WorldWideScience

Sample records for vortex augmented turbines

  1. Performance augmentation with vortex generators: Design and testing for stall-regulated AWT-26 turbine

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    A study investigated the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. Based on wind-tunnel results and analysis, a VG array was designed for and tested on the AWT-26 prototype, designated Pt. Performance and loads data were measured for P1, both with and without VGs installed. The turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a minimal effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for wind speed sites up to 8.5 m/s. 8 refs., 8 figs., 3 tabs.

  2. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  3. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  4. Improved diffuser for augmenting a wind turbine

    Science.gov (United States)

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  5. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  6. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    Science.gov (United States)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  7. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  8. Kaplan turbine tip vortex cavitation – analysis and prevention

    International Nuclear Information System (INIS)

    Motycak, L; Skotak, A; Kupcik, R

    2012-01-01

    The work is focused on one type of Kaplan turbine runner cavitation – a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  9. Kaplan turbine tip vortex cavitation - analysis and prevention

    Science.gov (United States)

    Motycak, L.; Skotak, A.; Kupcik, R.

    2012-11-01

    The work is focused on one type of Kaplan turbine runner cavitation - a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  10. Simulations of wind turbine rotor with vortex generators

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Sørensen, Niels N.

    2016-01-01

    This work presents simulations of the DTU 10MW wind turbine rotor equipped with vortex generators (VGs) on the inner part of the blades. The objective is to study the influence of different VG configurations on rotor performance and in particular to investigate the radial dependence of VGs, i...

  11. A vortex model for Darrieus turbine using finite element techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)

    2001-09-01

    Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)

  12. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    International Nuclear Information System (INIS)

    Candel, I; Ioana, C; Bunea, F; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Dunca, G; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Bucur, D M; Division Technique Générale, Grenoble (France))" data-affiliation=" (Electricité de France, Division Technique Générale, Grenoble (France))" >Reeb, B; Ciocan, G D

    2014-01-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system

  13. Mind the gap - tip leakage vortex in axial turbines

    International Nuclear Information System (INIS)

    Dreyer, M; Farhat, M; Decaix, J; Münch-Alligné, C

    2014-01-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex

  14. Mind the gap - tip leakage vortex in axial turbines

    Science.gov (United States)

    Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.

    2014-03-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.

  15. Rotor Design for Diffuser Augmented Wind Turbines

    Directory of Open Access Journals (Sweden)

    Søren Hjort

    2015-09-01

    Full Text Available Diffuser augmented wind turbines (DAWTs can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality between these stall mechanisms and earlier DAWT failures is discussed. First, a swirled actuator disk CFD code is validated through comparison with results from a far wake swirl corrected blade-element momentum (BEM model, and horizontal-axis wind turbine (HAWT reference results. Then, power efficiency versus thrust is computed with the swirled actuator disk (AD code for low and high values of tip-speed ratios (TSR, for different centerbodies, and for different spanwise rotor thrust loading distributions. Three different configurations are studied: The bare propeller HAWT, the classical DAWT, and the high-performance multi-element DAWT. In total nearly 400 high-resolution AD runs are generated. These results are presented and discussed. It is concluded that dedicated DAWT rotors can successfully convert the available energy to shaft energy, provided the identified design requirements for swirl and axial loading distributions are satisfied.

  16. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    Science.gov (United States)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  17. Parametric study of turbine NGV blade lean and vortex design

    Directory of Open Access Journals (Sweden)

    Zhang Shaowen

    2016-02-01

    Full Text Available The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mechanisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencing row efficiency.

  18. Vortex rope patterns at different load of hydro turbine model

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available Operation of hydraulic turbines beyond optimal conditions leads to formation of precessing vortex core in a draft tube that generates powerful pressure pulsations in a hydraulic system. In case of resonance it leads to stability decreasing of hydraulic unit and electrical grid on the whole. In present work, such regimes are explored in a conical part of simplified turbine model. Studies are performed at constant flowrate Q = 70 m3/h and varying the runner rotational speed to explore different loads of the hydroturbine unit. The experiments involve pressure measurements, high speed-visualization and velocity measurements by means of laser Doppler anemometer technique. Interesting finding is related with abrupt increasing precession frequency at low swirl parameter of flow near optimal regime.

  19. Performance and Flow Field of a Gravitation Vortex Type Water Turbine

    OpenAIRE

    Nishi, Yasuyuki; Inagaki, Terumi

    2017-01-01

    A gravitation vortex type water turbine, which mainly comprises a runner and a tank, generates electricity by introducing a flow of water into the tank and using the gravitation vortex generated when the water drains from the bottom of the tank. This water turbine is capable of generating electricity using a low head and a low flow rate with relatively simple structure. However, because its flow field has a free surface, this water turbine is extremely complicated, and thus its relevance to p...

  20. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  1. A potential flow 2-D vortex panel model: Applications to vertical axis straight blade tidal turbine

    International Nuclear Information System (INIS)

    Wang, L.B.; Zhang, L.; Zeng, N.D.

    2007-01-01

    A potential flow 2-D vortex panel model (VPM2D) for unsteady hydrodynamics calculation of the vertical axis straight blade variable pitch turbine was given for tidal streams energy conversion. Numerical results of predicted instantaneous blade forces and wake flow of the rotor showed good agreement with the test data. The model was also compared with the previous classic free vortex model (V-DART) and vortex method combined with finite element analysis (FEVDTM). It showed that the present model was much better than the former, less complex than the latter and suitable for designing and optimization of the vertical axis straight blade turbine

  2. The Effect of Mounting Vortex Generators on the DTU 10MW Reference Wind Turbine Blade

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Bak, Christian

    2014-01-01

    The aim of the current work is to analyze possible advantages of mounting Vortex Generators (VG's) on a wind turbine blade. Specifically, the project aims at investigating at which radial sections of the DTU 10 MW Reference Wind Turbine blade it is most beneficial to mount the VG's in order...

  3. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  4. Mitigation of Wind Turbine/Vortex Interaction Using Disturbance Accommodating Control

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M.

    2003-12-01

    Wind turbines, a competitive source of emission-free electricity, are being designed with diameters and hub heights approaching 100 m, to further reduce the cost of the energy they produce. At this height above the ground, the wind turbine is exposed to atmospheric phenomena such as low-level jets, gravity waves, and Kelvin-Helmholtz instabilities, which are not currently modeled in wind turbine design codes. These atmospheric phenomena can generate coherent turbulence that causes high cyclic loads on wind turbine blades. These fluctuating loads lead to fatigue damage accumulation and blade lifetime reduction. Advanced control was used to mitigate vortex-induced blade cyclic loading. A full-state feedback controller that incorporates more detailed vortex inputs achieved significantly greater blade load reduction. Blade loads attributed to vortex passage, then, can be reduced through advanced control, and further reductions appear feasible.

  5. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    International Nuclear Information System (INIS)

    Ro, Ki Deok

    2014-01-01

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately

  6. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Ki Deok [Gyeongsang Nat' l Univ., Jinju (Korea, Republic of)

    2014-03-15

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

  7. Full scale wind turbine test of vortex generators mounted on the entire blade

    DEFF Research Database (Denmark)

    Bak, Christian; Skrzypinski, Witold Robert; Gaunaa, Mac

    2016-01-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements...... are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean...

  8. On the upper part load vortex rope in Francis turbine: Experimental investigation

    International Nuclear Information System (INIS)

    Nicolet, C; Zobeiri, A; Maruzewski, P; Avellan, F

    2010-01-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and

  9. On the upper part load vortex rope in Francis turbine: Experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, C [Power Vision Engineering sarl Ch. des Champs-Courbes 1, CH-1024 Ecublens (Switzerland); Zobeiri, A; Maruzewski, P; Avellan, F, E-mail: christophe.nicolet@powervision-eng.c [Laboratory for Hydraulic Machines, Ecole polytechnique federale de Lausanne, EPFL Av. de Cour 33bis, CH-1007 Lausanne (Switzerland)

    2010-08-15

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and

  10. On the upper part load vortex rope in Francis turbine: Experimental investigation

    Science.gov (United States)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and

  11. A Prescribed-Wake Vortex Line Method for Aerodynamic Analysis and Optimization of Multi-Rotor Wind Turbines

    OpenAIRE

    Rosenberg, Aaron; Sharma, Anupam

    2015-01-01

    The objective of this paper is to extend the xed wake vortex lattice method (VLM), used to evaluate the performance of single-rotor wind turbines (SRWT), for use in analyzing dual-rotor wind turbines (DRWT). VLM models wind turbine blades as bound vortex laments with helical trailing vortices. Using the Biot-Savart law, it is possible to calculate the induction in the plane of rotation allowing for a computationally inexpensive, yet accurate, prediction of blade loading and power performance....

  12. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  13. Vortex lattice modelling of winglets on wind turbine blades. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2007-08-15

    The power production of wind turbines can be increased by the use of winglets without increasing the swept area. This makes them suitable for sites with restrictions in rotor diameter and in wind farms. The present project aims at understanding how winglets influences the flow and the aerodynamic forces on wind turbine blades. A free wake vortex lattice code and a fast design algorithm for a horizontal axis wind turbine under steady conditions has been developed. 2 winglet designs are treated in detail. (au)

  14. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    International Nuclear Information System (INIS)

    Sritram, P; Treedet, W; Suntivarakorn, R

    2015-01-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m 3 /min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m 3 /min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency. (paper)

  15. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    International Nuclear Information System (INIS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-01-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors

  16. A Multi-Element Diffuser Augmented Wind Turbine

    Directory of Open Access Journals (Sweden)

    Søren Hjort

    2014-05-01

    Full Text Available A new class of diffuser augmented wind turbines (DAWTs is presented. The new diffuser concept exploits aero-dynamic principles for the creation of high-lift airfoil configurations known from the aircraft industry. Combining this with our objective of obtaining a compact power-efficient design has enabled creation of a family of DAWT designs with energy capture potentials which exceed the power efficiency based on the diffuser exit area by 50%. The paper presents the 1D momentum theory governing the DAWTs, and discusses upper limits for power extraction, similar to the Betz limit applicable for bare Horizontal-Axis Wind Turbines (HAWTs. Inviscid axisymmetric panel code calculations are then used to drive the diffuser design towards higher power coefficients. Axisymmetric actuator disk Navier-Stokes calculations reveal the types of stall that inhibit the functionality of the ideal inviscid optimum, leading the design towards the new class of DAWTs. DAWT performance has been differently measured over time, creating confusion. Proper comparison with performance of existing DAWT designs is therefore emphasized. This involves reference to established literature results, and recalculation of earlier DAWT designs in an attempt to project all results onto a common metric.

  17. 3-D Digitization of Stereoscopic Jet-in-Crossflow Vortex Structure Images via Augmented Reality

    Science.gov (United States)

    Sigurdson, Lorenz; Strand, Christopher; Watson, Graeme; Nault, Joshua; Tucker, Ryan

    2006-11-01

    Stereoscopic images of smoke-laden vortex flows have proven useful for understanding the topology of the embedded 3-D vortex structures. Images from two cameras allow a perception of the 3-D structure via the use of red/blue eye glasses. The human brain has an astonishing capacity to calculate and present to the observer the complex turbulent smoke volume. We have developed a technique whereby a virtual cursor is introduced to the perception, which creates an ``augmented reality.'' The perceived position of this cursor in the 3-D field can be precisely controlled by the observer. It can be brought near a characteristic vortex structure in order to digitally estimate the spatial coordinates of that feature. A calibration procedure accounts for camera positioning. Vortex tubes can be traced and recorded for later or real time supersposition of tube skeleton models. These models can be readily digitally obtained for display in graphics systems to allow complete exploration from any location or perspective. A unique feature of this technology is the use of the human brain to naturally perform the difficult computation of the shape of the translucent smoke volume. Examples are given of application to low velocity ratio and Reynolds number elevated jets-in-crossflow.

  18. Generic vortex modelling for horizontal-axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.H.

    2002-07-01

    This paper describes a generic free-wake calculation of wind turbine wakes. The expanding, helical, tip vortices are represented by a sequence of straight segments, the blades are modelled as lines of constant bound vorticity, and the hub vortices lie along the axis of rotation. It is shown that this model is consistent with the one-dimensional analysis that leads to the Lanchester-Betz limit, in that the velocity in the far-wake is uniform with radius. Particular attention is paid to turbines operating above the Lanchester-Betz limit. It is shown that the usual relationship between the velocity through the blades and in the far-wake breaks down when there is significant wake expansion, and an empirical modification to that relation is presented. For highly expanding wakes, the dynamics of the turbine depend sensitively on the behaviour of the tip vortices. (author)

  19. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan

    2016-01-01

    by a bound vorticity lifting line while the turbine wake vorticity and the turbulence vorticity are projected onto vortex particles. In the present work the rotor blades are stiff leaving aero-elastic interactions for future work. Inflow turbulence is generated with the model of Mann and converted to vortex......? Is it acceptable to neglect the influence of the wake and the wind turbine on the turbulent inflow? Is there evidence to justify the extra cost of a method capable of including these effects correctly? To this end, a unified vorticity representation of the flow is used: the wind turbine model is represented......A vortex particle representation of turbulent fields is devised in order to address the following questions: Does a wind turbine affect the statistics of the incoming turbulence? Should this imply a change in the way turbulence boxes are used in wind turbine aero-elastic simulations...

  20. Turbulence production due to secondary vortex cutting in a turbine rotor

    Science.gov (United States)

    Binder, A.

    1985-10-01

    Measurements of the unsteady flow field near and within a turbine rotor were made by means of a Laser-2-Focus velocimeter. The testing was performed in a single-stage cold-air turbine at part-load and near-design conditions. Random unsteadiness and flow angle results indicate that the secondary vortices of the stator break down after being cut and deformed by the rotor blades. A quantitative comparison shows that some of the energy contained in these secondary vortices is thereby converted into turbulence energy in the front part of the rotor. An attempt is made to explain this turbulence energy production as caused by the vortex breakdown.

  1. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  2. A model for precessing helical vortex in the turbine discharge cone

    International Nuclear Information System (INIS)

    Kuibin, P A; University Politehnica Timişoara, Bv. Mihai Viteazu 1, RO-300222, Timişoara (Romania))" data-affiliation=" (Department of Hydraulic Machinery, University Politehnica Timişoara, Bv. Mihai Viteazu 1, RO-300222, Timişoara (Romania))" >Susan-Resiga, R F; Muntean, S

    2014-01-01

    The decelerated swirling flow in the discharge cone of hydraulic turbine develops various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency regime. In particular, the precessing helical vortex ( v ortex rope ) developed at part-load regimes is notoriously difficult and expensive to be computed using full three-dimensional turbulent unsteady flow models. On the other hand, modern design and optimization techniques require robust, tractable and accurate a-priori assessment of the turbine flow unsteadiness level within a wide operating range before actually knowing the runner geometry details. This paper presents the development and validation of a quasi-analytical model of the vortex rope in the discharge cone. The first stage is the computing of the axisymmetrical swirling flow at runner outlet with input information related only to the operating point and to the blade outlet angle. Then, the swirling flow profile further downstream is computed in successive cross-sections through the discharge cone. The second stage is the reconstruction of the precessing vortex core parameters in successive cross-sections of the discharge cone. The final stage lies in assembling 3D unsteady flow field in the discharge cone. The end result is validated against both experimental and numerical data

  3. Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    In order to evaluate aerodynamic loads on floating oshore wind turbines, advanced dynamic analysis tools are required. As a unied model that can represent both dynamic in ow and skewed in ow effects in it basic formulation, a wake model based on a vortex ring formulation is discussed. Such a model...... presents a good intermediate solution between computationally efficient but simple momentum balance methods and computationally expensive but complete computational fluid dynamics models. The model introduced is shown to be capable of modelling typical steady and unsteady test cases with reasonable...

  4. Hybrid vortex simulations of wind turbines using a three-dimensional viscous-inviscid panel method

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Hejlesen, Mads Mølholm; Sørensen, Jens Nørkær

    2017-01-01

    adirect calculation, whereas the contribution from the large downstream wake is calculated using a mesh-based method. Thehybrid method is first validated in detail against the well-known MEXICO experiment, using the direct filament method asa comparison. The second part of the validation includes a study......A hybrid filament-mesh vortex method is proposed and validated to predict the aerodynamic performance of wind turbinerotors and to simulate the resulting wake. Its novelty consists of using a hybrid method to accurately simulate the wakedownstream of the wind turbine while reducing...

  5. Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

    International Nuclear Information System (INIS)

    Vaal, J B de; Moan, T; Hansen, M O L

    2014-01-01

    In order to evaluate aerodynamic loads on floating offshore wind turbines, advanced dynamic analysis tools are required. As a unified model that can represent both dynamic inflow and skewed inflow effects in it basic formulation, a wake model based on a vortex ring formulation is discussed. Such a model presents a good intermediate solution between computationally efficient but simple momentum balance methods and computationally expensive but complete computational fluid dynamics models. The model introduced is shown to be capable of modelling typical steady and unsteady test cases with reasonable accuracy

  6. Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2017-10-01

    Full Text Available Wind velocity distribution and the vortex around the wind turbine present a significant challenge in the development of straight-bladed vertical axis wind turbines (VAWTs. This paper is intended to investigate influence of tip vortex on wind turbine wake by Computational Fluid Dynamics (CFD simulations. In this study, the number of blades is two and the airfoil is a NACA0021 with chord length of c = 0.265 m. To capture the tip vortex characteristics, the velocity fields are investigated by the Q-criterion iso-surface (Q = 100 with shear-stress transport (SST k-ω turbulence model at different tip speed ratios (TSRs. Then, mean velocity, velocity deficit and torque coefficient acting on the blade in the different spanwise positions are compared. The wind velocities obtained by CFD simulations are also compared with the experimental data from wind tunnel experiments. As a result, we can state that the wind velocity curves calculated by CFD simulations are consistent with Laser Doppler Velocity (LDV measurements. The distribution of the vortex structure along the spanwise direction is more complex at a lower TSR and the tip vortex has a longer dissipation distance at a high TSR. In addition, the mean wind velocity shows a large value near the blade tip and a small value near the blade due to the vortex effect.

  7. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  8. Wakes behind wind turbines. Studies on tip vortex evolution and stability

    Energy Technology Data Exchange (ETDEWEB)

    Odemark, Ylva

    2012-07-01

    The increased fatigue loads and decreased power output of a wind turbine placed in the wake of another turbine is a well-known problem when building new wind power farms. In order to better estimate the total power output of a wind power farm, knowledge about the development and stability of wind turbine wakes is crucial. In the present thesis, the wake behind a small-scale model turbine was investigated experimentally in a wind tunnel. The velocity in the wake was measured with hot-wire anemometry, for different free stream velocities and tip speed ratios. To characterize the behaviour of the model turbine, the power output, thrust force and rotational frequency of the model were also measured. These results were then compared to calculations using the Blade Element Momentum (BEM) method. New turbine blades for the model was constructed using the same method, in order to get an estimate of the distribution of the lift and drag forces along the blades. This information is needed for comparisons with certain numerical simulations, which however remains to be performed.By placing the turbine at different heights in a turbulent boundary layer, the effects of forest turbulence on wind turbine outputs (power and thrust) could also be investigated.The evolution of the tip vortices shed from the turbine blades was studied by performing velocity measurements around the location of the tip vortex breakdown. The vortices' receptivity to disturbances was then studied by introducing a disturbance in the form of two pulsed jets, located in the rear part of the nacelle. In order to introduce a well-defined disturbance and perform phase-locked measurements, a new experimental setup was constructed and successfully tested for two different disturbance frequencies. The mean stream wise velocity and the stream wise turbulence intensity was found to scale well with the free stream velocity and the spreading of the wake was found to be proportional to the square root of the

  9. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    International Nuclear Information System (INIS)

    Rivetti, A; Angulo, M; Lucino, C; Liscia, S

    2014-01-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors

  10. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    Science.gov (United States)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  11. Determining the performance of a Diffuser Augmented Wind Turbine using a combined CFD/BEM method

    Directory of Open Access Journals (Sweden)

    Kesby Joss E.

    2017-01-01

    Full Text Available Traditionally, the optimisation of a Diffuser Augmented Wind Turbine has focused on maximising power output. However, due to the often less than ideal location of small-scale turbines, cut-in speed and starting time are of equal importance in maximising Annual Energy Production, which is the ultimate goal of any wind turbine design. This paper proposes a method of determining power output, cut-in speed and starting time using a combination of Computational Fluid Dynamics and Blade Element Momentum theory. The proposed method has been validated against published experimental data.

  12. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    Science.gov (United States)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical

  13. Vortex-Induced Vibration of an Airfoil Used in Vertical-Axis Wind Turbines

    Science.gov (United States)

    Benner, Bridget; Carlson, Daniel; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2017-11-01

    In Vertical-axis wind turbines (VAWTs), when the blades are placed at high angles of attack with respect to the incoming flow, they could experience flow-induced oscillations. A series of experiments in a re-circulating water tunnel was conducted to study the possible Vortex-Induced Vibration (VIV) of a fully-submerged, flexibly-mounted NACA 0021 airfoil, which is used in some designs of VAWTs. The airfoil was free to oscillate in the crossflow direction, and the tests were conducted in a Reynolds number range of 600vortex shedding patterns. This research is supported in part by the National Science Foundation under NSF Award Numbers 1460461 and CBET-1437988.

  14. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    International Nuclear Information System (INIS)

    Kirschner, O; Schmidt, H; Ruprecht, A; Mader, R; Meusburger, P

    2010-01-01

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  15. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, O; Schmidt, H; Ruprecht, A [Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart, Pfaffenwaldring 10, 70550 Stuttgart (Germany); Mader, R; Meusburger, P, E-mail: kirschner@ihs.uni-stuttgart.d [Vorarlberger Illwerke A G, atloggstrasse 36, 6780 Schruns (Austria)

    2010-08-15

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  16. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  17. Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines

    International Nuclear Information System (INIS)

    Zhang, R.C.; Fan, W.J.; Xing, F.; Song, S.W.; Shi, Q.; Tian, G.H.; Tan, W.L.

    2015-01-01

    Interstage turbine combustion used for improving efficiency of gas turbine was a new type of combustion mode. Operating conditions and technical requirements for this type of combustor were different from those of traditional combustor. It was expected to achieve engineering application in both ground-based and aviation gas turbine in the near future. In this study, a number of modifications in a base design were applied and examined experimentally. The trapped-vortex combustion technology was adopted for flame stability under high velocity conditions, and the preheating-fuel injection technology was used to improve the atomization and evaporation performance of liquid fuel. The experimental results indicated that stable and efficient combustion with slight temperature-rise can be achieved under the high velocity conditions of combustor inlet. Under all experimental conditions, the excess air coefficients of ignition and lean blow-out were larger than 7 and 20, respectively; pollutant emission index of NO x and the maximum wall temperature were below 2.5 g/(kg fuel) and 1050 K, respectively. Moreover, the effects of fuel injection and overall configuration on the combustion characteristics were analyzed in detail. The number increase, area increase and depth increase of fuel injectors had different influences on the stability, combustion characteristic and temperature distribution. - Highlights: • The combustion mode of slight temperature-rise (200 K) was achieved. • Effect of fuel and air injection on stability characteristic was investigated. • Impact of overall configuration on combustion performance was analyzed. • The feasibility of scheme was determined.

  18. Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, R.; Chen, Y.; Nikitopoulos, D. [Louisiana State Univ., Baton Rouge, LA (United States)] [and others

    1995-10-01

    The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

  19. Aerodynamic optimization of the blades of diffuser-augmented wind turbines

    International Nuclear Information System (INIS)

    Vaz, Jerson R.P.; Wood, David H.

