertically oriented nozzles of secondary blast are obtained. With use of laser Doppler measuring system and pressure pulsations analyzer the data about the pressure and velocity pulsations has been received. Spectra of pressure and velocity pulsations at various regime parameters are presented. Absence of non-stationary structures, such as precessing vortex core of a flow, is shown.

  10. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  11. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe [Institute of Fluid System Dynamics, Technische Universitaet, Berlin (Germany); Lykholt-Ustrup, Flemming [Grundfos Holding A/S, Bjerringbro (Denmark)


    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation.

  12. Investigation a single-spiral vortex in a swirl flow

    Directory of Open Access Journals (Sweden)

    Gesheva Elizaveta S.


    Full Text Available The work is aimed at a detailed study of large-scale helical vortex structures emerging in a high turbulent intensively swirling flow. It was shown that the vortex formed in the chamber by installing diaphragm with shifted outlet is folded into a single-helical vortex. The flow visualization shows that although the vortex axis performs slow oscillations (precession, on average this structure is fixed in space. The velocity fields were measured with the aid of a nonintrusive method of flow diagnostics (PIV. Verification of the calculation results obtained using a LES simulation was performed based on measured experimental data to confirm the correctness of the chosen mathematical modelling approach. It has been asserted that the investigated regimes are in a self-similarity area relative to Reynolds number.

  13. Investigation on temperature separation and flow behaviour in vortex chamber (United States)

    Matsuno, Yuhi; Fukushima, Yusuke; Matsuo, Shigeru; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong


    In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.

  14. Low energy consumption vortex wave flow membrane bioreactor. (United States)

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan


    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH3-N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m3 (permeate), which was only two thirds of conventional MBR energy consumption.

  15. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.


    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... with the formation of "vortex crystals"....

  16. Vortex flow around a circular cylinder above a plane

    CERN Document Server

    Moura, M N


    The study of vortex flows in the vicinity of multiple solid obstacles is of considerable theoretical interest and practical importance. In particular, the case of flows past a circular cylinder placed above a plane wall has attracted a lot of attention recently. In this case, a stationary vortex is formed in front of the cylinder, in contradistinction to the usual case without the plane where a vortex pair is observed behind the cylinder. In the present work, we apply modern complex analysis techniques to obtain the complex potential for the problem of one point-vortex placed in a uniform stream past a circular cylinder above a plane. A typical streamline pattern is also shown.

  17. Vortex sinks with axial flow: Solution and applications (United States)

    Shtern, Vladimir; Borissov, Anatoly; Hussain, Fazle


    In this paper we develop a new class of analytical solutions of the Navier-Stokes equations and suggest ways to predict and control complex swirling flows. We consider vortex sinks on curved axisymmetric surfaces with an axial flow and obtain a five-parameter solution family that describes a large variety of flow patterns and models fluid motion in a cylindrical can, whirlpools, tornadoes, and cosmic swirling jets. The singularity of these solutions on the flow axis is removed by matching them with swirling jets. The resulting composite solutions describe flows, consisting of up to seven separation regions (recirculatory "bubbles" and vortex rings), and model flows in the Ranque-Hilsch tube, in the meniscus of electrosprays, in vortex breakdown, and in an industrial vortex burner. The analytical solutions allow a clear understanding of how different control parameters affect the flow and guide selection of optimal parameter values for desired flow features. The approach permits extension to swirling flows with heat transfer and chemical reaction, and have the potential of being significantly useful for further detailed investigation by direct or large-eddy numerical simulations as well as laboratory experimentation.

  18. Inaccuracy of portable peak flow meters : correction is not needed

    NARCIS (Netherlands)

    Brand, PLP; Waalkens, HJ; Duiverman, EJ; vanEssenZandvliet, EEM

    This study examined whether correction of peak expiratory flow (PEF) values for the inaccuracy of the meter would affect asthma management in 102 children (7-14 y old). PEF was recorded with a mini Wright meter twice daily for 2 weeks. As expected, measured PEF overestimated PEF level and asthma

  19. Self-organized vortex multiplets in swirling flow

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor; Sørensen, Jens Nørkær


    The possibility of double vortex multiplet formation at the center of an intensively swirling cocurrent flow generated in a cylindrical container by its rotating lid is reported for the first time. The boundary of the transition to unsteady flow regimes, which arise as a result of the equilibrium...

  20. Vortex dynamics in nonlinear free surface flows (United States)

    Curtis, Christopher W.; Kalisch, Henrik


    The two-dimensional motion of point vortices in an inviscid fluid with a free surface and an impenetrable bed is investigated. The work is based on forming a closed system of equations for surface variables and vortex positions using a variant of the Ablowitz, Fokas, and Musslimani formulation [M. J. Ablowitz, A. S. Fokas, and Z. H. Musslimani, J. Fluid Mech. 562, 313-343 (2006)] of the water-wave free-surface problem. The equations are approximated with a dealiased spectral method making use of a high-order approximation of the Dirichlet-Neumann operator and a high-order time-stepping scheme. Numerical simulations reveal that the combination of vortex motion and solid bottom boundary yields interesting dynamics not seen in the case of vortex motion in an infinitely deep fluid. In particular, strong deformations of the free surface, including non-symmetric surface profiles and regions of large energy concentration, are observed. Our simulations also uncover a rich variety of vortex trajectories including orbiting and nearly parallel patterns of motion. The dynamics of the free surface and of the point vortices are strongly influenced by the initial placement and polarity of the vortices. The method put forward here is flexible enough to handle a large number of vortices and may easily be extended to include the effects of varying bathymetry, stratification, and background shear currents.

  1. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre


    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder...

  2. Fluid flow meter using thermal tracers

    NARCIS (Netherlands)

    Volker, Arno Willem Frederik; Blokland, Huibert; Velthuis, Johannes Fransiscus Maria; Lötters, Joost Conrad


    Fluid flows through a conduit. To measure flow speed the fluid is heated at a heating location in the conduit with a time-dependent heating strength. A speed of sound in fluid flowing in the conduit is measured at a plurality of sensing locations downstream from said heating location. The flow speed

  3. Fluid flow meter using thermal tracers

    NARCIS (Netherlands)

    Volker, Arno Willem Frederik; Blokland, Huibert; Velthuis, Johannes Fransiscus Maria; Lötters, Joost Conrad


    Fluid flows through a conduit. To measure flow speed the fluid is heated at a heating location in the conduit with a time-dependent heating strength. A speed of sound in fluid flowing in the conduit is measured at a plurality of sensing locations downstream from said heating location. The flow speed

  4. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per


    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  5. 40 CFR 1065.230 - Raw exhaust flow meter. (United States)


    ... flow meter. (a) Application. You may use measured raw exhaust flow, as follows: (1) Use the actual... value: (i) For feedback control of a proportional sampling system, such as a partial-flow dilution... averaging Pitot tube, a hot-wire anemometer, or other measurement principle. This would generally not...

  6. Flow instability and vortex street in eccentric annular channels (United States)

    Choueiri, George; Tavoularis, Stavros


    Flow development in an eccentric annular channel with a diameter ratio of 0.5 has been investigated using flow visualization, two-component laser Doppler velocimetry and planar and stereoscopic particle image velocimetry. The eccentricity e was varied between 0.3 and 0.9 and the Reynolds number was 1000 flow instability and the generation of a quasi-periodic vortex street, which manifested itself by strong cross-flows across the gap and an increase in axial velocity in the gap region, but also affected the flow in the entire channel. The vortex strength was highest for e ~ 0 . 7 and the Strouhal number of the cross-flow oscillations (based on bulk velocity and core diameter) increased with increasing Re, reaching an asymptote near 0.12 for Re >= 10000 . Supported by NSERC and AECL.

  7. Alleviation of fuselage form drag using vortex flows: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, A.


    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  8. On the effects of microbubbles on Taylor Green vortex flow (United States)

    Ferrante, Antonino; Elghobashi, Said E.

    The paper describes a numerical study of the effects of microbubbles on the vorticity dynamics in a Taylor Green vortex flow (TGV) using the two-fluid approach. The results show that bubbles with a volume fraction {˜}10(-2) enhance the decay rate of the vorticity at the centre of the vortex. Analysis of the vorticity equation of the bubble-laden flow shows that the local positive velocity divergence of the fluid velocity, {bm nabla} {bm *} {bm U}, created in the vortex core by bubble clustering, is responsible for the vorticity decay. At the centre of the vortex, the vorticity omega_c(t) decreases nearly linearly with the bubble concentration C_m(t). Similarly, the enstrophy in the core of the vortex, omega(2(t)) , decays nearly linearly with C(2(t)) . The approximate mean-enstrophy equation shows that bubble accumulation in the high-enstrophy core regions produces a positive correlation between omega(2) and {bm nabla} {bm *} {bm U}, which enhances the decay rate of the mean enstrophy.

  9. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation

    NARCIS (Netherlands)

    Khatami, F.; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie


    For an elliptic Arndt’s hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the

  10. Vortex Breakdown under Laminar Flow of Pseudoplastic Fluid (United States)

    Kadyirov, A. I.; Abaydullin, B. R.


    The numerical investigation was carried out to study vortex breakdown for pseudoplastic fluid flow in circular pipe with twisted tape inserts. 0.67%, 1.5% and 3% aqueous solutions of Na-CMC are chosen as a pseudoplastic fluid. The numerical results are compared with available data in literature.

  11. Vibration isolation for Coriolis Mass-Flow meters

    NARCIS (Netherlands)

    van de Ridder, Bert


    A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force principle for direct mass-flow measurements, with high accuracy, range-ability and repeatability. The working principle of a CMFM is as follows: a fluid conveying tube is actuated to oscillate at a low amplitude. A

  12. How to use your peak flow meter (United States)

    ... discharge COPD - control drugs COPD - quick-relief drugs COPD - what to ask your doctor Exercise-induced asthma Exercising and asthma at school Make peak flow a habit! Signs of an asthma attack Stay away from asthma triggers Review Date 2/15/2016 Updated by: Neil K. ...

  13. Mass flow meter of the Coriolis type

    NARCIS (Netherlands)

    Mehendale, A.; Lötters, Joost Conrad; Lotters, Joost Conrad; Zwikker, Jan Marinus


    A mass flowmeter of the Coriolis type with a tube that forms a mechanically closed loop through which a medium flows during operation, and with excitation means for causing the loop to rotate in an oscillatory mode about an axis of rotation during operation. The loop has a starting point and an end

  14. MSET modeling of Crystal River-3 venturi flow meters.

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.


    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

  15. Analytical Models Development of Compact Monopole Vortex Flows

    Directory of Open Access Journals (Sweden)

    Pavlo V. Lukianov


    Conclusions. The article contains series of the latest analytical models that describe both laminar and turbulent dynamics of monopole vortex flows which have not been reflected in traditional publications up to the present. The further research must be directed to search of analytical models for the coherent vortical structures in flows of viscous fluids, particularly near curved surfaces, where known in hydromechanics “wall law” is disturbed and heat and mass transfer anomalies take place.

  16. Rotational superradiant scattering in a vortex flow (United States)

    Torres, Theo; Patrick, Sam; Coutant, Antonin; Richartz, Maurício; Tedford, Edmund W.; Weinfurtner, Silke


    When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% +/- 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole, as well as to hydrodynamics, due to the close relation to over-reflection instabilities.

  17. 40 CFR 1065.640 - Flow meter calibration calculations. (United States)


    ... temperature of the flow rate. R = molar gas constant. M mix = molar mass of the flow rate. Example 1: V stdref... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter....314472 J/(mol·K) ER08OC08.101 n ref = 19.619 mol/s Example 2: m ref = 17.2683 kg/min = 287.805 g/s M mix...

  18. Parallel discrete vortex methods for viscous flow simulation (United States)

    Takeda, Kenji

    In this thesis a parallel discrete vortex method is developed in order to investigate the long-time behaviour of bluff body wakes. The method is based on inviscid theory, and its extension to include viscous effects is a far from trivial problem. In this work four grid-free viscous models are directly compared to assess their accuracy and efficiency. The random walk, diffusion velocity, corrected core-spreading and vorticity redistribution methods are compared for simulating unbounded fluid flows, and for flows past an impulsively started cylinder at Reynolds numbers between 550 and 9500. The code uses a common core, so that the only free parameters are those directly related to the viscous models. The vorticity redistribution method encompasses all of the advantages of a purely Lagrangian method and incorporates a dynamic regridding scheme to maintain accurate discretisation of the vorticity field. This is used to simulate long-time flow past an impulsively started cylinder for Reynolds numbers 100, 150 and 1000. The code is fully parallel and achieves good speedup on both commodity and proprietary supercomputer systems. At Reynolds numbers below 150 the breakdown of the primary vortex street has been simulated. Results reveal a merging process, causing relaxation to a parallel shear flow. This itself sheds vortices, creating a secondary wake of increased wavelength. At Reynolds number 1000 the cylinder wake becomes chaotic, forming distinct vortex couples. These couples self-convect and can travel upstream. This has a destabilising effect on the vortex street, inducing merging, formation of tripolar and quadrupolar structures and, ultimately, spontaneous ejection of vortex couples upstream of the initial disturbance.

  19. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation (United States)

    Khatami, F.; van der Weide, E.; Hoeijmakers, H.


    For an elliptic Arndt's hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the thermodynamic state of the system, precomputed multiphase thermodynamic tables containing data for the appropriate equations of state for each of the phases are used and a fast, accurate, and efficient look-up approach is employed for interpolating the data. The numerical simulations are carried out using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations for compressible flow. The URANS equations of motion are discretized using an finite volume method for unstructured grids. The numerical simulations clearly show the formation of the tip vortex cavitation in the flow about the elliptic hydrofoil.

  20. Miniature, high efficiency transducers for use in ultrasonic flow meters (United States)

    Saikia, Meghna

    This thesis is concerned with the development of a new type of miniature, high efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is fabricated for the generation and detection of plate acoustic waves. When immersed in a fluid medium, this device can convert energy from plate acoustic waves (PAWs) into bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling principle can be used to realize efficient transducers for use in ultrasonic flow meters. This transducer can be mounted flush with the walls of the pipe through which fluid is flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these transducers has been designed and fabricated. The characteristics of this device have been measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in good agreement with theory. Another attractive property of the new transducers is that they can be used to realize remotely read, passive, wireless flow meters. Details of methods that can be used to develop this wireless capability are described. The research carried out in this thesis has applications in several other areas such as ultrasonic nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for developing wireless capability in a variety of other acoustic wave sensors.

  1. Shear-dependant toroidal vortex flow

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)


    Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.

  2. On the development of a wake vortex in inviscid flow (United States)

    Belotserkovskii, O. M.; Belotserkovskaya, M. S.; Denisenko, V. V.; Eriklintsev, I. V.; Kozlov, S. A.; Oparina, E. I.; Troshkin, O. V.; Fortova, S. V.


    The evolution of an initial perturbation in an axisymmetric subsonic normal inviscid gas flow through a pipe is directly simulated. The basic (unperturbed) flow has a zero radial velocity component, while its axial velocity component (along the axis of symmetry) increases or decreases linearly with the radius. The perturbation is specified as a swirl (rotation about the axis) with a positive or negative velocity vanishing on the central axis and the lateral surface. Irrespective of its direction, the swirl gives rise to a steady-state vortex carried by the flow. It shape is spherical (contiguous to the rotation axis) or circular (sliding along the impermeable lateral surface).

  3. A Vortex Particle-Mesh method for subsonic compressible flows (United States)

    Parmentier, Philippe; Winckelmans, Grégoire; Chatelain, Philippe


    This paper presents the implementation and validation of a remeshed Vortex Particle-Mesh (VPM) method capable of simulating complex compressible and viscous flows. It is supplemented with a radiation boundary condition in order for the method to accommodate the radiating quantities of the flow. The efficiency of the methodology relies on the use of an underlying grid; it allows the use of a FFT-based Poisson solver to calculate the velocity field, and the use of high-order isotropic finite differences to evaluate the non-advective terms in the Lagrangian form of the conservation equations. The Möhring analogy is then also used to further obtain the far-field sound produced by two co-rotating Gaussian vortices. It is demonstrated that the method is in excellent quantitative agreement with reference results that were obtained using a high-order Eulerian method and using a high-order remeshed Vortex Particle (VP) method.

  4. Experimental and numerical investigation of thermal flow meter

    Directory of Open Access Journals (Sweden)

    Cebula Artur


    Full Text Available The paper presents analytical and numerical model calculation results of the temperature distribution along the thermal flow meter. Results show a very good conformity between numerical and analytical model. Apart from the calculation results the experimental investigations are presented. The author performed the test where a temperature of duct wall surface was measured. The relation between mass flow rate in terms of the duct surface temperature difference was developed.

  5. Vortex-Blob Simulation Of Two-Dimensional Flows (United States)

    Spalart, Philippe


    Software package includes two programs: KPD12 and KPD12P. Both programs use vortex-blob method to simulate flow around solid bodies. KPD12 treats unbounded domain, while KPD12P treats domain having periodicity in one direction. Main advantage, ability to handle situations involving arbitrary shapes, including multiple bodies. User supplies only points on solid boundaries; no grid. Source code in Cray FORTRAN.

  6. Computations of flow in an anchored Solar Vortex (United States)

    Min, Dahhea; Fischer, Paul F.; Pearlstein, Arne J.


    In regions with high solar insolation, there is a potential to extract mechanical energy from the gravitationally unstable ground-heated air layer, using the substantial axial and azimuthal momentum of an anchored buoyancy-induced columnar vortex to drive a vertical-axis turbine. The seasonal and diurnal availability (which extends well into the late afternoon and even past sunset, due to utilization of the thermal capacity of the ground to heat the air, rather than direct use of photons) is well-matched to air-conditioning loads in the southwestern US. Critical issues in the design of such systems are the geometry of the enclosure that serves to anchor the dust devil-like vortex and prevent it from being blown away by ambient wind, as well as the geometry of the stationary vanes used both to enhance entrainment of ground-heated air into the vortex from a collection area much larger than that of the enclosure, and to utilize any ambient wind to enhance the vortex. Here, we report computations (using the spectral-element code Nek5000) of heated and unheated flows in several geometries of interest. The results are discussed in the context of field experiments. Supported by ARPA-E award DE-AR0000296.

  7. Vortex flow during early and late left ventricular filling in normal subjects : Quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis

    NARCIS (Netherlands)

    Elbaz, M.S.M.; Calkoen, E.E.; Westenberg, J.J.M.; Lelieveldt, B.P.F.; Roest, A.A.W.; Van der Geest, R.J.


    Background LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for

  8. Experimental study of vortex breakdown in a cylindrical, swirling flow (United States)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.


    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.

  9. Vortex dynamics and flow-induced vibrations arising from a vortex ring passing tangentially over a flexible plate (United States)

    Pirnia, Alireza; Hu, JiaCheng; Peterson, Sean D.; Erath, Byron D.


    The extraction of energy from vortical structures advecting through an ambient environment is a topic of interest due to the potential to power miniature in situ sensors and monitors. This work investigates the vortex dynamics and flow-induced vibrations of a flexible plate arising from a vortex ring passing tangentially over it. Experimental measurements of the flow field and plate dynamics are performed in tandem with a coupled potential flow/Kirchhoff-Love plate model in order to (i) elucidate the physics of the vortex-plate interactions in the specified orientation and relate the energy exchange between the ring and the plate to the attendant vortex dynamics; (ii) validate the potential flow model and provide any needed corrections to account for the simplifying assumptions; and (iii) provide empirical data for estimating energy harvesting capabilities in the specified orientation. The plate loading arises as a result of an initial down-wash, followed quickly by a region of reduced pressure as the vortex core passes over the plate. The fundamental physics of the interaction is discussed, identifying three regimes. When the centerline of the vortex ring is positioned greater than approximately 2 vortex ring radii away from the plate it can be considered to be in the far-field, and the resulting vibrations are well predicted through potential flow, once the plate dynamics are corrected for edge effects arising from a finite plate width. As the offset distance of the vortex ring is decreased, diffusion of induced vorticity on the plate into the flow field significantly alters the fluid dynamics, pressure loading, and the resultant plate dynamics, and dramatically increases the strain energy in comparison with the potential flow model predictions. A first-order correction to the potential flow model is proposed to account for the finite plate width, while empirical correlations are presented for the plate strain energy in cases where ring/induced vorticity

  10. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al


    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  11. Open-channel integrating-type flow meter (United States)

    Koopman, K.C.


    A relatively inexpensive meter for measuring cumulative flow in open channels with a rated control,. called a "totalizer", was developed. It translates the nonlinear function of gage height to flow by use of a cam and a float. A variable resistance element in an electronic circuit is controlled by the float so that the electron flow in the circuit corresponds to the flow of water. The flow of electricity causes electroplating of an electrode with silver. The amount of silver deposited is proportionate to the flow of water. The total flow of water is determined by removing the silver from the electrode at a fixed rate with ·an electronic device and recording the time for removal with a counter. The circuit is designed so that the ,resultant reading on the counter is in acre-feet of water.

  12. Characterization of Vortex Generator Induced Flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika

    . The helical structure of the vortices can, however, not be confirmed by the results of these experiments due to practical concerns of obtaining a measuring signal with high enough quality and resolution. Furthermore, in order to study the dynamics of the device induced structures, power spectra from LDA time...... series have been constructed from the burst-mode LDA theory developed mainly by Buchhave and George [19, 46]. In the process of applying this theory to the LDA time series, a technique has been developed correcting for the effect of random noise in spectra and correlations. The power spectra obtained...... from the flow behind the actuating devices did not display any distinct periodicity of the flow, but rather a random, or at best quasi-periodic, behavior. In addition, commonly employed interpolation and resampling methods for estimating power spectra from LDA data were compared to the corresponding...

  13. Controlling vortex breakdown in swirling pipe flows: Experiments and simulations (United States)

    Dennis, D. J. C.; Seraudie, C.; Poole, R. J.


    A laminar, incompressible, viscous pipe flow with a controllable swirl induced by wall rotation has been studied both numerically and experimentally up to an axial Reynolds number (Re) of 30. The pipe consists of two smoothly joined sections that can be rotated independently about the same axis. The circumstances of flow entering a stationary pipe from a rotating pipe (so-called decaying swirl) and flow entering a rotating pipe from a stationary pipe (growing swirl) have been investigated. Flow visualisations show that at a certain swirl ratio the flow undergoes a reversal and vortex breakdown occurs. The variation of this critical swirl ratio with Reynolds number is explored and good agreement is found between the experimental and numerical methods. At high Re the critical swirl ratio tends to a constant value, whereas at low Re the product of the Reynolds number and the square of the swirl ratio tends to a constant value in good agreement with an existing analytical solution. For decaying swirl the vortex breakdown manifests itself on the pipe axis, whereas for growing swirl a toroidal zone of recirculation occurs near the pipe wall. The recirculating flow zones formed at critical conditions are found to increase radially and axially in extent with increasing Reynolds number and swirl ratio.

  14. Formation of vortex wakes at flow separation from plate (United States)

    Gorelov, D. N.; Govorova, A. I.


    The plane nonlinear initial boundary value problem about the separated flow past a plate set in motion at a constant velocity from the state of rest has been considered. Results of a numerical experiment which have allowed us to trace in detail the vortex-wake formation process behind a vertical plate are reported. It is shown that, after the beginning of the plate motion, several stable vortical structures, including a Karman street, form in succession behind the plate. It is found that, on the emergence of the Karman street, there occurs a sharp and substantial growth of vortex-wake intensity and hydrodynamic drag force with a pulsating time behavior. A conclusion about the origination, in this regime, of self-sustained oscillations of the liquid in the vicinity of the plate is drawn.

  15. The impact of flow dynamics in the design of flow meters and metering stations

    NARCIS (Netherlands)

    Bokhorst, E. van; Peters, M.C.A.M.; Braal, F.M.


    Commercially available flowmeters are provided with a calibration certificate, based on stationary flow conditions and do not include the impact of installation effects like swirl, a-symmetry, and piping and flow dynamics. Flow pulsations, valve noise and mechanical pipe vibrations can have a

  16. Direct Numerical Simulation of Twin Swirling Flow Jets: Effect of Vortex-Vortex Interaction on Turbulence Modification

    Directory of Open Access Journals (Sweden)

    Wenkai Xu


    Full Text Available A direct numerical simulation (DNS was carried out to study twin swirling jets which are issued from two parallel nozzles at a Reynolds number of Re = 5000 and three swirl levels of S = 0.68, 1.08, and 1.42, respectively. The basic structures of vortex-vortex interaction and temporal evolution are illustrated. The characteristics of axial variation of turbulent fluctuation velocities, in both the near and far field, in comparison to a single swirling jet, are shown to explore the effects of vortex-vortex interaction on turbulence modifications. Moreover, the second order turbulent fluctuations are also shown, by which the modification of turbulence associated with the coherent or correlated turbulent fluctuation and turbulent kinetic energy transport characteristics are clearly indicated. It is found that the twin swirling flow has a fairly strong localized vortex-vortex interaction between a pair of inversely rotated vortices. The location and strength of interaction depend on swirl level greatly. The modification of vortex takes place by transforming large-scale vortices into complex small ones, whereas the modulation of turbulent kinetic energy is continuously augmented by strong vortex modification.

  17. Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels

    Directory of Open Access Journals (Sweden)

    Saluto Lidia


    Full Text Available We investigate the evolution equation for the average vortex length per unit volume L of superfluid turbulence in inhomogeneous flows. Inhomogeneities in line density L andincounterflowvelocity V may contribute to vortex diffusion, vortex formation and vortex destruction. We explore two different families of contributions: those arising from asecondorder expansionofthe Vinenequationitself, andthose whichare notrelated to the original Vinen equation but must be stated by adding to it second-order terms obtained from dimensional analysis or other physical arguments.

  18. The Effects of Vortex Ingestion on the Flow in a Diffusing S-duct (United States)

    Wendt, B. J.; Reichert, B. A.


    An experimental study of the effects of an ingested vortex on the flowfield of a diffusing S-duct is reported. The vortex is generated through the use of a stationary pinwheel device mounted upstream of the diffusing S-duct. Three test conditions vary the location of the vortex in the duct inlet crossplane. For each condition of ingested vortex, a baseline S-duct and an S-duct with an array of vortex generators is examined. The data taken consist of duct inlet and exit crossplane surveys of velocity and total pressure. Duct surface flow visualization and static pressure are also recorded. The data acquired in these tests are compared to identical S-duct data taken in the absence of the ingested vortex. The ingested vortex is observed to have a strong influence on the flowfield inside (and exiting) the S-duct, but only when the vortex impinges at the inlet crossplane location coincident with the crossplane location of downstream flow separation within the duct. When the ingested vortex impinges at this location it reduces the extent of flowfield separation inside the baseline duct and promotes stronger crossflow in the exit plane of both the baseline duct and the duct with installed vortex generators. This enhanced crossflow also strengthens the vortices shed from the vortex generators. The other impingement locations of the ingested vortex are found to produce little effect on the flowfield of the duct with or without vortex generators.

  19. Vortex-based spatiotemporal characterization of nonlinear flows (United States)

    Byrne, Gregory A.

    Although the ubiquity of vortices in nature has been recognized by artists for over seven centuries, it was the work of artist and scientist Leonardo da Vinci that provided the monumental transition from an aesthetic form to a scientific tool. DaVinci used vortices to describe the motions he observed in air currents, flowing water and blood flow in the human heart. Five centuries later, the Navier-Stokes equations allow us to recreate the swirling motions of fluid observed in nature. Computational fluid dynamic (CFD) simulations have provided a lens through which to study the role of vortices in a wide variety of modern day applications. The research summarized below represents an effort to look through this lens and bring into focus the practical use of vortices in describing nonlinear flows. Vortex-based spatiotemporal characterizations are obtained using two specific mathematical tools: vortex core lines (VCL) and proper orthogonal decomposition (POD). By applying these tools, we find that vortices continue to provide new insights in the realm of biofluids, urban flows and the phase space of dynamical systems. The insights we have gained are described in this thesis. Our primary focus is on biofluids. Specifically, we seek to gain new insights into the connection between vortices and vascular diseases in order to provide more effective methods for clinical diagnosis and treatment. We highlight several applications in which VCL and POD are used to characterize the flow conditions in a heart pump, identify stenosis in carotid arteries and validate numerical models against PIV-based experimental data. Next, we quantify the spatial complexity and temporal stability of hemodynamics generated by a database of 210 patient-specific aneurysm geometries. Visual classifications of the hemodynamics are compared to the automated, quantitative classifications. The quantities characterizing the hemodynamics are then compared to clinical data to determine conditions that are

  20. An investigation of the interaction of vortex rings and a laminar free jet flow (United States)

    Basfeld, M.


    Generation and alteration of vortex rings in water translating along the axis of symmetry of a laminar free jet flow against the vortex ring tube, were studied by flow visualization. Translation velocity and diameter of vortices as a function of definite generation conditions were measured within and outside free jet flow. Velocity distributions in the jet flow were measured. It is concluded that the characteristic phases of vortex alteration can be parameterized and that the alteration of vortex circulation during the second phase can be estimated.

  1. Coriolis mass flow rate meters for low flows

    NARCIS (Netherlands)

    Mehendale, A.


    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do

  2. An active flow control theory of the vortex breakdown process (United States)

    Rusak, Zvi; Granat, Joshua; Wang, Shixiao


    An active flow control theory of the vortex breakdown process in incompressible swirling flows in a finite-length, straight, circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet-outlet conditions. A long-wave asymptotic analysis results in a nonlinear model problem for the dynamics and control of both inviscid and high Reynolds number flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. In addition, an energy analysis of the controlled flow dynamics suggests a feedback control law which relates the flow injection to the evolving maximum radial velocity at the inlet. The feedback control cuts the natural feed forward mechanism of the breakdown process. Computed examples based on the full Euler and NS formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level. Moreover, applying the proposed feedback control law during flow evolution, shows for the first time the successful elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl, up to 30 percent above critical.

  3. Comprehensive Flow Meter for All Materials. Final report

    Energy Technology Data Exchange (ETDEWEB)



    The electromagnetic flowmeter is obstructionless and insensitive to the metered stuff's constitutive properties. For low zero-point drift, EM flowmeters employ a low frequency alternating induction, usually with square waveshape. With conventional signal conditioning, high frequency induction leads to excessive zero-point drift for the instrument. The conventional instrument is usable with electrically conductive fluids, where there is no triboelectric noise. Nonconductive fluids have substantial triboelectric noise, with spectral density experimentally measured to be f{sup {minus}2.6}. Here we use an electromagnet and signal conditioner that allows high frequency induction, where the noise is low, but eliminates the heretofore excessive drift--such that the EM flowmeter can be used to meter any stuff, whether conductive or insulating, that can be pumped, blown or extruded through a pipe. Designs and test hardware are shown. An injury occurred, with slow recovery: the principal investigator could not do all the flow test stand work desired. As an option, the flow testing has been simulated on a computer. Using characteristics of transformer oil as the metered fluid, the new signal conditioner has produced: (1) signal/noise/drift behavior experienced in prior published work, and (2) signal--without noise and drift--with performance of today's commercial EM flowmeters.

  4. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik


    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuations...... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....

  5. Dynamics and Instabilities of Free Surface and Vortex Flows

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild


    This PhD thesis consists of two main parts. The first part describes the dynamics of an ideal fluid on a stationary free surface of a given shape. It turns out that one can formulate a set of self-contained equations of momentum conservation for the tangential flow, with no reference to the flow...... of the fluid bulk. With these equations, one can in principle predict the surface flow on a given free surface, once its shape has been measured. The equations are expressed for a general surface using Riemannian geometry and their solutions are discussed, including some difficulties that may arise...... of chaotic advection, and the stability of vortex leapfrogging is investigated within the framework of Floquet theory. An analytical criterion is found, giving the exact location of the transition to instability earlier observed in numerical investigations by Acheson [Eur. J. Phys. 21, 269-273 (2000...

  6. On stagnation points and streamline topology in vortex flows

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten


    The problem of locating stagnation points in the flow produced by a system of N vortices in two dimensions is considered. The general solution follows from a 1864 theorem by Siebeck, that the stagnation points are the foci of a certain plane curve of class N-1 that has all lines connecting vortices...... pairwise as tangents. The case N=3, for which Siebeck's curve is a conic, is consdiered in some detail. It is shown that the classification of the type of conic coincides with the known classification of regimes of motin for the three vortices. A similarity result for the triangular coordinates...... of the stagnation point in a flow produced by three vortices with sum of strengths zero is found. Using topological arguments the distinct streamline patterns for flow about three vortices are also determined. Partial results are given for two special sets of vortex strengths on the changes between these patterns...

  7. Compact Mass Flow Meter Based on a Micro Coriolis Flow Sensor

    Directory of Open Access Journals (Sweden)

    Remco Wiegerink


    Full Text Available In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar. It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air and liquids (water and isopropanol. As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg.

  8. Compact mass flow meter based on a micro Coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; Katerberg, M.R.; Lammerink, Theodorus S.J.; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad


    In this paper we present a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 2 g/h (for water at a pressure drop of 2 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading. The temperature drift between 10 and 50 ºC is below 1 mg/h/ºC. The meter is robust,

  9. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect (United States)

    Lan, C. Edward


    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  10. Stagnation zone formation on the axis of a closed vortex flow

    DEFF Research Database (Denmark)

    Naumov, I. V.; Okulov, Valery; Mikkelsen, Robert Flemming


    The features of developing a counterflow zone (bubble-mode vortex breakdown or vortex explosion) at the center of an intensively swirled flow produced in a liquid-filled cylindrical container with a rotating endwall have been studied. The observation showed that the scenario of developing a bubble......-mode breakdown zone with generation of counterflow is the same for cylinders with low or high aspect ratio, and it remains independent of stationary-nonstationary transition boundary for the main vortex flow....

  11. Performance analysis of vortex based mixers for confined flows (United States)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  12. Reciprocity and its utilization in ultrasonic flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Vestrheim, Magne; Boe, Reidar; Smoergrav, Skule; Abrahamsen, Atle K.


