WorldWideScience

Sample records for vomeronasal stimulation reveals

  1. Vomeronasal organ and human pheromones.

    Science.gov (United States)

    Trotier, D

    2011-09-01

    For many organisms, pheromonal communication is of particular importance in managing various aspects of reproduction. In tetrapods, the vomeronasal (Jacobson's) organ specializes in detecting pheromones in biological substrates of congeners. This information triggers behavioral changes associated, in the case of certain pheromones, with neuroendocrine correlates. In human embryos, the organ develops and the nerve fibers constitute a substrate for the migration of GnRH-secreting cells from the olfactory placode toward the hypothalamus. After this essential step for subsequent secretion of sex hormones by the anterior hypophysis, the organ regresses and the neural connections disappear. The vomeronasal cavities can still be observed by endoscopy in some adults, but they lack sensory neurons and nerve fibers. The genes which code for vomeronasal receptor proteins and the specific ionic channels involved in the transduction process are mutated and nonfunctional in humans. In addition, no accessory olfactory bulbs, which receive information from the vomeronasal receptor cells, are found. The vomeronasal sensory function is thus nonoperational in humans. Nevertheless, several steroids are considered to be putative human pheromones; some activate the anterior hypothalamus, but the effects observed are not comparable to those in other mammals. The signaling process (by neuronal detection and transmission to the brain or by systemic effect) remains to be clearly elucidated.

  2. Cladistic Analysis of Olfactory and Vomeronasal Systems

    OpenAIRE

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  3. Cladistic analysis of olfactory and vomeronasal systems

    OpenAIRE

    Alino eMartinez-Marcos

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  4. Cladistic Analysis of Olfactory and Vomeronasal Systems

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  5. Cladistic analysis of olfactory and vomeronasal systems.

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  6. Cladistic analysis of olfactory and vomeronasal systems

    Directory of Open Access Journals (Sweden)

    Alino eMartinez-Marcos

    2011-01-01

    Full Text Available Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical cortex. We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis, short-tailed opossums (Monodelphis domestica and rats (Rattus norvegicus by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines. In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  7. Lungfishes, like tetrapods, possess a vomeronasal system

    Directory of Open Access Journals (Sweden)

    Agustín González

    2010-09-01

    Full Text Available The vomeronasal system (VNS is an accessory olfactory system that in tetrapod vertebrates is composed of specific receptors neurons in the nasal organ and a set of centers in the forebrain that receive and relay the information consecutively towards the hypothalamus. Thus, only in tetrapods the VNS comprises a discrete vomeronasal (Jacobson’s organ, which contains receptor cells that are morphologically distinct from those of the olfactory epithelium and use different transduction mechanisms. The axons of the vomeronasal receptors in tetrapods project to the accessory olfactory bulb (AOB in the rostral telencephalon. Secondary vomeronasal connections exist through the medial amygdala to the hypothalamus. Currently, the lungfishes are considered the closest living relatives of tetrapods, based on genetic and molecular data. Here we show that the African lungfish, Protopterus dolloi, has epithelial crypts at the base of the lamellae of the olfactory epithelium that express markers of the vomeronasal receptors in tetrapods. The projections of these crypts allow us to identify an AOB on the lateral margin of the main olfactory bulb. The projections of this AOB reach a region that is topologically, hodologically, and immunohistochemically identical to the medial amygdala and could represent its homolog. Neurons of this putative medial amygdala were demonstrated to project to the lateral hypothalamus, as they do in tetrapods. All these features that lungfishes share with tetrapods indicate that lungfishes have the complete set of brain centers and connections involved in processing vomeronasal information and that these features were already present in the last common ancestor of lungfishes and tetrapods.

  8. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles.

    Science.gov (United States)

    Brykczynska, Urszula; Tzika, Athanasia C; Rodriguez, Ivan; Milinkovitch, Michel C

    2013-01-01

    The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment.

  9. Human vomeronasal epithelium development: An immunohistochemical overview.

    Science.gov (United States)

    Dénes, Lóránd; Pap, Zsuzsanna; Szántó, Annamária; Gergely, István; Pop, Tudor Sorin

    2015-06-01

    The vomeronasal organ (VNO) is the receptor structure of the vomeronasal system (VNS) in vertebrates. It is found bilaterally in the submucosa of the inferior part of the nasal septum. There are ongoing controversies regarding the functionality of this organ in humans. In this study we propose the immunohistochemical evaluation of changes in components of the human vomeronasal epithelium during foetal development. We used 45 foetuses of different age, which were included in three age groups. After VNO identification immunohistochemical reactions were performed using primary antibodies against the following: neuron specific enolase, calretinin, neurofilament, chromogranin, synaptophysin, cytokeratin 7, pan-cytokeratin and S100 protein. Digital slides were obtained and following colorimetric segmentation, surface area measurements were performed. The VNO was found in less than half of the studied specimens (42.2%). Neuron specific enolase and calretinin immunoexpression showed a decreasing trend with foetal age, while the other neural/neuroendocrine markers were negative in all specimens. Cytokeratin 7 expression increased with age, while Pan-Ctk had no significant variations. S100 protein immunoexpression also decreased around the VNO. The results of the present work uphold the theory of regression of the neuroepithelium that is present during initial stages of foetal development.

  10. El órgano vomeronasal humano

    OpenAIRE

    Naser G,Alfredo; Fullá O,Juan; Varas P,Mª Antonieta; Nazar S,Rodolfo

    2008-01-01

    El órgano vomeronasal (OVN) es una estructura que estudiamos alguna vez en anatomía, sin embargo su ubicación, frecuencia y función específica en humanos ha sido poco estudiada. Por este motivo se realizó una revisión bibliográfica actualizada acerca del OVN humano, enf atizando en puntos Importantes como su anatomía y relación con algunas conductas. Hoy en día es considerado como un órgano olfatorio accesorio, capaz de percibir la presencia de vomeroferinas. Estas corresponden a un grupo de ...

  11. Tuning Properties and Dynamic Range of Type 1 Vomeronasal Receptors

    Directory of Open Access Journals (Sweden)

    Sachiko eHaga-Yamanaka

    2015-07-01

    Full Text Available The mouse vomeronasal organ expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two Type 1 vomeronasal receptors in the mouse vomeronasal organ and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to sulfated estrogens. These properties recapitulate the response profiles of endogenous neurons to sulfated estrogens.

  12. Responses to sulfated steroids of female mouse vomeronasal sensory neurons

    OpenAIRE

    Celsi, F.; d'Errico, A.; Menini, A.

    2012-01-01

    The rodent vomeronasal organ plays an important role in many social behaviors. Using the calcium imaging technique with the dye fluo-4 we measured intracellular calcium concentration changes induced by the application of sulfated steroids to neurons isolated from the vomeronasal organ of female mice. We found that a mix of 10 sulfated steroids from the androgen, estrogen, pregnanolone, and glucocorticoid families induced a calcium response in 71% of neurons. Moreover, 31% of the neurons respo...

  13. The vomeronasal organ of Lemur catta.

    Science.gov (United States)

    Smith, Timothy D; Muchlinski, Magdalena N; Bhatnagar, Kunwar P; Durham, Emily L; Bonar, Christopher J; Burrows, Anne M

    2015-02-01

    The vomeronasal organ (VNO), also known as the Jacobson's organ, is a bilateral chemosensory organ found at the base of the nasal cavity specialized for the detection of higher-molecular weight (non-volatile) chemostimuli. It has been linked to pheromone detection. The VNO has been well studied in nocturnal lemurs and lorises, but poorly studied in diurnal/cathemeral species despite the large repertoire of olfactory behaviors noted in species such as Lemur catta. Here, the VNO and associated structures were studied microanatomically in one adult female and one adult male L. catta. Traditional and immunohistochemical procedures demonstrate the VNO epithelium consists of multiple rows of sensory neurons. Immunoreactivity to Growth-associated protein 43 (GAP43) indicates the VNO is postnatally neurogenic. In volume, the VNO neuroepithelium scales similarly to palatal length compared to nocturnal strepsirrhines. Numerous taste buds present at the oral opening to the nasopalatine duct, with which the VNO communicates, provide an additional (or alternative) explanation for the flehmen behavior that has been observed in this species. The VNO of L. catta is shown to be microanatomically comparable to that of nocturnal strepsirrhines. Like nocturnal strepsirrhines, the VNO of L. catta may be functional in the reception of high-molecular weight secretions. © 2014 Wiley Periodicals, Inc.

  14. Strain-specific Loss of Formyl Peptide Receptor 3 in the Murine Vomeronasal and Immune Systems.

    Science.gov (United States)

    Stempel, Hendrik; Jung, Martin; Pérez-Gómez, Anabel; Leinders-Zufall, Trese; Zufall, Frank; Bufe, Bernd

    2016-04-29

    Formyl peptide receptor 3 (Fpr3, also known as Fpr-rs1) is a G protein-coupled receptor expressed in subsets of sensory neurons of the mouse vomeronasal organ, an olfactory substructure essential for social recognition. Fpr3 has been implicated in the sensing of infection-associated olfactory cues, but its expression pattern and function are incompletely understood. To facilitate visualization of Fpr3-expressing cells, we generated and validated two new anti-Fpr3 antibodies enabling us to analyze acute Fpr3 protein expression. Fpr3 is not only expressed in murine vomeronasal sensory neurons but also in bone marrow cells, the primary source for immune cell renewal, and in mature neutrophils. Consistent with the notion that Fpr3 functions as a pathogen sensor, Fpr3 expression in the immune system is up-regulated after stimulation with a bacterial endotoxin (lipopolysaccharide). These results strongly support a dual role for Fpr3 in both vomeronasal sensory neurons and immune cells. We also identify a large panel of mouse strains with severely altered expression and function of Fpr3, thus establishing the existence of natural Fpr3 knock-out strains. We attribute distinct Fpr3 expression in these strains to the presence or absence of a 12-nucleotide in-frame deletion (Fpr3Δ424-435). In vitro calcium imaging and immunofluorescence analyses demonstrate that the lack of four amino acids leads to an unstable, truncated, and non-functional receptor protein. The genome of at least 19 strains encodes a non-functional Fpr3 variant, whereas at least 13 other strains express an intact receptor. These results provide a foundation for understanding the in vivo function of Fpr3. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Tuning properties and dynamic range of type 1 vomeronasal receptors

    Science.gov (United States)

    Haga-Yamanaka, Sachiko; Ma, Limei; Yu, C. Ron

    2015-01-01

    The mouse vomeronasal organ (VNO) expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two type 1 vomeronasal receptors in the mouse VNO and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens (SEs) and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to SEs. These properties recapitulate the response profiles of endogenous neurons to SEs. PMID:26236183

  16. Origin of the Genetic Components of the Vomeronasal System in the Common Ancestor of all Extant Vertebrates

    Science.gov (United States)

    Grus, Wendy E.; Zhang, Jianzhi

    2009-01-01

    Comparative genomics provides a valuable tool for inferring the evolutionary history of physiological systems, particularly when this information is difficult to ascertain by morphological traits. One such example is the vomeronasal system (VNS), a vertebrate nasal chemosensory system that is responsible for detecting intraspecific pheromonal cues as well as environmental odorants. The morphological components of the VNS are found only in tetrapods, but the genetic components of the system have been found in teleost fish, in addition to tetrapods. To determine when the genetic components of the VNS originated, we searched for the VNS-specific genes in the genomes of two early diverging vertebrate lineages: the sea lamprey from jawless fishes and the elephant shark from cartilaginous fishes. Genes encoding vomeronasal type 1 receptors (V1Rs) and Trpc2, two components of the vomeronasal signaling pathway, are present in the sea lamprey genome, and both are expressed in the olfactory organ, revealing that the genetic components of the present-day VNS existed in the common ancestor of all extant vertebrates. Additionally, all three VNS genes, Trpc2, V1Rs, and vomeronasal type 2 receptors (V2Rs), are found in the elephant shark genome. Because V1Rs and V2Rs are related to two families of taste receptors, we also searched the early diverging vertebrate genomes for taste system genes and found them in the shark genome but not in the lamprey. Coupled with known distributions of the genetic components of the vertebrate main olfactory system, our results suggest staggered origins of vertebrate sensory systems. These findings are important for understanding the evolution of vertebrate sensory systems and illustrate the utility of the genome sequences of early diverging vertebrates for uncovering the evolution of vertebrate-specific traits. PMID:19008528

  17. Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium

    Directory of Open Access Journals (Sweden)

    Anabel ePérez-Gómez

    2014-11-01

    Full Text Available The vomeronasal organ (VNO is a sensory organ that is found in most terrestrial vertebrates and that is principally implicated in the detection of pheromones. The VNO contains specialized sensory neurons organized in a pseudostratified neuroepithelium that recognize chemical signals involved in initiating innate behavioral responses. In rodents, the VNO neuroepithelium is segregated into two distinct zones, apical and basal. The molecular mechanisms involved in ligand detection by apical and basal VNO sensory neurons differ extensively. These two VNO subsystems express different subfamilies of vomeronasal receptors and signaling molecules, detect distinct chemosignals, and project to separate regions of the accessory olfactory bulb (AOB. The roles that these olfactory subdivisions play in the control of specific olfactory-mediated behaviors are largely unclear. However, analysis of mutant mouse lines for signal transduction components together with identification of defined chemosensory ligands has revealed a fundamental role of the basal part of the mouse VNO in mediating a wide range of instinctive behaviors, such as aggression, predator avoidance, and sexual attraction. Here we will compare the divergent functions and synergies between the olfactory subsystems and consider new insights in how higher neural circuits are defined for the initiation of instinctive behaviors.

  18. Transcranial Magnetic Stimulation Reveals Intrinsic Perceptual and Attentional Rhythms

    Science.gov (United States)

    Dugué, Laura; VanRullen, Rufin

    2017-01-01

    Oscillatory brain activity has functional relevance for perceptual and cognitive processes, as proven by numerous electrophysiology studies accumulating over the years. However, only within the past two decades have researchers been able to study the causal role of such oscillations using transcranial magnetic stimulation (TMS) technology. Two complementary approaches exist. A majority of research employs rhythmic TMS (rTMS) to entrain oscillatory activity and investigate its effect on targeted brain functions. On the other hand, single pulses of TMS (spTMS) that can be delivered with a high spatio-temporal resolution, can be used to precisely probe the state of the system. In this mini-review, we concentrate on this second approach. We argue that, with no a priori hypothesis on the oscillatory frequency of the targeted cortical regions, spTMS can help establish causal links between spontaneous oscillatory activity and perceptual and cognitive functions. Notably, this approach helped to demonstrate that the occipital cortex is periodically involved during specific attentional tasks at the theta (~5 Hz) frequency. We propose that this frequency reflects periodic inter-areal communication for attentional exploration and selection. In the future, clever combination of non-invasive recording and stimulation with well-controlled psychophysics protocols will allow us to further our understanding of the role of brain oscillations for human brain functions.

  19. Hours of high-frequency stimulations reveal intracellular neuronal trends in vivo

    Science.gov (United States)

    Brama, H.; Goldental, A.; Vardi, R.; Stern, E. A.; Kanter, I.

    2016-11-01

    The neuronal response to controlled stimulations in vivo has been classically estimated using a limited number of events. Here we show that hours of high-frequency stimulations and recordings of neurons in vivo reveal previously unknown response phases of neurons in the intact brain. Results indicate that for stimulation frequencies below a critical neuronal characteristic frequency, f c, response timings are stabilized to tens-of-microseconds accuracy. For stimulation frequencies exceeding f c the firing frequency is saturated and independent of the stimulation frequency, as a result of random neuronal response failures. This neuronal plasticity, previously shown in vitro, supports a robust mechanism for low firing rates on a network level.

  20. Developmental studies on the rat vomeronasal organ: vascular pattern and neuroepithelial differentiation. I. Light microscopy.

    Science.gov (United States)

    Szabó, K; Mendoza, A S

    1988-04-01

    The origin and the developmental sequence of the rat vomeronasal organ and its vascular supply are followed by means of India ink injection in serial sections of celloidin-embedded embryos from the eleventh day of gestation up to birth. The anlage of the vomeronasal organ has been established by the twelfth day of gestation (E 12). It appears as a shallow longitudinal impression of the medial wall of the nasal pit. At day E 14, it separates from the epithelium of the primary nasal cavity, forming a tube. The lumen of the organ remains continuous with the nasal cavity frontally, but ends blindly at the edge of the primary palate dorsally. From day E 16 to E 18 the lateral surface of the tubular vomeronasal organ invaginates toward the lumen forming a wide longitudinal furrow. The lumen is bordered by the developing neuroepithelium and receptor-free epithelium by this time. The vomeronasal organ receives a separate arterial blood supply arising from septal tributaries of the olfactory artery, a branch of the anterior cerebral artery from the earliest stage of development. Blood from the vomeronasal complex is collected in the vomeronasal vein lying in the longitudinal furrow next to the receptor-free epithelium. The typical vascular pattern of the vomeronasal organ is established by the eighteenth day of gestation. At this time, the first capillary loops appear within the neuroepithelium and the vomeronasal vein can already be seen to extend along the long axis of the organ.

  1. [Late embryonic development of the vomeronasal complex of the cat (Felis silvestris)].

    Science.gov (United States)

    Wöhrmann-Repenning, A; Ciba, B

    1989-01-01

    An examination of 2 feline embryos in different stages of development (overall length 60 and 115 mm respectively) reveals a well developed vomeronasal complex in each case. Jacobson's Organs embedded within the paraseptal cartilage form long blind tubes at the base of the septum nasi. The cartilage is caudally tub-shaped and embraces rostrally completely the organ over a considerable length. In this manner a long, nearly tunnel-like tube is formed which represents a modified form of the original outer bar and which has not been described so far in cats. It stretches rostro-ventrally across the branching region of the paraseptal cartilage as far as the mouth of Jacobson's Organ. The dorsal branch of the cartilago paraseptalis on the other hand forms a vertically oriented strip which connects to the lamina transversalis anterior. The ductus nasopalatinus passing through the palate is laterally supported by a cartilago ductus nasopalatini which rostrally to the mouth of Jacobson's Organ forms a unified element with the ventral branch of the cartilago paraseptalis. In the case of the younger cat embryo, this cartilago ductus nasopalatini is yet weakly developed. The ductus nasopalatini of the embryos studied are in an amazingly retarded state of development. The ductus, which are blocked in the early stages of the embryonic development during secondary palate formation, form predominantly solid strands of epithelium. By dissolving the cemented epithelium, the ductus are open. But even in the case of the older embryo of the cat, this process is not completed yet. The short duct connecting Jacobson's Organ with the ductus nasopalatinus is also still closed in both embryos. Such cemented sections of epithelium of the younger embryo reveals an interesting relation between the ductus nasopalatinus and the ductus nasolacrimalis which so far has not been pointed out for mammals. From the point of view of phylogenetics, the locally specialized vomeronasal complex of cats

  2. Prey detection by vomeronasal chemoreception in a plethodontid salamander.

    Science.gov (United States)

    Placyk, John S; Graves, Brent M

    2002-05-01

    While chemoreception is involved in a wide variety of salamander behaviors, the chemosensory system that mediates specific behaviors is rarely known. We investigated the role of the vomeronasal system (VNS) in foraging behavior of the red-backed salamander (Plethodon cinereus) by manipulating salamanders' abilities to detect nonvolatile chemical cues emitted by potential prey. Subjects received one of three treatments: (1) impaired vomeronasal system, (2) sham manipulation, and (3) no manipulation. The role of the VNS in mediating foraging on motile prey (Drosophila melanogaster) was investigated under three light conditions (bright, dim, dark). Salamanders with impaired VNSs foraged less efficiently than either of the other experimental groups by displaying the longest latency to attack and the lowest rate of prey capture, especially in the absence of visual cues. A second experiment utilized freshly killed prey to determine whether the VNS takes on added importance in the absence of visual or tactile cues associated with moving prey. Animals with impaired VNSs showed a decreased foraging efficiency on stationary prey under both dark and light conditions. In addition, a mark-recapture study of VNS-impaired and sham salamanders in the field also indicated that salamanders with impaired VNSs consumed fewer stationary prey compared to shams. The study indicates that the VNS plays a substantial role in the foraging behavior of the plethodontid salamander, P. cinereus.

  3. Sexual and seasonal differences in the vomeronasal epithelium of the red-backed salamander (Plethodon cinereus).

    Science.gov (United States)

    Dawley, E M; Crowder, J

    1995-08-28

    Sexually dimorphic behaviors often are associated with sexually dimorphic neural structures. Perinatal hormonal levels influence structural sexual dimorphism, and seasonal structural changes also can be the result of seasonal hormonal fluctuations. We compared the volume of vomeronasal organs of male and female red-backed salamanders (Plethodon cinereus) throughout the year. Odorants are delivered to vomeronasal receptors through nasolabial grooves when salamanders touch the bases of these grooves to objects (nose tapping). Males may locate and identify potential mates through nose tapping during the prolonged breeding season that lasts from October through May. We compared vomeronasal organ data through multiple regression by using total body size, sex, and season as variables that may influence vomeronasal organ volume. Gonads also were examined as an indicator of reproductive status. Total body size and sex significantly affect vomeronasal organ volume; as body size increases, so does vomeronasal organ volume, and males have significantly larger vomeronasal organs than females at all times of the year. During the summer, both males and females have larger vomeronasal organs than at any other time of the year. Summer also is a period of intense foraging and the initiation of a new cycle of gametogenesis. Previous studies of circulating hormone levels in amphibians have shown that the initial stages of gametogenesis correspond to a period of low estradiol and testosterone levels but high gonadotropin-releasing hormone levels. The functional significance of sexual and seasonal differences in the vomeronasal organs of P. cinereus may relate to the neurogenesis of specialized receptors for courtship and mating.

  4. The role of the vomeronasal organ in rattlesnake (Crotalus viridis oreganus) predatory behavior.

    Science.gov (United States)

    Alving, W R; Kardong, K V

    1996-01-01

    During predatory behavior, rattlesnakes depend primarily upon thermal and visual cues to initially aim a strike. However, it has been hypothesized that prey-related odors sensed by the vomeronasal system act as releasing stimuli of the strike and that such vomodors are primary stimuli during poststrike trailing and swallowing of the envenomated rodent. To test this, northern Pacific rattlesnakes were rendered avomic by bilateral lesions of the vomeronasal nerves, and their vomic and avomic predatory behaviors were compared. Avomic rattlesnakes exhibited fewer strikes and complete elimination of trailing and swallowing behavior. These results support the hypothesis that vomodors sensed via the vomeronasal organ are capable of acting as releasing stimuli of selected rattlesnake predatory behaviors. Sensory input via the vomeronasal organ is important during prestrike/strike behavior, and it is a major route of sensory input during poststrike trailing and ingestion of envenomated prey.

  5. Morphological, histochemical and computed tomography on the vomeronasal organ (Jacobson’s organ of Egyptian native breeds of goats (Capra hircus

    Directory of Open Access Journals (Sweden)

    Usama Kamal Moawad

    2017-06-01

    Full Text Available Background: The vomeronasal organ (Jacobson’s organ is a chemosensory paired tubular organ located on both sides of the nasal septum at its base. It plays an essential role in reproduction process and social behaviors. Objective: The current study investigated both anatomical and histological structure of the vomeronasal organ (VNO in Egyptian native breeds of goats using cross sectional anatomy, histological techniques and computed tomography (CT. Methodology: A total of thirty heads obtained from adult and apparently healthy goats of both sexes were collected from Beni-Suef slaughterhouse in Beni-Suef province, Egypt then subjected to anatomical, histological and computed topographical studies. Results: Grossly, the VNO appeared as two blind ducts on the either sides of the nasal septum at the floor of nasal cavity extending from the nasal opening of incisive papilla rostrally to the upper 2nd premolar teeth caudally. It connected with mouth by two nasopalatine ducts. The histological examinations revealed two types of lining epithelium; non sensory type lining the cranial portion and the lateral wall of the middle portion of the vomeronasal duct (VND, whereas an olfactory type was the lining epithelium of the medial wall of the middle and the whole caudal portions. The lamina propria submucosa exhibited vascular loose connective tissues, serous glands, nerve bundles and encapsulated by hyaline cartilage. Conclusion: The obtaining olfactory epithelium in VNO may indicate an essential role of this organ in sexual relationships and sociosexual behaviors through perception of pheromones.

  6. Fate and Development of Human Vomeronasal Organ - A Microscopic Fetal Study.

    Science.gov (United States)

    Vasuki, A K Manicka; Fenn, T K Aleyemma; Devi, M Nirmala; Hebzibah, T Deborah Joy; Jamuna, M; Sundaram, K Kalyana

    2016-03-01

    The existence of Vomeronasal organ in human is a controversial subject. Presence of Vomeronasal organ and its structure was not reported in standard text books. The presence of Vomeronasal organ in fetal life is doubtful. Hence identification of the organ by histological examination was planned. A study was conducted on resected specimens of nasal septum obtained from 45 spontaneously aborted fetuses from Obstetrics and Gynaecology department, PSG Institute of Medical Sciences and Research, Coimbatore, after ethical clearance. The histological structure of Vomeronasal organ was observed from 11 weeks old fetus. The epithelial lining of the organ, presence of cilia, presence of lamina propria, acini and the blood vessel and the types of cells were observed. The organ was lined by pseudostratified columnar epithelium. The organ showed Lamina propria with serous acini from 18 weeks fetus. Vomeronasal duct opening into the nasal cavity and three types of cells were observed in 28 weeks fetus. Knowledge about the persistence of Vomeronasal organ in fetuses and its structure need to be known. The organ may be found as a putative pit posterior to anterior nasal spine. The organ may be damaged in nasal septal surgeries and nasal endoscopic procedures. The organ may not be seen on gross examination in all human fetuses and cadavers.

  7. Formyl Peptide Receptors from Immune and Vomeronasal System Exhibit Distinct Agonist Properties*

    Science.gov (United States)

    Bufe, Bernd; Schumann, Timo; Zufall, Frank

    2012-01-01

    The formyl peptide receptor (Fpr) family is well known for its contribution to immune defense against pathogens in human and rodent leukocytes. Recently, several structurally related members of these receptors were discovered in sensory neurons of the mouse vomeronasal organ (VNO), key detectors of pheromones and related semiochemicals. Although the biological role of vomeronasal Fprs is not yet clear, the known contribution of other Fprs to host immune defense suggested that they could contribute to vomeronasal pathogen sensing. Precise knowledge about the agonist properties of mouse Fprs is required to determine their function. We expressed all seven mouse and three human Fprs using an in vitro system and tested their activation with 32 selected compounds by conducting high throughput calcium measurements. We found an intriguing functional conservation between human and mouse immune Fprs that is most likely a consequence of closely similar biological constraints. By contrast, our data suggest a neofunctionalization of the vomeronasal Fprs. We show that the vomeronasal receptor mFpr-rs1 can be activated robustly by W-peptide and structural derivatives but not by other typical ligands of immune Fprs. mFpr-rs1 exhibits a stereo-selective preference for peptides containing d-amino acids. The same peptide motifs are contained in pathogenic microorganisms. Thus, the ligand profile of mFpr-rs1 is consistent with a role in vomeronasal pathogen sensing. PMID:22859307

  8. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex

    DEFF Research Database (Denmark)

    Gjedde, Albert; Geday, Jacob

    2009-01-01

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin......-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact...... of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated...

  9. Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2006-10-01

    Full Text Available Abstract Background In teleost fishes that lack a vomeronasal organ, both main odorant receptors (ORs and vomeronasal receptors family 2 (V2Rs are expressed in the olfactory epithelium, and used for perception of water-soluble chemicals. In zebrafish, it is known that both ORs and V2Rs formed multigene families of about a hundred copies. Whereas the contribution of V2Rs in zebrafish to olfaction has been found to be substantially large, the composition and structure of the V2R gene family in other fishes are poorly known, compared with the OR gene family. Results To understand the evolutionary dynamics of V2R genes in fishes, V2R sequences in zebrafish, medaka, fugu, and spotted green pufferfish were identified from their draft genome sequences. There were remarkable differences in the number of intact V2R genes in different species. Most V2R genes in these fishes were tightly clustered in one or two specific chromosomal regions. Phylogenetic analysis revealed that the fish V2R family could be subdivided into 16 subfamilies that had diverged before the separation of the four fishes. Genes in two subfamilies in zebrafish and another subfamily in medaka increased in their number independently, suggesting species-specific evolution in olfaction. Interestingly, the arrangements of V2R genes in the gene clusters were highly conserved among species in the subfamily level. A genomic region of tetrapods corresponding to the region in fishes that contains the V2R cluster was found to have no V2R gene in any species. Conclusion Our results have indicated that the evolutionary dynamics of fish V2Rs are characterized by rapid gene turnover and lineage-specific phylogenetic clustering. In addition, the present phylogenetic and comparative genome analyses have shown that the fish V2Rs have expanded after the divergence between teleost and tetrapod lineages. The present identification of the entire V2R repertoire in fishes would provide useful foundation to

  10. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    Directory of Open Access Journals (Sweden)

    Feldhoff Pamela W

    2006-03-01

    Full Text Available Abstract Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF and a 7 kDa protein named Plethodon Modulating Factor (PMF, respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component.

  11. [Comparative anatomic studies of the vomeronasal complex and the rostral palate of various mammals].

    Science.gov (United States)

    Wöhrmann-Repenning, A

    1984-01-01

    The structures of the rostral palate in regard to the vomeronasal complex of different species of mammals were studied. In all cases, we find a very interesting system of furrows which preserves a connection between the nasopalatine ducts and the preoral surroundings. For rodents, lagomorphs, Solenodon, Setifer, and Echinops, we find a special situation in this part of the palate. Here the incisors are not separated by a diastema nor the oral openings of the nasopalatine ducts are overgrown by a bipartite caudal branch of the rhinarium. The results of the anatomic studies of the vomeronasal complex and the rostral palate of the mammals investigated are discussed: First of all, some elements of the vomeronasal complex needed to be analysed in regard to structure and nomenclature, specifically the cartilago paraseptalis with its outer bar, the cartilago ductus nasopalatini and the cartilago palatina. Because of 2 criterions, the vomeronasal complex could be classified as either primitive or progressive. We find a primitive one in Didelphis, Tupaia, Solenodon, Oryctolagus, and all rodents. In contrast, the other insectivores studied and all primates show progressive structures at their vomeronasal complex. Finally, conclusions in regard to the function of the organs of Jacobson are derived from these studies. The significance of the "flehmen" mechanism for the functioning of the organs is questioned.

  12. The structure of the nasal chemosensory system in squamate reptiles. 2. Lubricatory capacity of the vomeronasal organ

    Indian Academy of Sciences (India)

    Susan J Rehorek; Bruce T Firth; Mark N Hutchinson

    2000-06-01

    The vomeronasal organ is a poorly understood accessory olfactory organ, present in many tetrapods. In mammals, amphibians and lepidosaurian reptiles, it is an encapsulated structure with a central, fluid-filled lumen. The morphology of the lubricatory system of the vomeronasal organ (the source of this fluid) varies among classes, being either intrinsic (mammalian and caecilian amphibian vomeronasal glands) or extrinsic (anuran and urodele nasal glands). In the few squamate reptiles thus far examined, there are no submucosal vomeronasal glands. In this study, we examined the vomeronasal organs of several species of Australian squamates using histological, histochemical and ultrastructural techniques, with the goal of determining the morphology of the lubricatory system in the vomeronasal organ. Histochemically, the fluid within the vomeronasal organ of all squamates is mucoserous, though it is uncertain whether mucous and serous constituents constitute separate components. The vomeronasal organ produces few secretory granules intrinsically, implying an extrinsic source for the luminal fluid. Of three possible candidates, the Harderian gland is the most likely extrinsic source of this secretion.

  13. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production.

    Science.gov (United States)

    Wang, Xuchu; Wang, Dan; Sun, Yong; Yang, Qian; Chang, Lili; Wang, Limin; Meng, Xueru; Huang, Qixing; Jin, Xiang; Tong, Zheng

    2015-09-08

    Ethylene is a stimulant to increase natural rubber latex. After ethylene application, both fresh yield and dry matter of latex are substantially improved. Moreover, we found that ethylene improves the generation of small rubber particles. However, most genes involved in rubber biosynthesis are inhibited by exogenous ethylene. Therefore, we conducted a proteomics analysis of ethylene-stimulated rubber latex, and identified 287 abundant proteins as well as 143 ethylene responsive latex proteins (ERLPs) with mass spectrometry from the 2-DE and DIGE gels, respectively. In addition, more than 1,600 proteins, including 404 ERLPs, were identified by iTRAQ. Functional classification of ERLPs revealed that enzymes involved in post-translational modification, carbohydrate metabolism, hydrolase activity, and kinase activity were overrepresented. Some enzymes for rubber particle aggregation were inhibited to prolong latex flow, and thus finally improved latex production. Phosphoproteomics analysis identified 59 differential phosphoproteins; notably, specific isoforms of rubber elongation factor and small rubber particle protein that were phosphorylated mainly at serine residues. This post-translational modification and isoform-specific phosphorylation might be important for ethylene-stimulated latex production. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the use of ethylene to stimulate rubber latex production.

  14. TRICK or TRP? What Trpc2-/- Mice Tell Us about Vomeronasal Organ Mediated Innate Behaviors

    Directory of Open Access Journals (Sweden)

    C. Ron eYu

    2015-06-01

    Full Text Available The vomeronasal organ (VNO plays an important role in mediating semiochemical communications and social behaviors in terrestrial species. Genetic knockout of individual components in the signaling pathways have been used to probe vomeronasal functions, and have provided much insights into how the VNO orchestrates innate behaviors. However, all data do not agree. In particular, knocking out Trpc2, a member of the TRP family of non-selective cationic channel thought to be the main transduction channel in the VNO, results in a number of fascinating behavioral phenotypes that have not been observed in other animals whose vomeronasal function is disrupted. Recent studies have identified signaling pathways that operate in parallel of Trpc2, raising the possibility that Trpc2 mutant animals may display neomorphic behaviors. In this article, I provide a critical analysis of emerging evidence to reconcile the discrepancies and discuss their implications.

  15. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides.

    Science.gov (United States)

    Kimoto, Hiroko; Sato, Koji; Nodari, Francesco; Haga, Sachiko; Holy, Timothy E; Touhara, Kazushige

    2007-11-06

    Male mice secrete exocrine-gland-secreting peptide 1 (ESP1) from the extraorbital lacrimal gland into tear fluid [1]. Other mice detect ESP1 through sensory neurons in the vomeronasal organ (VNO), a secondary olfactory system that senses pheromonal information, including sex, strain, and species. ESP1 is now known to be a member of a multigene family that encodes peptides of various lengths. We herein performed genomic and expression analyses of the ESP family. The ESP family consists of 38 members in mice and 10 members in rat but is absent from the human genome, suggesting rapid molecular evolution. In addition to the male-specific ESP1, we discovered one, which we designated ESP36, that, in adult BALB/c mice, is expressed only in the female extraorbital lacrimal gland. The sexually dimorphic expression is ensured by the release of testosterone after puberty. However, we observed dramatic differences in the expression levels of ESPs between strains. Finally, all ESPs elicited an electrical response in the vomeronasal epithelium but not in the main olfactory epithelium. Multielectrode recording of VNO activity demonstrated that ESP1 induces action potentials in vomeronasal neurons, leading to an increase in the spike firing rate, and that ESP1 is recognized by narrowly tuned vomeronasal sensory neurons. Sexual dimorphism and strain differences of ESPs and their reception in the VNO suggest that the ESP family can convey information about sex and individual identity via the vomeronasal system. The chemosensation of this nonvolatile peptide family by direct contact appears to be one of strategies for sociosexual communication in rodent species.

  16. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats.

    Science.gov (United States)

    Dhungel, S; Masaoka, M; Rai, D; Kondo, Y; Sakuma, Y

    2011-12-29

    Chemosensory inputs signaling volatile and nonvolatile molecules play a pivotal role in sexual and social behavior in rodents. We have demonstrated that olfactory preference in male rats, that is, attraction to receptive female odors, is regulated by the medial amygdala (MeA), the cortical amygdala (CoA), and the preoptic area (POA). In this paper, we investigated the involvement of two chemosensory organs, the olfactory epithelium (OE) and the vomeronasal organ (VNO), in olfactory preference and copulatory behavior in male rats. We found that olfactory preferences were impaired by zinc sulfate lesion of the OE but not surgical removal of the VNO. Copulatory behaviors, especially intromission frequency and ejaculation, were also suppressed by zinc sulfate treatment. Neuronal activation in the accessory olfactory bulb (AOB), the MeA, the CoA, and the POA was analyzed after stimulation by airborne odors or soiled bedding of estrous females using cFos immunohistochemistry. Although the OE and VNO belong to different neural systems, the main and accessory olfactory systems, respectively, both OE lesion and VNO removal almost equally suppressed the number of cFos-immunoreactive cells in those areas that regulate olfactory preference. These results suggest that signals received by the OE and VNO interact and converge in the early stage of olfactory processing, in the AOB and its targets, although they have distinct roles in the regulation of social behaviors.

  17. A variant of LEAFY reveals its capacity to stimulate meristem development by inducing RAX1.

    Science.gov (United States)

    Chahtane, Hicham; Vachon, Gilles; Le Masson, Marie; Thévenon, Emmanuel; Périgon, Sophie; Mihajlovic, Nela; Kalinina, Anna; Michard, Robin; Moyroud, Edwige; Monniaux, Marie; Sayou, Camille; Grbic, Vojislava; Parcy, Francois; Tichtinsky, Gabrielle

    2013-05-01

    In indeterminate inflorescences, floral meristems develop on the flanks of the shoot apical meristem, at positions determined by auxin maxima. The floral identity of these meristems is conferred by a handful of genes called floral meristem identity genes, among which the LEAFY (LFY) transcription factor plays a prominent role. However, the molecular mechanism controlling the early emergence of floral meristems remains unknown. A body of evidence indicates that LFY may contribute to this developmental shift, but a direct effect of LFY on meristem emergence has not been demonstrated. We have generated a LFY allele with reduced floral function and revealed its ability to stimulate axillary meristem growth. This role is barely detectable in the lfy single mutant but becomes obvious in several double mutant backgrounds and plants ectopically expressing LFY. We show that this role requires the ability of LFY to bind DNA, and is mediated by direct induction of REGULATOR OF AXILLARY MERISTEMS1 (RAX1) by LFY. We propose that this function unifies the diverse roles described for LFY in multiple angiosperm species, ranging from monocot inflorescence identity to legume leaf development, and that it probably pre-dates the origin of angiosperms. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  18. Role of the vomeronasal organ on the estral cycle reduction by pheromones in the rat.