    2016-01-01

    Highlights: • An optimization procedure to design shrouded wind turbine blades is proposed. • The procedure relies on the diffuser speed-up ratio. • The diffuser speed-up ratio increases the velocity at the rotor plane. • Chord and twist angle are optimized for typical speed-up ratios. • The procedure is applicable for any tip-speed ratio greater than 1. - Abstract: Adding an exit diffuser is known to allow wind turbines to exceed the classical Betz–Joukowsky limit for a bare turbine. It is not clear, however, if there is a limit for diffuser-augmented turbines or whether the structural and other costs of the diffuser outweigh any gain in power. This work presents a new approach to the aerodynamic optimization of a wind turbine with a diffuser. It is based on an extension of the well-known Blade Element Theory and a simple model for diffuser efficiency. It is assumed that the same conditions for the axial velocity in the wake of an ordinary wind turbine can be applied on the flow far downwind of the diffuser outlet. An algorithm to optimize the blade chord and twist angle distributions in the presence of a diffuser was developed and implemented. As a result, an aerodynamic improvement of the turbine rotor geometry was achieved with the blade shape sensitive to the diffuser speed-up ratio. In order to evaluate the proposed approach, a comparison with the classical Glauert optimization was performed for a flanged diffuser, which increased the efficiency. In addition, a comparative assessment was made with experimental results available in the literature, suggesting better performance for the rotor designed with the proposed optimization procedure.

  20. Validation of mathematical models for predicting the swirling flow and the vortex rope in a Francis turbine operated at partial discharge

    DEFF Research Database (Denmark)

    Kuibin, P.A.; Okulov, Valery; Susan-Resiga, R.F.

    2010-01-01

    recover all this information without actually computing the full three-dimensional unsteady flow in the hydraulic turbine. As a result, we provide valuable mathematical tools for assessing the turbine behaviour at off-design operating regimes in the early stages of runner design, with computational effort......The vortex rope in a hydro turbine draft tube is one the main and strong sources of pulsations in non-optimal modes of hydro turbine operation. We examine the case of a Francis turbine model operated at partial discharge, where a strong precessing vortex rope is developed in the discharge cone...... several orders of magnitude less than the current approaches of simulating the complex turbine flow....

  1. Comparison of the near-wake between actuator-line simulations and a simplified vortex model of a horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Sarmast, Sasan; Segalini, Antonio; Mikkelsen, Robert Flemming

    2016-01-01

    ). The vortex model matched the numerical simulation of the turbine with constant blade circulation in terms of the near-wake structure and local forces along the blade. The results from the Tjæreborg turbine case showed some discrepancies between the two approaches, but overall, the agreement is qualitatively...... good, validating the analytical method for more general conditions. The present results show that a simple vortex code is able to provide an estimation of the flow around the wind turbine similar to the actuator-line approach but with a negligible computational effort. Copyright © 2015 John Wiley...

  2. Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    Francis turbines operating at part load conditions experience the development of a high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical system and may jeopardize the system stability if resonance conditions are met. Although many aspects of the part load issue have been widely studied in the past, the accurate stability analysis of hydro-power plants remains challenging. A better understanding of the vortex rope dynamics in a wide range of operating conditions is an important step towards the prediction and the transposition of the pressure fluctuations from reduced to prototype scale. For this purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced scale physical model operating at part load conditions is performed by means of 2D-PIV in three different horizontal cross-sections of the draft tube cone. The measurements are performed in cavitation-free conditions for three values of discharge factor, comprised between 60% and 81% of the value at the Best Efficiency Point. The present article describes a detailed methodology to properly recover the evolution of the velocity fields during one precession cycle by means of phase averaging. The vortex circulation is computed and the vortex trajectory over one typical precession period is finally recovered for each operating point. It is notably shown that below a given value of the discharge factor, the vortex dynamics abruptly change and loose its periodicity and coherence.

  3. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity

  4. A Detailed Study of the Rotational Augmentation and Dynamic Stall Phenomena for Wind Turbines

    DEFF Research Database (Denmark)

    Guntur, Srinivas

    This thesis presents investigations into the aerodynamics of wind turbine rotors, with a focus on the in-board sections of the rotor. Two important aerodynamic phenomena that have challenged scientists over nearly the last half a century are the so-called rotational augmentation and dynamic stall....... This thesis presents an investigation into these two phenomena, using data from the MEXICO and the NREL UAE Phase VI experiments, as well as data obtained from full rotor CFD computations carried out using the in-house flow solver Ellipsys3D. The experimental data, CFD data and that from some of the existing...... on wind turbine blades using the N-sequence data of the NREL UAE Phase VI experiment. The experimental data is compared with the results from unsteady Delayed Detached Eddy Simulations (DDES). The same conditions are also modelled using a Beddoes-Leishman type dynamic stall model by Hansen et al. (2004...

  5. Numerical Investigation of Heat Transfer Augmentation through Geometrical Optimization of Vortex Generators

    DEFF Research Database (Denmark)

    Gorji, Mofid; Mirgolbabaei, Hessam; Barari, Amin

    2010-01-01

    In this paper a two-dimensional numerical simulation of a steady incompressible and turbulent model has been carried out to study the effects of vortex generators in a compact heat exchanger in a curvilinear coordinate system. The mesh which is applied in this study is boundary fitted and has been...

  6. Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake

    Directory of Open Access Journals (Sweden)

    P. Chatelain

    2017-06-01

    Full Text Available A vortex particle-mesh (VPM method with immersed lifting lines has been developed and validated. Based on the vorticity–velocity formulation of the Navier–Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES of vertical axis wind turbine (VAWT flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters. The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  7. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  8. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Caprace, D-G; Winckelmans, G; Marichal, Y

    2016-01-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features. (paper)

  9. Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-10-01

    Full Text Available Cyclic blade motion during operation of vertical axis wind turbines (VAWTs imposes challenges on the simulations models of the aerodynamics of VAWTs. A two-dimensional vortex model is validated against the new experimental data on a 12-kW straight-bladed VAWT, which is operated at an open site. The results on the normal force on one blade are analyzed. The model is assessed against the measured data in the wide range of tip speed ratios: from 1.8 to 4.6. The predicted results within one revolution have a similar shape and magnitude as the measured data, though the model does not reproduce every detail of the experimental data. The present model can be used when dimensioning the turbine for maximum loads.

  10. Aeroelastic simulation of multi-MW wind turbines using a free vortex model coupled to a geometrically exact beam model

    International Nuclear Information System (INIS)

    Saverin, Joseph; Peukert, Juliane; Marten, David; Pechlivanoglou, George; Paschereit, Christian Oliver; Greenblatt, David

    2016-01-01

    The current paper investigates the aeroelastic modelling of large, flexible multi- MW wind turbine blades. Most current performance prediction tools make use of the Blade Element Momentum (BEM) model, based upon a number of simplifying assumptions that hold only under steady conditions. This is why a lifting line free vortex wake (LLFVW) algorithm is used here to accurately resolve unsteady wind turbine aerodynamics. A coupling to the structural analysis tool BeamDyn, based on geometrically exact beam theory, allows for time-resolved aeroelastic simulations with highly deflected blades including bend-twist, coupling. Predictions of blade loading and deformation for rigid and flexible blades are analysed with reference to different aerodynamic and structural approaches. The emergency shutdown procedure is chosen as an examplary design load case causing large deflections to place emphasis on the influence of structural coupling and demonstrate the necessity of high fidelity structural models. (paper)

  11. Investigation of Separation Control in Low Pressure Turbine Using Pulsed Vortex Generator Jets (Postprint)

    National Research Council Canada - National Science Library

    Woods, N; Boxx, I; Sondergaard, R; McQuilling, M; Wolf, M

    2006-01-01

    ...) injected over the suction surface of the Pack-B turbine blade is reported. Blade Reynolds numbers in the turbine cascade match those that occur in aircraft engines while at high altitude cruise...

  12. Evolution and breakdown of helical vortex wakes behind a wind turbine

    International Nuclear Information System (INIS)

    Nemes, A; Jacono, D Lo; Sheridan, J; Blackburn, H M; Sherry, M

    2014-01-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable

  13. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  14. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...

  15. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective.

    Science.gov (United States)

    Nabawy, Mostafa R A; Crowther, William J

    2017-07-01

    The presence of a stable leading edge vortex (LEV) on steadily revolving wings increases the maximum lift coefficient that can be generated from the wing and its role is important to understanding natural flyers and flapping wing vehicles. In this paper, the role of LEV in lift augmentation is discussed under two hypotheses referred to as 'additional lift' and 'absence of stall'. The 'additional lift' hypothesis represents the traditional view. It presumes that an additional suction/circulation from the LEV increases the lift above that of a potential flow solution. This behaviour may be represented through either the 'Polhamus leading edge suction' model or the so-called 'trapped vortex' model. The 'absence of stall' hypothesis is a more recent contender that presumes that the LEV prevents stall at high angles of attack where flow separation would normally occur. This behaviour is represented through the so-called 'normal force' model. We show that all three models can be written in the form of the same potential flow kernel with modifiers to account for the presence of a LEV. The modelling is built on previous work on quasi-steady models for hovering wings such that model parameters are determined from first principles, which allows a fair comparison between the models themselves, and the models and experimental data. We show that the two models which directly include the LEV as a lift generating component are built on a physical picture that does not represent the available experimental data. The simpler 'normal force' model, which does not explicitly model the LEV, performs best against data in the literature. We conclude that under steady conditions the LEV as an 'absence of stall' model/mechanism is the most satisfying explanation for observed aerodynamic behaviour. © 2017 The Author(s).

  16. Active control of the tip vortex: an experimental investigation on the performance characteristics of a model turbine

    International Nuclear Information System (INIS)

    Anik, E; Abdulrahim, A; Ostovan, Y; Mercan, B; Uzol, O

    2014-01-01

    This study is part of an on-going experimental research campaign that focuses on the active control of the tip leakage/vortex characteristics of a model horizontal axis wind turbine rotor using tip injection. This paper presents both baseline (no-injection) data as well as data with tip injection, concentrating on the effects of tip injection on power and thrust variations with the Tip Speed Ratio (TSR). The experiments are conducted by placing a specially designed 3-bladed model wind turbine rotor at the exit of a 1.7 m diameter open-jet wind tunnel. The rotor blades are non-linearly twisted and tapered with NREL S826 airfoil profile all along the span. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the blade tips while the rotor is rotating. Baseline results show that the general trends are as expected for a small wind turbine and the maximum power coefficient is reached at around TSR=4.5. Results with injection show that the tip injection has significant effect on the power and thrust coefficients in comparison to the baseline data, especially at TSR values higher than the max C P TSR value. Both coefficients seem to be significantly increased due to tip injection and the max C P TSR value also gets shifted to a slightly higher TSR value. Tip injection seems to have no significant effect for TSR values less than 3.5

  17. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  18. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  19. Wind or water turbine power augmentation using the system of guiding surfaces

    International Nuclear Information System (INIS)

    Bashurin, V P; Ktitorov, L V; Lazareva, A S; Pletenev, F A; Budnikov, I N; Hatunkin, V Yu; Klevtsov, V A; Meshkov, E E; Novikova, I A; Yanbaev, G M

    2016-01-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines. (paper)

  20. Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics

    International Nuclear Information System (INIS)

    McWilliam, Michael K; Crawford, Curran

    2014-01-01

    This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane

  1. Numerical simulation methodologies for design and development of Diffuser-Augmented Wind Turbines – analysis and comparison

    Directory of Open Access Journals (Sweden)

    Michał Lipian

    2016-01-01

    Full Text Available Different numerical computation methods used to develop a methodology for fast, efficient, reliable design and comparison of Diffuser-Augmented Wind Turbine (DAWT geometries are presented. The demand for such methods is evident, following the multitude of geometrical parameters that influence the flow character through ducted turbines. The results of the Actuator Disk Model (ADM simulations will be confronted with a simulation method of higher order of accuracy, i.e. the 3D Fully-resolved Rotor Model (FRM in the rotor design point. Both will be checked for consistency with the experimental results measured in the wind tunnel at the Institute of Turbo-machinery (IMP, Lodz University of Technology (TUL. An attempt to find an efficient method (with a compromise between accuracy and design time for the flow analysis pertinent to the DAWT is a novel approach presented in this paper.

  2. Modeling of wind turbine vortex generators in considering the inter-effects between arrays

    DEFF Research Database (Denmark)

    Zhao, Zhenzhou; Shen, Wenzhong; Wang, Ruixin

    2017-01-01

    circulation created by VGs and created various parametric models used with the Navier-Stokes equations, but most of them are based on a single winglet of VGs and do not include the inter-effects between the winglets. This paper proposes a parameterized VG array model based on counter-rotating VGs, which...... properly takes into account the inter-effects between winglets. Two cases, i.e., a plate with a pair of VGs and a DU-W2-250 blade segment with five pairs of VGs, are investigated to validate this model; the array type parametric model is in closer agreement with experimental data than traditional models....... Compared to the solid VG model, the array type model has similar streamlines and surface pressure coefficients on the suction surface. The array type VG model can effectively reduce the number of grid points and yield highly accurate predictions of wind turbine blade aerodynamic characteristics....

  3. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    International Nuclear Information System (INIS)

    Hauptmann, S; Bülk, M; Cheng, P W; Schön, L; Erbslöh, S; Boorsma, K; Grasso, F; Kühn, M

    2014-01-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK

  4. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    Science.gov (United States)

    Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.

    2014-12-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.

  5. Feasibility analysis of gas turbine inlet air cooling by means of liquid nitrogen evaporation for IGCC power augmentation

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro

    2015-01-01

    Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable

  6. Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation

    International Nuclear Information System (INIS)

    Favrel, A; Landry, C; Müller, A; Yamamoto, K; Avellan, F

    2014-01-01

    Francis turbines operating at part load condition experience the development of a cavitating helical vortex rope in the draft tube cone at the runner outlet. The precession movement of this vortex rope induces local convective pressure fluctuations and a synchronous pressure pulsation acting as a forced excitation for the hydraulic system, propagating in the entire system. In the draft tube, synchronous pressure fluctuations with a frequency different to the precession frequency may also be observed in presence of cavitation. In the case of a matching between the precession frequency and the synchronous surge frequency, hydro-acoustic resonance occurs in the draft tube inducing high pressure fluctuations throughout the entire hydraulic system, causing torque and power pulsations. The risk of such resonances limits the possible extension of the Francis turbine operating range. A more precise knowledge of the phenomenon occurring at such resonance conditions and prediction capabilities of the induced pressure pulsations needs therefore to be developed. This paper proposes a detailed study of the occurrence of hydro-acoustic resonance for one particular part load operating point featuring a well-developed precessing vortex rope and corresponding to 64% of the BEP. It focuses particularly on the evolution of the local interaction between the pressure fluctuations at the precession frequency and the synchronous surge mode passing through the resonance condition. For this purpose, an experimental investigation is performed on a reduced scale model of a Francis turbine, including pressure fluctuation measurements in the draft tube and in the upstream piping system. Changing the pressure level in the draft tube, resonance occurrences are highlighted for different Froude numbers. The evolution of the hydro-acoustic response of the system suggests that a lock-in effect between the excitation frequency and the natural frequency may occur at low Froude number, inducing a hydro

  7. Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load

    International Nuclear Information System (INIS)

    Nilsson, H

    2012-01-01

    This work presents an OpenFOAM case-study, based on the experimental studies of the swirling flow in the abrupt expansion by Dellenback et al.[1]. The case yields similar flow conditions as those of a helical vortex rope in a hydro turbine draft tube working at part-load. The case-study is set up similar to the ERCOFTAC Conical Diffuser and Centrifugal Pump OpenFOAM case-studies [2,3], making all the files available and the results fully reproducable using OpenSource software. The mesh generation is done using m4 scripting and the OpenFOAM built-in blockMesh mesh generator. The swirling inlet boundary condition is specified as an axi-symmetric profile. The outlet boundary condition uses the zeroGradient condition for all variables except for the pressure, which uses the fixed mean value boundary condition. The wall static pressure is probed at a number of locations during the simulations, and post-processing of the time-averaged solution is done using the OpenFOAM sample utility. Gnuplot scripts are provided for plotting the results. The computational results are compared to one of the operating conditions studied by Dellenback, and measurements for all the experimentally studied operating conditions are available in the case-study. Results from five cases are here presented, based on the kEpsilon model, the kOmegaSST model, and a filtered version of the same kOmegaSST model, named kOmegaSSTF [4,5]. Two different inlet boundary conditions are evaluated. It is shown that kEpsilon and kOmegaSST give steady solutions, while kOmegaSSTF gives a highly unsteady solution. The time-averaged solution of the kOmegaSSTF model is much more accurate than the other models. The kEpsilon and kOmegaSST models are thus unable to accurately model the effect of the large-scale unsteadiness, while kOmegaSSTF resolves those scales and models only the smaller scales. The use of two different boundary conditions shows that the boundary conditions are more important than the choice between

  8. Stability Augmentation of a Grid-Connected Wind Farm by Fuzzy-Logic-Controlled DFIG-Based Wind Turbines

    Directory of Open Access Journals (Sweden)

    Md. Rifat Hazari

    2017-12-01

    Full Text Available Wind farm (WF grid codes require wind generators to have low voltage ride through (LVRT capability, which means that normal power production should be resumed quickly once the nominal grid voltage has been recovered. However, WFs with fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs have failed to fulfill the LVRT requirement, which has a significant impact on power system stability. On the other hand, variable-speed wind turbines with doubly fed induction generators (VSWT-DFIGs have sufficient LVRT augmentation capability and can control the active and reactive power delivered to the grid. However, the DFIG is more expensive than the SCIG due to its AC/DC/AC converter. Therefore, the combined use of SCIGs and DFIGs in a WF could be an effective solution. The design of the rotor-side converter (RSC controller is crucial because the RSC controller contributes to the system stability. The cascaded control strategy based on four conventional PI controllers is widely used to control the RSC of the DFIG, which can inject only a small amount of reactive power during fault conditions. Therefore, the conventional strategy can stabilize the lower rating of the SCIG. In the present paper, a new control strategy based on fuzzy logic is proposed in the RSC controller of the DFIG in order to enhance the LVRT capability of the SCIG in a WF. The proposed fuzzy logic controller (FLC is used to control the reactive power delivered to the grid during fault conditions. Moreover, reactive power injection can be increased in the proposed control strategy. Extensive simulations executed in the PSCAD/EMTDC environment for both the proposed and conventional PI controllers of the RSC of the DFIG reveal that the proposed control strategy can stabilize the higher rating of the SCIG.

  9. Research and development of asymmetrical heat transfer augmentation method in radial channels of blades for high temperature gas turbines

    Science.gov (United States)

    Shevchenko, I. V.; Rogalev, A. N.; Garanin, I. V.; Vegera, A. N.; Kindra, V. O.

    2017-11-01

    The serpentine-like one and half-pass cooling channel systems are primarily used in blades fabricated by the lost-wax casting process. The heat transfer turbulators like cross-sectional or angled ribs used in channels of the midchord region failed to eliminate the temperature irregularity from the suction and pressure sides, which is reaching 200°C for a first stage blade of the high-pressure turbine for an aircraft engine. This paper presents the results of a numerical and experimental test of an advanced heat transfer augmentation system in radial channels developed for alignment of the temperature field from the suction and pressure sides. A numerical simulation of three-dimensional coolant flow for a wide range of Reynolds numbers was carried out using ANSYS CFX software. Effect of geometrical parameters on the heat removal asymmetry was determined. The test results of a blade with the proposed intensification system conducted in a liquid-metal thermostat confirmed the accuracy of calculations. Based on the experimental data, the dependencies for calculation of heat transfer coefficients to the cooling air in the blade studied were obtained.

  10. Cylindrical vortex wake model: right cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Gaunaa, Mac

    2015-01-01

    The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios....... For each vortex element, the velocity components in all directions and in the entire domain are computed analytically in a novel approach. In particular, the velocity field from the vortex actuator disk is derived for the first time. The induction from the entire vortex system is studied and is seen...

  11. Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw

    Directory of Open Access Journals (Sweden)

    Moutaz Elgammi

    2016-06-01

    Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through

  12. Heat Transfer Augmentation in Gas Turbine Blade Rectangular Passages Using Circular Ribs with Fins

    Directory of Open Access Journals (Sweden)

    Mohammed W. Al-Jibory

    2017-11-01

    Full Text Available In this paper, an experimental system  was designed and built to simulate conditions in the gas turbine blade cooling and run the experimental part. Boundary conditions are: inlet coolant air temperature is 300K with Reynolds numbers (Re=7901 .The surrounding constant hot air temperatures was (673 K.The numerical simulations were done by using software FLUENT version (14.5, in this part, it was presented the effect of using circular ribs having middle fin fitted in rectangular passage channel on fluid flow and heat transfer characteristics.  Ribs used with pitch-rib height of 10, rectangular channel of (30x60 mm cross section, 1.5 mm duct thickness and 0.5 m long. The temperature, velocity distribution contours, cooling air temperature distribution at the duct centerline, the inner wall surface temperature of the duct, and thermal performance factor are presented in this paper. it can be seen that the duct with all ribs with middle fins was the better case which leads to increase the coolant air temperature by (10.22 % and decrease the inner wall temperature by (6.15 % . The coolant air flow velocity seems to be accelerated and decelerated through the channel in the presence of ribs, so it was shown that the thermal performance factor along the duct is larger than 1, this is due to the fact that the ribs create turbulent conditions and increasing thermal surface area, and thus increasing heat transfer coefficient than the smooth channel.

  13. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  14. 导叶对涡轮型垂直轴风力机气动性能的影响%Effects of guiding vanes on aerodynamic performance of vortex vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    原红红; 赵振宙; 郑源; 黄娟

    2013-01-01

    To overcome the problem of low efficiency of the traditional vertical axis wind turbine, the structural advantages of the wind turbine with guiding vanes are introduced and the effects of guiding vanes on the vortex vertical axis wind turbine are analyzed in detail. Based on computational fluid dynamics theory, the slippage mesh technique and the k-ε model were used to compare the aerodynamic performance of the vortex vertical axis wind turbine with and without guiding vanes at a design velocity of 12 m/s. Studies have shown that the guiding vanes can effectively prevent the direct impact of the coming flow from acting on the suction section of the blade in the upwind area so as to decrease the drag torque, while the guiding vanes also negatively affect the performance of blades in the downwind area, but the positive effect of the former is more significant, so the performance of a wind turbine with guiding vanes greatly improves. The vortex vertical axis wind turbine with arc-type guiding vanes has a wider operating range, higher optimum tip speed ratio, and higher aerodynamic efficiency. The maximum wind power coefficient can reach 0.24 .%针对传统垂直轴风力机效率低的缺陷,阐述带导叶垂直轴风力机的结构优势,并分析导叶对涡轮型垂直轴风力机的作用。应用计算流体力学理论,在设计风速12 m/s下,采用滑移网格技术及k-着模型对有、无导叶两种涡轮型垂直轴风力机的气动性能进行比较。研究表明,导叶可以有效降低由于来流对逆风区叶片吸力面的直接冲击而造成的阻力扭矩,也会负面影响顺风区叶片的性能,但其负作用效果远不及在逆风区挡流降阻的正作用效果,故加导叶后风轮的性能会有很大提高。带弧线形导叶涡轮型垂直轴风力机最大风能利用系数可达0.24,具有工作范围广、最佳尖速比大的特点。

  15. Numerical investigation of tip leakage vortex

    OpenAIRE

    Fredriksen, Vegard

    2017-01-01

    The Kaplan turbine has a small clearance gap between the blade tip and casing to allow the blades to rotate freely. This clearance gap is the cause of an undesirable Tip Leakage Vortex (TLV). A TLV might reduce the turbine efficiency, erode the turbine blades or cause instabilities for the power output. A literature study indicated that the tip clearance gap was a critical parameter affecting the behavior of the TLV. A research gap was observed for an operating Kaplan turbine where the ...

  16. Phenomenological Model of Vortex Generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Westergaard, C.

    1995-01-01

    For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....

  17. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  18. Design study of shaft face seal with self-acting lift augmentation. 5: Performance in simulated gas turbine engine operation

    Science.gov (United States)

    Ludwig, L. P.; Johnson, R. L.