    In ultrasonic transit time flow meters for gas and liquid (USMs), the flow direction, the flow velocity and the sound velocity are estimated from the measured up- and downstream transit times. At no-flow conditions, the up- and downstream transit times of such meters should ideally be the same, or the difference should be negligible. This may not be the case unless special precautions are made. In order to reduce the possibility of the meter to detect a false flow at no-flow conditions, USMs are typically ''dry calibrated'' before being installed in the field. ''Dry calibration'' (which may be made in different ways), in general involves measurement of (a) the time delays due to electronics, cables and transducers, (b) the so called ''{delta}t-correction'' (for each acoustic path, also denoted ''zero flow offset factor''), and (c) geometrical parameters. Various {delta}t-correction approaches may be used by different manufacturers, but these are basically similar and have the same purpose: to reduce the false flow detection and improve the accuracy at low and no-flow conditions (''zero flow adjustment''), without significantly affecting the accuracy at the high velocity measurements. The AGA-9 report and the API MPMS Ch. 5.8 standard both prescribe need for ''zero flow verification test (zero test)'' or ''zeroing the meter'', for gas and liquid USMs, respectively. Advances in USM technology based on the electro acoustic reciprocity principle have provided methods for reduction or even neglect ion of the need for ''{delta} t-correction'' of USMs. That means, if the USM measurement system is reciprocal, and operated in a ''sufficiently reciprocal'' way, the ''{delta}t-correction'' may be negligibly small over the operational range of pressure and temperature, and

  13. Attenuation of the tip vortex flow using a flexible thread (United States)

    Lee, Seung-Jae; Shin, Jin-Woo; Arndt, Roger E. A.; Suh, Jung-Chun


    Tip vortex cavitation (TVC) is important in a number of practical engineering applications. The onset of TVC is a critical concern for navy surface ships and submarines that aim to increase their capability to evade detection. A flexible thread attachment at blade tips was recently suggested as a new method to delay the onset of TVC. Although the occurrence of TVC can be reduced using a flexible thread, no scientific investigation focusing on its mechanisms has been undertaken. Thus, herein, we experimentally investigated the use of the flexible thread to suppress TVC from an elliptical wing. These investigations were performed in a cavitation tunnel and involved an observation of TVC using high-speed cameras, motion tracking of the thread using image-processing techniques, and near-field flow measurements performed using stereoscopic particle image velocimetry. The experimental data suggested that the flexible thread affects the axial velocity field more than the circumferential velocity field around the TVC axis. Furthermore, we observed no clear dependence of the vortex core size, circulation, and flow unsteadiness on TVC suppression. However, the presence of the thread at the wing tip led to a notable reduction in the streamwise velocity field, thereby alleviating TVC.

  14. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.


    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...... development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high...... Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices...

  15. Bluff Body Flow Simulation Using a Vortex Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel


    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  16. How effective is aeration with vortex flow regulators? Pilot scale experiments (United States)

    Wójtowicz, Patryk; Szlachta, Małgorzata


    Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.

  17. A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation (United States)

    Lundin, R.; Barabash, S.; Futaana, Y.; HolmströM, M.; Perez-De-Tejada, H.; Sauvaud, J.-A.


    We report on the existence of a large-scale ion flow vortex, a curled tailward flow of solar wind H+ (SW H+), and ionospheric O+ in the Venus plasma tail. The vortex commences at dusk (-Y), driven by a transverse (to the solar wind) aberration flow component. Dusk magnetosheath and ionospheric ions move westward across the nightside into the dawn sector, from where the tailward and lateral flow merges into a tailward-moving vortex. A fluid analysis of the SW H+ energy and momentum (E&M) transfer to O+ at the terminator, shows that E&M balance (efficiency ≈1) is achieved in the altitude range of 1200-600 km. Below 600 km a westward O+ flow, moving along the direction of the atmospheric superrotation, dominates. Conversely, SW H+ dominates the high-altitude vortex. The Venus large-scale tail vortex is hardly unique. Other gaseous celestial objects (comets) orbiting the Sun may develop similar tail vortices.

  18. Laboratory and field trials of Coriolis mass flow metering for three-phase flow measurement (United States)

    Zhou, Feibiao; Henry, Manus; Tombs, Michael


    A new three-phase flow metering technology is discussed in this paper, which combines Coriolis mass flow and water cut readings and without applying any phase separation [1]. The system has undergone formal laboratory trials at TUV NEL (National Engineering Laboratory), UK and at VNIIR (National Flow Laboratory), Kazan, Russia; a number of field trials have taken place in Russia. Laboratory trial results from the TUV NEL will be described in detail. For the 50mm (2") metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil + water) liquid mass flow error should fall within ± 2.5%, and the gas mass flow error within ± 5.0%. The oil mass flow error limit is ± 6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ± 15.0%. These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.

  19. Automatic Tip Vortex Core Profiling for Numerical Flow Simulations of Rotorcraft in Hover (United States)

    Kao, David L.; Chaderjian, Neal M.


    An automated approach is presented that extracts visual and quantitative data from vortex cores produced by Navier-Stokes simulations of rotorcraft in hover mode. This approach extracts contiguous rotor tip vortex-core trajectories, cross-flow velocity profiles, and vortex-core diameter variation with wake age (azimuth angle). This automated approach is faster and more accurate than a conventional manual approach. Moreover, this new approach allows for an efficient way to quantitatively compare vortex-core profiles from different flow simulations, e.g., grid resolution studies, and validate computed results with experimental data

  20. Analysis of Axial Flow Ventilation Fans by Vortex - Method. (United States)

    Hardin, Richard Anthony

    A steady vortex-lattice method is used to solve the lifting surface equation for an axial flow fan. The type of fan studied is designed for industrial and ventilation applications and in thermofluid systems such as cooling towers. The fan blades are thin cambered surfaces manufactured from metal sheets. The numerical approach is inviscid and results in a boundary value problem with viscous effects partially accounted for by application of drag coefficient data. A non-linear wake alignment procedure is used to account for the effects of vorticity shedding in the wake and variation in wake geometry with operating conditions. The wake alignment procedure is semi-free with wake input parameters required for accurate use of the technique. A study of the wake parameters was conducted and gave trends in the variation of their values with flow rate. At "free-air" conditions, flow visualization estimates of these parameters were found to agree with those from the computations. Comparisons are made between the measured and predicted fan performance with and without a surrounding duct. The comparison of the results were especially good at the "free-air" condition using wake parameters determined from flow visualization and an inlet velocity profile measured using hot-wire anemometry. To enable better understanding of basic flow phenomena and to provide data for verification of numerical analyses, a method for measuring unsteady surface pressure on a rotating axial-flow fan blade was devised. Unsteadiness of pressure on the blade surfaces is due to the effects of upstream fan motor supports and other installation features. A pressure transducer and signal amplification circuit were mounted on a circuit board at the rotating hub with signals taken off the rotating shaft through copper disk-mercury slip rings. The pressure difference across the blade was determined and the data were corrected for time lag and distortion caused by the length of tubing. The pressure difference

  1. Flow Characteristics Study of Wind Turbine Blade with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Hao Hu


    Full Text Available The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blade root, and then they are calculated, respectively, with CFD method. The results show that VGs installed in the separation line upstream, with the separation line of the blade root as a benchmark, show a better effect. Pneumatic power of blades increases by 0.6% by installing VGs. Although the effect on large wind turbines is not obvious, there is a space for optimization.

  2. An experimental investigation of S-duct flow control using arrays of low-profile vortex generators (United States)

    Reichert, Bruce A.; Wendt, Bruce J.


    An experimental investigation was undertaken to measure the effect of various configurations of low-profile vortex generator arrays on the flow in a diffusing S-duct. Three parameters that characterize the vortex generator array were systematically varied to determine their effect: (1) the vortex generator height; (2) the streamwise location of the vortex generator array; and (3) the vortex generator spacing. Detailed measurements of total pressure at the duct exit, surface static pressure, and surface flow visualization were gathered for each vortex generator configuration. These results are reported here along with total pressure recovery and distortion coefficients determined from the experimental data. Each array of vortex generators tested improved total pressure recovery. The configuration employing the largest vortex generators was the most effective in reducing total pressure recovery. No configuration of vortex generators completely eliminated the flow separation that naturally occurs in the S-duct, however the extent of the separated flow region was reduced.

  3. Simulation of turbulent flow and temperature separation in a uni-flow vortex tube

    Directory of Open Access Journals (Sweden)

    Promvonge, P.


    Full Text Available The vortex tube is a mechanical device operating as a refrigerating machine without refrigerants, by separating a compressed gas stream into two streams; the cold air stream at the tube core while the hot airstream near the tube wall. Such a separation of the flow into regions of low and high total temperature is referred to as the temperature separation effect. In this paper, simulation of the turbulent compressible flowand temperature separation in a uni-flow vortex tube with the turbulence model and the algebraic Reynolds stress model (ASM is described. Steady, compressible and two-dimensional flows are assumed through outthe calculation. It has been found that the predicted results of velocity, pressure, and temperature fields are generally in good agreement with available experiment data. Moreover, it can be indicated that the highest temperature separation occurs near the inlet nozzle while the lowest temperature separation is found at the downstream near the control valve.

  4. Modeling and Simulation of Wet Gas Flow in Venturi Flow Meter

    Directory of Open Access Journals (Sweden)

    Hossein SERAJ


    Full Text Available Wet gas which is a gas contains liquid, is encountered in various industrial applications such as oil and gas, power generation and mining plants. Measuring wet gas flow rate is required in many of these applications. Venturi flow meters are frequently used for wet gas flow measurement. This paper describes modeling and computer simulation of wet gas flow in the Venturi flow meters. The model used in this paper is based on an annular flow pattern. In this flow pattern, the gas is travelling in the middle of the pipe and the liquid is travelling along the pipe wall. In addition, it is assumed that some liquid droplets are entrained in the gas core. Then Simulink module of Matlab software has been used to simulate this model. This simulation has been used to compare various methods for correcting over-reading of Bernoulli formula when the same is used to measure wet gas flow rate in Venturi flow meter. By comparing the results obtained from simulation of these correction methods, it was found that some of these correction methods such as De Leeuw method are performing better than the others.

  5. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft (United States)

    Sandlin, Doral R.; Ramirez, Edgar J.


    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  6. Peak expiratory flow at increased barometric pressure: comparison of peak flow meters and volumetric spirometer. (United States)

    Thomas, P S; Ng, C; Bennett, M


    Increasing numbers of patients are receiving hyperbaric oxygen therapy as an intensive care treatment, some of whom have pre-existing airway obstruction. Spirometers are the ideal instruments for measuring airway obstruction, but peak flow meters are useful and versatile devices. The behaviour of both types of device was therefore studied in a hyperbaric unit under conditions of increased pressure. It is important to have a non-electrical indicator of airway obstruction, to minimize the fire risk in the hyperoxic environment. The hypothesis was tested that, assuming that dynamic resistance is unchanged, both the Wright's standard and mini-peak flow meters would over-read peak expiratory flow (PEF) under increased pressure when compared with a volumetric spirometer, as the latter is unaffected by air density. It was postulated that a correction factor could be derived so that PEF meters could be used in this setting. Seven normal subjects performed volume-dependent spirometry to derive PEF, and manoeuvres using both standard and mini PEF meters at sea level, under hyperbaric conditions at 303, 253 and 152 kPa (3, 2.5 and 1.5 atmospheres respectively; 1 atmosphere absolute=101.08 kPa), and again at sea level. There was a progressive and significant decline in PEF with increasing pressure as measured by the spirometer (69.46+/-0.8% baseline at 303 kPa compared with 101 kPa), while the PEF meters showed a progressive increase in their readings (an increase of 7.86+/-1.69% at 303 kPa with the mini PEF meter). Using these data points, a correction factor was derived which allows appropriate values to be calculated from the Wright's meter readings under these conditions.

  7. Simulation a Disposable mass flow meter by an advanced FSI Modeling and Finite Element Analysis.


    zadeh, Siavash Hooshmand


    Abstract -In this thesis a design of a Coriolis mass flow-meter is chosen by considering all advantages and disadvantages and the project requirements. The chosen geometry is imported into COMSOL, because modelling is implemented by FEM and two different physics should be coupled. To consider both applications of the device include measuring density and flow rate, modeling is divided into two parts: Coriolis density meter and Coriolis mass flow-meter. Both applications are based on Fluid Stru...

  8. A study of the counter rotating vortex rings interacting with the primary vortex ring in shock tube generated flows

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, T; De, S [CSIR - Central Mechanical Engineering Research Institute, Durgapur, West Bengal 713209 (India); Dora, C L; Das, D [Department of Aerospace Engineering, IIT Kanpur, Kanpur-208016 (India); Prem Kumar, P, E-mail:, E-mail: [IIT Madras, Sardar Patel Road, Kanagam, Chennai, Tamil Nadu 600036 (India)


    The formation and evolution of counter rotating vortex rings (CRVRs) appearing in shock tube-generated flows at high shock Mach numbers (M) have been studied numerically by solving ax symmetric Navier-Stokes equations and compared with experiments. The AUSM + scheme is used for convective terms, and for time stepping a four-stage Runge-Kutta scheme is used. High-speed smoke flow visualizations and optical shadowgraph techniques are employed for verifying the numerical results. It is observed that the strong shear layer formed near the Mach disc in the axial region of the vortex ring plays a dominant role in CRVR formation. A series of CRVRs is formed for longer driver section and higher M as the shear layer persists for longer duration. The interaction of these CRVRs with the primary vortex and trailing jet vortices is studied for (i) different pressure-pulse durations at the open end keeping the amplitude constant, and (ii) varying pulse amplitude when the duration is fixed. Results are also presented comparing a high-amplitude case against a lower-amplitude one with a longer pulse duration. The maximum vorticity inside the first CRVR is found to be higher than the primary vortex ring during its formation. (paper)

  9. Visualization of flow separation and control by vortex generators on an single flap in landing configuration

    Directory of Open Access Journals (Sweden)

    Matějka Milan


    Full Text Available This paper focuses on a suppression of the flow separation, which occurs on a deflected flap, by means of vortex generators (VG's. An airfoil NACA 63A421 with a simple flap and vane-type vortex generators were used. The investigation was carried out by using experimental and numerical methods. The data from the numerical simulation of the flapped airfoil without VG's control were used for the vortex generator design. Two sizes, two different shapes and various spacing of the vortex generators were tested. The flow past the airfoil was visualized through three methods, namely tuft filaments technique, oil and thermo camera visualization. The experiments were performed in closed circuit wind tunnels with closed and open test sections. The lift curves for both cases without and with vortex generators were acquired for a lift coefficient improvement determination. The improvement was achieved for several cases by means all of the applied methods.

  10. GARUSO - Version 1.0. Uncertainty model for multipath ultrasonic transit time gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Froeysa, Kjell-Eivind; Vestrheim, Magne


    This report describes an uncertainty model for ultrasonic transit time gas flow meters configured with parallel chords, and a PC program, GARUSO Version 1.0, implemented for calculation of the meter`s relative expanded uncertainty. The program, which is based on the theoretical uncertainty model, is used to carry out a simplified and limited uncertainty analysis for a 12`` 4-path meter, where examples of input and output uncertainties are given. The model predicts a relative expanded uncertainty for the meter at a level which further justifies today`s increasing tendency to use this type of instruments for fiscal metering of natural gas. 52 refs., 15 figs., 11 tabs.

  11. Compact mass flow meter based on a micro coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; van de Geest, Jan; Katerberg, Marcel; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Lötters, Joost Conrad


    In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1

  12. Visualization of the structure of vortex breakdown in free swirling jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.


    In this paper we investigate the three dimensional flow structures in a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved Tomographic Particle Image Velocimetry measurements. Both time-averaged and instantaneous flow structures are

  13. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. (United States)

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J


    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and

  14. Diagnostics of spatial structure of vortex multiplets in a swirl flow

    DEFF Research Database (Denmark)

    Naumov, I. V.; Okulov, Valery; Sørensen, Jens Nørkær


    Results on investigation of vortex unstable breakdown are presented. The structure of vortex multiplets was visualized in a vertical cylindrical container made of transparent organic glass of the optic quality with the inner diameter of 288 mm and rotating upper lid. Visualization was performed f....... Visualization of flow structure for unstable swirl flows and cylinder aspect ratios from 3.2 to 5.5 allowed first identification of these regimes as multispiral breakdowns with formation of helical-like vortex duplets, triplets and quadruplets....

  15. Hub vortex instability and wake dynamics in axial flow wind turbines (United States)

    Foti, Daniel; Howard, Kevin; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis


    The near wake region of an axial flow wind turbine has two distinct shear layers: an outer tip vortex shear layer, which rotates in the same direction as the rotor, and an inner counter-rotating hub vortex shear layer. Recent simulations (Kang et al., J. Fluid Mech. 744, 376 (2014)), corroborated with experiments (Chamorro et al., J. Fluid Mech. 716, 658 (2013)), showed that the hub vortex can undergo spiral vortex breakdown immediately downstream of the turbine. The precessing hub vortex core intercepts and interacts with the tip vortex shear layer causing the large-scale wake meandering motions in the far wake to intensify. These results were obtained for an axial flow hydrokinetic turbine in a turbulent open channel flow. Here we integrate high-resolution LES with experiments to show that a hub vortex instability also occurs in the near wake of a wind turbine in a wind tunnel. We show that the interactions of the hub vortex with the outer flow have significant effects on the wake meandering amplitude and frequency. Our results reinforce the conclusions of Kang et al. (2014) that the hub vortex must be included in wake models to simulate wake interactions at the power plant scale and optimize turbine siting for realistic terrain and wind conditions. This work was supported by DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), the NSF (IIP-1318201), the IREE early career award (UMN) and NSF CAREER: Geophysical Flow Control (CBET-1351303). Computational resources were provided by MSI.

  16. Study of Polyurethane Foaming Dynamics Using a Heat Flow Meter (United States)

    Koniorczyk, P.; Trzyna, M.; Zmywaczyk, J.; Zygmunt, B.; Preiskorn, M.


    This work presents the results of the study concerning the effects of fillers addition on the heat flux density \\dot{q}( t ) of foaming of polyurethane-polystyrene porous composite (PSUR) and describes the dynamics of this process during the first 600 s. This foaming process resulted in obtaining porous materials that were based on HFC 365/225 blown rigid polyurethane foam (PUR) matrix, which contained thermoplastic expandable polystyrene (EPS) beads as the filler. In PSUR composites, the EPS beads were expanded after being heated to a temperature above the glass transition temperature of EPS and vaporing gas incorporated inside, by using the heat of exothermic reaction of polyol with isocyanate. From the start (t=0) to the end of the PSUR composite foaming process (t=tk), \\dot{q}( t ) was measured with the use of the heat flow meter. For the purpose of the study two PUR systems were selected: one with high and one with low heat density of foaming process q. EPS beads were selected from the same manufacturer with large and small diameter. The mass fraction of EPS in PSUR foam varied during the measurements. Additionally, a study of volume fractions of expanded EPS phase in PSUR foams as a function of mass fractions of EPS was conducted. In order to verify effects of the EPS addition on the heat flux density during PSUR foaming process, the thermal conductivity measurements were taken.

  17. Visualization of flow and vortex structure around a swimming loach by dynamic stereoscopic PIV (United States)

    Nagayama, Katsuya; Tanaka, Toshimasa; Tanaka, Kazuhiro; Hayami, Hiroshi; Aramaki, Shinichiro


    Loach has a unique swimming style of bending the whole body and staying at the bottom of water. We studied the three-dimensional flow field around and behind the loach using stereoscopic-PIV. We captured flow fields in horizontal and vertical plane, and it seems loach leaves vortex tube arches. From the analysis of body motion and flow field, we propose flow structure with vortex tube arches connected along the loach body. After being released, they are separated and flow away and dissipate.

  18. Electromagnetic radiation from vortex flow in Type-II superconductors. (United States)

    Bulaevskii, L N; Chudnovsky, E M


    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, omega(0)=2pi v/a, up to a superconducting gap, Delta/variant Planck's over 2pi. Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  19. Measurements of the unsteady vortex flow over a wing-body at angle of attack (United States)

    Debry, Benoit; Komerath, Narayanan M.; Liou, Shiuh-Guang; Caplin, J.; Lenakos, Jason


    Measurements of the unsteady vortex flow over a wing-body at high angles of attack were carried out on a generic test model of a pointed body of revolution with double-delta wings. Vortex patterns and trajectories were quantified from digitized laser sheet video images. The velocity-field measurements showed the jetlike flow in the unburst vortex, unsteady secondary structures below the primary core, and then the reversed flow in the burst vortex. Results of hot-film anemometry revealed the presence of peak frequencies in the velocity spectra over the wing and near the trailing edge, which varied linearly with freestream speed and increased as the measurement point moved upstream. Good Strouhal correlation was found with previous results obtained for a smaller generic wing-body model.

  20. Signal Processing of Vortex Flow with Noise Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Xiaohong Zeng


    Full Text Available The vortex of low speed flows is difficult to measure resulted in that the output signal of vortex flowmeter appears the spectral line splitting and frequency offset in the low SNR and causes the frequency resolution to be decreased. In the paper, it first conducted the multi-scale wavelet decomposition to the vortex signal with noise, then removed the noise spectrum and carried on power spectrum analysis and frequency correction for the actual signal of stress type vortex flowmeter, and finally determined the vortex signal frequency to be as the basis for designing band-pass filter. By means of Matlab software, it took a signal with noise as an example, and reconstructed an effective sine signal by wavelet denoising algorithm. The simulation experiment shows that the presented method is effective.

  1. 21 CFR 868.1860 - Peak-flow meter for spirometry. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Peak-flow meter for spirometry. 868.1860 Section 868.1860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... spirometry. (a) Identification. A peak-flow meter for spirometry is a device used to measure a patient's...

  2. A plasma flow vortex in the magnetotail and its related ionospheric signatures

    Directory of Open Access Journals (Sweden)

    C. L. Tang


    Full Text Available We presented a large-scale plasma flow vortex event that occurred on 1 March 2009 observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS satellites. During the interval, THEMIS satellites were located in the premidnight region between 11 and 16 RE downtail. Dawnward-earthward plasma flows were seen initially in the magnetotail, followed by duskward-tailward flows. This suggests that a clockwise plasma flow vortex (seen from above the equatorial plane was observed on the dawn side of the plasma sheet. Furthermore, high energy (>1 keV electrons were observed. Auroral images at 427.8 nm and THEMIS white light all-sky imager (ASI at Fort Smith showed a discrete auroral patch formed at the poleward of the auroral oval, it then intensified. It extended eastward and equatorward first and followed by westward motion to form the clockwise auroral vortex. The auroral feature corresponded to the ionospheric signatures of the plasma flow vortex in the magnetotail when the Alfvén transit time between the magnetotail and the ionosphere was taken into account. We suggest that the large-scale clockwise plasma flow vortex in association with the high energy (>1 keV electrons on the dawn side of the plasma sheet generated a downward field-aligned current (FAC that caused the related ionospheric signatures. The plasma flow vortex had rotational flow speeds of up to 300 km s−1. The current density associated with the plasma flow vortex was estimated at 2.0 μA m−2, mapped to the ionosphere.

  3. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation. (United States)

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica


    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a "Confined Pitot Tube," is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method.

  4. The Research on Metrological Characteristics of House Water Meters during Transitional Flow Regimes

    Directory of Open Access Journals (Sweden)

    Inga Briliūtė


    Full Text Available The purpose of this research is to find the influence of transitional flow regimes on inlet water meters. Four construction types of mechanical inlet water meters (each capacity Q = 10 m3/h were investigated. The biggest additional volume 0,12–0,26% when Q = 0,2…2 m3/h shows single-jet vane wheel meter. This additional volume is less 0,06–0,13% for the multi-jet concentric water meter. The minimum influence of transitional flow regimes was for turbine water meters till 0,1% for all flow range. The volumetric meters are not sensitive for this effect.Article in Lithuanian

  5. A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle (United States)

    Yang, H. Q.; Peugeot, John W.; West, Jeff S.


    An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6-DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has a significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to the conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.

  6. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering


    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  7. Effect of Ripple Geometry on Vortex Generation, Ejection, and Strength in Oscillatory Flow (United States)

    Smith, H. D.


    Turbulent vortex structures generated around bedforms have a large potential for significant suspended sediment transport. In the nearshore, the flow separation over ripples results in the generation of a lee vortex that can entrain sediment during half of the wave cycle. As the flow reverses, the sediment-laden vortex is ejected into the water column. The vortex is translated with the reversed flow and dissipates, releasing its sediment load back to the bed. The generation and ejection processes are functions of the ripple geometry and the wave acceleration. These same processes are also present for other geometries placed near the sea bed. Studies around bottom-seated cylindrical structures have shown multiple generation and ejection events off of the lee of the cylinder during half of the wave cycle. This generation is a function of Keulegan-Carpenter number, which balances the semi-excursion of the wave to the dominant length scale of the structure. In this work, the flow over rippled beds of various geometries over a range of hydrodynamic forcing will be numerically simulated to investigate the generation, ejection mechanisms, and strength of vortices created by this interaction. The simulations will be performed with the finite-difference CFD model, FLOW-3D. An advantage to this model is its ability to resolve complicated geometries in the flow with cartesian grids. In order to resolve the complex, three-dimensional flow field over an approximately two-dimensional rippled bed, a Smagorinsky Large Eddy Simulation closure scheme will be utilized. This model configuration has been shown to accurately predict the lift and drag force coefficients for bottom-mounted cylinders under linear waves, which are dominated by vortex generation and ejection. The three-dimensional vortex structure and strength will be evaluated with swirling strength criterion. Three-dimensional isosurfaces of the swirling strength will allow for the visual identification of the interaction

  8. Effect of second phase on single phase flow meters in steam quality measurement

    Directory of Open Access Journals (Sweden)

    M Pusayatanont


    Full Text Available This paper presents results from an investigation of the two phase flow, especially liquid ingas phase, in most mainly used flow meter in steam industry namely differential pressuremeter is investigated. As in general, a flowmeter is designed and employed to measure flowrate of single phase fluid. There are many types of meter available in the market characterizeby their working principles, installed conditions and measured fluid. All meters representtheir accuracies under the single phase flow condition. However, when they are working inunusual conditions especially under multiphase flow, most meters lose their accuraciessignificantly even there is small amount of second phase introduced into the system. Tounderstand the deteriorated performance of the meter under two phase flow, additional studyon the effect the second phase on the meter is required.The laboratory experiment is set up to simulate the wet steam by flowing compressed airin the 2 inch pipe. Water droplet is generated by pressurized water flowing through a nozzleand then spayed into the system in range of 25% maximum by mass fraction. The signal fromeach flowmeter is collected by digital computer and analyzed using FFT and power spectrumdensity. The results show that the presence of the second phase in the system causes highfrequency fluctuation and causes significant error on meter reading. Flow manufacturersalways add low-pass filter circuit to remove this high frequency signal, however, this papershows that the high frequency signal in specific region is useful as it can be use to estimatedthe percentage of the second phase in the main phase system.

  9. Simulation of external flows using a hybrid particle mesh vortex method

    DEFF Research Database (Denmark)

    Spietz, Henrik; Hejlesen, Mads Mølholm; Walther, Jens Honore

    The long-term goal of this project is to develop and apply state-of-the-art simulation software to enable accurate prediction of fluid structure interaction, specifically vortex-induced-vibration and flutter of long-span suspension bridges to avoid error-prone structural designs. In the following...... a hybrid particle mesh vortex method is applied for the simulation of uniform flow past stationary solid obstacles of arbitrary shapes....

  10. Vortex-flow aerodynamics - An emerging design capability (United States)

    Campbell, J. F.


    Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.

  11. Simulation of flow past two tandem cylinders using deterministic vortex method

    Directory of Open Access Journals (Sweden)

    Huang Guo


    Full Text Available The vortex method is a direct numerical simulation method for solving the Navier-Stokes equations. In order to reveal the influence of Reynolds number and distances between the cylinders, the incompressible flow past a pair of tandem cylinders is solved on the base of the vortex method. The results show that for the flow past two tandem cylinders, there is a critical distance of the tandem cylinders. Over the critical distance, the flow field will have a sudden change, and the drag coefficient, lift coefficient and Strouhal number will also change dramatically. The critical distance will diminish as the Reynolds number rises.

  12. Experimental study of precessing vortex core in two-phase flow

    Directory of Open Access Journals (Sweden)

    Vinokurov Alexey


    Full Text Available The work is devoted to the study of a precessing vortex core (PVC in a swirling gas-liquid flow in an axisymmetric hydrodynamic chamber. The influence of the dispersed gas phase on the frequency of PVC precession and on the pressure in the hydrodynamic chamber is considered, and a correlation of the changes in these characteristics depending on gas content variation is demonstrated. The effect of flow swirling on the precession of the vortex core is shown. Experimental data for the two-phase flow are compared with the case of single-phase system.

  13. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD. (United States)

    Xu, Liang; Yang, Ming; Ye, Lin; Dong, Zhaopeng


    Hemocompatibility is highly affected by the flow field in Left Ventricular Assistant Devices (LVAD). An asymmetric inflow and outflow channel arrangement with a 45° intersection angle with respect to the blood chamber is proposed to approximate the vascular structure of the aorta and left atrium on the left ventricle. The structure is expected to develop uninterruptible vortex flow state which is similar to the flow state in human left ventricle. The Computational Fluid Dynamics (CFD) asymmetric model is simulated using ANSYS workbench. To validate the velocity field calculated by CFD, a Particle Image Velocimetry (PIV) experiment is conducted. The CFD results show that the proposed blood chamber could generate a shifting vortex flow that would be redirected to the aorta during ejection to form a persistent recirculating flow state, which is similar to the echocardiographic flow state in left ventricle. Both the PIV and the CFD results show the development of a persistent vortex during the pulsatile period. Comparison of the qualitative flow pattern and quantitative probed velocity histories in a pulsatile period shows a good agreement between the CFD and PIV data. The goal of developing persistent quasi intra-ventricle vortex flow state in LVAD is realized.

  14. 16 reference population equations using peak expiratory flow meters

    African Journals Online (AJOL)


    produced using PEF meters in Nigeria. 2. To highlight on the limitations observed on some of these population driven reference equations. 3. To suggest other methods to improve on the reference equations produced. Contribution of Scholars in generating PEFR prediction equations in Nigeria. Normal values of PEFR ...

  15. Dynamics of two-phase swirling flow in a vortex chamber with a lower end swirler (United States)

    Abdrakhmanov, R. Kh.; Dvornikov, N. A.; Lukashov, V. V.


    The Particle Image Velocimetry (PIV) technique and laser Doppler anemometer (LDA) were used to measure the components of tangential and axial velocities of gas and particles in a vortex chamber with a fluidized bed, particle layer dynamics was estimated qualitatively, and the flow in the vortex chamber with a centrifugal fluidized bed of solid particles was simulated numerically. It is shown that with the growth of gas velocity in the swirler slots, the rotation velocity of bed grows almost linearly, and with an increasing bed mass, the rotation velocity decreases. Data on distributions of the volume fraction of particles and gas flow velocity inside the bed were obtained by numerical calculation.

  16. Optimization of counter flow Ranque-Hilsch vortex tube performance using Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ahmet Murat [Celal Bayar University, Vocational High School, Department of Machinery, 45400-Turgutlu-Manisa (Turkey); Uluer, Onuralp [Gazi University, Faculty of Technical Education, Mechanical Education Department, Teknikokullar, 06503 Ankara (Turkey); Kirmaci, Volkan [Bartin University, Faculty of Engineering, Mechanical Engineering Department, 74100 Bartin (Turkey)


    This study discusses the application of Taguchi method in assessing maximum temperature gradient for the Ranque-Hilsch counter flow vortex tube performance. The experiments were planned based on Taguchi's L27 orthogonal array with each trial performed under different conditions of inlet pressure, nozzle number and fluid type. Signal-to-noise ratio (S/N) analysis, analysis of variance (ANOVA) and regression analysis were carried out in order to determine the effects of process parameters and optimal factor settings. Finally, confirmation tests verified that Taguchi method achieved optimization of counter flow Ranque-Hilsch vortex tube performance with sufficient accuracy. (author)

  17. Vortex merging and spectral cascade in two-dimensional flows

    DEFF Research Database (Denmark)

    Nielsen, A.H.; He, X.; Juul Rasmussen, J.


    The merging of two identical vortices is studied numerically using a spectral code. It is noted that the enstrophy cascade is most active on the distorted vortex boundaries, with a Kolmogorov-like spectrum E(k) approximate to k(-alpha), alpha less than or equal to 4, developed at high wave numbers....... The inverse energy cascade is completed when the vortices merge into one of larger size. (C) 1996 American Institute of Physics....

  18. Determination of Multiphase Flow Meter Reliability and Development of Correction Charts for the Prediction of Oilfield Fluid Flow Rates

    Directory of Open Access Journals (Sweden)

    Samuel S. MOFUNLEWI


    Full Text Available The aim of field testing of Multiphase Flow Meter (MPFM is to show whether its accuracy compares favourably with that of the Test Separator in accurately measuring the three production phases (oil, gas and water as well as determining meter reliability in field environment. This study evaluates field test results of the MPFM as compared to reference conventional test separators. Generally, results show that MPFM compares favourably with Test Separator within the specified range of accuracy.At the moment, there is no legislation for meter proving technique for MPFM. However, this study has developed calibration charts that can be used to correct and improve meter accuracy.

  19. Diagnostics of spatial structure of vortex multiplets in a swirl flow (United States)

    Naumov, I. V.; Okulov, V. L.; Sorensen, J. N.


    Results on investigation of vortex unstable breakdown are presented. The structure of vortex multiplets was visualized in a vertical cylindrical container made of transparent organic glass of the optic quality with the inner diameter of 288 mm and rotating upper lid. Visualization was performed for different heights of this cylinder. The working liquid was 80-percent water-glycerin mixture, and small air bubbles were used as the tracers. The lid was rotated with a constant angular velocity under the studied conditions, and air was accumulated in the zones of decreased pressure on axes of vortices. Visualization of flow structure for unstable swirl flows and cylinder aspect ratios from 3.2 to 5.5 allowed first identification of these regimes as multispiral breakdowns with formation of helical-like vortex duplets, triplets, and quadruplets.

  20. Adaptive computations of flow around a delta wing with vortex breakdown (United States)

    Modiano, David L.; Murman, Earll M.


    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  1. Recent theoretical developments and experimental studies pertinent to vortex flow aerodynamics, with a view towards design (United States)

    Lamar, J. E.; Luckring, J. M.


    Recent progress in a research program directed toward an improved vortex flow technology base was reviewed. Analysis methods for conical flow and analysis and design methods for nonconical flows are presented. Applications are made for a variety of planar, nonplanar, and interferring lifting surfaces. Several methods are shown to provide reasonable estimates of over-all forces and moments for simple wing planforms with the suction analogy method currently offering the most versatility for arbitrary configuration applications. For the prediction of surface loadings the free vortex sheet method being developed by Boeing is shown to have considerable promise and further development of this type of method is encouraged. A data base for ogee strake-wing configurations is summarized with an emphasis on the requirements for maximizing the interference lift. A strake planform design procedure is discussed and a first solution (gothic in planview) is integrated with a wing body. The data show the strake to exhibit expected stable vortex characteristics. It was found that, apart from increasing sweep, conically cambered delta wings developed drag levels approaching that of attached flow with increasing either the lift or the wing camber height, lastly, an approximate vortex flow design method, based on the suction analogy, is outlined and an example is given.

  2. Impact of pulsations on vortex flowmeters

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Bokhorst, E. van; Limpens, C.H.L.


    The impact of imposed pulsations on the output of five 3”-industrial vortex flow meters with a triangular bluff body and various type of sensors was experimentally investigated in a gas flow over a wide range of frequencies from 20 Hz to 400 Hz and amplitudes ranging from 1% to 30% rms of the

  3. Multiphase flow metering using capacitance transducer and multivariate calibration

    Directory of Open Access Journals (Sweden)

    Øyvind Midttveit


    Full Text Available The method of multivariate calibration is experimentally investigated to establish estimators of the required pertinent flow parameters in multiphase pipe flow. The unfiltered primary signals, provided by a capacitance sensor, are analysed as discrete time series and the signal characteristics are extracted. The multivariate model that is generated estimates the flow composition based on the extracted information existing in the broad-band capacitance signal. The data analysis and test results are presented.