    Science.gov (United States)

    Mora, O A; Sánchez-Criado, J E; Guisado, S

    1985-09-01

    The role of he vomeronasal organ on the estral cycle reduction induced by pheromones is studied in adult female wistar rats. The animals were divided in three groups: I, intact rats; II, vomeronasalectomized rats (VNX); and III, sham operated rats (sham). Each group was submitted to another three distinct conditions from the day they were weaned (21 days old): Isolated female rats; with male odors from two adult males of tested sexual potency, and isolated rats again. The isolated intact rats show mainly 5 day length cycles. The groups I and III (intacts and sham) with male odors, show 4 day length cycles. The VNX animals show 5 day cycles in any one experimental conditions. These results support the idea that the vomeronasal organ is the receptor of the male reducing cycle pheromone in the female rat.

  19. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates

    OpenAIRE

    2003-01-01

    Pheromones are water-soluble chemicals released and sensed by individuals of the same species to elicit social and reproductive behaviors or physiological changes; they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Humans and some related primates possess only vestigial VNOs and have no or significantly reduced ability to detect pheromones, a phenomenon not well understood at the molecular level. Here we show that genes encoding the...

  20. Human Pheromone Detection by the Vomeronasal Organ: Unnecessary for Mate Selection?

    OpenAIRE

    2009-01-01

    Recently, Foltan and Sedy proposed a hypothesis stating that the adult human VNO is integral to the prevention of inappropriate mate selection. In this commentary, we address the authors’ assumption that humans have a functional VNO, that pheromones are detected exclusively by the VNO, and that human pheromones are responsible for negative stimuli during mate selection. After examining the published literature on human vomeronasal function, we argue that their hypothesis is critically flawed....

  1. The shrinking anthropoid nose, the human vomeronasal organ, and the language of anatomical reduction.

    Science.gov (United States)

    Smith, Timothy D; Laitman, Jeffrey T; Bhatnagar, Kunwar P

    2014-11-01

    Humans and most of our closest extant relatives, the anthropoids, are notable for their reduced "snout." The striking reduction in facial projection is only a superficial similarity. All anthropoids, including those with long faces (e.g., baboons), have lost numerous internal projections (turbinals) and spaces (recesses). In sum, this equates to the loss of certain regions of olfactory mucosa in anthropoids. In addition, an accessory olfactory organ, the vomeronasal organ, is non-functional or even absent in all catarrhine primates (humans, apes, monkeys). In this commentary, we revisit the concept of anatomical reductions as it pertains to the anthropoid nasal region. Certain nasal structures and spaces in anthropoids exhibit well-known attributes of other known vestiges, such as variability in form or number. The cupular recess (a vestige of the olfactory recess) and some rudimentary ethmoturbinals constitute reduced structures that presumably were fully functional in our ancestors. Humans and at least some apes retain a vestige that is bereft of chemosensory function (while in catarrhine monkeys it is completely absent). However, the function of the vomeronasal system also includes prenatal roles, which may be common to most or all mammals. Notably, neurons migrate to the brain along vomeronasal and terminal nerve axons during embryogenesis. The time-specific role of the VNO raises the possibility that our concept of functional reduction is too static. The vomeronasal system of humans and other catarrhine primates appears to qualify as a "chronological" vestige, one which fulfills part of its function during ontogeny, and then becomes lost or vestigial.

  2. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates.

    Science.gov (United States)

    Zhang, Jianzhi; Webb, David M

    2003-07-08

    Pheromones are water-soluble chemicals released and sensed by individuals of the same species to elicit social and reproductive behaviors or physiological changes; they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Humans and some related primates possess only vestigial VNOs and have no or significantly reduced ability to detect pheromones, a phenomenon not well understood at the molecular level. Here we show that genes encoding the TRP2 ion channel and V1R pheromone receptors, two components of the vomeronasal pheromone signal transduction pathway, have been impaired and removed from functional constraints since shortly before the separation of hominoids and Old World monkeys approximately 23 million years ago, and that the random inactivation of pheromone receptor genes is an ongoing process even in present-day humans. The phylogenetic distribution of vomeronasal pheromone insensitivity is concordant with those of conspicuous female sexual swelling and male trichromatic color vision, suggesting that a vision-based signaling-sensory mechanism may have in part replaced the VNO-mediated chemical-based system in the social/reproductive activities of hominoids and Old World monkeys (catarrhines).

  3. Scanning electron microscopic studies of the surface morphology of the vomeronasal epithelium and olfactory epithelium of garter snakes.

    Science.gov (United States)

    Wang, R T; Halpern, M

    1980-04-01

    Fixed vomeronasal and olfactory epithelia from normal adult garter snakes were microdissected, fractured, and examined with a scanning electron microscope. The method permits a detailed comparative study of the structural organization and morphological characteristics of the constituent cells of the vomeronasal and olfactory epithelia. Despite similarities in the nomenclature of the constituent cells in both epithelia, significant differences exist in their surface morphology. A unique columnar structure composed of non-neuronal elements is present in the vomeronasal epithelium. These columns house the bioplar neurons and undifferentiated cells. Such a columnar organization is absent in the olfactory epithelium. In vomeronasal epithelium the bipolar neurons possess microvillous terminals at their dendritic tips, while the dendritic tips of the bipolar neurons of the olfactory epithelium possess cilia. Vomeronasal supporting cells are covered with microvilli, while olfactory supporting cells are covered with cytoplasmic protuberances in addition to the microvilli. In the vomeronasal epithelium the pear-shaped neurons have a grossly smooth surface and are organized into clusters, while in the olfactory epithelium the elliptical bipolar neurons are spinous, aligned side-by-side and interdigitate. The basal (undifferentiated) cell layer in the vomeronasal epithelium has a high packing density and is composed of several layers of irregularly shaped cells. In the olfactory epithelium the basal cell layer is loosely organized and composed of a single layer of oval cells. This information on the three-dimensional cell structure of both epithelia provides a basis for experimental observations on changes in morphology of the bipolar neurons during genesis, development, maturation, degeneration, and regeneration in postnatal, adult animals.

  4. Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2010-08-01

    The energy efficiency of stimulation is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to a computational model of extracellular stimulation of a mammalian myelinated axon. As the GA progressed, waveforms became increasingly energy efficient and converged upon an energy-optimal shape. The results of the GA were consistent across several trials, and resulting waveforms resembled truncated Gaussian curves. When constrained to monophasic cathodic waveforms, the GA produced waveforms that were symmetric about the peak, which occurred approximately during the middle of the pulse. However, when the cathodic waveforms were coupled to rectangular charge-balancing anodic pulses, the location and sharpness of the peak varied with the duration and timing (i.e., before or after the cathodic phase) of the anodic phase. In a model of a population of mammalian axons and in vivo experiments on a cat sciatic nerve, the GA-optimized waveforms were more energy efficient and charge efficient than several conventional waveform shapes used in neural stimulation. If used in implantable neural stimulators, GA-optimized waveforms could prolong battery life, thereby reducing the frequency of recharge intervals, the volume of implanted pulse generators, and the costs and risks of battery-replacement surgeries.

  5. Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats.

    Science.gov (United States)

    Duysens, J

    1977-07-01

    1. Stimulation of different hindlimb nerves in spontaneously walking premammillary cats was used in order to examine the effects of sensory input on the rhythmic motor output. 2. Stimulation of the tibial or sural nerve at low intensities caused the burst of activity in the triceps surae or semimembranosus to be prolonged if stimuli were given during the extension phase. When applied during the flexion phase, the same stimuli shortened the burst of activity in the pretibial flexors and induced an early onset of the extensor activity, except if stimuli were given at the very beginning of the flexion phase, when flexor burst prolongations or rebounds were observed instead. 3. These effects were related to activation of large cutaneous afferents in these nerves since the results could be duplicated by low-intensity stimulation of the tibial nerve at the ankle or by direct stimulation of the pad. 4. In contrast, activation of smaller afferents by high-intensity stimulation resulted prolongations of the flexor burst and/or shortenings of the extensor burst for stimuli applied before or during these bursts, respectively. 5. It was concluded that the large and small cutaneous afferents make, respectively, inhibitory and excitatory connections with the central structure involved in the generation of flexion during walking.

  6. Pitch Memory in Nonmusicians and Musicians: Revealing Functional Differences Using Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Schaal, N K; Krause, V; Lange, K; Banissy, M J; Williamson, V J; Pollok, B

    2015-09-01

    For music and language processing, memory for relative pitches is highly important. Functional imaging studies have shown activation of a complex neural system for pitch memory. One region that has been shown to be causally involved in the process for nonmusicians is the supramarginal gyrus (SMG). The present study aims at replicating this finding and at further examining the role of the SMG for pitch memory in musicians. Nonmusicians and musicians received cathodal transcranial direct current stimulation (tDCS) over the left SMG, right SMG, or sham stimulation, while completing a pitch recognition, pitch recall, and visual memory task. Cathodal tDCS over the left SMG led to a significant decrease in performance on both pitch memory tasks in nonmusicians. In musicians, cathodal stimulation over the left SMG had no effect, but stimulation over the right SMG impaired performance on the recognition task only. Furthermore, the results show a more pronounced deterioration effect for longer pitch sequences indicating that the SMG is involved in maintaining higher memory load. No stimulation effect was found in both groups on the visual control task. These findings provide evidence for a causal distinction of the left and right SMG function in musicians and nonmusicians. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Motor cortical representation in two different strength training modalities revealed by transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Jørgensen, Rune Refsgaard; Osuna-Florentz, Patrick; Stevenson, Andrew James Thomas

    2017-01-01

    were recruited and divided into two groups based on their training experience (explosive and non-explosive resistance trained). The participants had a minimum of two years of experience with either weightlifting (snatch and clean and jerk) or conventional resistance training. Transcranial magnetic...... stimulation was used for mapping motor cortical representations (MAP) of VL and BF in an active state (~5-10% of a squat). The stimulation intensity used was slightly above active motor threshold (~105%). Results The MAP area for VL was significantly larger for the explosively trained than for the resistance...

  8. Longitudinal magnetic resonance imaging reveals striatal hypertrophy in a rat model of long-term stimulant treatment.

    Science.gov (United States)

    Biezonski, D; Shah, R; Krivko, A; Cha, J; Guilfoyle, D N; Hrabe, J; Gerum, S; Xie, S; Duan, Y; Bansal, R; Leventhal, B L; Peterson, B S; Kellendonk, C; Posner, J

    2016-09-06

    Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, 'Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy.

  9. Longitudinal magnetic resonance imaging reveals striatal hypertrophy in a rat model of long-term stimulant treatment

    Science.gov (United States)

    Biezonski, D; Shah, R; Krivko, A; Cha, J; Guilfoyle, D N; Hrabe, J; Gerum, S; Xie, S; Duan, Y; Bansal, R; Leventhal, B L; Peterson, B S; Kellendonk, C; Posner, J

    2016-01-01

    Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, ‘Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy. PMID:27598968

  10. Multimodal stimulation of Colorado potato beetle reveals modulation of pheromone response by yellow light.

    Directory of Open Access Journals (Sweden)

    Fernando Otálora-Luna

    Full Text Available Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB, Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms.

  11. Efferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes.

    Science.gov (United States)

    Martinez-Marcos, Alino; Ubeda-Bañon, Isabel; Lanuza, Enrique; Halpern, Mimi

    2005-05-01

    The olfactostriatum is a portion of the basal ganglia of snakes that receives substantial vomeronasal afferents through projections from the nucleus sphericus. In a preceding article, the olfactostriatum of garter snakes (Thamnophis sirtalis) was characterized on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and pattern of afferent connections [Martinez-Marcos, A., Ubeda-Banon, I., Lanuza, E., Halpern, M., 2005. Chemoarchitecture and afferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes. J. Chem. Neuroanat. 29, 49-69]. In the present study, its efferent connections have been investigated. The olfactostriatum projects to the main and accessory olfactory bulbs, lateral cortex, septal complex, ventral pallidum, external, ventral anterior and dorsolateral amygdalae, bed nucleus of the stria terminalis, preoptic area, lateral posterior hypothalamic nucleus, ventral tegmental area, substantia nigra and raphe nuclei. Tracer injections in the nucleus accumbens proper, a structure closely associated with the olfactostriatum, result in a similar pattern of efferent connections with the exception of those reaching the main and accessory olfactory bulbs, lateral cortex, external, ventral anterior and dorsolateral amygdalae and bed nucleus of the stria terminalis. These data, therefore, help to characterize the olfactostriatum, an apparently specialized area of the nucleus accumbens. Double labeling experiments after tracer injections in the nucleus sphericus and the lateral posterior hypothalamic nucleus demonstrate a pathway between these two structures through the olfactostriatum. Injections in the olfactostriatum and in the medial amygdala show parallel projections to the lateral posterior hypothalamic nucleus. Since this hypothalamic nucleus has been previously described as projecting to the hypoglossal nucleus, both, the medial amygdala and the

  12. Evolution of spatially coexpressed families of type-2 vomeronasal receptors in rodents.

    Science.gov (United States)

    Francia, Simona; Silvotti, Lucia; Ghirardi, Filippo; Catzeflis, François; Percudani, Riccardo; Tirindelli, Roberto

    2014-12-23

    The vomeronasal organ (VNO) is an olfactory structure for the detection of pheromones. VNO neurons express three groups of unrelated G-protein-coupled receptors. Type-2 vomeronasal receptors (V2Rs) are specifically localized in the basal neurons of the VNO and are believed to sense protein pheromones eliciting specific reproductive behaviors. In murine species, V2Rs are organized into four families. Family-ABD V2Rs are expressed monogenically and coexpress with family-C V2Rs of either subfamily C1 (V2RC1) or subfamily C2 (V2RC2), according to a coordinate temporal diagram. Neurons expressing the phylogenetically ancient V2RC1 coexpress family-BD V2Rs or a specific group of subfamily-A V2Rs (V2RA8-10), whereas a second neuronal subset (V2RC2-positive) coexpresses a recently expanded group of five subfamily-A V2Rs (V2RA1-5) along with vomeronasal-specific Major Histocompatibility Complex molecules (H2-Mv). Through database mining and Sanger sequencing, we have analyzed the onset, diversification, and expansion of the V2R-families throughout the phylogeny of Rodentia. Our results suggest that the separation of V2RC1 and V2RC2 occurred in a Cricetidae ancestor in coincidence with the evolution of the H2-Mv genes; this phylogenetic event did not correspond with the origin of the coexpressing V2RA1-5 genes, which dates back to an ancestral myomorphan lineage. Interestingly, the evolution of receptors within the V2RA1-5 group may be implicated in the origin and diversification of some of the V2R putative cognate ligands, the exocrine secreting peptides. The establishment of V2RC2, which probably reflects the complex expansion and diversification of family-A V2Rs, generated receptors that have probably acquired a more subtle functional specificity.

  13. Órgano vomeronasal: Estudio anatómico de prevalencia y su función

    OpenAIRE

    Sarría-Echegaray,Pedro L; Artigas-Sapiaín,Christian E; Rama-López,Julio; soler-Vilarrasa,Ramona; Tomás-Barberán,Manuel D

    2014-01-01

    Introducción: El órgano vomeronasal (OVN) descrito por Jacobson en mamíferos distintos al ser humano, es una incógnita tanto en lo que se refiere a su localización así como a su función en la raza humana. Se considera como un vestigio del olfato, que en los animales mamíferos parece influir en los hábitos sexuales (feromonas) y sociales. Hasta la fecha han sido escasos los estudios concluyentes al respecto en humanos. Objetivo: Conocer la prevalencia del órgano vomeronasal en nuestras consult...

  14. Contrasted Evolution of the Vomeronasal Receptor Repertoires in Mammals and Squamate Reptiles

    OpenAIRE

    Brykczynska, Urszula; Tzika, Athanasia C; Rodriguez, Ivan; Michel C Milinkovitch

    2013-01-01

    The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have ...

  15. Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species

    Directory of Open Access Journals (Sweden)

    Okamura Hiroaki

    2009-09-01

    Full Text Available Abstract Background In mammals, pheromones play an important role in social and innate reproductive behavior within species. In rodents, vomeronasal receptor type 1 (V1R, which is specifically expressed in the vomeronasal organ, is thought to detect pheromones. The V1R gene repertoire differs dramatically between mammalian species, and the presence of species-specific V1R subfamilies in mouse and rat suggests that V1R plays a profound role in species-specific recognition of pheromones. In ruminants, however, the molecular mechanism(s for pheromone perception is not well understood. Interestingly, goat male pheromone, which can induce out-of-season ovulation in anestrous females, causes the same pheromone response in sheep, and vice versa, suggesting that there may be mechanisms for detecting "inter-species" pheromones among ruminant species. Results We isolated 23 goat and 21 sheep intact V1R genes based on sequence similarity with 32 cow V1R genes in the cow genome database. We found that all of the goat and sheep V1R genes have orthologs in their cross-species counterparts among these three ruminant species and that the sequence identity of V1R orthologous pairs among these ruminants is much higher than that of mouse-rat V1R orthologous pairs. Furthermore, all goat V1Rs examined thus far are expressed not only in the vomeronasal organ but also in the main olfactory epithelium. Conclusion Our results suggest that, compared with rodents, the repertoire of orthologous V1R genes is remarkably conserved among the ruminants cow, sheep and goat. We predict that these orthologous V1Rs can detect the same or closely related chemical compound(s within each orthologous set/pair. Furthermore, all identified goat V1Rs are expressed in the vomeronasal organ and the main olfactory epithelium, suggesting that V1R-mediated ligand information can be detected and processed by both the main and accessory olfactory systems. The fact that ruminant and rodent V1Rs

  16. Human pheromone detection by the vomeronasal organ: unnecessary for mate selection?

    Science.gov (United States)

    Mast, Thomas G; Samuelsen, Chad L

    2009-07-01

    Recently, Foltan and Sedy proposed a hypothesis stating that the adult human VNO is integral to the prevention of inappropriate mate selection. In this commentary, we address the authors' assumption that humans have a functional VNO, that pheromones are detected exclusively by the VNO, and that human pheromones are responsible for negative stimuli during mate selection. After examining the published literature on human vomeronasal function, we argue that their hypothesis is critically flawed. We offer a brief review of the adult human VNO in support of our argument.

  17. Blood flow activation in rat somatosensory cortex under sciatic nerve stimulation revealed by laser speckle imaging

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In many functional neuroimaging research the change of local cerebral blood flow (CBF) induced by sensory stimulation is regarded as an indicator of the change in cortical neuronal activity although a precise and full spatio-temporal description of local CBF response coupled to neural activity has still not been laid out. Using the laser speckle imaging technique a relatively large exposed area in somatosensory cortex of rat was imaged for the observation of the variations of CBF during sciatic nerve stimulation. The results showed that cerebral blood flow activation was spatially localized and discretely distributed in the targeted microvasculature. Individual arteries, veins and capillaries in different diameters were activated with the time going. The response pattern of CBF related to the function of brain activity and energy metabolism is delineated exactly.

  18. The involvement of primary motor cortex in mental rotation revealed by transcranial magnetic stimulation

    OpenAIRE

    Eisenegger, Christoph; Herwig, Uwe; Jäncke, Lutz

    2007-01-01

    We used single-pulse transcranial magnetic stimulation of the left primary hand motor cortex and motor evoked potentials of the contralateral right abductor pollicis brevis to probe motor cortex excitability during a standard mental rotation task. Based on previous findings we tested the following hypotheses. (i) Is the hand motor cortex activated more strongly during mental rotation than during reading aloud or reading silently? The latter tasks have been shown to increase motor cortex excit...

  19. Optogenetically induced olfactory stimulation in Drosophila larvae reveales the neuronal basis of odor-aversion behavior

    Directory of Open Access Journals (Sweden)

    Dennis Bellmann

    2010-06-01

    Full Text Available Olfactory stimulation induces an odor-guided crawling behavior of Drosophila melanogaster larvae characterized by either an attractive or a repellent reaction. In order to understand the underlying processes leading to these orientations we stimulated single olfactory receptor neurons (ORNs through photo-activation within an intact neuronal network. Using the Gal4-UAS system two light inducible proteins, the light-sensitive cation channel channelrhodopsin-2 (ChR-2 or the light-sensitive adenylyl cyclase (Pac α were expressed in all or in individual ORNs of the larval olfactory system. Blue light stimulation caused an activation of these neurons, ultimately producing the illusion of an odor stimulus. Larvae were tested in a phototaxis assay for their orientation towards or away from the light source. Here we show that activation of Pacα expressing ORNs bearing the receptors Or33b or Or45a in blind norpA mutant larvae induces a repellent behavior away from the light. Conversely, photo-activation of the majority of ORNs induces attraction towards the light. Interestingly, in wild type larvae two ligands of Or33b and Or45a, octyl acetate and propionic ethylester, respectively, have been found to cause an escape reaction. Therefore, we combined light and odor stimulation to analyze the function of Or33b and Or45a expressing ORNs. We show that the larval olfactory system contains a designated neuronal pathway for repellent odorants and that activation of a specific class of ORNs already determines olfactory avoidance behavior.

  20. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats

    Science.gov (United States)

    Xu, Jingjing; Zheng, Xujuan; Cheng, Kian-Kai; Chang, Xiaorong; Shen, Guiping; Liu, Mi; Wang, Yadong; Shen, Jiacheng; Zhang, Yuan; He, Qida; Dong, Jiyang; Yang, Zongbao

    2017-01-01

    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations. PMID:28358020

  1. Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation.

    Directory of Open Access Journals (Sweden)

    Christophe eMagnani

    2014-08-01

    Full Text Available The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA, which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains.

  2. The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown.

    Science.gov (United States)

    Yoder, Anne D; Larsen, Peter A

    2014-01-01

    Olfaction plays a critical role in both survival of the individual and in the propagation of species. Studies from across the mammalian clade have found a remarkable correlation between organismal lifestyle and molecular evolutionary properties of receptor genes in both the main olfactory system (MOS) and the vomeronasal system (VNS). When a large proportion of intact (and putatively functional) copies is observed, the inference is made that a particular mode of chemoreception is critical for an organism's fit to its environment and is thus under strong positive selection. Conversely, when the receptors in question show a disproportionately large number of pseudogene copies, this contraction is interpreted as evidence of relaxed selection potentially leading to gene family extinction. Notably, it appears that a risk factor for gene family extinction is a high rate of nonsynonymous substitution. A survey of intact vs. pseudogene copies among primate vomeronasal receptor Class one genes (V1Rs) appears to substantiate this hypothesis. Molecular evolutionary complexities in the V1R gene family combine rapid rates of gene duplication, gene conversion, lineage-specific expansions, deletions, and/or pseudogenization. An intricate mix of phylogenetic footprints and current adaptive landscapes have left their mark on primate V1Rs suggesting that the primate clade offers an ideal model system for exploring the molecular evolutionary and functional properties of the VNS of mammals. Primate V1Rs tell a story of ancestral function and divergent selection as species have moved into ever diversifying adaptive regimes. The sensitivity to functional collapse in these genes, consequent to their precariously high rates of nonsynonymous substitution, confer a remarkable capacity to reveal the lifestyles of the genomes that they presently occupy as well as those of their ancestors.

  3. The "olfactostriatum" of snakes: a basal ganglia vomeronasal structure in tetrapods.

    Science.gov (United States)

    Martinez-Marcos, Alino; Ubeda-Bañon, Isabel; Lanuza, Enrique; Halpern, Mimi

    2005-09-15

    The olfactostriatum is a portion of the basal ganglia of snakes situated ventromedially to the nucleus accumbens proper. It receives a major vomeronasal input from the nucleus sphericus, the primary target of accessory olfactory bulb efferents. Recently, the ophidian olfactostriatum has been characterized on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and hodology (afferent and efferent connections). In contrast to the nucleus accumbens proper, the olfactostriatum is densely immunoreactive for serotonin and neuropeptide Y and sparsely immunoreactive for tyrosine hydroxylase. The nucleus accumbens proper and the olfactostriatum share most afferent connections except those originating in the nucleus sphericus, which are exclusively directed to the olfactostriatum. Similarly, the nucleus accumbens proper and the olfactostriatum show a similar pattern of efferent connections including those going to the ventral pallidum, although the olfactostriatum alone projects to the main and accessory olfactory bulbs as well as some amygdaloid nuclei. On the basis of its chemoarchitecture, the olfactostriatum resembles the mammalian ventral pallidum (but also the shell of the nucleus accumbens). Its connections, however, suggests that the olfactostriatum could be a specialized portion of the shell of nucleus accumbens extended more ventromedially than previously believed and devoted to processing vomeronasal information. Comparative data suggest that a similar structure is present in the basal ganglia of amphibians and mammals.

  4. The risk of extrapolation in neuroanatomy: the case of the mammalian vomeronasal system

    Directory of Open Access Journals (Sweden)

    Ignacio Salazar

    2009-10-01

    Full Text Available The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS, and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.

  5. Developmental changes affecting lectin binding in the vomeronasal organ of domestic pigs, Sus scrofa.

    Science.gov (United States)

    Park, Junwoo; Lee, Wonho; Jeong, Chanwoo; Kim, Hwangryong; Taniguchi, Kazumi; Shin, Taekyun

    2012-01-01

    This study investigated the developmental changes of glycoconjugate patterns in the porcine vomeronasal organs (VNOs) and associated glands (Jacobson's glands) from prenatal (9 weeks of gestation) and postnatal (2 days after birth) to the sexually mature stage (6 months old). The VNO of pigs (Sus scrofa) was examined using the following: Dolichos biflorus agglutinin (DBA), Bandeiraea simplicifolia agglutinin isolectin B4 (BSI-B4), Triticum vulgaris agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), and soybean agglutinin (SBA). At the fetal stage, all lectins examined were detected mainly in the free border of the vomeronasal epithelium, but few (WGA and UEA-I) and or absent in the VNO cell bodies. At the postnatal and sexually mature stages, the reactivity of some lectins, including WGA, UEA-I, DBA and SBA, were shown to increase in the VNO sensory epithelium as well as the free border. The increased reactivity of lectins as development progressed was also observed in Jacobson's gland acini. These findings suggest that binding sites of lectins, including those of WGA, UEA-I, DBA, and SBA, increase during development from fetal to postnatal growth, possibly contributing to the increased ability of chemoreception in the pig.

  6. Transcranial magnetic stimulation reveals complex cognitive control representations in the rostral frontal cortex.

    Science.gov (United States)

    Bahlmann, J; Beckmann, I; Kuhlemann, I; Schweikard, A; Münte, T F

    2015-08-06

    Convergent evidence suggests that the lateral frontal cortex is at the heart of a brain network subserving cognitive control. Recent theories assume a functional segregation along the rostro-caudal axis of the lateral frontal cortex based on differences in the degree of complexity of cognitive control. However, the functional contribution of specific rostral and caudal sub-regions remains elusive. Here we investigate the impact of disrupting rostral and caudal target regions on cognitive control processes, using Transcranial Magnetic Stimulation (TMS). Participants performed three different task-switching conditions that assessed differences in the degree of complexity of cognitive control processes, after temporally disrupting rostral, or caudal target regions, or a control region. Disrupting the rostral lateral frontal region specifically impaired behavioral performance of the most complex task-switching condition, in comparison to the caudal target region and the control region. These novel findings shed light on the neuroanatomical architecture supporting control over goal-directed behavior.

  7. Sensorimotor plasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Julià L Amengual

    Full Text Available BACKGROUND: Several recently developed therapies targeting motor disabilities in stroke sufferers have shown to be more effective than standard neurorehabilitation approaches. In this context, several basic studies demonstrated that music training produces rapid neuroplastic changes in motor-related brain areas. Music-supported therapy has been recently developed as a new motor rehabilitation intervention. METHODS AND RESULTS: In order to explore the plasticity effects of music-supported therapy, this therapeutic intervention was applied to twenty chronic stroke patients. Before and after the music-supported therapy, transcranial magnetic stimulation was applied for the assessment of excitability changes in the motor cortex and a 3D movement analyzer was used for the assessment of motor performance parameters such as velocity, acceleration and smoothness in a set of diadochokinetic movement tasks. Our results suggest that the music-supported therapy produces changes in cortical plasticity leading the improvement of the subjects' motor performance. CONCLUSION: Our findings represent the first evidence of the neurophysiological changes induced by this therapy in chronic stroke patients, and their link with the amelioration of motor performance. Further studies are needed to confirm our observations.

  8. Identification of G protein α subunits in the main olfactory system and vomeronasal system of the Japanese Striped snake, Elaphe quadrivirgata.

    Science.gov (United States)

    Kondoh, Daisuke; Koshi, Katsuo; Ono, Hisaya K; Sasaki, Kuniaki; Nakamuta, Nobuaki; Taniguchi, Kazuyuki

    2013-01-01

    In the olfactory system, G proteins couple to the olfactory receptors, and G proteins expressed in the main olfactory system and vomeronasal system vary according to animal species. In this study, G protein α subunits expressed in the main olfactory system and vomeronasal system of the snake were identified by immunohistochemistry. In the olfactory epithelium, only anti-Gαolf/s antibody labeled the cilia of the receptor cells. In the vomeronasal epithelium, only anti-Gαo antibody labeled the microvilli of the receptor cells. In the accessory olfactory bulb, anti-Gαo antibody stained the whole glomerular layer. These results suggest that the main olfactory system and the vomeronasal system of the snake express Gαolf and Gαo as G proteins coupling to the olfactory receptors, respectively.

  9. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice

    Directory of Open Access Journals (Sweden)

    Wynn Elizabeth H

    2012-08-01

    Full Text Available Abstract Background Vomeronasal receptors (VRs, expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. Results Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. Conclusions Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice.

  10. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  11. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Kim M.; Wrighton, Kelly E.; Piceno, Y. M.; Anderson, Gary L.; DeSantis, Todd; Williams, Kenneth H.; Wilkins, Michael J.; N' Guessan, A. L.; Peacock, Aaron; Bargar, John R.; Long, Philip E.; Banfield, Jillian F.

    2012-06-13

    There is increasing interest in harnessing the functional diversity of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Understanding the response of communities to stimulation, including flanking taxa, presents important opportunities for optimizing remediation approaches. We used high-density PhyloChip microarray analysis to comprehensively determine community membership and abundance patterns amongst a suite of samples from U(VI) bioremediation experiments. Samples were unstimulated or collected during Fe(III) and sulfate reduction from an acetate-augmented aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Results showed the greatest diversity in abundant SRB lineages was present in naturally-reduced sediment. Desulfuromonadales and Desulfobacterales were consistently identified as the dominant Fe(III)- and sulfate-reducing bacteria (IRB and SRB) throughout acetate amendment experiments. Stimulated communities also exhibited a high degree of functional redundancy amongst enriched flanking members. Not surprisingly, competition for both sulfate and iron was evident amongst abundant taxa, but the distribution and abundance of these ancillary SRB (Peptococcaceae, Desulfovibrionales and Syntrophobacterales), and lineages containing IRB (excluding Desulfobacteraceae) was heterogeneous amongst sample types. Interesting, amongst the most abundant taxa, particularly during sulfate reduction, were Epsilonproteobacteria that perform microaerobic or nitrate-dependant sulfur oxidation, and a number of bacteria other than Geobacteraceae that may enzymatically reduce U(VI). Finally, in depth community probing with PhyloChip determined the efficacy of experimental approaches, notably revealing striking similarity amongst stimulated sediment (from drill cores and in-situ columns) and groundwater communities, and demonstrating that sediment-packed in-situ (down-well) columns served

  12. A delayed seismicity burst revealed by template matching approach during stimulation of GRT1, Rittershoffen, Alsace, France

    Science.gov (United States)

    Lengliné, Olivier; Boubacar, Mohamed; Schmittbuhl, Jean

    2016-04-01

    The ECOGI joint-venture is developing a deep geothermal project at Rittershoffen, 6 km east of Soultz-sous-Forêts, in Northern Alsace. For this purpose, at the end of 2012, a first well (GRT1) was drilled to 2580 m depth through Triassic-sediments and into the crystalline basement. In order to enhance the reservoir permeability, a hydraulic stimulation was performed in the GRT1 well in June 2013. The hydraulic stimulation in GRT1 lasted 2 days (27 and 28 June 2013) and was recorded by a dedicated seismic network. The seismic activity related to the GRT1 hydraulic stimulation was processed in real-time and gave rise to a first seismicity catalogue composed of a total of 212 events, from the 27 of June to the 4th of July 2013. The catalogue reveals that the seismicity stopped shortly after injection, but started again after 4 completely quiet days on July 2nd, in the form of an intense seismic swarm that lasted less than one day. In order to understand how this second crisis developed several days after the injection stopped we apply a dedicated set of tools to recover and locate the most precisely as possible the earthquakes that occurred during this sequence. We are able to detect and locate precisely 1393 events. We show that these events that occurred during the injection define a planar structure where we observe migration of the seismicity. Based on our precise relocations we can also identify that the events of the second crisis occurred on a different structure probably activated by slow aseismic movements.

  13. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.

    Science.gov (United States)

    Melchior, James R; Ferris, Mark J; Stuber, Garret D; Riddle, David R; Jones, Sara R

    2015-09-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse microenvironments. Local electrical stimulation excites all of the neuronal processes in the stimulation field, potentially modulating the dopamine signal - measured using cyclic voltammetry. Optogenetically targeting light stimulation to dopamine

  14. Direct current stimulation (tDCS) reveals parietal asymmetry in local/global and salience-based selection.

    Science.gov (United States)

    Bardi, Lara; Kanai, Ryota; Mapelli, Daniela; Walsh, Vincent

    2013-03-01

    Data from neuropsychology and neuroimaging studies indicate hemispheric asymmetries in processing object's global form versus local parts. However the attentional mechanisms subtending visual selection of different levels of information are poorly understood. The classical left hemisphere/local-right hemisphere/global dichotomy has been recently challenged by studies linking the asymmetry of activation in the posterior parietal cortex (PPC) with the relative salience of the stimulus rather than with the local/global level. The present study aimed to assess hemispheric asymmetry in local-global and salience-based selection in hierarchical stimuli by using transcranial direct current stimulation (tDCS). To this end, tDCS has been applied to the PPC of both the hemispheres. Our data revealed that tDCS did affect the selection of the target on the basis of its relative salience in a manner that depended on the tDCS polarity applied to the two hemispheres. This result is in line with previous findings that the left PPC is critically involved in attention for low-salience stimuli in the presence of high-salience distractor information, while right PPC is involved in attending to more salient stimuli. Hemispheric asymmetries were also found in local/global selection. Overall the results suggest that neural activation in the PPC is related to both the salience and the level of stimulus representations mediating responses to hierarchical stimuli. The comparison of the results from Experiments 1 and 2 in local/global-based selection suggests that the effect of stimulation could be completely opposite depending on subtle differences in demands of attentional control (sustained attention vs task switching).

  15. El sistema vomeronasal y su posible funcionalidad en larvas de anuros

    Directory of Open Access Journals (Sweden)

    Pozzi, Andrea Gabriela

    2012-12-01

    Full Text Available El sistema vomeronasal (SVN es un sistema olfatorio accesorio presente en la mayoría de los tetrápodos. Clásicamente se lo ha asociado con el paso de los vertebrados al ambiente terrestre; sin embargo las evidencias surgidas en los últimos años indican que el SVN apareció tempranamente en la evolución de los tetrápodos y sería funcional en ambientes acuáticos. Este sistema sensorial ha sido descripto en etapas larvales de anuros. Pero ¿es funcional el SVN en renacuajos? No existen experimentos en donde se evalúe la participación del SVN en la quimiodetección en renacuajos. Sin embargo, un número considerable de evidencias indican que este sistema sensorial podría ser funcional en larvas de anuros: 1 El órgano vomeronasal (OVN aparece durante el desarrollo embrionario y está presente durante toda la etapa larval. 2 El OVN contiene neuronas bipolares cuyos axones proyectan al bulbo olfatorio accesorio (BOA donde establecen conexiones sinápticas con neuronas telencefálicas. 3 Las neuronas del OVN expresan los receptores de membrana descriptos en tetrápodos, así como la proteína G involucrada en la señalización intracelular. 4 Los análisis de microscopía electrónica demuestran que el OVN posee neuronas con microvellosidades apicales como se describe para otros grupos y sus características ultraestructurales no se modifican durante la metamorfosis. Más aún, no hay diferencias en la ultraestructura de las conexiones sinápticas entre larvas y adultos a nivel del BOA. Los renacuajos presentan una gran cantidad de comportamientos mediados por quimiodetección. Conocer si el SVN participa en la detección de alguno/s de estos estímulos ayudaría no sólo a dilucidar aspectos relacionados con la comunicación química y el comportamiento en renacuajos sino también a comprender aspectos evolutivos de los sistemas quimiosensoriales en vertebrados.

  16. Afferent and efferent connections of the nucleus sphericus in the snake Thamnophis sirtalis: convergence of olfactory and vomeronasal information in the lateral cortex and the amygdala.

    Science.gov (United States)

    Lanuza, E; Halpern, M

    1997-09-08

    This paper is an account of the afferent and efferent projections of the nucleus sphericus (NS), which is the major secondary vomeronasal structure in the brain of the snake Thamnophis sirtalis. There are four major efferent pathways from the NS: 1) a bilateral projection that courses, surrounding the accessory olfactory tract, and innervates several amygdaloid nuclei (nucleus of the accessory olfactory tract, dorsolateral amygdala, external amygdala, and ventral anterior amygdala), the rostral parts of the dorsal and lateral cortices, and the accessory olfactory bulb; 2) a bilateral projection that courses through the medial forebrain bundle and innervates the olfactostriatum (rostral and ventral striatum); 3) a commissural projection that courses through the anterior commissure and innervates mainly the contralateral NS; and 4) a meager bilateral projection to the lateral hypothalamus. On the other hand, important afferent projections to the NS arise solely in the accessory olfactory bulb, the nucleus of the accessory olfactory tract, and the contralateral NS. This pattern of connections has three important implications: first, the lateral cortex probably integrates olfactory and vomeronasal information. Second, because the NS projection to the hypothalamus is meager and does not reach the ventromedial hypothalamic nucleus, vomeronasal information from the NS is not relayed directly to that nucleus, as previously reported. Finally, a structure located in the rostral and ventral telencephalon, the olfactostriatum, stands as the major tertiary vomeronasal center in the snake brain. These three conclusions change to an important extent our previous picture of how vomeronasal information is processed in the brain of reptiles.