    1971-01-01

    The feasibility and the noncontact operation of the self-acting seal was demonstrated over a range of simulated gas turbine engine conditions from 200 to 500 ft/sec sliding speed. Sealed pressure differentials were 50 to 300 psi and sealed temperatures were 150 to 1200 F. Low leakage (about 1/10 that of conventional labyrinth seals) was exhibited in two endurance runs (200 and 338 hr) at 400 ft/sec, 200 psi and 1000 F (gas temperature). For these endurance runs, the self-acting pad wear was less than 3.8 micrometers (0.00015 in.); this low wear was attributed to the noncontact operation of the primary seal. Operating problems identified were fretting wear of the secondary seal and erosion of the primary seal by hard particles.

  19. Examples of Applications of Vortex Methods to Wind Energy

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents wind-energy simulations obtained with the vortex code OmniVor (described in Chap. 44 ) and compared to BEM, CFD and measurements. The chapter begins by comparing rotor loads obtained with vortex methods, BEM and actuator-line simulations of wind turbines under uniform...... and yawed inflows. The second section compares wakes and flow fields obtained by actuator-disk simulations and a free-wake vortex code that uses vortex segments and vortex particles. The third section compares different implementations of viscous diffusion models and investigate their effects...

  20. Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine

    DEFF Research Database (Denmark)

    Lignarolo, Lorenzo E.M.; Mehta, Dhruv; Stevens, Richard J.A.M.

    2016-01-01

    In this paper we report the results of a workshop organised by the Delft University of Technology in 2014, aiming at the comparison between different state-of-the-art numerical models for the simulation of wind turbine wakes. The chosen benchmark case is a wind tunnel measurement, where stereosco...

  1. Vortex dynamics during blade-vortex interactions

    Science.gov (United States)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  2. Vortex methods and vortex statistics

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (''blobs'') and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ''blob'' methods provide the most promising path to the understanding of these phenomena

  3. RANS computations of tip vortex cavitation

    Science.gov (United States)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  4. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  5. Vortex rope instabilities in a model of conical draft tube

    Science.gov (United States)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  6. Vortex rope instabilities in a model of conical draft tube

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  7. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  8. Vortex line topology during vortex tube reconnection

    Science.gov (United States)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  9. Vortex Transmutation

    International Nuclear Information System (INIS)

    Ferrando, Albert; Garcia-March, Miguel-Angel; Zacares, Mario; Monsoriu, Juan A.; Cordoba, Pedro Fernandez de

    2005-01-01

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a 'transmutation pass rule' determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials

  10. Development of new tip-loss corrections based on vortex theory and vortex methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2014-01-01

    A new analytical formulation of the tip-loss factor is established based on helical vortex lament solutions. The derived tip-loss factor can be applied to wind-turbines, propellers or other rotary wings. Similar numerical formulations are used to assess the influence of wake expansion on tip...

  11. Performance characteristics of a horizontal axis turbine with fusion winglet

    International Nuclear Information System (INIS)

    Zhu, Bing; Sun, Xiaojing; Wang, Ying; Huang, Diangui

    2017-01-01

    Any technique or method that can improve the efficiency in exploiting renewable wind or marine current energy has got a great significance today. It has been reported that adding a winglet at the tip of the rotor blades on a horizontal axis wind turbine can increase its power performance. The purpose of this paper is to adopt a numerical method to investigate the effects of different winglet configurations on turbine performance, especially focusing on the direction for the winglet tip to point towards (the suction side, pressure side or both sides of the main blade). The results show that the new design of an integrated fusion winglet proposed in this paper can generally improve the main blade's power producing ability, which is further enhanced with the increase of turbine's tip speed ratio with a maximum power augmentation of about 3.96%. No matter which direction the winglet tip faces, the installation angle of the winglet should match well with the real angle of incoming flow. As a whole, the turbine with winglet of two tips facing to both sides of the main blade can produce much more power than the one of winglet configuration whose tip faces only one side for different blade hub pitch angles and vast majority of tip speed ratios. The working principle behind the winglet in improving turbine performance may be that it can block the downwash fluid easily flowing around the tip section of the main blade from the pressure side to suction side, and hence diffuse and spread out the tip vortex. As a result, it finally decreases the energy loss. Besides, the relative projected rotor area in incoming flow direction will also be reduced due to the addition of the winglet, which is also helpful to turbine's power coefficient. - Highlights: • Added winglet generally increase the turbine energy extraction performance. • Winglet facing blade both sides is usually superior to that of facing one side. • Winglet can isolate downwash fluid easily flowing

  12. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder....... The content of this chapter is based on the publication of the author entitled "Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors" [1]. Results from this chapter are applied: in Chap. 21 to model a wind turbine (or rotor) in yaw, in Chap. 22 to derive a new yaw...

  13. Thrust augmentation for a small turbojet engine

    OpenAIRE

    Hackaday, Gary L.

    1999-01-01

    Approved for public release; distribution is unlimited A Sophia J450 (nine pounds of thrust) gas turbine engine was used first to examine the thrust augmentation generated using an ejector shroud. Experimental results obtained with and without the ejector were compared with performance predicted using an engine code and a one-dimensional ejector analysis. The engine code was revised to incorporate a radial turbine and the correct compressor map. Thrust augmentation of 3-10% was measured an...

  14. Forced pitch motion of wind turbines

    Science.gov (United States)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  15. Forced pitch motion of wind turbines

    International Nuclear Information System (INIS)

    Leble, V; Barakos, G

    2016-01-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance. (paper)

  16. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...

  17. Augmented postcard

    OpenAIRE

    Bernik , Aleš

    2012-01-01

    The aim of this thesis is the examination of augmented reality technology, which allows us mixing real and virtual elements. Augmented reality is a relatively new technology which is becoming more widespread, thanks to a fairly reasonable price of smart phones. Here we presents the types of augmented reality, the necessary technology and their advantages and disadvantages, its current use in applications, and software for building augmented reality applications. The thesis is mainly focuse...

  18. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    DEFF Research Database (Denmark)

    Baldacchino, D.; Manolesos, M.; Ferreira, Célia Maria Dias

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30...

  19. Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.

    2015-01-01

    This article presents a comparison of CFD simulations of the DTU 10 MW reference wind turbine with and without vortex generators installed on the inboard part of the blades. The vortex generators are modelled by introducing body forces determined using a modified version of the so-called BAY mode...

  20. Gas turbine

    International Nuclear Information System (INIS)

    Yang, Ok Ryong

    2004-01-01

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  1. Vortex profiles and vortex interactions at the electroweak crossover

    OpenAIRE

    Chernodub, M. N.; Ilgenfritz, E. -M.; Schiller, A.

    1999-01-01

    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.

  2. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  3. Rotational Augmentation Disparities in the MEXICO and UAE Phase VI Experiments

    NARCIS (Netherlands)

    Schreck, S.; Sant, T.; Micallef, D.

    2010-01-01

    Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting

  4. AUGMENTED REALITY

    DEFF Research Database (Denmark)

    Skov, Kirsten; Bahn, Anne Louise

    2017-01-01

    Projektets grundlæggende idé er udvikling af visuel, æstetisk læring med Augmented Reality, hvor intentionen er at bidrage med konkrete undersøgelser og udforskning af begrebet Augmented Reality – herunder koblingen mellem det analoge og digitale i forhold til læring, multimodalitet og it...

  5. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  6. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  7. Breast Augmentation

    African Journals Online (AJOL)

    1974-04-13

    Apr 13, 1974 ... Complications encountered after breast augmentation are dealt with in .... in Phisohex or other suitable preparation for a few days before surgery ... In all cases, the prosthesis causes a fibrous tissue capsule to form around it.

  8. Chin augmentation

    Science.gov (United States)

    ... or bigger compared to the nose. The best candidates for chin augmentation are people with weak or ... www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. ...

  9. Change of performance of a horizontal wind turbine with V type tip vane%风力机加V型小翼后的性能变化

    Institute of Scientific and Technical Information of China (English)

    贾瑞博; 汪建文

    2011-01-01

    试验和数值模拟证明,在风力机叶片的叶尖添加小翼,可以提高风能转化效率.为了清楚地了解小翼对风力机动力放大的影响,文章基于叶轮周围流场的数值模拟结果,分析了加V型小翼和不加小翼的风力机流场-速度场和压力场特性.可以看出,小翼对风力机叶片叶端的影响较大,风力机叶尖的漩涡强度降低,能量转换效率提高.%It was proved that a tip vane could improve thewind turbine's efficiency by the test and the numerical simulation. In order to distinctly understand the power augmentation effect of the wind turbine by the tip vane, this paper analyzed the flow field of the wind turbine with the V type tip vane and without a tip vane, as well as the characteristics of the velocity field and the pressure field, which based on the numerical simulation result of the flow field of the wind turbine. The tip vane has more influence to the blade tip of the wind turbine. The vortex intensity around the blade tip was reduced and the energy transformation efficiency was improved.

  10. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone

    International Nuclear Information System (INIS)

    Baya, A; Muntean, S; Campian, V C; Cuzmos, A; Diaconescu, M; Balan, G

    2010-01-01

    Operating Francis turbines at partial discharge is often hindered by the development of the helical vortex (so-called vortex rope) downstream the runner, in the draft tube cone. The unsteady pressure field induced by precessing vortex rope leads to pressure fluctuations. The paper presents the experimental investigations of the unsteady pressure field generated by precessing vortex rope and its associated pressure fluctuations into a draft tube of the Francis turbine operating at partial discharge. In situ measurements are performed in order to evaluate the pressure fluctuations and vortex rope frequency at partial load operation. Three pressure taps are installed on the cone wall of the draft tube in order to record the unsteady pressure. As a result, the Fourier spectra are obtained in order to evaluate the amplitude of pressure fluctuations and vortex rope frequency. Moreover, the wall pressure recovery along to the draft tube cone is acquired. Finally, conclusions are drawn in order to present the vortex rope effects.

  11. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone

    Energy Technology Data Exchange (ETDEWEB)

    Baya, A [Department of Hydraulic Machinery, ' Politehnica' University of Timisoara Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Campian, V C; Cuzmos, A [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta. Traian Vuia 1-4, RO-320085, Resita (Romania); Diaconescu, M; Balan, G, E-mail: abaya@mh.mec.upt.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A. Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    Operating Francis turbines at partial discharge is often hindered by the development of the helical vortex (so-called vortex rope) downstream the runner, in the draft tube cone. The unsteady pressure field induced by precessing vortex rope leads to pressure fluctuations. The paper presents the experimental investigations of the unsteady pressure field generated by precessing vortex rope and its associated pressure fluctuations into a draft tube of the Francis turbine operating at partial discharge. In situ measurements are performed in order to evaluate the pressure fluctuations and vortex rope frequency at partial load operation. Three pressure taps are installed on the cone wall of the draft tube in order to record the unsteady pressure. As a result, the Fourier spectra are obtained in order to evaluate the amplitude of pressure fluctuations and vortex rope frequency. Moreover, the wall pressure recovery along to the draft tube cone is acquired. Finally, conclusions are drawn in order to present the vortex rope effects.

  12. Experimental investigation of pressure fluctuations caused by a vortex rope in a draft tube

    International Nuclear Information System (INIS)

    Kirschner, O; Ruprecht, A; Göde, E; Riedelbauch, S

    2012-01-01

    In the last years hydro power plants have taken the task of power-frequency control for the electrical grid. Therefore turbines in storage hydro power plants often operate outside their optimum. If Francis-turbines and pump-turbines operate at off-design conditions, a vortex rope in the draft tube can develop. The vortex rope can cause pressure oscillations. In addition to low frequencies caused by the rotation of the vortex rope and the harmonics of these frequencies, pressure fluctuations with higher frequencies can be observed in some operating points too. In this experimental investigation the flow structure and behavior of the vortex rope movement in the draft tube of a model pump-turbine are analyzed. The investigation focuses on the correlation of the pressure fluctuation frequency measured at the draft tube wall with the movement of the vortex rope. The movement of the vortex rope is analyzed by the velocity field in the draft tube which was measured with particle image velocimetry. Additionally, the vortex rope movement has been analyzed with the captures of high-speed-movies from the cavitating vortex rope. Besides the rotation of the vortex rope due to pressure fluctuation with low frequencies the results of the measurement also show a correlation between the rotation of the elliptical or deformed rope cross-section and the higher frequency pressure pulsation. An approximation shows that the frequencies of the pressure fluctuation and the movement of the vortex rope are also connected with the velocity of the flow. Taking into account the size and position of the cavitating vortex core as well as the velocity at the position of the surface of the cavitating vortex core the time-period of the rotation of the vortex core can be approximated. The results show that both, the low frequency pressure fluctuation and the higher frequency pressure fluctuation are correlating with the vortex rope movement. With this estimation, the period of the higher frequency

  13. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws...

  14. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  15. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  16. An Organic Vortex Laser.

    Science.gov (United States)

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  17. Gas dynamic analysis of the performance of diffuser augmented ...

    Indian Academy of Sciences (India)

    A diffuser augmented wind turbine (DAWT) is considered an ... Maximum power rating ± for a given blade technology ± can be extended substantially by ... twist angles in addition to design parameters such as tip speed ratio with minimum ...

  18. Numerical and Experimental Study on a Model Draft Tube with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Tian Xiaoqing

    2013-01-01

    Full Text Available A model water turbine draft tube containing vortex generators (VG was studied. Numerical simulations were performed to investigate 55 design variations of the vortex generators in a draft tube. After analyzing the shapes of streamlines and velocity distributions in the tube and comparing static pressure recovery coefficients (SPRC in different design variations, an optimum vortex generator layout, which can raise SPRC of the draft tube by 4.8 percent, was found. To verify the effectiveness of the vortex generator application, a series of experiments were carried out. The results show that by choosing optimal vortex generator parameters, such as the installation type, installation position, blade-to-blade distance, and blade inclination angle, the draft tube equipped vortex generators can effectively raise their SPRC andworking stability.

  19. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  20. Augmented reality

    Directory of Open Access Journals (Sweden)

    Patrik Pucer

    2011-08-01

    Full Text Available Today we can obtain in a simple and rapid way most of the information that we need. Devices, such as personal computers and mobile phones, enable access to information in different formats (written, pictorial, audio or video whenever and wherever. Daily we use and encounter information that can be seen as virtual objects or objects that are part of the virtual world of computers. Everyone, at least once, wanted to bring these virtual objects from the virtual world of computers into real environments and thus mix virtual and real worlds. In such a mixed reality, real and virtual objects coexist in the same environment. The reality, where users watch and use the real environment upgraded with virtual objects is called augmented reality. In this article we describe the main properties of augmented reality. In addition to the basic properties that define a reality as augmented reality, we present the various building elements (possible hardware and software that provide an insight into such a reality and practical applications of augmented reality. The applications are divided into three groups depending on the information and functions that augmented reality offers, such as help, guide and simulator.

  1. Augmented Reality

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Kjeldsen, Lars Peter Bech; Rahn, Annette

    2015-01-01

    This chapter describes the use of iPad-facilitated application of augmented reality in the teaching of highly complex anatomical and physiological subjects in the training of nurses at undergraduate level. The general aim of the project is to investigate the potentials of this application in terms...... of making the complex content and context of these subjects more approachable to the students through the visualization made possible through the use of this technology. A case study is described in this chapter. Issues and factors required for the sustainable use of the mobile-facilitated application...... of augmented reality are discussed....

  2. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...

  3. Augmented Reality

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Radmer, Ole

    2017-01-01

    Artiklen præsenterer resultater fra pilotafprøvning i 7.-klasses fysik/kemi og biologi af to Augmented Reality (AR)-apps til naturfagsundervisning. Muligheder og udfordringer ved lærerens stilladsering af elevernes undersøgende samtale og modelleringskompetence er undersøgt med interview...

  4. The singing vortex

    Science.gov (United States)

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  5. Interactive flow field around two Savonius turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)

    2011-02-15

    The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)

  6. Aeroelastic analysis of large horizontal wind turbine baldes?

    Institute of Scientific and Technical Information of China (English)

    Di TANG; Zhiliang LU; Tongqing GUO

    2016-01-01

    A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear ?nite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aero-dynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities signi?cantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.

  7. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  8. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  9. Controlling vortex motion and vortex kinetic friction

    International Nuclear Information System (INIS)

    Nori, Franco; Savel'ev, Sergey

    2006-01-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves

  10. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  11. Augmented reality

    OpenAIRE

    Jecha, Jakub

    2011-01-01

    This thesis is focused on a technology called Augmented reality, especially on its use in marketing. The main objective of the thesis is to define why this technology is a suitable tool for marketing and to assess its use in real conditions. This is achieved by defining specific devices and use cases of this technology in practice, whereas evaluation of its use in real enviroment is based on statistics. The contribution of the thesis is objective evaluation of this technology and provision of...

  12. Vortex mass in a superfluid

    Science.gov (United States)

    Simula, Tapio

    2018-02-01

    We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.

  13. A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources

    Science.gov (United States)

    Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan

    2017-07-01

    Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.

  14. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  15. Bluff body flow and vortex—its application to wind turbines

    International Nuclear Information System (INIS)

    Ohya, Yuji

    2014-01-01

    Some interesting phenomena of vortex flows we have found in past experimental research are described. For a given flow configuration, multiple flow patterns can exist and a sudden change from one flow pattern to another can occur. We observed the alternate switching of the flow patterns with irregular periods around a bluff body. The change of vortex flow pattern around a bluff body with geometrical parameters or stratification is not always continuous but often shows a sudden change in the whole flow pattern. Based on our research on vortex flows, an innovative application of the vortex flow to a shrouded wind turbine is made in which the power output of a wind turbine is remarkably enhanced. Unlike the majority of conventional aerodynamic machinery, which tends to minimize vortex shedding, the vortex formation of our ‘brimmed’ shroud plays an important role in capturing and concentrating wind energy. Furthermore, aerodynamic noise is reduced in this design. The blade tip vortex is weakened by a counter-rotating vortex generated along the inner side of the shroud as they travel downstream, making the shrouded wind turbine much quieter than conventional turbines. (paper)

  16. Bluff body flow and vortex—its application to wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ohya, Yuji, E-mail: ohya@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, Kasuga (Japan)

    2014-12-01

    Some interesting phenomena of vortex flows we have found in past experimental research are described. For a given flow configuration, multiple flow patterns can exist and a sudden change from one flow pattern to another can occur. We observed the alternate switching of the flow patterns with irregular periods around a bluff body. The change of vortex flow pattern around a bluff body with geometrical parameters or stratification is not always continuous but often shows a sudden change in the whole flow pattern. Based on our research on vortex flows, an innovative application of the vortex flow to a shrouded wind turbine is made in which the power output of a wind turbine is remarkably enhanced. Unlike the majority of conventional aerodynamic machinery, which tends to minimize vortex shedding, the vortex formation of our ‘brimmed’ shroud plays an important role in capturing and concentrating wind energy. Furthermore, aerodynamic noise is reduced in this design. The blade tip vortex is weakened by a counter-rotating vortex generated along the inner side of the shroud as they travel downstream, making the shrouded wind turbine much quieter than conventional turbines. (paper)

  17. Vortex Shedding from Tapered Cylinders at high Reynolds Numbers

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Christensen, Silas Sverre

    2015-01-01

    percent for strakes of circular cross section. The present paper argues that this height can be reduced for structures where the critical wind velocity for vortex shedding is in the Supercritical Reynolds number regime. The present investigations are aimed for suppressing VIV on offshore wind turbine......^5 (Supercritical). Results indicate that circular strakes with a diameter corresponding to 3 percent of the structures mean diameter can be used to efficiently reduce VIV in the Supercritical Reynolds number regime....

  18. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  19. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  20. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  1. Mobile Collaborative Augmented Reality: The Augmented Stroll

    OpenAIRE

    Renevier , Philippe; Nigay , Laurence

    2001-01-01

    International audience; The paper focuses on Augmented Reality systems in which interaction with the real world is augmented by the computer, the task being performed in the real world. We first define what mobile AR systems, collaborative AR systems and finally mobile and collaborative AR systems are. We then present the augmented stroll and its software design as one example of a mobile and collaborative AR system. The augmented stroll is applied to Archaeology in the MAGIC (Mobile Augmente...

  2. Electric vortex in MHD flow

    International Nuclear Information System (INIS)

    Garcia, M.

    1995-01-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low β flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion

  3. Intracavity vortex beam generation

    Science.gov (United States)

    Naidoo, Darryl; Aït-Ameur, Kamel; Forbes, Andrew

    2011-10-01

    In this paper we explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring this OAM to matter and to be used in quantum information processing. We explore an extra-cavity and intra-cavity approach in LG0l mode generation respectively. The outputs of a Porro-prism resonator are represented by "petals" and we show that through a full modal decomposition, the "petal" fields are a superposition of two LG0l modes.

  4. Effect of cavitation on flow structure of a tip vortex

    Science.gov (United States)

    Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed

    2013-11-01

    Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.

  5. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  6. Magnetic vortex racetrack memory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Liwei D.; Jin, Yongmei M., E-mail: ymjin@mtu.edu

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  7. Towing Tank Measurements of Hydrodynamic Performance of a Horizontal Axis Tidal Turbine Under Unsteady Flow Conditions

    Science.gov (United States)

    2013-05-10

    John Zseleczky, Mr. Daniel Rhodes, Mr. Bill Beaver and all staff of US Naval Academy Hydromechanics Laboratory for their contributions in designing...turbine centerline. Tip vortex influence was most prevalent at X/D = 0.19, the closest measured plane to the turbine plane pictured in Figure 31

  8. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  9. Experimental parameter study for passive vortex generators on a 30% thick airfoil

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; De Tavernier, D.A.M.; Timmer, W.A.; van Bussel, G.J.W.

    2018-01-01

    Passive vane-type vortex generators (VGs) are commonly used on wind turbine blades to mitigate the effects of flow separation. However, significant uncertainty surrounds VG design guidelines. Understanding the influence of VG parameters on airfoil performance requires a systematic approach

  10. Computing the flow past Vortex Generators : Comparison between RANS Simulations and Experiments

    NARCIS (Netherlands)

    Manolesos, M.; Sorensen, NN; Troldborg, N.; Florentie, L.; Papadakis, G; Voutsinas, S.

    2016-01-01

    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental

  11. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    Science.gov (United States)

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  12. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  13. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  14. Soliton on thin vortex filament

    International Nuclear Information System (INIS)

    Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.

    1990-12-01

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  15. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  16. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    International Nuclear Information System (INIS)

    Baldacchino, D; Ferreira, C; Florentie, L; Timmer, N; Van Zuijlen, A; Manolesos, M; Chaviaropoulos, T; Diakakis, K; Papadakis, G; Voutsinas, S; González Salcedo, Á; Aparicio, M; García, N R.; Sørensen, N N.; Troldborg, N

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30% thick DU97W300 and an 18% thick NTUA T18 have been used for benchmarking several simulation tools. These tools span low-to-high complexity, ranging from engineering-level integral boundary layer tools to fully-resolved computational fluid dynamics codes. Results indicate that with appropriate calibration, engineering-type tools can capture the effects of vortex generators and outperform more complex tools. Fully resolved CFD comes at a much higher computational cost and does not necessarily capture the increased lift due to the VGs. However, in lieu of the limited experimental data available for calibration, high fidelity tools are still required for assessing the effect of vortex generators on airfoil performance. (paper)

  17. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  18. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  19. Wake meandering of a model wind turbine operating in two different regimes

    Science.gov (United States)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model

  20. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  1. The Acoustically Driven Vortex Cannon

    Science.gov (United States)

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  2. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  3. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  4. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  5. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1997-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  6. Wake Survey of a Marine Current Turbine Under Steady Conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  7. Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades

    International Nuclear Information System (INIS)

    Wang, Ying; Sun, Xiaojing; Dong, Xiaohua; Zhu, Bing; Huang, Diangui; Zheng, Zhongquan

    2016-01-01

    Highlights: • A novel vertical axis wind turbine with deformed blades is designed. • The universal tendency of power characteristics for simulated turbine is found. • The whole flow field of different turbines from the aspect of vortex is analyzed. • The tracking analysis of vortex at different positions for a blade is conducted. • The aerodynamic performance of turbine with three deformed blades is analyzed. - Abstract: In this paper, a novel Darrieus vertical axis wind turbine was designed whose blade can be deformed automatically into a desired geometry and thus achieve a better aerodynamic performance. A series of numerical simulations were conducted by utilizing the United Computational Fluid Dynamics code. Firstly, analysis and comparison of the performance of undeformed and deformed blades for the rotors having different blades were conducted. Then, the power characteristics of each simulated turbine were summarized and a universal tendency was found. Secondly, investigation on the effect of blade number and solidity on the power performance of Darrieus vertical axis wind turbine with deformable and undeformable blades was carried out. The results indicated that compared to conventional turbines with same solidity, the maximum percentage increase in power coefficient that the low solidity turbine with three deformable blades can achieve is about 14.56%. When solidity is high and also turbine operates at low tip speed ratio of less than the optimum value, the maximum power coefficient increase for the turbines with two and four deformable blades are 7.51% and 8.07%, respectively. However, beyond the optimal tip speed ratio, the power improvement of the turbine using the deformable blades seems not significant and even slightly worse than the conventional turbines. The last section studied the transient behavior of vortex and turbulent flow structures around the deformable rotor blade to explore the physical mechanism of improving aerodynamic

  8. Decreasing vortex flux in channels

    International Nuclear Information System (INIS)

    Migaj, V.K.; Nosova, I.S.