  4. Measurement of Turbulent Fluxes of Swirling Flow in a Scaled Up Multi Inlet Vortex Reactor (United States)

    Olsen, Michael; Hitimana, Emmanual; Hill, James; Fox, Rodney


    The multi-inlet vortex reactor (MIVR) has been developed for use in the FlashNanoprecipitation (FNP) process. The MIVR has four identical square inlets connected to a central cylindrical mixing chamber with one common outlet creating a highly turbulent swirling flow dominated by a strong vortex in the center. Efficient FNP requires rapid mixing within the MIVR. To investigate the mixing, instantaneous velocity and concentration fields were acquired using simultaneous stereoscopic particle image velocimetry and planar laser-induced fluorescence. The simultaneous velocity and concentration data were used to determine turbulent fluxes and spatial cross-correlations of velocity and concentration fluctuations. The measurements were performed for four inlet flow Reynolds numbers (3250, 4875, 6500, and 8125) and at three measurement planes within the reactor. A correlation between turbulent fluxes and vortex strength was found. For all Reynolds numbers, turbulent fluxes are maximum in the vortex dominated central region of the reactor and decay away from the vortex. Increasing Reynolds number increased turbulent fluxes and subsequently enhanced mixing. The mixing performance was confirmed by determining coefficients of concentration variance within the reactor.

  5. Effect of vortex generators on the closing transient flow of bileaflet mechanical heart valves (United States)

    Murphy, David; Dasi, Lakshmi; Yoganathan, Ajit; Glezer, Ari


    The time-periodic closing of bileaflet mechanical heart valves is accompanied by a strong flow transient that is associated with the formation of a counter-rotating vortex pair near the b-datum line of leaflet edges. The strong transitory shear that is generated by these vortices may be damaging to blood elements and may result in platelet activation. In the present work, these flow transients are mitigated using miniature vortex generator arrays that are embedded on the surface of the leaflets. Two vortex generator designs were investigated: one design comprised staggered rectangular fins and the other one staggered hemispheres. The closing transients in the absence and presence of the passive vortex generators are characterized using phase locked PIV measurements. The study utilizes a 25 mm St. Jude Medical valve placed in the aortic position of the Georgia Tech left heart simulator. Measurements of the velocity field in the center plane of the leaflets demonstrate that the dynamics of the transient vortices that precede the formation of the leakage jets can be significantly altered and controlled by relatively simple passive modifications of existing valve designs. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  6. Simulation of Piezoelectric Energy Harvester Based on the Vortex Flow (United States)

    Li, Meng; Wang, Haifeng; Cui, Yiliang; Sun, Kaili


    In this article, numerical research on the fluid-structure interaction between the flexible piezoelectric energy harvester (FPEH) and the Von Karman vortex street forming behind a bluff body is carried out to optimize the oscillation of FPEH to obtain more electrical energy. Using ANSYS Workbench platform, the simulation is performed. The numerical results show that the maximal deformation of the PEH is 1.7428 mm, meanwhile the maximal voltage is 4.6144 V. Besides, these numerical results generated by the ANSYS simulation are in good agreement with the experimental results.

  7. 40 CFR 1065.220 - Fuel flow meter. (United States)


    .... (a) Application. You may use fuel flow in combination with a chemical balance of carbon (or oxygen... system, such as a partial-flow dilution system. (ii) For multiplying with continuously sampled gas... measures mass directly, such as one that relies on gravimetric or inertial measurement principles. This may...

  8. Development and evaluation of a meter for measuring return line fluid flow rates during drilling

    Energy Technology Data Exchange (ETDEWEB)

    Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, E.K. (Ktech Corp., Albuquerque, NM (United States))


    The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.

  9. The use of a low-cost gas-liquid flow meter to monitor severe slugging

    DEFF Research Database (Denmark)

    Andreussi, Paolo; Bonizzi, Marco; Ciandri, Paolo


    of a multiphase orifice and the pressure drops of the gas-liquid mixture flowing in a vertical section of the pipe. Liquid and gas flow rates have been determined by means of semi-empirical equations developed for the specific set of flow parameters (geometry, flow rates, physical properties) adopted in a series...... of laboratory tests conducted in the Multiphase Flow Laboratory of TEA Sistemi. The transient behavior of the flow system, including the orifice, has also been predicted by means of a 1-D flow simulator [2]. The results of these simulations agree well with the experimental readings, thus providing a powerful......A very simple, low-cost gas-liquid flow meter that only employs conventional field instrumentation has been used to monitor severe slugging occurring at the exit of a vertical pipe. This meter was originally developed for conventional oil field applications [1] and is based on the readings...

  10. Testing of self-similarity and helical symmetry in vortex generator flow simulations

    DEFF Research Database (Denmark)

    Fernández-Gámiz, Unai; Velte, Clara Marika; Réthoré, Pierre-Elouan


    Vortex generators (VGs) are used increasingly by the wind turbine industry as flow control devices to improve rotor bladeperformance. According to experimental observations, the vortices generated by VGs have previously been observed to beself-similar for both the axial (uz) and azimuthal (u ) ve...

  11. Computing the flow past Vortex Generators : Comparison between RANS Simulations and Experiments

    NARCIS (Netherlands)

    Manolesos, M.; Sorensen, NN; Troldborg, N.; Florentie, L.; Papadakis, G; Voutsinas, S.


    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental

  12. Computing the flow past Vortex Generators: Comparison between RANS Simulations and Experiments

    DEFF Research Database (Denmark)

    Manolesos, M.; Sørensen, Niels N.; Troldborg, Niels


    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental ...

  13. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor


    Stereoscopic particle image velocimetry measurements have been executed in a low speed wind tunnel in spanwise planes in the flow past a row of vortex generators, mounted on a bump in a fashion producing counter-rotating vortices. The measurement technique is a powerful tool which provides all th...

  14. Multiple inviscid solutions for the flow in a leading- edge vortex

    NARCIS (Netherlands)

    van Noordenburg, M.B.H.; Hoeijmakers, Hendrik Willem Marie


    To analyze the flowfield inside the vortex formed at the leading edge of a highly swept wing at an angle of attack, conical similarity solutions of the compressible Euler equations have been obtained and compared to incompressible conical similarity flow solutions. It is shown that, in contrast to

  15. Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate (United States)

    Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid


    In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.

  16. Simulation of bluff-body flows using iterative penalization in a multiresolution particle-mesh vortex method

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Hejlesen, Mads Mølholm; Walther, Jens Honore

    The ability to predict aerodynamic forces, due to the interaction of a fluid flow with a solid body, is central in many fields of engineering and is necessary to identify error-prone structural designs. In bluff-body flows the aerodynamic forces oscillate due to vortex shedding and variations...... in the oncoming flow. This may lead to structural instability e.g. when the shedding frequency aligns with the natural frequency of the structure. Fluid structure interaction must especially be considered when designing long span bridges. A three dimensional vortex-in-cell method is applied for the direct...... numerical simulation of the flow past a bodies of arbitrary shape. Vortex methods use a simple formulation where only the trajectories of discrete vortex particles are simulated. The Lagrangian formulation eliminates the CFL type condition that Eulerian methods have to satisfy. This allows vortex methods...

  17. Low-Reynolds-number flow around a wall-mounted square cylinder: Flow structures and onset of vortex shedding (United States)

    Rastan, M. R.; Sohankar, A.; Alam, Md. Mahbub


    A direct numerical simulation is applied to investigate three-dimensional unsteady flow characteristics around a finite wall-mounted square cylinder with an aspect ratio of 7 at a Reynolds number (Re) of 40-250. Determination of Re for the onset of vortex shedding and Re influence on the wake structure and integral parameters are the major objectives of the current research. The results show that the vortex shedding inception occurs within the range of 75 topology and integral parameters. As such, the wake flow changes from a dipole to a quadrupole type, when the flow changes from steady to unsteady. A transition flow commences at Re = 150-200, where the wake instabilities are intensified with increasing Re, and the force signal oscillation alters from a sinusoidal to a chaotic type. Finally, the wake flow becomes turbulent at Re > 200.

  18. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation (United States)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  19. AGFW interlaboratory test for validation of test authorities for heat meters. Volume flow metering; AGFW-Ringversuch fuer Pruefstellen fuer Waerme-Messgeraete. Volumenstrommessung

    Energy Technology Data Exchange (ETDEWEB)

    Leitgen, Guenter [WSG Waermezaehler Service GmbH, Essen (Germany); Espig, Frank [AGFW - Der Energieeffizienzverband fuer Waerme, Kaelte und KWK e. V., Frankfurt am Main (Germany)


    For regular validation of authorized test institutions for heat meters in Germany and Austria, the AGFW carried out an interlaboratory test using a transfer normal, in which 25 test authorities participated. Volume flow metering was the first stage; the authors present the measuring programme and discuss the results. (orig.)

  20. Experimental Investigation of the Performance of Tilt Current Meters in Wave-Dominated Flows

    DEFF Research Database (Denmark)

    Hansen, Asger Bendix; Carstensen, Stefan


    In recent years, tilt current meters (TCMs) have received renewed attention as they provide an inexpensive method for measuring currents in the coastal zone. However, previous studies focused mainly on current dominated flows or the current component of the flow. This study investigates the perfo...

  1. Development of a low flow meter for measuring gas production in bioreactors (United States)

    Accurate measurement of gas production from biological processes is important in many laboratory experiments. A gas flow rate measurement system, consisting of an embedded controller operating three gas meters, was developed to measure volumetric flows between 0 and 8 ml min-1 (1 atm, 273.15 K). The...

  2. Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube

    Directory of Open Access Journals (Sweden)

    Rahbar Nader


    Full Text Available There are a few experimental and numerical studies on the behaviour of micro-scale vortex tubes. The intention of this work is to investigate the energy separation phenomenon in a micro-scale vortex tube by using the computational fluid dynamic. The flow is assumed as steady, turbulent, compressible ideal gas, and the shear-stress transport sst k-w is used for modeling of turbulence phenomenon. The results show that 3-D CFD simulation is more accurate than 2-D axisymmetric one. Moreover, optimum cold-mass ratios to maximize the refrigeration-power and isentropicefficiency are evaluated. The results of static temperature, velocity magnitude and pressure distributions show that the temperature-separation in the micro-scale vortex tube is a function of kinetic-energy variation and air-expansion in the radial direction.

  3. A Multiphase Flow Measurement System Comprising an Impedance Cross Correlation (ICC) Device and an Imaging Electromagnetic Flow Meter (IEF).


    Meng, Yiqing; Lucas, Gary


    Flow measurements are playing increasingly important roles in many different application areas, such as manufacturing processes and the oil & gas industry. Multiphase flow measurement in particular is becoming increasingly important to the oil industry. This project concerns the design and implementation of a two-phase flow measurement system which integrates an impedance cross correlation (ICC) flow meter - which can be utilized for measuring the local dispersed phase volume fraction distrib...

  4. Coriolis mass flow meter using contactless excitation and detection

    NARCIS (Netherlands)

    Mehendale, A.; Lotters, Joost Conrad; Lötters, Joost Conrad; Zwikker, Jan Marinus


    A mass flowmeter of the Coriolis type with a tube through which a medium flows during operation and with excitation means for causing the entire tube or part thereof to perform a rotational vibration about a primary axis of rotation during operation. The excitation means are electromagnetic and

  5. Effects of Passive Porosity on Interacting Vortex Flows at Supersonic Speeds (United States)

    Erickson, Gary E.


    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPW7) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS). These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

  6. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects. (United States)

    Calkoen, Emmeline E; Elbaz, Mohammed S M; Westenberg, Jos J M; Kroft, Lucia J M; Hazekamp, Mark G; Roest, Arno A W; van der Geest, Rob J


    During normal left ventricular (LV) filling, a vortex ring structure is formed distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient flow organization. We aimed to investigate whether LAVV abnormality in patients with a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring formation. Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early (E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and orientation of the vortex ring was defined, and the circularity index was calculated. Through-plane flow over the LAVV, and the vortex formation time (VFT), were quantified to analyze the relationship of vortex flow with the inflow jet. Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 19%; P = .015), and A-peak (healthy subjects 10% vs patients 44%; P = .008) was more frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients compared with controls, the vortex cores had a more-anterior and apical position, closer to the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the vortex core closely resembled the valve shape, and its orientation was related to the LV inflow direction. This study quantitatively shows the influence of abnormal LAVV and LV inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, compared with healthy subjects. Copyright © 2015. Published by Elsevier Inc.

  7. Ultrasonic Doppler blood flow meter for extracorporeal circulation (United States)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.


    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  8. Experimental Study of Boundary Layer Flow Control Using an Array of Ramp-Shaped Vortex Generators (United States)

    Hirt, Stefanie M.; Zaman, Khairul B.M.Q.; Bencic, Tomothy J.


    The objective of this study was to obtain a database on the flowfield past an array of vortex generators (VGs) in a turbulent boundary layer. All testing was carried out in a low speed wind tunnel with a flow velocity of 29 ft/sec, giving a Reynolds number of 17,500 based on the width of the VG. The flowfield generated by an array of five ramp-shaped vortex generators was examined with hot wire anemometry and smoke flow visualization. The magnitude and extent of the velocity increase near the wall, the penetration of the velocity deficit into the core flow, and the peak streamwise vorticity are examined. Influence of various parameters on the effectiveness of the array is considered on the basis of the ability to pull high momentum fluid into the near wall region.

  9. Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow (United States)

    Wan, W. C.; Malamud, G.; Shimony, A.; Di Stefano, C. A.; Trantham, M. R.; Klein, S. R.; Shvarts, D.; Drake, R. P.; Kuranz, C. C.


    We report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortex merger rate and growth inhibition for supersonic shear flow.

  10. Visualization and flow surveys of the leading edge vortex structure on delta wing planforms (United States)

    Payne, F. M.; Ng, T. T.; Nelson, R. C.; Schiff, L. B.


    In the present experimental investigation of thin delta wing vortex breakdown, for the cases of sweep angles of 70, 75, 80, and 85 deg, and smoke flow visualization/laser light sheet technique is used to obtain cross sectional views of the leading edge vortices as they break down. A combination of lateral and longitudinal cross sectional views furnishes data on the three-dimensional character of the vortex before, during, and after breakdown. Velocity measurements conducted with a laser Doppler anemometer on the 70 deg sweep delta, at 30 deg angle-of-attack, indicate that when breakdown occurs the core flow is transformed from a jet-like to a wake-like flow.

  11. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates. (United States)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen


    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  12. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization (United States)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.


    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not

  13. Vortex propagation around a wall-mounted obstacle in pulsatile flow (United States)

    Carr, Ian A.; Plesniak, Michael W.


    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  14. Effects of shear on vortex shedding patterns in high Reynolds number flow: an experimental study

    Energy Technology Data Exchange (ETDEWEB)



    Vortex shedding has been identified as a potential major source of loading on the Ocean Thermal Energy Conversion (OTEC) Plant Cold Water Pipe (CWP). To gain a better understanding of the vortex shedding phenomena, a series of model tests has been conducted. The results of this investigation are presented. The effects of current shear on vortex shedding patterns in high Reynolds number (R/sub e/) flow around a circular cylinder used to model the OTEC CWP are addressed. Tests were conducted in a wind tunnel on a 56-inch long, 6-inch diameter circular cylinder for various flow and shear conditions. Measurements were conducted to describe the frequencies of the eddies shed from the cylinder and to investigate the fluctuating surface pressure on the cylinder. From these tests it was determined that shedding for high R/sub e/ sheared flow is characterized by the formation of distinct cells of eddies with constant frequency, that pressure fluctuations on the surface of the cylinder are greater for sheared flow than unsheared flow, and that the mean surface pressures are generally independent of the magnitude of shear.

  15. Vortex-breakdown and wall-separation states in swirling flows in a straight pipe (United States)

    Zhang, Yuxin; Rusak, Zvi; Wang, Shixiao


    The appearance of vortex-breakdown and wall-separation states in various incoming swirling flows to a straight circular pipe is investigated. Fixed-in-time profiles of the axial and circumferential velocities and of the azimuthal vorticity are prescribed at the pipe inlet. A parallel flow state is set at the pipe outlet. Following the theory of Wang & Rusak (1997), the outlet state of the steady flow problem is determined for a long pipe by solutions of the columnar (axially-independent) Squire-Long equation. For each of the incoming flows studied, these solutions include the base columnar flow state, a decelerated flow along the centerline, an accelerated flow along the centerline, a vortex-breakdown state and a wall-separation state. These theoretical predictions are numerically realized by flow simulations based on the unsteady flow equations. The simulations shed light on the base flow stability and the dynamics of initial perturbations to the various states. The present study extends all the six bifurcation diagrams of solutions studied in Leclaire & Sipp (2010), who stopped the development of branches of steady states once breakdown and wall-separation states first appear.

  16. Multipath ultrasonic gas flow-meter based on multiple reference waves. (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen


    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Vortex Flow in the Right Atrium Surrogates Supraventricular Arrhythmia and Thrombus After Atriopulmonary Connection-Type Fontan Operation: Vortex Flow Analysis Using Conventional Cine Magnetic Resonance Imaging. (United States)

    Shiina, Yumi; Inai, Kei; Takahashi, Tatsunori; Shimomiya, Yamato; Ishizaki, Umiko; Fukushima, Kenji; Nagao, Michinobu


    We developed a novel imaging technique, designated as vortex flow (VF) mapping, which presents a vortex flow visually on conventional two-dimensional (2D) cine MRI. Using it, we assessed circumferential VF patterns and influences on RA thrombus and supraventricular tachycardia (SVT) in AP connection-type Fontan circulation. Retrospectively, we enrolled 27 consecutive patients (25.1 ± 9.2 years) and 7 age-matched controls who underwent cardiac MRI. Conventional cine images acquired using a 1.5-Tesla scanner were scanned for axial and coronal cross section of the RA. We developed "vortex flow mapping" to demonstrate the ratio of the circumferential voxel movement at each phase to the total movement throughout a cardiac cycle towards the RA center. The maximum ratio was used as a magnitude of vortex flow (MVF%) in RA cine imaging. We also measured percentages of strong and weak VF areas (VFA%). Furthermore, in 10 out of 27, we compared VF between previous CMR (3.8 ± 1.5 years ago) and latest CMR. Of the patients, 15 had cardiovascular complications (Group A); 12 did not (Group B). A transaxial image showed that strong VFA% in Group A was significantly smaller than that in Group B or controls. A coronal view revealed that strong VFA% was also smaller, and weak VFA% was larger in Group A than in Group B or controls (P < 0.05, and P < 0.05). Maximum MVF% in Group A was significantly smaller than in other groups (P < 0.001). Univariate logistic analyses revealed weak VFA% on a coronal image, and serum total bilirubin level as factors affecting cardiovascular complications (Odds ratio 1.14 and 66.1, 95% CI 1.004-1.30 and 1.59-2755.6, P values < 0.05 and < 0.05, respectively). Compared to the previous CMR, smaller maximum VMF%, smaller strong VFA%, and larger weak VFA% were identified in the latest CMR. Circumferentially weak VFA% on a coronal image can be one surrogate marker of SVT and thrombus in AP connection-type Fontan circulation. This simple VF

  18. Reconstruction of velocity profiles in axisymmetric and asymmetric flows using an electromagnetic flow meter (United States)

    Kollár, László E.; Lucas, Gary P.; Meng, Yiqing


    An analytical method that was developed formerly for the reconstruction of velocity profiles in asymmetric flows is improved to be applicable for both axisymmetric and asymmetric flows. The method is implemented in Matlab, and predicts the velocity profile from measured electrical potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). Potential distributions are measured in uniform and non-uniform magnetic fields, and the velocity is assumed as a sum of axisymmetric and polynomial components. The procedure requires three steps. First, the discrete Fourier transform (DFT) is applied to the potential distribution obtained in a uniform magnetic field. Since the direction of polynomial components of order greater than two in the plane of the pipe cross section is not unique multiple solutions exist, therefore all possible polynomial velocity profiles are determined. Then, the DFT is applied to the potential distribution obtained in a specific non-uniform magnetic field, and used to calculate the exponent in a power-law representation of the axisymmetric component. Finally, the potential distribution in the non-uniform magnetic field is calculated for all of the possible velocity profile solutions using weight values, and the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The method is validated by reconstructing two quartic velocity profiles, one of which includes an axisymmetric component. The potential distributions are obtained from simulations using COMSOL Multiphysics where a model of the EMFM is constructed. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The main benefits of the method described in this paper are that it provides a velocity distribution in the circular cross section of a pipe as an analytical function of the spatial coordinates which is suitable for both

  19. A Self-diagnostic Method for the Electrode Adhesion of an Electromagnetic Flow-meter

    Directory of Open Access Journals (Sweden)

    Wen-Hua Cui


    Full Text Available Electrodes of electromagnetic flow-meter are subject to contamination in sewage measurement. In this paper, the relationship between the internal resistance of the flow-induced voltage and the electrode contamination is analyzed on the basis of numerical analysis. A new self- diagnostic method for electrode adhesion with additional excitation based on photovoltaic cell is proposed, in which magnetic excitation for flow-rate measurement and electric excitation for electrode self-diagnosis is divided in both time domain and frequency domain. A dual-excited electromagnetic flow-meter with electrode self-diagnosis was designed and validated. Simulation experiments based on the change of the internal resistance of the flow-induced voltage were carried out. And the experimental results fully show that this new method is feasible and promising.

  20. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures (United States)

    Sugioka, Hideyuki


    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process.

  1. (A new time of flight) Acoustic flow meter using wide band signals and adaptive beamforming techniques (United States)

    Murgan, I.; Ioana, C.; Candel, I.; Anghel, A.; Ballester, J. L.; Reeb, B.; Combes, G.


    In this paper we present the result of our research concerning the improvement of acoustic time of flight flow metering for water pipes. Current flow meters are based on the estimation of direct time of flight by matched filtering of the received and emitted signals by acoustic transducers. Currently, narrow band signals are used, as well as a single emitter/receptor transducer configuration. Although simple, this configuration presents a series of limitations such as energy losses due to pipe wall/water interface, pressure/flow transients, sensitivity to flow induced vibrations, acoustic beam deformations and shift due to changes in flow velocity and embedded turbulence in the flow. The errors associated with these limitations reduce the overall robustness of existing flow meters, as well as the measured flow rate range and lower accuracy. In order to overcome these limitations, two major innovations were implemented at the signal processing level. The first one concerns the use of wide band signals that optimise the power transfer throughout the acoustic path and also increase the number of velocity/flow readings per second. Using wide band signals having a high duration-bandwidth product increases the precision in terms of time of flight measurements and, in the same time, improves the system robustness. The second contribution consists in the use of a multiple emitter - multiple receivers configuration (for one path) in order to compensate the emitted acoustic beam shift, compensate the time of flight estimation errors and thus increase the flow meter's robustness in case of undesired effects such as the “flow blow” and transient/rapid flow rate/velocity changes. Using a new signal processing algorithm that take advantage of the controlled wide band content coming from multiple receivers, the new flow meters achieves a higher accuracy in terms of flow velocity over a wider velocity range than existing systems. Tests carried out on real scale experimental

  2. Research and design of underwater flow-induced vibration energy harvester based on Karman vortex street (United States)

    Yao, Gang; Wang, Hai; Yang, Chunlai; Wen, Li


    With the increasing development of wireless sensor network (WSN), power supply for WSN nodes had attracted increasing attention, and the energy harvesting system based on Karman vortex street has been widely used in underwater WSN. But the research of the influences of affecting factors towards the energy harvesting system is yet to be completed. So, in this paper, an underwater flow-induced vibration energy harvesting system based on Karman vortex street was proposed and tested. The influence of bluff body geometry and flow velocity towards the performance of the energy harvesting has been researched. The results showed that the output voltage increased as the diameter of bluff body and the water velocity increase. The power generation efficiency was the best when the shape of bluff body was circular.

  3. Computing the flow past Vortex Generators: Comparison between RANS Simulations and Experiments (United States)

    Manolesos, M.; Sørensen, N. N.; Troldborg, N.; Florentie, L.; Papadakis, G.; Voutsinas, S.


    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental data. The best results are obtained with the more expensive fully resolved VG approach. The cost efficient BAY model can also provide acceptable results, if grid related numerical diffusion is minimized and only force coefficient polars are considered.

  4. The flow field inside a Ranque-Hilsch vortex tube part I: Experimental analysis using planar filtered Rayleigh scattering


    Doll, Ulrich; Burow, Eike; Beversdorff, Manfred; Stockhausen, Guido; Willert, Christian; Morsbach, Christian; Schlüß, Daniel; Franke, Martin


    The flow field of a Ranque-Hilsch vortex tube is characterized experimentally. Firstly conventional probe based technology is used in order to measure inlet and outlet temperatures as well as to acquire temporally resolved wall pressure data over a wide range of operating conditions. Secondly the filtered Rayleigh scattering technique is employed in order to gather detailed temporally averaged planar information on the vortex tube’s flow topology. These measurements form the basis of a detail...


    Directory of Open Access Journals (Sweden)

    Gulyaev Valeriy Genrihovich


    Full Text Available The article covers the issues of development and the results of the pilot testing of the contact-free meter of the two-phase flow of loose construction materials in the course of their pneumatic transportation. The flow meter designed by the author is based on the method of registration of polarization currents caused by the motion of the dielectric material within the electric field of a measurement unit integrated into the pneumatic transportation line. The registration unit is the implementation of the original technology. Its functional concept is based on the Pockels transverse effect inside the lithium niobate crystal. This electro-optical effect is characterized by minimal persistence, as the phase of the optical wave varies within the time period of 10 second, and this effect makes it possible to improve the accuracy of measurements. The flow rates is identified on the basis of one variable integral parameter, the intensity of an optical wave passing through the Pockels cell simulated by the currents of polarization of the material. The paper contains the structural pattern of the computer-aided meter of loose dielectric materials in the course of their pneumatic transportation, the system of visualization of the mass flow, and the results of the pilot testing of the proposed meter. The proposed system may represent an unbiased system of management of construction materials, consumption procedures, and warehouse processing of materials.

  6. Towards high-resolution 3D flow field measurements at cubic meter scales

    NARCIS (Netherlands)

    Schanz, Daniel; Huhn, Florian; Gesemann, Sebastian; Dierksheide, Uwe; van de Meerendonk, R.; Manovski, P.; Schröder, A.

    We present results from two large-volume volumetric flow experiments. The first of these, investigating a thermal plume at low velocities (up to 0.35 m/s) demonstrates the abilities and requirements to reach volume sizes up to and probably beyond one cubic meter. It is shown that the use of Helium

  7. Vortex flow and cavitation in diesel injector nozzles (United States)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  8. Active flow control of the vortex rope and pressure pulsations in a swirl generator

    Directory of Open Access Journals (Sweden)

    Ardalan Javadi


    Full Text Available The vortex rope and pressure pulsations caused by a radial pressure gradient in the conical diffuser of a swirl generator is controlled using continuous slot jets with different momentum fluxes and angles injected from the runner crown. The swirl apparatus is designed to generate flows similar to those in the different operating conditions of a Francis turbine. The study is done with numerical modelling using the hybrid URANS-LES (Unsteady Reynolds-Averaged Navier–Stokes–Large Eddy Simulation method with the rotor–stator interaction. The comprehensive studies of Javadi and Nilsson [Time-accurate numerical simulations of swirling flow with rotor–stator interaction. Flow, Turbulence and Combustion, Vol. 95, pp. 755–774], and Javadi, Bosioc, Nilsson, Muntean and Susan-Resiga [Experimental and numerical investigation of the precessing helical vortex in a conical diffuser, with rotor–stator interaction. ASME Journal of Fluids Engineering, doi:10.1115/1.4033416] are considered as the bench mark, and the capabilities of the technique is studied in the present work with the validated numerical results presented in those studies. The pressure pulsations caused by the pressure gradient generated by the swirl, present at off-design conditions, are cumbersome for hydropower structures. The investigation shows that the pressure pulsation, velocity fluctuations and the size of the vortex rope decrease when the jet is injected from the runner crown. The flow rate of the jet is less than 3% of the flow rate of the swirl generator. The momentum flux, angle of injection of the jet and the position of the slot are important factors for the effectiveness of the flow control technique.

  9. In-situ coal seam and overburden permeability characterization combining downhole flow meter and temperature logs.

    Directory of Open Access Journals (Sweden)

    Busse Julia


    Full Text Available The planning and design of any coal mine development requires among others a thorough investigation of the geological, geotechnical and hydrogeological subsurface conditions. As part of a coal mine exploration program we conducted heat pulse vertical flow meter testing. The flow data were combined with absolute and differential temperature logging data to gain information about the hydraulic characteristics of two different coal seams and their over- and interburden. For the strata that were localised based on geophysical logging data including density, gamma ray and resistivity hydraulic properties were quantified. We demonstrate that the temperature log response complements the flow meter log response. A coupling of both methods is therefore recommended to get an insight into the hydraulic conditions in a coal seam and its overburden.

  10. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section (United States)

    Zaman, Khairul; Fagan, Amy; Mankbadi, Mina


    An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.

  11. On Stagnation points and streamline topology in vortex flows

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten


    The problem of locating stagnation points in the flow produced by a system of N interacting point vortices in two dimensions is considered. The general solution, which follows from an 1864 theorem by Siebeck, that the stagnation points are the foci of a certain plane curve of class N-1 that has all...... lines connecting vortices pairwise as tangents, is stated and proved. Specific results for the case N=3 are proved. The related problem of the location of stagnation points in a frame of reference moving with the vortices, when these are translating uniformly, is considered and an extension of Siebeck...

  12. The use of linearized-aerodynamics and vortex-flow methods in aircraft design /invited paper/ (United States)

    Lamar, J. E.


    This paper deals with selected linearized-aerodynamic and vortex-flow methods as applied to aircraft design problems at high subsonic speeds. In particular, the NASA Vortex Lattice and Modified Multhopp methods are the linearized techniques employed, and the suction analogy is used to provide estimates associated with vortex-flow aerodynamics. Many examples are given as to how researchers at Langley have used these methods to design the high subsonic, wing-mean-camber shapes for various configurations such as a supersonic transport, high-aspect-ratio transport, trapezoidal fighter wing, strake wing, tandem wing, joined wing, delta wing, and slender cranked wing. Many of these have been built, tested, and have had their data compared with theory. In addition, a technique for defining efficiently performing strake planforms for use in strake-wing combinations is discussed, and further improvements in wing design are outlined. The latter may be obtained by using higher-ordered linear panel methods as well as nonlinear-transonic methods.

  13. Influence of the operating pressure in flow metering systems using turbine meters-key factors; Influencia da pressao em sistemas de medicao de gas natural com totalizadores de volume do tipo turbina: fatores a considerar

    Energy Technology Data Exchange (ETDEWEB)

    Wilcek, Alanna; Picanco, Marco Antonio S. [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil)


    Flow measurement is a strategic process in the Natural Gas transport and distribution industry. The diary measurement of the 43 million cubic meters consumed in Brazil is made by flow meters certified by the Rede Brasileira de Calibracao (Brazilian Calibration Network) and INMETRO. Turbine flow meters are commonly applied in high flow measurement systems. Some manufactures and authors discuss the sensibility of turbine meters to the operational conditions. The objective of this paper is to establish a discussion about the flow pressure effects in the turbine meter and the influence in measure errors. (author)

  14. Core Spreading Vortex Method for Simulating 3D Flows Around Bluff Bodies

    Directory of Open Access Journals (Sweden)

    Lavi R. Zuhal


    Full Text Available This paper presents the development of core spreading vortex element method, which is a mesh-free method, for simulating 3D viscous flow over bluff bodies. The developed method simulates external flow around complex geometry by tracking local velocities and vorticities of particles introduced within the fluid domain. The viscous effect is modeled using core spreading method coupled with the splitting spatial adaption scheme, and a smoothing interpolation scheme for overlapping issue and population control, respectively. The particle’s velocity is calculated using Biot-Savart formulation. To accelerate computation, Fast Multipole Method (FMM is employed. The solver is validated, for both unbounded and bounded flows at low Reynolds numbers, using a number of benchmark problems. For unbounded case, simulation of the collision of two vortex rings was performed. To test the performance of the method in simulating bounded flow problem, simulation of flow around a sphere was carried out. The results are found to be in good agreement with those reported in literatures and also simulations using other diffusion model.

  15. Reynolds stress and the energy balance of a localized two-dimensional vortex in a uniform shear flow (United States)

    Cummins, Patrick F.


    Consideration is given to the kinetic energy balance of a localized two-dimensional vortex in unbounded space, subject to a uniform background shear flow. For this problem, a quadratic invariant based on the total flow can be constructed that consists of the sum of the vortex self-energy and the energy of interaction with the background flow. It is shown that an energy equation also may be written for the rate of change of vortex self-energy, relating this to the rate of working by the Reynolds stress. The stress integral is demonstrated to converge for a localized vortex of finite circulation, in contrast to the total kinetic energy. The two approaches to the energy balance are shown to be complementary, and the relation between the Reynolds stress and interaction energy is discussed. As an example, the integrated Reynolds stress is evaluated for a uniformly sheared elliptical (Kirchhoff) vortex. The stress integral includes far field contributions, indicating that appreciable exchange of energy with the external flow occurs well beyond the boundary of the vortex.

  16. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    Directory of Open Access Journals (Sweden)

    Świsulski Dariusz


    Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  17. Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect (United States)

    Kalashnik, M. V.; Visheratin, K. N.


    A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100°C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

  18. Effective Height of a Floor Splitter Anti-Vortex Device under Varying Flow Conditions

    Directory of Open Access Journals (Sweden)

    Hyung-Jun Kim


    Full Text Available A pump station is a crucial flood control facility for mitigating inundation of urban lowland areas. Securing a site to increase the capacity of a pump station or to maximize the discharge capacity of the pump sump in an urban area is difficult because of various limitations. Moreover, adding a facility to improve the pump capacity of a pump station may affect flow characteristics, e.g., unexpected increases in flow velocity and vorticity, and cause severe problems in pump station operation. To solve those problems, anti-vortex devices (AVDs have been developed and adopted according to the appropriate design standards. The Korean design criteria for AVDs are based on experience and the standards of other countries because of the lack of adequate data on AVDs. In this study, flow in the sump was numerically simulated at various AVD heights to obtain data for improving the design and efficiency of a pump station. Consequently, the appropriate height for the AVD and changes in the flow pattern and vortex in the pump sump were determined and compared with 12 cases of inflow conditions with respect to the vertical location.

  19. The influence of upstream boundary conditions on swirling flows undergoing vortex breakdown (United States)

    Rukes, Lothar; Sieber, Moritz; Oberleithner, Kilian; Paschereit, Oliver


    Swirling jets undergoing vortex breakdown are common in research and technology. In part this is because swirling jets are widely used to anchor the flame position in gas turbines. Recently, the benefit in terms of flashback safety of axial air injection via a center body in the upstream mixing tube of a simplified premixed burner was demonstrated, Reichel (ASME Turbo Expo 2014). However, the presence of a center body alone alters the upstream boundary conditions for the downstream swirling flow. This study investigates how different upstream conditions modify the downstream swirling jet in a more generic setup. A swirling jet facility is used, consisting of a swirler, a pipe, a nozzle and an unconfined part. The focus lies on two large-scale flow features: the precessing vortex core (PVC) and the recirculation bubble. The flow field is measured with Particle Image Velocimetry and proper orthogonal decomposition is conducted to extract the dominant coherent structures. Additionally, a feature tracking approach is used to track the instantaneous shape and position of the recirculation bubble. We find that different center bodies modify the inflow profiles of the unconfined part of the flow in a specific way. This leads to significant differences in the large scale dynamics. Financial support from the German Science Foundation is gratefully acknowledged.