  17. Voltage-dependent currents in microvillar receptor cells of the frog vomeronasal organ.

    Science.gov (United States)

    Trotier, D; Døving, K B; Rosin, J F

    1993-08-01

    Vomeronasal receptor cells are differentiated bipolar neurons with a long dendrite bearing numerous microvilli. Isolated cells (with a mean dendritic length of 65 microns) and cells in mucosal slices were studied using whole-cell and Nystatin-perforated patch-clamp recordings. At rest, the membrane potential was -61 +/- 13 mV (mean +/- SD; n = 61). Sixty-four per cent of the cells had a resting potential in the range of -60 to -86 mV, with almost no spontaneous action potential. The input resistance was in the G omega range and overshooting repetitive action potentials were elicited by injecting depolarizing current pulses in the range of 2-10 pA. Voltage-dependent currents were characterized under voltage-clamp conditions. A transient fast inward current activating near -45 mV was blocked by tetrodotoxin. In isolated cells, it was half-deactivated at a membrane potential near -75 mV. An outward K+ current was blocked by internal Cs+ ions or by external tetraethylammonium or Ba2+ ions. A calcium-activated voltage-dependent potassium current was blocked by external Cd2+ ions. A voltage-dependent Ca2+ current was observed in an iso-osmotic BaCl2 solution. Finally, a hyperpolarization-activated inward current was recorded. Voltage-dependent currents in these microvillar olfactory receptor neurons appear qualitatively similar to those already described in ciliated olfactory receptor cells located in the principal olfactory epithelium.

  18. Simultaneously Excitatory and Inhibitory Effects of Transcranial Alternating Current Stimulation Revealed Using Selective Pulse-Train Stimulation in the Rat Motor Cortex.

    Science.gov (United States)

    Khatoun, Ahmad; Asamoah, Boateng; Mc Laughlin, Myles

    2017-09-27

    Transcranial alternating current stimulation (tACS) uses sinusoidal, subthreshold, electric fields to modulate cortical processing. Cortical processing depends on a fine balance between excitation and inhibition and tACS acts on both excitatory and inhibitory cortical neurons. Given this, it is not clear whether tACS should increase or decrease cortical excitability. We investigated this using transcranial current stimulation of the rat (all males) motor cortex consisting of a continuous subthreshold sine wave with short bursts of suprathreshold pulse-trains inserted at different phases to probe cortical excitability. We found that when a low-rate, long-duration, suprathreshold pulse-train was used, subthreshold cathodal tACS decreased cortical excitability and anodal tACS increased excitability. However, when a high-rate, short-duration, suprathreshold pulse-train was used this pattern was inverted. An integrate-and-fire model incorporating biophysical differences between cortical excitatory and inhibitory neurons could predict the experimental data and helped interpret these results. The model indicated that low-rate suprathreshold pulse-trains preferentially stimulate excitatory cortical neurons, whereas high-rate suprathreshold pulse-trains stimulate both excitatory and inhibitory neurons. If correct, this indicates that suprathreshold pulse-train stimulation may be able to selectively control the excitation-inhibition balance within a cortical network. The excitation-inhibition balance then likely plays an important role in determining whether subthreshold tACS will increase or decrease cortical excitability.SIGNIFICANCE STATEMENT Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that uses weak sinusoidal electric fields to modulate cortical activity. In healthy volunteers tACS can modulate perception, cognition, and motor function but the underlying neural mechanism is poorly understood. In this study, using rat motor

  19. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Schmidt, Marlit A

    2012-01-01

    Evoked cortical responses do not follow a rigid input-output function but are dynamically shaped by intrinsic neural properties at the time of stimulation. Recent research has emphasized the role of oscillatory activity in determining cortical excitability. Here we employed EEG-guided transcranial...... magnetic stimulation (TMS) during non-rapid eye movement sleep to examine whether the spontaneous...

  20. Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation.

    Science.gov (United States)

    Sarubbo, Silvio; De Benedictis, Alessandro; Merler, Stefano; Mandonnet, Emmanuel; Barbareschi, Mattia; Dallabona, Monica; Chioffi, Franco; Duffau, Hugues

    2016-11-01

    The most accepted framework of language processing includes a dorsal phonological and a ventral semantic pathway, connecting a wide network of distributed cortical hubs. However, the cortico-subcortical connectivity and the reciprocal anatomical relationships of this dual-stream system are not completely clarified. We performed an original blunt microdissection of 10 hemispheres with the exposition of locoregional short fibers and six long-range fascicles involved in language elaboration. Special attention was addressed to the analysis of termination sites and anatomical relationships between long- and short-range fascicles. We correlated these anatomical findings with a topographical analysis of 93 functional responses located at the terminal sites of the language bundles, collected by direct electrical stimulation in 108 right-handers. The locations of phonological and semantic paraphasias, verbal apraxia, speech arrest, pure anomia, and alexia were statistically analyzed, and the respective barycenters were computed in the MNI space. We found that terminations of main language bundles and functional responses have a wider distribution in respect to the classical definition of language territories. Our analysis showed that dorsal and ventral streams have a similar anatomical layer organization. These pathways are parallel and relatively segregated over their subcortical course while their terminal fibers are strictly overlapped at the cortical level. Finally, the anatomical features of the U-fibers suggested a role of locoregional integration between the phonological, semantic, and executive subnetworks of language, in particular within the inferoventral frontal lobe and the temporoparietal junction, which revealed to be the main criss-cross regions between the dorsal and ventral pathways. Hum Brain Mapp 37:3858-3872, 2016. © 2016 Wiley Periodicals, Inc.

  1. Deconvolution analyses with tent functions reveal delayed and long-sustained increases of BOLD signals with acupuncture stimulation.

    Science.gov (United States)

    Murase, Tomokazu; Umeda, Masahiro; Fukunaga, Masaki; Tanaka, Chuzo; Higuchi, Toshihiro

    2013-01-01

    We used deconvolution analysis to examine temporal changes in brain activity after acupuncture stimulation and assess brain responses without expected reference functions. We also examined temporal changes in brain activity after sham acupuncture (noninsertive) and scrubbing stimulation. We divided 26 healthy right-handed adults into a group of 13 who received real acupuncture with manual manipulation and a group of 13 who received both tactical stimulations. Functional magnetic resonance imaging (fMRI) sequences consisted of four 15-s stimulation blocks (ON) interspersed between one 30-s and four 45-s rest blocks (OFF) for a total scanning time of 270 s. We analyzed data by using Statistical Parametric Mapping 8 (SPM8), MarsBaR, and Analysis of Functional NeuroImages (AFNI) software. For statistical analysis, we used 3dDeconvolve, part of the AFNI package, to extract the impulse response functions (IRFs) of the fMRI signals on a voxel-wise basis, and we tested the time courses of the extracted IRFs for the stimulations. We found stimulus-specific impulse responses of blood oxygen level-dependent (BOLD) signals in various brain regions. We observed significantly delayed and long-sustained increases of BOLD signals in several brain regions following real acupuncture compared to sham acupuncture and palm scrubbing, which we attribute to peripheral nocireceptors, flare responses, and processing of the central nervous system. Acupuncture stimulation induced continued activity that was stronger than activity after the other stimulations. We used tent function deconvolution to process fMRI data for acupuncture stimulation and found delayed increasing and delayed decreasing changes in BOLD signal in the somatosensory areas and areas related to pain perception. Deconvolution analyses with tent functions are expected to be useful in extracting complicated and associated brain activity that is delayed and sustained for a long period after various stimulations.

  2. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study.

    Science.gov (United States)

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the

  3. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study.

    Directory of Open Access Journals (Sweden)

    Annalisa Monaco

    Full Text Available Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS is dysregulated in patients suffering from temporomandibular disorders (TMDs, suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation and long after (recovery period sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired

  4. Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ogura

    Full Text Available Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5 and the phospholipase C (PLC beta2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT and vesicular acetylcholine transporter (VAChT for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in

  5. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    Science.gov (United States)

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (pmangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation.

  6. Chemoarchitecture and afferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes.

    Science.gov (United States)

    Martinez-Marcos, Alino; Ubeda-Bañon, Isabel; Lanuza, Enrique; Halpern, Mimi

    2005-01-01

    The olfactostriatum, a portion of the striatal complex of snakes, is the major tertiary vomeronasal structure in the ophidian brain, receiving substantial afferents from the nucleus sphericus, the primary target of accessory olfactory bulb efferents. In the present study, we have characterized the olfactostriatum of garter snakes (Thamnophis sirtalis) on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and hodology (afferent connections). The olfactostriatum is densely immunoreactive for serotonin and neuropeptide Y and shows moderate-to-weak immunoreactivity for tyrosine hydroxylase. In addition to afferents from the nucleus sphericus, the olfactostriatum receives inputs from the dorsal and lateral cortices, nucleus of the accessory olfactory tract, external and dorsolateral amygdalae, dorsomedial thalamic nucleus, ventral tegmental area and raphe nuclei. Double labeling experiments demonstrated that the distribution of serotonin and neuropeptide Y in this area almost completely overlaps the terminal field of projections from the nucleus sphericus. Also, serotonergic and dopaminergic innervation of the olfactostriatum likely arise, respectively, from the raphe nuclei and the ventral tegmental area, whereas local circuit neurons originate the neuropeptide Y immunoreactivity. These results indicate that the olfactostriatum of snakes could be a portion of the nucleus accumbens, with features characteristic of the accumbens shell, devoted to processing vomeronasal information. Comparative data suggest that a similar structure is present in the ventral striatum of amphibians and mammals.

  7. Sexual polymorphisms of vomeronasal 1 receptor family gene expression in bulls, steers, and estrous and early luteal-phase heifers.

    Science.gov (United States)

    Kubo, Haruna; Otsuka, Midori; Kadokawa, Hiroya

    2016-02-01

    Vomeronasal 1 receptors (V1R) are a family of receptors for intraspecies chemosignals, including pheromones, and are expressed in the olfactory epithelium (OE) and vomeronasal organ (VO). Even in the well-studied rodents, it is unclear which members of the V1R family cause sexual polymorphisms, as there are numerous genes and it is difficult to quantify their expressions individually. Bovine species carry only 34 V1R homologs, and the OE and VOs are large enough to sample. Here, V1R expression was quantified in the OE and VOs of individual bovines. Based on the 34 gene sequences, we obtained a molecular dendrogram consisting of four clusters and six independent branches. Semi-quantitative RT-PCR was used to obtain gene expression profiles in the VOs and OE of 5 Japanese Black bulls, 5 steers, 7 estrous heifers and 6 early luteal-phase heifers. Ten genes showed significant between-group differences, and 22 showed high expression in VOs than in OE. The bulls showed higher expression of one gene more in OE and another in VOs (both Pexpressed more abundantly in steers than in bulls. The estrous heifers showed higher expression of a gene of the second cluster in OE, and a gene of the third cluster in VOs (both Pexpression exhibits sexual polymorphisms in cattle.

  8. Cortical and vestibular stimulation reveal preserved descending motor pathways in individuals with motor-complete spinal cord injury.

    Science.gov (United States)

    Squair, Jordan W; Bjerkefors, Anna; Inglis, J Timothy; Lam, Tania; Carpenter, Mark G

    2016-07-18

    To use a combination of electrophysiological techniques to determine the extent of preserved muscle activity below the clinically-defined level of motor-complete spinal cord injury. Transcranial magnetic stimulation and vestibular-evoked myogenic potentials were used to investigate whether there was any preserved muscle activity in trunk, hip and leg muscles of 16 individuals with motor-complete spinal cord injury (C4-T12) and 16 able-bodied matched controls. Most individuals (14/16) with motor-complete spinal cord injury were found to have transcranial magnetic stimulation evoked, and/or voluntary evoked muscle activity in muscles innervated below the clinically classified lesion level. In most cases voluntary muscle activation was accompanied by a present transcranial magnetic stimulation response. Furthermore, motor-evoked potentials to transcranial magnetic stimulation could be observed in muscles that could not be voluntarily activated. Vestibular-evoked myogenic potentials responses were also observed in a small number of subjects, indicating the potential preservation of other descending pathways. These results highlight the importance of using multiple electrophysiological techniques to assist in determining the potential preservation of muscle activity below the clinically-defined level of injury in individuals with a motor-complete spinal cord injury. These techniques may provide clinicians with more accurate information about the state of various motor pathways, and could offer a method to more accurately target rehabilitation.

  9. Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A

    Directory of Open Access Journals (Sweden)

    Federico eIseppon

    2015-08-01

    Full Text Available Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A stimulation obtained with lipid vesicles filled with Semaphorin-3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Semaphorin-3A brought to a progressive activation of RhoA within 30 seconds from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 seconds, and followed by GC retraction. Therefore, Semaphorin-3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.

  10. Functions of Vomeronasal System in Reproduction Behavior of the Rodent%犁鼻系统在鼠类繁殖行为中的功能

    Institute of Scientific and Technical Information of China (English)

    邰发道; 王廷正; 孙儒泳

    2002-01-01

    通过对犁鼻器在鼠类繁殖行为中的功能研究,并将其与主要嗅觉系统的功能进行比较,发现虽然犁鼻器是一个微小的、而且常常是被人们所忽视并有争论的器官,但它在鼠类行为,尤其在繁殖行为方面具有多种功能.对此要用新的研究方法对犁鼻系统的功能作进一步研究,以便和主要嗅觉系统在社会行为中的作用进行比较,进而更精细地探讨人类犁鼻系统的生理机能.%Functions in rodent reproduction behavior were discussed, difference between functions of vomeronasal system (VNS) and main olfactory system (MOS) in rodent behaviors were compared in this paper. It is found that although vomeronasal organ is a minute structure and often is disregarded and argued by people, it has a wide variety of functions in rodent behavior especially in reproduction behavior. In order to compare the functions of main olfactory system of mammals and accessory olfactory system and to probe physiologic function of vomeronasal system of human beings in detail, it is necessary to study vomeronasal system further using new methods.

  11. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    Science.gov (United States)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  12. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Directory of Open Access Journals (Sweden)

    Schmidt Yvonne

    2012-11-01

    Full Text Available Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. Results Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective μ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. Conclusions Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.

  13. Lateral visual field stimulation reveals extrastriate cortical activation in the contralateral hemisphere: an fMRI study.

    Science.gov (United States)

    Schiffer, Fredric; Mottaghy, Felix M; Pandey Vimal, Ram Lakhan; Renshaw, Perry F; Cowan, Ronald; Pascual-Leone, Alvaro; Teicher, Martin; Valente, Elizabeth; Rohan, Michael

    2004-05-30

    We examined whether lateral visual field stimulation (LSTM) could activate contralateral extrastriate cortical areas as predicted by a large experimental literature. We asked seven unscreened, control subjects to wear glasses designed to allow vision out of either the left (LVF) or right lateral visual field (RVF) depending upon which side the subject looked toward. Each subject participated in a block design functional magnetic resonance imaging (fMRI) study with alternating 30-s epochs in which he was asked to look to one side and then the other for a total of five epochs. On each side of the bore of the scanner, we taped a photograph for the subject to view in the LVF and RVF. The data were analyzed with SPM99 using a fixed effect, box-car design with contrasts for the LVF and the RVF conditions. Both LVF and RVF conditions produced the strongest fMRI activation in the contralateral occipitotemporal and posterior parietal areas as well as the contralateral dorsolateral prefrontal cortex. LSTM appears to increase contralateral fMRI activation in striate and extrastriate cortical areas as predicted by earlier studies reporting differential cognitive and/or emotional effects from unilateral sensory or motor stimulation.

  14. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced and splicing changes that classify brain region transcriptomes

    Directory of Open Access Journals (Sweden)

    Lilach eSoreq

    2013-05-01

    Full Text Available MicroRNAs (miRNAs are key post transcriptional regulators of their multiple target genes. However, the detailed profile of miRNA expression in Parkinson's disease, the second most common neurodegenerative disease worldwide and the first motor disorder has not been charted yet. Here, we report comprehensive miRNA profiling by next-generation small-RNA sequencing, combined with targets inspection by splice-junction and exon arrays interrogating leukocyte RNA in Parkinson’s disease patients before and after deep brain stimulation (DBS treatment and of matched healthy control volunteers (HC. RNA-Seq analysis identified 254 miRNAs and 79 passenger strand forms as expressed in blood leukocytes, 16 of which were modified in patients pre treatment as compared to HC. 11 miRNAs were modified following brain stimulation, 5 of which were changed inversely to the disease induced changes. Stimulation cessation further induced changes in 11 miRNAs. Transcript isoform abundance analysis yielded 332 changed isoforms in patients compared to HC, which classified brain transcriptomes of 47 PD and control independent microarrays. Functional enrichment analysis highlighted mitochondrion organization. DBS induced 155 splice changes, enriched in ubiquitin homeostasis. Cellular composition analysis revealed immune cell activity pre and post treatment. Overall, 217 disease and 74 treatment alternative isoforms were predictably targeted by modified miRNAs within both 3’ and 5’ untranslated ends and coding sequence sites. The stimulation-induced network sustained 4 miRNAs and 7 transcripts of the disease network. We believe that the presented dynamic networks provide a novel avenue for identifying disease and treatment-related therapeutic targets. Furthermore, the identification of these networks is a major step forward in the road for understanding the molecular basis for neurological and neurodegenerative diseases and assessment of the impact of brain stimulation

  15. Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease

    Science.gov (United States)

    2013-01-01

    Background Interstitial lung disease is a major cause of morbidity and mortality in systemic sclerosis (SSc), with insufficiently effective treatment options. Progression of pulmonary fibrosis involves expanding populations of fibroblasts, and the accumulation of extracellular matrix proteins. Characterisation of SSc lung fibroblast gene expression profiles underlying the fibrotic cell phenotype could enable a better understanding of the processes leading to the progressive build-up of scar tissue in the lungs. In this study we evaluate the transcriptomes of fibroblasts isolated from SSc lung biopsies at the time of diagnosis, compared with those from control lungs. Methods We used Affymetrix oligonucleotide microarrays to compare the gene expression profile of pulmonary fibroblasts cultured from 8 patients with pulmonary fibrosis associated with SSc (SSc-ILD), with those from control lung tissue peripheral to resected cancer (n=10). Fibroblast cultures from 3 patients with idiopathic pulmonary fibrosis (IPF) were included as a further comparison. Genes differentially expressed were identified using two separate analysis programs following a set of pre-determined criteria: only genes significant in both analyses were considered. Microarray expression data was verified by qRT-PCR and/or western blot analysis. Results A total of 843 genes were identified as differentially expressed in pulmonary fibroblasts from SSc-ILD and/or IPF compared to control lung, with a large overlap in the expression profiles of both diseases. We observed increased expression of a TGF-β response signature including fibrosis associated genes and myofibroblast markers, with marked heterogeneity across samples. Strongly suppressed expression of interferon stimulated genes, including antiviral, chemokine, and MHC class 1 genes, was uniformly observed in fibrotic fibroblasts. This expression profile includes key regulators and mediators of the interferon response, such as STAT1, and CXCL10, and

  16. Insulin-stimulated phosphorylation of protein phosphatase 1 regulatory subunit 12B revealed by HPLC-ESI-MS/MS

    Directory of Open Access Journals (Sweden)

    Pham Kimberly

    2012-09-01

    Full Text Available Abstract Background Protein phosphatase 1 (PP1 is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B, one of the regulatory subunits of PP1, can bind to PP1cδ, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cδ against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. However, it is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Results 14 PPP1R12B phosphorylation sites were identified, 7 of which were previously unreported. Potential kinases were predicted for these sites. Furthermore, relative quantification of PPP1R12B phosphorylation sites for basal and insulin-treated samples was obtained by using peak area-based label-free mass spectrometry of fragment ions. The results indicate that insulin stimulates the phosphorylation of PPP1R12B significantly at serine 29 (3.02 ± 0.94 fold, serine 504 (11.67 ± 3.33 fold, and serine 645/threonine 646 (2.34 ± 0.58 fold. Conclusion PPP1R12B was identified as a phosphatase subunit that undergoes insulin-stimulated phosphorylation, suggesting that PPP1R12B might play a role in insulin signaling. This study also identified novel targets for future investigation of the regulation of PPP1R12B not only in insulin signaling in cell models, animal models, and in humans, but also in other signaling pathways.

  17. Gender differences in cognitive Theory of Mind revealed by transcranial direct current stimulation on medial prefrontal cortex

    Science.gov (United States)

    Adenzato, Mauro; Brambilla, Michela; Manenti, Rosa; De Lucia, Lucia; Trojano, Luigi; Garofalo, Sara; Enrici, Ivan; Cotelli, Maria

    2017-01-01

    Gender differences in social cognition are a long discussed issue, in particular those concerning Theory of Mind (ToM), i.e., the ability to explain and predict other people’s mental states. The aim of this randomized, double-blind, placebo-controlled study was to test the hypothesis that anodal tDCS over the medial prefrontal cortex (mPFC) selectively enhances cognitive ToM performance in females. In the first experiment we administered to sixteen females and sixteen males a cognitive ToM task during anodal or placebo tDCS over the mPFC. In the second experiment further sixteen females completed the task receiving anodal or placebo tDCS over the vertex. The results showed that anodal tDCS over the mPFC enhances ToM in females but not in males, an effect indicated by enhanced ToM in females that received anodal tDCS over the mPFC compared with females that received tDCS over the vertex. These findings are relevant for three reasons. First, we found evidence of gender-related differences in cognitive ToM, extending previous findings concerning affective ToM. Second, these differences emerge with anodal stimulation of the mPFC, confirming the crucial role of this area in cognitive ToM. Third, we show that taking into account gender-related differences is mandatory for the investigation of ToM. PMID:28117378

  18. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Lixue Dong

    Full Text Available Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2 and stress response genes such as ATF3 and DDIT3 (CHOP. Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be

  19. Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    Science.gov (United States)

    Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.

    2013-01-01

    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by

  20. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ghee Chuan Lai

    2017-07-01

    Full Text Available Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG. Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs, preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi

  1. Pim-selective inhibitor DHPCC-9 reveals Pim kinases as potent stimulators of cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Prudhomme Michelle

    2010-10-01

    Full Text Available Abstract Background Pim family kinases are small constitutively active serine/threonine-specific kinases, elevated levels of which have been detected in human hematopoietic malignancies as well as in solid tumours. While we and others have previously shown that the oncogenic Pim kinases stimulate survival of hematopoietic cells, we now examined their putative role in regulating motility of adherent cancer cells. For this purpose, we inhibited Pim kinase activity using a small molecule compound, 1,10-dihydropyrrolo[2,3-a]carbazole-3-carbaldehyde (DHPCC-9, which we had recently identified as a potent and selective inhibitor for all Pim family members. Results We now demonstrate that the Pim kinase inhibitor DHPCC-9 is very effective also in cell-based assays. DHPCC-9 impairs the anti-apoptotic effects of Pim-1 in cytokine-deprived myeloid cells and inhibits intracellular phosphorylation of Pim substrates such as Bad. Moreover, DHPCC-9 slows down migration and invasion of cancer cells derived from either prostate cancer or squamocellular carcinoma patients. Silencing of Pim expression reduces cell motility, while Pim overexpression enhances it, strongly suggesting that the observed effects of DHPCC-9 are dependent on Pim kinase activity. Interestingly, DHPCC-9 also abrogates NFATc-dependent migration of cancer cells, implying that NFATc factors mediate at least part of the pro-migratory effects of Pim kinases. Conclusions Altogether, our data indicate that DHPCC-9 is not only a powerful tool to investigate physiological effects of the oncogenic Pim family kinases, but also an attractive molecule for drug development to inhibit invasiveness of Pim-overexpressing cancer cells.

  2. Multiple Time Courses of Vestibular Set-Point Adaptation Revealed by Sustained Magnetic Field Stimulation of the Labyrinth.

    Science.gov (United States)

    Jareonsettasin, Prem; Otero-Millan, Jorge; Ward, Bryan K; Roberts, Dale C; Schubert, Michael C; Zee, David S

    2016-05-23

    A major focus in neurobiology is how the brain adapts its motor behavior to changes in its internal and external environments [1, 2]. Much is known about adaptively optimizing the amplitude and direction of eye and limb movements, for example, but little is known about another essential form of learning, "set-point" adaptation. Set-point adaptation balances tonic activity so that reciprocally acting, agonist and antagonist muscles have a stable platform from which to launch accurate movements. Here, we use the vestibulo-ocular reflex-a simple behavior that stabilizes the position of the eye while the head is moving-to investigate how tonic activity is adapted toward a new set point to prevent eye drift when the head is still [3, 4]. Set-point adaptation was elicited with magneto-hydrodynamic vestibular stimulation (MVS) by placing normal humans in a 7T MRI for 90 min. MVS is ideal for prolonged labyrinthine activation because it mimics constant head acceleration and induces a sustained nystagmus similar to natural vestibular lesions [5, 6]. The MVS-induced nystagmus diminished slowly but incompletely over multiple timescales. We propose a new adaptation hypothesis, using a cascade of imperfect mathematical integrators, that reproduces the response to MVS (and more natural chair rotations), including the gradual decrease in nystagmus as the set point changes over progressively longer time courses. MVS set-point adaptation is a biological model with applications to basic neurophysiological research into all types of movements [7], functional brain imaging [8], and treatment of vestibular and higher-level attentional disorders by introducing new biases to counteract pathological ones [9].

  3. A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation.

    Science.gov (United States)

    Quintana, Laura; Sierra, Felipe; Silva, Ana; Macadar, Omar

    2011-02-01

    The cyclic enrichment of behavioral repertoires is a common event in seasonal breeders. Breeding males Brachyhypopomus gauderio produce electric organ discharge (EOD) rate modulations called chirps while females respond with interruptions. The electromotor system is commanded by a pacemaker nucleus (PN) which sets the basal rate and produces the rate modulations. We focused on identifying functional, seasonal and sexual differences in this nucleus in correlation to these differences in behavior. The in vivo response to glutamate injection in the PN was seasonal, sexually dimorphic and site specific. Non-breeding adults and breeding females injected in dorsal and ventral sites generated EOD rate increases and interruptions, respectively. Reproductive males added a conspicuous communication signal to this repertoire. They chirped repetitively when we injected glutamate in a very restricted area of the ventral-rostral nucleus, surprisingly one with a low number of relay cell somata. This study shows that the PN is functionally organized in regions in a caudal-rostral axis, besides the previously documented dorsal-ventral division. Functional regions are revealed by seasonal changes that annually provide this nucleus with the cellular mechanisms that allow the bursting activity underlying chirp production, only in males.

  4. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Directory of Open Access Journals (Sweden)

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  5. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements

    Directory of Open Access Journals (Sweden)

    Giovanni ePascarella

    2014-02-01

    Full Text Available By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE. Transcription start sites (TSSs for the large majority of Olfactory Receptors (ORs have been previously mapped increasing our understanding of their promoter architecture.Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs. These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs. We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing. It positions transcribed LINEs as candidate regulatory RNAs for VRs expression.

  6. Critical Role of CD2 Co-stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans

    Directory of Open Access Journals (Sweden)

    Lisa L. Liu

    2016-05-01

    Full Text Available Infection by human cytomegalovirus (HCMV leads to NKG2C-driven expansion of adaptive natural killer (NK cells, contributing to host defense. However, approximately 4% of all humans carry a homozygous deletion of the gene that encodes NKG2C (NKG2C−/−. Assessment of NK cell repertoires in 60 NKG2C−/− donors revealed a broad range of NK cell populations displaying characteristic footprints of adaptive NK cells, including a terminally differentiated phenotype, functional reprogramming, and epigenetic remodeling of the interferon (IFN-γ promoter. We found that both NKG2C− and NKG2C+ adaptive NK cells expressed high levels of CD2, which synergistically enhanced ERK and S6RP phosphorylation following CD16 ligation. Notably, CD2 co-stimulation was critical for the ability of adaptive NK cells to respond to antibody-coated target cells. These results reveal an unexpected redundancy in the human NK cell response to HCMV and suggest that CD2 provides “signal 2” in antibody-driven adaptive NK cell responses.

  7. Unique genetic responses revealed in RNA-seq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat.

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Chris M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2017-01-01

    Climate change and disease have large negative impacts on poultry production, but little is known about the interactions of responses to these stressors in chickens. Fayoumi (heat and disease resistant) and broiler (heat and disease susceptible) chicken lines were stimulated at 22 days of age, using a 2x2x2 factorial design including: breed (Fayoumi or broiler), inflammatory stimulus (lipopolysaccharide (LPS) or saline), and temperature (35°C or 25°C). Transcriptional changes in spleens were analyzed using RNA-sequencing on the Illumina HiSeq 2500. Thirty-two individual cDNA libraries were sequenced (four per treatment) and an average of 22 million reads were generated per library. Stimulation with LPS induced more differentially expressed genes (DEG, log2 fold change ≥ 2 and FDR ≤ 0.05) in the broiler (N = 283) than the Fayoumi (N = 85), whereas heat treatment resulted in fewer DEG in broiler (N = 22) compared to Fayoumi (N = 107). The double stimulus of LPS+heat induced the largest numbers of changes in gene expression, for which broiler had 567 DEG and Fayoumi had 1471 DEG of which 399 were shared between breeds. Further analysis of DEG revealed pathways impacted by these stressors such as Remodelling of Epithelial Adherens Junctions due to heat stress, Granulocyte Adhesion and Diapedesis due to LPS, and Hepatic Fibrosis/Hepatic Stellate Cell Activation due to LPS+heat. The genes and pathways identified provide deeper understanding of the response to the applied stressors and may serve as biomarkers for genetic selection for heat and disease tolerant chickens.

  8. Unique genetic responses revealed in RNA-seq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Chris M.; Persia, Michael E.; Rothschild, Max F.; Schmidt, Carl J.

    2017-01-01

    Climate change and disease have large negative impacts on poultry production, but little is known about the interactions of responses to these stressors in chickens. Fayoumi (heat and disease resistant) and broiler (heat and disease susceptible) chicken lines were stimulated at 22 days of age, using a 2x2x2 factorial design including: breed (Fayoumi or broiler), inflammatory stimulus (lipopolysaccharide (LPS) or saline), and temperature (35°C or 25°C). Transcriptional changes in spleens were analyzed using RNA-sequencing on the Illumina HiSeq 2500. Thirty-two individual cDNA libraries were sequenced (four per treatment) and an average of 22 million reads were generated per library. Stimulation with LPS induced more differentially expressed genes (DEG, log2 fold change ≥ 2 and FDR ≤ 0.05) in the broiler (N = 283) than the Fayoumi (N = 85), whereas heat treatment resulted in fewer DEG in broiler (N = 22) compared to Fayoumi (N = 107). The double stimulus of LPS+heat induced the largest numbers of changes in gene expression, for which broiler had 567 DEG and Fayoumi had 1471 DEG of which 399 were shared between breeds. Further analysis of DEG revealed pathways impacted by these stressors such as Remodelling of Epithelial Adherens Junctions due to heat stress, Granulocyte Adhesion and Diapedesis due to LPS, and Hepatic Fibrosis/Hepatic Stellate Cell Activation due to LPS+heat. The genes and pathways identified provide deeper understanding of the response to the applied stressors and may serve as biomarkers for genetic selection for heat and disease tolerant chickens. PMID:28166270

  9. Garlic, from Remedy to Stimulant:Evaluation of Antifungal Potential Reveals Diversity in Phytoalexin Allicin Content among Garlic Cultivars; Allicin Containing Aqueous Garlic Extracts Trigger Antioxidants in Cucumber

    Directory of Open Access Journals (Sweden)

    Sikandar Hayat

    2016-08-01

    Full Text Available Garlic has the charisma of a potent remedy and holds its repute of a therapeutic panacea since the dawn of civilization. An integrated approach was adopted to evaluate the genetic diversity among Chinese garlic cultivars for their antifungal potency as well as allicin content distribution and, furthermore; a bioassay was performed to study the bio-stimulation mechanism of aqueous garlic extracts (AGE in the growth and physiology of cucumber (Cucumis sativus. Initially, 28 garlic cultivars were evaluated against four kinds of phytopathogenic fungi; Fusarium oxysporum, Botrytis cinerea, Verticillium dahliae and Phytopthora capsici, respectively. A capricious antifungal potential among the selected garlic cultivars was observed. HPLC fingerprinting and quantification confirmed diversity in allicin abundance among the selected cultivars. Cultivar G025, G064 and G074 had the highest allicin content of 3.98, 3.7 and 3.66 mg g-1 respectively, whereas G110 was found to have lowest allicin content of 0.66 mg g-1. Cluster analysis revealed three groups on the basis of antifungal activity and allicin content among the garlic cultivars. Cultivar G025, G2011-4 and G110 were further evaluated to authenticate the findings through different solvents and shelf life duration and G025 had the strongest antifungal activity in all conditions. Leaf disc bioassay against Phytophthora capsici and Verticillium dahliae to comparatively study direct action of AGE and Allicin aqueous standard (AAS during infection process employing eggplant and pepper leaves showed a significant reduction in infection percentage. To study the bioactivity of AGE, a bioassay was performed using cucumber seedlings and results revealed that AGE is biologically active inside cucumber seedlings and alters the defense mechanism of the plant probably activating ROS at mild concentrations. However, at higher concentrations, it might cause lipid peroxidation and membrane damage which temper the

  10. Neurogenesis in the vomeronasal epithelium of adult garter snakes: 3. Use of /sup 3/H-thymidine autoradiography to trace the genesis and migration of bipolar neurons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.T.; Halpern, M.

    1988-10-01

    Use of 3H-thymidine autoradiography and unilateral vomeronasal (VN) axotomy has permitted us to demonstrate directly the existence of VN stem cells in the adult garter snake and to trace continuous bipolar neuron development and migration in the normal VN and deafferentated VN epithelium in the same animal. The vomeronasal epithelium and olfactory epithelium of adult garter snakes are both capable of incorporating 3H-thymidine. In the sensory epithelium of the vomeronasal organ, 3H-thymidine-labeled cells were initially restricted to the base of the undifferentiated cell layer in animals surviving 1 day following 3H-thymidine injection. With increasing survival time, labeled cells progressively migrated vertically within the receptor cell column toward the apex of the bipolar neuron layer. In both the normal and denervated VN epithelium, labeled cells were observed through the 56 days of postoperative survival. In the normal epithelium, labeled cells were always located within the matrix of the intact receptor cell columns. However, labeled cells of the denervated epithelium were always located at the apical front of the newly formed cell mass following depletion of the original neuronal cell population. In addition, at postoperative days 28 and 56, labeled cells of the denervated VN epithelium achieved neuronal differentiation and maturation by migrating much farther away from the base of the receptor cell column than the labeled cells on the normal, unoperated contralateral side. This study directly demonstrates that basal cells initially incorporating 3H-thymidine are indeed stem cells of the VN epithelium in adult garter snakes.

  11. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    Full Text Available The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.

  12. Studies of cholecystokinin-stimulated biliary secretions reveal a high molecular weight copper-binding substance in normal subjects that is absent in patients with Wilson's disease.

    Science.gov (United States)

    Iyengar, V; Brewer, G J; Dick, R D; Chung, O Y

    1988-03-01

    Copper is unique among cations in that its balance is regulated by the liver. The liver regulates copper balance by excretion of copper (we call it regulatory copper) in the bile destined for loss in the stool. However, most copper secreted into the gastrointestinal tract, for example, that in saliva and gastric juice, is reabsorbed. The biochemical mechanism by which the normal liver "packages" regulatory copper to prevent its reabsorption is not understood. Whatever the mechanism, it appears to have failed in Wilson's disease, because patients with Wilson's disease do not excrete adequate amounts of regulatory copper in their bile to prevent copper accumulation. In the present work, we have studied cholecystokinin-stimulated biliary secretions obtained by intestinal intubation of five normal subjects and five patients with Wilson's disease. Studies of these secretions reveal: (1) that normal but not Wilson's disease biliary samples had a copper-containing peak in the void volume from Sephadex G-75 columns; (2) that the amount of copper in this peak extrapolated to 24 hours of secretion was appropriate to maintain normal copper balance; (3) that the amount of copper in this peak increased with dietary copper supplementation of normal subjects; (4) that normal but not Wilson's disease biliary samples cross-reacted with each of two ceruloplasmin antibodies; and (5) that the high molecular weight Sephadex G-75 fraction from normal but not from Wilson's disease biliary samples cross-reacted with ceruloplasmin antibody. We postulate that the high molecular weight copper-containing substance observed with Sephadex chromatography in normal biliary samples but absent in Wilson's disease samples is the copper-packaging mechanism for copper balance regulation.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. 菜花原矛头蝮嗅觉系统和犁鼻系统的显微结构%The microstructure of olfactory and vomeronasal systems in snake, Protobothrops jerdonii

    Institute of Scientific and Technical Information of China (English)

    王宏元; 柴丽红; 王晓雯; 李忻怡

    2011-01-01

    采用组织学方法观察了菜花原矛头蝮(Protobothrops jerdonii)的嗅觉系统和犁鼻系统.结果表明,嗅器位于嗅囊的背侧,犁鼻器则位于嗅器的腹内侧.嗅器的上皮分化为嗅上皮和呼吸上皮,嗅上皮的基底层有Bowman's腺,呼吸上皮中具有大量的杯状细胞.犁鼻器基底层未发现犁鼻腺.嗅球和副嗅球呈典型的板层构筑结构.推测菜花原矛头蝮嗅器内嗅上皮和呼吸上皮完全分开有利于背侧嗅上皮俘获气味信号,腹侧呼吸上皮参与呼吸作用.虽然菜花原矛头蝮等蛇类的犁鼻器缺少犁鼻腺,但是其眼眶周围的哈氏腺和口腔内的唾液腺可以代偿犁鼻腺机能.%The olfactory organ and vomeronasal system in snake, Protobothrops jerdonii, were investigated under the microscope. The results showed that the olfactory organ lies in the dorsal and the vomeronasal organ is in the ventral portion of the nose cavity. The epithelium of the olfactory cavity is divided into the two segments: olfactory epithelium and respiratory epithelium.Bowman's gland in the olfactory epithelium is present and goblets cells occur in the respiratory epithelium. Vomeronasal gland is not found in the vomeronasal organ. The olfactory bulb and accessory olfactory bulb are typical laminar pattern. Subdivision of dorsal olfactory epithelium and ventral respiratory epithelium in snake may be beneficial to that the olfactory epithelium capture odour and respiratory epithelium take party into the respiratory. In addition, the vomeronasal organ in snake lacks vomeronasal glands, but the harderian gland and the salivary glands compensate lack of the vomeronasal gland.