    1979-01-01

    A new method for reducing vortex flow losses in power plant channels is suggested. The method is based on vortex splitting in vortex flow areas with transverse barriers placed on the channel walls. The upper barrier ends are at the level of the upper boundary of the vortex area and don't protrude to the active flow beyond this boundary. The effectiveness of the method suggested is illustrated taking as an example the investigation of square and flat channels with abrupt widening in one plane, diffusers with widening in one plane, or a rectangualr bend. It is shown that splitting the vortex areas with transverse barriers in the channels results in reduction of hydraulic losses by 10-25%. The above method is characteristic of an extreme simplicity, its application doesn't require changes in the channel shape nor installation of any devices in the flow

  9. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  10. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  11. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  12. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  13. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    Science.gov (United States)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  14. Prediction of the Effect of Vortex Generators on Airfoil Performance

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Bak, Christian

    2014-01-01

    Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two...... different airfoils at a Reynolds number of 3 million, the FFA- W3-301 and FFA-W3-360, respectively. The computations are compared with wind tunnel measurements from the Stuttgart Laminar Wind Tunnel with respect to lift and drag variation as function of angle of attack. Even though the method does...

  15. A Coaxial Vortex Ring Model for Vortex Breakdown

    OpenAIRE

    Blackmore, Denis; Brons, Morten; Goullet, Arnaud

    2008-01-01

    A simple - yet plausible - model for B-type vortex breakdown flows is postulated; one that is based on the immersion of a pair of slender coaxial vortex rings in a swirling flow of an ideal fluid rotating around the axis of symmetry of the rings. It is shown that this model exhibits in the advection of passive fluid particles (kinematics) just about all of the characteristics that have been observed in what is now a substantial body of published research on the phenomenon of vortex breakdown....

  16. Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates

    OpenAIRE

    Schulte, T.; Santos, L.; Sanpera, A.; Lewenstein, M.

    2002-01-01

    We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.

  17. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    Science.gov (United States)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  18. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  19. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  20. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor

    2008-01-01

    a wind turbine blade. The low Reynolds number is chosen on the basis that this is a fundamental investigation of the structures of the flow induced by vortex generators and the fact that one obtains a thicker boundary layer and larger structures evoked by the actuating devices, which are easier...... generators are applied. The idea behind the experiments is that the results will be offered for validation of modeling of the effect of vortex generators using various numerical codes. Initial large eddy simulation (LES) computations have been performed that show the same qualitative behaviour...

  1. Review of Vortex Methods for Simulation of Vortex Breakdown

    National Research Council Canada - National Science Library

    Levinski, Oleg

    2001-01-01

    The aim of this work is to identify current developments in the field of vortex breakdown modelling in order to initiate the development of a numerical model for the simulation of F/A-18 empennage buffet...

  2. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    E ZELDOV2, A SOIBEL3, F de la CRUZ4,CJ van der BEEK5,. M KONCZYKOWSKI5, T ... 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot. 76100, Israel ..... heterogeneous nature of the vortex nanoliquid.

  3. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  4. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvi......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  5. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  6. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    International Nuclear Information System (INIS)

    Galvis, J.A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-01-01

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  7. Vortex loops and Majoranas

    International Nuclear Information System (INIS)

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-01-01

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry

  8. Vortex gas lens

    Science.gov (United States)

    Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

    1989-01-01

    A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

  9. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  10. A parabolic velocity-decomposition method for wind turbines

    Science.gov (United States)

    Mittal, Anshul; Briley, W. Roger; Sreenivas, Kidambi; Taylor, Lafayette K.

    2017-02-01

    An economical parabolized Navier-Stokes approximation for steady incompressible flow is combined with a compatible wind turbine model to simulate wind turbine flows, both upstream of the turbine and in downstream wake regions. The inviscid parabolizing approximation is based on a Helmholtz decomposition of the secondary velocity vector and physical order-of-magnitude estimates, rather than an axial pressure gradient approximation. The wind turbine is modeled by distributed source-term forces incorporating time-averaged aerodynamic forces generated by a blade-element momentum turbine model. A solution algorithm is given whose dependent variables are streamwise velocity, streamwise vorticity, and pressure, with secondary velocity determined by two-dimensional scalar and vector potentials. In addition to laminar and turbulent boundary-layer test cases, solutions for a streamwise vortex-convection test problem are assessed by mesh refinement and comparison with Navier-Stokes solutions using the same grid. Computed results for a single turbine and a three-turbine array are presented using the NREL offshore 5-MW baseline wind turbine. These are also compared with an unsteady Reynolds-averaged Navier-Stokes solution computed with full rotor resolution. On balance, the agreement in turbine wake predictions for these test cases is very encouraging given the substantial differences in physical modeling fidelity and computer resources required.

  11. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  12. Numerical study of similarity in prototype and model pumped turbines

    International Nuclear Information System (INIS)

    Li, Z J; Wang, Z W; Bi, H L

    2014-01-01

    Similarity study of prototype and model pumped turbines are performed by numerical simulation and the partial discharge case is analysed in detail. It is found out that in the RSI (rotor-stator interaction) region where the flow is convectively accelerated with minor flow separation, a high level of similarity in flow patterns and pressure fluctuation appear with relative pressure fluctuation amplitude of model turbine slightly higher than that of prototype turbine. As for the condition in the runner where the flow is convectively accelerated with severe separation, similarity fades substantially due to different topology of flow separation and vortex formation brought by distinctive Reynolds numbers of the two turbines. In the draft tube where the flow is diffusively decelerated, similarity becomes debilitated owing to different vortex rope formation impacted by Reynolds number. It is noted that the pressure fluctuation amplitude and characteristic frequency of model turbine are larger than those of prototype turbine. The differences in pressure fluctuation characteristics are discussed theoretically through dimensionless Navier-Stokes equation. The above conclusions are all made based on simulation without regard to the penstock response and resonance

  13. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  14. Vortex-induced vibrations on a modern wind turbine blade

    DEFF Research Database (Denmark)

    Heinz, Joachim Christian; Sørensen, Niels N.; Zahle, Frederik

    2016-01-01

    This article investigates the aero-elastic response of the DTU 10-MW RWT blade in deep stall conditions with angles of attack in the vicinity of 90 degrees. The simulations were conducted with the high-fidelity fluid–structure interaction simulation tool HAWC2CFD employing the multi......-body-based structural model of HAWC2 and the incompressible computational fluid dynamics solver EllipSys3D. The study utilizes detached eddy simulation computations and considers the three-dimensional blade geometry including blade twist and taper. A preliminary frequency analysis of the load variations on a stiff....... Aero-elastic computations of the elastic blade confirmed the findings of the frequency analysis. Inflow conditions with inclination angles between Ψ = 20° and Ψ = 55° and relatively low to moderate wind speeds between V = 16 and V = 26 m s-1 were sufficient to trigger severe edgewise blade vibrations...

  15. PIV Measurements of Flows around the Wind Turbines with a Flanged-Diffuser Shroud

    Institute of Scientific and Technical Information of China (English)

    Kazuhiko Toshimitsu; Koutarou Nishikawa; Wataru Haruki; Shinichi Oono; Manabu Takao; Yuji Ohya

    2008-01-01

    The wind turbines with a flanged-diffuser shroud -so called "wind lens turbine"- are developed as one of high performance wind turbines by Ohya et al. In order to investigate the flow characteristics and flow acceleration, the paper presents the flow velocity measurements of a long-type and a compact-type wind turbines with a flanged-diffuser shroud by particle image velocimetry. In the case of the long type wind turbine, the velocity vec-tors of the inner flow field of the diffuser for turbine blades rotating and no blades rotating are presented at Rey-nolds number, 0.9x105. Furthermore the flow fields between with and without rotating are compared. Through the PIV measurement results, one can realize that the turbine blades rotating affects as suppress the disturbance and the flow separation near the inner wall of the diffuser. The time average velocity vectors are made on the av-erage of the instantaneous velocity data. There are two large vortices in downstream region of the diffuser. One vortex behind the flange acts as suck in wind to the diffuser and raise the inlet flow velocity. Another large vortex appears in downstream. It might be act as blockage vortex of main flow. The large blockage vortex is not clear in the instantaneous velocity vectors, however it exists clearly in the time average flow field. The flow field around the wind turbine with a compact-type flanged-diffuser shroud is also investigated. The flow pattern behind the flange of the compact-type turbine is the same as the long-type one. It means that the effect of flow acceleration is caused by the unsteady vortices behind the flange. The comparison with CFD and PIV results of meridional time-average streamlines after the compact-type diffuser is also presented.

  16. Imaging of artificially induced vortex structures

    International Nuclear Information System (INIS)

    Fasano, Yanina; Menghini, M.; Cruz, F. de la

    2004-01-01

    The combination of engineered pinning potentials in superconducting crystals, the detection of the liquid-solid vortex transition and the observation of the vortex structure with single vortex sensitivity allow the microscopic analysis of the response of 3D elastic systems to the presence of these potentials. In this work we review recent results obtained by a combination of those techniques studying different vortex structure induced transformations. On the one hand, we have visualized the transformation, along the vortex direction, of a bulk vortex single crystal with hexagonal symmetry into another crystal with square symmetry induced by an engineered Fe-dot lattice deposited on a surface of the vortex single crystal. On the other hand, we found an infrequent first-order phase transition where a vortex liquid under the presence of a random correlated potential (columnar defects) transforms into a vortex solid with no change of topological order

  17. Optical vortex scanning inside the Gaussian beam

    International Nuclear Information System (INIS)

    Masajada, J; Leniec, M; Augustyniak, I

    2011-01-01

    We discussed a new scanning method for optical vortex-based scanning microscopy. The optical vortex is introduced into the incident Gaussian beam by a vortex lens. Then the beam with the optical vortex is focused by an objective and illuminates the sample. By changing the position of the vortex lens we can shift the optical vortex position at the sample plane. By adjusting system parameters we can get 30 times smaller shift at the sample plane compared to the vortex lens shift. Moreover, if the range of vortex shifts is smaller than 3% of the beam radius in the sample plane the amplitude and phase distribution around the phase dislocation remains practically unchanged. Thus we can scan the sample topography precisely with an optical vortex

  18. Plasmonic vortex generator without polarization dependence

    Science.gov (United States)

    Wang, Han; Liu, Lixia; Liu, Chunxiang; Li, Xing; Wang, Shuyun; Xu, Qing; Teng, Shuyun

    2018-03-01

    In view of the limitations of vortex generators with polarization dependence at present, we propose a plasmonic vortex generator composed of rectangular holes etched in silver film, in which the optical vortex can be generated under arbitrary linearly polarized light illumination. Two sets of rectangular holes are arranged equidistantly on a circle and rotate in postulate directions. Theoretical analysis provides the design principle for the vortex generator, and numerical simulations give guidance on designating the vortex generator parameters. Experimental measurements verify the performance of the proposed vortex generator. Moreover, two alternative structures for the generation of a plasmonic vortex are also provided in this paper. The resulting perfect vortex, compact structure and flexible illumination conditions will lead to wide applications of this plasmonic vortex generator.

  19. Numerical analysis on pump turbine runaway points

    International Nuclear Information System (INIS)

    Guo, L; Liu, J T; Wang, L Q; Jiao, L; Li, Z F

    2012-01-01

    To research the character of pump turbine runaway points with different guide vane opening, a hydraulic model was established based on a pumped storage power station. The RNG k-ε model and SMPLEC algorithms was used to simulate the internal flow fields. The result of the simulation was compared with the test data and good correspondence was got between experimental data and CFD result. Based on this model, internal flow analysis was carried out. The result show that when the pump turbine ran at the runway speed, lots of vortexes appeared in the flow passage of the runner. These vortexes could always be observed even if the guide vane opening changes. That is an important way of energy loss in the runaway condition. Pressure on two sides of the runner blades were almost the same. So the runner power is very low. High speed induced large centrifugal force and the small guide vane opening gave the water velocity a large tangential component, then an obvious water ring could be observed between the runner blades and guide vanes in small guide vane opening condition. That ring disappeared when the opening bigger than 20°. These conclusions can provide a theory basis for the analysis and simulation of the pump turbine runaway points.

  20. Wind energy conversion. Volume II. Aerodynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Dugundji, J.; Martinez-Sanchez, M.; Gohard, J.; Chung, S.; Humes, T.

    1978-09-01

    The basic aerodynamic theory of the wind turbine is presented, starting with the simple momentum theory based on uniform inflow and an infinite number of blades. The basic vortex theory is then developed. Following these basics, the more complete momentum theory, including swirl, non-uniform inflow, the effect of a finite number of blades, and empirical correction for the vortex ring condition is presented. The more complete vortex theory is presented which includes unsteady aerodynamic effects but based on a semi-rigid wake. Methods of applying this theory for performance estimation are discussed as well as for the purpose of computing time varying airloads due to windshear and tower interference.

  1. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...... particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator....

  2. Contingency power for small turboshaft engines using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  3. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  4. A novel scenario of aperiodical impacts appearance in the turbine draft tube

    Science.gov (United States)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Sonin, V. I.; Tsoy, M. A.; Ustimenko, A. S.

    2016-11-01

    The swirling flow in the discharge cone of hydroturbine is characterized by various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency point. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope can serve a reason of the periodical low- frequency pressure oscillations in the whole hydrodynamical system. During the experimental research of flow structure in the discharge cone in a regime of free runner new interesting phenomenon was discovered. Due to instability some coils of helical vortex close to each other and reconnection appears with generation of a vortex ring. The experiments were fulfilled at the cavitational conditions when a cavity arises in the vortex core. So the phenomenon was registered with help of visualization by the high speed video recording. The vortex ring after the reconnection moves apart from the main vortex rope toward the wall and downstream. When it reaches the area with high pressure the cavity collapses with generation of pressure impact. The mechanism of cavitational vortex rings generation and their further collapse can serve as a prototype of the aperiodical pressure impacts inside the turbine draft tube.

  5. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  6. Secondary Breast Augmentation.

    Science.gov (United States)

    Brown, Mitchell H; Somogyi, Ron B; Aggarwal, Shagun

    2016-07-01

    After studying this article, the participant should be able to: 1. Assess common clinical problems in the secondary breast augmentation patient. 2. Describe a treatment plan to correct the most common complications of breast augmentation. 3. Provide surgical and nonsurgical options for managing complications of breast augmentation. 4. Decrease the incidence of future complications through accurate assessment, preoperative planning, and precise surgical technique. Breast augmentation has been increasing steadily in popularity over the past three decades. Many of these patients present with secondary problems or complications following their primary breast augmentation. Two of the most common complications are capsular contracture and implant malposition. Familiarity and comfort with the assessment and management of these complications is necessary for all plastic surgeons. An up-to-date understanding of current devices and techniques may decrease the need to manage future complications from the current cohort of breast augmentation patients.

  7. Computing the flow past Vortex Generators: Comparison between RANS Simulations and Experiments

    DEFF Research Database (Denmark)

    Manolesos, M.; Sørensen, Niels N.; Troldborg, Niels

    2016-01-01

    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental ...... data. The best results are obtained with the more expensive fully resolved VG approach. The cost efficient BAY model can also provide acceptable results, if grid related numerical diffusion is minimized and only force coefficient polars are considered....

  8. Numerical simulation of a cross flow Marine Hydrokinetic turbine.

    Science.gov (United States)

    Hall, Taylor; Aliseda, Alberto

    2011-11-01

    In the search for alternative sources of energy, the kinetic energy of water currents in oceans, rivers and estuaries is being explored as predictable and environmentally benign. We are investigating the flow past a cross flow turbine in which a helical blade under hydrodynamic forces turns around a shaft perpendicular to the free stream. This type of turbine, while very different from the classical horizontal axis turbine commonly used in the wind energy field, presents advantages for stacking in very narrow constricted channels where the water currents are consistently high and therefore turbine installation may be economically feasible. We use a model of a helical four-bladed turbine in cross flow to investigate the efficiency of the energy capture and the dynamics of the turbulent wake. Scale model experiments in a flume are used to validate the numerical results on a stationary configuration as an initial step towards creating an accurate numerical model of the turbine. The simulation of the rotating turbine provides a full perspective on the effect of angular position on flow detachment and vortex shedding from the blade, as well as on the fluctuations of the shaft torque produced (a problematic feature of this type of turbine). The results are analyzed in terms of hydrodynamic optimization of the blade and its structural loading. Supported by DOE through the Northwest National Marine Renewable Energy Center.

  9. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Sarmast, Sasan

    2014-01-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equati......A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier...... of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where...

  10. Mobile Augmented Reality Applications

    OpenAIRE

    Prochazka, David; Stencl, Michael; Popelka, Ondrej; Stastny, Jiri

    2011-01-01

    Augmented reality have undergone considerable improvement in past years. Many special techniques and hardware devices were developed, but the crucial breakthrough came with the spread of intelligent mobile phones. This enabled mass spread of augmented reality applications. However mobile devices have limited hardware capabilities, which narrows down the methods usable for scene analysis. In this article we propose an augmented reality application which is using cloud computing to enable using...

  11. Feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    Science.gov (United States)

    Vanfossen, G. J.

    1983-01-01

    A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.

  12. Green functions of vortex operators

    International Nuclear Information System (INIS)

    Polchinski, J.; California Univ., Berkeley

    1981-01-01

    We study the euclidean Green functions of the 't Hooft vortex operator, primarly for abelian gauge theories. The operator is written in terms of elementary fields, with emphasis on a form in which it appears as the exponential of a surface integral. We explore the requirement that the Green functions depend only on the boundary of this surface. The Dirac veto problem appears in a new guise. We present a two-dimensional solvable model of a Dirac string, which suggests a new solution of the veto problem. The renormalization of the Green functions of the abelian Wilson loop and abelian vortex operator is studied with the aid of the operator product expansion. In each case, an overall multiplication of the operator makes all Green functions finite; a surprising cancellation of divergences occurs with the vortex operator. We present a brief discussion of the relation between the nature of the vacuum and the cluster properties of the Green functions of the Wilson and vortex operators, for a general gauge theory. The surface-like cluster property of the vortex operator in an abelian Higgs theory is explored in more detail. (orig.)

  13. Turbine stage model

    International Nuclear Information System (INIS)

    Kazantsev, A.A.

    2009-01-01

    A model of turbine stage for calculations of NPP turbine department dynamics in real time was developed. The simulation results were compared with manufacturer calculations for NPP low-speed and fast turbines. The comparison results have shown that the model is valid for real time simulation of all modes of turbines operation. The model allows calculating turbine stage parameters with 1% accuracy. It was shown that the developed turbine stage model meets the accuracy requirements if the data of turbine blades setting angles for all turbine stages are available [ru

  14. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; Ragni, D.; van Bussel, G.J.W.

    2016-01-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the in_nite vortex cascade, a numerical model of four base-vortices is chosen to represent

  15. Numerical studies of the integration of a trapped vortex combustor into traditional combustion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Patrignani, L.; Losurdo, M.; Bruno, C. [Sapienza Univ. de Roma, Rome (Italy)

    2010-09-15

    Exhaust emissions from furnace burners can be reduced by premixing reactants with combustion products. This paper discussed the use of a trapped vortex combustor (TVC) as a very promising technology for gas turbines. The TVC can reduce emissions and ensure that the temperature is uniform in the exhaust products, which is a key aspect for certain types of heat treatments, such as in steel rolling mills. The TVC for gas turbines is configured to mix air, fuel and hot products at turbulent scales fine enough to render the combustion mode flameless, or close to flameless. The vortex ensures a high recirculation factor between hot combustion products and reactants, and ultimately flame stability. In this study, the TVC configuration for an existing gas turbine was numerically investigated by means of RANS and LES. According to preliminary results of the fast-flameless combustion (FFC) strategy, the proposed TVC is a suitable candidate to reduce nitrogen oxide (NOx) emissions while keeping the pressure drop below 1 per cent. Both RANS and LES show that too much fuel burns along the main duct. Better fuel splitting or a different position for the injectors may enhance combustion inside the recirculation zone. Behaviour of the main vortices showed that a more accurate design of the internal shape of the combustor is needed to prevent excessive velocity fluctuation or vortex instabilities and therefore emissions. 13 refs., 9 figs.

  16. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  17. Backreaction of excitations on a vortex

    OpenAIRE

    Arodz, Henryk; Hadasz, Leszek

    1996-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their backreaction on the vortex. In the present paper we investigate backreaction of Proca type excitations on a straightlinear vortex in the Abelian Higgs model. We propose exact Ansatz for fields of the excited vortex. From initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the backreaction corrections. Their approximate solutions are found ...

  18. Vortex dynamics in magnetized plasmas

    International Nuclear Information System (INIS)

    Kono, M.; Krane, B.; Pecseli, H.L.; Trulsen, J.

    1998-01-01

    Low frequency dynamics of electrostatic fluctuations in strongly magnetized plasmas have been studied. It was found that perturbations in density and potential can be very localized, indicating the applicability of an approximate description based on a finite number of vortices. A model based on a few isolated vortical structures is discussed, with particular attention to vortex collapse, where three vortices merge together within a finite time, or to the converse process, i.e. a vortex explosion. Details of these particular types of vortex dynamics depend on the actual model used for describing the electrons, the presence of a Debye shielding in particular. A ''boomerang''-type of evolution was found, where three shielded vortices expand initially, just as their unshielded counterparts, but eventually the expansion is arrested, and they start converging to collapse ultimately. The study is extended by a numerical simulation where the point model is relaxed to a continuous, but localized, vorticity distribution with finite size vortices. (orig.)

  19. Non-Abelian vortex lattices

    Science.gov (United States)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  20. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  1. Vortex breakdown incipience: Theoretical considerations

    Science.gov (United States)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  2. A note on integral vortex strength

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2010-01-01

    Roč. 58, č. 1 (2010), s. 23-28 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : circulation * unsteady Taylor vortex * vortex intensity * vortex strength * vorticity * vorticity decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  3. Confronting an Augmented Reality

    Science.gov (United States)

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  4. Augmented Reality on Android

    OpenAIRE

    Chunghan Li; Chang-Shyh Peng; Daisy F. Sang

    2013-01-01

    Augmented Reality is an application which combines a live view of real-world environment and computer-generated images. This paper studies and demonstrates an efficient Augmented Reality development in the mobile Android environment with the native Java language and Android SDK. Major components include Barcode Reader, File Loader, Marker Detector, Transform Matrix Generator, and a cloud database.