  20. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. (United States)

    Birch, James M; Dickson, William B; Dickinson, Michael H


    The elevated aerodynamic performance of insects has been attributed in part to the generation and maintenance of a stable region of vorticity known as the leading edge vortex (LEV). One explanation for the stability of the LEV is that spiraling axial flow within the vortex core drains energy into the tip vortex, forming a leading-edge spiral vortex analogous to the flow structure generated by delta wing aircraft. However, whereas spiral flow is a conspicuous feature of flapping wings at Reynolds numbers (Re) of 5000, similar experiments at Re=100 failed to identify a comparable structure. We used a dynamically scaled robot to investigate both the forces and the flows created by a wing undergoing identical motion at Re of approximately 120 and approximately 1400. In both cases, motion at constant angular velocity and fixed angle of attack generated a stable LEV with no evidence of shedding. At Re=1400, flow visualization indicated an intense narrow region of spanwise flow within the core of the LEV, a feature conspicuously absent at Re=120. The results suggest that the transport of vorticity from the leading edge to the wake that permits prolonged vortex attachment takes different forms at different Re.

  1. Wind energy concentration within vortex flow fields and its utilization for the generation of energy, phase 1 (United States)

    Greff, E.; Holsdeppe, D.


    Delta-shaped planforms serving as vortex generators were investigated in a water tunnel where vortex stabilization by spanwise camber was achieved. The velocity field of an optimized wing was measured in a wind tunnel with a five hole probe. Codes for rotor blade design in flows with swirl were derived and a threefold optimum solidity was found. Power measurements on a four blade rotor show an upper limit of loading at a power amplification ratio of two.

  2. Inadequate peak expiratory flow meter characteristics detected by a computerised explosive decompression device

    DEFF Research Database (Denmark)

    Miller, M.R.; Atkins, P.R.; Pedersen, O.F.


    valve. These profiles matched population 5th and 95th centiles for rise time from 10% to 90% of PEF and dwell time of flow above 90% PEF. Profiles were delivered five times with identical chamber pressure and solenoid aperture at PEF. Any difference in recorded PEF for the two profiles indicates a poor...... dynamic response. Results: The absolute (% of mean) flow differences in l/min for the V, MW, and PT PEF meters were 25 (4.7), 20 (3.9), and 2 (0.3), respectively, at PEF ≈500 l/min, and 25 (10.5), 20 (8.7) and 6 (3.0) at ≈200 l/min. For TZ and MS meters at ≈500 l/min the differences were 228 (36...

  3. Simulation of Marine Hydrokinetic Turbines in Unsteady Flow using Vortex Particle Method (United States)

    Sale, Danny; Aliseda, Alberto


    A vortex particle method has been developed to study the performance and wake characteristics of Marine Hydrokinetic turbines. The goals are to understand mean flow and turbulent eddy effects on wake evolution, and the unsteady loading on the rotor and support structures. The vorticity-velocity formulation of the Navier-Stokes equations are solved using a hybrid Lagrangian-Eulerian method involving both vortex particle and spatial mesh discretizations. Particle strengths are modified by vortex stretching, diffusion, and body forces; these terms in the vorticity transport equation involve differential operators and are computed more efficiently on a Cartesian mesh using finite differences. High-order and moment-conserving interpolations allow the particles and mesh to exchange field quantities and particle strengths. An immersed boundary method which introduces a penalization term in the vorticity transport equations provides an efficient way to satisfy the no-slip boundary condition on solid boundaries. To provide further computational speedup, we investigate the use of multicore processors and graphics processing units using the OpenMP and OpenCL interfaces within the Parallel Particle-Mesh Library.

  4. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine (United States)

    Yang, Peng; Chen, Hui; Liu, Yingwen


    In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."

  5. An active feedback flow control theory of the vortex breakdown process (United States)

    Granata, Joshua

    An active feedback flow control theory of the vortex breakdown process in incompressible, axisymmetric swirling flows in a finite-length, straight, circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet and outlet conditions. A long-wave asymptotic analysis, which involves a re-scaling of the axial distance and time at near critical swirl ratios, results in a nonlinear model problem for the dynamics and control of both inviscid and high-Reynolds number, Re, flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. Computed examples of the flow dynamics based on the full Euler and Navier-Stokes formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level which depends on Re. Numerical stability and mesh convergence studies performed on the inviscid and high-Re flow simulations ensure the accuracy of the computations and the agreement with the theoretical approaches. In addition, an energy analysis of the nonlinear model problem sheds insight into the mechanisms of the flow dynamics which lead to vortex breakdown and suggests a feedback control law which relates the flow injection and the evolving maximum radial velocity at the inlet. Moreover, applying the proposed feedback control law during flow evolution, shows for the first time the successful and robust elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl up to 53 percent above the first critical level for the inviscid flow case and for a range of swirl up to 15 percent above the first critical level for viscous flows. The control law can be improved for a lower momentary maximum flux injection through the use of discrete injection regions along the pipe. The feedback control cuts the natural feed-forward mechanism of the breakdown

  6. Numerical Simulation of Bubble Cluster Induced Flow by Three-Dimensional Vortex-in-Cell Method. (United States)

    Chen, Bin; Wang, Zhiwei; Uchiyama, Tomomi


    The behavior of air bubble clusters rising in water and the induced flow field are numerically studied using a three-dimensional two-way coupling algorithm based on a vortex-in-cell (VIC) method. In this method, vortex elements are convected in the Lagrangian frame and the liquid velocity field is solved from the Poisson equation of potential on the Eulerian grid. Two-way coupling is implemented by introducing a vorticity source term induced by the gradient of void fraction. Present simulation results are favorably compared with the measured results of bubble plume, which verifies the validity of the proposed VIC method. The rising of a single bubble cluster as well as two tandem bubble clusters are simulated. The mechanism of the aggregation effect in the rising process of bubble cluster is revealed and the transient processes of the generation, rising, strengthening, and separation of a vortex ring structure with bubble clusters are illustrated and analyzed in detail. Due to the aggregation, the average rising velocity increases with void fraction and is larger than the terminal rising velocity of single bubble. For the two tandem bubble cluster cases, the aggregation effect is stronger for smaller initial cluster distance, and both the strength of the induced vortex structure and the average bubble rising velocity are larger. For the 20 mm cluster distance case, the peak velocity of the lower cluster is about 2.7 times that of the terminal velocity of the single bubble and the peak average velocity of two clusters is about 2 times larger. While for the 30 mm cluster distance case, both the peak velocity of the lower cluster and two clusters are about 1.7 times that of the terminal velocity of the single bubble.

  7. Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets (United States)

    Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga


    Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.

  8. The wave plus current flow over vortex ripples at an arbitrary angle

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Faraci, C


    This work concerns the wave plus current flow over a sand bed covered by vortex ripples, with the current and the waves coming from different angles. Experiments were performed in a basin, where current and waves were perpendicular, in order to determine the conditions (current strength) leading...... to a regular ripple pattern formation. Numerical simulations were conducted changing the direction between the waves and the current from 0degrees to 90degrees and the ratio between the current strength and the wave orbital velocity from 0.2 to 1.5. Close to the bed, the current aligns parallel to the ripple...

  9. Numerical simulations of swirling pipe flows- decay of swirl and occurrence of vortex structures (United States)

    Vaidya, H. A.; Ertunç, Ö.; Genç, B.; Beyer, F.; Köksoy, Ç.; Delgado, A.


    The present work aims at better understanding of the physics underlying swirling flows in pipes by means of numerical simulations. Direct numerical simulations have been carried out by using two different inlet swirl conditions. In one case, rotating honeycomb is used as the means to generate swirl whereas in the other case a solid body rotation is provided at the inlet. The inlet swirl intensity is varied in order to scan the underlying physics. Reynolds number 1730 is selected so that the flow remains in laminar regime. The results are compared with those obtained from the experiments using a similar experimental set-up. It is shown that the increase in the inlet swirl intensity leads to a faster decay of swirl downstream of the pipe. Similarly certain specific vortex structures are observed in the radial velocity contours. These structures are thought to be analogous with those found in the Taylor-Couette flow between a stationary outer cylinder and inner rotating cone. The reported investigations reveal dependence of swirl decay on the inlet swirl intensity and occurrence of vortex structures.

  10. Numerical simulations of swirling pipe flows- decay of swirl and occurrence of vortex structures

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, H A; Ertunc, Oe; Genc, B; Beyer, F; Koeksoy, C; Delgado, A, E-mail: [Institute of Fluid Mechanics, FAU Erlangen-Nuremberg (Germany)


    The present work aims at better understanding of the physics underlying swirling flows in pipes by means of numerical simulations. Direct numerical simulations have been carried out by using two different inlet swirl conditions. In one case, rotating honeycomb is used as the means to generate swirl whereas in the other case a solid body rotation is provided at the inlet. The inlet swirl intensity is varied in order to scan the underlying physics. Reynolds number 1730 is selected so that the flow remains in laminar regime. The results are compared with those obtained from the experiments using a similar experimental set-up. It is shown that the increase in the inlet swirl intensity leads to a faster decay of swirl downstream of the pipe. Similarly certain specific vortex structures are observed in the radial velocity contours. These structures are thought to be analogous with those found in the Taylor-Couette flow between a stationary outer cylinder and inner rotating cone. The reported investigations reveal dependence of swirl decay on the inlet swirl intensity and occurrence of vortex structures.

  11. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications (United States)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.


    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  12. Fabrication of a cantilever-based microfluidic flow meter with nL min(-1) resolution

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja


    A microfluidic flow meter based on cantilever deflection is developed, showing a resolution down to 3 nL min(-1) for flows in the microliter range. The cantilevers are fabricated in SU-8 and have integrated holes with dimensions from 5 x 5 to20x 20 mu m(2). The holes make it possible to measure......). With this etch the cantilever structures are under-etched before they are released by tweezers and the release yield is enhanced from 41.5% to 84.0%. In a continuous flow mode, the deflection of the cantilevers is directly proportional to the flow rate. By tuning the design of the integrated grid (hole size......, hole-to-hole distance, amount of holes, etc) the sensitivity of the sensor can be changed....

  13. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (United States)


    ... calibration; particulate, methanol and formaldehyde measurement. 86.120-94 Section 86.120-94 Protection of... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters...

  14. Acoustic streaming in swirling flow and the Ranque-Hilsch /vortex-tube/ effect (United States)

    Kurosaka, M.


    The Ranque-Hilsch effect, observed in swirling flow within a single tube, is a spontaneous separation of total temperature, with the colder stream near the tube center line and the hotter air near its periphery. Despite its simplicity, the mechanism of the Ranque-Hilsch effect has been a matter of long-standing dispute. Analysis and experiment are used to demonstrate that the acoustic streaming induced by orderly disturbances within the swirling flow is, to a substantial degree, a cause of the Ranque-Hilsch effect. The analysis predicts that the streaming induced by the pure tone, a spinning wave corresponding to the first tangential mode, deforms the base Rankine vortex into a forced vortex, resulting in total temperature separation in the radial direction. This is confirmed by experiments, where, in the Ranque-Hilsch tube of uniflow arrangement, acoustic suppressors of organ-pipe type are installed, tuned to the discrete frequency of the first tangential mode, attenuate its amplitude, and it is shown that this does indeed reduce the total temperature separation.

  15. CFD Studies on Triangular Micro-Vortex Generators in Flow Control (United States)

    Yashodhar, V.; Humrutha, G.; Kaushik, M.; Khan, S. A.


    In the present study, the flow characteristics of the commercially used S809 wind turbine airfoil controlled with triangular counter-rotating micro-vortex generators at stall angle of attack of 15 degrees and 10 m/s, 15 m/s and 20 m/s (speed range used in the wind turbine applications) had been computationally investigated. In addition to the controlled airfoil, an uncontrolled airfoil was also studied for the comparison. The modelling and analysis had been carried out using incompressible, Reynolds Averaged Navier Stokes equation using Spalart-Allmaras one equation turbulence model. The numerical computations were performed with SIMPLE algorithm. The velocity profiles at different locations on the suction surface were plotted for both uncontrolled and controlled airfoils. The shear stresses exerted on the upper surface of the airfoil in both the configurations were also compared. It is found that the controlled airfoil, the shear stress distribution was greatly increased near to trailing edge of the airfoil revealing the superiority of vortex generators in increasing the efficiency of wind turbine by delaying boundary layer separation. The qualitative results of flow visualization in the spanwise direction also support the quantitative findings of velocity profiles and shear stress distribution.

  16. Development of a turbulence model for the modeling of a vortex flow; Developpement d`un modele de turbulence pour modeliser un ecoulement vortex

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, B.; Duhamel, Ph.; Cordonnier, A. [FCB Centre de Recherches, 59 - Lille (France); Florent, P. [LAMIH/LMFE, 59 - Valenciennes (France)


    The cyclones used in cement industry generally have a diameter of 4 to 6 m. However, tests on cyclones bigger than 4 m can hardly be performed and thus, it is important to study the influence of the size of the apparatus on the development of the generated vortex. A study of the structure and characteristics of the suspension inside a cyclone has been carried out. The results of the characterization of two cyclones (400 and 800 mm diameter) running without load are presented first in order to study the vortex behaviour. In parallel with this experimental study, a numerical study has been carried out and a calculation code called CYCLOP has been developed. The code, the equations of the gas flow inside the cyclone and the modifications given to the turbulent model are presented. (J.S.) 4 refs.

  17. Numerical analysis of the flow pattern and vortex breakdown over a pitching delta wing at supersonic speeds (United States)

    Hadidoolabi, M.; Ansarian, H.


    A supersonic compressible flow over a 60° swept delta wing with a sharp leading edge undergoing pitching oscillations is computationally studied. Numerical simulations are performed by the finite volume method with the use of the k- ω turbulence model for various Mach numbers and angles of attack. Variations of flow patterns in a crossflow plane, hysteresis loops associated with the vortex core location, and vortex breakdown positions during a pitching cycle are investigated. Trends for various Mach numbers, mean angles of attack, pitching amplitudes, and pitching frequencies are illustrated.

  18. Diagnostics of BubbleMode Vortex Breakdown in Swirling Flow in a Large-Aspect-Ratio Cylinder

    DEFF Research Database (Denmark)

    Kulikov, D. V.; Mikkelsen, Robert Flemming; Naumov, Igor


    of bubble-mode breakdown was studied in detail for cylindrical cavities of moderate aspect ratio (length to radius ratios up to H/R ∼ 3.5), while flows in large-aspect-ratio cylinders were only associated with regimes of self-organized helical vortex multiplets. In the present study, a regime......We report for the first time on the possible formation of regions with counterflow (bubble-mode vortex breakdown or explosion) at the center of strongly swirling flow generated by a rotating endwall in a large-aspect-ratio cylindrical cavity filled with a liquid medium. Previously, the possibility...

  19. Self-Similarity and helical symmetry in vortex generator flow simulations (United States)

    Fernández, U.; Velte, Clara M.; Réthoré, P.-E.; Sørensen, N. N.


    According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (uz) and azimuthal (uθ) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry. This is a powerful result, since it reduces the highly complex flow to merely four parameters. In the present work, corresponding computer simulations using Reynolds- Averaged Navier-Stokes equations have been carried out and compared to the experimental observations. The main objective of this study is to investigate how well the simulations can reproduce the physics of the flow and if the same analytical model can be applied. Using this model, parametric studies can be significantly reduced and, further, reliable simulations can substantially reduce the costs of the parametric studies themselves.

  20. DNS Study of the Turbulent Taylor-Vortex Flow on a Ribbed Inner Cylinder

    Directory of Open Access Journals (Sweden)

    Takahiro Tsukahara


    Full Text Available Turbulent Taylor-vortex flows over regularly spaced square ribs mounted on a rotating inner cylinder surface were investigated using direct numerical simulations (DNSs for a Reynolds number of 3200 (based on the inner-wall velocity and the gap width between two cylinders in an apparatus with an inner-to-outer radius ratio of 0.617, while varying the streamwise interval of the ribs. We examined the flow and pressure fields around each rib, focusing on the recirculation zone, the frictional drag coefficient, and the pressure (form drag. Our results for the Taylor-Couette flows were compared to DNS for plane Poiseuille flows over ribbed surfaces performed by Leonardi et al. (2003. We determined the qualitative consistency between them with respect to the roughness effect, which depends significantly on the rib interval, but the rate of increase in the flow resistance was remarkably dampened by roughness in the present flows. Taylor vortices remaining over roughened cylinder surfaces were found to induce quick pressure recovery behind each rib, leading to less pressure drag and an enhanced backflow in the recirculation zone.

  1. Analyzing vortex breakdown flow structures by assignment of colors to tensor invariants. (United States)

    Rütten, Markus; Chong, Min S


    Topological methods are often used to describe flow structures in fluid dynamics and topological flow field analysis usually relies on the invariants of the associated tensor fields. A visual impression of the local properties of tensor fields is often complex and the search of a suitable technique for achieving this is an ongoing topic in visualization. This paper introduces and assesses a method of representing the topological properties of tensor fields and their respective flow patterns with the use of colors. First, a tensor norm is introduced, which preserves the properties of the tensor and assigns the tensor invariants to values of the RGB color space. Secondly, the RGB colors of the tensor invariants are transferred to corresponding hue values as an alternative color representation. The vectorial tensor invariants field is reduced to a scalar hue field and visualization of iso-surfaces of this hue value field allows us to identify locations with equivalent flow topology. Additionally highlighting by the maximum of the eigenvalue difference field reflects the magnitude of the structural change of the flow. The method is applied on a vortex breakdown flow structure inside a cylinder with a rotating lid.

  2. Quantification of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries


    In this paper the influence of external vibrations on the measurement value of a Coriolis mass-flow meter (CMFM) for low flows is investigated and quantified. Model results are compared with experimental results to improve the knowledge on how external vibrations affect the mass-flow measurement

  3. Efficacy of the ejector flow-meter. A scavenging device for anaesthetic gases

    Energy Technology Data Exchange (ETDEWEB)

    Obel, D.; Jorgensen, S.; Ferguson, A.; Frandsen, K.


    Measurements of air concentrations of nitrous oxide and halothane in the breathing zone of the anaesthetist and the operating-room nurse were carried out during inhalation anaesthesia with a Mapleson D system. Gas removal was performed from inside the breathing system at the same rate as that of the fresh gas inflow by means of an ejector flow-meter. The concentrations of nitrous oxide and halothane were maintained below the Danish Threshold Limit Values of 100 and 5 parts per million, respectively, by using this type of scavenging. When these anaesthetics were used simultaneously, the reduced Threshold Limit Values were not exceeded during endotracheal anaesthesia.

  4. Efficacy of the ejector flow-meter. A scavenging device for anaesthetic gases. (United States)

    Obel, D; Jørgensen, S; Ferguson, A; Frandsen, K


    Measurements of air concentrations of nitrous oxide and halothane in the breathing zone of the anaesthetist and the operating-room nurse were carried out during inhalation anaesthesia with a Mapleson D system. Gas removal was performed from inside the breathing system at the same rate as that of the fresh gas inflow by means of an ejector flow-meter. The concentrations of nitrous oxide and halothane were maintained below the Danish Threshold Limit Values of 100 and 5 parts per million, respectively, by using this type of scavenging. When these anaesthetics were used simultaneously, the reduced Threshold Limit Values were not exceeded during endotracheal anaesthesia.

  5. Application of a laser interferometer skin-friction meter in complex flows (United States)

    Monson, D. J.; Driver, D. M.; Szodruch, J.


    The application of a nonintrusive laser-interferometer skin-friction meter, which measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film, is extended both experimentally and theoretically to several complex wind-tunnel flows. These include two-dimensional seperated and reattached subsonic flows with large pressure and shear gradients, and two and three-dimensional supersonic flows at high Reynolds number, which include variable wall temperatures and cross-flows. In addition, it is found that the instrument can provide an accurate location of the mean reattachment length for separated flows. Results show that levels up to 120 N/sq m, or 40 times higher than previous tests, can be obtained, despite encountering some limits to the method for very high skin-friction levels. It is concluded that these results establish the utility of this instrument for measuring skin friction in a wide variety of flows of interest in aerodynamic testing.

  6. Vortex-induced vibrations of a cylinder in planar shear flow (United States)

    Gsell, Simon; Bourguet, Remi; Braza, Marianna


    Vortex-induced vibrations (VIV) of bluff bodies are common in nature and in engineering applications where flexible or flexibly mounted structures are exposed to wind and ocean currents. VIV have been thoroughly studied through the canonical problem of an elastically mounted, rigid cylinder immersed in uniform flow. However, in the real physical systems where VIV develop, the oncoming flows are usually non-uniform. The present work investigates the impact of a shear of the oncoming current in the cross-flow direction. As a first preliminary step, focus is placed on the fixed cylinder case; the analysis is based on a series of numerical simulations over a wide range of shear rates, at Reynolds number 100. It is found that the shear leads to the cancellation of wake unsteadiness beyond a critical value of the shear rate. Once the rigid cylinder is elastically mounted, free vibrations arise over the entire range of shear rates under study, including beyond the above mentioned critical value. Different flow-structure interaction regimes are uncovered. Some of them exhibit a major deviation from the uniform-flow case, with a profound reconfiguration of the wake patterns and a dramatic amplification of the structural response amplitudes.

  7. Feedback stabilization of vortex flows in a finite-length straight pipe (United States)

    Wang, S.; Gong, R.; Rusak, Z.; Xu, L.; Taylor, S.; Jeng, L.


    The properties of a recently proposed feedback stabilization method of swirling flows in a finite-length pipe are studied. In the natural case, when swirl is above a critical level, linearly unstable modes appear in sequence as swirl increases and evolve to a vortex breakdown state. Based on a long-wave approach, the feedback control methodology is shown to enforce decay of perturbation's kinetic energy and to quench all instability modes at above critical swirl. In the case of a solid-body rotation, the effectiveness of this control approach is further analyzed through a mode analysis of the full linearized flow control problem. We first establish the asymptotic decay of all modes with real growth rates. We then compute growth rates of all modes according to the linearized flow control problem for swirl up to 50% above critical level. Flow stabilization in the whole swirl range is demonstrated. However, control effectiveness is sensitive to choice of the control gain. An inadequate gain, either insufficient or excessive, could lead to a failure of control at high swirl levels. Predictions of controlled flow cases agree with numerical simulations using the full unsteady and axisymmetric Euler equations with fluidic actuation along the pipe wall. Rusak et al. JFM 2012.

  8. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)


    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  9. Experimental Study on Performance of Turbine Flowmeter and Venturi Meter in Oil-Water Two-Phase Flow Measurement (United States)

    Huang, Zhiyao; Li, Xia; Liu, Yian; Wang, Baoliang; Li, Haiqing


    The performance of turbine flowmeter and Venturi meter in oil-water two-phase flow measurement was investigated. Experiments were carried out on horizontal pipelines of 0.5-inch, 1.0-inch and 1.5-inch diameters, with the total flowrate range of 0.9˜4.5m3/h and the oil volume fraction range of 15% ˜ 85%. Experimental results show that the measurement errors of the turbine flowmeter and the Venturi meter obviously increase, whether the static mixer is installed on the experimental loop or not. Also, the non-homogeneity of the oil-water two-phase flow and the swirl flow produced by the static mixer have negative influence on the performance of turbine flowmeter and Venturi meter. Research work further indicates that the oil fraction has significant influence on the measurement results of Venturi meter.

  10. A Novel Method of Multi-Information Acquisition for Electromagnetic Flow Meters

    Directory of Open Access Journals (Sweden)

    Wenhua Cui


    Full Text Available In this paper, a novel method is proposed for multi-information acquisition from the electromagnetic flow meter, using magnetic excitation to measure the fluid velocity and electrochemistry impedance spectroscopy (EIS for both the fluid quality and the contamination level of the transducer. The impedance spectra of the transducer are measured with an additional electrical stimulus in series with the electrode measurement loop. The series connection mode instead of the parallel one improves the signal-to-noise ratio (SNR of the fluid velocity measurement and offers a wide range of impedance measurements by using a sample capacitance. In addition, a multi-frequency synchronous excitation source is synthesized based on the method of dual-base power sequences for fast EIS measurement. The conductivity measurements in the range of 1.7 μS/cm–2 mS/cm showed a relatively high accuracy with a measurement error of 5%, and the electrode adhesion detection on both with coating and no coating showed the ability of the qualitative determination of the electrode adhesion, which validated the feasibility of the multi-information acquisition method for the electromagnetic flow meter (EMFM.

  11. Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions

    DEFF Research Database (Denmark)

    Simurda, Matej; Duggen, Lars; Lassen, Benny


    A pseudospectral model for transit time ultrasonic flowmeters under multiphase flow conditions is presented. The method solves first order stress-velocity equations of elastodynamics, with acoustic media being modelled by setting shear modulus to zero. Additional terms to account for the effect...... under multiphase flow conditions is carried out....... of the background flow are included. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the Fast Fourier transform. The method is compared against analytical solutions and experimental measurements. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating...

  12. Temporal Correlations in Vortex Channel Flow Studied Using High-Resolution Hall Probes. (United States)

    James, S.; Field, S. B.; Shtrikman, H.; Hong, K.; Reich, D. H.


    The dynamics of vortices near the depinning transition can be quite complex, with vortices moving via channel-like flow configurations in a manner which is not fully understood. We have investigated this system using single and multiple GaAs heterojunction Hall probes fixed to a current-carrying Nb strip. A single 1μm fixed probe reveals that the (time-averaged) flux beneath it changes in a discrete fashion at evidently random times. The flux may remain at a particular value for up to several seconds before changing, during which time millions of vortices pass under the probe. This suggests that the vortices flow along very long-lived channels which occasionally rearrange themselves, perhaps due to thermal activation of pinned vortices. An extension of the investigation using a linear array of 16 Hall probes arranged perpendicular to the vortex flow will further reveal spatial and temporal correlations in this channel flow. The array consists of a 1μm-wide bar along which adjoin 16 pairs of 1μm-wide voltage leads at 1μm intervals. A 16 channel digital lockin technique has been developed to record the data.

  13. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming. (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye


    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  14. Channel flow past bluff-body: outlet boundary condition, vortex shedding and effects of buoyancy (United States)

    Abbassi, H.; Turki, S.; Nasrallah, S. Ben

    Structure of laminar flow and heat transfer, in a two-dimensional horizontal plane channel differentially heated, with a built-in triangular prism is investigated from the numerical solutions of complete Navier-Stokes and energy equations. Results are obtained for Reynolds and Grashof numbers ranging respectively from 30 to 200 and from 0 to 1.5×104 at Pr=0.71. In forced convection, results are specially presented to show how the vortex shedding at downstream affects the upstream. Also, two correlations giving the Strouhal and the averaged Nusselt numbers as functions of the Reynolds number are proposed. In mixed convection, the superposition of Von Karman street and convective cells is discussed.

  15. Experimental Study of an Inclined Jet-In-Cross-Flow Interacting with a Vortex Generator (United States)

    Zaman, K. B. M. Q.; Rigby, D. L.; Heidmann, J. D.


    An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice.

  16. Computation of vortex-shedding flows past a square cylinder employing LES and RANS

    Energy Technology Data Exchange (ETDEWEB)

    Lakehal, D.; Thiele, F. [Technische Univ. Berlin (Germany). Hermann Foettinger Inst. fuer Stroemungsmechanik; Duchamp de Lageneste, L.; Buffat, M. [LMFA, Ecole Centrale de Lyon, Ecully (France)


    The paper addresses the predictive capabilities of different computational modelling practices which employ various eddy-viscosity models for turbulence, that are based on a linear, a quadratic and two cubic representations of the Reynolds stress tensor in terms of strain and vorticity rates respectively, in the context of a comparative study between Reynolds-Averaged Navier-Stokes Equations and Large Eddy Simulation of vortex-shedding flows. The test case considered here refers to the familiar vortex-shedding flow past a square cylinder at R{sub e}=22.000 studied experimentally by Lyn et al. All the models were found to reproduce fairly well the shedding dynamics with the exception of eddy-viscosity models employed with a high rate of oncoming turbulence. The total kinetic energy was fairly well predicted by all models, whereas the turbulent part was significantly underestimated. Comparison of this latter quantity has emphasized the effective role of turbulence anisotropy in rendering the effects of shedding mechanisms. The integral parameters were determined with much better agreement with measurements than the averaged quantities. The essential finding is that the explicit algebraic stress models predict much better the global parameters with increasing the order of anisotropy. The confusing results of Large Eddy Simulation, i.e. satisfactory agreements of the time-averaged velocity and energy profiles to the expense of a less accurate prediction of the global coefficients, did not support the superiority of the concept. Still, the practice has revealed a particular sentivity to the near-wall treatment. (orig.)

  17. A system for calibrating seepage meters used to measure flow between ground water and surface water (United States)

    Rosenberry, Donald O.; Menheer, Michael A.


    A system has been developed for generating controlled rates of seepage across the sediment-water interface representing flow between ground water and surface water. The seepage- control system facilitates calibration and testing of seepage measurement devices commonly called seepage meters. Two slightly different seepage-control systems were evaluated. Both designs make use of a 1.5-m-diameter by 1.5-m-tall polyethylene flux tank partially filled with sand that overlies a pipe manifold and diffuser plate to provide a uniform flux of water through the sand. The flux tank is filled with water to maintain a water depth above the sand bed of about 0.6 m. Flow is generated by routing water through tubing that connects an adjustable-height reservoir to the base of the flux tank, through the diffuser plate and sand, and across the sediment-water interface. Seepage rate is controlled by maintaining a constant water depth in the reservoir while routing flow between the reservoir and the flux tank. The rate of flow is controlled by adjusting the height of the reservoir with a manually operated fork lift. Flow from ground water to surface water (inflow) occurs when the water surface of the reservoir is higher than the water surface of the flux tank. Flow from surface water to ground water (outflow) occurs when the water surface of the reservoir is lower than the water surface of the flux tank. Flow rates as large as ±55 centimeters per day were generated by adjusting the reservoir to the extremes of the operable range of the fork lift. The minimum seepage velocity that the flowmeter can reliably measure is about 7 centimeters per day.

  18. Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows (United States)

    Ramesh, Kiran; Granlund, Kenneth; Ol, Michael V.; Gopalarathnam, Ashok; Edwards, Jack R.


    A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics. This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP value for an airfoil-Reynolds number combination may be calibrated using CFD or experiment for just one motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV formation or trigger the same as per aerodynamic requirements.

  19. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.


    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  20. CO2 Dissociation by Low Current Gliding Discharge in the Reverse Vortex Flow (United States)

    Gutsol, Alexander


    If performed with high energy efficiency, plasma-chemical dissociation of carbon dioxide can be a way of converting and storing energy when there is an excess of electric energy, for example generated by solar elements of wind turbines. CO2 dissociation with efficiency of up to 90% was reported earlier for low pressure microwave discharge in supersonic flow. A new plasma-chemical system uses a low current gliding discharge in the reverse vortex flow of plasma gas. The system is a development of the Gliding Arc in Tornado reactor. The system was used to study dissociation of CO2 in wide ranges of the following experimental parameters: reactor pressure (15-150 kPa), discharge current (50-500 mA), gas flow rate (3-30 liters per minute), and electrode gap length (1-10 cm). Additionally, the effect of thermal energy recuperation on CO2 dissociation efficiency was tested. Plasma chemical efficiency of CO2 dissociation is very low (about 3%) in a short discharge at low pressures (about 15 kPa) when it is defined by electronic excitation. The highest efficiency (above 40%) was reached at pressures 50-70 kPa in a long discharge with thermal energy recuperation. It means that the process is controlled by thermal dissociation with subsequent effective quenching. Plasma chemical efficiency was determined from the data of chromatographic analysis and oscilloscope electric power integration, and also was checked calorimetrically by the thermal balance of the system.

  1. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi


    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  2. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.


    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  3. Vortex and energy characteristics of flow in the left ventricle following progressive severities of aortic valve regurgitation (United States)

    di Labbio, Giuseppe; Kadem, Lyes


    During the heart's filling phase, a notorious vortex is known to develop in the left ventricle (LV). Improper development and poor energetic behavior of this vortex can be correlated with cardiac disease. In particular, during aortic valve regurgitation (leakage of blood through the aortic valve during LV filling), this vortex is forced to interact with a jet emanating from a regurgitant orifice in the valve. The ensuing flow in the left ventricle subject to this disease has yet to be fully characterized and may lead to new indices for evaluation of its severity. As such, this experimental work investigates flow in a model LV subject to aortic regurgitation on a novel double-activation left heart duplicator for six progressive grades of regurgitation (beginning from the healthy case). Double-activation (independent activation of the atrium and ventricle) is critical to the simulation of this pathology. Regurgitation is induced by restricting the closure of the aortic valve to a centralized orifice. The velocity fields for each case are acquired using 2D time-resolved particle image velocimetry. Viscous energy dissipation and vortex formation time are investigated and found to significantly increase as the pathology progresses, while a histogram of vorticity tends toward a shifted and depressed Gaussian distribution. Proper orthogonal decomposition reveals significant disruption of the dominant energetic coherent structures.

  4. A Hardware-Accelerated Fast Adaptive Vortex-Based Flow Simulation Software Project (United States)

    National Aeronautics and Space Administration — Applied Scientific Research has recently developed a Lagrangian vortex-boundary element method for the grid-free simulation of unsteady incompressible...

  5. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI. (United States)

    Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien


    Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.

  6. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators (United States)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.


    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.

  7. A digital holography set-up for 3D vortex flow dynamics (United States)

    Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme


    In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

  8. Vortex pairing and reverse cascade in a simulated two-dimensional rocket motor-like flow field (United States)

    Chakravarthy, Kalyana; Chakraborty, Debasis


    Two-dimensional large eddy simulation of a flow experiment intended for studying and understanding transition and parietal vortex shedding has brought to light some interesting features that have never been seen in previous similar simulations and have implications for future computational work on combustion instabilities in rocket motors. The frequency spectrum of pressure at head end shows a peak at the expected value associated with parietal vortex shedding but an additional peak at half this frequency emerges at downstream location. Using vorticity spectra at various distances away from the wall, it is shown that the frequency halving is due to vortex pairing as hypothesized by Dunlap et al. ["Internal flow field studies in a simulated cylindrical port rocket chamber," J. Propul. Power 6(6), 690-704 (1990)] for a similar experiment. As the flow transitions to turbulence towards the nozzle end, inertial range with Kolmogorov scaling becomes evident in the velocity spectrum. Given that the simulation is two-dimensional, such a scaling could be associated with a reverse energy cascade as per Kraichnan-Leith-Bachelor theory. By filtering the simulated flow field and identifying where the energy backscatters into the filtered scales, the regions with a reverse cascade are identified. The implications of this finding on combustion modeling are discussed.

  9. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation. (United States)

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G


    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.