  14. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  15. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades as Revealed by Lesion Studies with Neurological Patients and Transcranial Magnetic Stimulation (TMS)

    Science.gov (United States)

    Muri, Rene M.; Nyffeler, Thomas

    2008-01-01

    This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess…

  16. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  17. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration.

    Science.gov (United States)

    Bass, Caroline E; Grinevich, Valentina P; Gioia, Dominic; Day-Brown, Jonathan D; Bonin, Keith D; Stuber, Garret D; Weiner, Jeff L; Budygin, Evgeny A

    2013-01-01

    There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  18. BOLD response to direct thalamic stimulation reveals a functional connection between the medial thalamus and the anterior cingulate cortex in the rat.

    Science.gov (United States)

    Shyu, Bai-Chung; Lin, Chun-Yu; Sun, Jyh-Jang; Chen, Shin-Lang; Chang, Chen

    2004-07-01

    Recent functional neuroimaging studies in humans and rodents have shown that the anterior cingulate cortex (ACC) is activated by painful stimuli, and plays an important role in the affective aspect of pain sensation. The aim of the present study was to develop a suitable stimulation method for direct activation of the brain in fMRI studies and to investigate the functional connectivity in the thalamo-cingulate pathway. In the first part of the study, tungsten, stainless steel, or glass-coated carbon fiber microelectrodes were implanted in the left medial thalamus (MT) of anesthetized rats, and T2*-weighted gradient-echo (GE) images were obtained in the sagittal plane on a 4.7 T system (Biospec BMT 47/40). Only the images obtained with the carbon fiber electrode were acceptable without a reduction of the signal-to-noise ratio (SNR) and image distortion. In the second part of the study, a series of two-slice GE images were acquired during electrical stimulation of the MT with the use of a carbon fiber electrode. A cross-correlation analysis showed that the signal intensities of activated areas in the ipsilateral ACC were significantly increased by about 4.5% during MT stimulation. Functional activation, as assessed by the distribution of c-Fos immunoreactivity, showed strong c-Fos expression in neurons in the ipsilateral ACC. The present study shows that glass-coated carbon fiber electrodes are suitable for fMRI studies and can be used to investigate functional thalamocortical activation.

  19. Line scanning fMRI reveals earlier onset of optogenetically evoked BOLD response in rat somatosensory cortex as compared to sensory stimulation.

    Science.gov (United States)

    Albers, Franziska; Schmid, Florian; Wachsmuth, Lydia; Faber, Cornelius

    2016-12-21

    The combination of optogenetic control and fMRI readout in the brain is increasingly used to assess neuronal networks and underlying signal processing. However, how exactly optogenetic activation or inhibition reproduces normal physiological input has not been fully unraveled. To assess details of temporal dynamics of the hemodynamic response, temporal resolution in rodent fMRI is often not sufficient. Recent advances in human fMRI using faster acquisition schemes cannot be easily translated to small animals due to smaller dimensions, fast physiological motion, and higher sensitivity to artefacts. Here, we applied a one dimensional line scanning acquisition with 50ms temporal resolution in rat somatosensory cortex. We observed that optogenetic activation reproduces the hemodynamic response upon sensory stimulation, but shows a 160 to 340ms earlier onset of the response. This difference is explained by direct activation of all opsin-expressing and illuminated cortical layers, while hemodynamic response to sensory stimulation is delayed during intracortical transmission between cortical layers. Our results confirm that optogenetic activation is a valid model for physiological neuronal input, and that differences in temporal behavior of only a few hundred milliseconds can be resolved in rodent fMRI.

  20. Covariation between Spike and LFP Modulations Revealed with Focal and Asynchronous Stimulation of Receptive Field Surround in Monkey Primary Visual Cortex.

    Science.gov (United States)

    Kim, Kayeon; Kim, Taekjun; Yoon, Taehwan; Lee, Choongkil

    2015-01-01

    A focal visual stimulus outside the classical receptive field (RF) of a V1 neuron does not evoke a spike response by itself, and yet evokes robust changes in the local field potential (LFP). This subthreshold LFP provides a unique opportunity to investigate how changes induced by surround stimulation leads to modulation of spike activity. In the current study, two identical Gabor stimuli were sequentially presented with a variable stimulus onset asynchrony (SOA) ranging from 0 to 100 ms: the first (S1) outside the RF and the second (S2) over the RF of primary visual cortex neurons, while trained monkeys performed a fixation task. This focal and asynchronous stimulation of the RF surround enabled us to analyze the modulation of S2-evoked spike activity and covariation between spike and LFP modulation across SOA. In this condition, the modulation of S2-evoked spike response was dominantly facilitative and was correlated with the change in LFP amplitude, which was pronounced for the cells recorded in the upper cortical layers. The time course of covariation between the SOA-dependent spike modulation and LFP amplitude suggested that the subthreshold LFP evoked by the S1 can predict the magnitude of upcoming spike modulation.

  1. Covariation between Spike and LFP Modulations Revealed with Focal and Asynchronous Stimulation of Receptive Field Surround in Monkey Primary Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Kayeon Kim

    Full Text Available A focal visual stimulus outside the classical receptive field (RF of a V1 neuron does not evoke a spike response by itself, and yet evokes robust changes in the local field potential (LFP. This subthreshold LFP provides a unique opportunity to investigate how changes induced by surround stimulation leads to modulation of spike activity. In the current study, two identical Gabor stimuli were sequentially presented with a variable stimulus onset asynchrony (SOA ranging from 0 to 100 ms: the first (S1 outside the RF and the second (S2 over the RF of primary visual cortex neurons, while trained monkeys performed a fixation task. This focal and asynchronous stimulation of the RF surround enabled us to analyze the modulation of S2-evoked spike activity and covariation between spike and LFP modulation across SOA. In this condition, the modulation of S2-evoked spike response was dominantly facilitative and was correlated with the change in LFP amplitude, which was pronounced for the cells recorded in the upper cortical layers. The time course of covariation between the SOA-dependent spike modulation and LFP amplitude suggested that the subthreshold LFP evoked by the S1 can predict the magnitude of upcoming spike modulation.

  2. A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Directory of Open Access Journals (Sweden)

    Roy C. Y. Choi

    2011-01-01

    Full Text Available Danggui Buxue Tang (DBT, a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA and Radix Angelicae Sinensis (Danggui; RAS. When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.

  3. Quantitative measurements of alternating finger tapping in Parkinson's disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation.

    Science.gov (United States)

    Taylor Tavares, Ana Lisa; Jefferis, Gregory S X E; Koop, Mandy; Hill, Bruce C; Hastie, Trevor; Heit, Gary; Bronte-Stewart, Helen M

    2005-10-01

    The Unified Parkinson's Disease Rating Scale (UPDRS) is the primary outcome measure in most clinical trials of Parkinson's disease (PD) therapeutics. Each subscore of the motor section (UPDRS III) compresses a wide range of motor performance into a coarse-grained scale from 0 to 4; the assessment of performance can also be subjective. Quantitative digitography (QDG) is an objective, quantitative assessment of digital motor control using a computer-interfaced musical keyboard. In this study, we show that the kinematics of a repetitive alternating finger-tapping (RAFT) task using QDG correlate with the UPDRS motor score, particularly with the bradykinesia subscore, in 33 patients with PD. We show that dopaminergic medication and an average of 9.5 months of bilateral subthalamic nucleus deep brain stimulation (B-STN DBS) significantly improve UPDRS and QDG scores but may have different effects on certain kinematic parameters. This study substantiates the use of QDG to measure motor outcome in trials of PD therapeutics and shows that medication and B-STN DBS both improve fine motor control.

  4. EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors

    Science.gov (United States)

    Colon, Elisabeth; Liberati, Giulia; Mouraux, André

    2017-01-01

    The recording of event-related brain potentials triggered by a transient heat stimulus is used extensively to study nociception and diagnose lesions or dysfunctions of the nociceptive system in humans. However, these responses are related exclusively to the activation of a specific subclass of nociceptive afferents: quickly-adapting thermonociceptors. In fact, except if the activation of Aδ fibers is avoided or if A fibers are blocked, these responses specifically reflect activity triggered by the activation of Type 2 quickly-adapting A fiber mechano-heat nociceptors (AMH-2). Here, we propose a novel method to isolate, in the human electroencephalogram (EEG), cortical activity related to the sustained periodic activation of heat-sensitive thermonociceptors, using very slow (0.2 Hz) and long-lasting (75 s) sinusoidal heat stimulation of the skin between baseline and 50°C. In a first experiment, we show that when such long-lasting thermal stimuli are applied to the hand dorsum of healthy volunteers, the slow rises and decreases of skin temperature elicit a consistent periodic EEG response at 0.2 Hz and its harmonics, as well as a periodic modulation of the magnitude of theta, alpha and beta band EEG oscillations. In a second experiment, we demonstrate using an A fiber block that these EEG responses are predominantly conveyed by unmyelinated C fiber nociceptors. The proposed approach constitutes a novel mean to study C fiber function in humans, and to explore the cortical processing of tonic heat pain in physiological and pathological conditions. PMID:27871921

  5. Illumina MiSeq Sequencing Reveals Diverse Microbial Communities of Activated Sludge Systems Stimulated by Different Aromatics for Indigo Biosynthesis from Indole.

    Science.gov (United States)

    Zhang, Xuwang; Qu, Yuanyuan; Ma, Qiao; Zhang, Zhaojing; Li, Duanxing; Wang, Jingwei; Shen, Wenli; Shen, E; Zhou, Jiti

    2015-01-01

    Indole, as a typical N-heteroaromatic compound existed in coking wastewater, can be used for bio-indigo production. The microbial production of indigo from indole has been widely reported during the last decades using culture-dependent methods, but few studies have been carried out by microbial communities. Herein, three activated sludge systems stimulated by different aromatics, i.e. naphthalene plus indole (G1), phenol plus indole (G2) and indole only (G3), were constructed for indigo production from indole. During the operation, G1 produced the highest indigo yield in the early stage, but it switched to G3 in the late stage. Based on LC-MS analysis, indigo was the major product in G1 and G3, while the purple product 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one was dominant in G2. Illumina MiSeq sequencing of 16S rRNA gene amplicons was applied to analyze the microbial community structure and composition. Detrended correspondence analysis (DCA) and dissimilarity tests showed that the overall community structures of three groups changed significantly during the operation (P<0.05). Nevertheless, the bacteria assigned to phylum Proteobacteria, family Comamonadaceae, and genera Diaphorobacter, Comamonas and Aquamicrobium were commonly shared dominant populations. Pearson correlations were calculated to discern the relationship between microbial communities and indigo yields. The typical indigo-producing populations Comamonas and Pseudomonas showed no positive correlations with indigo yields, while there emerged many other genera that exhibited positive relationships, such as Aquamicrobium, Truepera and Pusillimonas, which had not been reported for indigo production previously. The present study should provide new insights into indigo bio-production by microbial communities from indole.

  6. Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb.

    Science.gov (United States)

    Prince, Janet E A; Cho, Jin Hyung; Dumontier, Emilie; Andrews, William; Cutforth, Tyler; Tessier-Lavigne, Marc; Parnavelas, John; Cloutier, Jean-François

    2009-11-11

    The ability of sensory systems to detect and process information from the environment relies on the elaboration of precise connections between sensory neurons in the periphery and second order neurons in the CNS. In mice, the accessory olfactory system is thought to regulate a wide variety of social and sexual behaviors. The expression of the Slit receptors Robo-1 and Robo-2 in vomeronasal sensory neurons (VSNs) suggests they may direct the stereotypic targeting of their axons to the accessory olfactory bulb (AOB). Here, we have examined the roles of Robo-1 and Robo-2 in the formation of connections by VSN axons within the AOB. While Robo-1 is not necessary for the segregation of VSN axons within the anterior and posterior regions of the AOB, Robo-2 is required for the targeting of some basal VSN axons to the posterior region of the AOB but is dispensable for the fasciculation of VSN axons. Furthermore, the specific ablation of Robo-2 expression in VSNs leads to mistargeting of a portion of basal VSN axons to the anterior region of the AOB, indicating that Robo-2 expression is required on projecting VSN axons. Together, these results identify Robo-2 as a receptor that controls the targeting of basal VSN axons to the posterior AOB.

  7. A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus.

    Directory of Open Access Journals (Sweden)

    Robert C Karn

    Full Text Available Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s, also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO, by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24 are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(subspecific polymorphism but no inter(subspecific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive

  8. Growth Stimulants

    OpenAIRE

    Matthews, Nyle J.

    1989-01-01

    A tiny pellet inserted under the skin of a calf's ear may increase weight gains as much as 15 to 20 percent. This same result would take years to accomplish through breeding and selection. These tiny pellets are growth stimulants. They are made of hormones that are constructed to slowly release minute amounts into the blood stream that stimulate the animal to produce natural body hormones. One of these hormones is a growth hormone. It regulates the rate of growth of the animal. Increasing the...

  9. Sexual incentive motivation, olfactory preference, and activation of the vomeronasal projection pathway by sexually relevant cues in non-copulating and naive male rats.

    Science.gov (United States)

    Portillo, Wendy; Paredes, Raúl G

    2004-09-01

    There are some apparently healthy male rats that fail to mate after repeated testing with receptive females. We have previously shown that these "non-copulator (NC)" males show no partner preference for a receptive female when given the opportunity to physically interact with a sexually receptive female or a sexually active male. We also demonstrated that although NC males prefer odors from estrous females to odors from anestrous females, this preference is significantly reduced in comparison to the preference displayed by copulating (C) males. The aim of the present study was to evaluate in NC males sexual incentive motivation, that is, the approach behavior of male rats to either a sexually receptive female or a sexually active male in a test where the subjects can smell, hear, and see the stimulus animal but prevents their physical interaction. In addition, we determined whether NC rats have alterations in their ability to detect odors from conspecifics or odors related to food. In the detection of odors from conspecifics, we determined if these NC males are sexually attracted toward odors from receptive females or sexually active males. For food-related odors, we quantified the time it took the subjects to locate a hidden a piece of apple. Finally, using the induction of Fos-immunoreactivity (Fos-IR) as an index of neuronal activation, we compared the response of the vomeronasal projection pathway (VN pathway) of C and NC male rats exposed to estrous bedding. Males without sexual experience (WSE) were included in all experiments to determine the importance of previous heterosexual experience in the different behavioral tests and in the activity of the VN pathway. In the sexual incentive motivation test, we found that C and WSE male rats have a clear preference for estrous females over sexually active males, whereas NC male rats showed no preference. In odor tests, our results showed that C males had a clear preference for odors from estrous females as opposed

  10. Manual evaluation of residual curarization using double burst stimulation

    DEFF Research Database (Denmark)

    Drenck, N E; Ueda, N; Olsen, Niels Vidiendal;

    1989-01-01

    Double burst stimulation (DBS) is a new mode of stimulation developed to reveal residual neuromuscular blockade under clinical conditions. The stimulus consists of two short bursts of 50 Hz tetanic stimulation, separated by 750 ms, and the response to the stimulation is two short muscle contracti...

  11. Vagus Nerve Stimulation

    Science.gov (United States)

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  12. Neurofisiologia e plasticidade no córtex cerebral pela estimulação magnética transcraniana repetitiva Plasticity of the human cerebral cortex as revealed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Joaquim Brasil Neto

    2004-01-01

    Full Text Available Um velho dogma da biologia afirma que só existiria capacidade de reorganização cortical (neuroplasticidade em animais muito jovens; no adulto, tal capacidade seria pequena ou mesmo inexistente. Aqui, revisamos estudos realizados em animais e em humanos que demonstram uma capacidade de reorganização cortical nos sistemas sensoriais e motores em indivíduos adultos. Destacamos os estudos realizados com a técnica de estimulação magnética transcraniana. O córtex cerebral asulto é capaz de reorganização após lesões do sistema nervoso periférico ou central ou no contexto do aprendizado.An old biological dogma states that a potencial for cortical reorganization (neuroplasticity exists nly in young animals, being lost in adlt life. Here we review studies carried out both in animals and humans, whixh demonstrate cortical reorganization in sensory and motor systems in adult subjects. We particulary emphasiza human studies carried out with the aid of transcranial magnetic stimulation. The adult cortex is capable of reorganization after peripheral or central nervous system lesions and as a result of learning.

  13. Paired-pulse transcranial magnetic stimulation reveals probability-dependent changes in functional connectivity between right inferior frontal cortex and primary motor cortex during go/no-go performance

    Directory of Open Access Journals (Sweden)

    A Dilene van Campen

    2013-11-01

    Full Text Available The functional role of the right inferior frontal cortex (rIFC in mediating human behavior is the subject of ongoing debate. Activation of the rIFC has been associated with both response inhibition and with signaling action adaptation demands resulting from unpredicted events. The goal of this study is to investigate the role of rIFC by combining a go/no-go paradigm with paired-pulse transcranial magnetic stimulation (ppTMS over rIFC and the primary motor cortex (M1 to probe the functional connectivity between these brain areas. Participants performed a go/no-go task with 20% or 80% of the trials requiring response inhibition (no-go trials in a classic and a reversed version of the task, respectively. Responses were slower to infrequent compared to frequent go trials, while commission errors were more prevalent to infrequent compared to frequent no-go trials. We hypothesized that if rIFC is involved primarily in response inhibition, then rIFC should exert an inhibitory influence over M1 on no-go (inhibition trials regardless of no-go probability. If, by contrast, rIFC has a role on unexpected trials other than just response inhibition then rIFC should influence M1 on infrequent trials regardless of response demands. We observed that rIFC suppressed M1 excitability during frequent no-go trials, but not during infrequent no-go trials, suggesting that the role of rIFC in response inhibition is context dependent rather than generic. Importantly, rIFC was found to facilitate M1 excitability on all low frequent trials, irrespective of whether the infrequent event involved response inhibition, a finding more in line with a predictive coding framework of cognitive control.

  14. Ambiguity Revealed

    OpenAIRE

    Subir Bose; Matthew Polisson; Ludovic Renou

    2012-01-01

    We derive necessary and suffcient conditions for data sets composed of state-contingent prices and consumption to be consistent with two prominent models of decision making under ambiguity: variational preferences and smooth ambiguity. The revealed preference conditions for the maxmin expected utility and subjective expected utility models are characterized as special cases.

  15. Ambiguity revealed

    OpenAIRE

    Bayer, Ralph-C; Bose, Subir; Polisson, Matthew; Renou, Ludovic

    2013-01-01

    We derive necessary and sufficient conditions for data sets composed of state-contingent prices and consumption to be consistent with two prominent models of decision making under uncertainty: variational preferences and smooth ambiguity. The revealed preference conditions for subjective expected utility, maxmin expected utility, and multiplier preferences are characterised as special cases. We implement our tests on data from a portfolio choice experiment.

  16. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  17. Brain Stimulation Therapies

    Science.gov (United States)

    ... is preferred by many doctors, patients and families. Vagus Nerve Stimulation Vagus nerve stimulation (VNS) works through a device implanted under ... skin that sends electrical pulses through the left vagus nerve, half of a prominent pair of nerves that ...

  18. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  19. An Overview of Stimulators

    OpenAIRE

    Mohd. Suhaib Kidwai; Mohd Maroof Siddiqui; Ahmad Nafees; Qazi saeed Ahmad

    2012-01-01

    This paper aims to bring forth the significance of stimulators , recent advancements in the field of stimulators and how electrical signals can be utilized for pain relief and to cure other diseases of human body ,by using stimulators. This paper aims to create awareness about stimulators and also focuses on their advantages as compared to theconventional medicine .Moreover,it also bring forth that how an electrical signal can be utilized for treating various human disorders and diseases.

  20. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  1. REVEALED ALTRUISM

    OpenAIRE

    Cox, James C; Friedman, Daniel; Sadiraj, Vjollca

    2009-01-01

    This pap er develops a theory of revealed preferences over oneís own and othersímonetary payo§s. We intro duce ìmore altruistic thanî(MAT), a partial ordering over preferences, and interpret it with known parametric mo dels. We also intro duce and illustrate ìmore generous thanî (MGT), a partial ordering over opp ortunity sets. Several recent discussions of altruism fo cus on two player extensive form games of complete information in which the Örst mover (FM) cho oses a more or less gen...

  2. Temporal pattern of stimulation modulates reflex bladder activation by pudendal nerve stimulation.

    Science.gov (United States)

    McGee, Meredith J; Grill, Warren M

    2016-11-01

    Reflex bladder activation and inhibition by electrical stimulation of pudendal nerve (PN) afferents is a promising approach to restore control of bladder function in persons with lower urinary tract dysfunction caused by disease or injury. The objective of this work was to determine whether bladder activation evoked by pudendal afferent stimulation was dependent on the temporal pattern of stimulation, and whether specific temporal patterns of stimulation produced larger bladder contractions than constant frequency stimulation. The mean and maximum contraction pressures evoked by different temporal patterns of stimulation of the dorsal genital branch of the pudendal nerve were measured under isovolumetric conditions in α-chloralose anesthetized cats. A computational model of the spinal neural network mediating the pudendo-vesical reflex was used to understand the mechanisms of different bladder responses to patterned stimulation. The pattern of stimulation significantly affected the magnitude of evoked bladder contractions; several temporal patterns were as effective as regular stimulation, but no pattern evoked larger bladder contractions. Random patterns and patterns with pauses, burst-like activity, or high frequency components evoked significantly smaller bladder contractions, supporting the use of regular frequency stimulation in the development of neural prosthetic approaches for bladder control. These results reveal that the bladder response to pudendal afferent stimulation is dependent on the pattern, as well as the frequency, of stimulation. The computational model revealed that the effects of patterned pudendal afferent stimulation were determined by the dynamic properties of excitatory and inhibitory interneurons in the lumbosacral spinal cord. Neurourol. Urodynam. 35:882-887, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  4. Stimulation dependent induction of fear and depression in deep brain stimulation: a case report

    Directory of Open Access Journals (Sweden)

    Sabolek Michael

    2009-09-01

    Full Text Available Abstract Introduction Psychiatric side effects of deep brain stimulation are not uncommon. It is often limited to transient mood alterations. We report for the first time a case of acute stimulation-dependent fear during intraoperative test stimulation. Case presentation During test stimulation for electrode placement to the left subthalamic nucleus, a 58-year-old caucasian man with Parkinson's disease developed a severe reproducible feeling of fear together with elevated heart rate and sweating. Postoperatively, the patient developed a therapy refractory major depression in spite of excellent motor-control. Reprogramming the stimulator using a more rostral contact resulted in an abrupt and complete disappearance of the depressive syndrome. Conclusion Postoperative re-evaluation of the stimulation site of the patient inducing acute fear by analyzing his intraoperative microrecordings and Talairach coordinates revealed stimulation within his right substantia nigra. The contrast analysis of the postoperative stimulation site suggests induction of depression in the patient by stimulation of the caudal part of his subthalamic nucleus. Acute psychiatric side effects of deep brain stimulation are relatively rare but must not be overlooked while concentrating on the improvement of motor deficit.

  5. Stimulate your creativity

    Energy Technology Data Exchange (ETDEWEB)

    Raudsepp, E.

    1983-02-01

    Aids in idea stimulation and problem solving are presented. The forced relation technique forces random words together to stimulate thought. This can be done by the catalog method or by listing characteristics and alternatives until a novel idea occurs. A checklist designed for mathematical problem solving is given. The forms of questioning it provides include understanding the unknown and finding a connection between the data and the unknown. A vice-versa checklist, where consideration of the opposite encourages new ideas, is suggested. A self-questioning attitude is necessary for problem-solving. A word stimulation by checklist is also suggested.

  6. Deep brain stimulation

    Science.gov (United States)

    ... a device called a neurostimulator to deliver electrical signals to the areas of the brain that control ... neurostimulator, which puts out the electric current. The stimulator is similar to a heart ...

  7. Geothermal Well Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

    1981-03-01

    The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

  8. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty

    Directory of Open Access Journals (Sweden)

    David Beckwée

    2014-06-01

    Full Text Available Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2 that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  9. Theoretical aspects evaluation of the effectiveness stimulation of innovative activity

    Directory of Open Access Journals (Sweden)

    N. S. Talalaeva

    2013-01-01

    Full Text Available In article theoretical bases research of innovative activity’s stimulation efficiency are considered, the essence of quantitative and qualitative approaches to an efficiency assessment in the innovative sphere is revealed.

  10. Brain stimulation for treatment of refractory epilepsy

    Institute of Scientific and Technical Information of China (English)

    GE Yan; HU Wei; LIU Chong; ZHANG Jian-guo; MENG Fan-gang

    2013-01-01

    Objective We review the targets of the deep brain and the responsive neurostimulation system (RNS) to identify the best optimal stimulation parameters and the best mode of stimulation,whether cyclical,continuous,or smarter.Data sources This review is based on data obtained from published articles from 1950 to 2013.To perform the PubMed literature search,the following keywords were input:deep brain stimulation (DBS),RNS,and refractory epilepsy.Study selection Articles containing information related to brain stimulation or RNS for the treatment of refractory epilepsy were selected.Results The currently available treatment options for those patients who resist multiple antiepileptic medications and surgical procedures include electric stimulation,both direct and indirect,of brain nuclei thought to be involved in epileptogenesis.The number of potential targets has increased over the years to include the anterior nucleus of the thalamus,the centromedian nucleus of the thalamus,the hippocampus,the subthalamic nucleus,the caudate nucleus,and the cerebellum,among others.The results of a randomized controlled trial and the RNS trial were published to reveal the effectiveness.Conclusions Although statistically significant reductions in seizures have been observed using several different stimulation techniques,including vagus nerve stimulation,DBS,and RNS,these effects are currently only palliative and do not approach the efficacy comparable with that seen in resection in appropriately selected patients.More research is needed to determine optimal stimulation targets and techniques as well as to determine which epilepsy patients will benefit most from this technology.

  11. Stimulation of two step degradation of sodium ascorbate by lignins.

    Science.gov (United States)

    Sakagami, H; Satoh, K

    1996-01-01

    Alkali-lignin stimulated the degradation of sodium ascorbate in phosphate-buffered saline, fetal bovine serum and culture medium, but not in distilled water. ESR spectroscopy revealed that alkali-lignin stimulated ascorbyl radical production even in distilled water. Similar stimulation activity was found in several other plant extracts, commercial and natural lignified materials. These data suggest that the lignin-stimulated degradation process of ascorbate might be separated into two processes, the first being the ascorbyl radical production process and the second the degradation process.

  12. New York Canyon Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  13. [Transcranial direct current stimulation for depressive disorders].

    Science.gov (United States)

    Aust, S; Palm, U; Padberg, F; Bajbouj, M

    2015-12-01

    Major depressive disorders are one of the most prevalent psychiatric disorders worldwide but approximately 20-30 % of patients do not respond to standard guideline conform treatment. Recent neuroimaging studies in depressive patients revealed altered activation patterns in prefrontal brain areas and that successful cognitive behavioral therapy and psychopharmacological interventions are associated with a reversal of these neural alterations. Therefore, a direct modulation of prefrontal brain activation by non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) seems to be a promising and innovative approach for the treatment of depressive disorders. In addition, recent neuropsychological findings indicated an augmentation of positive tDCS effects by simultaneous external activation of the stimulated brain area, for example by cognitive training tasks. Based on these findings, the possibility to augment cognitive-emotional learning processes during cognitive behavioral therapy by simultaneous tDCS to increase antidepressive therapeutic effects is discussed in this article.

  14. Magnetic Stimulation and Epilepsy

    Science.gov (United States)

    2013-10-14

    investigated using behavioral recording and electroencephalographic (EEG) recording. The results (Figures 1~7) obtained have been submitted to Epilepsia ...Magnetic Stimulation on Penicillin-Induced Seizures in Rats. Epilepsia (submitted). * corresponding author. IV. OTHER CHANGES N/A V. FUTURE PLANS

  15. Cognitive stimulation in brainstorming.

    Science.gov (United States)

    Dugosh, K L; Paulus, P B; Roland, E J; Yang, H C

    2000-11-01

    Research on group brainstorming has demonstrated that it is less effective for generating large numbers of ideas than individual brainstorming, yet various scholars have presumed that group idea sharing should enhance cognitive stimulation and idea production. Three experiments examined the potential of cognitive stimulation in brainstorming. Experiments 1 and 2 used a paradigm in which individuals were exposed to ideas on audiotape as they were brainstorming, and Experiment 3 used the electronic brainstorming paradigm. Evidence was obtained for enhanced idea generation both during and after idea exposure. The attentional set of the participant and the content of the exposure manipulation (number of ideas, presence of irrelevant information) influenced this effect. These results are consistent with a cognitive perspective on group brainstorming.

  16. Sacral nerve stimulation.

    Science.gov (United States)

    Matzel, K E; Stadelmaier, U; Besendörfer, M

    2004-01-01

    The current concept of recruiting residual function of an inadequate pelvic organ by electrostimulation involves stimulation of the sacral spinal nerves at the level of the sacral canal. The rationale for applying SNS to fecal incontinence was based on clinical observations of its effect on bowel habits and anorectal continence function in urologic patients (increased anorectal angulation and anal canal closure pressure) and on anatomic considerations: dissection demonstrated a dual peripheral nerve supply of the striated pelvic floor muscles that govern these functions. Because the sacral spinal nerve site is the most distal common location of this dual nerve supply, stimulating here can elicit both functions. Since the first application of SNS in fecal incontinence in 1994, this technique has been improved, the patient selection process modified, and the spectrum of indications expanded. At present SNS has been applied in more than 1300 patients with fecal incontinence limited.

  17. Raft River well stimulation experiments: geothermal reservoir well stimulation program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

  18. Human Tissue Stimulator

    Science.gov (United States)

    1982-01-01

    Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.

  19. On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation

    Directory of Open Access Journals (Sweden)

    Daniel eStrüber

    2015-08-01

    Full Text Available Transcranial alternating current stimulation is a novel method that allows application of sinusoidal currents to modulate brain oscillations and cognitive processes. Studies in humans have demonstrated tACS after-effects following stimulation durations in the range of minutes. However, such after-effects are absent in animal studies using much shorter stimulation protocols in the range of seconds. Thus, stimulation duration might be a critical parameter for after-effects to occur. To test this hypothesis, we repeated a recent human tACS experiment with a short duration. We applied alpha tACS intermittently for one second duration while keeping other parameters identical. The results demonstrate that this very short intermittent protocol did not produce after-effects on amplitude or phase of the electroencephalogram. Since synaptic plasticity has been suggested as a possible mechanism for after-effects, our results indicate that a stimulation duration of one second is too short to induce synaptic plasticity. Future studies in animals are required that use extended stimulation durations to reveal the neuronal underpinnings. A better understanding of the mechanisms of tACS after-effects is crucial for potential clinical applications.

  20. Self-Stimulated Undulator Klystron

    OpenAIRE

    Bessonov, E. G.; Osipov, A. L.; Mikhailichenko, A. A.

    2011-01-01

    The Self Stimulated Undulator Klystron (SSUK) and its possible applications in the Particle Accelerator Physics, incoherent Self-Stimulated Undulator Radiation Sources (SSUR) and Free-Electron Lasers (FEL) are discussed.

  1. Transcranial Alternating Current Stimulation (tACS) Enhances Mental Rotation Performance during and after Stimulation

    Science.gov (United States)

    Kasten, Florian H.; Herrmann, Christoph S.

    2017-01-01

    Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084

  2. Optogenetic Activation of Accessory Olfactory Bulb Input to the Forebrain Differentially Modulates Investigation of Opposite versus Same-Sex Urinary Chemosignals and Stimulates Mating in Male Mice

    Science.gov (United States)

    McCarthy, Elizabeth A.; Korzan, Wayne J.; Doctor, Danielle; Han, Xue; Baum, Michael J.

    2017-01-01

    Abstract Surgical or genetic disruption of vomeronasal organ (VNO)-accessory olfactory bulb (AOB) function previously eliminated the ability of male mice to processes pheromones that elicit territorial behavior and aggression. By contrast, neither disruption significantly affected mating behaviors, although VNO lesions reduced males’ investigation of nonvolatile female pheromones. We explored the contribution of VNO-AOB pheromonal processing to male courtship using optogenetic activation of AOB projections to the forebrain. Protocadherin-Cre male transgenic mice received bilateral AOB infections with channelrhodopsin2 (ChR2) viral vectors, and an optical fiber was implanted above the AOB. In olfactory choice tests, males preferred estrous female urine (EFU) over water; however, this preference was eliminated when diluted (5%) EFU was substituted for 100% EFU. Optogenetic AOB activation concurrent with nasal contact significantly augmented males’ investigation compared to 5% EFU alone. Conversely, concurrent optogenetic AOB activation significantly reduced males’ nasal investigation of diluted urine from gonadally intact males (5% IMU) compared to 5% IMU alone. These divergent effects of AOB optogenetic activation were lost when males were prevented from making direct nasal contact. Optogenetic AOB stimulation also failed to augment males’ nasal investigation of deionized water or of food odors. Finally, during mating tests, optogenetic AOB stimulation delivered for 30 s when the male was in physical contact with an estrous female significantly facilitated the occurrence of penile intromission. Our results suggest that VNO-AOB signaling differentially modifies males’ motivation to seek out female vs male urinary pheromones while augmenting males’ sexual arousal leading to intromission and improved reproductive performance. PMID:28374006

  3. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more......Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...

  4. Electromyographic evaluation of functional electrical stimulation to injured oculomotor nerve

    Institute of Scientific and Technical Information of China (English)

    Min Yang; Shiting Li; Youqiang Meng; Ningxi Zhu; Xuhui Wang; Liang Wan; Wenchuan Zhang; Jun Zhong; Shugan Zhu; Massimiliano Visocchi

    2011-01-01

    Functional electrical stimulation delivered early after injury to the proximal nerve stump has been proposed as a therapeutic approach for enhancing the speed and specificity of axonal regeneration following nerve injury. In this study, the injured oculomotor nerve was stimulated functionally by an implantable electrode. Electromyographic monitoring of the motor unit potential of the inferior oblique muscle was conducted for 12 weeks in two injury groups, one with and one without electric stimulation. The results revealed that, at 2, 4, 6, 8 weeks after functional electric stimulation of the injured oculomotor nerve, motor unit potentials significantly increased, such that amplitude was longer and spike duration gradually shortened. These findings indicate that the injured oculomotor nerve has the potential for regeneration and repair, but this ability is not sufficient for full functional recovery to occur. Importantly, the current results indicated that recovery and regeneration of the injured oculomotor nerve can be promoted with functional electrical stimulation.

  5. Modeling of electromagnetic stimulation of the human brain.

    Science.gov (United States)

    Lazutkin, Dmitry; Husar, Peter

    2010-01-01

    The World Health Organization estimates depression as a serious threat to the health of millions of people worldwide. The purpose of this paper is to introduce the ongoing research devoted to the investigation of a possibility to use low-field electromagnetic stimulation of the human brain in the treatment of depressive disorder. In the course of the work the 3D models of transcranial magnetic stimulation and low-field magnetic stimulation based upon the use of a layered sphere head model have been developed. An initial approach towards the realistic human head reconstruction has been made. The revealed order of the stimulating electromagnetic field suitable for operation makes it possible to draft a technical specification for the stimulation device.

  6. Central nervous system stimulants.

    Science.gov (United States)

    George, A J

    2000-03-01

    Three major types of CNS stimulant are currently abused in sport: amphetamine, cocaine and caffeine. Each drug type has its own characteristic mechanism of action on CNS neurones and their associated receptors and nerve terminals. Amphetamine is widely abused in sports requiring intense anaerobic exercise where it prolongs the tolerance to anaerobic metabolism. It is addictive, and chronic abuse causes marked behavioural change and sometimes psychosis. Major sports abusing amphetamine are cycling, American football, ice-hockey and baseball. Cocaine increases tolerance to intense exercise, yet most of its chronic effects on energy metabolism are negative. Its greatest effects seem to be as a central stimulant and the enhancement of short-term anaerobic exercise. It is highly addictive and can cause cerebral and cardiovascular fatalities. Caffeine enhances fatty acid metabolism leading to glucose conservation, which appears to benefit long-distance endurance events such as skiing. Caffeine is also addictive, and chronic abuse can lead to cardiac damage. Social abuse of each of the three drugs is often difficult to distinguish from their abuse in sport.

  7. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait......-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified...

  8. Modulation of auditory percepts by transcutaneous electrical stimulation.

    Science.gov (United States)

    Ueberfuhr, Margarete Anna; Braun, Amalia; Wiegrebe, Lutz; Grothe, Benedikt; Drexl, Markus

    2017-07-01

    Transcutaneous, electrical stimulation with electrodes placed on the mastoid processes represents a specific way to elicit vestibular reflexes in humans without active or passive subject movements, for which the term galvanic vestibular stimulation was coined. It has been suggested that galvanic vestibular stimulation mainly affects the vestibular periphery, but whether vestibular hair cells, vestibular afferents, or a combination of both are excited, is still a matter of debate. Galvanic vestibular stimulation has been in use since the late 18th century, but despite the long-known and well-documented effects on the vestibular system, reports of the effect of electrical stimulation on the adjacent cochlea or the ascending auditory pathway are surprisingly sparse. The present study examines the effect of transcutaneous, electrical stimulation of the human auditory periphery employing evoked and spontaneous otoacoustic emissions and several psychoacoustic measures. In particular, level growth functions of distortion product otoacoustic emissions were recorded during electrical stimulation with alternating currents (2 Hz, 1-4 mA in 1 mA-steps). In addition, the level and frequency of spontaneous otoacoustic emissions were followed before, during, and after electrical stimulation (2 Hz, 1-4 mA). To explore the effect of electrical stimulation on the retrocochlear level (i.e. on the ascending auditory pathway beyond the cochlea), psychoacoustic experiments were carried out. Specifically, participants indicated whether electrical stimulation (4 Hz, 2 and 3 mA) induced amplitude modulations of the perception of a pure tone, and of auditory illusions after presentation of either an intense, low-frequency sound (Bounce tinnitus) or a faint band-stop noise (Zwicker tone). These three psychoacoustic measures revealed significant perceived amplitude modulations during electrical stimulation in the majority of participants. However, no significant changes of evoked and

  9. Brain stimulation for intractable epilepsy: Anterior thalamus and responsive stimulation

    Directory of Open Access Journals (Sweden)

    Vibhor Krishna

    2014-01-01

    Full Text Available Despite medications, resective surgery, and vagal nerve stimulation, some patients with epilepsy continue to have seizures. In these patients, other approaches are urgently needed. The biological basis of stimulation of anterior thalamic nucleus and epileptogenic focus is presented. Results from two large randomized controlled trials Stimulation of Anterior Nucleus of Thalamus for Epilepsy (SANTE and Neuropace pivotal trial are discussed. Neuromodulation provides effective treatment for a select group of refractory epilepsy patients. Future investigations into the mechanism underlying ′response′ to brain stimulation are desired.