  5. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  6. Dynamic stall - The case of the vertical axis wind turbine

    Science.gov (United States)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  7. 3D numerical simulation of transient processes in hydraulic turbines

    International Nuclear Information System (INIS)

    Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I; Bannikov, D; Avdushenko, A; Skorospelov, V

    2010-01-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  8. 3D numerical simulation of transient processes in hydraulic turbines

    Science.gov (United States)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  9. Vortex configuration and vortex-vortex interaction in nano-structured superconductors

    International Nuclear Information System (INIS)

    Kato, Masaru; Niwa, Yuhei; Suematsu, Hisataka; Ishida, Takekazu

    2012-01-01

    We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.

  10. The interaction of counter-rotating strained vortex pairs with a third vortex

    International Nuclear Information System (INIS)

    Higgins, Keith; Ooi, Andrew; Chong, M S; Ruetten, Markus

    2009-01-01

    The vortex dynamics caused by the interaction of counter-rotating Burgers vortex pairs with a third Burgers vortex in a straining flow is investigated numerically. These interactions blend vortex merging and cancellation effects, and the aim is to investigate how the third vortex might influence the evolution of the vortex pair. Many different choices of initial conditions for the pair and third vortex exist, so attention is restricted to a class of initial conditions in which the vortex pair initially moves in the general direction of vortex 3, and the distance from vortex 3 to the line of free propagation of the vortex pair is the 'offset' parameter δ. A series of calculations with 0≤δ≤4 reveals three types of intermediate-time vortex dynamics that are called merging, swapping and switching. The evolution of the vortex core separation and core vorticity level diagnostics are used to determine the points of transition from merging to swapping and switching. In the longer term, vortex merging, cancellation and straining reduces the three vortices to a single vortex. Other diagnostics of interest are also monitored, including the spatial distributions of the rate of viscous dissipation and terms contributing to the vorticity transport equation. During the merging phase for the case with δ=0, double-peak and double-trough structures are observed in the dissipation-rate contours. In addition, the diffusion of vorticity dominates the vortex-stretching effect near vortex 1 during its absorbtion by vortex 3. Finally, the dynamics of the three vortices are also examined by computing a co-rotating angular velocity and stream function. A series of peaks in the co-rotating angular velocity is found to be associated with the conservation of angular momentum and interactions with a 'ghost' vortex in the co-rotating stream function.

  11. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  12. Some exact Bradlow vortex solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)

    2017-05-08

    We consider the Bradlow equation for vortices which was recently found by Manton and find a two-parameter class of analytic solutions in closed form on nontrivial geometries with non-constant curvature. The general solution to our class of metrics is given by a hypergeometric function and the area of the vortex domain by the Gaussian hypergeometric function.

  13. 150 Years of vortex dynamics

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    An IUTAM symposium with the title of this paper was held on October 12-16, 2008, in Lyngby and Copenhagen, Denmark, to mark the sesquicentennial of publication of Helmholtz's seminal paper on vortex dynamics. This volume contains the proceedings of the Symposium. The present paper provides...

  14. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne

    2003-01-01

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole...

  15. Vortex dynamics in inhomogeneous plasmas

    DEFF Research Database (Denmark)

    Naulin, V.; Juul Rasmussen, J.

    1999-01-01

    The dynamics of vortical structures in magnetized plasmas with nonuniform density is investigated numerically. In particular the dynamics of monopolar vortices is considered and the results are discussed in terms of the conservation of potential vorticity. It is found that individual vortex...

  16. Numerical and experimental investigation on the performance of three newly designed 100 kW-class tidal current turbines

    Directory of Open Access Journals (Sweden)

    Museok Song

    2012-09-01

    Full Text Available Three types of 100 kW-class tidal stream turbines are proposed and their performance is studied both numerically and experimentally. Following a wind turbine design procedure, a base blade is derived and two additional blades are newly designed focusing more on efficiency and cavitation. For the three designed turbines, a CFD is performed by using FLUENT. The calculations predict that the newly designed turbines perform better than the base turbine and the tip vortex can be reduced with additional efficiency increase by adopting a tip rake. The performance of the turbines is tested in a towing tank with 700 mm models. The scale problem is carefully investigated and the measurements are compared with the CFD results. All the prediction from the CFD is supported by the model experiment with some quantitative discrepancy. The maximum efficiencies are 0.49 (CFD and 0.45 (experiment at TSR 5.17 for the turbine with a tip rake.

  17. Turbine system and adapter

    Science.gov (United States)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  18. Failure analysis of a Francis turbine runner

    Energy Technology Data Exchange (ETDEWEB)

    Frunzaverde, D; Campian, V [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta Traian Vuia 1-4, RO-320085, Resita (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Marginean, G [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 10, 45877 Gelsenkirchen (Germany); Marsavina, L [Department of Strength, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Terzi, R; Serban, V, E-mail: gabriela.marginean@fh-gelsenkirchen.d, E-mail: d.frunzaverde@uem.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A., Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  19. Failure analysis of a Francis turbine runner

    International Nuclear Information System (INIS)

    Frunzaverde, D; Campian, V; Muntean, S; Marginean, G; Marsavina, L; Terzi, R; Serban, V

    2010-01-01

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  20. Experiments concerning the theories of vortex breakdown

    Science.gov (United States)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the stagnation and wave guide theories of vortex breakdown. Three different wings were used to produce a trailing vortex which convected downstream without undergoing breakdown. Disturbances were then introduced onto the vortex using a moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. A downstream traveling wave was observed to produce a structure similar in appearance to a vortex breakdown. An upstream traveling wave produced a moving turbulent region. The upstream disturbance moved into an axial velocity profile that had a wake-like defect while the downstream moving vortex breakdown moved against a jet-like overshoot. The longitudinal and swirl velocity profiles were documented by LDV measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  1. A vortex dynamics perspective on stratospheric sudden warmings

    OpenAIRE

    Matthewman, N. J.

    2009-01-01

    A vortex dynamics approach is used to study the underlying mechanisms leading to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observational data are used in chapter 2 to construct climatologies of the Arctic polar vortex structure during vortex-splitting and vortex-displacement SSWs occurring between 1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to be typically independent of height (barotropic), whereas breakdown during vor...

  2. HIGH EFFICIENCY TURBINE

    OpenAIRE

    VARMA, VIJAYA KRUSHNA

    2012-01-01

    Varma designed ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc, Salient features of Varma Turbines. 1. Varma turbines are simple in design, easy to manufac...

  3. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  4. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1999-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  5. Augmented reality: a review.

    Science.gov (United States)

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  6. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    International Nuclear Information System (INIS)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan

    2012-01-01

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number

  7. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan [Pusan National Univ., Busan (Korea, Republic of)

    2012-09-15

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number.

  8. Cascade Analysis of a Floating Wind Turbine Rotor

    International Nuclear Information System (INIS)

    Eliassen, Lene; Jakobsen, Jasna B; Knauer, Andreas; Nielsen, Finn Gunnar

    2014-01-01

    Mounting a wind turbine on a floating foundation introduces more complexity to the aerodynamic loading. The floater motion contains a wide range of frequencies. To study some of the basic dynamic load effect on the blades due to these motions, a two-dimensional cascade approach, combined with a potential vortex method, is used. This is an alternative method to study the aeroelastic behavior of wind turbines that is different from the traditional blade element momentum method. The analysis tool demands little computational power relative to a full three dimensional vortex method, and can handle unsteady flows. When using the cascade plane, a ''cut'' is made at a section of the wind turbine blade. The flow is viewed parallel to the blade axis at this cut. The cascade model is commonly used for analysis of turbo machineries. Due to the simplicity of the code it requires little computational resources, however it has limitations in its validity. It can only handle two-dimensional potential flow, i.e. including neither three-dimensional effects, such as the tip loss effect, nor boundary layers and stall effects are modeled. The computational tool can however be valuable in the overall analysis of floating wind turbines, and evaluation of the rotor control system. A check of the validity of the vortex panel code using an airfoil profile is performed, comparing the variation of the lift force, to the theoretically derived Wagner function. To analyse the floating wind turbine, a floating structure with hub height 90 m is chosen. An axial motion of the rotor is considered

  9. A local-circulation model for Darrieus vertical-axis wind turbines

    Science.gov (United States)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  10. Augmented Reality, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Augmented Reality systems come with many benefits derived by co-locating information with a user's environment through the use of one or more output modalities such...

  11. Chin augmentation - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100009.htm Chin augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  12. Augmenting Clozapine With Sertindole

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Emborg, Charlotte; Gydesen, Susanne

    2012-01-01

    Clozapine augmentation with antipsychotic drugs is widely used despite sparse evidence supporting this strategy. Sertindole is a nonsedating atypical antipsychotic drug with low affinity for cholinergic receptors, which makes it potentially suitable for augmentation of clozapine. The study design...... glucose, lipids, and electrocardiogram. Clozapine augmentation with sertindole was not superior to placebo regarding total score or subscale score of the Positive and Negative Syndrome Scale, Clinical Global Impression, World Health Organization Quality of Life Brief, or Drug Attitude Inventory....... No increased adverse effects compared with placebo were found. Four patients randomized to sertindole experienced a significant worsening of psychosis, and 2 of them required psychiatric admission. Metabolic parameters were unchanged during the study, but augmentation of clozapine with sertindole...

  13. Breast augmentation - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100205.htm Breast augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  14. Augmented reality in neurosurgery.

    Science.gov (United States)

    Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia

    2018-04-01

    Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.

  15. Exploration Augmentation Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Augmentation Module (EAM) project goal is to design and deliver a flight module that is to be deployed to Earth-Lunar Distant Retrograde Orbit (DRO)....

  16. Marketing and Augmented Reality

    OpenAIRE

    Zelený, Martin

    2010-01-01

    The main goal of this diploma thesis is to identify the usage of augmented reality in contemporary marketing practice and the expectations of marketers for the future use. This will be achieved by conducting a quantitative and qualitative research among existing creative and advertising companies. Secondary goal is introducing the concept of augmented reality from the theoretical point of view and also description of potential utilization based on known examples. The tools for the practical p...

  17. INFORMATION VIA AUGMENTED

    OpenAIRE

    Tetteh, Sampson

    2015-01-01

    The vast majority of mobile technology today has developed over the past dec-ades. The thirst for information and communication has brought about high data transfer speed on modern mobile handset devices. This makes it possible for Augmented Reality to be used on mobile phones. Vaasa University of Applied Science, Technobothnia science resource center and Lumivaara Museum saw the importance of information and decided to embark on a pilot project where Augmented Reality will not be only us...

  18. Shock/vortex interaction and vortex-breakdown modes

    Science.gov (United States)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  19. Confronting an augmented reality

    Directory of Open Access Journals (Sweden)

    John Hedberg

    2012-08-01

    Full Text Available How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial augmentation of reality links to existing theories of education and learning, focusing on ideas of cognitive dissonance and the confrontation of new realities implied by exposure to new and varied perspectives. We also discuss connections with broader debates brought on by the social and cultural changes wrought by the increased digitalisation of our lives, especially the concept of the extended mind. Rather than offer a prescription for augmentation, our intention is to throw open debate and to provoke deep thinking about what interacting with and creating an augmented reality might mean for both teacher and learner.

  20. Evolution of optical vortex distributions in stochastic vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-01-01

    Full Text Available simple decay process to restore equilibrium. More complicated dynamics are involved, which requires deeper investigations. REFERENCES [1] Nye, J. F. and Berry, M. V., ?Dislocations in wave trains,? Proc. R. Soc. Lond. A 336, 165?190 (1974). [2] Dennis..., J., Zambrini, R., Dennis, M., and Vasnetsov, M., ?Angular momentum of optical vortex arrays,? Opt. Express 14, 938?949 (2006). [27] Berry, M. V., ?Disruption of wavefronts: statistics of dislocations in incoherent gaussian random waves,? J. Phys...

  1. Interaction of Vortex Ring with Cutting Plate

    Science.gov (United States)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  2. Prediction of the Effect of Vortex Generators on Airfoil Performance

    International Nuclear Information System (INIS)

    Sørensen, Niels N; Zahle, F; Bak, C; Vronsky, T

    2014-01-01

    Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two different airfoils at a Reynolds number of 3 million, the FFA- W3-301 and FFA-W3-360, respectively. The computations are compared with wind tunnel measurements from the Stuttgart Laminar Wind Tunnel with respect to lift and drag variation as function of angle of attack. Even though the method does not exactly capture the measured performance, it can be used to compare different VG setups qualitatively with respect to chord- wise position, inter and intra-spacing and inclination of the VGs already in the design phase

  3. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    Science.gov (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  4. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  5. The swirl turbine

    Science.gov (United States)

    Haluza, M.; Pochylý, F.; Rudolf, P.

    2012-11-01

    In the article is introduced the new type of the turbine - swirl turbine. This turbine is based on opposite principle than Kaplan turbine. Euler equation is satisfied in the form gHηh = -u2vu2. From this equation is seen, that inflow of liquid into the runner is without rotation and on the outflow is a rotation of liquid opposite of rotation of runner. This turbine is suitable for small head and large discharge. Some constructional variants of this turbine are introduced in the article and theoretical aspects regarding losses in the draft tube. The theory is followed by computational simulations in Fluent and experiments using laser Doppler anemometry.

  6. Vortex ring state by full-field actuator disc model

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.N.; Shen, W.Z.; Munduate, X. [DTU, Dept. of Energy Engineering, Lyngby (Denmark)

    1997-08-01

    One-dimensional momentum theory provides a simple analytical tool for analysing the gross flow behavior of lifting propellers and rotors. Combined with a blade-element strip-theory approach, it has for many years been the most popular model for load and performance predictions of wind turbines. The model works well at moderate and high wind velocities, but is not reliable at small wind velocities, where the expansion of the wake is large and the flow field behind the rotor dominated by turbulent mixing. This is normally referred to as the turbulent wake state or the vortex ring state. In the vortex ring state, momentum theory predicts a decrease of thrust whereas the opposite is found from experiments. The reason for the disagreement is that recirculation takes place behind the rotor with the consequence that the stream tubes past the rotor becomes effectively chocked. This represents a condition at which streamlines no longer carry fluid elements from far upstream to far downstream, hence one-dimensional momentum theory is invalid and empirical corrections have to be introduced. More sophisticated analytical or semi-analytical rotor models have been used to describe stationary flow fields for heavily loaded propellers. In recent years generalized actuator disc models have been developed, but up to now no detailed computations of the turbulent wake state or the vortex ring state have been performed. In the present work the phenomenon is simulated by direct simulation of the Navier-Stokes equations, where the influence of the rotor on the flow field is modelled simply by replacing the blades by an actuator disc with a constant normal load. (EG) 13 refs.

  7. Mitigation of pressure fluctuations in the discharge cone of hydraulic turbines using flow-feedback

    International Nuclear Information System (INIS)

    Tanasa, C; Susan-Resiga, R; Bosioc, A; Muntean, S

    2010-01-01

    Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce in this paper a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. We present the technical implementation of this flow-feedback approach, and we investigated experimentally its capability in mitigating the pressure fluctuations generated by the precessing vortex rope. The main advantage of this flow-feedback approach is that is does not require additional energy to supply the jet and it does not decrease the turbine efficiency.

  8. Influences of some parameters on the performance of a small vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Dumitrache Alexandru

    2016-01-01

    Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.

  9. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  10. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  11. Some observations of tip-vortex cavitation

    Science.gov (United States)

    Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.

    1991-08-01

    Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

  12. Progress in wind tunnel experimental techniques for wind turbine?

    Institute of Scientific and Technical Information of China (English)

    Jingping XIAO; Li CHEN; Qiang WANG; Qiao WANG

    2016-01-01

    Based on the unsteady aerodynamics experiment (UAE) phase VI and the model experiment in controlled conditions (MEXICO) projects and the related research carried out in China Aerodynamic Research and Development Center (CARDC), the recent progress in the wind tunnel experimental techniques for the wind turbine is sum-marized. Measurement techniques commonly used for di?erent types of wind tunnel ex-periments for wind turbine are reviewed. Important research achievements are discussed, such as the wind tunnel disturbance, the equivalence of the airfoil in?ow condition, the three-dimensional (3D) e?ect, the dynamic in?ow in?uence, the ?ow ?eld structure, and the vortex induction. The corresponding research at CARDC and some ideas on the large wind turbine are also introduced.

  13. Prediction of dynamic blade loading of the Francis-99 turbine

    International Nuclear Information System (INIS)

    Nicolle, J; Cupillard, S

    2015-01-01

    CFD simulations focusing on capturing dynamic fluctuations of the flow for three operating points were performed for a scale model of a high head Francis turbine. A mesh sensitivity study showed an influence of the near wall resolution, consequently a low Reynolds mesh with a SST turbulence model was used. Rotor/stator fluctuations are well reproduced with the full turbine simulation at all operating points. Velocity contours and average velocity profiles from LDV measurements in the draft tube confirm that the flow physics is generally well reproduced. Simplified approaches such as profile transform and Fourier transform underestimated the measured fluctuations. As full turbine simulations were time-consuming, a simulation with only the draft tube was performed at part load to predict the fluctuations in the draft tube cone. The SAS-SST turbulence model was able to capture the vortex rope behavior

  14. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Obstacle-induced spiral vortex breakdown

    OpenAIRE

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-01-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by...

  16. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  17. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  18. Wind turbine design : with emphasis on Darrieus concept

    Energy Technology Data Exchange (ETDEWEB)

    Paraschivoiu, I. [Ecole Polytechnique, Montreal, PQ (Canada)

    2002-07-01

    This book described software applications designed to model the aerodynamic performance of the Darrieus vertical-axis wind turbine. The book also provided a comprehensive review of current vertical-axis wind turbine (VAWT) technology, and discussed recent advances in understanding the physics of flow associated with the Darrieus type of turbine. The principal theories and aerodynamic models for calculating the performance of the turbines were presented, as well as results from experimental data derived from prototypes as well as laboratory measurements. The book was divided into 10 chapters: (1) wind definition and characteristics; (2) a review of the Madaras rotor concept along with an introduction to vortex modelling; (3) an introduction to the geometry of the Darrieus rotor; (4) a single streamtube model; (5) dynamic-stall phenomenon and numerical simulations; (6) double actuator risk theory; (7) details of water channel experiments; (8) modelling of turbine components; (9) wind turbine design parameters; and (10) issues related to socio-economic and environmental impacts. refs., tabs., figs.

  19. Research of performance prediction to energy on hydraulic turbine

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Li, Q F; Han, W; Su, Q M

    2012-01-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  20. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...... expansion approximation of the central vortex core and reduce the model to a single first-order equation. We solve the equation numerically and find that the axial velocity depends linearly on height whereas the azimuthal velocity is almost independent of height. We discuss the model of the bathtub vortex...

  1. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  2. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  3. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  4. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  5. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  6. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  7. TurbinAID

    International Nuclear Information System (INIS)

    Moradian, M.A.; Chow, M.P.; Osborne, R.L.; Jenkins, M.A.

    1991-01-01

    The Westinghouse Turbine Artificial Intelligence Diagnostics system or TurbinAID, can diagnose both thermodynamic and mechanical component anomalies within the turbine, and around the turbine cycle. any monitoring system can detect that a variable is in an abnormal state, but TurbinAID can also indicate the cause, and provide recommended corrective action(s). The TurbinAID Expert Systems utilize multiple sensor and variable inputs, and their interdependencies in the generation of a diagnosis. The system performs sensor validation as part of the data acquisition scheme. The TurbinAID system has been in operation for several years. This paper describes the monitoring and diagnostic functions provided by TurbinAID, and how the utility industry both nuclear and fossil, can utilize the system to enhance unit operation

  8. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  9. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  10. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR-applikat......Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  11. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  12. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  13. CFD Studies on Triangular Micro-Vortex Generators in Flow Control

    Science.gov (United States)

    Yashodhar, V.; Humrutha, G.; Kaushik, M.; Khan, S. A.

    2017-03-01

    In the present study, the flow characteristics of the commercially used S809 wind turbine airfoil controlled with triangular counter-rotating micro-vortex generators at stall angle of attack of 15 degrees and 10 m/s, 15 m/s and 20 m/s (speed range used in the wind turbine applications) had been computationally investigated. In addition to the controlled airfoil, an uncontrolled airfoil was also studied for the comparison. The modelling and analysis had been carried out using incompressible, Reynolds Averaged Navier Stokes equation using Spalart-Allmaras one equation turbulence model. The numerical computations were performed with SIMPLE algorithm. The velocity profiles at different locations on the suction surface were plotted for both uncontrolled and controlled airfoils. The shear stresses exerted on the upper surface of the airfoil in both the configurations were also compared. It is found that the controlled airfoil, the shear stress distribution was greatly increased near to trailing edge of the airfoil revealing the superiority of vortex generators in increasing the efficiency of wind turbine by delaying boundary layer separation. The qualitative results of flow visualization in the spanwise direction also support the quantitative findings of velocity profiles and shear stress distribution.

  14. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    Science.gov (United States)

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2017-06-01

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  15. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdaoperate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying

  16. Maxillary Sinus Floor Augmentation

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Jensen, Janek Dalsgaard

    2017-01-01

    , radiological and histomorphometric outcome as well as complications are presented after maxillary sinus floor augmentation applying the lateral window technique with a graft material, maxillary sinus membrane elevation without a graft material and osteotome-mediated sinus floor elevation with or without...

  17. Augmented Reality og kulturarv

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Kirkedahl Lysholm

    2013-01-01

    Museerne står overfor at skulle omfavne den digitale kultur i håndteringen af den store mængde viden, institutionerne repræsenterer. Augmented Reality-systemer forbinder ved hjælp af moderne teknologi det virtuelle med det virkelige, og kan derfor synes som en oplagt anvendelsesmulighed i...

  18. Augmented Reality i naturfagsundervisningen

    DEFF Research Database (Denmark)

    Radmer, Ole; Surland, Mogens; Nielsen, Birgitte Lund

    Augmented Reality (AR) giver ny mulighed for, at elever kan lave undersøgelser i naturfag med enkel teknologi, hvor animationer og simulationer kobles med det virkelige fænomen. I workshoppen kan I afprøve AR eksempler, udviklet i et internationalt EU projekt. Der vil være noget, der direkte kan...

  19. Collaboration in Augmented Reality

    NARCIS (Netherlands)

    Lukosch, S.; Billinghurst, M.; Alem, L.; Kiyokawa, K.

    2015-01-01

    Augmented Reality (AR) is a technology that allows users to view and interact in real time with virtual images seamlessly superimposed over the real world. AR systems can be used to create unique collaborative experiences. For example, co-located users can see shared 3D virtual objects that they

  20. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  1. Turbine related fish mortality

    International Nuclear Information System (INIS)

    Eicher, G.J.

    1993-01-01

    A literature review was conducted to assess the factors affecting turbine-related fish mortality. The mechanics of fish passage through a turbine is outlined, and various turbine related stresses are described, including pressure and shear effects, hydraulic head, turbine efficiency, and tailwater level. The methodologies used in determining the effects of fish passage are evaluated. The necessity of adequate controls in each test is noted. It is concluded that mortality is the result of several factors such as hardiness of study fish, fish size, concentrations of dissolved gases, and amounts of cavitation. Comparisons between Francis and Kaplan turbines indicate little difference in percent mortality. 27 refs., 5 figs

  2. Turbine Imaging Technology Assessment

    International Nuclear Information System (INIS)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-01-01

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions

  3. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  4. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...

  5. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  6. Vortex Dynamics around Pitching Plates

    Science.gov (United States)

    2014-04-29

    electrical signals are A/D converted in an ATI NetBox interface and recorded using a Java application, and are filtered in three steps. The first is a low...the plate while staying attached to the corners of the leading edge. During this process, a second vortex loop, created by the quick angular ...is a spike in CL centered around t = 0 due to non-circulatory6 effects from the angular acceleration of the wing. The amplitude of the peak is

  7. Micro-turbines

    International Nuclear Information System (INIS)

    Tashevski, Done

    2003-01-01

    In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)

  8. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

    International Nuclear Information System (INIS)

    Yang, SJ; Baeder, J D

    2016-01-01

    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study. (paper)

  9. Mathematical aspects of vortex dynamics; Proceedings of the Workshop, Leesburg, VA, Apr. 25-27, 1988

    International Nuclear Information System (INIS)

    Caflisch, R.E.