    Directory of Open Access Journals (Sweden)

    O. N. Labkovich


    Full Text Available Magnetic fluids are promising lubricating material, in particular, in sliding bearings. With the aid of the magnetic system the magnetic fluid is held in the gap of friction that simplifies the design of the lubrication system sufficiently. It is known that when conventional lubricants (mineral oil, water flow, with increasing of speed of rotation of the inner cylinder the transition of laminar flow in a vortex takes place. This dramatically increases the viscous friction losses. The friction losses in a wide range of speeds and possibilities of their decrease due to the vortex flow of the magnetic fluid in the gap between the cylinders are experimentally studied. It is revealed that when the dimensionless speed – number of Taylor equal to 41.2 – is reached, the slope of the curve of friction torque sharply increases, viscous losses also increase, i. e. there is a change laminar flow to a vortex one. The average temperature in the layer of the magnetic fluid reaches 60 оC. This factor leads to increased evaporation of the carrier liquid (water, mineral oil, which reduces the service life of the lubricant i.e. the magnetic fluid. In order to reduce viscous friction when a vortex flow of magnetic fluids takes place, carbon nanotubes, which are cylinders with a diameter of 5.0 nm and a length of about 0.1 mm, are brought into the magnetic fluid. Carbon nanotubes demonstrate elasticity under transverse bending: they curve under the impact of load, and after its removal they restore their original shape. They are also able to elongate along the axis by 16 % and to return to its original position after removal of the load. The effect of reducing friction (about 30 % with a vortex flow of magnetic fluid by the introduction of carbon nanotubes in a magnetic fluid is experimentally obtained. The likely mechanism of friction reduction is the ability of nanotubes to deform under the influence of pressure pulsations and the velocity of the swirling

  11. Investigation of flow behind vortex generators by stereo particle image velocimetry on a thick airfoil near stall

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver


    Stereoscopic Particle Image Velocimetry measurements investigating the effect of vortex generators (VGs) on the flow near stall were carried out in a purpose-built wind tunnel for airfoil investigations on a DU 91-W2-250 profile. Measurements were conducted at Re = 0.9⋅106, corresponding to free...... by a Snapshot Proper Orthogonal Decomposition analysis. This analysis also revealed some of the dynamics of the induced vortices. Copyright © 2012 John Wiley & Sons, Ltd....

  12. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Desheng; Shi, Lei; Zhao, Ruijie; Shi, Weidong; Pan, Qiang [Jiangsu University, Zhenjiang (China); Esch, B. P. [Eindhoven University of Technology, Eindhoven (Netherlands)


    The aim of the present investigation is to simulate and analyze the tip leakage flow structure and instantaneous evolution of tip vortex cavitation in a scaled axial-flow pump model. The improved filter-based turbulence model based on the density correction and a homogeneous cavitation model were used for implementing this work. The results show that when entering into the tip clearance, the backward flow separates from the blade tip near the pressure side, resulting in the generation of a corner vortex with high magnitude of turbulence kinetic energy. Then, at the exit of the tip clearance, the leakage jets would re-attach on the blade tip wall. Moreover, the maximum swirling strength method was employed in identifying the TLV core and a counter-rotating induced vortex near the end-wall successfully. The three dimensional cavitation patterns and in-plain cavitation structures obtained by the improved numerical method agree well with the experimental results. At the sheet cavitation trailing edge in the tip region, the perpendicular cavitation cloud induced by TLV sheds and migrates toward the pressure side of the neighboring blade. During its migration, it breaks down abruptly and generates a large number of smallscale cavities, leading to severe degradation of the pump performance, which is similar with the phenomenon observed by Tan et al.

  13. Experimental validation of multiphase flow models and testing of multiphase flow meters: A critical review of flow loops worldwide


    Bello, O. O.; Falcone, Gioia; Teodoriu, C.


    Around the world, research into multiphase flow is performed by scientists with hugely diverse backgrounds: physicists, mathematicians and engineers from mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace disciplines. Multiphase flow models are required to investigate the co-current or counter-current flow of different fluid phases under a wide range of pressure and temperature conditions and in several different configurations. To compliment this t...

  14. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement. (United States)


    ... calibration; particulate, methanol, and formaldehyde measurement. 86.1320-90 Section 86.1320-90 Protection of... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  15. Measurement and Computation of Supersonic Flow in a Lobed Diffuser-Mixer for Trapped Vortex Combustors (United States)

    Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.


    The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the

  16. Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings

    Directory of Open Access Journals (Sweden)

    Thomas Lambert


    Full Text Available Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load estimation techniques in order to predict the aerodynamic lift and drag time histories produced by flapping rectangular wings. The load estimation approaches are the Katz, Joukowski and simplified Leishman–Beddoes techniques. The simulations’ predictions are compared to experimental measurements from wind tunnel tests of a flapping and pitching wing. Three types of kinematics are investigated, pitch-leading, pure flapping and pitch lagging. It is found that pitch-leading tests can be simulated quite accurately using either the Katz or Joukowski approaches as no measurable flow separation occurs. For the pure flapping tests, the Katz and Joukowski techniques are accurate as long as the static pitch angle is greater than zero. For zero or negative static pitch angles, these methods underestimate the amplitude of the drag. The Leishman–Beddoes approach yields better drag amplitudes, but can introduce a constant negative drag offset. Finally, for the pitch-lagging tests the Leishman–Beddoes technique is again more representative of the experimental results, as long as flow separation is not too extensive. Considering the complexity of the phenomena involved, in the vast majority of cases, the lift time history is predicted with reasonable accuracy. The drag (or thrust time history is more challenging.

  17. Effect of an external vortex on the uav aerodynamic performances (United States)

    Boudaoud, Warda; Yahiaoui, Tayeb; Imine, Bachir; Imine, Omar


    In this present work, the CFD and wind tunnel are used to investigate the effect of an external vortex around an UAV in order to obtain initial estimates of lift and drag coefficients with flow velocity of 30 meters per second for various angles of attack. The model of Spalart- Allmaras turbulence is used for the investigation of the complex flow around the UAV. The wind tunnel and CFD results are compared and appropriate error bands placed on the data.

  18. Effect of an external vortex on the uav aerodynamic performances

    Directory of Open Access Journals (Sweden)

    Imine Bachir


    Full Text Available In this present work, the CFD and wind tunnel are used to investigate the effect of an external vortex around an UAV in order to obtain initial estimates of lift and drag coefficients with flow velocity of 30 meters per second for various angles of attack. The model of Spalart- Allmaras turbulence is used for the investigation of the complex flow around the UAV. The wind tunnel and CFD results are compared and appropriate error bands placed on the data.

  19. Prolonged vortex formation during the ejection period in the left ventricle with low ejection fraction: a study by vector flow mapping. (United States)

    Fukuda, Nobuaki; Itatani, Keiichi; Kimura, Koichi; Ebihara, Aya; Negishi, Kazuaki; Uno, Kansei; Miyaji, Kagami; Kurabayashi, Masahiko; Takenaka, Katsu


    Vortex formation in the left ventricle (LV) can be visualized by novel vector flow mapping (VFM) based on color Doppler and speckle tracking data. The aim of this study was to evaluate the impact of a vortex during the ejection period using VFM. Color Doppler images were obtained to produce VFM images in 80 subjects (20 normal, 29 with dilated cardiomyopathy, and 31 with old myocardial infarction). The duration of the LV vortex was measured and expressed as the ratio to the ejection time (VTRe). The VTRe showed significant correlations with EDV (ρ = 0.672, p vortex existed for only a limited time during the early ejection period. In contrast, the lower the EF was, the longer the vortex remained during systole. Evaluation of vortices by VFM may noninvasively provide novel insights into the pathophysiology of impaired cardiac function.


    Directory of Open Access Journals (Sweden)

    I. E. Zuykov


    Full Text Available The paper presents results of a development and an industrial implementation of a new method for measuring liquid (water amount passing through measuring devices as a continuous flow by means of rotating blades. An algorithm of the device operation which serves as a basis for the method can be also used for designing devices for metering and control of gas consumption.The given method has its practical application in the electronic water meter developed at the «Elektronika» Plant of the RPC Integral.

  1. Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering (United States)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)


    A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.

  2. Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator (United States)

    Wendt, B. J.; Hingst, W. R.


    The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.

  3. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim


    type is chosen and investigated at different angles of attack 0 , ??10 and ??20 with the flow direction. Three-dimensional numerical model is developed and simulations are performed for a Reynolds number range 5000 Re 11000 taking conjugate heat transfer into account. The heat transfer and pressure...... loss characteristics are determined and analyzed for an in-line configuration of a fin and tube heat exchanger. In order to evaluate the enhancement in the performance on an equitable basis, the heat exchanger with plain fin surface is considered as a reference design. Results show that the angle...... of attack of a vortex generator has a significant impact on the volume goodness factor, and enhance the thermal performance of a fin and tube heat exchanger in comparison to the design with plain fin. The vortex generator at an angle of attack ??10 is found to perform superior over the Reynolds number range...

  4. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor. Ph.D. Thesis - Old Dominion Univ. (United States)

    Patel, D. K.


    A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.

  5. Peak flow meters in childhood asthma: parent report of use and perceived usefulness. (United States)

    McMullen, Ann H; Yoos, H Lorrie; Kitzman, Harriet


    Peak flow meters (PFMs) in children with moderate to severe asthma have been used to monitor changes in asthma status and inform treatment decisions. However, their usefulness and the likelihood of their long-term use by families remains controversial. One hundred sixty-eight children ages 6 to 19 years were enrolled in a longitudinal randomized clinical trial to evaluate the impact of 3 different intensities of symptom monitoring on diverse clinical outcomes: subjective symptom monitoring, symptom-time PFM monitoring, and daily PFM monitoring. At 3 months after the intervention, 90% of parents and 82% of children surveyed perceived a benefit to the monitoring method taught, regardless of group assignment. Ninety-three percent of parents but only 71% of children planned to continue that method. At 1 year after exiting from the study, 69% continued to use a PFM; 30% had discontinued use. No group differences existed in frequency of PFM use between symptom-time and daily users (x = 4.36 vs x = 4.31 times per month). Predictors of continued PFM use included greater frequency of symptoms and younger age. Those discontinuing use believed that it added no additional information to assist in management, using it was a chore/burden, it was not available when needed, and the child's asthma had improved. Families will probably use a PFM to inform management during symptomatic times. Daily use is not perceived as useful by most families and is likely to be an unrealistic expectation for most children. J Pediatr Health Care.

  6. Study of vortex generator influence on the flow in the wake of high-lift system wing (United States)

    Bragin, N. N.; Ryabov, D. I.; Skomorokhov, S. I.; Slitinskaya, A. Yu.


    Passive vortex generators (VG) are known as one of the ways to improve the flow of the wings and other surfaces in the presence of flow separation. In particular, the VG are installed on the wings and nacelles of many foreign airplanes, including the most recent ones (for example, Boeing 787, Airbus A-350). The principle of the passive VG effects on flow is to transfer the kinetic energy of the external flow separation region by the vortices system arising from the flow VG themselves. For example, by increasing the angle of attack of the wing separation it is highly three-dimensional picture of the flow and sufficiently sensitive to external influences. Thus separated flow can be controlled when using the VG destroy large separation vortices. The VG effectiveness depends on many parameters. This is primarily the relative position of the second harmonic and the separation region on the wing and their size and position relative to each other, the orientation of the second harmonic relative to the local flow direction of the external flow, etc. Obviously, the VG effect will depend essentially on the intensity ratio of the second harmonic vortexes and nature of flow separation in the separation area. In the presence of intense flow separation the effect of conventional VG may be reduced or not occur at all. Until recently, investigations and selection of position of conventional VG were made only experimentally. Currently, the possibilities of calculation methods allow estimating the VG effect on the flow in the separation area. However, due to the phenomenon complexity the accuracy of these calculations is low. The experimental data are required to validate the computational methods, including information not only about the total impact, but also about the flow structure in the separation area. To obtain such information is the subject of this paper. In the test model of high-lift devices swept wing with modern supercritical profile the parametric studies were

  7. Interaction dynamics of gap flow with vortex-induced vibration in side-by-side cylinder arrangement (United States)

    Liu, Bin; Jaiman, Rajeev K.


    A numerical investigation of the vortex-induced vibration (VIV) in a side-by-side circular cylinder arrangement has been performed in a two-dimensional laminar flow environment. One of the cylinders is elastically mounted and only vibrates in the transverse direction, while its counterpart remains stationary in a uniform flow stream. When the gap ratio is sufficiently small, the flip-flopping phenomenon of the gap flow can be an additional time-dependent interference to the flow field. This phenomenon was reported in the experimental work of Bearman and Wadcock ["The interaction between a pair of circular cylinders normal to a stream," J. Fluid Mech. 61(3), 499-511 (1973)] in a side-by-side circular cylinder arrangement, in which the gap flow deflects toward one of the cylinders and switched its sides intermittently. Albeit one of the two cylinders is free to vibrate, the flip-flop of a gap flow during VIV dynamics can still be observed outside the lock-in region. The exact moments of the flip-flop phenomenon due to spontaneous symmetry breaking are observed in this numerical study. The significant characteristic vortex modes in the near-wake region are extracted via dynamic modal analysis and the interference between the gap flow and VIV is found to be mutual. In a vibrating side-by-side arrangement, the lock-in region with respect to reduced velocity becomes narrower due to the interference from its stationary counterpart. The frequency lock-in occurs and ends earlier than that of an isolated vibrating circular cylinder subjected to an identical flow environment. Similar to a tandem cylinder arrangement, in the post-lock-in region, the maximum vibration amplitudes are escalated compared with those of an isolated circular cylinder configuration. On the other hand, subjected to the influence from VIV, the biased gap flow deflects toward the vibrating cylinder quasi-stably during the frequency lock-in process. This behavior is different from the reported bi

  8. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio (United States)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.


    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  9. Numerical Study of Thermal and Flow Characteristics of Plate-Fin Heat Sink with Longitudinal Vortex Generator Installed on the Ground

    Directory of Open Access Journals (Sweden)

    Yen-Tso Chang


    Full Text Available This study applied the commercial software ANSYS CFD (FLUENT, for simulating the transient flow field and investigating the influence of each parameter of longitudinal vortex generators (LVGs on the thermal flux of a plate-fin heat sink. Vortex generator was set in front of plate-fin heat sink and under the channel, which was in common-flow-down (CFD and common-flow-up (CFU conditions, which have the result of vortex generator of delta winglet pair (DWP. In this study the parameters were varied, such as the minimum transverse distance between winglet pair, the attack angle of the vortex generator, fins number, the fin height, and the distance between the vortex generator and plate-fin. The coolant fluid flew into the fin-to-fin channel and pushed the vortex from different geometry toward the bottom. This phenomenon took off the heat from the plate to enhance the heat transfer. The numerical results indicated that the LVGs located close to the plate-fin heat sink are zero with the attack angle being 30°, presenting optimal overall conditions.

  10. Self-Similarity and helical symmetry in vortex generator flow simulations

    DEFF Research Database (Denmark)

    Fernandez, U.; Velte, Clara Marika; Réthoré, Pierre-Elouan


    According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (uz) and azimuthal (uӨ) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry. This is a......According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (uz) and azimuthal (uӨ) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry...

  11. Self-similarity and helical symmetry in vortex generator flow simulations

    DEFF Research Database (Denmark)

    Fernandez, U.; Velte, Clara Marika; Réthoré, Pierre-Elouan


    According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (uz) and azimuthal (u) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry. This is a ......According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (uz) and azimuthal (u) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry...

  12. Evaluation of the lifting line vortex model approximation for estimating the local blade flow fields in horizontal-axis wind turbines

    NARCIS (Netherlands)

    Sant, T; Del Campo, V.; Micallef, D.; Simao Ferreira, C.


    Lifting line vortex models have been widely used to predict flow fields around wind turbine rotors. Such models are known to be deficient in modelling flow fields close to the blades due to the assumption that blade vorticity is concentrated on a line and consequently the influences of blade

  13. Instantaneous Flow Reconstruction from Particle Trajectories with Vortex-in-Cell

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Scarano, F.


    The manuscripts presents the working principle of a novel technique to interpolate sparse and scattered particle tracking velocimetry (PTV) measurements onto a dense grid, by using the velocity measurements along a full particle trajectory. The method performs iteratively a vortex-in-cell simulation

  14. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first. (United States)

    Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T


    Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. © 2016. Published by The Company of Biologists Ltd.

  15. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields (United States)

    Erickson, Gary E.


    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  16. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields (United States)

    Erickson, Gary E.


    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  17. Study of secondary-flow patterns in an annular cascade of turbine nozzle blades with vortex design (United States)

    Rohlik, Harold E; Allen, Hubert W; Herzig, Howard Z


    In order to increase understanding of the origin of losses in a turbine, the secondary-flow components in the boundary layers and the blade wakes of an annular cascade of turbine nozzle blades (vortex design) was investigated. A detailed study was made of the total-pressure contours and, particularly, of the inner-wall loss cores downstream of the blades. The inner-wall loss core associated with a blade of the turbine-nozzle cascade is largely the accumulation of low-momentum fluids originating elsewhere in the cascade. This accumulation is effected by a secondary-flow mechanism which acts to transport the low-momentum fluids across the channels on the walls and radially in the blade wakes and boundary layers. The patterns of secondary flow were determined by use of hydrogen sulfide traces, paint, flow fences, and total pressure surveys. At one flow condition investigated, the radial transport of low-momentum fluid in the blade wake and on the suction surface near the trailing edge accounted for 65 percent of the loss core; 30 percent resulted from flow in the thickened boundary layer on the suction surface and 35 percent from flow in the blade wake.

  18. Vortex sound radiation in a flow duct with a dipole source and a flexible wall of finite length. (United States)

    Chiang, Y K; Choy, Y S; Tang, S K


    The noise attenuation of fan-ducted noise at low blade-passage frequency remains a challenge. The present study investigates the noise reduction mechanism of a tensioned membrane housing device that directly controls the sound radiation from the doublet which is enclosed in an infinitely long duct with a point vortex. The time dependent sound radiation mechanism and the vibro-acoustics coupling mechanism of the systems are studied by adopting the potential theory and matched asymptotic expansion technique. The silencing performance of such a passive approach depends on the amplitude and phase of the sound field created by the doublet and the acoustic pressure induced by the membrane oscillation in order to achieve sound cancellation. Results show that the response of membrane vibration is strongly associated with the flow field induced by the grazing uniform flow and also the fluid loading generated by the inviscid vortex. The geometrical property of the cavity and the mechanical properties of the flexible membranes play important roles in controlling the performance of the proposed device.

  19. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds (United States)

    Erickson, Gary E.


    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  20. Design and construction of a novel Coriolis mass flow rate meter

    NARCIS (Netherlands)

    Mehendale, A.; Zwikker, Rini; Jouwsma, Wybren


    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  1. Experimental and numerical study of control of flow separation of a symmetric airfoil with trapped vortex cavity (United States)

    Shahid, Abdullah Bin; Mashud, Mohammad


    This paper summarizes the experimental campaign and numerical analysis performed aimed to analyze the potential benefit available employing a trapping vortex cell system on a high thickness symmetric aero-foil without steady suction or injection mass flow. In this work, the behavior of a two dimensional model equipped with a span wise adjusted circular cavity has been researched. Pressure distribution on the model surface and inside and the complete flow field round the model have been measured. Experimental tests have been performed varying the wind tunnel speed and also the angle of attack. For numerical analysis the two dimensional model of the airfoil and the mesh is formed through ANSYS Meshing that is run in Fluent for numerical iterate solution. In the paper the performed test campaign, the airfoil design, the adopted experimental set-up, the numerical analysis, the data post process and the results description are reported, compared a discussed.

  2. Assessment of viscous energy loss and the association with three-dimensional vortex ring formation in left ventricular inflow: In vivo evaluation using four-dimensional flow MRI. (United States)

    Elbaz, Mohammed S M; van der Geest, Rob J; Calkoen, Emmeline E; de Roos, Albert; Lelieveldt, Boudewijn P F; Roest, Arno A W; Westenberg, Jos J M


    To evaluate viscous energy loss and the association with three-dimensional (3D) vortex ring formation in left ventricular (LV) blood flow during diastolic filling. Thirty healthy volunteers were compared with 32 patients with corrected atrioventricular septal defect as unnatural mitral valve morphology and inflow are common in these patients. 4DFlow MRI was acquired from which 3D vortex ring formation was identified in LV blood flow at peak early (E)-filling and late (A)-filling and characterized by its presence/absence, orientation, and position from the lateral wall. Viscous energy loss was computed over E-filling, A-filling, and complete diastole using the Navier-Stokes energy equations. Compared with healthy volunteers, viscous energy loss was significantly elevated in patients with disturbed vortex ring formation as characterized by a significantly inclined orientation and/or position closer to the lateral wall. Highest viscous energy loss was found in patients without a ring-shaped vortex during E-filling (on average more than double compared with patients with ring-shape vortex, P formation was associated with significant increase in total viscous energy loss over diastole even in the presence of normal E-filling vortex ring. Altered vortex ring formation during LV filling is associated with increased viscous energy loss. Magn Reson Med 77:794-805, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  3. Assessment of viscous energy loss and the association with three‐dimensional vortex ring formation in left ventricular inflow: In vivo evaluation using four‐dimensional flow MRI (United States)

    van der Geest, Rob J.; Calkoen, Emmeline E.; de Roos, Albert; Lelieveldt, Boudewijn P.F.; Roest, Arno A.W.; Westenberg, Jos J.M.


    Purpose To evaluate viscous energy loss and the association with three‐dimensional (3D) vortex ring formation in left ventricular (LV) blood flow during diastolic filling. Theory and Methods Thirty healthy volunteers were compared with 32 patients with corrected atrioventricular septal defect as unnatural mitral valve morphology and inflow are common in these patients. 4DFlow MRI was acquired from which 3D vortex ring formation was identified in LV blood flow at peak early (E)‐filling and late (A)‐filling and characterized by its presence/absence, orientation, and position from the lateral wall. Viscous energy loss was computed over E‐filling, A‐filling, and complete diastole using the Navier‐Stokes energy equations. Results Compared with healthy volunteers, viscous energy loss was significantly elevated in patients with disturbed vortex ring formation as characterized by a significantly inclined orientation and/or position closer to the lateral wall. Highest viscous energy loss was found in patients without a ring‐shaped vortex during E‐filling (on average more than double compared with patients with ring‐shape vortex, P formation was associated with significant increase in total viscous energy loss over diastole even in the presence of normal E‐filling vortex ring. Conclusion Altered vortex ring formation during LV filling is associated with increased viscous energy loss. Magn Reson Med 77:794–805, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:26924448

  4. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect. (United States)

    Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol


    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.

  5. Influence of solid particles to a coriolis mass flow metering; Einfluss von Feststoffen in einer Fluessigkeitsstroemung auf die Coriolis-Massemessung

    Energy Technology Data Exchange (ETDEWEB)

    Goeke, J.; Steffensen, E. [Fachhochschule Koeln (Germany). Fakultaet Anlagen-, Energie- und Maschinensysteme


    Since more than 15 years coriolis mass flow meters could be regarded as an extraordinary metering system. Those old mechanical principle could be enhanced by application of new electronic technique. Today high precise technologies are available for the rough industrial application, which are often distorted from enviromental influences. Nevertheless there exist situations, which the rapid chance of parameters affect the state of the swinging metering system. And the algorithm could not react in an suggestive manner. This problem occurs for example at a two phase flow. Within this paper we present the reaction of a coriolis massflow meter in a liquid flow with little solid particles. The result show small deviations between the experimental results and the thoretical calculations. (orig.)

  6. Assessment of Viscous Energy Loss and the Association with Three-Dimensional Vortex Ring Formation in Left Ventricular Inflow : In Vivo Evaluation Using Four-Dimensional Flow MRI

    NARCIS (Netherlands)

    Elbaz, MSM; van der Geest, R; Calkoen, EE; de Roos, A.; Lelieveldt, B.P.F.; Roest, AAW; Westenberg, JJM


    Purpose To evaluate viscous energy loss and the association with three-dimensional (3D) vortex ring formation in left ventricular (LV) blood flow during diastolic filling. Theory and Methods Thirty healthy volunteers were compared with 32 patients with corrected atrioventricular septal defect as

  7. Helicity conservation by flow across scales in reconnecting vortex links and knots (United States)

    Scheeler, Martin W.; Kleckner, Dustin; Kindlmann, Gordon L.; Irvine, William T. M.


    The conjecture that helicity (or knottedness) is a fundamental conserved quantity has a rich history in fluid mechanics, but the nature of this conservation in the presence of dissipation has proven difficult to resolve. Making use of recent advances, we create vortex knots and links in viscous fluids and simulated superfluids and track their geometry through topology-changing reconnections. We find that the reassociation of vortex lines through a reconnection enables the transfer of helicity from links and knots to helical coils. This process is remarkably efficient, owing to the antiparallel orientation spontaneously adopted by the reconnecting vortices. Using a new method for quantifying the spatial helicity spectrum, we find that the reconnection process can be viewed as transferring helicity between scales, rather than dissipating it. We also infer the presence of geometric deformations that convert helical coils into even smaller scale twist, where it may ultimately be dissipated. Our results suggest that helicity conservation plays an important role in fluids and related fields, even in the presence of dissipation. PMID:25326419

  8. Multi parameter flow meter for on-line measurement of gas mixture composition

    NARCIS (Netherlands)

    van der Wouden, E.J.; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad


    In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat

  9. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw


    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  10. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Alcántara, A.; Fernandez-Feria, R. [Universidad de Málaga, Andalucía Tech, E. T. S. Ingeniería Industrial, Dr Ortiz Ramos s/n, 29071 Málaga (Spain); Sanmiguel-Rojas, E. [Área de Mecánica de Fluidos, Universidad de Jaén, Campus de las Lagunillas, 23071 Jaén (Spain)


    The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computed quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.

  11. Experimental study of vortex diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Shakerin, S.; Miller, P.L. [National Renewable Energy Lab., Golden, CO (United States)


    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  12. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery


    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  13. Vortex-induced vibrations of circular cylinder in cross flow at supercritical Reynolds numbers; Chorinkai Reynolds su ryoiki ni okeru enchu no uzu reiki shindo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Nakao, T.; Takahashi, M.; Hayashi, M.; Goto, N. [Hitachi, Ltd., Tokyo (Japan)


    Vortex-induced vibrations were measured for a circular cylinder subjected to a water cross flow at supercritical Reynolds numbers for a wide range of reduced velocities. Turbulence intensities were changed from 1% to 13% in order to investigate the effect of the Strouhal number on the region of synchronization by symmetrical and Karman vortex shedding. The reduced damping of the test cylinder was about 0.1 in water. The surface roughness of the cylinder was a mirror-polished surface. Strouhal number decreased from about 0.48 to 0.29 with increasing turbulence intensity. Synchronized vibrations were observed even at supercritical Reynolds numbers where fluctuating fluid force was small. Reduced velocities at which drag and lift direction lock-in by Karman vortex shedding were initiated decreased with increasing Strouhal number. When Strouhal number was about 0.29, the self-excited vibration in drag direction by symmetrical vortex shedding began at which the frequency ratio of Karman vortex shedding frequency to the natural frequency of cylinder was 0.32. (author)

  14. Effects of tension on vortex-induced vibration (VIV) responses of a long tensioned cylinder in uniform flows (United States)

    Kang, Ling; Ge, Fei; Wu, Xiaodong; Hong, Youshi


    The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.

  15. Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein. (United States)

    Lin, Bingqian; Guan, Zhichao; Song, Yanling; Song, Eunyeong; Lu, Zifei; Liu, Dan; An, Yuan; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong


    Paper-based assays such as lateral flow assays are good candidates for portable diagnostics owing to their user-friendly format and low cost. In terms of analytical detection, lateral flow assays usually require dedicated instruments to obtain quantitative results. Here we demonstrate a lateral flow assay with handheld pressure meter readout for the rapid detection of disease-related protein with high sensitivity and selectivity. Based on the pressure change produced by the catalytic reaction of Pt nanoparticles related to the concentration of the target, a quantitative reaction platform was established. During the lateral flow assay, the Pt nanoparticles are aggregated in the test line to form a gray band by biomolecular recognition and finally convert the recognition signal into highly sensitive pressure readout for quantitative analysis. Without sophisticated instrumentation and complicated operations, the whole detection process can be completed within 20 minutes. The limit of detection for myoglobin (2.9 ng mL -1 in diluted serum samples) meets the requirements of clinical monitoring. With the advantages of low cost, ease of operation, high sensitivity and selectivity, the method represents a versatile platform for point-of-care testing of disease biomarkers.

  16. A combined ultrasonic flow meter and binary vapour mixture analyzer for the ATLAS silicon tracker

    CERN Document Server

    Bates, R; Berry, S; Berthoud, J; Bitadze, A; Bonneau, P; Botelho-Direito, J; Bousson, N; Boyd, G; Bozza, G; Da Riva, E; Degeorge, C; DiGirolamo, B; Doubek, M; Giugni, D; Godlewski, J; Hallewell, G; Katunin, S; Lombard, D; Mathieu, M; McMahon, S; Nagai, K; Perez-Rodriguez, E; Rossi, C; Rozanov, A; Vacek, V; Vitek, M; Zwalinski, L


    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) evaporative coolant to a blend containing 10-25% of C2F6 (hexafluoro-ethane). Such a change will reduce the evaporation temperature to assure thermal stability following radiation damage accumulated at full LHC luminosity. Central to this upgrade is a new ultrasonic instrument in which sound transit times are continuously measured in opposite directions in flowing gas at known temperature and pressure to deduce the C3F8/C2F6 flow rate and mixture composition. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. Several geometries for the instrument are in use or under evaluation. An instrument with a pinched axial geometry intended for analysis and measurement of moderate flow rates has demonstrated a mixture resolution of 3.10-3 for C3F8/C2F6 molar mixtures with 20%C2F6, and a flow resolution of 2% of full scale for mass flows up to 30gs-...

  17. Influence of pressure and flow pulsations on the accuracy of turbine and vortex flowmeters; Einfluss von Druck- und Stroemungspulsationen auf die Messgenauigkeit von Turbinenrad- und Wirbelgaszaehlern

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, M. [Technische Univ. Bergakademie Freiberg (Germany); Hofbauer, M. [Technische Univ. Bergakademie Freiberg (Germany); Fleischhauer, K. [Verbundnetz Gas AG, Leipzig (Germany); Herzog, U. [Verbundnetz Gas AG, Leipzig (Germany)


    Turbine and vortex flowmeters were compared under operating conditions. At the same time, pressure variations were measured at different points near the gas meters in order to define the effect of pulsations on the measuring process. In some cases, an effect of several frequency components of the pressure variations on the reading of the meter was found. (orig.) [Deutsch] In Gasmengenmessanlagen wurden Vergleichsmessungen zwischen Turbinenrad-- und Wirbelgaszaehlern unter Betriebsbedingungen durchgefuehrt. Gleichzeitig wurden Druckschwankungen an verschiedenen Stellen in der Naehe der Gaszaehler gemessen, um einen Einfluss von Pulsationen auf den Messprozess zu erkennen. In einigen Anlagen ist ein Zusammenhang zwischen einzelnen Frequenzkomponenten der Druckschwankungen und der Abweichung der Anzeige zwischen Turbinenrad- und Wirbelgaszaehler erkennbar. (orig.)

  18. Statistics of Point Vortex Turbulence in Non-neutral Flows and in Flows with Translational and Rotational Symmetries (United States)

    Esler, J. G.


    A theory (Esler and Ashbee in J Fluid Mech 779:275-308, 2015) describing the statistics of N freely-evolving point vortices in a bounded two-dimensional domain is extended. First, the case of a non-neutral vortex gas is addressed, and it is shown that the density of states function can be identified with the probability density function of an infinite sum of independent non-central chi-squared random variables, the details of which depend only on the shape of the domain. Equations for the equilibrium energy spectrum and other statistical quantities follow, the validity of which are verified against direct numerical simulations of the equations of motion. Second, domains with additional conserved quantities associated with a symmetry (e.g., circle, periodic channel) are investigated, and it is shown that the treatment of the non-neutral case can be modified to account for the additional constraint.

  19. Statistics of Point Vortex Turbulence in Non-neutral Flows and in Flows with Translational and Rotational Symmetries (United States)

    Esler, J. G.


    A theory (Esler and Ashbee in J Fluid Mech 779:275-308, 2015) describing the statistics of N freely-evolving point vortices in a bounded two-dimensional domain is extended. First, the case of a non-neutral vortex gas is addressed, and it is shown that the density of states function can be identified with the probability density function of an infinite sum of independent non-central chi-squared random variables, the details of which depend only on the shape of the domain. Equations for the equilibrium energy spectrum and other statistical quantities follow, the validity of which are verified against direct numerical simulations of the equations of motion. Second, domains with additional conserved quantities associated with a symmetry (e.g., circle, periodic channel) are investigated, and it is shown that the treatment of the non-neutral case can be modified to account for the additional constraint.

  20. Mass flow meter using the triboelectric effect for measurement in cryogenics (United States)

    Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve


    The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.

  1. Hourly Variation in the Flow Measurements in the Jesus Maria Watershed with the Cup-type Current Meter Method

    Directory of Open Access Journals (Sweden)

    José Pablo Bonilla Valverde


    Full Text Available Conducting punctual gauging measurements in Costa Rica constitutes a common practice for the evaluation of water resources for drinking water supply.  The country has a database composed of punctual measurements made in most of the rivers of Costa Rica with almost forty years of information. Within this database, a single data (punctual gauging is used to characterize the whole month in which it was gauged. In order to corroborate the validity of this characterization, punctual gauging was performed every hour to confirm that the hourly variation is minimal.  The hourly gauging was carried out during the flow measurement campaign in the Jesus Maria watershed conducted on April 9th and 10th, 2013.  The flow measurements were performed using cup-type current meter method according to the ISO 2537: 2007 standard.  One third of the measurements showed less than ±1% variation and more than three quarters were in the range of ±5% variation. In all cases, excluding the lower basin of the Jesus Maria River, variations in the measurements are less than 10% relative to the median.  It is concluded that the hour variation is relatively small, and therefore, the database is validated – for the months at the end of the dry season.  This experience should be repeated in the same basin at other times of the year and on other basins to ensure that the temporal variability do not represent large differences in the flow.

  2. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden


    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  3. Turbulent Vortex-Flow Simulation Over a 65 deg Sharp and Blunt Leading-Edge Delta Wing at Subsonic Speeds (United States)

    Ghaffari, Farhad


    Turbulent thin-layer, Reynolds-Averaged Navier-Stokes solutions, based on a multi-block structured grid, are presented for a 65 deg delta wing having either a sharp leading edge (SLE) or blunt leading edge (BLE) geometry. The primary objective of the study is to assess the prediction capability of the method for simulating the leading-edge flow separation and the ensuing vortex flow characteristics. Computational results are obtained for two angles of attack of approximately 13 and 20 deg, at free-stream Mach number of 0.40 and Reynolds number of 6 million based on the wing mean aerodynamic chord. The effects of two turbulence models of Baldwin-Lomax with Degani-Schiff (BL/DS) and the Spalart-Allmaras (SA) on the numerical results are also discussed. The computations also explore the effects of two numerical flux-splitting schemes, i.e., flux difference splitting (fds) and flux vector splitting (fvs), on the solution development and convergence characteristics. The resulting trends in solution sensitivity to grid resolution for the selected leading-edge geometries, angles of attack, turbulence models and flux splitting schemes are also presented. The validity of the numerical results is evaluated against a unique set of experimental wind-tunnel data that was obtained in the National Transonic Facility at the NASA Langley Research Center.