  10. Polypeptide stimulators of the Ms-Lon protease.

    Science.gov (United States)

    Rudyak, S G; Shrader, T E

    2000-09-01

    Both the peptidase activity against small fluorescent peptide substrates and the ATPase activity of Lon (La) proteases are stimulated by unstructured proteins such as alpha-casein. This stimulation reveals the simultaneous interaction of Lon with two proteolytic substrates--alpha-casein and the peptide substrate. To understand the cellular function of this stimulation, it is important to determine the physical properties of Lon stimulators. The abilities of compositionally simple random copolymers of amino acids (rcAAs) to stimulate the peptidase and ATPase activities of the Lon protease from Mycobacterium smegmatis (Ms-Lon) and its N-terminal truncation mutant (N-E226) were determined. We report that cationic but not anionic rcAAs stimulated Ms-Lon's peptidase activity but were themselves poor substrates for the enzyme. Peptidase stimulation by rcAAs correlated approximately with the degree of hydrophobicity of these polypeptides and reached levels >10-fold higher than observed previously for Ms-Lon stimulators such as alpha-casein. In contrast to alpha-casein, which stimulates Ms-Lon's peptidase activity by 40% and ATPase activity by 150%, rcAAs stimulated peptidase activity without concomitant stimulation of ATPase activity. Active site labeling experiments suggested that both rcAAs and ATP increased peptidase activity by increasing accessibility to the peptidase active site. Peptidase activity assays in the presence of both alpha-casein and rcAAs revealed that interactions of rcAAs and alpha-casein with Ms-Lon are extremely complex and not mutually exclusive. Specifically, (1) additions of low concentrations of alpha-casein (rcAA-stimulated peptidase activity; (2) additions of higher concentrations of alpha-casein inhibited Ms-Lon's rcAA-stimulated peptidase activity; (3) additions of all concentrations of alpha-casein inhibited N-E226's rcAA-stimulated peptidase activity. We conclude the Ms-Lon can interact with an rcAA, alpha-casein, and a substrate peptide

  11. Collective stimulated Brillouin scatter

    CERN Document Server

    Korotkevich, Alexander O; Rose, Harvey A

    2011-01-01

    We develop a statistical theory of stimulated Brillouin backscatter (BSBS) of a spatially and temporally partially incoherent laser beam for laser fusion relevant plasma. We find a new collective regime of BSBS which has a much larger threshold than the classical threshold of a coherent beam in long-scale-length laser fusion plasma. We identify two contributions to BSBS convective instability increment. The first is collective with intensity threshold independent of the laser correlation time and controlled by diffraction. The second is independent of diffraction, it grows with increase of the correlation time and does not have an intensity threshold. The instability threshold is inside the typical parameter region of National Ignition Facility (NIF). We also find that the bandwidth of KrF-laser-based fusion systems would be large enough to allow additional suppression of BSBS.

  12. Collective stimulated Brillouin backscatter

    CERN Document Server

    Lushnikov, Pavel M

    2007-01-01

    We develop the statistical theory of the stimulated Brillouin backscatter (BSBS) instability of a spatially and temporally partially incoherent laser beam for laser fusion relevant plasma. We find a new regime of BSBS which has a much larger threshold than the classical threshold of a coherent beam in long-scale-length laser fusion plasma. Instability is collective because it does not depend on the dynamics of isolated speckles of laser intensity, but rather depends on averaged beam intensity. We identify convective and absolute instability regimes. Well above the incoherent threshold the coherent instability growth rate is recovered. The threshold of convective instability is inside the typical parameter region of National Ignition Facility (NIF) designs although current NIF bandwidth is not large enough to insure dominance of collective instability and suggests lower instability threshold due to speckle contribution. In contrast, we estimate that the bandwidth of KrF-laser-based fusion systems would be larg...

  13. Myeloperoxidase Stimulates Neutrophil Degranulation.

    Science.gov (United States)

    Grigorieva, D V; Gorudko, I V; Sokolov, A V; Kostevich, V A; Vasilyev, V B; Cherenkevich, S N; Panasenko, O M

    2016-08-01

    Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation.

  14. Stimulated Cavity-Optomechanics

    CERN Document Server

    Bahl, Gaurav; Tomes, Matthew; Carmon, Tal

    2011-01-01

    Stimulated Brillouin interaction between sound and light, known to be the strongest optical nonlinearity common to all amorphous and crystalline dielectrics, has been widely studied in fibers and bulk materials but rarely in optical microresonators. The possibility of experimentally extending this principle to excite mechanical resonances in photonic microsystems, for sensing and frequency reference applications, has remained largely unexplored. The challenge lies in the fact that microresonators inherently have large free spectral range, while the phase matching considerations for the Brillouin process require optical modes of nearby frequencies but with different wavevectors. We rely on high-order transverse optical modes to relax this limitation. Here we report on the experimental excitation of mechanical resonances ranging from 49 to 1400 MHz by using forward Brillouin scattering. These natural mechanical resonances are excited in ~100 um silica microspheres, and are of a surface-acoustic whispering-galle...

  15. Facilitating access to emotions: neural signature of EMDR stimulation.

    Directory of Open Access Journals (Sweden)

    Deborah Herkt

    Full Text Available Eye Movement Desensitisation and Reprocessing (EMDR is a method in psychotherapy effective in treating symptoms of posttraumatic stress disorder. The client attends to alternating bilateral visual, auditory or sensory stimulation while confronted with emotionally disturbing material. It is thought that the bilateral stimulation as a specific element of EMDR facilitates accessing and processing of negative material while presumably creating new associative links. We hypothesized that the putatively facilitated access should be reflected in increased activation of the amygdala upon bilateral EMDR stimulation even in healthy subjects.We investigated 22 healthy female university students (mean 23.5 years with fMRI. Subjects were scanned while confronted with blocks of disgusting and neutral picture stimuli. One third of the blocks was presented without any additional stimulation, one third with bilateral simultaneous auditory stimulation, and one third with bilateral alternating auditory stimulation as used in EMDR.Contrasting disgusting vs. neutral picture stimuli confirmed the expected robust effect of amygdala activation for all auditory stimulation conditions. The interaction analysis with the type of auditory stimulation revealed a specific increase in activation of the right amygdala for the bilateral alternating auditory stimulation. Activation of the left dorsolateral prefrontal cortex showed the opposite effect with decreased activation.We demonstrate first time evidence for a putative neurobiological basis of the bilateral alternating stimulation as used in the EMDR method. The increase in limbic processing along with decreased frontal activation is in line with theoretical models of how bilateral alternating stimulation could help with therapeutic reintegration of information, and present findings may pave the way for future research on EMDR in the context of posttraumatic stress disorder.

  16. Receptive field characteristics under electrotactile stimulation of the fingertip.

    Science.gov (United States)

    Warren, Jay P; Bobich, Lisa R; Santello, Marco; Sweeney, James D; Tillery, Stephen I Helms

    2008-08-01

    Skin on human fingertips has high concentrations of mechanoreceptors, which are used to provide fine resolution tactile representations of our environment. Here, we explore the ability to discriminate electrotactile stimulation at four sites on the fingertip. Electrical stimulation was delivered to arrays of electrodes centered on the index fingertip (volar aspect). Accuracy of discrimination was tested by examining electrode size, interelectrode spacing, and stimulation frequency as primary factors. Electrical stimulation was delivered at 2 mA with the pulse width modulated to be at (or above) perceptual threshold at 25 and 75 Hz and an average pulse width of 1.03 ms (+/- 0.70 ms standard deviation). Discrimination of the stimulated locations under this stimulation paradigm was significantly above chance level in all cases. Subjects' ability to discriminate stimulus location was not significantly influenced by electrode size or stimulation frequency when considered as separate factors. However, increased electrode spacing significantly increased subjects' ability to discriminate the location of the stimulated electrode. Further analysis revealed that errors were only significantly reduced along the medial-lateral direction with increasing interelectrode spacing. These results suggest that the electrotactile stimulus localization on the fingertip has some directional dependency, in addition to its dependency on interelectrode spacing. The neural mechanisms underlying this phenomenon are discussed in relation to electrical stimulus transduction characteristics of tactile mechanoreceptors.

  17. Stimulated coherent transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hung-chi Lihn

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.

  18. Optically stimulated differential impedance spectroscopy

    Science.gov (United States)

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  19. Electrical stimulation and muscle strengthening

    National Research Council Canada - National Science Library

    Dehail, P; Duclos, C; Barat, M

    2008-01-01

    ...: muscular or neuromuscular, electromyostimulation, electrical stimulation, strengthening, strength training, immobilization, muscle dystrophy, bed-rest, bed-bound, knee or hip surgery, postoperative...

  20. 电生理法对豚鼠副嗅球功能分区的显示%Functional subdivisions of the guinea pig accessory olfactory bulb revealed by electrophysiology

    Institute of Scientific and Technical Information of China (English)

    余青松; 须贝外喜夫

    2001-01-01

    目的:探讨豚鼠副嗅球(AOB)是否存在多个功能分区。方法:在豚鼠副嗅球矢状位切片上,将双钨电极插入副嗅球前部或后部的犁鼻神经纤维层(VNL),以单个方波刺激传入神经纤维,用玻璃微电极记录AOB前部或后部外橄状层(EPL)细胞外场电位。结果:电刺激VNL,可在EPL记录到典型的衰减性场电位,且后EPL记录到的场电位的持续时间较前部分明显延长。刺激前VNL仅在前EPL记录到场电位,而刺激后VNL只在后EPL记录到场电位。结论:豚鼠副嗅球可分为前后两个亚区,两区存在解剖学上的差异,说明在犁鼻系统中至少存在两个不同的传入-传出通路。%Objective:To elucidate possible functional subdivisions in the guinea pig accessory olfactory bulb.Method:The guinea pig accessory olfactory bulbs were cut in sagittal slice.Bipolar tungsten electrodes were inserted into anterior or posterior vomeronasal nerve layers and single square-pulses were delivered through the eletrodes to activate afferent fibres.Glass microelectrodes were used to record extracellular field potentials of anterior or posterior external plexiform layers.Result:A single shook of the VNL provoked a characteristic damped oscillatory field potential and the oscillation in the pAOB was more distinct in wave form and longer in duration than those in the aAOB.The stimulation of anterior VNL elicited field potentials exelusively in the anterior region of EPL,whereas shocks to the posterior VNL provoked oscillatory responses only within the posterior EPL.Conclusion:The accessory olfactory bulb in the guinea-pig is distinctly segregated into the anterior and posterior subdivisions and an anatomical boundary exists in both regions.The results suggested that there are at least two different input-output pathways in vomeronasal systems.

  1. Una técnica para la extirpación de los órganos vomeronasales en el armadillo Chaetophractus villosus. Abordaje desde la cavidad bucal - A surgical procedure for the ablation of the Vomeronasal Organs in the armadillo Chaetophractus villosus. Approach from oral cavity

    Directory of Open Access Journals (Sweden)

    Iodice, O. H.

    2010-03-01

    Full Text Available ResumenSe describen los pasos de un procedimiento quirúrgico para la extirpación bilateral de los órganos vomeronasales del armadillo Chaetophractus villosus (Mammalia, Xenarthra. Cada órgano está ubicado en el piso de la cavidad nasal, adosado a cada lado del tabique nasal. Los órganos se abordan a través de unaabertura practicada en el techo de la cavidad bucal. Este procedimiento se realiza bajo lupa estereoscópica y permite una visualización directa de los órganos Los mismos se destruyen por medio de una fresa accionada por un torno. De este modo se tiene la certeza de una ablación total. La posterior verificación por mediode cortes histológicos no es por lo tanto necesaria. Esto representa una ventaja importante puesto que las características físicas del hueso de estos animales requieren períodos largos de ablandamiento (generalmente alrededor tres meses. SummaryA surgical procedure for the bilateral ablation of the vomeronasal organs of the armadillo Chaetophractus villosus (Mammalia, Xenarthra is described. The organs are approached from the roof of the oral cavity through a longitudinal slit performed with a dental drill. This procedure is performed under magnifying stereoscopic lens and permits the direct visualization of the organs. Those structures are then destroyed with the dental drill. This provides certainty of totalablation. As a consequence, verification by means of histological sections is not needed. This represents an important advantage since the physical characteristics of the bone of these animals require long periods of softening (usually around three months.

  2. A Stimulating Experience

    Directory of Open Access Journals (Sweden)

    Namik Top

    2015-09-01

    Full Text Available The purpose of this study was to examine the views of international Science Olympiad participants on the benefits of the competition and the factors that affected their career aspirations. We also investigated how students’ choice of competition category varied with respect to gender. The sample included 273 International Sustainable World Energy, Engineering, and Environment Project (I-SWEEEP participants from 39 countries. Mixed-methods were used to analyze the data. Descriptive statistics and t-statistics were provided to answer the first question. As a means of addressing the second question, a chi-square test was utilized to examine how participants’ category selection differed by gender. Qualitative analysis was used to reveal the types of benefits students reaped from participation in the I-SWEEEP. Results indicated that students were most affected by their teachers, parents, and personal interests. Although the relationship between gender and competition category was not statistically significant, there nevertheless emerged a pattern showing that girls preferred environmental science projects (45.5% to engineering projects (24.4%. Qualitative analyses revealed six themes as benefits that students gained from participation in the I-SWEEEP. The relationship among the fundamental themes was also examined and revealed important findings. The results have educational implications for helping students accomplish to be science, technology, engineering, and mathematics (STEM professionals in the future.

  3. EOR by stimulated microflora

    Energy Technology Data Exchange (ETDEWEB)

    Svarovskaya, L.I.; Altunina, L.K.; Rozhenkova, Z.A.; Bulavin, V.D. [Institute of Petroleum Chemistry, Tomsk (Russian Federation)

    1995-12-31

    A combined microbiological and physico-chemical method for EOR has been developed for flooded West Siberia oil fields with formation temperature of 45{degrees}-95{degrees}C (318-365K). Formation water includes rich and various biocenoses numbering up to 2 x 10{sup 7} cells per ml. Representatives of genera, i.e, Pseudomonas, Bacillus, Actinomyces, Micrococcus, Mycobacterium, Sarcina, etc. were found to be the most widely distributed microorganisms. The method is based on injection of systems exhibiting high oil displacing capacity and at the same time being an additional nitrous nutrient for endemic populations of microorganisms. Their injection into formation water favors biomass growth by 4-6 orders and promotes syntheses of biosurfactants, biopolymers, acids, etc., and gaseous products. The features of residual oil displacement have been studied on laboratory models using a combined microbiological and physico-chemical method. A curve for the yield of residual oil is presented by two peaks. The first peak is stipulated by the washing action of oil displacement system, and the second one by the effect of metabolites produced at stimulation of biogenic processes. Oil displacement index increases by 15%-30%.

  4. Stimulating Language: Insights from TMS

    Science.gov (United States)

    Devlin, Joseph T.; Watkins, Kate E.

    2007-01-01

    Fifteen years ago, Pascual-Leone and colleagues used transcranial magnetic stimulation (TMS) to investigate speech production in pre-surgical epilepsy patients and in doing so, introduced a novel tool into language research. TMS can be used to non-invasively stimulate a specific cortical region and transiently disrupt information processing. These…

  5. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...... following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them......, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly...

  6. Early stimulation and language development of economically disadvantaged young children.

    Science.gov (United States)

    Malhi, Prahbhjot; Sidhu, Manjit; Bharti, Bhavneet

    2014-04-01

    To examine the effect of home stimulation on the language functioning of young children from low income families. The language functioning of 102 children (Mean age = 3.3 y, SD = 1.3) was assessed by the communication sub-scale of the Indian Developmental Inventory (IDI). Home visits were made to assess the quality of stimulation provided by parents to children. Seven items measuring stimulation of the child were selected from the Mohite Home Environment Inventory, a scale measuring the quality of home environment. Nearly 16 % of children from economically disadvantaged homes had language delay. Children with language delay as compared to children with adequate language skills had significantly lower stimulation at home (t = 2.59, P = 0.01), specifically parents were significantly less likely to praise their child (25 % vs. 52 %, χ (2) = 4.03, P = 0.045) or provide verbal stimulation (44 % vs. 72 %, χ (2) = 4.95, P = 0.026). Multivariate stepwise regression analysis revealed that 18 % of the variance in the communication developmental quotient (DQs) of children was accounted by stimulation and age of the child (F = 10.47, P = 0.000). Programs that seek to increase early stimulation for disadvantaged children by providing cognitive-linguistic enriched learning experiences would go a long way in paving the way for improved language, cognition and school performance in young children.

  7. Therapeutic electrical stimulation for spasticity: quantitative gait analysis.

    Science.gov (United States)

    Pease, W S

    1998-01-01

    Improvement in motor function following electrical stimulation is related to strengthening of the stimulated spastic muscle and inhibition of the antagonist. A 26-year-old man with familial spastic paraparesis presented with gait dysfunction and bilateral lower limb spastic muscle tone. Clinically, muscle strength and sensation were normal. He was considered appropriate for a trial of therapeutic electrical stimulation following failed trials of physical therapy and baclofen. No other treatment was used concurrent with the electrical stimulation. Before treatment, quantitative gait analysis revealed 63% of normal velocity and a crouched gait pattern, associated with excessive electromyographic activity in the hamstrings and gastrocnemius muscles. Based on these findings, bilateral stimulation of the quadriceps and anterior compartment musculature was performed two to three times per week for three months. Repeat gait analysis was conducted three weeks after the cessation of stimulation treatment. A 27% increase in velocity was noted associated with an increase in both cadence and right step length. Right hip and bilateral knee stance motion returned to normal (rather than "crouched"). No change in the timing of dynamic electromyographic activity was seen. These findings suggest a role for the use of electrical stimulation for rehabilitation of spasticity. The specific mechanism of this improvement remains uncertain.

  8. Nanomaterial-enabled neural stimulation

    Directory of Open Access Journals (Sweden)

    Yongchen eWang

    2016-03-01

    Full Text Available Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  9. Nanomaterial-Enabled Neural Stimulation.

    Science.gov (United States)

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  10. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  11. Thyroid ultrasonography in congenital isolated thyroid stimulating hormone deficiency.

    OpenAIRE

    Wakamoto, H; Miyazaki, M.; Tatsumi, K; Amino, N

    1995-01-01

    The effects of thyroid stimulating hormone (TSH) deficiency on thyroid development was examined using ultrasonography in a child with congenital isolated TSH deficiency. Ultrasound revealed the thyroid gland was one sixth normal volume, suggesting that TSH plays an important part in thyroid growth, but not a critical role in differentiation.

  12. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, James W. (Aiken, SC)

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  13. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  14. Electrical stimulation in exercise training

    Science.gov (United States)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve

  15. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.

    Science.gov (United States)

    Nitsche, M A; Paulus, W

    2001-11-27

    The authors show that in the human transcranial direct current stimulation is able to induce sustained cortical excitability elevations. As revealed by transcranial magnetic stimulation, motor cortical excitability increased approximately 150% above baseline for up to 90 minutes after the end of stimulation. The feasibility of inducing long-lasting excitability modulations in a noninvasive, painless, and reversible way makes this technique a potentially valuable tool in neuroplasticity modulation.

  16. Neural stimulation and recording electrodes.

    Science.gov (United States)

    Cogan, Stuart F

    2008-01-01

    Electrical stimulation of nerve tissue and recording of neural electrical activity are the basis of emerging prostheses and treatments for spinal cord injury, stroke, sensory deficits, and neurological disorders. An understanding of the electrochemical mechanisms underlying the behavior of neural stimulation and recording electrodes is important for the development of chronically implanted devices, particularly those employing large numbers of microelectrodes. For stimulation, materials that support charge injection by capacitive and faradaic mechanisms are available. These include titanium nitride, platinum, and iridium oxide, each with certain advantages and limitations. The use of charge-balanced waveforms and maximum electrochemical potential excursions as criteria for reversible charge injection with these electrode materials are described and critiqued. Techniques for characterizing electrochemical properties relevant to stimulation and recording are described with examples of differences in the in vitro and in vivo response of electrodes.

  17. Transcranial Magnetic Stimulation for Schizophrenia

    National Research Council Canada - National Science Library

    Dougall, Nadine; Maayan, Nicola; Soares-Weiser, Karla; McDermott, Lisa M; McIntosh, Andrew

    2015-01-01

    .... One proposed alternative to drug treatments is transcranial magnetic stimulation (TMS). To date, many research trials to assess effectiveness of TMS for people with symptoms of schizophrenia have been conducted worldwide...

  18. Magnetic Brain Stimulation in ADHD

    OpenAIRE

    2001-01-01

    Transcranial magnetic brain stimulation was performed in 27 children and adolescents, aged 4 to 18 years, with ADHD in the Services of Pediatric Neurology and Clinical Neurophysiology, Miguel Servet Hospital, Zaragoza, Spain.

  19. Transcranial electrical stimulation: An introduction

    CERN Document Server

    Tarazona, Carlos G; Chávez, Laura; Andrade, Sebastián

    2015-01-01

    The main objective of the electrical stimulation of the brain is to generate action potentials from the application of electromagnetic fields. Among the available techniques, transcranial electrical stimulation (TES) represents a popular method of administration that has the advantage of being non-invasive and economically more affordable. This article aims to briefly introduce the reader into the understanding of TES in terms of the physics involved as well as for some of the relevant results of studies applying this technique.

  20. Pharmacological interventions for adolescents and adults with ADHD: stimulant and nonstimulant medications and misuse of prescription stimulants.

    Science.gov (United States)

    Weyandt, Lisa L; Oster, Danielle R; Marraccini, Marisa E; Gudmundsdottir, Bergljot Gyda; Munro, Bailey A; Zavras, Brynheld Martinez; Kuhar, Ben

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by symptoms of inattention, hyperactivity, and impulsivity that cause functional impairment. Recent research indicates that symptoms persist into adulthood in the majority of cases, with prevalence estimates of approximately 5% in the school age population and 2.5%-4% in the adult population. Although students with ADHD are at greater risk for academic underachievement and psychosocial problems, increasing numbers of students with ADHD are graduating from high school and pursuing higher education. Stimulant medications are considered the first line of pharmacotherapy for individuals with ADHD, including college students. Although preliminary evidence indicates that prescription stimulants are safe and effective for college students with ADHD when used as prescribed, very few controlled studies have been conducted concerning the efficacy of prescription stimulants with college students. In addition, misuse of prescription stimulants has become a serious problem on college campuses across the US and has been recently documented in other countries as well. The purpose of the present systematic review was to investigate the efficacy of prescription stimulants for adolescents and young adults with ADHD and the nonmedical use and misuse of prescription stimulants. Results revealed that both prostimulant and stimulant medications, including lisdexamfetamine dimesylate, methylphenidate, amphetamines, and mixed-amphetamine salts, are effective at reducing ADHD symptoms in adolescents and adults with ADHD. Findings also suggest that individuals with ADHD may have higher rates of stimulant misuse than individuals without the disorder, and characteristics such as sex, race, use of illicit drugs, and academic performance are associated with misuse of stimulant medications. Results also indicate that individuals both with and without ADHD are more likely to misuse short-acting agents

  1. Effects of Simultaneously Applied Short-Term Transcutaneous Electrical Nerve Stimulation and Tactile Stimulation on Memory and Affective Behaviour of Patients with Probable Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    E. Scherder

    1995-01-01

    Full Text Available In previous studies beneficial effects of peripheral electrical or tactile nerve stimulation were observed on memory and affective behaviour in patients with probable Alzheimer's disease. In the present study, it was investigated whether electrical and tactile stimulation applied simultaneously to Alzheimer patients would exceed the effects which were observed following treatment by each type of stimulation separately. Our data reveal that the simultaneous application of the two types of stimulation had a beneficial effect on non-verbal and verbal long-term recognition memory. In addition, patients who were treated participated more in activities of daily living, and were more interested in social contacts. In spite of these positive results, comparisons with those of previous studies suggest that a combination of electrical and tactile stimulation does not yield more effects than application of each type of stimulation separately.

  2. Subthalamic Nucleus Stimulation and Dysarthria in Parkinson's Disease: A PET Study

    Science.gov (United States)

    Pinto, Serge; Thobois, Stephane; Costes, Nicolas; Le Bars, Didier; Benabid, Alim-Louis; Broussolle, Emmanuel; Pollak, Pierre; Gentil, Michele

    2004-01-01

    In Parkinson's disease, functional imaging studies during limb motor tasks reveal cerebral activation abnormalities that can be reversed by subthalamic nucleus (STN) stimulation. The effect of STN stimulation on parkinsonian dysarthria has not, however, been investigated using PET. The aim of the present study was to evaluate the effect of STN…

  3. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditor...... stimulation that gives rise to the associated conscious vestibular sensation of vertigo....

  4. Deep Brain Stimulation for Parkinson's Disease

    Science.gov (United States)

    ... You are here Home » Disorders » All Disorders Deep Brain Stimulation for Parkinson's Disease Information Page Deep Brain Stimulation for Parkinson's Disease Information Page Search Disorders ...

  5. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    Science.gov (United States)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  6. Environmental change drives accelerated adaptation through stimulated copy number variation

    Science.gov (United States)

    Hull, Ryan M.; Cruz, Cristina; Jack, Carmen V.

    2017-01-01

    Copy number variation (CNV) is rife in eukaryotic genomes and has been implicated in many human disorders, particularly cancer, in which CNV promotes both tumorigenesis and chemotherapy resistance. CNVs are considered random mutations but often arise through replication defects; transcription can interfere with replication fork progression and stability, leading to increased mutation rates at highly transcribed loci. Here we investigate whether inducible promoters can stimulate CNV to yield reproducible, environment-specific genetic changes. We propose a general mechanism for environmentally-stimulated CNV and validate this mechanism for the emergence of copper resistance in budding yeast. By analysing a large cohort of individual cells, we directly demonstrate that CNV of the copper-resistance gene CUP1 is stimulated by environmental copper. CNV stimulation accelerates the formation of novel alleles conferring enhanced copper resistance, such that copper exposure actively drives adaptation to copper-rich environments. Furthermore, quantification of CNV in individual cells reveals remarkable allele selectivity in the rate at which specific environments stimulate CNV. We define the key mechanistic elements underlying this selectivity, demonstrating that CNV is regulated by both promoter activity and acetylation of histone H3 lysine 56 (H3K56ac) and that H3K56ac is required for CUP1 CNV and efficient copper adaptation. Stimulated CNV is not limited to high-copy CUP1 repeat arrays, as we find that H3K56ac also regulates CNV in 3 copy arrays of CUP1 or SFA1 genes. The impact of transcription on DNA damage is well understood, but our research reveals that this apparently problematic association forms a pathway by which mutations can be directed to particular loci in particular environments and furthermore that this mutagenic process can be regulated through histone acetylation. Stimulated CNV therefore represents an unanticipated and remarkably controllable pathway

  7. Vagal nerve stimulation in tuberous sclerosis complex patients.

    Science.gov (United States)

    Parain, D; Penniello, M J; Berquen, P; Delangre, T; Billard, C; Murphy, J V

    2001-09-01

    This is an open-label, retrospective, multicenter study to determine the outcome of intermittent stimulation of the left vagal nerve in children with tuberous sclerosis complex and medically refractory epilepsy. The records of all children treated with vagal nerve stimulation were reviewed in five pediatric epilepsy centers to locate those with tuberous sclerosis complex who had been treated with vagal nerve stimulation for at least 6 months. These patients were compared with (1) a series of patients obtained from the literature, (2) 10 similar control patients with epilepsy obtained from a registry of patients receiving vagal nerve stimulation, and (3) four published series of tuberous sclerosis complex patients whose epilepsy was surgically managed. Ten tuberous sclerosis complex patients with medically refractory epilepsy treated with vagal nerve stimulation were found. Nine experienced at least a 50% reduction in seizure frequency, and half had a 90% or greater reduction in seizure frequency. No adverse events were encountered. Comparison with published and registry patients revealed improved seizure control in the tuberous sclerosis complex patients. Comparison with the group undergoing seizure surgery demonstrated improved outcomes after surgery. Vagal nerve stimulation appears to be an effective and well-tolerated adjunctive therapy in patients with tuberous sclerosis complex and seizures refractory to medical therapy. Resective surgery has a better prospect for improved seizure control.

  8. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  9. Paired pulse TMS stimulation and human tongue corticomotor pathways

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk

    Objectives: Paired pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-term interval intra-cortical inhibitory (SICI) and facilitatory (ICF) networks. The degree of SICI and ICF varies with interstimulus intervals (ISI) and stimulus intensities of the conditioning stimulus...... intensities (P = 0.984). Post-hoc tests revealed that there was significant SICI with ppTMS ISI of 2, 2.5, 3, and 3.5 ms compared with single pulse stimulation (Pstimulation (P=0.988). There was no interaction between...

  10. Superstitious perceptions reveal properties of internal representations.

    Science.gov (United States)

    Gosselin, Frédéric; Schyns, Philippe G

    2003-09-01

    Everyone has seen a human face in a cloud, a pebble, or blots on a wall. Evidence of superstitious perceptions has been documented since classical antiquity, but has received little scientific attention. In the study reported here, we used superstitious perceptions in a new principled method to reveal the properties of unobservable object representations in memory. We stimulated the visual system with unstructured white noise. Observers firmly believed that they perceived the letter S in Experiment 1 and a smile on a face in Experiment 2. Using reverse correlation and computational analyses, we rendered the memory representations underlying these superstitious perceptions.

  11. Perspectives on stimulated Brillouin scattering

    Science.gov (United States)

    Garmire, Elsa

    2017-01-01

    This collection of papers describes research that goes into detail on some of the more important issues in the physics of stimulated Brillouin scattering. This perspective describes the earliest years of the physics of stimulated Brillouin scattering, along with key developments that have led to this technically and physically rich field of today’s nonlinear optics. Stimulated Brillouin has a profound effect in optical fiber communications, initially discovered by its limit on the transmitted power. By controlling SBS in fibers and making use of its phase conjugation properties in both fibers and bulk media, a wide range of applications have been enabled. Today ring Brillouin lasers in fibers, whispering gallery modes and in photonic integrated circuits provide optical delay lines and switches, pulse shapers and components for increasingly complex and important optical systems.

  12. Enteral feeding without pancreatic stimulation

    DEFF Research Database (Denmark)

    Kaushik, Neeraj; Pietraszewski, Marie; Holst, Jens Juul

    2005-01-01

    OBJECTIVE: All forms of commonly practiced enteral feeding techniques stimulate pancreatic secretion, and only intravenous feeding avoids it. In this study, we explored the possibility of more distal enteral infusions of tube feeds to see whether activation of the ileal brake mechanism can result...... in enteral feeding without pancreatic stimulation, with particular reference to trypsin, because the avoidance of trypsin stimulation may optimize enteral feeding in acute pancreatitis. METHODS: The pancreatic secretory responses to feeding were studied in 36 healthy volunteers by standard double......-lumen duodenal perfusion/aspiration techniques over 6 hours. Subjects were assigned to no feeding (n = 7), duodenal feeding with a polymeric diet (n = 7) or low-fat elemental diet (n = 6), mid-distal jejunal feeding (n = 11), or intravenous feeding (n = 5). All diets provided 40 kcal/kg ideal body weight/d and 1...

  13. Deep brain stimulation: postoperative issues.

    Science.gov (United States)

    Deuschl, Günther; Herzog, Jan; Kleiner-Fisman, Galit; Kubu, Cynthia; Lozano, Andres M; Lyons, Kelly E; Rodriguez-Oroz, Maria C; Tamma, Filippo; Tröster, Alexander I; Vitek, Jerrold L; Volkmann, Jens; Voon, Valerie

    2006-06-01

    Numerous factors need to be taken into account when managing a patient with Parkinson's disease (PD) after deep brain stimulation (DBS). Questions such as when to begin programming, how to conduct a programming screen, how to assess the effects of programming, and how to titrate stimulation and medication for each of the targeted sites need to be addressed. Follow-up care should be determined, including patient adjustments of stimulation, timing of follow-up visits and telephone contact with the patient, and stimulation and medication conditions during the follow-up assessments. A management plan for problems that can arise after DBS such as weight gain, dyskinesia, axial symptoms, speech dysfunction, muscle contractions, paresthesia, eyelid, ocular and visual disturbances, and behavioral and cognitive problems should be developed. Long-term complications such as infection or erosion, loss of effect, intermittent stimulation, tolerance, and pain or discomfort can develop and need to be managed. Other factors that need consideration are social and job-related factors, development of dementia, general medical issues, and lifestyle changes. This report from the Consensus on Deep Brain Stimulation for Parkinson's Disease, a project commissioned by the Congress of Neurological Surgeons and the Movement Disorder Society, outlines answers to a series of questions developed to address all aspects of DBS postoperative management and decision-making with a systematic overview of the literature (until mid-2004) and by the expert opinion of the authors. The report has been endorsed by the Scientific Issues Committee of the Movement Disorder Society and the American Society of Stereotactic and Functional Neurosurgery.

  14. Expectation of sensory stimulation modulates brain activation during visual motion stimulation.

    Science.gov (United States)

    Brandt, Thomas; Deutschländer, Angela; Glasauer, Stefan; Nolte, Annina; Brückmann, Hartmut; Dieterich, Marianne; Stephan, Thomas

    2005-04-01

    The differential effects of visual hemifield motion stimulation during fixation of a stationary target were compared under two conditions: fixation straight ahead without any further instructions and fixation straight ahead with attention shifted to the "dark hemifield." Data from nine right-handed volunteers revealed that striate and extrastriate right hemispheric visual areas exhibited larger activations during left hemifield motion stimulation when attention was shifted to the right dark hemifield. Montreal Neurological Institute (MNI) coordinates (26, -98, -4) of the additional clusters activated in the latter condition corresponded best to the kinetic occipital region, which is known to process both shape and motion information, and to parts of area V3 posterior to V3A, which has been shown repeatedly to mediate motion perception. A simple computational model of transhemispheric visuovisual interaction is proposed. The basic mechanism of this model is a central predictor formed by a feedback loop that detects a mismatch between input to the two hemispheres. Predicted stimulation is then compared with the actual input. If the sensed motion of a visual hemifield is larger than the predicted net motion in the model, activation of the respective neural population is increased; conversely, a smaller actual motion causes less activation.

  15. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A.; Jovanovic, M.

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  16. Heat reveals faults

    Energy Technology Data Exchange (ETDEWEB)

    Weinreich, Bernhard [Solarschmiede GmbH, Muenchen (Germany). Engineering Dept.

    2010-07-01

    Gremlins cannot hide from the all-revealing view of a thermographic camera, whereby it makes no difference whether it is a roof-mounted system or a megawatt-sized farm. Just as diverse are the range of faults that, with the growing level of expertise, can now be detected and differentiated with even greater detail. (orig.)

  17. Late Spontaneous Migration of a Dorsal Column Stimulator Paddle Lead.

    Science.gov (United States)

    Li, Chao; Galgano, Michael A; Carter, David A

    2016-08-17

    The most frequently encountered complication of dorsal column stimulators is lead migration. The vast majority of these events are seen in the first few weeks to months. Late paddle lead migration is a very uncommon occurrence in this setting. We describe a case of a 51-year-old male with a history of reflex sympathetic dystrophy having undergone dorsal column stimulator insertion at the level of C1-C2. A good clinical benefit was appreciated in the postoperative period once the stimulator was turned on. Approximately six months postoperatively, the patient suddenly lost coverage. Radiographic imaging revealed that the lead had migrated caudally to the C3-C4 level. Subsequent revision surgery took place. This description highlights a common complication, but occurring outside the expected time frame after surgery.

  18. Tailorable Stimulated Brillouin Scattering in Nanoscale Silicon Waveguides

    CERN Document Server

    Shin, Heedeuk; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    While nanoscale modal confinement radically enhances a variety of nonlinear light-matter interactions within silicon waveguides, traveling-wave stimulated Brillouin scattering nonlinearities have never been observed in silicon nanophotonics. Through a new class of hybrid photonic-phononic waveguides, we demonstrate tailorable traveling-wave forward stimulated Brillouin scattering in nanophotonic silicon waveguides for the first time, yielding 3000 times stronger forward SBS responses than any previous waveguide system. Simulations reveal that a coherent combination of electrostrictive forces and radiation pressures are responsible for greatly enhanced photon-phonon coupling at nano-scales. Highly tailorable Brillouin nonlinearities are produced by engineering the structure of a membrane-suspended waveguide to yield Brillouin resonances from 1 to 18 GHz through high quality-factor (>1000) phonon modes. Such wideband and tailorable stimulated Brillouin scattering in silicon photonics could enable practical real...

  19. Investigation of the nature of thermal stimulation of acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Muravin, G.B.; Ship, V.V.; Lezvinskaya, L.M.

    1988-12-01

    The nature of thermal stimulation of acoustic emission was investigated. Data are given on the distribution of the density of the energy of deformation at a crack tip and the parameters of acoustic emission with different combinations of mechanical and thermal action. It was established that thermal stimulation of acoustic emission is related to advance and growth of a crack under the action of thermoelastic shear stresses. An increases in heating power causes an increase in the energy of deformation, shear stresses at the crack edges, and acoustic emission energy. The position of the minimum in the density of the energy of deformation and of the maximum in acoustic emission energy coincides with the direction of crack advance, which with the use of the method of thermally stimulated acoustic emission makes it possible to not only reveal crack-like defects but also to determine potentially dangerous directions of their development.

  20. Trigeminovascular stimulation in conscious rats

    NARCIS (Netherlands)

    Kemper, RHA; Meijler, WJ; TerHorst, GJ

    1997-01-01

    INTRACISTERNAL infusion of capsaicin was used to induce intracranial trigeminovascular stimulation in conscious rats. Both behaviour and trigeminal nucleus caudalis c-fos expression were examined. Exploratory behaviour was dose-dependently reduced and different types of behaviours were induced with

  1. Activities to Stimulate Critical Thinking.

    Science.gov (United States)

    Haynes, Thomas B.; Schroeder, Connie

    1989-01-01

    Describes sample vocational activities that stimulate critical thinking: (1) setting up an accounting system (business education); (2) developing a marketing plan (marketing education); (3) developing a fertilizer application plan (agricultural education); (4) making the best purchase (home economics); (5) planning a repair/remodeling project…

  2. AUXIN STIMULATION OF ETHYLENE EVOLUTION

    Science.gov (United States)

    mechanism of auxin action on the enhancement of ethylene production is the formation of enzymes involved in ethylene biogenesis....The stimulation of ethylene production by auxin was inhibited by actinomycin D and other inhibitors of protein synthesis. It is concluded that the

  3. Orientation selective deep brain stimulation

    Science.gov (United States)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  4. Aversive Stimulation -- Criteria for Application.