    1989-01-01

    Various papers on the mathematical aspects of vortex dynamics are presented. Individual topics addressed include: mathematical analysis of vortex dynamics, improved vortex methods for three-dimensional flows, the relation between thin vortex layer and vortex sheets, computations of broadband instabilities in a class of closed-streamline flows, vortex-sheet dynamics and hyperfunction theory, free surface vortex method with weak viscous effects, iterative method for computing steady vortex flow systems, invariant measures for the two-dimensional Euler flow, similarity flows containing two-branched vortex sheets, strain-induced vortex stripping, convergence of the vortex method for vortex sheets, boundary conditions and deterministic vortex methods for the Navier-Stokes equations, vorticity creation boundary conditions, vortex dynamics of stratified flows, vortex breakdown, numerical studies of vortex reconnection, vortex lattices in theory and practice, dynamics of vortex structures in the wall region of a turbulent boundary layer, and energy of a vortex lattice configuration

  10. Back reaction of excitations on a vortex

    International Nuclear Information System (INIS)

    Arodz, H.; Hadasz, L.

    1997-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their back reaction on the vortex. In the present paper we investigate back reaction of Proca-type excitations on a straight linear vortex in the Abelian Higgs model. We propose an exact ansatz for fields of the excited vortex. From an initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the back reaction corrections. Their approximate solutions are found in the cases of plane wave and wave-packet-type excitations. We find that the excited vortex radiates the vector field and that the Higgs field has a very broad oscillating component. copyright 1997 The American Physical Society

  11. Back reaction of excitations on a vortex

    Science.gov (United States)

    Arodź, Henryk; Hadasz, Leszek

    1997-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their back reaction on the vortex. In the present paper we investigate back reaction of Proca-type excitations on a straight linear vortex in the Abelian Higgs model. We propose an exact ansatz for fields of the excited vortex. From an initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the back reaction corrections. Their approximate solutions are found in the cases of plane wave and wave-packet-type excitations. We find that the excited vortex radiates the vector field and that the Higgs field has a very broad oscillating component.

  12. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  13. High Magnetic Field Vortex Microscopy by NMR

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-03-01

    At low temperatures the ^17O NMR spectrum of HTS exhibits a characteristic vortex lattice line shape. Measurements of spin-lattice relaxation rate, T_1-1, across the vortex spectrum represent a probe of low-energy quasiparticle excitations as a function of distance from the vortex core. We report ^17O(2,3) T_1-1 measurements of YBa_2Cu_3O7 at low temperatures in magnetic fields up to 37 T. We find that the rate increases on approaching the vortex core. In the vortex core region at 37 T we observe an additional increase in the relaxation rate. The temperature dependence of the rate will also be discussed. Work at Northwestern University is supported by the NSF (DMR 91-20000) through the Science and Technology Center for Superconductivity.

  14. Characteristics of reversible-pump turbines

    Energy Technology Data Exchange (ETDEWEB)

    Olimstad, Grunde

    2012-07-01

    The primary goal for this PhD project has been to investigate instability of reversible-pump turbines (RPTs) as a phenomenon and to find remedies to solve it. The instability occurs for turbines with s-shaped characteristics, unfavourable waterway and limited rotating inertia. It is only observed for certain operation pints at either high speed or low load. These correspond to ether high values of Ned or low values of Qed. The work done in this PhD thesis can be divided in to the three following categories. Investigate and understand the behaviour of a pump turbine: A model was designed in order to investigate the pump turbine behaviour related to its characteristics. This model was manufactured and measurements were performed in the laboratory. By using throttling valves or torque as input the full s-shaped characteristics was measured. When neither of these techniques is used, the laboratory system has unstable operation points which result in hysteresis behaviour. Global behaviour of the RPT in power plant system was investigated through analytical stability analysis and dynamic system simulations. The latter included both rigid and elastic representation of the water column. Turbine internal flow: The flow inside the runner was investigated by computer simulations (CFD). Two-dimensional analysis was used to study the inlet part of the runner. This showed that a vortex forming at the inlet is one of the causes for the unstable operation range. Measurements at different pressure levels showed that the characteristics were dependent on the Reynolds number at high Ned values in turbine mode. This means that the similarity of flows is not sufficiently described by constant Qed and Ned values at this part of the characteristics. Design modifications: The root of the stability problem was considered to be the runners geometric design at the inlet in turbine mode. Therefore different design parameters were investigated to find relations to the characteristics. Methods

  15. Capillary Refill using Augmented Reality

    OpenAIRE

    Clausen, Christoffer

    2017-01-01

    Master's thesis in Computer science The opportunities within augmented reality is growing. Augmented reality is a combination of the real and the virtual world in real time, and large companies like Microsoft and Google is now investing heavily in the technology. This thesis presents a solution for simulating a medical test called capillary refill, by using augmented reality. The simulation is performed with an augmented reality headset called HoloLens. The HoloLens will recognise a mark...

  16. 3D Lagrangian VPM : Simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    NARCIS (Netherlands)

    Berdowski, T.J.; Simao Ferreira, C.; Walther, J.

    2016-01-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The

  17. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    DEFF Research Database (Denmark)

    Berdowski, T.; Ferreira, Célia Maria Dias; Walther, Jens Honore

    2016-01-01

    The application of a 3-dimensional Lagrangian vortex particle method has beenassessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments InCOntrolled conditions) experiment...

  18. The near wake structure and the development of vorticity behind a model horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, P.; Wood, D. [The Univ. of Newcastle, Dept. of Mechanical Engineering, Callaghan (Australia)

    1997-08-01

    The wake of a two bladed model HAWT operating at zero yaw angle and in a steady flow in a wind tunnel was measured using hot wire probes. By phase locked averaging and moving the probe axially and radially the full three dimensional mean flow file was determined. All measurements were within two chord lengths of the blades and at tip speed ratios giving high turbine power output, a condition approaching runaway, and a stalled condition. For all tip speed ratios the wakes were significantly three dimensional. Large velocity variations were associated with vortex structures in the wakes, and irrotational fluctuations caused by the blade bound circulation. The vorticity clearly defined the hub and tip vortices that traced helical paths downstream, with the constant tip vortex pitch inversely proportional to tip speed ratio. Close to the blades the flow was complicated, though vortex roll-up was completed within one chord length. Considerable changes in wake structure occurred with tip speed ratio. At high power output the wake showed tip and hub vortices connected by a diffuse vortex sheet of mostly radial vorticity from the blade boundary layers; blade bound circulation was almost constant. The structure approaching runaway was similar though the hub vortex was not well defined and formed a vortex sheet around the hub which lifted away and diffused. The stalled condition was more complicated, with evidence of incomplete tip and hub vortex formation. The stream-wise velocity of the tip vortex core decreased with increasing tip speed ratio, but this was never aligned with local streamlines. The core of the tip vortex was not circular but more elliptical. A phase locked averaged angular momentum analysis was undertaken, the extra terms introduced through phase locked averaging were small. (Abstract Truncated)

  19. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  20. AR DOC: Augmented reality documentaries

    DEFF Research Database (Denmark)

    Vistisen, Peter

    2014-01-01

    Augmented Reality Documentaries (AR DOC) er et ’lille’ Shareplay projekt (ansøgte midler augmented reality cross media løsninger, til at skabe engagerende publikumsformidling...... indenfor oplevelsesindustrien. Projektet har genereret ny viden omkring, hvordan fysisk og digital formidling kan understøttes via Augmented Reality som formidlingsformat....

  1. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  2. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  3. Effect of Guide Vane Clearance Gap on Francis Turbine Performance

    Directory of Open Access Journals (Sweden)

    Ravi Koirala

    2016-04-01

    Full Text Available Francis turbine guide vanes have pivoted support with external control mechanism, for conversion of pressure to kinetic energy and to direct them to runner vanes. This movement along the support is dependent on variation of load and flow (operating conditions. Small clearance gaps between facing plates and the upper and lower guide vane tips are available to aid this movement, through which leakage flow occurs. This secondary flow disturbs the main flow stream, resulting performance loss. Additionally, these increased horseshoe vortex, in presence of sand, when crosses through the gaps, both the surfaces are eroded. This causes further serious effect on performance and structural property by increasing gaps. This paper discusses the observation of the severity in hydropower plants and effect of clearance gaps on general performance of the Francis turbine through computational methods. It also relates the primary result with the empirical relation for leakage flow prediction. Additionally, a possible method to computationally estimate thickness depletion has also been presented. With increasing clearance gap, leakage increases, which lowers energy conversion and turbine efficiency along with larger secondary vortex.

  4. Vortex Structure Effects on Impingement, Effusion, and Cross Flow Cooling of a Double Wall Configuration

    Science.gov (United States)

    Ligrani, P. M.

    2018-03-01

    A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.

  5. Transaxillary Endoscopic Breast Augmentation

    Directory of Open Access Journals (Sweden)

    Hyung-Bo Sim

    2014-09-01

    Full Text Available The axillary technique is the most popular approach to breast augmentation among Korean women. Transaxillary breast augmentation is now conducted with sharp electrocautery dissection under direct endoscopic vision throughout the entire process. The aims of this method are clear: both a bloodless pocket and a sharp non-traumatic dissection. Round textured or anatomical cohesive gel implants have been used to make predictable well-defined inframammary creases because textured surface implants demonstrated a better stability attributable to tissue adherence compared with smooth surface implants. The axillary endoscopic technique has greatly evolved, and now the surgical results are comparable to those with the inframammary approach. The author feels that this technique is an excellent choice for young patients with an indistinct or absent inframammary fold, who do not want a scar in the aesthetic unit of their chest.

  6. On the self-induced motion of a helical vortex

    NARCIS (Netherlands)

    Boersma, J.; Wood, D.H.

    1999-01-01

    The velocity field in the immediate vicinity of a curved vortex comprises a circulation around the vortex, a component due to the vortex curvature, and a ‘remainder’ due to the more distant parts of the vortex. The first two components are relatively well understood but the remainder is known only

  7. The observation of a triangular vortex in a rotating fluid

    NARCIS (Netherlands)

    Beckers, M.; Heijst, van G.J.F.

    1998-01-01

    A dye visualization study of a triangular vortex in a rotating fluid is presented. The emergence and subsequent break-up of the vortex structure are described. Soon after the generation of the triangular vortex it becomes unstable: two satellite vortices merge and pair with the core vortex into an

  8. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  9. Augmented reality in surgery.

    Science.gov (United States)

    Shuhaiber, Jeffrey H

    2004-02-01

    To evaluate the history and current knowledge of computer-augmented reality in the field of surgery and its potential goals in education, surgeon training, and patient treatment. National Library of Medicine's database and additional library searches. Only articles suited to surgical sciences with a well-defined aim of study, methodology, and precise description of outcome were included. Augmented reality is an effective tool in executing surgical procedures requiring low-performance surgical dexterity; it remains a science determined mainly by stereotactic registration and ergonomics. Strong evidence was found that it is an effective teaching tool for training residents. Weaker evidence was found to suggest a significant influence on surgical outcome, both morbidity and mortality. No evidence of cost-effectiveness was found. Augmented reality is a new approach in executing detailed surgical operations. Although its application is in a preliminary stage, further research is needed to evaluate its long-term clinical impact on patients, surgeons, and hospital administrators. Its widespread use and the universal transfer of such technology remains limited until there is a better understanding of registration and ergonomics.

  10. Augmented reality services

    Directory of Open Access Journals (Sweden)

    Tomáš Koubek

    2013-01-01

    Full Text Available We assume that one of the key reasons is in the difference between a standalone application and a web service. Both architectures have some advantages and disadvantages. The Standalone application (e.g. Nokia/OVI Maps provides the required functionality. From the user point of view, main asset of this “offline” approach is network connectivity independence. However, this kind of applications must be upgraded manually. Moreover, it is hard to get any data about the application usage because it requires additional actions from the user – data are usually acquired through conventional ways, such as email or web forms.The online service such as Google Maps (including its mobile application can offer the same functionality as the offline application. Nevertheless, a permanent connection to provider servers is necessary. This can be taken as a drawback. On the other hand, usage data collection is easier and can be done without the user intervention. The data collection provides a valuable analysis basis of the user habits and needs. This analysis is necessary for design of a complex “user” based solutions such as Google Now.Augmented reality applications are usually based on the first mentioned approach. In this article, we describe our model of augmented reality as a service and compare its features with standalone solutions. Further, other important key aspects for large emergence of augmented reality services in a mainstream market are discussed.

  11. Vortex Ring Interaction with a Heated Screen

    Science.gov (United States)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  12. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  13. Phase diagram of a lattice of pancake vortex molecules

    International Nuclear Information System (INIS)

    Tanaka, Y.; Crisan, A.; Shivagan, D.D.; Iyo, A.; Shirage, P.M.; Tokiwa, K.; Watanabe, T.; Terada, N.

    2009-01-01

    On a superconducting bi-layer with thickness much smaller than the penetration depth, λ, a vortex molecule might form. A vortex molecule is composed of two fractional vortices and a soliton wall. The soliton wall can be regarded as a Josephson vortex missing magnetic flux (degenerate Josephson vortex) due to an incomplete shielding. The magnetic energy carried by fractional vortices is less than in the conventional vortex. This energy gain can pay a cost to form a degenerate Josephson vortex. The phase diagram of the vortex molecule is rich because of its rotational freedom.

  14. Vortex dynamics in superconducting Corbino disk at zero field

    International Nuclear Information System (INIS)

    Enomoto, Y.; Ohta, M.

    2007-01-01

    We study the radial current driven vortex dynamics in the Corbino disk sample at zero field, by using a logarithmically interacting point vortex model involving effect of temperature, random pinning centers, and disk wall confinement force. We also take into account both the current induced vortex pair nucleation and the vortex pair annihilation processes in the model. Simulation results demonstrate that the vortex motion induced voltage exhibits almost periodic pulse behavior in time, observed experimentally, for a certain range of the model parameters. Such an anomalous behavior is thought to originate from large fluctuations of the vortex number due to the collective dynamics of this vortex system

  15. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  16. Wind turbine operated sailboat

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.

    1990-07-31

    A wind powered boat is disclosed which incorporates a vertical axis rotary turbine. A shaft portion extends downwardly from the turbine to a water pump, with the boat being provided with a forwardly opening inlet and a rearwardly opening outlet from the water pump. When rotating, the turbine operates the pump by the shaft to draw in water through the inlet, thereby creating a low pressure area in front of the boat, and to force the water out through the outlet for propelling the boat. In a preferred embodiment, the boat has a catamaran construction or is a large ocean going vessel with enough width to provide a buffer to either side of the turbine, and the turbine is the Darrieus rotor type. The pump is a standard centrifugal type of pump. A self adjusting braking device for the turbine is also disclosed, which prevents over-rotation and is also capable of storing heat energy generated during braking. 4 figs.

  17. The swirl turbine

    International Nuclear Information System (INIS)

    Haluza, M; Pochylý, F; Rudolf, P

    2012-01-01

    In the article is introduced the new type of the turbine - swirl turbine. This turbine is based on opposite principle than Kaplan turbine. Euler equation is satisfied in the form gHη h = −u 2 v u2 . From this equation is seen, that inflow of liquid into the runner is without rotation and on the outflow is a rotation of liquid opposite of rotation of runner. This turbine is suitable for small head and large discharge. Some constructional variants of this turbine are introduced in the article and theoretical aspects regarding losses in the draft tube. The theory is followed by computational simulations in Fluent and experiments using laser Doppler anemometry.

  18. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  19. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  20. Structures of single vortex and vortex lattice in a d-wave superconductor

    International Nuclear Information System (INIS)

    Xu, J.; Ren, Y.; Ting, C.

    1996-01-01

    The structures of a single vortex and vortex lattice in a superconductor with d x 2 -y 2 symmetry are studied self-consistently employing a recently developed Ginzburg-Landau theory. Near a single vortex, we found that an s-wave component of the order parameter is always induced, and it causes the local magnetic-field distribution and the d-wave order parameter to have a fourfold anisotropy. It is shown that there is a strong correlation between the structure of a single vortex and the shape of the vortex lattice. Our numerical calculation indicates that the structure of the vortex lattice is always oblique except for temperatures very close to T c where it becomes triangular. The possible connection of the result with experiment is also discussed. copyright 1996 The American Physical Society

  1. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  2. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  3. Flow in Pelton turbines

    OpenAIRE

    Furnes, Kjartan

    2013-01-01

    The flow in Pelton turbines is subsonic, turbulent, multiphase (water, air, and water vapor from cavitation), has high speeds, sharp gradients, free surface and dynamic boundary conditions. A static grid is unsuitable for modeling this mainly due to the turbine wheel and the liquid having a non-stationary relative motion.In recent times, significant progress in CFD simulation has been made, which also is relevant for Pelton turbines.Nevertheless, it is still common to perform costly model tes...

  4. Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

    Science.gov (United States)

    Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.

    2017-12-01

    The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.

  5. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  6. Experimental Vision Studies of Flow and Structural Effects on Wind Turbines

    DEFF Research Database (Denmark)

    Najafi, Nadia

    In the present thesis, two modern vision technologies are developed and used to study wind turbines: 1- Stereo vision to study vibrations and dynamics of the Vertical Axes Wind Turbine (VAWT) via operational modal analysis (OMA) 2- Background-oriented Schlieren (BOS) method to study the tip...... vortices that are shed from a Horizontal Axis Wind Turbine (HAWT) blades The thesis starts with an introduction to the stereo vision and OMA and is followed by two practical implementations of the basics derived in the introduction. In the first experiment, we developed the image processing tools...... a Nordtank horizontal axis wind turbine based on the density gradient in the vortex. The BOS method does not need complicated equipment such as special cameras or seeded flow, which makes it a convenient method to study large scale flows. However, the challenging part in the current case is the small...

  7. Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally different thermodynamic properties between organic fluids and air, its influence on turbine performance and loss mechanisms need to be analyzed. This paper numerically simulated a radial turbine under similar conditions between R245fa and air, and compared the differences of the turbine performance and loss mechanisms. Larger specific heat ratio of air leads to air turbine operating at higher pressure ratios. As R245fa gas constant is only about one-fifth of air gas constant, reduced rotating speeds of R245fa turbine are only 0.4-fold of those of air turbine, and reduced mass flow rates are about twice of those of air turbine. When using R245fa as working fluid, the nozzle shock wave losses decrease but rotor suction surface separation vortex losses increase, and eventually leads that isentropic efficiencies of R245fa turbine in the commonly used velocity ratio range from 0.5 to 0.9 are 3%–4% lower than those of air turbine.

  8. Vortex formation and instability in the left ventricle

    Science.gov (United States)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  9. Moving vortex matter with coexisting vortices and anti-vortices

    International Nuclear Information System (INIS)

    Carneiro, Gilson

    2009-01-01

    Moving vortex matter, driven by transport currents independent of time, in which vortices and anti-vortices coexist is investigated theoretically in thin superconducting films with nanostructured defects. A simple London model is proposed for the vortex dynamics in films with periodic arrays of nanomagnets or cylindrical holes (antidots). Common to these films is that vortex anti-vortex pairs may be created in the vicinity of the defects by relatively small transport currents, because it adds to the current generated by the defects - the nanomagnets screening current, or the antidots backflow current - and may exceed locally the critical value for vortex anti-vortex pair creation. The model assumes that vortex matter dynamics is governed by Langevin equations, modified to account for creation and annihilation of vortex anti-vortex pairs. For pair creation, it is assumed that whenever the total current at some location exceeds a critical value, equal to that needed to separate a vortex from an anti-vortex by a vortex core diameter, a pair is created instantaneously around this location. Pair annihilation occurs by vortex anti-vortex collisions. The model is applied to films at zero external magnetic field and low temperatures. It is found that several moving vortex matter steady-states with equal numbers of vortices and anti-vortices are possible.

  10. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  11. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D

    2012-01-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  12. Experimental study of dynamic stall on Darrieus wind turbine blades

    Science.gov (United States)

    Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    1985-12-01

    An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.

  13. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  14. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  15. On plasma flows along vortex lines

    International Nuclear Information System (INIS)

    Bagewadi, C.S.; Prasanna Kumar, K.N.

    1989-01-01

    The plasma flows are discussed and various intrinsic relations along the vortex lines and their principal normals and binormals are obtained. The effects of rotations on Bernoulli surfaces are also studied. (M.K.V.)

  16. Vortex sorter for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik

    2004-01-01

    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing

  17. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  18. Aircraft Vortex Wake Decay Near the Ground

    Science.gov (United States)

    1977-05-01

    A multi-faceted experimental and analytical research program was carried out to explore the details of aircraft wake vortex breakdown under conditions representative of those which prevail at low altitudes in the vicinity of airports. Three separate ...

  19. Vortex structure and characterization of quasiperiodic functions

    International Nuclear Information System (INIS)

    Dana, Itzhack; Chernov, Vladislav E

    2002-01-01

    Quasiperiodic functions (QPFs) are characterized by their full vortex structure in one unit cell. This characterization is much finer and more sensitive than the topological one given by the total vorticity per unit cell (the 'Chern index'). It is shown that QPFs with an arbitrarily prescribed vortex structure exist by constructing explicitly such a 'standard' QPF. Two QPFs with the same vortex structure are equivalent, in the sense that their ratio is a function which is strictly periodic, nonvanishing and at least continuous. A general QPF can then be approximately reconstructed from its vortex structure on the basis of the standard QPF and the equivalence concept. As another application of this concept, a simple method is proposed for calculating the quasiperiodic eigenvectors of periodic matrices. Possible applications to the quantum-chaos problem on a phase-space torus are briefly discussed

  20. A Retrospective on Modulated Wavy Vortex Flow

    OpenAIRE

    Gorman, Michael; Swinney, Harry

    2009-01-01

    A fluid dynamics video of the Modulated Wavy Vortex Flow state of Taylor-Couette flow with the outer cylinder fixed is presented. This state precedes the transition to turbulence, which is more gradual than that for other fluid systems.

  1. Superconducting coherence in a vortex line liquid

    International Nuclear Information System (INIS)

    Chen, T.; Teitel, S.

    1995-01-01

    We carry out simulations of the anisotropic uniformly frustrated 3d XY model, as a model for vortex line fluctuations in high T c superconductors. We compute the phase diagram as a function of temperature and anisotropy, for a fixed applied magnetic field B. We find two distinct phase transitions. Upon heating, there is first a lower T c perpendicular where the vortex line lattice melts and super-conducting coherence perpendicular to the applied magnetic field vanishes. At a higher T cz , within the vortex line liquid, superconducting coherence parallel to the applied magnetic field vanishes. For finite anisotropy, both T c perpendicular and T cz lie well below the crossover from the vortex line liquid to the normal state

  2. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  3. Towards a string formulation of vortex dynamics

    International Nuclear Information System (INIS)

    Elsebeth Schroeder; Ola Toernkvist

    1998-01-01

    We derive an exact equation of motion for a non-relativistic vortex in two- and three-dimensional models with a complex field. The velocity is given in terms of gradients of the complex field at the vortex position. We discuss the problem of reducing the field dynamics to a closed dynamical system with non-locally interacting strings as the fundamental degrees of freedom

  4. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    International Nuclear Information System (INIS)

    Amiri, K; Cervantes, M J; Mulu, B; Raisee, M

    2014-01-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR

  5. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    Science.gov (United States)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  6. Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Institute of Scientific and Technical Information of China (English)

    Cao Jiufa; Wang Tongguang; Long Hui; Ke Shitang; Xu Bofeng

    2015-01-01

    With large scale wind turbines ,the issue of aerodynamic elastic response is even more significant on dy-namic behaviour of the system .Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load .Considering the effect of aerodynamic load ,inertial load and gravity load ,the decoupling dy-namic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach .Finally ,the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling .The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently .Under the influence of the gravitational force ,the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed .The difference in dynamic response be-tween the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of signifi-cance in both wind turbine design and performance calculation .