  4. Development of a FBG vortex flow sensor for high-temperature applications

    NARCIS (Netherlands)

    Cheng, L.K.; Schiferli, W.; Nieuwland, R.A.; Franzen, A.; Boer, J.J. den; Jansen, T.H.


    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300°C and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are

  5. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis (United States)

    Cavage, William M.; Kuhlman, John M.


    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  6. Vortex Apparatus and Demonstrations (United States)

    Shakerin, Said


    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  7. Vortex motion in the ocean: In situ visualization of jellyfish swimming and feeding flows


    Dabiri, John O.; Gharib, Morteza; Colin, Sean P.; Costello, John H.


    We present a combination of both qualitative flow visualizations of jellyfish in their natural marine environment and quantitative measurements in a laboratory facility, to understand how the animals effectively use principles of fluid mechanics in their swimming and feeding behaviors.

  8. Rapid generation and manipulation of microfluidic vortex flows induced by AC electrokinetics with optical illumination. (United States)

    Park, Choongbae; Wereley, Steven T


    We demonstrate a rapid generation of twin opposing microvortices (TOMVs) induced by non-uniform alternating current (AC) electric fields together with a laser beam on a patterned pair of indium tin oxide (ITO) electrodes. A fast and strong jet flow region between twin microvortices is also generated. Its pattern and direction, such as whether it is symmetric or asymmetric, are controlled mainly by the location of a single laser spot relative to the ITO electrodes. With two laser beams, two separate flows are superposed to give a new one. In situ generation and control of the TOMV flow are tested in suspensions of fluorescent polystyrene particles, as well as in milk emulsions. This technique has great potential for dynamically manipulating micro-fluid flows, functioning as a micro-pump or mixer.

  9. Ultra-Low-Power High-Frequency Micro-Vortex Generators for Transonic Flow Control Project (United States)

    National Aeronautics and Space Administration — Active flow control to prevent or delay boundary layer separation dramatically improves the performance of air vehicles in critical regions of the flight envelope....

  10. Local wall heat flux/temperature meter for convective flow and method of utilizing same (United States)

    Boyd, Ronald D. (Inventor); Ekhlassi, Ali (Inventor); Cofie, Penrose (Inventor)


    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  11. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim


    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...... loss characteristics are determined and analyzed for an in-line configuration of a fin and tube heat exchanger. In order to evaluate the enhancement in the performance on an equitable basis, the heat exchanger with plain fin surface is considered as a reference design. Results show that the angle...... of attack of a vortex generator has a significant impact on the volume goodness factor, and enhance the thermal performance of a fin and tube heat exchanger in comparison to the design with plain fin. The vortex generator at an angle of attack ??10 is found to perform superior over the Reynolds number range...

  12. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre


    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...... is dedicated to vortex rings. Source rings are only briefly mentioned....

  13. Feasibility Studies of Vortex Flow Impact On the Proliferation of Algae in Hydrogen Production for Fuel Cell Applications (United States)

    Miskon, Azizi; A/L Thanakodi, Suresh; Shiema Moh Nazar, Nazatul; Kit Chong, Marcus Wai; Sobri Takriff, Mohd; Fakir Kamarudin, Kamrul; Aziz Norzali, Abdul; Nooraya Mohd Tawil, Siti


    The instability of crude oil price in global market as well as the sensitivity towards green energy increases, more research works being carried out to find alternative energy replacing the depleting of fossil fuels. Photobiological hydrogen production system using algae is one of the promising alternative energy source. However, the yield of hydrogen utilizing the current photobioreactor (PBR) is still low for commercial application due to restricted light penetration into the deeper regions of the reactor. Therefore, this paper studies the feasibility of vortex flow impact utilizing magnetic stirring in hydrogen production for fuel cell applications. For comparison of results, a magnetic stirrer is placed under a PBR of algae to stir the algae to obtain an even distribution of sunlight to the algae while the controlled PBR of algae kept in static. The produced hydrogen level was measured using hydrogen sensor circuit and the data collected were communicated to laptop using Arduino Uno. The results showed more cell counts and hydrogen produced in the PBR under the influence of magnetic stirring compared to static PBR by an average of 8 percent in 4 days.

  14. Vortex wakes of a flapping foil in a flowing soap film

    DEFF Research Database (Denmark)

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von K´arm´an wake, reverse von K´arm´an wake, 2P wake, and 2P+2S wake. We...

  15. Contributions to non-uniform large-Eddy simulation for vortex dominated flows

    NARCIS (Netherlands)

    van der Bos, F.


    This thesis contributes to the development of the Large-Eddy Simulation (LES) technique on non-uniform and adaptive grids. This extension allows to effciently simulate complex, turbulent flow problems as typically encountered in industry, weather prediction and aerodynamics. In an LES only ow

  16. Bifurcation analysis in a vortex flow generated by an oscillatory magnetic obstacle

    DEFF Research Database (Denmark)

    Beltrán, A.; Ramos, E.; Cuevas, S.


    A numerical simulation and a theoretical model of the two-dimensional flow produced by the harmonic oscillation of a localized magnetic field (magnetic obstacle) in a quiescent viscous, electrically conducting fluid are presented. Nonuniform Lorentz forces produced by induced currents interacting...

  17. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow (United States)

    Querzoli, G.; Fortini, S.; Cenedese, A.


    Mechanical heart valves implanted in mitral position have a great effect on the ventricular flow. Changes include alteration of the dynamics of the vortical structures generated during the diastole and the onset of turbulence, possibly affecting the efficiency of the heart pump or causing blood cell damage. Modifications to the hemodynamics in the left ventricle, when the inflow through the mitral orifice is altered, were investigated in vitro using a silicone rubber, flexible ventricle model. Velocity fields were measured in space and time by means of an image analysis technique: feature tracking. Three series of experiments were performed: one with a top hat inflow velocity profile (schematically resembling physiological conditions), and two with mechanical prosthetic valves of different design, mounted in mitral position—one monoleaflet and the other bileaflet. In each series of runs, two different cardiac outputs have been examined by changing the stroke volume. The flow was investigated in terms of phase averaged velocity field and second order moments of turbulent fluctuations. Results show that the modifications in the transmitral flow change deeply the interaction between the coherent structures generated during the first phase of the diastole and the incoming jet during the second diastolic phase. Top hat inflow gives the coherent structures which are optimal, among the compared cases, for the systolic function. The flow generated by the bileaflet valve preserves most of the beneficial features of the top hat inflow, whereas the monoleaflet valve generates a strong jet which discourages the permanence of large coherent structures at the end of the diastole. Moreover, the average shear rate magnitudes induced by the smoother flow pattern of the case of top hat inflow are nearly halved in comparison with the values measured with the mechanical valves. Finally, analysis of the turbulence statistics shows that the monoleaflet valves yield higher turbulence

  18. Shear-thinning effects on vortex breakdown in swirling pipe flows: experiments and simulations (United States)

    Dennis, David; Petit, Tom; Thompson, Deacon; Poole, Robert


    Laminar pipe flow with a controllable wall swirl has been studied both numerically and experimentally to explore the behaviour of inelastic shear-thinning fluids. The pipe consists of two smoothly joined sections that can be rotated independently about the same axis. The circumstances of flow entering a stationary pipe from a rotating pipe (decaying swirl) and flow entering a rotating pipe from a stationary pipe (growing swirl) have been investigated. A numerical parametric study using a simple power law model is conducted and reveals the axial length of the recirculation region is increased for shear-thinning fluids and decreased for shear-thickening (in comparison to the Newtonian reference). The critical swirl ratio required to induce the breakdown at a range of Reynolds numbers and extent of shear-thinning is investigated and a method of scaling is presented that collapses all the data for all fluids (shear-thickening, Newtonian and shear-thinning) onto a single universal curve. Experimental visualisations using an aqueous solution of Xantham Gum (shear-thinning) confirm the conclusions drawn from the numerical results.

  19. Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. (United States)

    Klein, Adrian; Bleckmann, Horst


    The lateral line system of fish consists of superficial neuromasts, and neuromasts embedded in lateral line canals. Lateral line neuromasts allow fish to sense both minute water motions and pressure gradients, thereby enabling them to detect predators and prey or to recognize and discriminate stationary objects while passing them. With the aid of the lateral line, fish can also sense vortices caused by an upstream object or by undulatory swimming movements of fish. We show here that artificial lateral line canals equipped with optical flow sensors can be used to detect the water motions generated by a stationary vibrating sphere, the vortices caused by an upstream cylinder or the water (air) movements caused by a passing object. The hydrodynamic information retrieved from optical flow sensors can be used to calculate bulk flow velocity and thus the size of the cylinder that shed the vortices. Even a bilateral sensor platform equipped with only one artificial lateral line canal on each side is sufficient to determine the position of an upstream cylinder.

  20. An Assessment of CFD Effectiveness for Vortex Flow Simulation to Meet Preliminary Design Needs (United States)

    Raj, P.; Ghaffari, F.; Finley, D. B.


    The low-speed flight and transonic maneuvering characteristics of combat air vehicles designed for efficient supersonic flight are significantly affected by the presence of free vortices. At moderate-to-high angles of attack, the flow invariably separates from the leading edges of the swept slender wings, as well as from the forebodies of the air vehicles, and rolls up to form free vortices. The design of military vehicles is heavily driven by the need to simultaneously improve performance and affordability.1 In order to meet this need, increasing emphasis is being placed on using Modeling & Simulation environments employing the Integrated Product & Process Development (IPPD) concept. The primary focus is on expeditiously providing design teams with high-fidelity data needed to make more informed decisions in the preliminary design stage. Extensive aerodynamic data are needed to support combat air vehicle design. Force and moment data are used to evaluate performance and handling qualities; surface pressures provide inputs for structural design; and flow-field data facilitate system integration. Continuing advances in computational fluid dynamics (CFD) provide an attractive means of generating the desired data in a manner that is responsive to the needs of the preliminary design efforts. The responsiveness is readily characterized as timely delivery of quality data at low cost.

  1. Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque-Hilsch vortex tubes (United States)

    Dincer, K.; Baskaya, S.; Uysal, B. Z.


    In this experimental study, performance of counter flow type Ranque-Hilsch vortex tubes (RHVT), with a length to diameter ratio of 10, 15 and 18, were investigated with 2, 4, 6 nozzles. The measure of performance was chosen as the difference between the temperatures of hot output stream and cold output stream. The performances of RHVTs were experimentally tested by making use of velocity and temperature measurements of the input and output streams. It was determined that the difference between the temperatures of these streams, changed between 9 and 56 K. When all the results were assessed, it was concluded that the best performance was obtained when the ratio of vortex tube’s length to the diameter was 15 and the nozzle number was at least four, and the inlet pressure was as high as possible. Desired performance could be obtained by controlling the rate of the hot output stream.

  2. Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque-Hilsch vortex tubes

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, K. [Selcuk University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Konya (Turkey); Baskaya, S. [Gazi University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Maltepe, Ankara (Turkey); Uysal, B.Z. [Gazi University, Department of Chemical Engineering, Faculty of Engineering and Architecture, Maltepe, Ankara (Turkey)


    In this experimental study, performance of counter flow type Ranque-Hilsch vortex tubes (RHVT), with a length to diameter ratio of 10, 15 and 18, were investigated with 2, 4, 6 nozzles. The measure of performance was chosen as the difference between the temperatures of hot output stream and cold output stream. The performances of RHVTs were experimentally tested by making use of velocity and temperature measurements of the input and output streams. It was determined that the difference between the temperatures of these streams, changed between 9 and 56 K. When all the results were assessed, it was concluded that the best performance was obtained when the ratio of vortex tube's length to the diameter was 15 and the nozzle number was at least four, and the inlet pressure was as high as possible. Desired performance could be obtained by controlling the rate of the hot output stream. (orig.)

  3. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows (United States)

    Wood, R. M.; Miller, D. S.


    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  4. On the vortex ring state (United States)

    Green, Richard; Gillies, E.; Giuni, M.; Hislop, J.; Savas, Omer


    The investigation considers the vortex ring state, a phenomenon normally associated with the collapse of a trailing, helical vortex wake into a unstable vortex ring, and is a problem encountered when a helicopter rotor descends into its own wake. A series of wind tunnel and towing tank experiments on rotor systems have been performed, and a comparison is then made with the behaviour of a specially designed open core, annular jet system that generates a mean flow velocity profile similar to that observed below a rotor. In experimentally simulated descents the jet system forms flow patterns that are topologically similar to the vortex ring state of a rotor system. Furthermore the dynamic behaviour of the flow shares many of the important characteristics of the rotor flow. This result suggests that the phenomenon of the vortex ring state of a rotor wake is decoupled from the detailed vortex dynamics of the helical vortex filaments themselves. The presentation will describe the principle behind the investigation, the details of the annular jet system and the results gained using PIV and flow visualisation of the wake and jet systems.

  5. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics. (United States)

    Arpaia, P; Blanco, E; Girone, M; Inglese, V; Pezzetti, M; Piccinelli, F; Serio, L


    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ (2015)] and Sereg-Schlumberger [ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves-Part 2-1: Flow capacity-sizing equations for fluid flow under installed conditions (2011),], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  6. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.


    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  7. Combustion of Solid Fuel in a Vortex Furnace with Counter-swirling Flows

    Directory of Open Access Journals (Sweden)

    Redko A.A.


    Full Text Available The results of computer simulation of the processes of incineration of low-grade solid fuel-pulverized peat with a moisture content of 40%, an ash content of 6% are given. It has been determined the fields of distribution of temperature, velocity of gases and particles in the volume and at the outlet from the furnace. The three-dimensional temperature distribution in the combustion chamber indicates high-temperature combustion of peat particles at temperatures above 1700°C with liquid ash removal in the lower part of the furnace. It has been determined that when the furnace is cooled, it is not ensured combustion of the fuel completely. The value of the swirling flow rate at the outlet from the furnace (up to 370 m/s ensures the efficiency of separation of fuel particles, reducing heat losses from mechanical underburning. It is determined that the concentration of oxygen is close to zero over the entire height of the furnace, at an outlet from the furnace the oxygen concentration is 5...6%, since oxygen is supplied with excess (αв=1,2. The results of a numerical study showed that the diameter of peat particles affects the process of their combustion: coke particles with an initial diameter of 25 mkm to 250 mkm burn out by 96%. With an increase in particle diameter up to 1000 mkm, the degree of burn-out of coke decreases, but at the same time their removal decreases. It is shown that the furnace ensures the completeness of combustion of peat particles of peat 99.8%, volatiles is 100%.

  8. Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test. (United States)

    Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi


    Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.

  9. Advances in gas flow metering - end of the history, peaceful co-existence or a new beginning; Les avancees dans le mesurage des debits de gaz - fin de l'histoire, coexistence pacifique ou nouveau commencement

    Energy Technology Data Exchange (ETDEWEB)

    Studzinski, W. [NOVA Research and Technology Centre, Calgary (Canada)


    Gas flow metering plays an important role in the technical and fiscal operations of pipeline systems. Over the last hundred years, the industry has gone through several technical revolutions. The recent two decades were characterized by the introduction of flow computers in the 80's and acceptance of ultrasonic meters in the 90's. These changes, associated with measurement technology, have had a profound impact on pipeline operation, deregulation of the gas industry and gas trading. Significant advances were made, however, it is certainly not the end for progress in gas flow metering. The future development of optoelectronic and mass flow meters combined with advances in telemetry and tele-calibration may significantly reduce capital and maintenance costs. Classical flow meters will be upgraded to a new level of performance and will co-exist with the newest technologies. The uncertainty of flow measurement will be improved, mainly in terms of stability over longer periods of time. Old and new meters will be able to perform in environments other than dry natural gas. Processing of flow measurement data will evolve with the progress in flow computers and smart transmitters. The advances in gas flow metering will be driven by life cycle cost reduction as well as new business and service requirements. (author)

  10. Exergy analysis of a counter flow Ranque-Hilsch vortex tube for different cold orifice diameters, L/D ratios and exit valve angles (United States)

    Devade, Kiran D.; Pise, Ashok T.


    An experimental investigation is made to find out the effects of the cold end orifice diameters, length to diameter ratio and exit valve angles on the heating and cooling performance of the counter flow Ranque-Hilsch vortex tube with air as a working fluid. The tube and cold end orifices used at these experiments are made of brass. Three cold end orifices (5, 6 and 7 mm) have been manufactured and are used five different L/D ratios (15 plain tube, 15-18 with 4° divergence angle) and exit valve angles (30°-90°). Inlet pressures were adjusted from 200 to 600 kPa with 100 kPa increments, and the exergy loss, exergy efficiency was determined. As a result of the experimental study, it is determined that the exergy loss between the hot and cold fluid is decreased with increasing of the cold end orifice diameter. Exergy efficiency decreases with increase in L/D ratio. It is also concluded that diverging vortex tube produces lower exergy loss as compared to plain tube. Valve angles have significant effect on hot end exergy loss of the vortex tube.

  11. The Solar Vortex: Electric Power Generation using Anchored, Buoyancy-Induced Columnar Vortices (United States)

    Glezer, Ari


    Naturally-occurring, buoyancy-driven columnar vortices (``dust devils'') that are driven by the instability of thermally stratified air layers and sustained by the entrainment of ground- heated air, occur spontaneously in the natural environment with core diameters of 1-50 m and heights up to 1 km. These vortices convert low-grade waste heat in the air layer overlying the warm surface into a solar-induced wind with significant kinetic energy. Unlike dust devil vortices that are typically free to wander laterally, the Solar Vortex (SoV) is deliberately triggered and anchored within a cylindrical domain bounded by an azimuthal array of stationary ground-mounted vertical vanes and sustained by continuous entrainment of the ground-heated air through these vanes. The mechanical energy of the anchored vortex is exploited for power generation by coupling the vortex to a vertical-axis turbine. This simple, low-cost electric power generating unit is competitive in cost, intermittency, and capacity factor with traditional solar power technologies. The considerable kinetic energy of the vortex column cannot be explained by buoyancy alone, and the fundamental mechanisms associated with the formation, evolution, and dynamics of an anchored, buoyancy-driven columnar vortex were investigated experimentally and numerically with specific emphasis on flow manipulation for increasing the available kinetic energy and therefore the generated power. These investigations have also considered the dependence of the vortex scaling and strength on the thermal resources and on the flow enclosure in the laboratory and in the natural environment. Preliminary outdoor tests of a two-meter scale prototype successfully demonstrated the ability to engender and anchor a columnar vortex using only solar radiation and couple the flow to a vertical axis wind turbine. A kilowatt-scale outer door prototype will be tested during the summer of 2015.

  12. Experiment of Waves on a Vortex filament


    渡辺, 慎介; 舟久保, 悠子; Shinsuke, WATANABE; Yuko, FUNAKUBO; 横浜国大工; Department of Physics Yokohama National University; Department of Energy Engineering Faculty of Engineering, Yokohama National University


    Experiment of waves on a vortex filament is reported. A vertical vortex filament is generated by an axial flow of water in a cylindrical tank with a small hole in the center of the bottom. The motion of a vortex filament is controlled by a solid disk inserted from the top of water tank. When the disk is flapped sinusoidally around a horizontal axis, a vortex filament tends to contact perpendicularly with a disk, and begins to move on the disk. The motion brings about perturbations on a vortex...

  13. Phenomenological Model of Vortex Generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Westergaard, C.


    For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....

  14. Current meter data from moored current meter casts in the Northeast Pacific Ocean as part of the Flow Over Abrupt Topography project from 06 January 1990 - 03 December 1991 (NODC Accession 9500077) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Northeast Pacific Ocean from January 6, 1990 to December 3, 1991. Data were submitted by...

  15. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan


    The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density...... and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case...... of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...

  16. Axisymmetric contour dynamics for buoyant vortex rings (United States)

    Chang, Ching; Llewellyn Smith, Stefan


    Vortex rings are important in many fluid flows in engineering and environmental applications. A family of steady propagating vortex rings including thin-core rings and Hill's spherical vortex was obtained by Norbury (1973). However, the dynamics of vortex rings in the presence of buoyancy has not been investigated yet in detail. When the core of a ring is thin, we may formulate reduced equations using momentum balance for vortex filaments, but that is not the case for ``fat'' rings. In our study, we use contour dynamics to study the time evolution of axisymmetric vortex rings when the density of the fluid inside the ring differs from that of the ambient. Axisymmetry leads to an almost-conserved material variable when the Boussinesq approximation is made. A set of integro-differential equations is solved numerically for these buoyant vortex rings. The same physical settings are also used to run a DNS code and compare to the results from contour dynamics.

  17. Study of a three-phase flow metering process for oil-water-gas flows; Etude d`un procede de mesure des debits d`un ecoulement triphasique de type eau-huile-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Ch.


    We propose a theoretical and experimental study of a three-phase flow metering process for oil-water-gas flows. The selected process is based on a combination of a mixer, a Venturi and ultrasonic methods. To perform an experimental validation of this process an instrumented set-up for three-phase air-oil-water flows has been designed, conceived and adjusted. An original theoretical model have been built to predict three-phase dispersed flows across a contraction. Once validated with two-phase air-water, oil-water and air-oil-water flows data, this model has been used to solve the Venturi metering problems. After a critical review of the available techniques, the ultrasonic propagation velocity has been selected to determine two-phase liquid-liquid flow composition. Two original models have been developed to describe the ultrasonic propagation with the dispersed phase fraction. The comparison with experimental data in oil-water flows show the superiority of one of the two models, the scattering model. For the void fraction determination in air-water flows, the work of Bensler (1990) based on the ultrasonic attenuation measurement has been extended to take into account the multiple scattering effects. Finally these techniques have been combined to determine the different flow rates in air-water, oil-water flows. For two-phase air-water and oil-water flows the problem is solved and the flow rates are measured with a very good accuracy ({+-} 3%). The results quality obtained with three-phase oil-water-gas flows and the secure theoretical bases allowing their interpretation give us the opportunity to strongly recommend the development of an industrial prototype based on the process we studied. (author) 183 refs.

  18. Exergy analysis and performance of a counter flow Ranque-Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air

    Energy Technology Data Exchange (ETDEWEB)

    Kirmaci, Volkan [Bartin University, Faculty of Engineering, Mechanical Engineering Department, 74100 Bartin (Turkey)


    An experimental investigation is made to determine the effects of the orifice nozzle number and the inlet pressure on the heating and cooling performance of the counter flow Ranque-Hilsch vortex tube when air and oxygen used as a fluid. The orifices used at these experiments are made of the polyamide plastic material. The thermal conductivity of polyamide plastic material is 0.25 W/m C. Five orifices with nozzle numbers of 2, 3, 4, 5 and 6 have been manufactured and used during the experiments. For each one of the orifices (nozzle numbers) when used with two different fluids, inlet pressures were adjusted from 150 kPa to 700 kPa with 50 kPa increments, and the exergy efficiency was determined. During the experiments, a vortex tube is used with an L/D ratio of 15, and cold mass fraction is held constant at 0.5. As a result of the experimental study, it is determined that the temperature gradient between the hot and cold fluid is decreased with increasing of the orifice nozzle number. (author)

  19. Vortex diffusion and vortex-line hysteresis in radial quantum turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Saluto, L., E-mail: [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Jou, D., E-mail: [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Mongiovi, M.S., E-mail: [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy)


    We study the influence of vortex diffusion on the evolution of inhomogeneous quantized vortex tangles. A simple hydrodynamical model to describe inhomogeneous counterflow superfluid turbulence is used. As an illustration, we obtain solutions for these effects in radial counterflow of helium II between two concentric cylinders at different temperatures. The vortex diffusion from the inner hotter cylinder to the outer colder cylinder increases the vortex length density everywhere as compared with the non-diffusive situation. The possibility of hysteresis in the vortex line density under cyclical variations of the heat flow is explored.

  20. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002 (United States)

    Vroblesky, Don A.; Peterson, J.E.


    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that

  1. A computational study of drag reduction and vortex shedding suppression of flow past a square cylinder in presence of small control cylinders

    Directory of Open Access Journals (Sweden)

    Shams-Ul. Islam


    Full Text Available This article presents a two-dimensional numerical study of the unsteady laminar flow from a square cylinder in presence of multiple small control cylinders. The cylinders are placed in an unconfined medium at low Reynolds numbers (Re = 100 and 160. Different flow phenomena are captured for the gap spacings (g = s/D, where s is the surface-to-surface distance between the main cylinder and small control cylinders and D is the size of the main cylinder between 0.25 – 3 and angle of attack (θ ranging from 300 to 1800. Numerical calculations are performed by using a lattice Boltzmann method. In this paper, the important flow physics of different observed flow patterns in terms of instantaneous vorticity contours visualization, time-trace analysis of drag and lift coefficients and power spectra analysis of lift coefficient are presented and discussed. Drag reduction and suppression of vortex shedding is also discussed in detail and compared with the available experimental and numerical results qualitatively as well as quantitatively. In addition, the mean drag coefficient, Strouhal number, root-mean-square values of the drag and lift coefficients are determined and compared with a single square cylinder without small control cylinders. We found that the drag is reduced 99.8% and 97.6% for (θ, g = (300, 3 at Re = 100 and 160, respectively.

  2. Experimental study of Counter-Rotating Vortex Pair Trajectories induced by a Round Jet in Cross-Flow at Low Velocity Ratios

    CERN Document Server

    Cambonie, T; Aider, J -L


    Circular flush Jets In Cross-Flow were experimentally studied in a water tunnel using Volumetric Particle Tracking Velocimetry, for a range of jet to cross-flow velocity ratios, r, from 0.5 to 3, jet exit diameters $d$ from 0.8 cm to 1 cm and cross-flow boundary layer thickness delta from 1 to 2.5 cm. The analysis of the 3D mean velocity fields allows for the definition, computation and study of Counter-rotating Vortex Pair trajectories. The influences of r, d and delta were investigated. A new scaling based on momentum ratio r_m taking into account jet and cross-flow momentum distributions is introduced based on the analysis of jet trajectories published in the literature. Using a rigorous scaling quality factor Q to quantify how well a given scaling successfully collapses trajectories, we show that the proposed scaling also improves the collapse of CVP trajectories, leading to a final scaling law for these trajectories.

  3. LDV measurement of in-cylinder flow field including vertical vortex. ; Quantitative estimate of flow characteristics in cylinder and influence of intake pressure. Tateuzu wo fukumu cylinder nai ryudoba no LDV keisoku. ; Tsutsunai ryutai tokuseichi no teiryoteki hyoka to sorerani taisuru kyukiatsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, H.; Kono, S.; Matsuoka, T. (Mazda Motor Corp., Hiroshima (Japan))


    In-cylinder flow in an internal combustion engine is an important factor affecting the engine performance. This research aimed to measure in-cylinder flow including vertical votex generated by a variable swirl port with LDV to get some new knowledges on the generation and control. The engine used for this experiment was a motored single cylinder and two valves engine having a disk type combustion chamber. Ar laser was emitted after fitted quartz glass liner and glycerol solution as seed particles was supplied from the intake port. It was clarified from the fluid characteristics quantitatively determined that clear vertical vortex was formed along with the swirl intensification, that the change of turbulence could be explained definitely by considering not only the swirl but also the vertical vortex condition, and that the vertical vortex was effective to intensify the turbulence, indicating the necessity of generation of comparatively strong vertical vortex. 5 refs., 13 figs., 2 tabs.

  4. Control of Triple-Shock Configurations and Vortex Structures Forming in High Speed Flows of Gaseous Media past an AD Body under the Action of External Energy Sources

    Directory of Open Access Journals (Sweden)

    Olga A. Azarova


    Full Text Available The problem of supersonic streamlining of an aerodynamic (AD body, “a plate blunted by a cylinder”, by a flow with the freestream Mach number M = 4 containing an external energy source has been studied, taking into account physicochemical transformations. The results of the effect of the ratio of specific heats γ changing in the range from 1.1 to 1.4 on the dynamics of triple-shock configurations and vortex-contact structures are presented for the interaction of an energy source with the bow shock wave. The energy source is modeled via the heated rarefied layer (filament. The angles in the triple-shock configurations, the stagnation pressure, together with the frontal drag force, have been studied dependent on the specific heats ratio γ, the characteristics of the energy source, and also on the angle of the incident shock. Vortex-contact structures have been researched for the Mach numbers 7, 8, 9, as well as the generation of the Richtmyer-Meshkov instability accompanying the formation of a triple-shock configuration. The results show a strong influence of the specific heats ratio of the gas medium and the parameters of the energy source on the triple-shock configuration and aerodynamic characteristics of the body. This conclusion can be useful for aerospace applications in the area of the design of nozzles, intakes, and high speed flying vehicles. Additionally, the results show the possibility of flow control in the atmospheres of other planets using external energy deposition.

  5. Analytical simulation of the far-field jet noise and the unsteady jet flow-field by a model of periodic shedding of vortex ring from the jet exit (United States)

    Liu, C. H.


    The construction of a theoretical flow field due to shedding of vortex rings, the identification of the controlling parameters, and the determination of whether the theoretical model successfully simulated the unsteady pressure field near jet (and consequently the far field noise) was studied. The basic parameters contained in the analytic solutions were the epoch at which a vortex ring was shed near the jet exit and the eddy viscosity coefficient. These parameters were identified from the experimental data for the real-time pressure and from the spread of the mixing layer of the jet. Results of the theoretical analysis show good qualitative agreement with the experimental data.

  6. Topology of Vortex-Wing Interaction (United States)

    McKenna, Chris; Rockwell, Donald


    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  7. Grid-Free LES 3D Vortex Method for the Simulation of Tubulent Flows Over Advanced Lifting Surfaces Project (United States)

    National Aeronautics and Space Administration — Turbulent flows associated with advanced aerodynamic designs represent a considerable challenge for accurate prediction. For example, the flow past low-speed wings...

  8. A new fibre-optic sensor for high-temperature flow measurement

    NARCIS (Netherlands)

    Schiferli, W.; Cheng, L.K.; Jansen, T.H.


    Measuring flow is essentia ìn the process and oil & gas ìndustry. In the oil and gas industry, orifice plates and vortex meters are popular, since their lack of moving parts makes them robust. However, the need for electronics limits maximum process temperatures to 150 to 200'C. Special electronics

  9. Intervention-free flow metering in ultrasonic clamp-on process in the sector of natural gas storage; Eingriffsfreie Durchflussmessung im Ultraschall-Clamp-On-Verfahren bei der Erdgaseinspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, J. [FLEXIM GmbH, Berlin (Germany)


    The most flow rates go in one direction. Not so far for natural gas storage systems. According to market demands gas quantities are stored or drawn. Due to progresses of measurement engineering the intervention-free gas flow metering has been well tried in ultrasonic clamp-on process. In practice still a superior alternative to the known sprinkled difference pressure measurement. (GL)

  10. Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating pipe (United States)

    Rusak, Zvi; Wang, Shixiao


    The axisymmetric dynamics of perturbations on a solid-body rotation flow with a uniform axial velocity in a rotating, finite-length circular pipe is studied via global analysis methods and numerical simulations. We first describe the bifurcation diagram of steady-state solutions of the flow problem as a function of the swirl ratio ω. We prove that the base columnar flow is a unique steady-state solution when ω is below a critical level, ω1. This state is asymptotically stable and a global attractor of the flow dynamics. However, when ω >ω1 , we reveal, in addition to the base columnar flow, the co-existence of states that describe swirling flows around either centerline stagnant breakdown zones or wall pseudo-stagnant zones. The base columnar flow is a min-max point of the energy functional that governs the problem while the swirling flows with wall-separation and breakdown zones are global and local minimizer states and attractors of the flow dynamics. We also find additional min-max states that are transient attractors of the flow dynamics. The wall-separation states have same chance to appear as that of the breakdown states and there is no hysteresis loop between these states.

  11. Installation problems on flow rate sensors of heat meters. Avoidance of installation errors; Einbauprobleme bei Durchflusssensoren von Waermezaehlern. Vermeidung von Einbaufehlern

    Energy Technology Data Exchange (ETDEWEB)

    Adunka, F. [Bundesamt fuer Eich- und Vermessungswesen, Vienna (Austria); Technische Univ., Vienna (Austria); Utz, M. [Fachverband der Gas- und Waermeversorgungsunternehmungen, Vienna (Austria); Fernwaerme Wien GmbH (Austria)


    Contents: Installation regulations for piping; ten rules for heat metering; cases of installation for different internal diameters; diagrams of a ball valve influencing a flow rate sensor in front of the valve with different distances; error shifting due to the distance from noise source to the counter. (GL) [German] Im Vergleich der Messgeraete fuer die Kundenabrechnung bei Energieversorgungsunternehmen handelt es sich bei den Geraeten fuer das Medium Waerme mit Sicherheit um ein besonders anspruchsvolles Messverfahren. Zwar hat es seit dem Beginn der Eichpflicht im Jahr 1980 deutliche Weiterentwicklungen gegeben, dennoch werden einige Punkte oft unterschaetzt. Aktuelle Untersuchungen zeigen aber auch, dass die Entwicklung bzw. Verbesserung von Waermezaehlern - speziell die der Durchflusssensoren - noch nicht abgeschlossen ist. (orig.)

  12. Front propagation in a regular vortex lattice: Dependence on the vortex structure (United States)

    Beauvier, E.; Bodea, S.; Pocheau, A.


    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  13. Relative equilibria of vortex arrays (United States)

    Stremler, Mark


    Experiments with vibrating and oscillating cylinders have demonstrated that exotic vortex patterns can emerge in laminar wake flows. These wakes arise when more than two vortices are generated per shedding cycle. The Karman vortex street has proven to be a useful model for investigating the standard wake flow with two vortices per period; this utility suggests that it will be instructive to investigate other singly-periodic point vortex configurations that move without change of shape or size. The existence and structure of such relative equilibria of vortex arrays will be presented. Motivation for investigating these equilibria, all of which appear to be unstable, comes from the observation that the dynamics of a system slows down in the vicinity of unstable equilibria. Thus, states close to these equilibria can remain for a relatively long time, as illustrated by recent experiments in strongly magnetized electron plasma. The investigation of the relative equilibria of vortex arrays can thus provide a `road-map' for states that may be observable in laminar wake experiments.

  14. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)


    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  15. Supersonic shock wave/vortex interaction (United States)

    Settles, G. S.; Cattafesta, L.


    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of

  16. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne


    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Sur...