    Science.gov (United States)

    O'Donnell, Patrick A.; Ohlson, Glenn A.

    Criteria for applying aversive stimulation with severely handicapped children are examined, and practical and ethical issues are considered. Factors seen to influence punishment outcomes include timing, intensity, and schedule of reinforcement. Suggested is the need for further research on the comparative effectiveness of positive and negative…

  5. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    2009-01-01

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  6. Stimulation of phagocytosis by sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Fahey, Jed W., E-mail: jfahey@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Healy, Zachary R., E-mail: zhealy1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Talalay, Paul, E-mail: ptalalay@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States)

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  7. Optical stimulation of the facial nerve: a surgical tool?

    Science.gov (United States)

    Richter, Claus-Peter; Teudt, Ingo Ulrik; Nevel, Adam E.; Izzo, Agnella D.; Walsh, Joseph T., Jr.

    2008-02-01

    One sequela of skull base surgery is the iatrogenic damage to cranial nerves. Devices that stimulate nerves with electric current can assist in the nerve identification. Contemporary devices have two main limitations: (1) the physical contact of the stimulating electrode and (2) the spread of the current through the tissue. In contrast to electrical stimulation, pulsed infrared optical radiation can be used to safely and selectively stimulate neural tissue. Stimulation and screening of the nerve is possible without making physical contact. The gerbil facial nerve was irradiated with 250-μs-long pulses of 2.12 μm radiation delivered via a 600-μm-diameter optical fiber at a repetition rate of 2 Hz. Muscle action potentials were recorded with intradermal electrodes. Nerve samples were examined for possible tissue damage. Eight facial nerves were stimulated with radiant exposures between 0.71-1.77 J/cm2, resulting in compound muscle action potentials (CmAPs) that were simultaneously measured at the m. orbicularis oculi, m. levator nasolabialis, and m. orbicularis oris. Resulting CmAP amplitudes were 0.3-0.4 mV, 0.15-1.4 mV and 0.3-2.3 mV, respectively, depending on the radial location of the optical fiber and the radiant exposure. Individual nerve branches were also stimulated, resulting in CmAP amplitudes between 0.2 and 1.6 mV. Histology revealed tissue damage at radiant exposures of 2.2 J/cm2, but no apparent damage at radiant exposures of 2.0 J/cm2.

  8. Ovarian response in consecutive cycles of ovarian stimulation in normally ovulating women.

    Science.gov (United States)

    Ahmed Ebbiary, N A; Morgan, C; Martin, K; Afnan, M; Newton, J R

    1995-03-01

    Ovarian stimulation combined with intra-uterine insemination (IUI) is an effective treatment of non-tubal infertility but most women undergo several cycles of treatment to achieve a pregnancy. This prospective study was designed to assess the consistency (or variation) of ovarian responses and the effect of various ovarian stimulation protocols on this consistency in consecutive cycles of ovarian stimulation and IUI in women with non-ovulatory infertility. A total of 86 regularly menstruating ovulating patients each completed three to six cycles of ovarian stimulation and IUI (n = 347 cycles). Ovarian stimulation was achieved by sequential clomiphene citrate/human menopausal gonadotrophin (HMG), HMG-only or combined gonadotrophin-releasing hormone analogue--HMG protocols in 33, 29 and 24 patients respectively, and each patient used the same protocol consistently throughout the study. Standard methods were used to monitor ovarian response and to perform IUI. Using each patient as her own control, repeated measurements analysis of variance revealed consistency of ovarian response in consecutive ovarian stimulation cycles, as shown by the number and mean diameter of maturing pre-ovulatory follicles, peak plasma oestradiol, duration of stimulation and mean HMG requirements. This consistency existed using any of the ovarian stimulation protocols. We conclude that regularly menstruating and ovulating women are likely to have similar ovarian responses in consecutive cycles of ovarian stimulation and IUI if the same ovarian stimulation protocol is used consistently.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Glinide, but Not Sulfonylurea, Can Evoke Insulin Exocytosis by Repetitive Stimulation: Imaging Analysis of Insulin Exocytosis by Secretagogue-Induced Repetitive Stimulations

    Directory of Open Access Journals (Sweden)

    Kyota Aoyagi

    2009-01-01

    Full Text Available To investigate the different effects between sulfonylurea (SU and glinide drugs in insulin secretion, pancreatic β-cells were repeatedly stimulated with SU (glimepiride or glinide (mitiglinide. Total internal reflection fluorescent (TIRF microscopy revealed that secondary stimulation with glimepiride, but not glucose and mitiglinide, failed to evoke fusions of insulin granules although primary stimulation with glucose, glimepiride, and mitiglinide induced equivalent numbers of exocytotic responses. Glimepiride, but not glucose and mitiglinide, induced abnormally sustained [Ca2+]i elevations and reductions of docked insulin granules on the plasma membrane. Our data suggest that the effect of glinide on insulin secretory mechanisms is similar to that of glucose.

  10. Pharmacological interventions for adolescents and adults with ADHD: stimulant and nonstimulant medications and misuse of prescription stimulants

    Directory of Open Access Journals (Sweden)

    Weyandt LL

    2014-09-01

    Full Text Available Lisa L Weyandt, Danielle R Oster, Marisa E Marraccini, Bergljot Gyda Gudmundsdottir, Bailey A Munro, Brynheld Martinez Zavras, Ben Kuhar Department of Psychology, University of Rhode Island, Kingston, RI, USA Abstract: Attention-deficit/hyperactivity disorder (ADHD is a neurodevelopmental disorder characterized by symptoms of inattention, hyperactivity, and impulsivity that cause functional impairment. Recent research indicates that symptoms persist into adulthood in the majority of cases, with prevalence estimates of approximately 5% in the school age population and 2.5%–4% in the adult population. Although students with ADHD are at greater risk for academic underachievement and psychosocial problems, increasing numbers of students with ADHD are graduating from high school and pursuing higher education. Stimulant medications are considered the first line of pharmacotherapy for individuals with ADHD, including college students. Although preliminary evidence indicates that prescription stimulants are safe and effective for college students with ADHD when used as prescribed, very few controlled studies have been conducted concerning the efficacy of prescription stimulants with college students. In addition, misuse of prescription stimulants has become a serious problem on college campuses across the US and has been recently documented in other countries as well. The purpose of the present systematic review was to investigate the efficacy of prescription stimulants for adolescents and young adults with ADHD and the nonmedical use and misuse of prescription stimulants. Results revealed that both prostimulant and stimulant medications, including lisdexamfetamine dimesylate, methylphenidate, amphetamines, and mixed-amphetamine salts, are effective at reducing ADHD symptoms in adolescents and adults with ADHD. Findings also suggest that individuals with ADHD may have higher rates of stimulant misuse than individuals without the disorder, and

  11. TypeScript revealed

    CERN Document Server

    Maharry, Dan

    2013-01-01

    TypeScript Revealed is a quick 100-page guide to Anders Hejlsberg's new take on JavaScript. With this brief, fast-paced introduction to TypeScript, .NET, Web and Windows 8 application developers who are already familiar with JavaScript will easily get up to speed with TypeScript and decide whether or not to start incorporating it into their own development. TypeScript is 'JavaScript for Application-scale development'; a superset of JavaScript that brings to it an additional object-oriented-like syntax familiar to .NET programmers that compiles down into simple, clean JavaScript that any browse

  12. Electrical stimulation of experimental nonunions

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R.R.; Luethi, U.; Dueland, R.T.; Perren, S.M.

    Hypertrophic and oligotrophic nonunions were prepared by resection of a portion of the proximal ulna in dogs. In the hypertrophic nonunions, 20 muamps of direct current for eight weeks produced an increase in bone formation compared to the opposite control limb by radiography, photometry, point counting of new bone, and growth rate by sequential fluorochrome labeling and the dynamic uptake of 99mTc-labeled methylene disphosphonate. Oligotrophic nonunions were treated by plating and aspiration grafting in addition to direct-current stimulation. Ony the point counting of new bone showed a significant increase in bone formation with stimulation. Sequential fluorochrome labeling demonstrated that the new bone was laid down on existing bone and not primarily adjacent to the cathode within the fibrous nonunion. This finding supports the cell-mediated rather than physicochemical effect of electrostimulation.

  13. Somato stimulation and acupuncture therapy.

    Science.gov (United States)

    Zhao, Jing-Jun; Rong, Pei-Jing; Shi, Li; Ben, Hui; Zhu, Bing

    2016-05-01

    Acupuncture is an oldest somato stimulus medical technique. As the most representative peripheral nerve stimulation therapy, it has a complete system of theory and application and is applicable to a large population. This paper expounds the bionic origins of acupuncture and analyzes the physiological mechanism by which acupuncture works. For living creatures, functionally sound viscera and effective endurance of pain are essential for survival. This paper discusses the way in which acupuncture increases the pain threshold of living creatures and the underlying mechanism from the perspective of bionics. Acupuncture can also help to adjust visceral functions and works most effectively in facilitating the process of digestion and restraining visceral pain. This paper makes an in-depth overview of peripheral nerve stimulation therapy represented by acupuncture. We look forward to the revival of acupuncture, a long-standing somato stimulus medicine, in the modern medical systems.

  14. Stimulated Superconductivity at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  15. Tactile Stimulation and Consumer Response.

    OpenAIRE

    Hornik, Jacob

    1992-01-01

    Tactile behavior is a basic communication form as well as an expression of interpersonal involvement. This article presents three studies offering evidence for the positive role of casual interpersonal touch on consumer behavior. More specifically, it provides initial support for the view that tactile stimulation in various consumer behavior situations enhances the positive feeling for and evaluation of both the external stimuli and the touching source. Further, customers touched by a request...

  16. Revealing the programming process

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2005-01-01

    One of the most important goals of an introductory programming course is that the students learn a systematic approach to the development of computer programs. Revealing the programming process is an important part of this; however, textbooks do not address the issue -- probably because the textb......One of the most important goals of an introductory programming course is that the students learn a systematic approach to the development of computer programs. Revealing the programming process is an important part of this; however, textbooks do not address the issue -- probably because...... the textbook medium is static and therefore ill-suited to expose the process of programming. We have found that process recordings in the form of captured narrated programming sessions are a simple, cheap, and efficient way of providing the revelation.We identify seven different elements of the programming...... process for which process recordings are a valuable communication media in order to enhance the learning process. Student feedback indicates both high learning outcome and superior learning potential compared to traditional classroom teaching....

  17. Movement disorders induced by deep brain stimulation.

    Science.gov (United States)

    Baizabal-Carvallo, José Fidel; Jankovic, Joseph

    2016-04-01

    Deep brain stimulation represents a major advance in the treatment of several types of movement disorders. However, during stimulation new movement disorders may emerge, thus limiting the positive effects of this therapy. These movement disorders may be induced by: 1) stimulation of the targeted nucleus, 2) stimulation of surrounding tracts and nuclei, and 3) as a result of dose adjustment of accompanying medications, such as reduction of dopaminergic drugs in patients with Parkinson's disease. Various dyskinesias, blepharospasm, and apraxia of eyelid opening have been described mainly with subthalamic nucleus stimulation, whereas hypokinesia and freezing of gait have been observed with stimulation of the globus pallidus internus. Other deep brain stimulation-related movement disorders include dyskinesias associated with stimulation of the globus pallidus externus and ataxic gait as a side effect of chronic bilateral stimulation of the ventral intermediate nucleus of thalamus. These movement disorders are generally reversible and usually resolved once the stimulation is reduced or turned off. This, however, typically leads to loss of benefit of the underlying movement disorder which can be re-gained by using different contacts, changing targets or stimulation parameters, and adjusting pharmacological therapy. New and innovative emerging technologies and stimulation techniques may help to prevent or overcome the various deep brain stimulation-induced movement disorders. In this review we aim to describe the clinical features, frequency, pathophysiology, and strategies for treatment of these iatrogenic movement disorders.

  18. Stimulating parameters and de-synchronization in vagus nerve stimulation therapy for epilepsy

    Science.gov (United States)

    Li, Y.-L.; Chen, Z.-Y.; Ma, J.; Feng, W.-J.

    2008-02-01

    The influence of the stimulation parameters on the de-synchronization of small world Hindmarsh-Rose (H-R) neural network is numerically investigated in the vagus nerve stimulation therapy for epilepsy. The simulation shows that synchronization evolves into de-synchronization when a part of neurons (about 10 percent) is stimulated with a pulse current signal. The network de-synchronization appears to be sensitive to the stimulation parameters. For the case of the same stimulation intensity, those weakly coupled networks reach de-synchronization more easily than strongly coupled networks. There exist an optimal stimulation interval and period of continuous stimulation time when other stimulation parameters remain invariable.

  19. Stimulating parameters and de-synchronization in vagus nerve stimulation therapy for epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y-L; Ma, J; Feng, W-J [Institute of Theoretical Physics, Lanzhou University of Technology, 287 Langongping Road, Lanzhou 730050 (China); Chen, Z-Y [Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720 (United States)], E-mail: hyperchaos@163.com, E-mail: liyl20031@126.com, E-mail: chen_zhao_yang@yahoo.com

    2008-02-15

    The influence of the stimulation parameters on the de-synchronization of small world Hindmarsh-Rose (H-R) neural network is numerically investigated in the vagus nerve stimulation therapy for epilepsy. The simulation shows that synchronization evolves into de-synchronization when a part of neurons (about 10 percent) is stimulated with a pulse current signal. The network de-synchronization appears to be sensitive to the stimulation parameters. For the case of the same stimulation intensity, those weakly coupled networks reach de-synchronization more easily than strongly coupled networks. There exist an optimal stimulation interval and period of continuous stimulation time when other stimulation parameters remain invariable.

  20. Gastric stimulation for weight loss

    Institute of Scientific and Technical Information of China (English)

    Meir Mizrahi; Ami Ben Ya'acov; Yaron Ilan

    2012-01-01

    The prevalence of obesity is growing to epidemic proportions,and there is clearly a need for minimally invasive therapies with few adverse effects that allow for sustained weight loss.Behavior and lifestyle therapy are safe treatments for obesity in the short term,but the durability of the weight loss is limited.Although promising obesity drugs are in development,the currently available drugs lack efficacy or have unacceptable side effects.Surgery leads to long-term weight loss,but it is associated with morbidity and mortality.Gastric electrical stimulation (GES) has received increasing attention as a potential tool for treating obesity and gastrointestinal dysmotility disorders.GES is a promising,minimally invasive,safe,and effective method for treating obesity.External gastric pacing is aimed at alteration of the motility of the gastrointestinal tract in a way that will alter absorption due to alteration of transit time.In addition,data from animal models and preliminary data from human trials suggest a role for the gut-brain axis in the mechanism of GES.This may involve alteration of secretion of hormones associated with hunger or satiety.Patient selection for gastric stimulation therapy seems to be an important determinant of the treatment's outcome.Here,we review the current status,potential mechanisms of action,and possible future applications of gastric stimulation for obesity.

  1. Stimulation of Eryptosis by Cryptotanshinone

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2014-07-01

    Full Text Available Background/Aims: Cryptotanshinone, a component of Salvia miltiorrhiza Bunge roots, may trigger suicidal death or apoptosis of tumor cells and has thus been recommended for the prevention and treatment of malignancy. On the other hand, Cryptotanshinone has been shown to counteract apoptosis of neurons and hepatocytes. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+-activity ([Ca2+]i. The present study explored whether Cryptotanshinone stimulates eryptosis. Methods: Forward scatter was taken as measure of cell volume, annexin V binding for identification of phosphatidylserine-exposing erythrocytes and Fluo3-fluorescence for determination of [Ca2+]i. Results: A 48 h exposure of human erythrocytes to Cryptotanshinone (10 µM was followed by significant decrease of forward scatter, significant increase of the percentage annexin-V-binding cells and significant increase of [Ca2+]i. The effect of Cryptotanshinone (1 µM on annexin-V-binding was virtually abrogated by removal of extracellular Ca2+. Conclusion: Cryptotanshinone is a powerful stimulator of suicidal erythrocyte death or eryptosis, which is effective mainly, if not exclusively, by stimulation of Ca2+ entry.

  2. Gastric stimulation for weight loss

    Science.gov (United States)

    Mizrahi, Meir; Ben Ya'acov, Ami; Ilan, Yaron

    2012-01-01

    The prevalence of obesity is growing to epidemic proportions, and there is clearly a need for minimally invasive therapies with few adverse effects that allow for sustained weight loss. Behavior and lifestyle therapy are safe treatments for obesity in the short term, but the durability of the weight loss is limited. Although promising obesity drugs are in development, the currently available drugs lack efficacy or have unacceptable side effects. Surgery leads to long-term weight loss, but it is associated with morbidity and mortality. Gastric electrical stimulation (GES) has received increasing attention as a potential tool for treating obesity and gastrointestinal dysmotility disorders. GES is a promising, minimally invasive, safe, and effective method for treating obesity. External gastric pacing is aimed at alteration of the motility of the gastrointestinal tract in a way that will alter absorption due to alteration of transit time. In addition, data from animal models and preliminary data from human trials suggest a role for the gut-brain axis in the mechanism of GES. This may involve alteration of secretion of hormones associated with hunger or satiety. Patient selection for gastric stimulation therapy seems to be an important determinant of the treatment’s outcome. Here, we review the current status, potential mechanisms of action, and possible future applications of gastric stimulation for obesity. PMID:22654422

  3. Neuromuscular electrical stimulation for skeletal muscle function.

    Science.gov (United States)

    Doucet, Barbara M; Lam, Amy; Griffin, Lisa

    2012-06-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle.

  4. Vagus Nerve Stimulation for Treating Epilepsy

    Science.gov (United States)

    ... Evidence-based Guideline for PATIENTS and their FAMILIES VAGUS NERVE STIMULATION FOR TREATING EPILEPSY This information sheet is provided to help you understand how vagus nerve stimulation (VNS) may help treat epilepsy. The American ...

  5. Android Emotions Revealed

    DEFF Research Database (Denmark)

    Vlachos, Evgenios; Schärfe, Henrik

    2012-01-01

    This work presents a method for designing facial interfaces for sociable android robots with respect to the fundamental rules of human affect expression. Extending the work of Paul Ekman towards a robotic direction, we follow the judgment-based approach for evaluating facial expressions to test...... in which case an android robot like the Geminoid|DK –a duplicate of an Original person- reveals emotions convincingly; when following an empirical perspective, or when following a theoretical one. The methodology includes the processes of acquiring the empirical data, and gathering feedback on them. Our...... findings are based on the results derived from a number of judgments, and suggest that before programming the facial expressions of a Geminoid, the Original should pass through the proposed procedure. According to our recommendations, the facial expressions of an android should be tested by judges, even...

  6. Android Emotions Revealed

    DEFF Research Database (Denmark)

    Vlachos, Evgenios; Schärfe, Henrik

    2012-01-01

    This work presents a method for designing facial interfaces for sociable android robots with respect to the fundamental rules of human affect expression. Extending the work of Paul Ekman towards a robotic direction, we follow the judgment-based approach for evaluating facial expressions to test...... in which case an android robot like the Geminoid|DK –a duplicate of an Original person- reveals emotions convincingly; when following an empirical perspective, or when following a theoretical one. The methodology includes the processes of acquiring the empirical data, and gathering feedback on them. Our...... findings are based on the results derived from a number of judgments, and suggest that before programming the facial expressions of a Geminoid, the Original should pass through the proposed procedure. According to our recommendations, the facial expressions of an android should be tested by judges, even...

  7. Electrical stimulation for epilepsy: stimulation of hippocampal foci.

    Science.gov (United States)

    Velasco, F; Velasco, M; Velasco, A L; Menez, D; Rocha, L

    2001-01-01

    Subacute and chronic continuous electrical stimulation at the epileptic focus in the hippocampus or parahippocampal cortex at 130 Hz, 0.21-1.0 ms, 2.5-3.5 V (about 200-300 microA) induces a decrease in focal EEG epileptic interictal activity and also in the occurrence of clinical seizures. This may represent an alternative for the treatment of temporal lobe seizures originated in bilateral independent temporal lobe foci or occurring in patients where one is uncertain whether memory deficit might result from ablative procedures.

  8. A Chip for an Implantable Neural Stimulator

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    2000-01-01

    transmission to the stimulator passes through a 5 MHz inductive link. From the signals transmitted to the stimulator, the chip is able to generate charge-balanced current pulses with a controllable length up to 256 µs and an amplitude up to 2 mA, for stimulation of nerve fibers. The quiescent current...

  9. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  10. Vomiting Center reanalyzed: An electrical stimulation study

    Science.gov (United States)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  11. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    Science.gov (United States)

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project.

  12. Terminal effects of optogenetic stimulation on dopamine dynamics in rat striatum.

    Science.gov (United States)

    Bass, Caroline E; Grinevich, Valentina P; Kulikova, Alexandra D; Bonin, Keith D; Budygin, Evgeny A

    2013-04-15

    In this study, the first in-depth analysis of optically induced dopamine release using fast-scan cyclic voltammetry on striatal slices from rat brain was performed. An adeno-associated virus that expresses Channelrhodopsin-2 was injected in the substantia nigra. Tissue was collected and sectioned into 400μm-thick coronal slices 4 weeks later. Blue laser light (473nm) was delivered through a fiber optic inserted into slice tissue. Experiments revealed some difference between maximal amplitudes measured from optically and electrically evoked dopamine effluxes. Specifically, there was an increase in the amplitude of dopamine release induced by electrical stimulation in comparison with light stimulations. However, we found that dopamine release is more sensitive to changes in the pulse width in the case of optical stimulation. Light-stimulated dopamine was increased as the stimulation pulse widened. There was no difference with repeated stimulations at five minute intervals between stimulation sources and dopamine signal was stable during recording sessions, while one minute intervals resulted in a decline in the amplitude from both sources. Optical stimulation can also produce an artifact that is distinguishable from dopamine by the cyclic voltammogram. These results confirm that optical stimulation of dopamine is a sound approach for future pharmacological studies in slices.

  13. Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Lingdi Fu; Yuehua Geng; Xiang Zhai; Yanhua Liu

    2014-01-01

    Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo-gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran-scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula-tion, signiifcant differences in sample entropy were found at ifve electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula-tion. The ifndings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag-netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus

  14. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease.

    Science.gov (United States)

    Fregni, Felipe; Boggio, Paulo S; Santos, Marcelo C; Lima, Moises; Vieira, Adriana L; Rigonatti, Sergio P; Silva, M Teresa A; Barbosa, Egberto R; Nitsche, Michael A; Pascual-Leone, Alvaro

    2006-10-01

    Electrical stimulation of deep brain structures, such as globus pallidus and subthalamic nucleus, is widely accepted as a therapeutic tool for patients with Parkinson's disease (PD). Cortical stimulation either with epidural implanted electrodes or repetitive transcranial magnetic stimulation can be associated with motor function enhancement in PD. We aimed to study the effects of another noninvasive technique of cortical brain stimulation, transcranial direct current stimulation (tDCS), on motor function and motor-evoked potential (MEP) characteristics of PD patients. We tested tDCS using different electrode montages [anodal stimulation of primary motor cortex (M1), cathodal stimulation of M1, anodal stimulation of dorsolateral prefrontal cortex (DLPFC), and sham-stimulation] and evaluated the effects on motor function--as indexed by Unified Parkinson's Disease Rating Scale (UPDRS), simple reaction time (sRT) and Purdue Pegboard test--and on corticospinal motor excitability (MEP characteristics). All experiments were performed in a double-blinded manner. Anodal stimulation of M1 was associated with a significant improvement of motor function compared to sham-stimulation in the UPDRS (P stimulation of M1 or anodal stimulation of DLPFC. Furthermore, whereas anodal stimulation of M1 significantly increased MEP amplitude and area, cathodal stimulation of M1 significantly decreased them. There was a trend toward a significant correlation between motor function improvement after M1 anodal-tDCS and MEP area increase. These results confirm and extend the notion that cortical brain stimulation might improve motor function in patients with PD.

  15. [Influence of mediopreoptic stimulation on temperature regulation in rats before and after serotonin injection].

    Science.gov (United States)

    Gorynia, I; Bartsch, P

    1975-01-01

    The effects of electrical stimulation of the Area praceoptica medialis (APM) and intraventricular serotonine injection were investigated in thirty Wistar rats tested under normo-, hypo- and hyperthermic conditions. Temperature responses such as oxygen consumption and rectal temperature were measured and heat loss was calculated. The effects of the first stimulation before serotonine injection were compared with those of the second one after serotonine application in order to prove the influence of serotonine on temperature responses due to APM stimulation. On the other hand, the influence of stimulation on changes produced by serotonine injection should be shown by the recordings of the second serotonine responses with stimulation effects and by comparison of these with those of the first serotonine responses without stimulation effects. The first APM stimulation depending on the rectal temperature before stimulation resulted in decreasing oxygen consumption in hypothermic rats while increasing that of hyperthermic animals. There was a little decrease of rectal temperature under hyper- and normothermic conditions. while under hypothermic conditions animals showed marked depression. The increase in heat loss, however, was least in hyperthermic rats and most pronounced in hypothermic animals. The second APM stimulation did almost not affect the temperature responses after serotonine application in normothermic rats, while causing supercooling agin under hypothermic conditions and insignificant cooling at hyperthermic environment temperature. Comparison of the first and second stimulation effects revealed statistical significant differences at normo-, hypo- and hyperthermic temperatures. The results are discussed under consideration of the different starting conditions before the first and second stimulation. These findings do not indicate that serotonine would shift the sensibility of mediopraeoptic structures and thus unequivocally modifies stimulation effects.

  16. Tapering Enhanced Stimulated Superradiant Amplification

    CERN Document Server

    Duris, Joseph; Musumeci, Pietro

    2014-01-01

    High conversion efficiency between electrical and optical power is highly desirable both for high peak and high average power radiation sources. In this paper we discuss a new mechanism based on stimulated superradiant emission in a strongly tapered undulator whereby an optimal undulator tapering is calculated by dynamically matching the resonant energy variation to the ponderomotive decelerating gradient. The method has the potential to allow the extraction of a large fraction (~50%) of power from a relativistic electron beam and convert it into coherent narrow-band tunable radiation, and shows a clear path to very high average power radiation sources.

  17. Stimulated Brillouin Scattering Microscopic Imaging.

    Science.gov (United States)

    Ballmann, Charles W; Thompson, Jonathan V; Traverso, Andrew J; Meng, Zhaokai; Scully, Marlan O; Yakovlev, Vladislav V

    2015-01-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  18. Stimulated Brillouin Scattering Microscopic Imaging

    Science.gov (United States)

    Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.

    2015-12-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  19. Transverse stimulated Raman scattering in KDP

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E.; Sacks, R.A.; Wonterghem, B.M. Van; Caird, J.A.; Murray, J.R.; Campbell, J.H.; Kyle, K.; Ehrlich, R.E.; Nielsen, N.D.

    1995-09-12

    Optical components of large-aperture, high irradiance and high fluence lasers can experience significant levels of stimulated scattering along their transverse dimensions. The authors have observed transverse stimulated Raman scattering in large aperture KDP crystals, and have measured the stimulated gain coefficient. With sufficiently high gain, transverse stimulated scattering can lead to energy loss from the main beam and, more importantly, optical damage in the components in which this scattering occurs. Thus transverse stimulated,scattering is of concern in large aperture fusion lasers such as Nova and Beamlet, which is a single-aperture, full-scale scientific prototype of the laser driver for the proposed National Ignition Facility.

  20. Field distribution of epidural electrical stimulation.

    Science.gov (United States)

    Xie, Xiaobo; Cui, Hong yan; Xu, Shengpu; Hu, Yong

    2013-11-01

    Epidural electrical stimulation has been applied in clinics for many years. However, there is still a concern about possible injury to spinal nerves. This study investigated electrical field and current density distribution during direct epidural electrical stimulation. Field distribution models were theoretically deduced, while the distribution of potentials and current were analyzed. The current density presented an increase of 70-80%, with one peak value ranging from -85° to 85° between the two stimulated poles. The effect of direct epidural electrical stimulation is mainly on local tissue surrounding the electrodes, concentrated around the two stimulated positions. © 2013 Elsevier Ltd. All rights reserved.

  1. Systematic Review of Parameters of Stimulation: Clinical Trial Design Characteristics and Motor Outcomes in Noninvasive Brain Stimulation in Stroke

    Directory of Open Access Journals (Sweden)

    Bamidele Oyebamiji Adeyemo

    2012-11-01

    Full Text Available Introduction: Repetitive Transcranial Magnetic Stimulation (rTMS and Transcranial Direct Current Stimulation are two powerful non-invasive neuromodulatory therapies that have the potential to alter and evaluate the integrity of the corticospinal tract. Moreover, recent evidence has shown that brain stimulation might be beneficial in stroke recovery. Therefore, investigating and investing in innovative therapies that may improve neurorehabilitative stroke recovery are next steps in research and development.Methods: This article presents an up-to-date systematic review of the treatment effects of rTMS and tDCS on motor function. A literary search was conducted, utilizing search terms stroke and transcranial stimulation. Items were excluded if they failed to: (1 include stroke patients, (2 study motor outcomes, or (3 include rTMS/tDCS as treatments. Other exclusions included: (1 reviews, editorials, and letters, (2 animal or pediatric populations, (3 case reports or sample sizes < or = 2 patients, and (4 primary outcomes of dysphagia, dysarthria, neglect, or swallowing.Results: Investigation of PubMed English Database prior to 01/01/2012 produced 695 applicable results. Studies were excluded based on the aforementioned criteria, resulting in 50 remaining studies. They included 1314 participants (1282 stroke patients and 32 healthy subjects evaluated by motor function pre- and post- tDCS or rTMS. Heterogeneity among studies’ motor assessments was high and could not be accounted for by individual comparison. Pooled effect sizes for the impact of post-treatment improvement revealed consistently demonstrable improvements after tDCS and rTMS therapeutic stimulation. Most studies provided limited follow-up for long-term effects.Conclusions: It is apparent from the available studies that noninvasive stimulation may enhance motor recovery and may lead to clinically-meaningful functional improvements in the stroke population.

  2. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa

    2016-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures...... are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS...... experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation...

  3. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa

    2016-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures...... are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS...... experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation...

  4. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    Science.gov (United States)

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.

  5. High-frequency and brief-pulse stimulation pulses terminate cortical electrical stimulation-induced afterdischarges.

    Science.gov (United States)

    Ren, Zhi-Wei; Li, Yong-Jie; Yu, Tao; Ni, Duan-Yu; Zhang, Guo-Jun; Du, Wei; Piao, Yuan-Yuan; Zhou, Xiao-Xia

    2017-06-01

    Brief-pulse stimulation at 50 Hz has been shown to terminate afterdischarges observed in epilepsy patients. However, the optimal pulse stimulation parameters for terminating cortical electrical stimulation-induced afterdischarges remain unclear. In the present study, we examined the effects of different brief-pulse stimulation frequencies (5, 50 and 100 Hz) on cortical electrical stimulation-induced afterdischarges in 10 patients with refractory epilepsy. Results demonstrated that brief-pulse stimulation could terminate cortical electrical stimulation-induced afterdischarges in refractory epilepsy patients. In conclusion, (1) a brief-pulse stimulation was more effective when the afterdischarge did not extend to the surrounding brain area. (2) A higher brief-pulse stimulation frequency (especially 100 Hz) was more likely to terminate an afterdischarge. (3) A low current intensity of brief-pulse stimulation was more likely to terminate an afterdischarge.

  6. Optical stimulator for vision-based sensors

    DEFF Research Database (Denmark)

    Rössler, Dirk; Pedersen, David Arge Klevang; Benn, Mathias

    2014-01-01

    We have developed an optical stimulator system for vision-based sensors. The stimulator is an efficient tool for stimulating a camera during on-ground testing with scenes representative of spacecraft flights. Such scenes include starry sky, planetary objects, and other spacecraft. The optical...... precision and long-term stability. The system can be continuously used over several days. By facilitating a full camera including optics in the loop, the stimulator enables the more realistic simulation of flight maneuvers based on navigation cameras than pure computer simulations or camera stimulations...... stimulator is used as a test bench to simulate high-precision navigation by different types of camera systems that are used onboard spacecraft, planetary rovers, and for spacecraft rendezvous and proximity maneuvers. Careful hardware design and preoperational calibration of the stimulator result in high...

  7. Stimulated emission from NV centres in diamond

    CERN Document Server

    Jeske, Jan; McGuinness, Liam P; Reineck, Philip; Johnson, Brett C; McCallum, Jeffrey C; Jelezko, Fedor; Volz, Thomas; Cole, Jared H; Gibson, Brant C; Greentree, Andrew D

    2016-01-01

    Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively-charged nitrogen-vacancy (NV$^-$) centres being discussed as a potential laser medium since the 1980's, there have been no definitive observations of stimulated emission from ensembles of NV$^-$ to date. Reasons for this lack of demonstration include the short excited state lifetime and the occurrence of photo-ionisation to the neutral charge state by light around the zero-phonon line. Here we show both theoretical and experimental evidence for stimulated emission from NV$^-$ states using light in the phonon-sidebands. Our system uses a continuous wave pump laser at 532 nm and a pulsed stimulating laser that is swept across the phononic sidebands of the NV$^-$. Optimal stimulated emission is demonstrated in the vicinity of the three-phonon line at 700 nm. Furthermore, we show the transition from stimulated emission to photoionisation as the stimulating laser wavelength is reduced fro...

  8. Follicle-stimulating hormone increases bone mass in female mice.

    Science.gov (United States)

    Allan, Charles M; Kalak, Robert; Dunstan, Colin R; McTavish, Kirsten J; Zhou, Hong; Handelsman, David J; Seibel, Markus J

    2010-12-28

    Elevated follicle-stimulating hormone (FSH) activity is proposed to directly cause bone loss independent of estradiol deficiency in aging women. Using transgenic female mice expressing human FSH (TgFSH), we now reveal that TgFSH dose-dependently increased bone mass, markedly elevating tibial and vertebral trabecular bone volume. Furthermore, TgFSH stimulated a striking accrual of bone mass in hypogonadal mice lacking endogenous FSH and luteinizing hormone (LH) function, showing that FSH-induced bone mass occurred independently of background LH or estradiol levels. Higher TgFSH levels increased osteoblast surfaces in trabecular bone and stimulated de novo bone formation, filling marrow spaces with woven rather than lamellar bone, reflective of a strong anabolic stimulus. Trabecular bone volume correlated positively with ovarian-derived serum inhibin A or testosterone levels in TgFSH mice, and ovariectomy abolished TgFSH-induced bone formation, proving that FSH effects on bone require an ovary-dependent pathway. No detectable FSH receptor mRNA in mouse bone or cultured osteoblasts or osteoclasts indicated that FSH did not directly stimulate bone. Therefore, contrary to proposed FSH-induced bone loss, our findings demonstrate that FSH has dose-dependent anabolic effects on bone via an ovary-dependent mechanism, which is independent of LH activity, and does not involve direct FSH actions on bone cells.

  9. Transcranial focused ultrasound stimulation of human primary visual cortex

    Science.gov (United States)

    Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik

    2016-09-01

    Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.

  10. Braille line using electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G [Gabinete de TecnologIa Medica. Universidad N. de San Juan (Argentina)

    2007-11-15

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  11. Braille line using electrical stimulation

    Science.gov (United States)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  12. Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology

    NARCIS (Netherlands)

    Zanuzzi, A.; Arocena, J.M.; van Mourik, J.M.; Faz Cano, A.

    2009-01-01

    Mine tailings are inhospitable to plants and soil organisms, because of low pH and poor soil organic matter contents. Vegetation establishment requires a soil system capable of supporting the nutrient and water requirements of plants and associated organisms. The objective of this study was to

  13. Pitch Memory in Nonmusicians and Musicians: Revealing Functional Differences Using Transcranial Direct Current Stimulation

    OpenAIRE

    Schaal, N.K.; Krause, V; Lange, K.; Banissy, M. J.; Williamson, V.; Pollok, B.

    2017-01-01

    For music and language processing, memory for relative pitches is highly important. Functional imaging studies have shown activation of a complex neural system for pitch memory. One region that has been shown to be causally involved in the process for nonmusicians is the supramarginal gyrus (SMG). The present study aims at replicating this finding and at further examining the role of the SMG for pitch memory in musicians. Nonmusicians and musicians received cathodal transcranial direct curren...

  14. Generation of Pseudoscalar Bosons by Stimulated Raman Scattering of Light in Dielectric Media

    Directory of Open Access Journals (Sweden)

    Gorelik V.S.

    2015-01-01

    Full Text Available The conditions of pseudoscalar excitations of liquids and crystals vibration states in spontaneous and stimulated Raman spectra revealing are reported. The selection rules for pseudoscalar modes of molecules and crystals observation have been obtained. The experiments on observation of spontaneous and stimulated Raman scattering on pseudoscalar modes of molecules and crystals have been fulfilled. The excitation of stimulated Raman scattering was with using of solid state laser YAG:Nd3+, generating intense (up to 1 TW/cm2 ultrashort (60 ps laser pulses with energy 10 mJ and frequency repetition 10 Hz. The relationship between pseudoscalar bosons of dielectric media and axion of vacuum is analyzed.

  15. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation.

    Science.gov (United States)

    Mure, Hideo; Tang, Chris C; Argyelan, Miklos; Ghilardi, Maria-Felice; Kaplitt, Michael G; Dhawan, Vijay; Eidelberg, David

    2012-02-22

    We used a network approach to study the effects of anti-parkinsonian treatment on motor sequence learning in humans. Eight Parkinson's disease (PD) patients with bilateral subthalamic nucleus (STN) deep brain stimulation underwent H(2)(15)O positron emission tomography (PET) imaging to measure regional cerebral blood flow (rCBF) while they performed kinematically matched sequence learning and movement tasks at baseline and during stimulation. Network analysis revealed a significant learning-related spatial covariance pattern characterized by consistent increases in subject expression during stimulation (p = 0.008, permutation test). The network was associated with increased activity in the lateral cerebellum, dorsal premotor cortex, and parahippocampal gyrus, with covarying reductions in the supplementary motor area (SMA) and orbitofrontal cortex. Stimulation-mediated increases in network activity correlated with concurrent improvement in learning performance (p learning performance or network activity. Analysis of learning-related rCBF in network regions revealed improvement in baseline abnormalities with STN stimulation but not levodopa. These effects were most pronounced in the SMA. In this region, a consistent rCBF response to stimulation was observed across subjects and trials (p = 0.01), although the levodopa response was not significant. These findings link the cognitive treatment response in PD to changes in the activity of a specific cerebello-premotor cortical network. Selective modulation of overactive SMA-STN projection pathways may underlie the improvement in learning found with stimulation.