  7. Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine

    Directory of Open Access Journals (Sweden)

    Matthew Lackner

    2012-04-01

    Full Text Available The degrees-of-freedom associated with offshore floating wind turbines (OFWTs result in a more dynamic flow field. The resulting aerodynamic loads may be significantly influenced by these motions via perturbations in the evolving wake. This is of great interest in terms of OFWT design, placement and simulation. This study presents free vortex wake method (FVM simulations of the NREL 5-MW wind turbine of a variety of platforms, operating in a range of wind speeds synthesized platform motion time series. Motion-induced wake perturbations are observed to affect induction. Transitions between windmill and propeller states are also observed.

  8. Superconductivity and vortex properties in various multilayers

    International Nuclear Information System (INIS)

    Koorevaar, P.

    1994-01-01

    In this thesis three qualitatively different type of superconducting multilayers are studied. We discuss the vortex lattice structure in Nb/NbZr multilayers, a system where both type of constituting layers are superconducting. At certain temperatures and for parallel fields close to H c2parallel , the Nb/NbZr system has a strongly modulated order parameter, and in this aspect resembles the high-Tc materials. By lowering the field the modulation decreases, having important consequences for the vortex lattice structure. By studying the transport critical currents we show that in the case of strong modulation the vortex lattice has a kinked structure, but at weaker modulations the vortices are straight, and the change in modulation actually results in a vortex lattice transition. Our study confirms the picture of the existence of kinked vortex lattices, but it is rather surprising that these kinked structures can exist in a system which in itself is not at all that anisotropic. It indicates the relevance of other parameters governing the vortex lattice structure. (orig.)

  9. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  10. A new generation of wind turbines; Une nouvelle generation d'eoliennes

    Energy Technology Data Exchange (ETDEWEB)

    Nica, H. [Tesnic, Laval, PQ (Canada)

    2008-06-15

    Although homeowners have expressed a desire to use wind energy to supply their electricity needs, many technical barriers have stood in the way of installing wind turbines in urban settings. This was due in part to three-bladed vertical axis turbines, high technical costs, limited performances in urban settings and questionable aesthetics. Tesnic has considered these issues and proposed a completely different turbine that uses a different method for extracting energy from the wind. The first approved 3.6 kW model should appear by the end of 2009. This new turbine is based on the same principal of the steam turbine patented in 1913 by Nikola Tesla. Instead of having blades, the Tesla turbine used closely spaced parallel disks and was recognized as being very robust with a high efficiency rating. Tesnic's new wind powered turbine is a vertical axis turbine with a series of valves that directs the wind on a rotor assembly of disk space. A series of blades on its circumference redirects the wind through the assembly of discs and accelerates the rotation of the rotor. The turbine extracts the wind energy in several ways, including conventional drag and lift, adherence and the vortex effect. This gives a 50 per cent added value of efficiency compared to other wind powered turbines. The global market for small wind powered energy is in full expansion. It has been projected that small turbines with 1 kW capacity will be abundant by 2020. It was noted that for household wind powered energy, the market must consider issues of cost, low maintenance, noise pollution, visual aesthetics, durability and safety. Wind energy can also be used in several industries, including plastics, composites, light metals, textiles and electronics. 2 figs.

  11. Experimental investigation of the wake behind a model of wind turbine in a water flume

    International Nuclear Information System (INIS)

    Okulov, V L; Mikkelsen, R; Sørensen, J N; Naumov, I N; Kabardin, I

    2014-01-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert's optimization. The transitional regime, generally characterized as in between the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities. The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories

  12. Aperiodic pressure pulsation under non optimal hydraulic turbine regimes at low swirl number

    Science.gov (United States)

    Skripkin, S. G.; Tsoy, M. A.; Kuibin, P. A.; Shtork, S. I.

    2017-09-01

    Off-design operating conditions of hydraulic turbines is hindered by pressure fluctuations in the draft tube of the turbine. A precessing helical vortex rope develops, which imperils the mechanical structure and limits the operation flexibility of hydropower station. Understanding of the underlying instabilities of precessing vortex rope at low swirl number is incomplete. In this paper flow regimes with different residual swirl is analysed, particular attention is paid to the regime with a small swirl parameter. Study defines upper and low boundaries of regime where aperiodic pressure surge is observed. Flow field at the runner exit is investigated by Laser Doppler Velocimetry and high-speed visualizations, which are complemented draft tube wall pressure measurements.

  13. Effects of draft tube on the hydraulic performance of a Francis turbine

    International Nuclear Information System (INIS)

    Jeon, J H; Byeon, S S; Kim, Y J

    2013-01-01

    The draft tube is an important component of a Francis turbine which influences the hydraulic performance. It is located just under the runner and allowed to decelerate the flow velocity exiting the runner, thereby converting the excess of kinetic energy into static pressure. In this study, we have numerically investigated the hydraulic performance of a Francis turbine on the 15MW hydropower generation with various design parameters (three types of draft tube, thickness of guide vane) through a three-dimensional numerical method with the SST turbulent model. The vortex rope characteristics of the draft tube were confirmed. The results of the vortex flow fields and flow characteristics were graphically depicted with different design parameters and operating conditions

  14. Experimental investigation of the wake behind a model of wind turbine in a water flume

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor; Kabardin, I.

    2014-01-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert’s optimization. The transitional regime, generally characterized as in between...... the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities....... The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories....

  15. Guide to hydro turbines

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This listing is a guide to turbines for hydroelectric projects of independent energy projects. The listing is in directory format and includes the supplier's name, the name of the supplier's contact, address, telephone and FAX numbers and a description of the company and the types of turbines, services and expertise available for energy projects. The listing is international in scope

  16. Improvement of turbine materials

    International Nuclear Information System (INIS)

    Jakobeit, W.; Pfeifer, J.P.

    1982-01-01

    Materials for turbine blades and rotors are discussed with a view to the following subjects: Long period creep behaviour, gas/metal reactions, fatigue behaviour in long-term and creep strength testing, fracture mechanics testing, creep/fatigue interactions, development of a turbine blade of TZM, jointing of TZM, decontamination. (orig./IHOE) [de

  17. AMI: Augmented Michelson Interferometer

    Science.gov (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel

    2015-10-01

    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  18. The feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    Science.gov (United States)

    Van Fossen, G. J.

    1983-01-01

    It is pointed out that in certain emergency situations it may be desirable to obtain power from a helicopter engine at levels greater than the maximum rating. Yost (1976) has reported studies concerning methods of power augmentation in the one engine inoperative (OEI) case. It was found that a combination of water/alcohol injection into the inlet and overtemperature/overspeed could provide adequate emergency power. The present investigation is concerned with the results of a feasibility study which analytically investigated the maximum possible level of augmentation with constant gas generator turbine stress rupture life as a constraint. In the proposed scheme, the increased engine output is obtained by turbine overtemperature, however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water.

  19. Simulations of Steady Cavitating Flow in a Small Francis Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Laouari

    2016-01-01

    Full Text Available The turbulent flow through a small horizontal Francis turbine is solved by means of Ansys-CFX at different operating points, with the determination of the hydrodynamic performance and the best efficiency point. The flow structures at different regimes reveal a large flow eddy in the runner and a swirl in the draft tube. The use of the mixture model for the cavity/liquid two-phase flow allowed studying the influence of cavitation on the hydrodynamic performance and revealed cavitation pockets near the trailing edge of the runner and a cavitation vortex rope in the draft tube. By maintaining a constant dimensionless head and a distributor vane opening while gradually increasing the cavitation number, the output power and efficiency reached a critical point and then had begun to stabilize. The cavitation number corresponding to the safety margin of cavitation is also predicted for this hydraulic turbine.

  20. A turn for the better? Innovative concepts for wind turbines

    International Nuclear Information System (INIS)

    De Vries, Eize

    2001-01-01

    This paper focuses on successful innovation in wind technology and describes the approach of Danish developers using a rigid, non-integrated, gear-driven transmission layout with 3 blades which is often viewed as the basis of the modern wind industry. Recent developments reviewed cover multi-rotor designs, hybrid designs, direct drive technology, variable speed operation, modular systems, high voltage systems, discoidal technology, and the diffuser augmented turbine

  1. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  2. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  3. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  4. Crime Scenes as Augmented Reality

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2010-01-01

    Using the concept of augmented reality, this article will investigate how places in various ways have become augmented by means of different mediatization strategies. Augmentation of reality implies an enhancement of the places' emotional character: a certain mood, atmosphere or narrative surplus......, physical damage: they are all readable and interpretable signs. As augmented reality the crime scene carries a narrative which at first is hidden and must be revealed. Due to the process of investigation and the detective's ability to reason and deduce, the crime scene as place is reconstructed as virtual...

  5. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  6. Spectral analysis of point-vortex dynamics : first application to vortex polygons in a circular domain

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Meleshko, V.V.; Heijst, van G.J.F.

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N point vortices of equal strength arranged in a polygonal configuration ("N-vortex polygons"). In unbounded domains, such N-vortex polygons are unconditionally stable for N

  7. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  8. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can...

  9. Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    control and data acquisition (SCADA) system. Estimated loads can be further used for prediction of remaining operating lifetime of turbine components, detection of high stress level or fault detection. An augmented Kalman filter is chosen as the fatigue load estimator because its characteristics well suit......The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared...

  10. Large eddy simulations of isothermal confined swirling flow in an industrial gas-turbine

    International Nuclear Information System (INIS)

    Bulat, G.; Jones, W.P.; Navarro-Martinez, S.

    2015-01-01

    Highlights: • We conduct a large eddy simulation of an industrial gas turbine. • The results are compared with measurements obtained under isothermal conditions. • The method reproduces the observed precessing vortex and central vortex cores. • The profiles of mean and rms velocities are found to be captured to a good accuracy. - Abstract: The paper describes the results of a computational study of the strongly swirling isothermal flow in the combustion chamber of an industrial gas turbine. The flow field characteristics are computed using large eddy simulation in conjunction with a dynamic version of the Smagorinsky model for the sub-grid-scale stresses. Grid refinement studies demonstrate that the results are essentially grid independent. The LES results are compared with an extensive set of measurements and the agreement with these is overall good. The method is shown to be capable of reproducing the observed precessing vortex and central vortex cores and the profiles of mean and rms velocities are found to be captured to a good accuracy. The overall flow structure is shown to be virtually independent of Reynolds number

  11. Transverse force on a moving vortex with the acoustic geometry

    International Nuclear Information System (INIS)

    Zhang Pengming; Cao Liming; Duan Yishi; Zhong Chengkui

    2004-01-01

    We consider the transverse force on a moving vortex with the acoustic metric using the phi-mapping topological current theory. In the frame of effective space-time geometry the vortex appear naturally by virtue of the vortex tensor in the Lorentz space-time and we show that it is just the vortex derived with the order parameter in the condensed matter. With the usual Lagrangian we obtain the equation of motion for the vortex. At last, we show that the transverse force on the moving vortex in our equation is just the usual Magnus force in a simple model

  12. Three-vortex configurations in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Seman, J. A.; Henn, E. A. L.; Shiozaki, R. F.; Ramos, E. R. F.; Caracanhas, M.; Castilho, P.; Castelo Branco, C.; Tavares, P. E. S.; Poveda-Cuevas, F. J.; Magalhaes, K. M. F.; Bagnato, V. S.; Haque, M.; Roati, G.

    2010-01-01

    We report on the creation of three-vortex clusters in a 87 Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.

  13. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry

    International Nuclear Information System (INIS)

    Kaznacheev, A; Kuznetsov, I

    2014-01-01

    The measurements and video observation of unsteady flow in the draft tube cone of the pump-turbine model were conducted in the Laboratory of Water Turbines, property of OJSC ''Power machines'' - ''LMZ''. The prototype head was about 250 m. The experiments were performed for the turbine mode of operation. Measurements were taken for the unit speed value n11 corresponding to rated head in the generating mode of operation, for a wide range of guide vanes openings at loads ranging from partial to maximum value. The researches of the velocity field in function of the Thoma number were carried out in some operating conditions. The mean values and RMS deviations of the velocity components were the results of laser measurements. The curves of the intensity of the vortex versus the guide vane opening and the Thoma number were plotted. The energy velocity spectra were presented for the points at which the most pronounced frequency precession of the helical axial vortex was observed. Video recording and laser Doppler anemometry were made in the operating conditions of the developed cavitation. Based on the results of video observations and energy spectra obtained via LDA, vortex frequencies were determined i.e. the frequencies of the vortex precession under the runner in the draft tube cone

  14. Formation of quasistationary vortex and transient hole patterns through vortex merger

    International Nuclear Information System (INIS)

    Ganesh, R.; Lee, J.K.

    2002-01-01

    Collection of point-like intense vortices arranged symmetrically outside of a uniform circular vortex patch, both enclosed in a free-slip circular boundary, are numerically time evolved for up to 10-15 patch turnover times. These patterns are found to merge with the patch by successively inducing nonlinear dispersive modes (V-states) on the surface of the patch, draw off fingers of vorticity (filamentation), trap the irrotational regions as the fingers symmetrize under the shear flow of the patch and point-like vortices (wave breaking) followed by the vortex-hole capture. While the hole patterns are observed to break up over several turnover periods the vortex patterns appear to evolve into quasistationary patterns for some cases of an initial number of point-like vortices N pv . The bounded V-states, filamentation, and vortex (hole) pattern formation are discussed in some detail and their possible connection to recently observed vortex 'crystals' is pointed out

  15. Vortex shedding from tandem cylinders

    Science.gov (United States)

    Alam, Md. Mahbub; Elhimer, Mehdi; Wang, Longjun; Jacono, David Lo; Wong, C. W.

    2018-03-01

    An experimental investigation is conducted on the flow around tandem cylinders for ranges of diameter ratio d/ D = 0.25-1.0, spacing ratio L/ d = 5.5-20, and Reynolds number Re = 0.8 × 104-2.42 × 104, where d and D are the diameters of the upstream and downstream cylinders, respectively, L is the distance from the upstream cylinder center to the forward stagnation point of the downstream one. The focus is given on examining the effects of d/ D, L/ d and Re on Strouhal number St, flow structures and fluid forces measured using hotwire, particle image velocimetry (PIV) and load cell measurement techniques, respectively. Changes in d/ D and L/ d in the ranges examined lead to five flow regimes, namely lock-in, intermittent lock-in, no lock-in, subharmonic lock-in and shear-layer reattachment regimes. Time-mean drag coefficient ( C D) and fluctuating drag and lift coefficients ({C^'D} and {C^'L}) are more sensitive to L/ d than d/ D. The scenario is opposite for St where d/ D is more prominent than L/ d to change the St. The detailed facet of the dependence on d/ D and L/ d of C D, {C^'D}, {C^'L} and St is discussed based on shear-layer velocity, approaching velocity, vortex formation length, and wake width.

  16. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  17. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  18. Intraventricular vortex properties in nonischemic dilated cardiomyopathy

    Science.gov (United States)

    Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.

    2014-01-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062

  19. Vortex operators in gauge field theories

    International Nuclear Information System (INIS)

    Polchinski, J.

    1980-07-01

    Several related aspects of the 't Hooft vortex operator are studied. The current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator are reviewed first. The Abelian vortex operator written in terms of elementary fields and the calculation of its Green's functions are considered. A two-dimensional solvable model of a Dirac string is presented. The expression of the Green's functions more neatly in terms of Wu and Yang's geometrical idea of sections is addressed. The renormalization of the Green's functions of two kinds of Abelian looplike operators, the Wilson loop and the vortex operator, is studied; for both operators only an overall multiplicative renormalization is needed. In the case of the vortex this involves a surprising cancellation. Next, the dependence of the Green's functions of the Wilson and 't Hooft operators on the nature of the vacuum is discussed. The cluster properties of the Green's functions are emphasized. It is seen that the vortex operator in a massive Abelian theory always has surface-like clustering. The form of Green's functions in terms of Feynman graphs is the same in Higgs and symmetric phases; the difference appears in the sum over all tadpole trees. Finally, systems having fields in the fundamental representation are considered. When these fields enter only weakly into the dynamics, a vortex-like operator is anticipated. Any such operator can no longer be local looplike, but must have commutators at long range. A U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint), is examined. When the fundamental field is weakly coupled, the expected phase transitions are found. When it is strongly coupled, the operator still appears to be a good order parameter, a discontinuous change in its behavior leads to a new phase transition. 18 figures

  20. NASA Communications Augmentation network

    Science.gov (United States)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  1. Augmented fish health monitoring

    International Nuclear Information System (INIS)

    Michak, P.; Rogers, R.; Amos, K.

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs

  2. Augmented Virtual Reality Laboratory

    Science.gov (United States)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  3. Augmented reality system

    Science.gov (United States)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  4. Maxillary sinus augmentation

    Directory of Open Access Journals (Sweden)

    A B Tarun Kumar

    2015-01-01

    Full Text Available Placing dental implants in the maxillary posterior region can be both challenging and un-nerving for a regular implant dentist who is not well versed with advanced surgical procedures. It is vital for a general dentist to understand the fundamentals of bone grafting the maxillary sinus if he/she is really committed to providing the best health care for their patients. The dental practice is seeing an increasing group of patients who are living longer, and this group of older baby boomers often has an edentulous posterior maxilla either unilateral or bilateral. When edentulous, the posterior maxilla more likely has diminished bone height, which does not allow for the placement of dental implants without creating additional bone. Through grafting the maxillary sinus, bone of ideal quality can be created (allowing for placement of dental implants, which offer many advantages over other tooth replacement modalities. The sinus graft offers the dental patient a predictable procedure of regenerating lost osseous structure in the posterior maxilla. This offers the patient many advantages for long-term success. If dentists understand these concepts, they can better educate their patients and guide them to have the procedure performed. This article outlines bone grafting of the maxillary sinus for the purpose of placing dental implants. This review will help the readers to understand the intricacies of sinus augmentation. They can relate their patient's condition with the available literature and chalk out the best treatment plan for the patient, especially by using indirect sinus augmentation procedures which are less invasive and highly successful if done using prescribed technique.

  5. Numerical Simulation of Wind Turbine Blade-Tower Interaction

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Hu Zhou; Decheng Wan

    2012-01-01

    Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes (PANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory (NREL) phase Ⅵ wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.

  6. Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation

    Science.gov (United States)

    Sale, Danny; Aliseda, Alberto

    2014-11-01

    Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.

  7. Flow measurement behind a pair of vertical-axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  8. Advanced Intellect-Augmentation Techniques.

    Science.gov (United States)

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  9. Augmented Reality Comes to Physics

    Science.gov (United States)

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  10. Augmented reality som wearable technology

    DEFF Research Database (Denmark)

    Rahn, Annette

    “How Augmented reality can facilitate learning in visualizing human anatomy “ At this station I demonstrate how Augmented reality can be used to visualize the human lungs in situ and as a wearable technology which establish connection between body, image and technology in education. I will show...

  11. Turbine blade vibration dampening

    Science.gov (United States)

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  12. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  13. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

    Science.gov (United States)

    Xu, B F; Wang, T G; Yuan, Y; Cao, J F

    2015-02-28

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Nonlinear Binormal Flow of Vortex Filaments

    Science.gov (United States)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  15. Vortex Shedding Inside a Baffled Air Duct

    Science.gov (United States)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  16. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  17. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  18. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  19. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  20. Dynamic Control of Collapse in a Vortex Airy Beam

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  1. Suppression of vortex shedding around a square cylinder using ...

    Indian Academy of Sciences (India)

    control of vortex shedding of square cylinders using blowing or suction. ... also showed complete suppression of vortex shedding if suction velocity falls between 0.40 .... equations such that mass balance (continuity) is satisfied simultaneously.

  2. Universal statistics of vortex lines.

    Science.gov (United States)

    Nahum, Adam; Chalker, J T

    2012-03-01

    We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term.

  3. Air injection test on a Kaplan turbine: prototype - model comparison

    Science.gov (United States)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  4. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    Science.gov (United States)

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  5. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    International Nuclear Information System (INIS)

    Speetjens, M F M; Meleshko, V V; Van Heijst, G J F

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)

  6. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  7. Turbine disintegration debris

    International Nuclear Information System (INIS)

    Holecek, M.; Martinec, P.; Malotin, V.; Peleska, P.; Voldrich, J.

    1997-01-01

    The determination, evaluation and analysis of possible unacceptable consequences of the disintegration turbine (turbo-set) missiles is a part of the wide conceived project put by the company Nuclear Power Plant Mochovce (NPPM), the Slovak Republic. The aim of the project is to take measures reducing the probability of striking a target of safety importance in NPPM by a turbine (turbo-set) missile below the prescribed limit of 10 -6 per turbine year. Following the IAEA Safety Guides, all potential events leading to the generation of a missile are to be analysed. It is necessary to evaluate the probability of unacceptable consequences of such missiles and analyse each event whose probability is not acceptable low. This complex problem thus carries especially: complex analysis of fragment generation; evaluation of the probability of unacceptable events; location of strike zones of possible turbine missiles; assessment the possibility of the turbo-set casing penetration; and projection of additional design requirements if necessary

  8. Monitoring of wind turbines

    Science.gov (United States)

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  9. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  10. Theory of vortex flows in partially ionized magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, D.; Shukla, P.K

    2004-06-07

    A complete theory for vortex flows in partially ionized magnetoplasmas is presented. Accurate analytical and numerical results are obtained concerning the structure of a Burger's vortex and a tripolar vortex. A novel type of rotating tripolar vortices with elliptic cores are found in the systems dominated by the convection in incompressible flows, but whose generation is triggered by the diffusive and compressible effects. Our vortex flow models successfully explain recent observations from laboratory magnetoplasmas and geophysical flows.

  11. Vortex pinning by point defect in superconductors

    International Nuclear Information System (INIS)

    Liao Hongyin; Zhou Shiping; Du Haochen

    2003-01-01

    We apply the periodic time-dependent Ginzburg-Landau model to study vortex distribution in type-II superconductors with a point-like defect and square pinning array. A defect site will pin vortices, and a periodic pinning array with right geometric parameters, which can be any form designed in advance, shapes the vortex pattern as external magnetic field varies. The maximum length over which an attractive interaction between a pinning centre and a vortex extends is estimated to be about 6.0ξ. We also derive spatial distribution expressions for the order parameter, vector potential, magnetic field and supercurrent induced by a point defect. Theoretical results and numerical simulations are compared with each other and they are consistent

  12. Inertial mass of the Abrikosov vortex.

    Science.gov (United States)

    Chudnovsky, E M; Kuklov, A B

    2003-08-08

    We show that a large contribution to the inertial mass of the Abrikosov vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is M(l)=(m(2)(e)c(2)/64 pi alpha(2)mu lambda(4)(L))ln((lambda(L)/xi), where m(e) is the bare electron mass, c is the speed of light, alpha=e(2)/Planck's over 2 pi c approximately 1/137 is the fine structure constant, mu is the shear modulus of the solid, lambda(L) is the London penetration length, and xi is the coherence length. In conventional superconductors, this mass can be comparable to or even greater than the vortex core mass computed by Suhl [Phys. Rev. Lett. 14, 226 (1965)

  13. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  14. Vortex rings from Sphagnum moss capsules

    Science.gov (United States)

    Whitaker, Dwight; Strassman, Sam; Cha, Jung; Chang, Emily; Guo, Xinyi; Edwards, Joan

    2010-11-01

    The capsules of Sphagnum moss use vortex rings to disperse spores to suitable habitats many kilometers away. Vortex rings are created by the sudden release of pressurized air when the capsule ruptures, and are an efficient way to carry the small spores with low terminal velocities to heights where they can be carried by turbulent wind currents. We will present our computational model of these explosions, which are carried out using a 2-D large eddy simulation (LES) on FLUENT. Our simulations can reproduce the observed motion of the spore clouds observed from moss capsules with high-speed videos, and we will discuss the roles of bursting pressure, cap mass, and capsule morphology on the formation and quality of vortex rings created by this plant.

  15. Elementary pinning force for a superconducting vortex

    International Nuclear Information System (INIS)

    Hyun, O.B.; Finnemore, D.K.; Schwartzkopf, L.; Clem, J.R.