  17. On the evolution of vortex rings with swirl

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Takashi, E-mail: [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)


    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  18. Fluid entrainment by isolated vortex rings (United States)

    Dabiri, John O.; Gharib, Morteza


    Of particular importance to the development of models for isolated vortex ring dynamics in a real fluid is knowledge of ambient fluid entrainment by the ring. This time-dependent process dictates changes in the volume of fluid that must share impulse delivered by the vortex ring generator. Therefore fluid entrainment is also of immediate significance to the unsteady forces that arise due to the presence of vortex rings in starting flows. Applications ranging from industrial and transportation, to animal locomotion and cardiac flows, are currently being investigated to understand the dynamical role of the observed vortex ring structures. Despite this growing interest, fully empirical measurements of fluid entrainment by isolated vortex rings have remained elusive. The primary difficulties arise in defining the unsteady boundary of the ring, as well as an inability to maintain the vortex ring in the test section sufficiently long to facilitate measurements. We present a new technique for entrainment measurement that utilizes a coaxial counter-flow to retard translation of vortex rings generated from a piston cylinder apparatus, so that their growth due to fluid entrainment can be observed. Instantaneous streamlines of the flow are used to determine the unsteady vortex ring boundary and compute ambient fluid entrainment. Measurements indicate that the entrainment process does not promote self-similar vortex ring growth, but instead consists of a rapid convection-based entrainment phase during ring formation, followed by a slower diffusive mechanism that entrains ambient fluid into the isolated vortex ring. Entrained fluid typically constitutes 30% to 40% of the total volume of fluid carried with the vortex ring. Various counter-flow protocols were used to substantially manipulate the diffusive entrainment process, producing rings with entrained fluid fractions up to 65%. Measurements of vortex ring growth rate and vorticity distribution during diffusive entrainment

  19. Dynamic Optimization for Vortex Shedding Suppression

    Directory of Open Access Journals (Sweden)

    Bonis Ioannis


    Full Text Available Flows around structures exhibiting vortex shedding induce vibrations that can potentially damage the structure. A way to avoid it is to suppress vortex shedding by controlling the wake. Wake control of laminar flow behind a rotating cylinder is formulated herein as a dynamic optimization problem. Angular cylinder speed is the manipulated variable that is adjusted to suppress vortex shedding by minimizing lift coefficient variation. The optimal angular speed is assumed to be periodic like wake formation. The control problem is solved for different time horizons tH. The impact of tH to control is evaluated and the need for feedback is assessed.

  20. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær


    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  1. The modelling of symmetric airfoil vortex generators (United States)

    Reichert, B. A.; Wendt, B. J.


    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  2. Morphological and quantitative results of an investigation of an unstable vortex ring whose oscillation in the turbulent flow state is enhanced by a free jet (United States)

    Schneider, P. E. M.


    A vortex ring formed at an annular nozzle mouth by impulse like fluid ejection was studied. Translation velocity, ratio of delay to self acceleration, vortex ring diameter and instability wave amplitude were measured as a function of place and time. Instability wave characteristics were determined. Oscillation form and frequency, distance between points of same oscillation phase and oscillation phase velocity were observed, measured and calculated. The translation velocity decreases continuously, but increases at the beginning of the instability and when the turbulent vortex ring is influenced by the free jet. It decreases again after the acceleration phase. The equilibrium diameter remains constant in the laminar and turbulent domain, but increases in the vortex oscillation domain. The change into the turbulent state starts locally and spreads out along the vortex central domain. Under the influence of the free jet a triangle-hexagon-triangle oscillation is observed, and without free jet a triangle dodecagon-hexagon oscillation is observed.

  3. PREFACE: Special section on vortex rings Special section on vortex rings (United States)

    Fukumoto, Yasuhide


    . Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)

  4. A numerical study of flow and temperature fields in circular tube heat exchanger with elliptic vortex generators

    Directory of Open Access Journals (Sweden)

    Mohseni-Languri Ehsan


    Full Text Available The two-dimensional fluid flow and heat transfer in a circular tube heat exchanger with two elliptic obstacles at the back is studied numerically. The computational domain consists of a circular tube and two elliptic obstacles that are situated after the tube, such that the angle between their centerlines and the direction of free coming flow is 45 degrees. The numerical solution is achieved by numerical integration of full Navier-Stokes and energy equations over the computational domain, using finite volume method. The fluid flow is assumed to be laminar, incompressible and steady-state with constant thermo-physical characteristics. In this study major thermo-fluid parameters such as temperature, pressure and velocity fields as well as Nusselt number and friction factor variations are computed and some results are presented in the graphs. It is shown that using of elliptic obstacles leads to an increase in the average Nusselt number and also pressure. .

  5. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor (United States)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang


    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  6. Development of gas pressure vortex regulator (United States)

    Uss, A. Yu.; Chernyshyov, A. V.; Krylov, V. I.


    The present paper describes the applications of vortex regulators and the current state of the issue on the use and development of such devices. A patent review has been carried out. Automatic control systems using a vortex regulator are considered. Based on the analysis and preliminary numerical calculation of gas flow in the working cavity of the regulator, a new design of a vortex gas pressure regulator has been developed. An experimental sample of the device was made using additive technologies and a number of tests were carried out. The results of experimental studies confirmed the adequacy of the created mathematical model. Based on further numerical studies a new design of a vortex regulator with a distributed feed of the process control flow as well as with the regulated swirl of the supply and control process flows has been developed.

  7. Recovering Energy at Entry of Natural Gas into Customer Premises by Employing a Counter-Flow Vortex Tube Récupération d’énergie à l’arrivée du gaz naturel dans les installations des usagers grâce à l’emploi d’un tube Vortex à contre-courant

    Directory of Open Access Journals (Sweden)

    Farzaneh-Gord M.


    Full Text Available Throttling valves are currently utilised to reduce high-pressure natural gas flowing through the distribution pipeline to the working level of customers’ equipment. This wastes valuable energy of the gas. Due to low natural gas consumption at customer premises, it is not feasible to utilise expansion machines. In this study, a new idea is proposed to take advantage of the Vortex Tube and natural gas pressure reduction. The idea is to replace the throttling valve with a Vortex Tube in the natural gas pressure reduction system and take advantage of the generated cooling capacity. An experimental investigation was made to determine the effects of the cold orifice diameter and the energy separation of the counter-flow Vortex Tube when air and natural gas are used as the fluid. The energy separation was investigated by use of the experimentally obtained data. La reduction de la pression de gaz naturel entre les conduites de distribution haute pression et les installations des usagers est aujourd’hui assuree par des vannes de reduction de pression. Ce dispositif entraine une perte importante du contenu energetique du gaz. Les installations des usagers consommant trop peu de gaz naturel pour envisager d’avoir recours a des dispositifs d’expansion, notre etude explore les avantages potentiels de l’utilisation d’un tube Vortex pour la reduction de la pression de gaz naturel. Il s’agit de remplacer la vanne de reduction de pression par un tube Vortex dans le dispositif de reduction de la pression de gaz naturel et de tirer profit de la capacite de refroidissement produite. L’etude experimentale avait pour objectif de determiner l’effet du diametre de l’orifice froid ainsi que de l’utilisation de l’air et du gaz naturel comme fluides sur la production d’energie dans le tube Vortex a contre-courant. Le taux de recuperation de l’energie est determine a partir des mesures experimentales.

  8. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.


    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  9. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development. (United States)

    Kazakidi, A; Vavourakis, V; Tsakiris, D P; Ekaterinaris, J A


    The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors.

  10. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck


    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  11. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y. [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y.; Osuga, M.; Yamauchi, T. [Hitachi, Ltd., Tokyo (Japan)


    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  12. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube (United States)

    Devade, Kiran D.; Pise, Ashok T.


    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  13. Counterexamples to Moffatt's statements on vortex knots. (United States)

    Bogoyavlenskij, Oleg


    One of the well-known problems of hydrodynamics is studied: the problem of classification of vortex knots for ideal fluid flows. In the literature there are known Moffatt statements that all torus knots K_{m,n} for all rational numbers m/n (0vortex knots for each one of the considered axisymmetric fluid flows. We prove that actually such a uniformity does not exist because it does not correspond to the facts. Namely, we derive a complete classification of all vortex knots realized for the fluid flows studied by Moffatt and demonstrate that the real structure of vortex knots is much more rich because the sets of mutually nonisotopic vortex knots realized for different axisymmetric fluid flows are all different. An exact formula for the limit of the hydrodynamic safety factor q_{h} at a vortex axis is derived for arbitrary axisymmetric fluid equilibria. Another exact formula is obtained for the limit of the magnetohydrodynamics safety factor q at a magnetic axis for the general axisymmetric plasma equilibria.

  14. Vortex motion behind a circular cylinder (United States)

    Foeppl, L.


    Vortex motion behind a circular cylinder moving through water is discussed. It is shown that a pair of vortices form behind a moving cylinder and that their centers will move along a predictable curve. This curve represents an equilibrium condition which, however, is subject to perturbation. The stability of the vortex pair is investigated. Movement of the vortex pair away from the cylinder is calculated as an explanation of the resistance of the cylinder. Finally, the principles elaborated are applied to the flow around a flat plate.

  15. Your Glucose Meter (United States)

    ... by Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing ... Your Blood Sugar and Caring for Your Meter Glucose meters test and record how much sugar (called ...

  16. Vortex dynamics and scalar transport in the wake of a bluff body driven through a steady recirculating flow (United States)

    Poussou, Stephane B.; Plesniak, Michael W.


    The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.

  17. Metrological control of instruments, equipment and measurement system for ultrasonic meters of flow; Controle metrologico de instrumentos, equipamentos e sistema de medicao para medidores ultra-sonicos de vazao

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Oscar de


    Following the actual tendency to obtaining greater precision in Natural Gas measurement, in the past few years the use of Ultrasonic Flow Meters as Custody Transfer applications has grown significantly. There are several units currently operating in Brazil. The legislation for model approval, measure system certification and periodical metrological control of the above mentioned equipment, is currently under elaboration final stage. It was placed under public inquire through the 'Portaria 037' of 2004 of INMETRO, which proposes the authorization to perform the Metrological control by the Operator, once it has a quality system implemented according NBR ISO 9001-2000 and/or ISO 17025. This paper describes the verification procedure adopted by most of ultrasonic meters manufacturers. It also describes the application of the procedure for create the 'Metrological Control System of the Measurement System' of a 12'' Ultrasonic Meter installed and operating, with 3 years operation's data. (author)

  18. Vortex profiles and vortex interactions at the electroweak crossover


    Chernodub, M.N.; Ilgenfritz, E. -M.; Schiller, A.


    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.

  19. Experimental characteristics of vortex heaters (United States)

    Piralishvili, Sh. A.; Novikov, N. N.

    The performance of a Ranque-Hilsch vortex tube is investigated experimentally for the case where the tube operates as a heater, with the mass of the heated gas remaining constant. The results obtained indicate that energy separation zones with sufficiently high (50 percent) relative heating effects can be achieved for a gas flow ratio of unity. A nomogram is presented for calculating the relative and absolute heating effects as a function of the tube geometry.

  20. Coupled particle dispersion by three-dimensional vortex structures

    Energy Technology Data Exchange (ETDEWEB)

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.


    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  1. On variational principles for coherent vortex structures

    NARCIS (Netherlands)

    van de Fliert, B.W.; van Groesen, Embrecht W.C.


    Different approaches are discussed of variational principles characterizing coherent vortex structures in two-dimensional flows. Turbulent flows seem to form ordered structures in the large scales of the motion and the self-organization principle predicts asymptotic states realizing an extremal

  2. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade (United States)

    Yang; Baeder, J. D.


    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study.

  3. Investigating water meter performance in developing countries: A ...

    African Journals Online (AJOL)


    Oct 7, 2011 ... refers to the ISO classification for water meters and indicates the ability of the meter to measure low flows. Class D meters have the greatest ability to measure low flows and Class A have the least ability. Pressure measurements were also carried out at the properties (using Hydreka Vistaplus pressure data ...

  4. Drift due to viscous vortex rings (United States)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc


    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  5. Numerical simulations of trailing vortex bursting (United States)

    Beran, Philip S.


    Solutions of the steady-state Navier-Stokes equations for the axisymmetric bursting of a laminar trailing vortex are computed with Newton's method and the pseudo-arc length continuation method for wide ranges of vortex strength and Reynolds number. The results indicate that a trailing vortex can undergo a transition from a state in which the core slowly diffuses to a state marked by large amplitude, spatial oscillations of core radius and core axial velocity. At the transition point the core grows rapidly in size. This event is interpreted as vortex bursting. The results also suggest that when the maximum core swirl velocity is sufficiently large the centerline axial flow downstream of transition will be reversed.

  6. Spatiotemporal complexity of the aortic sinus vortex (United States)

    Moore, Brandon; Dasi, Lakshmi Prasad


    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calcific aortic valve disease. We characterize the spatiotemporal characteristics of aortic sinus vortex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High-resolution time-resolved (2 kHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in timescales as revealed using time bin-averaged vectors and corresponding instantaneous streamlines. There exist small timescale vortices and a large timescale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatiotemporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200 Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and timescales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics.

  7. Vortex disruption by magnetohydrodynamic feedback (United States)

    Mak, J.; Griffiths, S. D.; Hughes, D. W.


    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses—and thus the degree of disruption—that depends on the strength of the background magnetic field (measured by the parameter M , a ratio between the Alfvén speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number Rm ). The resulting estimate suggests that significant disruption occurs when M2Rm =O (1 ) . To test our prediction, we analyze direct numerical simulations of vortices generated by the breakup of unstable shear flows with an initially weak background magnetic field. Using the Okubo-Weiss vortex coherence criterion, we introduce a vortex disruption measure, and show that it is consistent with our predicted scaling, for vortices generated by instabilities of both a shear layer and a jet.

  8. Hydrodynamic Vortex on Surfaces (United States)

    Ragazzo, Clodoaldo Grotta; de Barros Viglioni, Humberto Henrique


    The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green's function on the surface. The uniqueness of the Green's function is established under hydrodynamic conditions at the surface's boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler's equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move ("Steady Vortex Metric"). Some examples of surfaces with steady vortex metric isometrically embedded in R^3 are presented.

  9. Special vortex in relativistic hydrodynamics (United States)

    Chupakhin, A. P.; Yanchenko, A. A.


    An exact solution of the Euler equations governing the flow of a compressible fluid in relativistic hydrodynamics is found and studied. It is a relativistic analogue of the Ovsyannikov vortex (special vortex) investigated earlier for classical gas dynamics. Solutions are partially invariant of Defect 1 and Rank 2 with respect to the rotation group. A theorem on the representation of the factor-system in the form of a union of a non-invariant subsystem for the function determining the deviation of the velocity vector from the meridian, and invariant subsystem for determination of thermodynamic parameters, the Lorentz factor and the radial velocity component is proved. Compatibility conditions for the overdetermined non-invariant subsystem are obtained. A stationary solution of this type is studied in detail. It is proved that its invariant subsystem reduces to an implicit differential equation. For this equation, the manifold of branching of solutions is investigated, and a set of singular points is found.

  10. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC ...

  11. Modeling Vortex Generators in a Navier-Stokes Code (United States)

    Dudek, Julianne C.


    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  12. Robust Meter Network for Water Distribution Pipe Burst Detection

    Directory of Open Access Journals (Sweden)

    Donghwi Jung


    Full Text Available A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal meter placement model that maximizes the detection probability, minimizes false alarms, and maximizes the robustness of a meter network given a predefined number of meters. A meter network’s robustness is defined as its ability to consistently provide quality data in the event of meter failure. Based on a single-meter failure simulation, a robustness indicator for the meter network is introduced and maximized as the third objective of the proposed model. The proposed model was applied to the Austin network to determine the independent placement of pipe flow and pressure meters with three or five available meters. The results showed that the proposed model is a useful tool for determining meter locations to secure high detectability and robustness.

  13. Computational investigation of the temperature separation in vortex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Anish, S. [National Institute of Technology Karnataka, Mangalore (India); Setoguchi, T. [Institute of Ocean Energy, Saga University (Japan); Kim, H. D. [Andong National University, Andong (Korea, Republic of)


    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  14. Numerical visualization of air intake induced by free surface vortex (United States)

    Park, Young Kyu; Dey, Mohan Kumar; Choi, Yoon Hwan; Lee, Yeon Won


    Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induces noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free surface vortex and air absorption in a pump intake has been investigated by the Volume of Fraction (VOF) method with steady multiphase flow model in order to represent the behavior of the free surface vortex exactly. The homogeneous free surface model is used to apply interactions of air and water. The results show that air intake by the free surface vortex motion can be visualized using the iso-surface of air volume fraction. The vortices make an air column from the free surface to the pump intake. Also, it was found that the free surface vortex can be controlled by installing curtain walls.

  15. Aperiodicity Correction for Rotor Tip Vortex Measurements (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.


    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  16. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, L. A., E-mail:; Smirnov, A. I., E-mail:; Mironov, V. A. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)


    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  17. Modeling Vortex Generators in the Wind-US Code (United States)

    Dudek, Julianne C.


    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  18. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig


    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  19. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian


    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws...

  20. Intraventricular vortex properties in nonischemic dilated cardiomyopathy. (United States)

    Bermejo, Javier; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; Del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; Del Álamo, Juan C


    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1-74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m(2)/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound.

  1. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.


    Actuator Vortex Generator Model (AcVG), is based on the lifting force theory of Bender, Anderson and Yagle, the BAY Model, which provides an efficient method for computational fluid dynamic (CFD) simulations of flow with VGs, and the forces are applied into the computational domain using the actuator shape...... code using Reynold-Average Navier-Stokes (RANS) methods. The third model is the experimental one, where measurements were carried out in a low speed closed-circuit wind tunnel utilizing Stereoscopic Particle Image Velocimetry (SPIV) with a single vortex generator positioned on a vertical wall...... in the center of the test section. The fourth model, used as a quantitative comparison, is the analytical model of the primary vortex based in the helical structure of longitudinal embedded vortex, which can reduce the complex flow to merely four parameters: circulation, convection velocity, vortex core radius...

  2. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas


    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  3. Vortex Cloud Street during AMTEX 75

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Agee, E. M.


    Strong northerly flow across Cheju Island, Korea, during the 1975 Air Mass Transformation Experiment (AMTEX 75) resulted in a pronounced vortex cloud street to the lee of the island on February 17 1975. This pattern has been studied and explained in terms of classical von Karman eddies shed...

  4. Swirling Strength Vortex Study in Confined Rectangular Jet (United States)

    Kong, Bo; Olsen, Michael; Fox, Rodney; Hill, James


    Vortex behavior in confined rectangular jet (Re = 20K, Re = 50K) were examined by using vortex swirling strength as a defining characteristic. Instantaneous velocity fields were collected for by using Particle Image Velocimetry(PIV). Swirling strength fields were calculated from velocity fields, and then filtered with a universal threshold of 1.5 times of swirling strength RMS value. By identifying clusters in filtered swirling strength fields, vortex structures were defined. Both instantaneous swirling strength field data and vortex population calculation indicate that the positively (counterclockwise) rotating vortices are dominant on the left side of the jet, and negatively (clockwise) rotating vortices are dominant on the right side. As flow develops further downstream, vortex population decreases and the flow approach channel flow. At the locations of the left peak of turbulent kinetic energy, two point spatial cross-correlation of swirling strength with velocity fluctuation were calculated. Linear stochastic estimation was also used to interpret the spatial correlation results and to determine conditional flow structures. High speed PIV data were also analyzed by using swirling strength technique to trace development of vortices. Vortex trajectories were found by tracing individual swirling strength clusters. The speed and strength of individual vortex were also studied by using this method.

  5. Device for separation of vortex gas-dynamic energy (United States)

    Leontiev, A. I.; Burtsev, S. A.


    A device for separation of vortex gas-dynamic energy, which combines the mechanism of separation of vortex energy used in the Ranque-Hilsch tubes and the mechanism of separation of gas-dynamic energy, is proposed for supersonic flows. A method of calculation of this device is developed. A comparison is made that showed that, when working with natural gas, the cooling depth of half of the mass flow rate proves to be 1.3 times higher than that for the vortex tube and three times higher than that for the device for separation of the gas-dynamic energy.

  6. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner


    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  7. Optimal Vortex Formation as a Unifying Principle in Biological Propulsion (United States)

    Gharib, Morteza


    The dynamics of vortex formation in starting flows are governed by limiting physical processes that have been observed in experiments and numerical simulations. For several years it has been suggested that the principles of optimal vortex ring formation discovered in the laboratory might also occur naturally in biological systems. Pulsed-jet swimming (e.g. squid and jellyfish) and cardiac blood transport are among the most commonly cited examples of systems which could benefit from a strategy of optimal vortex ring formation. However, previous efforts to quantify the biological mechanisms of vortex formation have encountered difficulties in resolving the effects of transient boundary conditions such as valve and orifice motion. We have combined new vortex generation techniques with in vivo measurements to determine the effects of time-dependent boundary conditions on vortex formation by starting-flow propulsors. Results indicate that vortex formation across various biological systems is manipulated by these kinematics in order to maximize thrust and/or propulsive efficiency. Hence, it is important to include these effects in realistic models of the bio-fluid mechanics. We also examine possible extension of these results to organisms that generate more complex vortical structures, such as fishes and birds. An emphasis on observed vortex dynamics and transient boundary conditions facilitates quantitative comparisons across propulsion schemes irrespective of their individual biological functions.

  8. An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex

    Directory of Open Access Journals (Sweden)

    Shin-Woong Kim


    Full Text Available This paper presents results of an experimental investigation of vortex-induced vibration (VIV of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, f∗, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity (Vr range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with f∗.

  9. Creeping counter vortex flow КОНТРВИХРЕВОЕ ПОЛЗУЩЕЕ ТЕЧЕНИЕ

    Directory of Open Access Journals (Sweden)

    Orekhov Genrikh Vasil’evich


    Full Text Available The authors have performed an analytical research into one of the most complex types of heterogeneous 3D flows of fluids and gases, that is, a creeping counter vortex flow. The “creeping counter vortex flow” is the flow that is formed as a result of interaction between two or more slow concurrent co-axial circulatory longitudinal flows swirling in the opposite directions.Creeping flows are typical for numerous structural elements of machines, mechanisms, items of equipment and devices, if the flow velocity or cross dimensions of channels are small or, alternatively, if the viscosity of the fluid is high. This model designed by the coauthors, serves as the basis for the hydrodynamic theory of lubrication. If the flow velocity is small and the viscosity of the liquid media is substantial, inertial convective summands can be ignored for Navier — Stokes equations.The coauthors believe that the research into the phenomena of the creeping counter vortex flow as one of the types of heterogeneous 3D flows of fluids and gases has a strong potential in space technologies, and it may be elaborated in further research projects to be developed by the coauthors.Аналитически исследовано одно из сложнейших пространственных неравномерных течений жидкости и газа, так называемое ползущее контрвихревое течение. Контрвихревым будем далее называть течение, формирующееся при взаимодействии двух или более спутных медленных коаксиальных циркуляционно-продольных потоков, закрученных во взаимно противоположных направлениях.

  10. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings (United States)

    Qin, Suyang; Liu, Hong; Xiang, Yang


    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  11. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning


    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  12. Effect of the conical-shape on the performance of vortex tube (United States)

    Guen, M.; Natkaniec, C.; Kammeyer, J.; Seume, J. R.; Adjlout, L.; Imine, O.


    The present study focuses on the effect of conical shape in the cold side of the Ranque-Hilsch vortex tube which is shown to have a considerable influence on the system performance. A vortex tube is a simple circular tube with no moving parts which is capable to divide a high pressure flow into two relatively lower pressure flows with temperatures higher and lower than the incoming flow. A three-dimensional computational fluid dynamic model is used to analyse the mechanisms of flow inside a vortex tube. The SST turbulence model is used to predict the turbulent flow behaviour inside the vortex tube. The geometry of a vortex tube with circumferential inlet slots as well as axial cold and hot outlet is considered. Performance curves temperature separation versus cold outlet mass fraction are calculated for a given inlet mass flow rate and varying outlet mass flow rates.

  13. Household Smart Water Metering in Spain: Insights from the Experience of Remote Meter Reading in Alicante

    National Research Council Canada - National Science Library

    Hug March; alvaro-Francisco Morote; Antonio-Manuel Rico; David Saurí


    .... Beyond reducing certain labor costs, such as those related to manual meter reading, such detailed and continuous flow of information is said to enhance network efficiency and improve water planning...

  14. Comparison between hydraulic and structural based anti-vortex methods at intakes (United States)

    Monshizadeh, Morteza; Tahershamsi, Ahmad; Rahimzadeh, Hassan; Sarkardeh, Hamed


    Surface vortices are the main reason of flow instability and entraining air and debris into the intakes. Using structural based anti-vortex facilities is a common method for dissipating vortices over the intakes. In the present experimental study, performance of a new hydraulic based anti-vortex method is compared with available structural based anti-vortex methods over the horizontal intakes. In the new approach dynamically high-risk surface vortices are eliminated by imposing a hydraulic jet at the formed vortex zone over the intake. The injected jet acts as a point source of external momentum in order to change the hydrodynamic condition of the formed vortex flow. Results show that the investigated hydraulic based anti-vortex device is more flexible and more hydraulically efficient than the structural based anti-vortex methods, especially when the intake Froude number is higher than 1.3.

  15. The singing vortex. (United States)

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T


    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  16. Optical cycle power meter

    DEFF Research Database (Denmark)


    A bicycle power meter for measuring power generated when riding a bicycle, the power meter comprising a position-sensitive radiation detector (409) attachable to a component of a crank set (404) of bicycle, and a radiation source (408) attachable to the component of the crank set and configured...

  17. Numerical method to calculate flow-induced vibration in turbulent flow. 3rd Report. Analysis of vortex-induced vibration in an array of elastically supported tubes; Ranryuba ni okeru ryutai kozotai rensei shindo kaiseki shuho no kaihatsu. 3. Kangun ni okeru uzu reiki shindo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sadaoka, N.; Umegaki, K. [Hitachi, Ltd., Tokyo (Japan)


    A vortex-induced vibration of an array of elastically supported tubes is simulated in two-dimension by using a flow-induced vibration analysis program, which was developed in order to evaluate flow-induced vibration in various components such as heat exchangers. From a comparison of calculated results and experimental data, the following points are observed. (1) For the calculated results in a 5 {times} 5 square array, the flow pattern surrounding the first-row tubes is markedly different from that observed in the second-row or third-row tubes. This flow pattern is the same as that obtained from the experiment. (2) All tubes begin to oscillate due to unsteady fluid force and the oscillating mode is different for each row of tubes. These oscillation patterns show the same tendency in the experiments and it is concluded that the developed method can simulate vortex-induced vibration in an array of elastically supported tubes. 19 refs., 10 figs., 1 tab.

  18. Vortex scenario and buble generation in a cylindrical cavity with rotating top and bottom

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær


    of re-circulating vortex structures is associated with a change in helical symmetry of the vortex lines. The computations show that symmetry changes take place at increasing Reynolds numbers and that flow reversal on the center axis is associated with a growth of the twist parameter of the vortex lines....... For all studied flow cases, independent of aspect ratio and Reynolds number, it was observed that the twist parameter of the central vortex attains a threshold value of K0.6 at the point where flow reversal takes place....

  19. Vortex scenario and bubble generation in a cylindrical cavity with rotating top and bottom

    DEFF Research Database (Denmark)

    Okulov, Valery L.; Sørensen, Jens Nørkær; Voigt, Lars K.


    of re-circulating vortex is associated with a change in helical symmetry of the vortex lines. The computations show that symmetry changes take place at increasing Reynolds numbers and that flow reversal on the center axis is associated with a growth of the twist parameter of the vortex lines. For all...... studied flow cases, independent of aspect ratio and Reynolds number, it was observed that the twist parameter of the central vortex attains a threshold value of K=0.6 at the point where flow reversal takes place....

  20. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions (United States)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal


    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  1. Vortex particle method in parallel computations on graphical processing units used in study of the evolution of vortex structures (United States)

    Kudela, Henryk; Kosior, Andrzej


    Understanding the dynamics and the mutual interaction among various types of vortical motions is a key ingredient in clarifying and controlling fluid motion. In the paper several different cases related to vortex tube interactions are presented. Due to problems with very long computation times on the single processor, the vortex-in-cell (VIC) method is implemented on the multicore architecture of a graphics processing unit (GPU). Numerical results of leapfrogging of two vortex rings for inviscid and viscous fluid are presented as test cases for the new multi-GPU implementation of the VIC method. Influence of the Reynolds number on the reconnection process is shown for two examples: antiparallel vortex tubes and orthogonally offset vortex tubes. Our aim is to show the great potential of the VIC method for solutions of three-dimensional flow problems and that the VIC method is very well suited for parallel computation.

  2. Vortex matter driven through mesoscopic channels (United States)

    Kes, P. H.; Kokubo, N.; Besseling, R.


    The dynamics of vortex matter confined to mesoscopic channels has been investigated by means of mode locking experiments. When vortices are coherently driven through the potential provided by static vortices pinned in the channel edges, interference between the washboard frequency of the moving vortex lattice and the frequency of the superimposed rf-drive causes (Shapiro-like) steps in the dc- I- V curves. The position of the voltage steps uniquely determines the number of moving rows in each channel. It also shows how the frustration between row spacing and channel width behaves as a function of magnetic field. Maxima in flow stress (∼ Ic) occur at mismatch conditions. They are related to the traffic-jam-like flow impedance caused by the disorder in the edges. At higher fields, near the 2D-melting line Bm( T), the mode-locking interference characteristic for crystalline motion, strongly depends on the velocity, i.e. the applied frequency at which the vortex motion is probed. The minimum velocity at which coherent motion could be observed, diverges when the melting line is approached from below. Above the melting line interference is absent for any frequency. These observations give the first direct evidence for a dynamic phase transition of vortex matter driven through a disorder potential as predicted by Koshelev and Vinokur.

  3. Development and Testing of Infrared Water Current Meter | Ezenne ...

    African Journals Online (AJOL)

    Continuous monitoring of the river flow is essential for assessing water availability. River flow velocity is crucial to simulate discharge hydrographs of water in the hydrological system.This study developed a digital water current meter with infrared. The infrared current meter was tested using Ebonyi River at Obollo-Etiti and ...

  4. Vortex Interactions on Plunging Airfoil and Wings (United States)

    Eslam Panah, Azar; Buchholz, James


    The development of robust qualitative and quantitative models for the vorticity fields generated by oscillating foils and wings can provide a framework in which to understand flow interactions within groups of unsteady lifting bodies (e.g. shoals of birds, fish, MAV's), and inform low-order aerodynamic models. In the present experimental study, the flow fields generated by a plunging flat-plate airfoil and finite-aspect-ratio wing are characterized in terms of vortex topology, and circulation at Re=10,000. Strouhal numbers (St=fA/U) between 0.1 and 0.6 are investigated for plunge amplitudes of ho/c = 0.2, 0.3, and 0.4, resulting in reduced frequencies (k= π fc/U) between 0.39 and 4.71. For the nominally two-dimensional airfoil, the number of discrete vortex structures shed from the trailing edge, and the trajectory of the leading edge vortex (LEV) and its interaction with trailing edge vortex (TEV) are found to be primarily governed by k; however, for St >0.4, the role of St on these phenomena increases. Likewise, circulation of the TEV exhibits a dependence on k; however, the circulation of the LEV depends primarily on St. The growth and ultimate strength of the LEV depends strongly on its interaction with the body; in particular, with a region of opposite-sign vorticity generated on the surface of the body due to the influence of the LEV. In the finite-aspect-ratio case, spanwise flow is also a significant factor. The roles of these phenomena on vortex evolution and strength will be discussed in detail.

  5. Ramp Metering Status in California

    Directory of Open Access Journals (Sweden)

    Zhongren Wang


    Full Text Available The purpose of this paper is to provide an update of the major improvement in terms of ramp metering design and operations in California. These updates include ramp metering policies, ramp metering development plans, ramp metering design manual, and ramp metering and system management initiatives.

  6. An evaporation based digital microflow meter (United States)

    Nie, C.; Frijns, A. J. H.; Mandamparambil, R.; Zevenbergen, M. A. G.; den Toonder, J. M. J.


    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes place. A proof-of-principle device of the digital flow meter was designed, fabricated, and tested. The device was built on foil-based technology. In the proof-of-principle experiments, good agreement was found between set flow rates and the evaporation rates estimated from reading the number of wetted pore structures. The measurement range of the digital flow meter can be tuned and extended in a straightforward manner by changing the pore structure of the device.

  7. Vortex Dynamics in the Two-Fluid Model


    Thouless, D. J.; Geller, M. R.; Vinen, W. F.; Fortin, J. -Y.; Rhee, S. W.


    We have used two-fluid dynamics to study the discrepancy between the work of Thouless, Ao and Niu (TAN) and that of Iordanskii. In TAN no transverse force on a vortex due to normal fluid flow was found, whereas the earlier work found a transverse force proportional to normal fluid velocity u and normal fluid density. We have linearized the time-independent two-fluid equations about the exact solution for a vortex, and find three solutions which are important in the region far from the vortex....

  8. On the viscosity influence on a helical vortex flament evolution

    Directory of Open Access Journals (Sweden)

    Agafontseva M.V.


    Full Text Available Helical vortices whose parameters have a strong influence on the efficiency of the apparatus is often occur in technical devices using swirling flow (cyclones, separators, etc.. To date the internal structure of such vortices is poorly understood. In [1] a model of helical vortex with uniform vorticity distribution in the core is proposed. Vortices arising in real flow always have a smooth vorticity distribution due to the viscosity action. The problem on steady moving helical vortices with the vortex core of small size in an inviscid fluid was solved in [2]. The non-orthogonal ‘helical’ coordinate system was introduced that allowed author to reduce the problem to two dimensional one. However, the velocity of the vortex motion was written only in the form of a quadratures computation of which is difficult. This paper presents first attempt for research on the diffusion and dynamics of a viscous helical vortex.

  9. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence

    CERN Document Server

    Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6


    This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...

  10. Vortex Characterization for Engineering Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R


    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  11. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)


    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  12. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D


    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  13. Quantum vortex reconnections (United States)

    Zuccher, S.; Caliari, M.; Baggaley, A. W.; Barenghi, C. F.


    We study reconnections of quantum vortices by numerically solving the governing Gross-Pitaevskii equation. We find that the minimum distance between vortices scales differently with time before and after the vortex reconnection. We also compute vortex reconnections using the Biot-Savart law for vortex filaments of infinitesimal thickness, and find that, in this model, reconnections are time symmetric. We argue that the likely cause of the difference between the Gross-Pitaevskii model and the Biot-Savart model is the intense rarefaction wave which is radiated away from a Gross-Pitaeveskii reconnection. Finally we compare our results to experimental observations in superfluid helium and discuss the different length scales probed by the two models and by experiments.

  14. Experimental investigation of vortex rings impinging on inclined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Lauren D. [Southern Methodist University, Department of Mechanical Engineering, Dallas, TX (United States); Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA (United States); Krueger, Paul S. [Southern Methodist University, Department of Mechanical Engineering, Dallas, TX (United States)


    Vortex-ring interactions with oblique boundaries were studied experimentally to determine the effects of plate angle on the generation of secondary vorticity, the evolution of the primary vorticity and secondary vorticity as they interact near the boundary, and the associated energy dissipation. Vortex rings were generated using a mechanical piston-cylinder vortex ring generator at jet Reynolds numbers 2,000-4,000 and stroke length to piston diameter ratios (L/D) in the range 0.75-2.0. The plate angle relative to the initial axis of the vortex ring ranged from 3 to 60 . Flow analysis was performed using planar laser-induced fluorescence (PLIF), digital particle image velocimetry (DPIV), and defocusing digital particle tracking velocimetry (DDPTV). Results showed the generation of secondary vorticity at the plate and its subsequent ejection into the fluid. The trajectories of the centers of circulation showed a maximum ejection angle of the secondary vorticity occurring for an angle of incidence of 10 . At lower incidence angles (<20 ), the lower portion of the ring, which interacted with the plate first, played an important role in generation of the secondary vorticity and is a key reason for the maximum ejection angle for the secondary vorticity occurring at an incidence angle of 10 . Higher Reynolds number vortex rings resulted in more rapid destabilization of the flow. The three-dimensional DDPTV results showed an arc of secondary vorticity and secondary flow along the sides of the primary vortex ring as it collided with the boundary. Computation of the moments and products of kinetic energy and vorticity magnitude about the centroid of each vortex ring showed increasing asymmetry in the flow as the vortex interaction with the boundary evolved and more rapid dissipation of kinetic energy for higher incidence angles. (orig.)