  16. Vagus nerve stimulation regulates hemostasis in swine.

    Science.gov (United States)

    Czura, Christopher J; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J

    2010-06-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses proinflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre-electrical vagus nerve stimulation = 1033 +/- 210 s versus post-electrical vagus nerve stimulation = 585 +/- 111 s; P vagus nerve stimulation = 48.4 +/- 6.8 mL versus post-electrical vagus nerve stimulation = 26.3 +/- 6.7 mL; P vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity.

  17. Laser-stimulated fluorescence in paleontology.

    Science.gov (United States)

    Kaye, Thomas G; Falk, Amanda R; Pittman, Michael; Sereno, Paul C; Martin, Larry D; Burnham, David A; Gong, Enpu; Xu, Xing; Wang, Yinan

    2015-01-01

    Fluorescence using ultraviolet (UV) light has seen increased use as a tool in paleontology over the last decade. Laser-stimulated fluorescence (LSF) is a next generation technique that is emerging as a way to fluoresce paleontological specimens that remain dark under typical UV. A laser's ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce. Presented here are five paleontological case histories that illustrate the technique across a broad range of specimens and scales. Novel uses such as back-lighting opaque specimens to reveal detail and detection of specimens completely obscured by matrix are highlighted in these examples. The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers. This technology has the potential to automate multiple aspects of paleontology, including preparation and sorting of microfossils. This represents a highly cost-effective way to address paleontology's preparatory bottleneck.

  18. Laser-stimulated fluorescence in paleontology.

    Directory of Open Access Journals (Sweden)

    Thomas G Kaye

    Full Text Available Fluorescence using ultraviolet (UV light has seen increased use as a tool in paleontology over the last decade. Laser-stimulated fluorescence (LSF is a next generation technique that is emerging as a way to fluoresce paleontological specimens that remain dark under typical UV. A laser's ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce. Presented here are five paleontological case histories that illustrate the technique across a broad range of specimens and scales. Novel uses such as back-lighting opaque specimens to reveal detail and detection of specimens completely obscured by matrix are highlighted in these examples. The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers. This technology has the potential to automate multiple aspects of paleontology, including preparation and sorting of microfossils. This represents a highly cost-effective way to address paleontology's preparatory bottleneck.

  19. Multisensory stimulation in stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Barbro Birgitta Johansson

    2012-04-01

    Full Text Available The brain has a large capacity for automatic simultaneous processing and integration of sensory information. Combining information from different sensory modalities facilitates our ability to detect, discriminate, and recognize sensory stimuli, and learning is often optimal in a multisensory environment. Currently used multisensory stimulation methods in stroke rehabilitation include motor imagery, action observation, training with a mirror or in a virtual environment, or various kinds of music therapy. Several studies have shown positive effects been reported but to give general recommendation more studies are needed. Patient heterogeneity and the interactions of age, gender, genes and environment are discussed. Randomized controlled longitudinal trials starting earlier post stroke are needed. The advance in brain network science and neuroimaging enabling longitudinal studies of structural and functional networks are likely to have an important impact on patient selection for specific interventions in future stroke rehabilitation.

  20. Vestibular stimulation by magnetic fields

    Science.gov (United States)

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  1. Midbrain raphe stimulation improves behavioral and anatomical recovery from fluid-percussion brain injury.

    Science.gov (United States)

    Carballosa Gonzalez, Melissa M; Blaya, Meghan O; Alonso, Ofelia F; Bramlett, Helen M; Hentall, Ian D

    2013-01-15

    The midbrain median raphe (MR) and dorsal raphe (DR) nuclei were tested for their capacity to regulate recovery from traumatic brain injury (TBI). An implanted, wireless self-powered stimulator delivered intermittent 8-Hz pulse trains for 7 days to the rat's MR or DR, beginning 4-6 h after a moderate parasagittal (right) fluid-percussion injury. MR stimulation was also examined with a higher frequency (24 Hz) or a delayed start (7 days after injury). Controls had sham injuries, inactive stimulators, or both. The stimulation caused no apparent acute responses or adverse long-term changes. In water-maze trials conducted 5 weeks post-injury, early 8-Hz MR and DR stimulation restored the rate of acquisition of reference memory for a hidden platform of fixed location. Short-term spatial working memory, for a variably located hidden platform, was restored only by early 8-Hz MR stimulation. All stimulation protocols reversed injury-induced asymmetry of spontaneous forelimb reaching movements tested 6 weeks post-injury. Post-mortem histological measurement at 8 weeks post-injury revealed volume losses in parietal-occipital cortex and decussating white matter (corpus callosum plus external capsule), but not hippocampus. The cortical losses were significantly reversed by early 8-Hz MR and DR stimulation, the white matter losses by all forms of MR stimulation. The generally most effective protocol, 8-Hz MR stimulation, was tested 3 days post-injury for its acute effect on forebrain cyclic adenosine monophosphate (cAMP), a key trophic signaling molecule. This procedure reversed injury-induced declines of cAMP levels in both cortex and hippocampus. In conclusion, midbrain raphe nuclei can enduringly enhance recovery from early disseminated TBI, possibly in part through increased signaling by cAMP in efferent targets. A neurosurgical treatment for TBI using interim electrical stimulation in raphe repair centers is suggested.

  2. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  3. Puerto Rico Revealed Preference data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Revealed preference models provide insights into recreational angler behavior and the economic value of recreational fishing trips. Revealed preference data is...

  4. Revealing the Beast Within

    Science.gov (United States)

    2003-07-01

    Deeply Embedded Massive Stellar Clusters Discovered in Milky Way Powerhouse Summary Peering into a giant molecular cloud in the Milky Way galaxy - known as W49 - astronomers from the European Southern Observatory (ESO) have discovered a whole new population of very massive newborn stars . This research is being presented today at the International Astronomical Union's 25th General Assembly held in Sydney, Australia, by ESO-scientist João Alves. With the help of infrared images obtained during a period of excellent observing conditions with the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory (Chile), the astronomers looked deep into this molecular cloud and discovered four massive stellar clusters, with hot and energetic stars as massive as 120 solar masses. The exceedingly strong radiation from the stars in the largest of these clusters is "powering" a 20 light-year diameter region of mostly ionized hydrogen gas (a "giant HII region"). W49 is one of the most energetic regions of star formation in the Milky Way. With the present discovery, the true sources of the enormous energy have now been revealed for the first time, finally bringing to an end some decades of astronomical speculations and hypotheses. PR Photo 21a/03 : Colour Composite of W49A (NTT+SOFI). PR Photo 21b/03 : Radio and Near-Infrared Composite of W49A Giant molecular clouds Stars form predominantly inside Giant Molecular Clouds which populate our Galaxy, the Milky Way. One of the most prominent of these is W49 , which has a mass of a million solar masses. It is located some 37,000 light-years away and is the most luminous star-forming region known in our home galaxy: its luminosity is several million times the luminosity of our Sun. A smaller region within this cloud is denoted W49A - this is one of the strongest radio-emitting areas known in the Galaxy . Massive stars are excessive in all ways. Compared to their smaller and ligther brethren, they form at an Olympic speed and

  5. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  6. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...... neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need...

  7. Bursting behaviours in cascaded stimulated Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov-Maxwell system.A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma.It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light,as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction.The bursting time in the reflectivity is found to be less than half the ion acoustic period.The ion temperature can affect the stimulated Brillouin scattering cascade,which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures.For stimulated Brillouin scattering saturation,higher-harmonic generation and wave-wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter.In addition,stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light.

  8. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  9. ``Bloch wave'' modification of stimulated Raman by stimulated Brillouin scattering

    Science.gov (United States)

    Dodd, E. S.; Vu, H. X.; DuBois, D. F.; Bezzerides, B.

    2013-03-01

    Using the reduced-description particle-in-cell (RPIC) method, we study the coupling of backward stimulated Raman scattering (BSRS) and backward stimulated Brillouin scattering (BSBS) in regimes where the reflectivity involves the nonlinear behavior of particles trapped in the daughter plasma waves. The temporal envelope of a Langmuir wave (LW) obeys a Schrödinger equation where the potential is the periodic electron density fluctuation resulting from an ion-acoustic wave (IAW). The BSRS-driven LWs in this case have a Bloch wave structure and a modified dispersion due to the BSBS-driven spatially periodic IAW, which includes frequency band gaps at kLW˜kIAW/2˜k0 (kLW, kIAW, and k0 are the wave number of the LW, IAW, and incident pump electromagnetic wave, respectively). This band structure and the associated Bloch wave harmonic components are distinctly observed in RPIC calculations of the electron density fluctuation spectra and this structure may be observable in Thomson scatter. Bloch wave components grow up in the LW spectrum, and are not the result of isolated BSRS. Self-Thomson scattered light from these Bloch wave components can have forward scattering components. The distortion of the LW dispersion curve implies that the usual relationship connecting the frequency shift of the BSRS-scattered light and the density of origin of this light may become inaccurate. The modified LW frequency results in a time-dependent frequency shift that increases as the IAW grows, detunes the BSRS frequency matching condition, and reduces BSRS growth. A dependence of the BSRS reflectivity on the IAW Landau damping results because this damping determines the levels of IAWs. The time-dependent reflectivity in our simulations is characterized by bursts of sub-picosecond pulses of BSRS alternating with multi-ps pulses of BSBS, and BSRS is observed to decline precipitously as soon as SBS begins to grow from low levels. In strong BSBS regimes, the Bloch wave effects in BSRS are

  10. Communication between osteoblasts stimulated by electromagnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBao; ZHANG XiaoJun

    2007-01-01

    Pulsed electromagnetic field can affect the proliferation of osteoblasts, but the mechanism is obscure yet. The communication between osteoblasts, isolated from calvaria bone of newborn SD rats and stimulated with the rectangular electromagnetic field of 15 Hz and 4 mT, was studied. Our results showed that the osteoblasts radiated a kind of light after they were stimulated with the electromagnetic field and it is the light that promotes the proliferation of un-stimulated osteoblasts.

  11. Motivation-stimulating Strategies in English Classes

    Institute of Scientific and Technical Information of China (English)

    李宁

    2015-01-01

    Motivation plays a very important role in foreign language learning. So it becomes worthwhile to study the teachers’ motivation-stimulating strategies. This article mainly discusses two strategies of stimulating the students’motivation in English classes:environment-providing strategies and goal-oriented strategies. They are hoped to provide some references for English teachers to stimulate the students’learning motivation in their classes.

  12. Transcranial Direct Current Stimulation in Stroke Recovery

    OpenAIRE

    Schlaug, Gottfried; Renga, Vijay; Nair, Dinesh

    2008-01-01

    TDCS - Transcranial Direct Current Stimulation - is an emerging technique of non-invasive brain stimulation that has been found useful in examining cortical function in normal subjects and in facilitating treatments of various neurological disorders. A better understanding of adaptive as well as maladaptive post-stroke neuroplasticity and its modulation through non-invasive brain stimulation has opened up experimental treatment options using TDCS for patients recovering from stroke. We will r...

  13. Optimal quantum cloning via stimulated emission

    CERN Document Server

    Simon, C; Zeilinger, Anton; Simon, Christoph; Weihs, Gregor; Zeilinger, Anton

    2000-01-01

    We show that optimal universal quantum cloning can be realized via stimulated emission. Universality of the cloning procedure is achieved by choosing systems that have appropriate symmetries. We first discuss a scheme based on stimulated emission in certain three-level-systems, e.g. atoms in a cavity. Then we present a way of realizing optimal universal cloning based on stimulated parametric down-conversion. This scheme also implements the optimal universal NOT operation.

  14. Electrical stimulation counteracts muscle decline in seniors

    National Research Council Canada - National Science Library

    Kern, Helmut; Barberi, Laura; Löfler, Stefan; Sbardella, Simona; Burggraf, Samantha; Fruhmann, Hannah; Carraro, Ugo; Mosole, Simone; Sarabon, Nejc; Vogelauer, Michael; Mayr, Winfried; Krenn, Matthias; Cvecka, Jan; Romanello, Vanina; Pietrangelo, Laura; Protasi, Feliciano; Sandri, Marco; Zampieri, Sandra; Musaro, Antonio

    2014-01-01

    .... We addressed whether electrical stimulation (ES) is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function...

  15. Artifacts of Functional Electrical Stimulation on Electromyograph

    Institute of Scientific and Technical Information of China (English)

    DUAN Ren-quan; ZHANG Ding-guo

    2014-01-01

    The purpose of this study is to investigate different factors of the artifact in surface electromyography (EMG) signal caused by functional electrical stimulation (FES). The factors investigated include the size of stimulation electrode pads, the amplitude, frequency, and pulse width of the stimulation waveform and the detecting electrode points. We calculate the root mean square (RMS) of EMG signal to analyze the effect of these factors on the M-wave properties. The results indicate that the M-wave mainly depends on the stimulation amplitude and the distribution of detecting electrodes, but not on the other factors. This study can assist the reduction of artifact and the selection of detecting electrode points.

  16. Vagus nerve stimulation inhibits cortical spreading depression.

    Science.gov (United States)

    Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng, Yi; Sadeghian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk

    2016-04-01

    Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect. Unilateral vagus nerve stimulation was delivered either noninvasively through the skin or directly by electrodes placed around the nerve. Systemic physiology was monitored throughout the study. Both noninvasive transcutaneous and invasive direct vagus nerve stimulations significantly suppressed spreading depression susceptibility in the occipital cortex in rats. The electrical stimulation threshold to evoke a spreading depression was elevated by more than 2-fold, the frequency of spreading depressions during continuous topical 1 M KCl was reduced by ∼40%, and propagation speed of spreading depression was reduced by ∼15%. This effect developed within 30 minutes after vagus nerve stimulation and persisted for more than 3 hours. Noninvasive transcutaneous vagus nerve stimulation was as efficacious as direct invasive vagus nerve stimulation, and the efficacy did not differ between the ipsilateral and contralateral hemispheres. Our findings provide a potential mechanism by which vagus nerve stimulation may be efficacious in migraine and suggest that susceptibility to spreading depression is a suitable platform to optimize its efficacy.

  17. Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups.

    Science.gov (United States)

    Sayenko, Dimitry G; Nguyen, Robert; Hirabayashi, Tomoyo; Popovic, Milos R; Masani, Kei

    2015-09-01

    A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, using an array of surface electrodes. To extend the previous findings and to prove feasibility of the method by exploring the fatigue-reducing ability of SDSS for lower limb muscle groups in the able-bodied population, as well as in individuals with spinal cord injury (SCI). SDSS was delivered through 4 active electrodes applied to the knee extensors and flexors, plantarflexors, and dorsiflexors, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. Isometric ankle torque was measured during fatiguing stimulations using SDSS and conventional single active electrode stimulation lasting 2 minutes. We demonstrated greater fatigue-reducing ability of SDSS compared with the conventional protocol, as revealed by larger values of fatigue index and/or torque peak mean in all muscles except knee flexors of able-bodied individuals, and in all muscles tested in individuals with SCI. Our study has revealed improvements in fatigue tolerance during transcutaneous neuromuscular electrical stimulation using SDSS, a stimulation strategy that alternates activation of subcompartments of muscles. The SDSS protocol can provide greater stimulation times with less decrement in mechanical output compared with the conventional protocol. © The Author(s) 2014.

  18. Spatial factors and muscle spindle input influence the generation of neuromuscular responses to stimulation of the human foot

    Science.gov (United States)

    Layne, Charles S.; Forth, Katharine E.; Abercromby, Andrew F. J.

    2005-05-01

    Removal of the mechanical pressure gradient on the soles leads to physiological adaptations that ultimately result in neuromotor degradation during spaceflight. We propose that mechanical stimulation of the soles serves to partially restore the afference associated with bipedal loading and assists in attenuating the negative neuromotor consequences of spaceflight. A dynamic foot stimulus device was used to stimulate the soles in a variety of conditions with different stimulation locations, stimulation patterns and muscle spindle input. Surface electromyography revealed the lateral side of the sole elicited the greatest neuromuscular response in ankle musculature, followed by the medial side, then the heel. These responses were modified by preceding stimulation. Neuromuscular responses were also influenced by the level of muscle spindle input. These results provide important information that can be used to guide the development of a "passive" countermeasure that relies on sole stimulation and can supplement existing exercise protocols during spaceflight.

  19. Ovarian stimulation in patients with breast cancer.

    Science.gov (United States)

    Muñoz, Elkin; González, Naira; Muñoz, Luis; Aguilar, Jesús; Velasco, Juan A García

    2015-01-01

    Breast cancer is the most prevalent malignancy among women under 50. Improvements in diagnosis and treatment have yielded an important decrease in mortality in the last 20 years. In many cases, chemotherapy and radiotherapy develop side effects on the reproductive function. Therefore, before the anti-cancer treatment impairs fertility, clinicians should offer some techniques for fertility preservation for women planning motherhood in the future. In order to obtain more available oocytes for IVF, the ovary must be stimulated. New protocols which prevent exposure to increased estrogen during gonadotropin stimulation, measurements to avoid the delay in starting anti-cancer treatment or the outcome of ovarian stimulation have been addressed in this review. There is no evidence of association between ovarian stimulation and breast cancer. It seems that there are more relevant other confluent factors than ovarian stimulation. Factors that can modify the risk of breast cancer include: parity, age at full-term birth, age of menarche, and family history. There is an association between breast cancer and exogenous estrogen. Therefore, specific protocols to stimulate patients with breast cancer include anti-estrogen agents such as letrozole. By using letrozole plus recombinant follicular stimulating hormone, patients develop a multifollicular growth with only a mild increase in estradiol serum levels. Controlled ovarian stimulation (COS) takes around 10 days, and we discuss new strategies to start COS as soon as possible. Protocols starting during the luteal phase or after inducing the menses currently prevent a delay in starting ovarian stimulation. Patients with breast cancer have a poorer response to COS compared with patients without cancer who are stimulated with conventional protocols of gonadotropins. Although many centres offer fertility preservation and many patients undergo ovarian stimulation, there are not enough studies to evaluate the recurrence, breast cancer

  20. Einstein as armchair detective: The case of stimulated radiation

    CERN Document Server

    Natarajan, Vasant

    2013-01-01

    Einstein was in many ways like a detective on a mystery trail, though in his case he was on the trail of nature's mysteries and not some murder mystery! And like all good detectives he had a style. It consisted of taking facts that he knew were correct and forcing nature into a situation that would contradict this established truth. In this process she would be forced to reveal some new truths. Einstein's 1917 paper on the quantum theory of radiation is a classic example of this style and enabled him to predict the existence of stimulated radiation starting from an analysis of thermodynamic equilibrium between matter and radiation.

  1. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  2. Hyperthermia stimulates HIV-1 replication.

    Science.gov (United States)

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  3. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1993-01-01

    The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.

  4. Electrical stimulation and muscle strengthening.

    Science.gov (United States)

    Dehail, P; Duclos, C; Barat, M

    2008-07-01

    To identify the effects of application methods and indications of direct muscle electrostimulation on strength gain. Literature review and analysis of articles from Medline database with the following entries: muscular or neuromuscular, electromyostimulation, electrical stimulation, strengthening, strength training, immobilization, muscle dystrophy, bed-rest, bed-bound, knee or hip surgery, postoperative phase, cachexia, sarcopenia, and their French equivalent. Because of its specific muscle recruitment order, different from that of voluntary contraction, direct muscle electrostimulation is theoretically a complementary tool for muscle strengthening. It can be used in healthy subjects and in several affections associated with muscle function loss. Its interest seems well-established for post-traumatic or postsurgery lower-limb immobilizations but too few controlled studies have clearly shown the overall benefits of its application in other indications. Whatever the indication, superimposed or combined electrostimulation techniques are generally more efficient than electrostimulation alone. Even though widely used, the level of evidence for the efficiency of electromyostimulation is still low. For strength gains, it yielded no higher benefits than traditional strengthening methods. Its interest should be tested in medical affections leading to major muscle deconditioning or in sarcopenia.

  5. [Deep brain stimulation and neuroethics].

    Science.gov (United States)

    Katayama, Yoichi; Fukaya, Chikashi

    2009-01-01

    The use of deep brain stimulation (DBS) for mental disorders has been discussed in Japan from the viewpoint of ethical problems. Trials of experimental therapies require a basis of sound scientific rationale. New standard therapy emerges from such trials through detailed analysis of the outcome and side effects. Long-suffering patients with intractable symptoms may desperately seek an experimental therapy even though it has not yet been accepted as standard therapy. The ethical committee of each institution evaluates the level of scientific rationale and the expected level of benefits on the bias of the reported data, and decides whether the patients can receive the experimental therapy. However, the use of DBS for mental disorders is not based on sound scientific rational, since the disease mechanisms involved are far from understood. The data reported from the previous trials are insufficient for assuring the satisfactory results for mental disoder patients. Most institutions in Japan do not accept such levels of scientific rationale and expected benefits. Furthermore, from the cultural perspective, strong skepticism exists in Japan with regard to surgical interventions for mental disorders. Such an attitude is unexpectedly in harmony with many of the subjects currently discussed in the field of neuroethics. For example, who has the right to control DBS? How does someone decide the level of control of mental function by DBS? These questions are related to the discussion on how human society is formed and how the ethics are decided by considering both scientific rationale and human society.

  6. Stimulating antitumor immunity with nanoparticles.

    Science.gov (United States)

    Sheen, Mee Rie; Lizotte, Patrick H; Toraya-Brown, Seiko; Fiering, Steven

    2014-01-01

    A variety of strategies, have been applied to cancer treatment and the most recent one to become prominent is immunotherapy. This interest has been fostered by the demonstration that the immune system does recognize and often eliminate small tumors but tumors that become clinical problems block antitumor immune responses with immunosuppression orchestrated by the tumor cells. Methods to reverse this tumor-mediated immunosuppression will improve cancer immunotherapy outcomes. The immunostimulatory potential of nanoparticles (NPs), holds promise for cancer treatment. Phagocytes of various types are an important component of both immunosuppression and immunostimulation and phagocytes actively take up NPs of various sorts, so NPs are a natural system to manipulate these key immune regulatory cells. NPs can be engineered with multiple useful therapeutic features, such as various payloads such as antigens and/or immunomodulatory agents including cytokines, ligands for immunostimulatory receptors or antagonists for immunosuppressive receptors. As more is learned about how tumors suppress antitumor immune responses the payload options expand further. Here we review multiple approaches of NP-based cancer therapies to modify the tumor microenvironment and stimulate innate and adaptive immune systems to obtain effective antitumor immune responses.

  7. Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures.

    Science.gov (United States)

    Eick, Stefan; Wallys, Jens; Hofmann, Boris; van Ooyen, André; Schnakenberg, Uwe; Ingebrandt, Sven; Offenhäusser, Andreas

    2009-01-01

    We present the first in vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrO(x)) electrodes. Microelectrode arrays with sputtered IrO(x) films (SIROF) were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and porous electrodes with enlarged surface areas. As shown by cyclic voltammetry and electrochemical impedance spectroscopy, the large surface area in combination with the good electrochemical properties of SIROF resulted in high charge storage capacity and low electrode impedance. Thus, we could transfer the good properties of IrO(x) as material for in vivo stimulation electrodes to multi-electrode arrays with electrode diameters as small as 10 mum for in vitro applications. Single rat cortical neurons from dissociated cultures were successfully stimulated to fire action potentials using single or trains of biphasic rectangular voltage-controlled stimulation pulses. The stimulated cell's membrane potential was simultaneously monitored using whole-cell current-clamp recordings. This experimental configuration allowed direct evaluation of the influence of pulse phase sequence, amplitude, and number on the stimulation success ratio and action potential latency. Negative phase first pulses were more effective for extracellular stimulation and caused reduced latency in comparison to positive phase first pulses. Increasing the pulse amplitude also improved stimulation reliability. However, in order to prevent cell or electrode damage, the pulse amplitude is limited to voltages below the threshold for irreversible electrochemical reactions at the electrode. As an alternative to increasing the amplitude, a higher number of stimulation pulses was also shown to increase stimulation success.

  8. Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures

    Directory of Open Access Journals (Sweden)

    Stefan Eick

    2009-11-01

    Full Text Available We present the first in-vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrOx electrodes. Microelectrode arrays with sputtered IrOx films (SIROF were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and porous electrodes with enlarged surface areas. As shown by cyclic voltammetry and electrochemical impedance spectroscopy, the large surface area in combination with the good electrochemical properties of SIROF resulted in high charge storage capacity and low electrode impedance. Thus, we could transfer the good properties of IrOx as material for in-vivo stimulation electrodes to MEAs with electrode diameters as small as 10 µm for in-vitro applications. Single rat cortical neurons from dissociated cultures were successfully stimulated to fire action potentials using single or trains of biphasic rectangular voltage-controlled stimulation pulses. The stimulated cell’s membrane potential was simultaneously monitored using whole-cell current-clamp recordings. This experimental configuration allowed direct evaluation of the influence of pulse phase sequence, amplitude, and number on the stimulation success ratio and action potential latency. Negative phase first pulses were more effective for extracellular stimulation and caused reduced latency in comparison to positive phase first pulses. Increasing the pulse amplitude also improved stimulation reliability. However, in order to prevent cell or electrode damage, the pulse amplitude is limited to voltages below the threshold for irreversible electrochemical reactions at the electrode. As an alternative to increasing the amplitude, a higher number of stimulation pulses was also shown to increase stimulation success.

  9. Violet stimulated luminescence: geo- or thermochronometer?

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Guralnik, Benny; Porat, N.

    2015-01-01

    The method of quartz optically stimulated luminescence (OSL) dating is widely used, but generally limited to the past ~0.1 million years (Ma) due to early saturation of the desired signal. Violet stimulated luminescence (VSL) of quartz has previously been shown as a promising alternative...

  10. Electrocutaneous stimulation system for Braille reading.

    Science.gov (United States)

    Echenique, Ana Maria; Graffigna, Juan Pablo; Mut, Vicente

    2010-01-01

    This work is an assistive technology for people with visual disabilities and aims to facilitate access to written information in order to achieve better social inclusion and integration into work and educational activities. Two methods of electrical stimulation (by current and voltage) of the mechanoreceptors was tested to obtain tactile sensations on the fingertip. Current and voltage stimulation were tested in a Braille cell and line prototype, respectively. These prototypes are evaluated in 33 blind and visually impaired subjects. The result of experimentation with both methods showed that electrical stimulation causes sensations of touch defined in the fingertip. Better results in the Braille characters reading were obtained with current stimulation (85% accuracy). However this form of stimulation causes uncomfortable sensations. The latter feeling was minimized with the method of voltage stimulation, but with low efficiency (50% accuracy) in terms of identification of the characters. We concluded that electrical stimulation is a promising method for the development of a simple and unexpensive Braille reading system for blind people. We observed that voltage stimulation is preferred by the users. However, more experimental tests must be carry out in order to find the optimum values of the stimulus parameters and increase the accuracy the Braille characters reading.

  11. Oligofructose stimulates calcium absorption in adolescents

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muys, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Background: In rats, nondigestible oligosaccharides stimulate calcium absorption. Recently, this effect was also found in human subjects. Objective: The objective of the study was to investigate whether consumption of 15 g oligofructose/d stimulates calcium absorption in male adolescents. Design: Tw

  12. Violet stimulated luminescence: geo- or thermochronometer?

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Guralnik, Benny; Porat, N.;

    2015-01-01

    The method of quartz optically stimulated luminescence (OSL) dating is widely used, but generally limited to the past ~0.1 million years (Ma) due to early saturation of the desired signal. Violet stimulated luminescence (VSL) of quartz has previously been shown as a promising alternative...

  13. Effects of Vibrotactile Stimulation During Virtual Sandboarding

    DEFF Research Database (Denmark)

    Lind, Stine; Thomsen, Lui; Egebjerg, Mie

    2016-01-01

    This poster details a within-subjects study (n=17) investigating the effects of vibrotactile stimulation on illusory self-motion, presence and perceived realism during an interactive sandboarding simulation. Vibrotactile feedback was delivered using a low frequency audio transducer mounted undern...... of vibrotactile feedback. No significant differences were found between the two conditions involving vibrotactile stimulation....

  14. Vagus nerve stimulation in clinical practice.

    Science.gov (United States)

    Farmer, Adam D; Albu-Soda, Ahmed; Aziz, Qasim

    2016-11-02

    The diverse array of end organ innervations of the vagus nerve, coupled with increased basic science evidence, has led to vagus nerve stimulation becoming a management option in a number of clinical disorders. This review discusses methods of electrically stimulating the vagus nerve and its current and potential clinical uses.

  15. Passive auditory stimulation improves vision in hemianopia.

    Directory of Open Access Journals (Sweden)

    Jörg Lewald

    Full Text Available UNLABELLED: Techniques employed in rehabilitation of visual field disorders such as hemianopia are usually based on either visual or audio-visual stimulation and patients have to perform a training task. Here we present results from a completely different, novel approach that was based on passive unimodal auditory stimulation. Ten patients with either left or right-sided pure hemianopia (without neglect received one hour of unilateral passive auditory stimulation on either their anopic or their intact side by application of repetitive trains of sound pulses emitted simultaneously via two loudspeakers. Immediately before and after passive auditory stimulation as well as after a period of recovery, patients completed a simple visual task requiring detection of light flashes presented along the horizontal plane in total darkness. The results showed that one-time passive auditory stimulation on the side of the blind, but not of the intact, hemifield of patients with hemianopia induced an improvement in visual detections by almost 100% within 30 min after passive auditory stimulation. This enhancement in performance was reversible and was reduced to baseline 1.5 h later. A non-significant trend of a shift of the visual field border toward the blind hemifield was obtained after passive auditory stimulation. These results are compatible with the view that passive auditory stimulation elicited some activation of the residual visual pathways, which are known to be multisensory and may also be sensitive to unimodal auditory stimuli as were used here. TRIAL REGISTRATION: DRKS00003577.

  16. Deep Stimulation at Newberry Volcano EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Petty, S.; Garrison, G. H.; Nordin, Y.; Uddenberg, M.; Swyer, M.

    2014-12-01

    The Newberry Volcano EGS Demonstration is a 5 year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 C), dry well (NWG 55-29) drilled in 2008. These technologies could reduce the cost of electrical power generation. The project began in 2010 with two years of permitting, technical planning, and development of a project-specific Induced Seismicity Mitigation Plan (ISMP), and is funded in part by the Department of Energy. In 2012, the well was hydraulically stimulated with water at pressures below the principle stress for 7 weeks, resulting in hydroshearing. The depth of stimulation was successfully shifted by injection of two pills of Thermally-degradable Zonal Isolation Materials (TZIMs). Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced during stimulation. This work successfully demonstrated the viability of large-volume (40,000 m3), low-pressure stimulation coupled with non-mechanical diverter technology, and microseismic monitoring for reservoir mapping. Further analysis and field testing in 2013 indicates further stimulation will be required in order to develop an economically viable reservoir, and is scheduled in 2014. The 2014 stimulation will use improved stimulation and monitoring equipment, better knowledge based on 2012 outcomes, and create a deep EGS reservoir in the hottest part of the wellbore.

  17. Modeling bipolar stimulation of cardiac tissue

    Science.gov (United States)

    Galappaththige, Suran K.; Gray, Richard A.; Roth, Bradley J.

    2017-09-01

    Unipolar stimulation of cardiac tissue is often used in the design of cardiac pacemakers because of the low current required to depolarize the surrounding tissue at rest. However, the advantages of unipolar over bipolar stimulation are not obvious at shorter coupling intervals when the tissue near the pacing electrode is relatively refractory. Therefore, this paper analyzes bipolar stimulation of cardiac tissue. The strength-interval relationship for bipolar stimulation is calculated using the bidomain model and a recently developed parsimonious ionic current model. The strength-interval curves obtained using different electrode separations and arrangements (electrodes placed parallel to the fibers versus perpendicular to the fibers) indicate that bipolar stimulation results in more complex activation patterns compared to unipolar stimulation. An unusually low threshold stimulus current is observed when the electrodes are close to each other (a separation of 1 mm) because of break excitation. Unlike for unipolar stimulation, anode make excitation is not present during bipolar stimulation, and an abrupt switch from anode break to cathode make excitation can cause dramatic changes in threshold with very small changes in the interval. These results could impact the design of implantable pacemakers and defibrillators.

  18. [MRI compatibility of deep brain stimulator].

    Science.gov (United States)

    Zhang, Yujing

    2013-07-01

    Deep brain stimulation (DBS) therapy develops rapidly in clinical application. The structures of deep brain stimulator and magnetic resonance imaging (MRI) equipment are introduced, the interactions are analyzed, and the two compatible problems of radio frequency (RF) heating and imaging artifact are summarized in this paper.

  19. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny;

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  20. A conduction block in sciatic nerves can be detected by magnetic motor root stimulation.

    Science.gov (United States)

    Matsumoto, Hideyuki; Konoma, Yuko; Fujii, Kengo; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-08-15

    Useful diagnostic techniques for the acute phase of sciatic nerve palsy, an entrapment neuropathy, are not well established. The aim of this paper is to demonstrate the diagnostic utility of magnetic sacral motor root stimulation for sciatic nerve palsy. We analyzed the peripheral nerves innervating the abductor hallucis muscle using both electrical stimulations at the ankle and knee and magnetic stimulations at the neuro-foramina and conus medullaris levels in a patient with sciatic nerve palsy at the level of the piriformis muscle due to gluteal compression related to alcohol consumption. On the fourth day after onset, magnetic sacral motor root stimulation using a MATS coil (the MATS coil stimulation method) clearly revealed a conduction block between the knee and the sacral neuro-foramina. Two weeks after onset, needle electromyography supported the existence of the focal lesion. The MATS coil stimulation method clearly revealed a conduction block in the sciatic nerve and is therefore a useful diagnostic tool for the abnormal neurophysiological findings associated with sciatic nerve palsy even at the acute phase.

  1. Electronic stimulators for surface neural prosthesis

    Directory of Open Access Journals (Sweden)

    Broderick Barry J.

    2008-01-01

    Full Text Available This paper presents the technological advancements in neural prosthesis devices using Functional Electrical Stimulation (FES. FES refers to the restoration of motor functions lost due to spinal cord injury (SCI, stroke, head injury, or diseases such as Cerebral Palsy or Multiple Sclerosis by eliciting muscular contractions through the use of a neuromuscular electrical stimulator device. The field has developed considerably since its inception, with the miniaturisation of circuity, the development of programmable and adaptable stimulators and the enhancement of sensors used to trigger the application of stimulation to suit a variety of FES applications. This paper discusses general FES system design requirements in the context of existing commercial and research FES devices, focusing on surface stimulators for the upper and lower limbs. These devices have demonstrated feasible standing and stepping in a clinical setting with paraplegic patients, improvements in dropped foot syndrome with hemiplegic patients and aided in the restoration of grasping function in patients with upper limb motor dysfunction.

  2. Point Electric Stimulation and Children's Amblyopia

    Institute of Scientific and Technical Information of China (English)

    YAN Xing-ke; CHU Hui-ju; WANG Fu-chun; YANG Bo; GAO Yang; HAN Chou-ping

    2007-01-01

    To observe the therapeutic efficacy of electric stimulation on points for children's amblyopia.Method:Ninety children amblyopia cases with ametropia upon correction were randomized into three groups:point electric stimulation,comprehensive conventional therapy and integrative therapy of the above two.And then visual function changes of kids in the three groups were observed.Results:Among the above three therapies,the recovery rates of point electric stimulation,comprehensive conventional therapy and integrative therapy of the two were 83.9%,82.6%and 94.25 respectively,showing no significant difierence(P>0.05) among the three groups.Conclusion:Point electric stimulation has similar action with comprehensive conventional therapy in the treatment of children's amblyopia,and the combination of the two therapies has better effect,indicating point electric stimulation can speed up recovery of visual function of kids with amblyopia.

  3. Microscopic magnetic stimulation of neural tissue.

    Science.gov (United States)

    Bonmassar, Giorgio; Lee, Seung Woo; Freeman, Daniel K; Polasek, Miloslav; Fried, Shelley I; Gale, John T

    2012-06-26

    Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices.

  4. Brain stimulation in posttraumatic stress disorder.

    Science.gov (United States)

    Novakovic, Vladan; Sher, Leo; Lapidus, Kyle A B; Mindes, Janet; A Golier, Julia; Yehuda, Rachel

    2011-01-01

    Posttraumatic stress disorder (PTSD) is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT) and Cranial electrotherapy stimulation (CES) have both been in use for decades; transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), deep brain stimulation (DBS), transcranial Direct Current Stimulation (tDCS), and vagus nerve stimulation (VNS) have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES), depression (ECT, CES, rTMS, VNS, DBS), obsessive-compulsive disorder (OCD) (DBS), essential tremor, dystonia (DBS), epilepsy (DBS, VNS), Parkinson Disease (DBS), pain (CES), and insomnia (CES). To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  5. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrea Antal

    2016-01-01

    Full Text Available Background. Transcranial alternating current stimulation (tACS is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS. While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.

  6. Reducing proactive aggression through non-invasive brain stimulation.

    Science.gov (United States)

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders.

  7. Modulation of untruthful responses with noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Shirley eFecteau

    2013-02-01

    Full Text Available Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether noninvasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience, as well as across modality responses (verbal and motor responses. Results reveal that real, but not sham, transcranial direct current stimulation (tDCS over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying noninvasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts.

  8. Modulation of Untruthful Responses with Non-Invasive Brain Stimulation

    Science.gov (United States)

    Fecteau, Shirley; Boggio, Paulo; Fregni, Felipe; Pascual-Leone, Alvaro

    2013-01-01

    Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether non-invasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC) could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience), as well as across modality responses (verbal and motor responses). Results reveal that real, but not sham, transcranial direct current stimulation (tDCS) over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying non-invasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts. PMID:23550273

  9. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals.