    1987-01-01

    The elementary pinning force f/sub p/ has been measured for a single vortex trapped in one of the superconducting layers of a cross-strip Josephson junction. At temperatures close to the transition temperature the vortex can be pushed across the junction by a transport current. The vortex is found to move in a small number of discrete steps before it exits the junction. The pinning force for each site is found to be asymmetric and to have a value of about 10/sup -6/ N/m at the reduced temperature, t = T/T/sub c/ = 0.95. As a function of temperature, f/sub p/ is found to vary approximately as (1-t)/sup 3/2/. .AE

  16. Alternative method for variable aspect ratio vias using a vortex mask

    Science.gov (United States)

    Schepis, Anthony R.; Levinson, Zac; Burbine, Andrew; Smith, Bruce W.

    2014-03-01

    Historically IC (integrated circuit) device scaling has bridged the gap between technology nodes. Device size reduction is enabled by increased pattern density, enhancing functionality and effectively reducing cost per chip. Exemplifying this trend are aggressive reductions in memory cell sizes that have resulted in systems with diminishing area between bit/word lines. This affords an even greater challenge in the patterning of contact level features that are inherently difficult to resolve because of their relatively small area and complex aerial image. To accommodate these trends, semiconductor device design has shifted toward the implementation of elliptical contact features. This empowers designers to maximize the use of free device space, preserving contact area and effectively reducing the via dimension just along a single axis. It is therefore critical to provide methods that enhance the resolving capacity of varying aspect ratio vias for implementation in electronic design systems. Vortex masks, characterized by their helically induced propagation of light and consequent dark core, afford great potential for the patterning of such features when coupled with a high resolution negative tone resist system. This study investigates the integration of a vortex mask in a 193nm immersion (193i) lithography system and qualifies its ability to augment aspect ratio through feature density using aerial image vector simulation. It was found that vortex fabricated vias provide a distinct resolution advantage over traditionally patterned contact features employing a 6% attenuated phase shift mask (APM). 1:1 features were resolvable at 110nm pitch with a 38nm critical dimension (CD) and 110nm depth of focus (DOF) at 10% exposure latitude (EL). Furthermore, iterative source-mask optimization was executed as means to augment aspect ratio. By employing mask asymmetries and directionally biased sources aspect ratios ranging between 1:1 and 2:1 were achievable, however, this

  17. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  18. Vortex operators in gauge field theories

    International Nuclear Information System (INIS)

    Polchinski, J.G.

    1980-01-01

    We study several related aspects of the t Hooft vortex operator. The first chapter reviews the current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator. The second chapter deals with the Abelian vortex operator written in terms of elementary fields and with the calculation of its Green's functions. The Dirac veto problem appears in a new guise. We present a two dimensional solvable model of a Dirac string. This leads us to a new solution of the veto problem; we discuss its extension to four dimensions. We then show how the Green's functions can be expressed more neatly in terms of Wu and Yang's geometrical idea of sections. In the third chapter we discuss the dependence of the Green's functions of the Wilson and t Hooft operators on the nature of the vacuum. In the fourth chapter we consider systems which have fields in the fundamental representation, so that there are no vortex operators. When these fields enter only weakly into the dynamics, as is the case in QCD and in real superconductors, we would expect to be able to define a vortex-like operator. We show that any such operator can no longer be local looplike, but must have commutators at long range. We can still find an operator with useful properties, its cluster property, though more complicated than that of the usual vortex operator, still appears to distinguish Higgs, confining and perturbative phases. To test this, we consider a U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint)

  19. A vortex ring interacting with a vortex filament and its deformation near the two-dimensional stagnation point

    International Nuclear Information System (INIS)

    Kiya, M.; Sato, T.

    1986-01-01

    In this paper the interaction between vortex filaments and vortex rings and the deformation of vortex rings near the two-dimensional stagnation point are simulated by a three-dimensional vortex method. The two problems are respectively concerned with the effect of free-stream turbulence on turbulent plane mixing layers and the production of turbulence by the vortex stretching near saddles associated with large-scale coherent structures. The authors assume that the first step to understand the free-stream turbulence effect is to study the interaction between a vortex ring and a vortex filament and that the process of deformation of a vortex ring gives us a clue to understand physical processes occurring near the saddles

  20. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    International Nuclear Information System (INIS)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe; Lykholt-Ustrup, Flemming

    2017-01-01

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation

  1. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe [Institute of Fluid System Dynamics, Technische Universitaet, Berlin (Germany); Lykholt-Ustrup, Flemming [Grundfos Holding A/S, Bjerringbro (Denmark)

    2017-04-15

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation.

  2. Theory of pairing symmetry in the vortex states

    NARCIS (Netherlands)

    Yokoyama, Takehito; Ichioka, Yukio; Yanaka, Yukio; Golubov, Alexandre Avraamovitch

    2010-01-01

    We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity

  3. Vortex deformation and reduction of the Lorentz force

    International Nuclear Information System (INIS)

    Vuorio, M.

    1977-01-01

    A vortex of an extreme II-type superconductor is considered in the presence of a transport current. The equivalence of Magnus and Lorentz forces in a static vortex is discussed and the effect of vortex deformation is included in calculating corrections to the conventional expression of the Lorentz force. (author)

  4. European wind turbine catalogue

    International Nuclear Information System (INIS)

    1994-01-01

    The THERMIE European Community programme is designed to promote the greater use of European technology and this catalogue contributes to the fulfillment of this aim by dissemination of information on 50 wind turbines from 30 manufacturers. These turbines are produced in Europe and are commercially available. The manufacturers presented produce and sell grid-connected turbines which have been officially approved in countries where this approval is acquired, however some of the wind turbines included in the catalogue have not been regarded as fully commercially available at the time of going to print. The entries, which are illustrated by colour photographs, give company profiles, concept descriptions, measured power curves, prices, and information on design and dimension, safety systems, stage of development, special characteristics, annual energy production, and noise pollution. Lists are given of wind turbine manufacturers and agents and of consultants and developers in the wind energy sector. Exchange rates used in the conversion of the prices of wind turbines are also given. Information can be found on the OPET network (organizations recognised by the European Commission as an Organization for the Promotion of Energy Technologies (OPET)). An article describes the development of the wind power industry during the last 10-15 years and another article on certification aims to give an overview of the most well-known and acknowledged type approvals currently issued in Europe. (AB)

  5. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  6. Wind turbines and infrasound

    International Nuclear Information System (INIS)

    Howe, B.

    2006-01-01

    This paper provided the results of a study conducted to assess the impacts of wind farm-induced infrasound on nearby residences and human populations. Infrasound occurs at frequencies below those considered as detectable by human hearing. Infrasonic levels caused by wind turbines are often similar to ambient levels of 85 dBG or lower that are caused by wind in the natural environment. This study examined the levels at which infrasound poses a threat to human health or can be considered as an annoyance. The study examined levels of infrasound caused by various types of wind turbines, and evaluated acoustic phenomena and characteristics associated with wind turbines. Results of the study suggested that infrasound near modern wind turbines is typically not perceptible to humans through either auditory or non-auditory mechanisms. However, wind turbines often create an audible broadband noise whose amplitude can be modulated at low frequencies. A review of both Canadian and international studies concluded that infrasound generated by wind turbines should not significantly impact nearby residences or human populations. 17 refs., 2 tabs., 4 figs

  7. Phenobarbital Augments Hypothermic Neuroprotection

    Science.gov (United States)

    Barks, John D.; Liu, Yi-Qing; Shangguan, Yu; Silverstein, Faye S.

    2010-01-01

    Seizures are associated with adverse outcome in infants with hypoxic-ischemic encephalopathy. We hypothesized that early administration of the anticonvulsant phenobarbital after cerebral hypoxia-ischemia could enhance the neuroprotective efficacy of delayed-onset hypothermia. We tested this hypothesis in a neonatal rodent model. Seven-day-old rats (n=104) underwent right carotid ligation, followed by 90 min 8%O2 exposure; 15 min later, they received injections of phenobarbital (40 mg/kg) or saline. One or 3h later, all were treated with hypothermia (30°C, 3h). Function and neuropathology were evaluated after 7 days (“early outcomes”) or 1 month (“late outcomes”). Early outcome assessment demonstrated better sensorimotor performance and less cortical damage in phenobarbital-treated groups; there were no differences between groups in which the hypothermia delay was shortened from 3h to 1h. Late outcome assessment confirmed sustained benefits of phenobarbital+hypothermia treatment; sensorimotor performance was better (persistent attenuation of contralateral forepaw placing deficits and absence of contralateral forepaw neglect); neuropathology scores were lower (medians, phenobarbital 2, saline 8.5, pphenobarbital may augment the neuroprotective efficacy of therapeutic hypothermia. PMID:20098339

  8. Understanding augmented reality concepts and applications

    CERN Document Server

    Craig, Alan B

    2013-01-01

    Augmented reality is not a technology. Augmented reality is a medium. Likewise, a book on augmented reality that only addresses the technology that is required to support the medium of augmented reality falls far short of providing the background that is needed to produce, or critically consume augmented reality applications. One reads a book. One watches a movie. One experiences augmented reality. Understanding Augmented Reality addresses the elements that are required to create compelling augmented reality experiences. The technology that supports

  9. First and second order vortex dynamics

    International Nuclear Information System (INIS)

    Kim, Yoonbai; Lee, Kimyeong

    2002-01-01

    The low energy dynamics of vortices in self-dual Abelian Higgs theory in (2+1)-dimensional spacetime is of second order in vortex velocity and characterized by the moduli space metric. When the Chern-Simons term with a small coefficient is added to the theory, we show that a term linear in vortex velocity appears and can be consistently added to the second order expression. We provide an additional check of the first and second order terms by studying the angular momentum in field theory

  10. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  11. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  12. Inertial mass of a superconducting vortex

    OpenAIRE

    Chudnovsky, E. M.; Kuklov, A. B.

    2003-01-01

    We show that a large contribution to the inertial mass of a moving superconducting vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is $M_{l} = ({\\rm m}_e^2c^{2}/64{\\pi}{\\alpha}^{2}{\\mu}{\\lambda}_{L}^{4})\\ln({\\lambda}_{L}/{\\xi})$ , where ${\\rm m}_{e}$ is the the bare electron mass, $c$ is the speed of light, ${\\alpha}=e^{2}/{\\hbar}c {\\approx} 1/137$ is the fine structure constant, ${\\mu}$ is the shear mod...

  13. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  14. Comment on ''Negative temperature of vortex motion''

    International Nuclear Information System (INIS)

    O'Neil, K.; Campbell, L.J.

    1993-01-01

    In a recent Brief Report and subsequently [Phys. Rev. A 43, 2050 (1991); 44, 8439 (1991)], Berdichevsky, Kunin, and Hussain claim that the ''Boltzmann temperature'' of a bounded point vortex system is always positive, and that the spatial inhomogeneities that evolve at high energies in such a system are incompatible with ergodicity of the dynamics. The argument given to support these claims neglected the presence of the fluid boundary. We prove that the Boltzmann temperature is in fact always negative, and present evidence that the vortex clumping that has been observed in simulations is consistent with ergodic dynamics

  15. Decoding algorithm for vortex communications receiver

    Science.gov (United States)

    Kupferman, Judy; Arnon, Shlomi

    2018-01-01

    Vortex light beams can provide a tremendous alphabet for encoding information. We derive a symbol decoding algorithm for a direct detection matrix detector vortex beam receiver using Laguerre Gauss (LG) modes, and develop a mathematical model of symbol error rate (SER) for this receiver. We compare SER as a function of signal to noise ratio (SNR) for our algorithm and for the Pearson correlation algorithm. To our knowledge, this is the first comprehensive treatment of a decoding algorithm of a matrix detector for an LG receiver.

  16. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...... rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos....

  17. Vortex-Peierls States in Optical Lattices

    International Nuclear Information System (INIS)

    Burkov, A.A.; Demler, Eugene

    2006-01-01

    We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states

  18. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available at exploring the methods of generating optical vortex beams. We will discuss a typical extra-cavity approach that harnesses digital holography through the use of a SLM. We consider vortex beam generation as the fundamental mode of a monolithic microchip laser...-cavity phase diffractive elements can result in the desired mode as the fundamental mode of the cavity with pure modal quality. This approach, although very attractive is insufficient for the generation of these modes in monolithic microchip lasers. A...

  19. Augmented Mirror: Interactive Augmented Reality System Based on Kinect

    OpenAIRE

    Vera , Lucía; Gimeno , Jesús; Coma , Inmaculada; Fernández , Marcos

    2011-01-01

    Part 1: Long and Short Papers; International audience; In this paper we present a virtual character controlled by an actor in real time, who talks with an audience through an augmented mirror. The application, which integrates video images, the avatar and other virtual objects within an Augmented Reality system, has been implemented using a mixture of technologies: two kinect systems for motion capture, depth map and real images, a gyroscope to detect head movements, and control algorithms to...

  20. Analysis of vorticity dynamics for hump characteristics of a pump turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyou; Gong, Ruzhi; Wang, Hongjie; Han, Lei; Wei, Xianzhu; Qin, Daqing [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China)

    2016-08-15

    Conventional parameters based on CFD methodology for the investigation on hump characteristics of a pump turbine cannot reflect the dynamic interaction mechanism between the runner and the fluid. This research presents a dynamic interaction mechanism of a pump turbine operating in the hump region. First, vorticity dynamic parameters were obtained based on the theory of vorticity dynamics. Second, 3-D unsteady flow simulations were performed in a full pump turbine model using the SST k-ω turbulence model, and numerical results have a good agreement with the experiments. Then, analysis was carried out to determine the relation between the vorticity dynamic parameters and hump characteristics. The results indicate that the theory of vorticity dynamics has an advantage in evaluating the dynamic performance of a pump turbine. The energy transfer between the runner and the fluid is through vorticity dynamic parameters-pressure and friction terms, in which the pressure term accounts for the most. Furthermore, vortex generation mainly results from the skin friction. Combining vorticity dynamic analysis with the method of Q-criterion indicates that hump characteristics are related to the reduction of the surface normal pressure work and vortex motion on the suction surfaces close to the leading edges in the runner, and the increase of skin friction work in the stay-guide vanes.

  1. Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions

    Science.gov (United States)

    Chen, Ting; Zheng, Xianghao; Zhang, Yu-ning; Li, Shengcai

    2018-02-01

    Owing to the part-load operations for the enhancement of grid flexibility, the Francis turbine often suffers from severe low-frequency and large-amplitude hydraulic instability, which is mostly pertinent to the highly unsteady swirling vortex rope in the draft tube. The influence of disturbances in the upstream (e.g., large-scale vortex structures in the spiral casing) on the draft-tube vortex flow is not well understood yet. In the present paper, the influence of the upstream disturbances on the vortical flow in the draft tube is studied based on the vortex identification method and the analysis of several important parameters (e.g., the swirl number and the velocity profile). For a small guide vane opening (representing the part-load condition), the vortices triggered in the spiral casing propagate downstream and significantly affect the swirling vortex-rope precession in the draft tube, leading to the changes of the intensity and the processional frequency of the swirling vortex rope. When the guide vane opening approaches the optimum one (representing the full-load condition), the upstream disturbance becomes weaker and thus its influences on the downstream flow are very limited.

  2. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. We...... investigated whether there is an association between residential proximity to wind turbines and idiopathic symptoms, after controlling for personal reactions to other environmental co-exposures. We assessed wind turbine exposures in 454 residences as the distance to the closest wind turbine (Dw) and number...... of wind turbines

  3. Vortex dynamics in Josephson junctions arrays

    International Nuclear Information System (INIS)

    Shalom, Diego Edgar

    2005-01-01

    In this work we study the dynamics of vortices in two-dimensional overdamped Josephson Junctions Arrays (JJA) driven by dc current in a wide range of conditions varying magnetic field and temperature using experiments, numerical simulations and analytic studies.We develop the Fixed Phase method, a variation of numeric relaxation techniques in which we fix and control the phase of some islands, adjacent to the vortex center, while allowing all other phases in the system to relax.In this way we are able to pull and push the vortex uphill, as we are forcing the center of rotation of the vortex currents to be in a defined location, allowing us to calculate the potential energy of a vortex located in any arbitrary position.We use this method to study the potential energy of a vortex in a variety of situations in homogeneous and non-homogeneous JJA, such as arrays with defects, channel arrays and ratchets.We study the finite size effects in JJA by means of analytic and numerical tools.We implement the rings model, in which we replace the two-dimensional square array by a series of square, concentric, uncoupled rings. This is equivalent to disregarding the radial junctions that couple consecutive rings.In spite of its extreme simplicity, this model holds the main ingredients of the magnetic dependence of the energy.We combine this model with other terms that take into account the dependence in the position of the vortex to obtain a general expression for the potential energy of a vortex in a finite JJA with applied magnetic field.We also present an expression for the first critical field, corresponding to the value of the magnetic field in which the entrance of the first vortex becomes energetically favorable.We build and study JJA modulated to form periodic and asymmetrical potentials for the vortices, named ratchet potentials.The experimental results clearly show the existence of a rectification in the motion of vortices in these potentials.Under certain conditions we

  4. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    Science.gov (United States)

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  5. DNS of droplet-vortex interaction with a Karman vortex street

    International Nuclear Information System (INIS)

    Burger, M.; Schmehl, R.; Koch, R.; Wittig, S.; Bauer, H.-J.

    2006-01-01

    Predicting fuel spray interaction with large scale vortex structures still is a major challenge for state-of-the-art CFD codes. In order to elucidate the mechanisms involved, a fundamental study has been carried out in which the interaction of water droplets with a Karman vortex street is investigated. The disperse two-phase flow around a cylinder has been computed taking into account the mass, momentum and heat transfer between both phases. Flow conditions are chosen such that large scale vortices are generated by periodic flow separations of the well known Karman vortex street. A homogeneous distribution of water droplets is injected into the hot air up-stream of the computational domain. The mixing process as well as the impact of the droplets on the gas phase instabilities is analyzed in the downstream region where large scale vortex structures are present

  6. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  7. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    Science.gov (United States)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  8. General overview of the AxialT project: A partnership for low head turbine developments

    International Nuclear Information System (INIS)

    Deschenes, C; Ciocan, G D; Henau, V De; Flemming, F; Qian, R; Huang, J; Koller, M; Vu, T; Naime, F A; Page, M

    2010-01-01

    An overview of the AxialT project is presented. Initiated in 2007 by the Consortium on Hydraulic Machines, the aim of this four years project is to contribute to the study of time-dependent hydraulic phenomena in a propeller turbine. The geometry of the entire turbine is generously shared by all partners. Numerical simulations carried out by all partners are confronted with experimental measurements carried out at the LAMH laboratory in Laval University. A mix of 2D LDA, 3D PIV and unsteady pressure measurements are adapted to yield precise measurements at eight strategic locations within the turbine and for nine operating points. Phase resolved analysis is performed wherever applicable. An illustration of potential analysis accessible with the database is shown for the identification of a vortex in the runner at part load.

  9. Understanding of the Interaction between Clearance Leakage Flow and Main Passage Flow in a VGT Turbine

    Directory of Open Access Journals (Sweden)

    Ben Zhao

    2015-02-01

    Full Text Available The clearance flow between the nozzle and endwall in a variable geometry turbine (VGT has been numerically investigated to understand the clearance effect on the VGT performance and internal flow. It was found that the flow rate through turbine increases but the turbine efficiency decreases with height of clearance. Detailed flow field analyses indicated that most of the efficiency loss resulting from the leakage flow occurs at the upstream of the rotor area, that is, in the nozzle endwall clearance and between the nozzle vanes. There are two main mechanisms associated with this efficiency loss. One is due to the formation of the local vortex flow structure between the clearance flow and the main flow. The other is due to the impact of the clearance flow on the main flow after the nozzle throat. This impact reduces the span of shockwave with increased shockwave magnitude by changing the trajectory of the main flow.

  10. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  11. Three-dimensional viscous-inviscid coupling method for wind turbine computations

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2016-01-01

    In this paper, a computational model for predicting the aerodynamic behavior of wind turbine wakes and blades subjected to unsteady motions and viscous effects is presented. The model is based on a three-dimensional panel method using a surface distribution of quadrilateral sources and doublets......, which is coupled to a viscous boundary layer solver. Unlike Navier-Stokes codes that need to solve the entire flow domain, the panel method solves the flow around a complex geometry by distributing singularity elements on the body surface, obtaining a faster solution and making this type of codes...... suitable for the design of wind turbines. A free-wake model has been employed to simulate the wake behind a wind turbine by using vortex filaments that carry the vorticity shed by the trailing edge of the blades. Viscous and rotational effects inside the boundary layer are taken into account via...

  12. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  13. Tunable magnetic vortex resonance in a potential well

    Science.gov (United States)

    Warnicke, P.; Wohlhüter, P.; Suszka, A. K.; Stevenson, S. E.; Heyderman, L. J.; Raabe, J.

    2017-11-01

    We use frequency-resolved x-ray microscopy to fully characterize the potential well of a magnetic vortex in a soft ferromagnetic permalloy square. The vortex core is excited with magnetic broadband pulses and simultaneously displaced with a static magnetic field. We observe a frequency increase (blueshift) in the gyrotropic mode of the vortex core with increasing bias field. Supported by micromagnetic simulations, we show that this frequency increase is accompanied by internal deformation of the vortex core. The ability to modify the inner structure of the vortex core provides a mechanism to control the dynamics of magnetic vortices.

  14. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  15. Interaction of a strong vortex with decaying turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.

    1988-01-01

    The evolution of a localized, axially symmetric vortex under the action of shear stresses associated with decaying two-dimensional turbulent vorticity which is inhomogeneous in the presence of the vortex is studied analytically. For a vortex which is sufficiently strong relative to the coefficient of turbulent eddy viscosity, it is shown that turbulent fluctuations in the vortex interior and diffusion of coherent vorticity by the turbulence localize to the vortex periphery. It is also found that the coefficient of diffusion is small compared to the coefficient of eddy viscosity. 8 refs

  16. Vortex molecule in a nanoscopic square superconducting plate

    International Nuclear Information System (INIS)

    Suematsu, Hisataka; Kato, Masaru; Ishida, Takekazu; Koyama, Tomio; Machida, Masahiko

    2010-01-01

    Using the finite element method and solving the Bogoliubov-de Gennes equation, we have investigated magnetic field dependence of the stable vortex structures in a mesoscopic superconducting plate at low temperature (T = 0.1T c ). Because of the compactness of vortex configuration, there is interference between bound states around vortices and such quasi-particle structure affects the vortex configuration. Especially in two-vortices state, vortices form a molecule-like state, where bound states of each vortex form molecular orbital like bonding and anti-bonding states. The vortex configuration is different from that, which is expected from the repulsive interaction between vortices. (author)

  17. Metamorphosis of a Hairpin Vortex into a Young Turbulent Spot

    Science.gov (United States)

    Singer, Bart A.; Joslin, Ronald D.

    1995-01-01

    Direct numerical simulation was used to study the formation and growth of a hairpin vortex in a flat-plate boundary layer and its later development into a young turbulent spot. Fluid injection through a slit in the wall triggered the initial vortex. The legs of the vortex were stretched into a hairpin shape as it traveled downstream. Multiple hairpin vortex heads developed between the stretched legs. New vortices formed beneath the streamwise-elongated vortex legs. The continued development of additional vortices resulted in the formation of a traveling region of highly disturbed ow with an arrowhead shape similar to that of a turbulent spot.

  18. The Augmented REality Sandtable (ARES)

    Science.gov (United States)

    2015-10-01

    Introduction The US Army Research Laboratory (ARL) Human Sciences Campaign calls out the topic of Virtual /Mixed and Augmented Reality as one of the...type of virtual environment. In virtual reality (VR), the totality of the environment is computer generated. In AR, the real world is augmented by...tangible user interfaces; and the effectiveness of virtual sand tables and similar systems. A market survey was also done to discover the state of

  19. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Battisti, L; Soraperra, G; Fedrizzi, R; Zanne, L

    2007-01-01

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics

  20. Vortex properties of mesoscopic superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)

    2010-10-01

    In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).