  15. Experimental investigation and exergy analysis of the performance of a counter flow Ranque-Hilsch vortex tube with regard to nozzle cross-section areas

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, K.; Avci, A.; Berber, A. [Dept. of Mechanical Eng., Fac. of Eng. and Architecture, Selcuk Univ., Selcuklu, Konya (Turkey); Baskaya, S. [Dept. of Mechanical Eng., Fac. of Eng. and Architecture, Gazi Univ., Maltepe, Ankara (Turkey)


    Exergy analysis and performance of a Ranque-Hilsch Vortex Tube (RHVT) with various nozzle cross-section areas (NCSA = 3 x 3, 4 x 4, 5 x 5 mm{sup 2}) were determined under inlet pressures (P{sub i}) of 260, 300 kPa (absolute) pressurized air. The maximum difference in the temperatures of hot output and cold output streams was obtained for NCSA = 3 x 3 mm{sup 2}. The total inlet exergy (sum E{sub i}), total outlet exergy (sum E{sub O}), total lost exergy (sum E{sub Lost}) and exergy efficiency ({eta}, %) were calculated. It was determined that the exergy efficiency of the system, varied between 1% and 39%, and the highest exergy efficiency was obtained for NCSA = 3 x 3 mm{sup 2}. The exergy efficiency strongly depends on the level of P{sub i}, {xi} and v{sub cold}. Variation of the exergy efficiency decreased with decreasing P{sub i}, {xi}, v{sub cold} and the highest and lowest exergy efficiencies were found when the values of P{sub i}, {xi}, v{sub cold} reached maximum and minimum levels, respectively. (author)

  16. Fuel cell membrane hydration and fluid metering (United States)

    Jones, Daniel O.; Walsh, Michael M.


    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  17. Validation of mathematical models for predicting the swirling flow and the vortex rope in a Francis turbine operated at partial discharge

    DEFF Research Database (Denmark)

    Kuibin, P.A.; Okulov, Valery; Susan-Resiga, R.F.


    recover all this information without actually computing the full three-dimensional unsteady flow in the hydraulic turbine. As a result, we provide valuable mathematical tools for assessing the turbine behaviour at off-design operating regimes in the early stages of runner design, with computational effort...... several orders of magnitude less than the current approaches of simulating the complex turbine flow....

  18. Vortex motion around a circular cylinder above a plane (United States)

    Vasconcelos, G. L.; Moura, M.


    The study of vortex flows around solid obstacles is of considerable interest from both a theoretical and practical perspective. One geometry that has attracted renewed attention recently is that of vortex flows past a circular cylinder placed above a plane wall, where a stationary recirculating eddy can form in front of the cylinder, in contradistinction to the usual case (without the plane boundary) for which a vortex pair appears behind the cylinder. Here we analyze the problem of vortex flows past a cylinder near a wall through the lenses of the point-vortex model. By conformally mapping the fluid domain onto an annular region in an auxiliary complex plane, we compute the vortex Hamiltonian analytically in terms of certain special functions related to elliptic theta functions. A detailed analysis of the equilibria of the model is then presented. The location of the equilibrium in front of the cylinder is shown to be in qualitative agreement with recent experimental findings. We also show that a topological transition occurs in phase space as the parameters of the systems are varied.

  19. Vortex structure in the Venus plasma wake (United States)

    Perez-de-Tejada, H.; Lundin, R. N. A.


    Measurements conducted with the ASPERA-4 instrument of the Venus Express spacecraft in orbit around Venus show velocity distributions of the H+ ions that describe a large scale vortex flow structure in the Venus wake (Lundin et al., GRL, 40, 1273, 2013). Such structure is in agreement with that reported from the early Pioneer Venus Orbiter plasma data (Pérez-de-Tejada et al., INTECH, ISBN 978-953-51-0880-1, p. 317, 2012) and suggests that the solar wind around the Venus ionosphere is forced back into the planet from the wake. Measurements also show that a vortex circulation flow rather than local magnetic forces is responsible for the deviated direction of motion of the solar wind in the Venus wake.

  20. Coherent vortex structures in fluids and plasmas

    CERN Document Server

    Tur, Anatoli


    This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?

  1. Vortex disruption by magnetohydrodynamic feedback

    CERN Document Server

    Mak, Julian; Hughes, D W


    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...

  2. Three-dimensional blade vortex interactions (United States)

    Davoudzadeh, Farhad; Buggein, Richard C.; Shamroth, Stephen J.; Kitaplioglu, Cahit


    A three-dimensional time dependent Navier-Stokes analysis was applied to the rotor blade vortex interaction problem. The numerical procedure is an iterative implicit procedure using three point central differences to represent spatial derivatives. A series of calculations were made to determine the time steps, pseudo-time steps, iterations, artificial dissipation level, etc. required to maintain a nondissipative vortex. Results show the chosen method to have excellent non-dissipative properties provided the correct parameters are chosen. This study was used to set parameters for both two- and three-dimensional blade vortex interaction studies. The case considered was the interaction between a vortex and a NACA0012 airfoil. The results showed the detailed physics during the interaction including the pressure pulse propagating from the blade. The simulated flow physics was qualitatively similar to that experimentally observed. The BVI phenomena is the result of the buildup and violent collapse of the shock waves and local supersonic pockets on the blade surfaces. The resulting pressure pulse build-up appears to be centered at the blade leading edge.

  3. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.


    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  4. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Directory of Open Access Journals (Sweden)

    Mao Liangjie

    Full Text Available A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  5. Copepod behavior response to Burgers' vortex treatments mimicking turbulent eddies (United States)

    Elmi, D.; Webster, D. R.; Fields, D. M.


    Copepods detect hydrodynamic cues in the water by their mechanosensory setae. We expect that copepods sense the flow structure of turbulent eddies in order to evoke behavioral responses that lead to population-scale distribution patterns. In this study, the copepods' response to the Burgers' vortex is examined. The Burgers' vortex is a steady-state solution of three-dimensional Navier-Stokes equations that allows us to mimic turbulent vortices at the appropriate scale and eliminate the stochastic nature of turbulence. We generate vortices in the laboratory oriented in the horizontal and vertical directions each with four intensity levels. The objective of including vortex orientation as a parameter in the study is to quantify directional responses that lead to vertical population distribution patterns. The four intensity levels correspond to target vortex characteristics of eddies corresponding to the typical dissipative vortices in isotropic turbulence with mean turbulent dissipation rates in the range of 0.002 to 0.25 cm2/s3. These vortices mimic the characteristics of eddies that copepods most likely encounter in coastal zones. We hypothesize that the response of copepods to hydrodynamic features depends on their sensory architecture and relative orientation with respect to gravity. Tomo-PIV is used to quantify the vortex circulation and axial strain rate for each vortex treatment. Three-dimensional trajectories of the copepod species Calanus finmarchicus are analyzed to examine their swimming kinematics in and around the vortex to quantify the hydrodynamic cues that trigger their behavior.

  6. Application of the Random Vortex Method to Natural Convection ...

    African Journals Online (AJOL)

    Natural convection flows in channels have been studied using numerical tools such as finite difference and finite element techniques. These techniques are much demanding in computer skills and memory. Random Vortex Element method which has been used successfully in fluid flow was adopted in this work in view of its ...

  7. Chiral vortical effect generated by chiral anomaly in vortex-skyrmions (United States)

    Volovik, G. E.


    We discuss the type of the general macroscopic parity-violating effects, when there is the current along the vortex, which is concentrated in the vortex core. We consider vortices in chiral superfluids with Weyl points. In the vortex core, the positions of the Weyl points form the skyrmion structure. We show that the mass current concentrated in such a core is provided by the spectral flow through the Weyl points according to the Adler-Bell-Jackiw equation for chiral anomaly.

  8. Memory-bit selective recording in vortex-core cross-point architecture


    Yu, Young-Sang; Jung, Hyunsung; Lee, Ki-Suk; Fischer, Peter; Kim, Sang-Koog


    In our earlier work [Appl. Phys. Lett. 92, 022509 (2008)], we proposed nonvolatile vortex random access memory (VRAM) based on the energetically stable twofold ground state of vortex-core magnetizations as information carrier. Here we experimentally demonstrate reliable memory bit selection and low-power-consumption recording in a two-by-two vortex-state dot array. The bit selection and core switching is made by flowing currents along two orthogonal addressing electrode lines chosen among the...

  9. Confined vortices in flow machinery (United States)

    Escudier, Marcel

    After noting such basic aspects of vortex flows as the concepts of supercritical and subcritical flow and vortex breakdown, swirling flow behavior in various practical devices is discussed. The devices in question encompass swirl-stabilized combustion in industrial combustion chambers, fluidic vortex amplifiers that may be used as large scale valves, turbomachine outlets that can efficiently divert axial throughflow in a tangential direction, 'cyclone' separators, turbine draft tube surge phenomena, and the Ranque-Hilsch refrigeration tube.

  10. Conducted interference on smart meters

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Leferink, Frank


    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that

  11. Meter Designs Reduce Operation Costs for Industry (United States)


    Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.

  12. Review of Ranque-Hilsch effects in vortex tubes

    Energy Technology Data Exchange (ETDEWEB)

    Eiamsa-ard, Smith [Department of Mechanical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Promvonge, Pongjet [Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)


    The vortex tube or Ranque-Hilsch vortex tube is a device that enables the separation of hot and cold air as compressed air flows tangentially into the vortex chamber through inlet nozzles. Separating cold and hot airs by using the principles of the vortex tube can be applied to industrial applications such as cooling equipment in CNC machines, refrigerators, cooling suits, heating processes, etc. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet, and does not use Freon or other refrigerants (CFCs/HCFCs). It has no moving parts and does not break or wear and therefore requires little maintenance. Thus, this paper presents an overview of the phenomena occurring inside the vortex tube during the temperature/energy separation on both the counter flow and parallel flow types. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The experiment consisted of two important parameters, the first is the geometrical characteristics of the vortex tube for example, the diameter and length of the hot and cold tubes, the diameter of the cold orifice, shape of the hot (divergent) tube, number of inlet nozzles, shape of the inlet nozzles, and shape of the cone valve. The second is focused on the thermo-physical parameters such as inlet gas pressure, cold mass fraction, moisture of inlet gas, and type of gas (air, oxygen, helium, and methane). For each parameter, the temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields. The computation review is concentrated on the quantitative, theoretical, analytical, and numerical (finite volume method) aspects of the study. Although many experimental and numerical studies on the vortex tubes have been made, the physical behaviour of the flow is not fully understood due to its complexity and the lack of consistency in the

  13. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics. (United States)

    Holm, Darryl D; Jacobs, Henry O


    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  14. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity (United States)

    Musta, Mustafa


    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  15. Transformer and Meter Tester (United States)

    Stoms, R. M.


    Numerically-controlled 5-axis machine tool uses transformer and meter to determine and indicate whether tool is in home position, but lacks built-in test mode to check them. Tester makes possible test, and repair of components at machine rather then replace them when operation seems suspect.

  16. Enhancing Observability in Distribution Grids using Smart Meter Data


    Bhela, Siddharth; Kekatos, Vassilis; Veeramachaneni, Sriharsha


    Due to limited metering infrastructure, distribution grids are currently challenged by observability issues. On the other hand, smart meter data, including local voltage magnitudes and power injections, are communicated to the utility operator from grid buses with renewable generation and demand-response programs. This work employs grid data from metered buses towards inferring the underlying grid state. To this end, a coupled formulation of the power flow problem (CPF) is put forth. Exploiti...

  17. Downhole multiphase metering in wells by means of soft-sensing

    NARCIS (Netherlands)

    Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.


    Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely

  18. Evolution of optical vortex distributions in stochastic vortex fields (United States)

    Roux, Filippus S.


    Stochastic vortex fields are found in laser speckle, in scintillated beams propagating through a turbulent atmosphere, in images of holograms produced by Iterative Fourier Transform methods and in the beams produced by certain diffractive optical elements, to name but a few. Apart from the vortex fields found in laser speckle, the properties and dynamics of stochastic vortex fields are largely unexplored. Stochastic vortex fields with non-equilibrium initial conditions exhibit a surprisingly rich phenomenology in their subsequent evolution during free-space propagation. Currently there does not exist a general theory that can predict this behavior and only limited progress has thus far been made in its understanding. Curves of the evolution of optical vortex distributions during free-space propagation that are obtained from numerical simulations, will be presented. A variety of different stochastic vortex fields are used as input to these simulations, including vortex fields that are homogeneous in their vortex distributions, as well as inhomogeneous vortex fields where, for example, the topological charge densities vary sinusoidally along one or two dimensions. Some aspects of the dynamics of stochastic vortex fields have been uncovered with the aid of these numerical simulations. For example, the numerical results demonstrate that stochastic vortex fields contain both diffusion and drift motions that are driven by local and global variations in amplitude and phase. The mechanisms for these will be explained. The results also provide evidence that global variations in amplitude and phase are caused by variations in the vortex distributions, giving rise to feedback mechanisms and nonlinear behavior.

  19. Numerical Prediction of Tip Vortex Cavitation for Marine Propellers in Non-uniform Wake (United States)

    Zhu, Zhi-Feng; Zhou, Fang; Li, Dan


    Tip vortex cavitation is the first type of cavitation to take place around most marine propellers. But the numerical prediction of tip vortex cavitation is one of the challenges for propeller wake because of turbulence dissipation during the numerical simulation. Several parameters of computational mesh and numerical algorithm are tested by mean of the predicted length of tip vortex cavtiation to validate a developed method. The predicted length of tip vortex cavtiation is on the increase about 0.4 propeller diameters using the developed numerical method. The predicted length of tip vortex cavtiation by RNG k - ɛ model is about 3 times of that by SST k - ω model. Therefore, based on the validation of the present approach, the cavitating flows generated by two rotating propellers under a non-uniform inflow are calculated further. The distributions of axial velocity, total pressure and vapor volume fraction in the transversal planes across tip vortex region are shown to be useful in analyzing the feature of the cavitating flow. The strongest kernel of tip vortex cavitation is not at the position most close to blade tip but slightly far away from the region. During the growth of tip vortex cavitation extension, it appears short and thick, and then it becomes long and thin. The pressure fluctuations at the positions inside tip vortex region also validates the conclusion. A key finding of the study is that the grids constructed especially for tip vortex flows by using separated computational domain is capable of decreasing the turbulence dissipation and correctly capturing the feature of propeller tip vortex cavitation under uniform and non-uniform inflows. The turbulence model and advanced grids is important to predict tip vortex cavitation.

  20. Segmented trapped vortex cavity (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)


    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  1. Shear-flow driven dissipative instability and investigation of nonlinear drift-vortex modes in dusty plasmas with non-thermal ion population (United States)

    Gul-e-Ali, Masood, W.; Mirza, Arshad M.


    The shear flow in dust dynamics driven waves in combination with the dust-neutral drag is studied in a plasma comprising of ions, electrons, and dust. Non-thermal population of ions is considered, which has been observed by many satellite missions. It is found that the dissipative instability produced by dust sheared flow and dust-neutral drag gets modified by the presence of nonthermal ions. It is found that the dissipative instability enhances for the Cairns distribution, whereas the kappa distribution arrests the growth of this instability. In the nonlinear regime, the formation of vortices in the system is studied. It is found that the nonthermal population of ions significantly alters these structures in comparison with their Maxwellian counterpart. The results obtained in this paper may have relevance in the planetary magnetospheres where the dust particles are present and non-Maxwellian distribution of particles have been observed by Freja and Viking satellites.

  2. Design of an 18 MW vortex flow water beam dump for 500 GeV electrons/positrons of an international linear collider (United States)

    Satyamurthy, Polepalle; Rai, Pravin; Tiwari, Vikas; Kulkarni, Kiran; Amann, John; Arnold, Raymond G.; Walz, Dieter; Seryi, Andrei; Davenne, Tristan; Caretta, Ottone; Densham, Chris; Appleby, Robert B.


    Beam dumps are essential components of any accelerator system. They are usually located at the end of the beam delivery systems and are designed to safely absorb and dissipate the particle energy. In the second stage of the proposed International Linear Collider (ILC), the electron and positron beams are accelerated to 500 GeV each (1 TeV total). Each bunch will have 2×1010 electrons/positrons, and 2820 bunches form one beam bunch train with time duration of 0.95 ms and 4 Hz frequency. The average beam power will be 18 MW with a peak power of 4.5 GW. The FLUKA code was used to determine the power deposited by the beam at all critical locations. This data forms the input into the thermal hydraulic analysis CFD code for detailed flow and thermal evaluation. Both 2D and 3D flow analyses were carried out at all the critical regions to arrive at optimum geometry and flow parameters of the beam dump. The generation and propagation of pressure waves due to rapid deposition of heat has also been analyzed.

  3. On the Vortex Sound from Rotating Rods (United States)

    Yudin, E. Y.


    The motion of different bodies imersed in liquid or gaseous media is accompanied by characteristic sound which is excited by the formation of unstable surfaces of separation behind the body, usually disintegrating into a system of discrete vortices(such as the Karman vortex street due to the flow about an infintely long rod, etc.).In the noise from fans,pumps,and similar machtnery, vortexnQif3eI?Yequently predominates. The purpose of this work is to elucidate certain questions of the dependence ofthis sound upon the aerodynamic parameters and the tip speed of the rotating rods,or blades. Although scme material is given below,insufficientto calculate the first rough approximation to the solution of this question,such as the mechanics of vortex formation,never the less certain conclusions maybe found of practical application for the reduction of noise from rotating blades.

  4. Vortex Generators to Control Boundary Layer Interactions (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)


    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  5. Optimal water meter selection system | Johnson | Water SA

    African Journals Online (AJOL)

    The relative frequency of the volume of water passing through a meter at various flow rates and the weighted accuracies of these measured volumes play a pivotal role in establishing a common comparison reference. The time unit selected to calculate the volume of water passing through the meter is guided by the type of ...

  6. Review of the physics of enhancing vortex lift by unsteady excitation (United States)

    Wu, J. Z.; Vakili, A. D.; Wu, J. M.


    A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.

  7. Wing loading on a 60 degree delta wing with vortex flaps (United States)

    Marchman, J. F., III; Donatelli, D. A.; Terry, J. E.


    Wind tunnel tests were conducted on a 60 deg delta wing with three vortex flap designs to determine pressure distributions over the wing and flap. The results showed that an optimum vortex flap design depends on proper definition of the vortex flap deflection angle. They also revealed that flap thickness plays an important role in the behavior of the vortex flow over the flap and wing and can have a substantial effect on wing and flap pressure loading. Design codes which fail to account for thickness may result in a much less than optimum flap and deprive the designer of an important tool in designing an effective flap with optimum loading.

  8. Interaction of Two-Dimensional Trailing Vortex Pair with a Shear Layer (United States)

    Meleshko, V. V.; Gurzhi, A. A.; Doernbrack, A.; Gerz, T.; Holzäpfel, F.; Hofbauer, T.


    The basic laws governing the interaction of a two-dimensional vortex pair with a shear layer of constant thickness are considered. The main idea of the study is to develop and adapt a simplified representation of a hydrodynamic flow based on a point-vortex model simulating the actual interaction of full-scale vortex patterns over the ground surface. It is shown that vortices with vorticity opposite in sign to the shear layer may stop or even ricochet from this layer, while the other vortex may penetrate through the layer. Numerical results are presented as plots and analyzed

  9. Regimes of Vorticity in the Wake of a Rectangular Vortex Generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver


    This paper concerns the study of the secondary structures generated in the wake of a wall mounted rectangular vane, commonly referred to as a vortex generator. The study has been conducted by Stereoscopic PIV measurements in a wind tunnel and supplementary flow visualizations in a water channel....... The results show that the vane produces not only the anticipated primary vortex, but at least five vortex structures. Further, the vorticity map can be subject to various regimes, showing a dependency on the circulation of the primary vortex and the height of its center above the wall....

  10. Modelling of Tip Vortex Cavitation for Engineering Applications in OpenFOAM

    NARCIS (Netherlands)

    Schot, J.J.A.; Pennings, P.C.; Pourquie, M.J.B.M.; Van Terwisga, T.J.C.


    In this paper modelling assumptions for the prediction of tip vortex flow and vortex cavitation with the RANS equations and homogeneous fluid approach in Open-FOAM are presented. The effects of the changes in the turbulence model are investigated and the results are compared with PIV measurements.

  11. Control of a coupled map lattice model for vortex shedding in the ...

    Indian Academy of Sciences (India)

    vortex shedding, can be sensed in an experiment through standard hot-film velocity mea- surement .... In this section, we discuss certain features in the development of three coupled map lattice models where ..... vortex shedding behind circular cylinders, in ASME forum on unsteady flow separation, FED. 52, 1 (1987).

  12. Superconducting Vortex with Antiferromagnetic Core

    Energy Technology Data Exchange (ETDEWEB)

    Arovas, D.P. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States); Berlinsky, A.J.; Kallin, C.; Zhang, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States)


    We show that a superconducting vortex in underdoped high T{sub c} superconductors could have an antiferromagnetic core. This type of vortex configuration arises as a topological solution in the recently constructed SO(5) nonlinear {sigma} model and in Landau-Ginzburg theory with competing antiferromagnetic and superconducting order parameters. Experimental detection of this type of vortex by muon spin resonance and neutron scattering is proposed. {copyright} {ital 1997} {ital The American Physical Society}

  13. Characteristics of a trapped-vortex (TV) combustor (United States)

    Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.


    The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.

  14. An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps (United States)

    Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.


    An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.

  15. Vortex configuration in the presence of local magnetic field and locally applied stress

    Energy Technology Data Exchange (ETDEWEB)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail:


    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  16. Aircraft Wake Vortex Deformation in Turbulent Atmosphere


    Hennemann, Ingo; Holzaepfel, Frank


    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  17. Vortex ring velocity and minimum separation in an infinite train of vortex rings generated by a fully pulsed jet (United States)

    Krueger, Paul S.


    A pulsed jet with a period of no flow between pulses (i.e., a fully pulsed jet) produces a multiplicity of vortex rings whose characteristics are determined by the jet pulsing parameters. The present study analyzes the case of impulsively initiated and terminated jet pulses in the limit of equal pulse duration and period to determine the minimum possible vortex ring separation obtainable from a fully pulsed jet. The downstream character of the flow is modeled as an infinite train of thin, coaxial vortex rings. Assuming inviscid flow and matching the circulation, impulse, kinetic energy, and frequency of the jet and vortex ring train allow the properties of the vortex ring train to be determined in terms of the ratio of jet slug length-to-diameter ratio ( L/ D) used for each pulse. The results show the minimum ring separation may be made arbitrarily small as L/ D is decreased and the corresponding total ring velocity remains close to half the jet velocity for L/ D 1.5. The results are discussed in the context of models of pulsed-jet propulsion.

  18. The Formation of Turbulent Vortex Rings by Synthetic Jets (United States)

    Lawson, John; Dawson, James


    Vortex rings formed by synthetic jets are found in many engineering and biological flows. For vortex rings formed both periodically and in isolation, a constraint on vortex formation (``pinch-off'') has been observed which is relevant to unsteady propulsion. However, there is no clear consensus on the physical mechanism of this constraint. We present analysis of time resolved, 2D Particle Image Velocimetry measurements of the velocity and material acceleration field in an axisymmetric, turbulent synthetic jet in air at maximum stroke ratios Lm / D = 2 - 15 . Using the acceleration field, pinch-off may be identified in a manner which is frame invariant and consistent with previous studies. An adverse pressure gradient behind the ring and induced by it plays a role in the pinch-off and separation of the ring from the jet. Recognising this, we revise an existing model for pinch-off: this revision fits our data well. Additionally, we show that as the ring forms, hydrodynamic impulse is delivered via two equally important mechanisms: a material flux and a vortex force. For large Lm / D , this vortex force may deliver a substantial impulse to the ring after pinch-off. This has implications for unsteady propulsion, models of vortex ring formation and existing explanations for pinch-off.

  19. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 66; Issue 1. Melting of heterogeneous vortex matter: The vortex ... By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered ...

  20. Vortex-Surface Interactions: Vortex Dynamics and Instabilities (United States)


    Crow instability (see for example Leweke & Williamson, 2012). (b) Short-wave cooperative elliptic instability (Leweke & Williamson 1998). (c...vortex generators. Of interest in such studies would be the formation of secondary vorticity from the surface, the downstream vortex trajectories , and

  1. Phenotypic heterogeneity in the endothelium of the human vortex vein system. (United States)

    Yu, Paula K; Tan, Priscilla E Z; Cringle, Stephen J; McAllister, Ian L; Yu, Dao-Yi


    The vortex vein system is the drainage pathway for the choroidal circulation and serves an important function in the effective drainage of the exceptionally high blood flow from the choroidal circulation. As there are only 4-6 vortex veins, a large volume of blood must be drained from many choroidal veins into each individual vortex vein. The vortex vein system must also cope with passing through tissues of different rigidity and significant pressure gradient as it transverses from the intrao-cular to the extra-ocular compartments. However, little is known about how the vortex vein system works under such complex situations in both physiological and pathological condition. Endothelial cells play a vital role in other vascular systems, but they have not been studied in detail in the vortex vein system. The purpose of this study is to characterise the intracellular structures and morphology in both the intra-and extra-ocular regions of the human vortex vein system. We hypothesise the presence of endothelial phenotypic heterogeneity through the vortex vein system. The inferior temporal vortex vein system from human donor eyes were obtained and studied histologically using confocal microscopy. The f-actin cytoskeleton and nuclei were labelled using Alexa Fluor conjugated Phalloidin and YO-PRO-1. Eight regions of the vortex vein system were examined with the venous endothelium studied in detail with quantitative data obtained for endothelial cell and nuclei size and shape. Significant endothelial phenotypic heterogeneity was found throughout the vortex vein system with the most obvious differences observed between the ampulla and its downstream regions. Variation in the distribution pattern of smooth muscle cells, in particular the absence of smooth muscle cells around the ampulla, was noted. Our results suggest the presence of significantly different haemodynamic forces in different regions of the vortex vein system and indicate that the vortex vein system may play

  2. A vortex model for Darrieus turbine using finite element techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)


    Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)

  3. Vortical flows in technical applications


    Krause, Egon


    Two examples of flows dominated by vortical structures are discussed: In the first interaction and decay of vortex structures in in-cylinder flows of automotive engines are described. Numerical studies revealed clearly identifiable vortex rings, generated during the intake stroke. The influence of compressibility on the vortex formation was studied by using Mach-Zehnder interferometry in a specially designed test stand of a towed one-cylinder engine, and with numerical solutions of the Navier...

  4. Smart metering design and applications

    CERN Document Server

    Weranga, K S K; Chandima, D P


    Taking into account the present day trends and the requirements, this Brief focuses on smart metering of electricity for next generation energy efficiency and conservation. The contents include discussions on the smart metering concepts and existing technologies and systems as well as design and implementation of smart metering schemes together with detailed examples.

  5. Good standards for smart meters

    NARCIS (Netherlands)

    Hoenkamp, R.A.; Huitema, G.B.


    This paper examines what lessons can be learned from the rollout of smart meters in the Netherlands to improve the European smart meter standardization. This study is based on the case of the Dutch meter rollout which preparations started in 2005 but finally was delayed until 2011 by governmental


    Directory of Open Access Journals (Sweden)



    Full Text Available The phenomenon of temperature distribution in confined steady rotating gas flows is called Ranque-Hilsch effect. The simple counter-flow vortex tube consists of a long hollow cylinder with tangential nozzle at one end for injecting compressed air. The flow inside the vortex tube can be described as rotating air, which moves in a spring-shaped vortex track. The peripheral flow moves toward the hot end where a hot end plug is placed and the axial flow, which is forced back by the plug, moves in the opposite direction toward the cold end. This paper focuses on the effect of the size of hot nozzle on the performance of the Ranque–Hilsch vortex tube. Series of plugs were used in the experiment in order to find the relationship between the diameter of hot end plug and the performance of the vortex tube.





    The phenomenon of temperature distribution in confined steady rotating gas flows is called Ranque-Hilsch effect. The simple counter-flow vortex tube consists of a long hollow cylinder with tangential nozzle at one end for injecting compressed air. The flow inside the vortex tube can be described as rotating air, which moves in a spring-shaped vortex track. The peripheral flow moves toward the hot end where a hot end plug is placed and the axial flow, which is forced back by the plug, moves in...

  8. Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil (United States)

    Xia, X.; Mohseni, K.


    Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.

  9. The Acoustically Driven Vortex Cannon (United States)

    Perry, Spencer B.; Gee, Kent L.


    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  10. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.


    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.


    Moore, Brandon; Dasi, Lakshmi Prasad


    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calific aortic valve disease. We characterize the spatio-temporal characteristics of aortic sinus voxtex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High resolution time-resolved (2KHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in time-scales as revealed using time bin averaged vectors and corresponding instantaneous streamlines. There exist small time-scale vortices and a large time-scale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatio-temporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and time-scales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics.

  12. Helium-filled soap bubbles for vortex core velocimetry (United States)

    Caridi, Giuseppe Carlo Alp; Sciacchitano, Andrea; Scarano, Fulvio


    Velocity measurements within the core of high-swirl vortices are often hampered by heavier-than-air particle tracers being centrifuged outside the vortex core region. The use of neutrally buoyant and lighter-than-air tracers is investigated to aim at homogeneous tracers concentration in air flow experiments dealing with high-swirl vortices using particle image velocimetry. Helium-filled soap bubbles (HFSB) of sub-millimeter diameter are employed as flow tracers. Their density is controlled varying the relative amount of helium and soap solution composing the bubbles. The dynamics of HFSB and micro-size droplets is modeled within a Lamb-Oseen vortex to retrieve the order of magnitude of the tracers slip velocity. A positive radial drift for heavier-than-air tracers leads to an empty vortex core. In contrast, the concentration at the vortex axis is expected to increase for lighter than air tracers. Experiments are conducted on a sharp-edged slender delta wing at 20° incidence. At chosen chord-based Reynolds numbers of 2 × 105 and 6 × 105, a stable laminar vortex is formed above the delta wing. Laser sheet visualization is used to inspect the spatial concentration of tracers. A comparison is made between micron-sized fog droplets and HFSB tracers in the nearly neutrally buoyant condition. Stereo-PIV measurements with fog droplets return a systematically underestimated axial velocity distribution within the vortex core due to drop-out of image cross-correlation signal. The nearly neutrally buoyant HFSB tracers appear to maintain a homogeneous spatial concentration and yield cross-correlation signal up to the vortex axis. The resulting velocity measurements are in good agreement with literature data.

  13. A comparison of airborne wake vortex detection measurements with values predicted from potential theory (United States)

    Stewart, Eric C.


    An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors.

  14. Effects Of Ignition on Premixed Vortex Rings: A Simultaneous PLIF and PIV Investigation (United States)

    Meyer, T. R.; Gord, J. R.; Katta, V. R.; Gogineni, S. P.


    Preliminary studies of reacting, premixed vortex rings have shown that flame propagation is highly sensitive to ignition timing, equivalence ratio, and vortex strength. A variety of divergent phenomena have been observed, such as interior/exterior flame propagation, vortex-induced flame bridging across the jet column, and the formation of unburned pockets. In the current work, planar laser-induced fluorescence (PLIF) of acetone and OH is performed to study the non-reacting and reacting regions, respectively, and particle image velocimetry (PIV) is used to study the effects of reaction on the flow field. The flow field consists of well-characterized vortex rings of premixed methane and air generated at the exit of an axisymmetric nozzle using a solenoid-driven piston. Ignition is initiated at various phases of vortex development and propagation. Results are compared with corresponding numerical simulations from a time-dependent computational fluid dynamics code with chemistry.

  15. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan


    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  16. Delta Flow Modulator

    NARCIS (Netherlands)

    Stamhuis, Eize; Lengkeek, W


    A support structure (2) is installed in or near a water (50). The support structure is holding a deltalike-wing (3) under an angle of incidence relative to an incoming flow (54), caused by at least a prevailing current in the water, thus generating a vortex (77). The action of the vortex is

  17. Isotope specific arbitrary material flow meter (United States)

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin


    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  18. Experimental study of the dynmamics of a stretched vortex (United States)

    Petitjeans, Philippe; Bottausci, Frederic; Maurel, Agnes


    Numerical simulations of turbulent flows as well as real experiments indicates that a large part of vorticity in generic velocity fields is concentrated in localized regions in the form of filaments. The creation of such structures can be accounted for by the action of stretching on vorticity field, e.g. secondary instability mechanism in stretched vortex sheets. An experiment is performed in order to create a single stretched vortex that is supposed to have the same dynamics than these filaments of vorticity. The initial vorticity comes from a laminar boundary layer flow in a low velocity water channel, and the stretching is produced by succion through two holes located on the lateral walls of the channel. When the stretching is strong enough, a vortex is created that remains at its location attached to the succion holes. Recent results on the charateristics of this vortex will be presented. Instabilities of such a structure may produce the explosion of the vortex as a turbulent spot. This behaviour will be described and characterized.

  19. NASA Research on the Hydrodynamics of the Gaseous Vortex Reactor (United States)

    Ragsdale, Robert G.


    The experimental and analytical results to date of a study of a two-component gaseous vortex system are presented in this paper. Analytical expressions for tangential velocity and static-pressure profiles in a turbulent vortex show good agreement with experimental data. Airflow rates from 0.075 to 0.14 pound per second and corresponding tangential velocities from 160 to 440 feet per second are correlated by turbulent Reynolds numbers from 1.95 to 2.4. An analysis of an air-bromine gas mixture in a turbulent vortex indicates that a boundary value of bromine-to-air radial velocity ratio (u(2)/u(1)) of 0.999 gives essentially no bromine buildup, while a value of 0.833 results in considerable separation. For a constant value of (u(2)/u(1))(0) the bromine buildup increases as (1) the tangential velocity increases, (2) the air-to-bromine weight-flow ratio decreases, (3) the airflow rate decreases, (4) the temperature decreases, and (5) the turbulence decreases. Analytical temperature, pressure, and tangential-velocity profiles are also presented. Preliminary experimental results indicate that the flow of an air-bromine mixture through a vortex field results in a bromine density increase to a maximum value; followed by a decrease; the air density exhibits a uniform decrease from the outer vortex radius to the exhaust-nozzle radius.

  20. Advanced metering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, R.F.


    The goal of the US Department of Energy Federal Energy Management Program (FEMP) is to facilitate energy-efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools and procedures used to identify and evaluate efficiency improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy-use efficiency. To assist in implementing energy-efficiency measures, FEMP helps federal agencies with identifying efficiency opportunities and in implementing energy-efficiency and demand-side management programs at federal sites. As the lead laboratory for FEMP, Pacific Northwest Laboratory (PNL) provides technical assistance to federal agencies to better understand and characterize energy systems. The US Army Forces Command (FORSCOM) has tasked PNL to provide technical assistance to characterize and modernize energy systems at FORSCOM installations. As part of that technical assistance, PNL performed an in-depth examination of automatic meter-reading system technologies currently available. The operating characteristics and relative merits of all the major systems were reviewed in the context of applicability to federal installations. That review is documented in this report.