    Science.gov (United States)

    Sayenko, Dimitry G; Angeli, Claudia; Harkema, Susan J; Edgerton, V Reggie; Gerasimenko, Yury P

    2014-03-01

    Epidural stimulation (ES) of the lumbosacral spinal cord has been used to facilitate standing and voluntary movement after clinically motor-complete spinal-cord injury. It seems of importance to examine how the epidurally evoked potentials are modulated in the spinal circuitry and projected to various motor pools. We hypothesized that chronically implanted electrode arrays over the lumbosacral spinal cord can be used to assess functionally spinal circuitry linked to specific motor pools. The purpose of this study was to investigate the functional and topographic organization of compound evoked potentials induced by the stimulation. Three individuals with complete motor paralysis of the lower limbs participated in the study. The evoked potentials to epidural spinal stimulation were investigated after surgery in a supine position and in one participant, during both supine and standing, with body weight load of 60%. The stimulation was delivered with intensity from 0.5 to 10 V at a frequency of 2 Hz. Recruitment curves of evoked potentials in knee and ankle muscles were collected at three localized and two wide-field stimulation configurations. Epidural electrical stimulation of rostral and caudal areas of lumbar spinal cord resulted in a selective topographical recruitment of proximal and distal leg muscles, as revealed by both magnitude and thresholds of the evoked potentials. ES activated both afferent and efferent pathways. The components of neural pathways that can mediate motor-evoked potentials were highly dependent on the stimulation parameters and sensory conditions, suggesting a weight-bearing-induced reorganization of the spinal circuitries.

  10. Comparison of the inhibitory response to tendon and cutaneous afferent stimulation in the human lower limb.

    Science.gov (United States)

    Rogasch, Nigel C; Burne, John A; Türker, Kemal S

    2012-01-01

    A powerful early inhibition is seen in triceps surae after transcutaneous electrical stimulation of the Achilles tendon [tendon electrical stimulation (TES)]. The aim of the present study was to confirm results from surface electromyogram (SEMG) recordings that the inhibition is not wholly or partly due to stimulation of cutaneous afferents that may lie within range of the tendon electrodes. Because of methodological limitations, SEMG does not reliably identify the time course of inhibitory and excitatory reflex components. This issue was revisited here with an analysis of changes in single motor unit (SMU) firing rate [peristimulus frequencygram (PSF)] and probability [peristimulus time histogram (PSTH)] to reexamine the time course of inhibitory SMU events that follow purely cutaneous (superficial sural) nerve stimulation. Results were then compared with similar data from TES. When compared with the reflex response to TES, sural nerve stimulation resulted in a longer onset latency of the primary inhibition and a weaker effect on SMU firing probability and rate. PSF also revealed that decreased SMU firing rates persisted during the excitation phase in SEMG, suggesting that the initial inhibition was more prolonged than previously reported. In a further study, the transcutaneous SEMG Achilles tendon response was compared with that from direct intratendon stimulation with insulated needle electrodes. This method should attenuate the SEMG response if it is wholly or partly dependent on cutaneous afferents. However, subcutaneous stimulation of the tendon produced similar components in the SEMG, confirming that cutaneous afferents made little or no contribution to the initial inhibition following TES.

  11. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test.

    Science.gov (United States)

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong; Choi, Jee Hyun

    2017-04-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test.

  12. Cranial electrotherapy stimulation and fibromyalgia.

    Science.gov (United States)

    Gilula, Marshall F

    2007-07-01

    Cranial electrotherapy stimulation (CES) is a well-documented neuroelectrical modality that has been proven effective in some good studies of fibromyalgia (FM) patients. CES is no panacea but, for some FM patients, the modality can be valuable. This article discusses aspects of both CES and FM and how they relate to the individual with the condition. FM frequently has many comorbidities such as anxiety, depression, insomnia and a great variety of different rheumatologic and neurological symptoms that often resemble multiple sclerosis, dysautonomias, chronic fatigue syndrome and others. However, despite long-standing criteria from the American College of Rheumatology for FM, some physicians believe there is probably no single homogeneous condition that can be labeled as FM. Whether it is a disease, a syndrome or something else, sufferers feel like they are living one disaster after another. Active self-involvement in care usually enhances the therapeutic results of various treatments and also improves the patient's sense of being in control of the condition. D-ribose supplementation may prove to significantly enhance energy, sleep, mental clarity, pain control and well-being in FM patients. A form of evoked potential biofeedback, the EPFX, is a powerful stress reduction technique which assesses the chief stressors and risk factors for illness that can impede the FM patient's built-in healing abilities. Future healthcare will likely expand the diagnostic criteria of FM and/or illuminate a group of related conditions and the ways in which the conditions relate to each other. Future medicine for FM and related conditions may increasingly involve multimodality treatment that features CES as one significant part of the therapeutic regimen. Future medicine may also include CES as an invaluable, cost-effective add-on to many facets of clinical pharmacology and medical therapeutics.

  13. Root secretion stimulating ash growth in larch-ash mixed forest

    Institute of Scientific and Technical Information of China (English)

    吴俊民; 刘广平; 王晓水; 吴保国

    2000-01-01

    Allelopathic effect of larch (Larix gmelini ) on the ash growth (Fraximus mandshurica) was studied in artificial cultivation tests. The results revealed that the larch root secretion obviously stimulated the ash growth. In order to determine the main stimulation allelochemicals, the chemical composition was analyzed. By contrasting the contents of carbohydrate and aminoacid in root secretion of larch and ash, it was concluded that the carbohydrate and aminoacid were not important stimulation allelochemicals. The organic acid and other components in root secretion of larch and ash were analyzed by GC and GC-MS analysis. The sand culture tests were carried out with selected model compounds. The results showed that benzeneacetic acid, benzenepropionic acid and phenolic acids in root secretion of larch were the main stimulation allelochemicals.

  14. Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions

    Science.gov (United States)

    He, Guang S.; Law, Wing-Cheung; Baev, Alexander; Liu, Sha; Swihart, Mark T.; Prasad, Paras N.

    2013-01-01

    The nonlinear optical properties of four metallic (Au-, Au/Ag-, Ag-, and Pt-) nanoparticle suspensions in toluene have been studied in both femtosecond and nanosecond regimes. Nonlinear transmission measurements in the femtosecond laser regime revealed two-photon absorption (2PA) induced nonlinear attenuation, while in the nanosecond laser regime a stronger nonlinear attenuation is due to both 2PA and 2PA-induced excited-state absorption. In the nanosecond regime, at input pump laser intensities above a certain threshold value, a new type of stimulated (Mie) scattering has been observed. Being essentially different from all other well known molecular (Raman, Brillouin) stimulated scattering effects, the newly observed stimulated Mie scattering from the metallic nanoparticles exhibits the features of no frequency shift and low pump threshold requirement. A physical model of induced Bragg grating initiated by the backward Mie scattering from metallic nanoparticles is proposed to explain the gain mechanism of the observed stimulated scattering effect.

  15. Response to ovarian stimulation in patients facing gonadotoxic therapy.

    Science.gov (United States)

    Johnson, Lauren N C; Dillon, Katherine E; Sammel, Mary D; Efymow, Brenda L; Mainigi, Monica A; Dokras, Anuja; Gracia, Clarisa R

    2013-04-01

    Chemotherapy naïve patients undergoing embryo/oocyte banking for fertility preservation (FP) were assessed for response to ovarian stimulation. Fifty FP patients facing gonadotoxic therapy were matched by age, race, cycle number, date of stimulation and fertilization method to patients undergoing IVF for infertility or oocyte donation. There were no differences in baseline FSH, anti-Müllerian hormone, antral follicle count and total gonadotrophin dose. FP patients had more immature oocytes (2.2 versus 1.1; P=0.03) and lower fertilization rates per oocyte retrieved (52% versus 70%; P=0.002). There were no differences in numbers of oocytes retrieved, mature oocytes or fertilized embryos. Subgroup analysis revealed that FP patients taking letrozole required higher gonadotrophin doses (3077IU versus 2259IU; P=0.0477) and had more immature oocytes (3.4 versus 1.2; P=0.03) than matched controls. There were no differences in gonadotrophin dose or oocyte immaturity among FP patients not taking letrozole. Overall, chemotherapy naïve FP patients had similar ovarian reserve, response to stimulation and oocyte and embryo yield compared to controls. Patients who received letrozole required higher gonadotrophin doses and produced more immature oocytes, suggesting that response to ovarian stimulation may be impaired in patients with hormone-sensitive cancers receiving letrozole. With improvement in cancer survival rates, there has been a shift in attention toward management of long-term consequences of cancer therapy, including infertility. Many young women with cancer, particularly those who will be treated with chemotherapy, pursue fertility preservation (FP) strategies for the purpose of banking oocytes or embryos for future use. We examined patients with no prior exposure to chemotherapy who underwent IVF to freeze embryos or oocytes for FP. Fifty FP patients were identified and matched to healthy controls by age, race, cycle number, date of stimulation and fertilization

  16. INTERMITTENT HYPOBARIC HYPOXIC STIMULATION IN TREATMENT OF CHILDREN WITH BRONCHIAL ASTHMA AT THE PERIOD OF REHABILITATION

    Directory of Open Access Journals (Sweden)

    G.D. Alemanova

    2009-01-01

    Full Text Available Bronchial asthma is one of the widespread chronic diseases of lungs. Immune mechanisms of disorder are one of the causes which lead to pathologic changes in lungs. The aim: to determine the clinical and immunologic effectiveness of pressure adaptation to the periodical hypobaric hypoxic stimulation of treatment of children with bronchial asthma of prepubertal and pubertal periods. In the present work there were observed the clinical and immunologic parameters of 129 children with the verified atopic bronchial asthma of different degree at the remission period before and after the course of pressure adaptation to the periodical hypobaric hypoxic stimulation in conditions of the medical hypobaric pressure chamber with many seats «Ural'1». Clinic effectiveness of hypobaric hypoxic stimulation revealed in continuation of remissions and diminishing of total numerical score of asthma degree. The positive dynamic indexes of cytokine profile was observed. It revealed in reduction of IL 1_, IL 4, IL 5, IL 18 levels and stimulated production of IFN - in blood serum. The course of hypobaric hypoxic stimulation has the positive impact on the named indexes of the patients with bronchial asthma and its intensity depends on the degree of disease and of the age of the child' patient. Thus the use of pressure adaptation to the periodical hypobaric hypoxic stimulation in treatment of children's with bronchial asthma led to the immunologic positive dynamics, especially of the children of prepubertal period. Determination of the immunologic indexes and the level of the cytokines can be used as the additional tests for the evaluation of the effectiveness of pressure adaptation to the periodical hypobaric hypoxic stimulation of children.Key words: bronchial asthma, periodical hypobaric hypoxic stimulation, cytokines, children.

  17. Berberine stimulates glucose transport through a mechanism distinct from insulin.

    Science.gov (United States)

    Zhou, Libin; Yang, Ying; Wang, Xiao; Liu, Shangquan; Shang, Wenbin; Yuan, Guoyue; Li, Fengying; Tang, Jinfeng; Chen, Mingdao; Chen, Jialun

    2007-03-01

    Berberine exerts a hypoglycemic effect, but the mechanism remains unknown. In the present study, the effect of berberine on glucose uptake was characterized in 3T3-L1 adipocytes. It was revealed that berberine stimulated glucose uptake in 3T3-L1 adipocytes in a dose- and time-dependent manner with the maximal effect at 12 hours. Glucose uptake was increased by berberine in 3T3-L1 preadipocytes as well. Berberine-stimulated glucose uptake was additive to that of insulin in 3T3-L1 adipocytes, even at the maximal effective concentrations of both components. Unlike insulin, the effect of berberine on glucose uptake was insensitive to wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and SB203580, an inhibitor of p38 mitogen-activated protein kinase. Berberine activated extracellular signal-regulated kinase (ERK) 1/2, but PD98059, an ERK kinase inhibitor, only decreased berberine-stimulated glucose uptake by 32%. Berberine did not induce Ser473 phosphorylation of Akt nor enhance insulin-induced phosphorylation of Akt. Meanwhile, the expression and cellular localization of glucose transporter 4 (GLUT4) were not altered by berberine. Berberine did not increase GLUT1 gene expression. However, genistein, a tyrosine kinase inhibitor, completely blocked berberine-stimulated glucose uptake in 3T3-L1 adipocytes and preadipocytes, suggesting that berberine may induce glucose transport via increasing GLUT1 activity. In addition, berberine increased adenosine monophosphate-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation. These findings suggest that berberine increases glucose uptake through a mechanism distinct from insulin, and activated adenosine monophosphate-activated protein kinase seems to be involved in the metabolic effect of berberine.

  18. Dosimetry based on thermally and optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and {alpha}-Al{sub 2}O{sub 3} have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in {alpha}-Al{sub 2}O{sub 3}:C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of {alpha}Al{sub 2}O{sub 3}:C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for {gamma}-irradiated {alpha}Al{sub 2}O{sub 3}:C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au) 8 tabs., 59 ills., 90 refs.

  19. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  20. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  1. Transcranial magnetic stimulation intensities in cognitive paradigms.

    Directory of Open Access Journals (Sweden)

    Jakob A Kaminski

    Full Text Available BACKGROUND: Transcranial magnetic stimulation (TMS has become an important experimental tool for exploring the brain's functional anatomy. As TMS interferes with neural activity, the hypothetical function of the stimulated area can thus be tested. One unresolved methodological issue in TMS experiments is the question of how to adequately calibrate stimulation intensities. The motor threshold (MT is often taken as a reference for individually adapted stimulation intensities in TMS experiments, even if they do not involve the motor system. The aim of the present study was to evaluate whether it is reasonable to adjust stimulation intensities in each subject to the individual MT if prefrontal regions are stimulated prior to the performance of a cognitive paradigm. METHODS AND FINDINGS: Repetitive TMS (rTMS was applied prior to a working memory task, either at the 'fixed' intensity of 40% maximum stimulator output (MSO, or individually adapted at 90% of the subject's MT. Stimulation was applied to a target region in the left posterior middle frontal gyrus (pMFG, as indicated by a functional magnetic resonance imaging (fMRI localizer acquired beforehand, or to a control site (vertex. Results show that MT predicted the effect size after stimulating subjects with the fixed intensity (i.e., subjects with a low MT showed a greater behavioral effect. Nevertheless, the individual adaptation of intensities did not lead to stable effects. CONCLUSION: Therefore, we suggest assessing MT and account for it as a measure for general cortical TMS susceptibility, even if TMS is applied outside the motor domain.

  2. Thermally stimulated conductivity and thermoluminescence from Al2O3 : C

    DEFF Research Database (Denmark)

    Agersnap Larsen, N.; Bøtter-Jensen, L.; McKeever, S.W.S.

    1999-01-01

    Simultaneous measurements of thermoluminescence (TL) and thermally stimulated conductivity (TSC) are reported on single-crystal dosimetry-quality Al2O3:C following gamma irradiation at room temperature. Analysis of the data reveals a superposition of several first-order TL and TSC peaks caused...

  3. Separation Anxiety: Detachment from the Extracellular Matrix Induces Metabolic Changes that Can Stimulate Tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Magdalena A. Cichon; Derek C. Radisky

    2010-01-01

    @@ One of the earliest stages of tumor progression involves the ability of cells to survive and proliferate when not attached to the extracellular matrix (ECM). New research using a physiologically relevant breast cancer model reveals how separation from the ECM stimulates metabolic changes characteristic of developing tumors.

  4. Three-phonon stimulated Raman scattering in an orthorhombic LuAlO3 crystal

    Science.gov (United States)

    Kaminskii, A. A.

    2016-12-01

    High-order stimulated Raman scattering (SRS) has been revealed in a LuAlO3 crystal upon stationary picosecond laser excitation. All recorded Stokes and anti-Stokes χ(3)-nonlinear laser components are attributed to three SRS-promoting A g vibrational modes of its octahedral anionic units (AlO3)-3.

  5. Autonomic Dysregulation during Sensory Stimulation in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Schaaf, Roseann C.; Benevides, Teal W.; Leiby, Benjamin E.; Sendecki, Jocelyn A.

    2015-01-01

    Autonomic nervous system (ANS) activity during sensory stimulation was measured in 59 children with autism spectrum disorder (ASD) ages 6-9 in comparison to 30 typically developing controls. Multivariate comparisons revealed significant differences between groups in the respiratory sinus arrhythmia (parasympathetic measure) vector of means across…

  6. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  7. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  8. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    Science.gov (United States)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  9. Elevated progesterone during ovarian stimulation for IVF

    DEFF Research Database (Denmark)

    Al-Azemi, M; Kyrou, D; Kolibianakis, E M

    2012-01-01

    of Medline and PubMed were searched to identify relevant publications. Good-quality evidence supports the negative impact on endometrial receptivity of elevated progesterone concentrations at the end of the follicular phase in ovarian stimulation. Future trials should document the cause and origin...... phase in ovarian stimulation. The databases of Medline and PubMed were searched to identify relevant publications. Good-quality evidence supports the negative impact on endometrial receptivity of elevated progesterone concentrations at the end of follicular phase in ovarian stimulation. Future trials...

  10. Free software for vision stimulation services

    Directory of Open Access Journals (Sweden)

    Priscila Batista Martins

    2012-10-01

    Full Text Available PURPOSE: To develop free software (SAEVI to improve the vision stimulation services. METHODS: The software of visual stimulation service (SAEVI was developed in microsoft Acess®, version 2003. Results: This database management system allows an efficient patients control and specific patient's appointments, such as: ophthalmological diagnostic and year of the appointment, and also other options, providing reports of each item. CONCLUSION: Professionals who work with visual stimulation or in related areas may be benefited from using the software to organize their work routines.

  11. Observation of two distinct spatial-temporal BOLD clusters during sensory stimulation in rats.

    Science.gov (United States)

    Goelman, Gadi; Pelled, Galit; Dodd, Steve; Koretsky, Alan

    2007-02-01

    Neuronal activity evokes changes in local CBF and CBV, whose spatial differences are not fully known. We use the Radial Correlation Contrast (RCC) analysis method with high spatial resolution 100 x 100 x 1000 microm3 data collected with an 11.7 T magnet to differentiate two spatial-temporal BOLD clusters during sensory rat forepaw stimulation and hypothesize that each corresponds to either the CBF or the CBV processes. One cluster, obtained during the time segment of stimulation onset, is characterized by a high positive BOLD signal whereas the other, obtained during the simulation decline time segment, is characterized by a lower positive signal and strong post stimulus undershoot. The average volume of stimulation onset clusters is embedded in the stimulation decline clusters with the latter significantly larger and shifted towards deeper cortical layers. Comparison of amplitude-RCC and cross-correlation analyses performed on equivalent time segments (30 s, 40 images) revealed no differences in cluster size or location, demonstrating that temporal locality is more important than spatial locality in distinguishing between stimulation onset and stimulation decline clusters. We hypothesize that clusters characterized by stimulation onset are highly weighted by local changes in CBF whereas clusters characterized by stimulation decline are more CBV weighted. Moreover, the data suggest that the locations of the highest CBF changes are distinct from the locations of the highest CBV changes. While the former located within stimulation decline clusters and its weight is gradually reduced towards cluster's periphery (mainly ventrally), the highest changes in CBV occur in the cluster's periphery with only modest changes towards its center.

  12. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  13. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  14. Growth hormone stimulation test - series (image)

    Science.gov (United States)

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. In children, GH has growth-promoting effects on the body. It stimulates the ...

  15. Stimulating Personal Development and Knowledge Sharing

    NARCIS (Netherlands)

    Koper, Rob; Stefanov, Krassen; Dicheva, Darina

    2009-01-01

    Koper, R., Stefanov, K., & Dicheva, D. (Eds.) (2009). Proceedings of the 5th International TENCompetence Open Workshop "Stimulating Personal Development and Knowledge Sharing". October, 30-31, 2008, Sofia, Bulgaria: TENCompetence Workshop.

  16. Stimulating Personal Development and Knowledge Sharing

    NARCIS (Netherlands)

    Koper, Rob; Stefanov, Krassen; Dicheva, Darina

    2009-01-01

    Koper, R., Stefanov, K., & Dicheva, D. (Eds.) (2009). Proceedings of the 5th International TENCompetence Open Workshop "Stimulating Personal Development and Knowledge Sharing". October, 30-31, 2008, Sofia, Bulgaria: TENCompetence Workshop.

  17. Effect of Stimulant Medication on Growth

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-08-01

    Full Text Available Twenty-nine studies of growth in height of children (22 and late adolescents (7 with attention deficit hyperactivity disorder (ADHD treated with stimulant medication were reviewed at the University of Sydney, Australia.

  18. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  19. Ethical issues in deep brain stimulation

    NARCIS (Netherlands)

    M.H.N. Schermer (Maartje)

    2011-01-01

    textabstractDeep brain stimulation (DBS) is currently used to treat neurological disorders like Parkinson's disease, essential tremor, and dystonia, and is explored as an experimental treatment for psychiatric disorders like major depression and obsessive compulsive disorder. This mini review

  20. [Functional electric stimulation (FES) in cerebral palsy].

    Science.gov (United States)

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  1. NQR Stimulation Technique for Explosives Detection System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A method of customization stimulation signal based on direct digital frequency synthesis (DDS) for Nuclear Quadrapole Resonance Explosives Detection System is presented. DDS has many advantages, such as high frequency resolution, high convert speed,

  2. Transcranial alternating current stimulation (tACS

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2013-06-01

    Full Text Available Transcranial alternating current stimulation (tACS seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency or desynchronize (e.g. by the application of several frequencies cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the ripple range induces intensity dependent inhibition or excitation in the motor cortex most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

  3. Optogenetic stimulation of myelination (Conference Presentation)

    Science.gov (United States)

    Yang, In Hong; Lee, Hae Ung; Thakor, Nitish V.

    2016-03-01

    Myelination is governed by axon-glia interaction which is modulated by neural activity. Currently, the effects of subcellular activation of neurons which induce neural activity upon myelination are not well understood. To identify if subcellular neuronal stimulation can enhance myelination, we developed a novel system for focal stimulation of neural activity with optogenetic in a compartmentalized microfluidic platform. In our systems, stimulation for neurons in restricted subcellular parts, such as cell bodies and axons promoted oligodendrocyte differentiation and the myelination of axons the just as much as whole cell activation of neurons did. The number of premature O4 positive oligodendrocytes was reduced and the numbers of mature and myelin basic protein-positive oligodendrocytes was increased both by subcellular optogenetic stimulation.

  4. Research progress of diagnostic transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Bei HUANG

    2017-07-01

    Full Text Available Transcranial magnetic stimulation (TMS is a non-invasive and painless neuroelectrophysiological examination technology. TMS-motor evoked potential (TMS-MEP is widely used to assess motor cortex excitability and conduction of descending corticobulbar tract and corticospinal tract. Recently, deeper understanding on principles of magnetic stimulation and diversification of stimulation coil and pattern has greatly expanded the application of TMS in clinical diagnosis. Moreover, MEP operation procedures are becoming more scientific and standardized. This paper reviews the progress of conventional diagnostic TMS pattern, several special stimulation patterns and the combined application of TMS, electroencephalograpy (EEG and fMRI. DOI: 10.3969/j.issn.1672-6731.2017.04.011

  5. Treatment Pulse Application for Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Sun-Seob Choi

    2011-01-01

    Full Text Available Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.

  6. Rewiring neural interactions by micro-stimulation

    Directory of Open Access Journals (Sweden)

    James M Rebesco

    2010-08-01

    Full Text Available Plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. In vitro, associative pairing of presynaptic spiking and stimulus-induced postsynaptic depolarization causes changes in the synaptic efficacy of the presynaptic neuron, when activated by extrinsic stimulation. In vivo, such paradigms can alter the responses of whole groups of neurons to stimulation. Here, we used in vivo spike-triggered stimulation to drive plastic changes in rat forelimb sensorimotor cortex, which we monitored using a statistical measure of functional connectivity inferred from the spiking statistics of the neurons during normal, spontaneous behavior. These induced plastic changes in inferred functional connectivity depended on the latency between trigger spike and stimulation, and appear to reflect a robust reorganization of the network. Such targeted connectivity changes might provide a tool for rerouting the flow of information through a network, with implications for both rehabilitation and brain-machine interface applications.

  7. Medicinal Marijuana: A Legitimate Appetite Stimulant?

    OpenAIRE

    Aquino, Glen

    2005-01-01

    Medicinal marijuana has been at the center of controversy for the treatment of cancer cachexia and AIDS related weight loss. Dronabinol, the oral form of marijuana, was approved for appetite stimulation, but its variability in absorption has led researchers to believe that smoked marijuana may be more effective. The discovery of endocannabinoids and their receptors has drawn attention from the research community, and as a result, marijuana’s role in appetite stimulation is clearer. Marijua...

  8. Transcranial laser stimulation improves human cerebral oxygenation

    OpenAIRE

    2016-01-01

    Background and Objective Transcranial laser stimulation of the brain with near‐infrared light is a novel form of non‐invasive photobiomodulation or low‐level laser therapy (LLLT) that has shown therapeutic potential in a variety of neurological and psychological conditions. Understanding of its neurophysiological effects is essential for mechanistic study and treatment evaluation. This study investigated how transcranial laser stimulation influences cerebral hemodynamics and oxygenation in th...

  9. Tongue Liminary Threshold Identification to Electrotactile Stimulation

    CERN Document Server

    Robineau, Fabien; Orliaguet, Jean-Pierre; Payan, Yohan

    2007-01-01

    Many applications use electrostimulation of the human skin to provide tactile sensation. The effect of electrotactile stimulations were studied on a 6x6 matrix of tactile electrodes placed on the anterior part of the tongue. The liminary threshold with continuous or discontinuous waveform and patterns with 2 or 4 electrodes was investigated. The result suggest that for energy saving and to improve the yield, it would probably be better to use discontinuous stimulation with two electrode patterns.

  10. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  11. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    OpenAIRE

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and aft...

  12. Motor Cortex Stimulation in Parkinson's Disease

    OpenAIRE

    Marisa De Rose; Giusy Guzzi; Domenico Bosco; Mary Romano; Serena Marianna Lavano; Massimiliano Plastino; Giorgio Volpentesta; Rosa Marotta; Angelo Lavano

    2012-01-01

    Motor Cortex Stimulation (MCS) is less efficacious than Deep Brain Stimulation (DBS) in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment...

  13. Deep brain stimulation for cluster headache

    DEFF Research Database (Denmark)

    Grover, Patrick J; Pereira, Erlick A C; Green, Alexander L

    2009-01-01

    Cluster headache is a severely debilitating disorder that can remain unrelieved by current pharmacotherapy. Alongside ablative neurosurgical procedures, neuromodulatory treatments of deep brain stimulation (DBS) and occipital nerve simulation have emerged in the last few years as effective...... circumstances to intervene. Here we review current data on neurosurgical interventions for chronic cluster headache focusing upon DBS and occipital nerve stimulation, and discuss the indications for and putative mechanisms of DBS including translational insights from functional neuroimaging, diffusion weighted...

  14. Effect of neurovestibular stimulation on autonomic regulation

    Science.gov (United States)

    Costa, F.; Lavin, P.; Robertson, D.; Biaggioni, I.

    1995-01-01

    Conditions associated with nausea and vomiting, such as motion sickness or side effects of medications, are commonly associated with a clinical picture consistent with parasympathetic activation and sympathetic withdrawal. It can be postulated, therefore, that vestibular stimulation contributes to sympathetic withdrawal. To test this hypothesis five normal volunteers, 24-33 years old, were studied during caloric vestibular stimulation while monitoring muscle sympathetic nerve activity directly through a needle electrode placed in a peroneal nerve. The ear was irrigated with water at a flow rate of 450 ml/min and 37 degrees C. The water temperature was sequentially lowered by 7 degree C intervals until intolerable side effects developed or a temperature of 16 degrees C was reached. Nystagmus was induced in all subjects, but heart rate, blood pressure, muscle sympathetic nerve activity and plasma norepinephrine levels did not change significantly during or after caloric stimulation, even when the subjects felt dizzy and nauseated. No evidence of sympathetic withdrawal was observed in any subject either by muscle sympathetic nerve activity or plasma norepinephrine measurements. In conclusion, we have found that selective vestibular stimulation is not accompanied by significant changes in the sympathetic nervous system function. In particular, no sympathetic withdrawal was observed. It could be argued that lack of sympathetic stimulation is an inadequate response to the symptoms associated with caloric stimulation.

  15. Effect of neurovestibular stimulation on autonomic regulation

    Science.gov (United States)

    Costa, F.; Lavin, P.; Robertson, D.; Biaggioni, I.

    1995-01-01

    Conditions associated with nausea and vomiting, such as motion sickness or side effects of medications, are commonly associated with a clinical picture consistent with parasympathetic activation and sympathetic withdrawal. It can be postulated, therefore, that vestibular stimulation contributes to sympathetic withdrawal. To test this hypothesis five normal volunteers, 24-33 years old, were studied during caloric vestibular stimulation while monitoring muscle sympathetic nerve activity directly through a needle electrode placed in a peroneal nerve. The ear was irrigated with water at a flow rate of 450 ml/min and 37 degrees C. The water temperature was sequentially lowered by 7 degree C intervals until intolerable side effects developed or a temperature of 16 degrees C was reached. Nystagmus was induced in all subjects, but heart rate, blood pressure, muscle sympathetic nerve activity and plasma norepinephrine levels did not change significantly during or after caloric stimulation, even when the subjects felt dizzy and nauseated. No evidence of sympathetic withdrawal was observed in any subject either by muscle sympathetic nerve activity or plasma norepinephrine measurements. In conclusion, we have found that selective vestibular stimulation is not accompanied by significant changes in the sympathetic nervous system function. In particular, no sympathetic withdrawal was observed. It could be argued that lack of sympathetic stimulation is an inadequate response to the symptoms associated with caloric stimulation.

  16. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    Science.gov (United States)

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  17. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    Science.gov (United States)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  18. Vagus nerve stimulation for partial seizures.

    Science.gov (United States)

    Panebianco, Mariangela; Rigby, Alexandra; Weston, Jennifer; Marson, Anthony G

    2015-04-03

    Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. VNS consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator. The majority of people given a diagnosis of epilepsy have a good prognosis, and their seizures will be controlled by treatment with a single antiepileptic drug (AED), but up to 20%-30% of patients will develop drug-resistant epilepsy, often requiring treatment with combinations of AEDs. The aim of this systematic review was to overview the current evidence for the efficacy and tolerability of vagus nerve stimulation when used as an adjunctive treatment for people with drug-resistant partial epilepsy. This is an updated version of a Cochrane review published in Issue 7, 2010. To determine:(1) The effects on seizures of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation (presumed sub-therapeutic dose); and(2) The adverse effect profile of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation. We searched the Cochrane Epilepsy Group's Specialised Register (23 February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 23 February 2015), MEDLINE (1946 to 23 February 2015), SCOPUS (1823 to 23 February 2015), ClinicalTrials.gov (23 February 2015) and ICTRP (23 February 2015). No language restrictions were imposed. The following study designs were eligible for inclusion: randomised, double-blind, parallel or crossover studies, controlled trials of VNS as add-on treatment comparing high and low stimulation paradigms (including three different stimulation paradigms - duty cycle: rapid, mid and slow) and VNS stimulation versus no stimulation or a different intervention. Eligible participants were adults or children with drug-resistant partial seizures not eligible for surgery or who failed

  19. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Feng Zhao; Wei He; Yingze Zhang; Dehu Tian; Hongfang Zhao; Kunlun Yu; Jiangbo Bai

    2013-01-01

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackin-non’s model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histo-logical observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, al eviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for rege-neration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.

  20. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves.

    Science.gov (United States)

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-07-25

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.

  1. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    Full Text Available This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW. Here the perilymph stimulation with a K-piston through a stapes footplate (SFP fenestration (N = 10 as well as stimulation of the stapes head (SH with a Bell prosthesis (N = 9, SFP stimulation with an Omega/Aerial prosthesis (N = 8 and reverse RW stimulation (N = 10 were performed in cadaveric human temporal bones (TBs. Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL, being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL and RW stimulation (108.3-128.2 eq. dB SPL. Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  2. Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans.

    Science.gov (United States)

    Oshima, Hideki; Katayama, Yoichi

    2010-01-01

    The theoretical basis of some deep brain stimulation (DBS) trials undertaken in the early years was the phenomenon of "brain stimulation reward (BSR)," which was first identified in rats. The animals appeared to be rewarded by pleasure caused by the stimulation of certain brain regions (reward system), such as the septal area. "Self-stimulation" experiments, in which rats were allowed to stimulate their own brain by pressing a freely accessible lever, they quickly learned lever pressing and sometimes continued to stimulate until they exhausted themselves. BSR was also observed with DBS of the septal area in humans. DBS trials in later years were undertaken on other theoretical bases, but unexpected BSR was sometimes induced by stimulation of some areas, such as the locus coeruleus complex. When BSR was induced, the subjects experienced feelings that were described as "cheerful," "alert," "good," "well-being," "comfort," "relaxation," "joy," or "satisfaction." Since the DBS procedure is equivalent to a "self-stimulation" experiment, they could become "addicted to the stimulation itself" or "compulsive about the stimulation," and stimulate themselves "for the entire day," "at maximum amplitude" and, in some instances, "into convulsions." DBS of the reward system has recently been applied to alleviate anhedonia in patients with refractory major depression. Although this approach appears promising, there remains a difficult problem: who can adjust their feelings and reward-oriented behavior within the normal range? With a self-stimulation procedure, the BSR may become uncontrollable. To develop DBS to the level of a standard therapy for mental disorders, we need to discuss "Who has the right to control the mental condition?" and "Who makes decisions" on "How much control is appropriate?" in daily life.

  3. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Science.gov (United States)

    Grossöhmichen, Martin; Salcher, Rolf; Kreipe, Hans-Heinrich; Lenarz, Thomas; Maier, Hannes

    2015-01-01

    This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL) and RW stimulation (108.3-128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  4. Brain stimulation in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Vladan Novakovic

    2011-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT and Cranial electrotherapy stimulation (CES have both been in use for decades; transcranial magnetic stimulation (TMS, magnetic seizure therapy (MST, deep brain stimulation (DBS, transcranial Direct Current Stimulation (tDCS, and vagus nerve stimulation (VNS have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES, depression (ECT, CES, rTMS, VNS, DBS, obsessive-compulsive disorder (OCD (DBS, essential tremor, dystonia (DBS, epilepsy (DBS, VNS, Parkinson Disease (DBS, pain (CES, and insomnia (CES. To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  5. Stimulating at the right time: phase-specific deep brain stimulation

    Science.gov (United States)

    Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J.; Denison, Timothy; Brown, Peter

    2017-01-01

    See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  6. Perceived Intensity and Discrimination Ability for Lingual Electrotactile Stimulation Depends on Location and Orientation of Electrodes

    Directory of Open Access Journals (Sweden)

    Leslie M. Stone-Roy

    2017-04-01

    anterior and medial tongue resulted in the highest perceived intensity and the best discrimination ability. Most individuals were able to perceive and discriminate electrotactile stimulation better on one side of the tongue, and orientation of stimulating electrodes affected perception. In conclusion, the present studies reveal new information about the somatosensory innervation of the tongue and will assist the design of future electrotactile tongue stimulation devices that will help provide sensory information to people with damaged sensory systems.

  7. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro.

    Science.gov (United States)

    Wiesmann, H; Hartig, M; Stratmann, U; Meyer, U; Joos, U

    2001-02-05

    The aim of the present study was to assess the structure of newly formed mineral crystals after electrical stimulation of osteoblast-like cells in vitro. Pulsed electrical stimulation was coupled capacitively or semi-capacitively to primary osteoblast-like cells derived from bovine metacarpals. Computer calculations revealed that the chosen input signal (saw-tooth, 100 V, 63 ms width, 16 Hz repetition rate) generated a short pulsed voltage drop of 100 microV (capacitive coupled mode) and of 350 microV (semi-capacitive coupled mode) across the cell-matrix layer. Stimulated cultures showed an enhanced mineral formation compared to the non stimulated controls. In cultures exposed to capacitively coupled electric fields and in control cultures nodules and mineralized globules were found. Nodules with a diameter of less than 200 nm covered the cell surface, whereas mineral globules with a diameter of up to 700 nm formed characteristic mineral deposits in the vicinity of the cells similar to biomineral formations occurring in mineralizing tissues. In contrast, large rod-shaped crystals were found in cultures stimulated by semi-capacitive coupled electric fields, indicating a non-physiological precipitation process. In conclusion, osteoblasts in culture are sensitive to electrical stimulation resulting in an enhancement of the biomineralization process.

  8. ERK5 knock down aggravates detrimental effects of hypothermal stimulation on cardiomyocytes via Bim upregulation.

    Science.gov (United States)

    Wang, Yao-Sheng; Zhou, Jing; Liang, Chun; Hong, Kui; Cheng, Xiao-Shu; Wu, Zong-Gui

    2013-09-01

    Mechanism of cold induced myocardial injury remained unclear. Our study investigated the role of ERK5/Bim pathway in hypothermal stimulation-induced apoptosis or damage of cardiomyocytes (CMs). Results showed that in CMs which under hypothermal stimulation, ERK5 siRNA promoted expression of Bim protein. Bim siRNA did not influence ERK5 expression but attenuated production of p-ERK5. ERK5 siRNA induced higher apoptosis rate; intracellular Ca(2+) overload; ROS activity; ΔΨm damage in hypothermia stimulated CMs, when compared with hypothermal stimulation solely treated group, while Bim siRNA effected oppositely and canceled pro-apoptotic effect of ERK5 siRNA. In conclusion, ERK5 knock down releases inhibition to Bim expression, induces aggravated apoptosis in CMs under hypothermal stimulation, which related to higher intracellular Ca(2+) overload, ROS activity, and more severe ΔΨm damage. Results revealed regulative role of ERK5/Bim pathway in hypothermal stimulation-induced injure or apoptosis of cardiomyocytes.

  9. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation.

    Science.gov (United States)

    Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina

    2015-11-01

    Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes.

  10. Effect of Neuromuscular Electrical Muscle Stimulation on Energy Expenditure in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2011-02-01

    Full Text Available Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES at different intensities on energy expenditure (oxygen and calories in healthy adults. The secondary aim was to develop a generalized linear regression (GEE model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1, motor threshold (E2, and maximal intensity comfortably tolerated (E3. Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject’s demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  11. Mechanism of adrenergic stimulation of hepatic ketogenesis.

    Science.gov (United States)

    Kosugi, K; Harano, Y; Nakano, T; Suzuki, M; Kashiwagi, A; Shigeta, Y

    1983-11-01

    The effects of alpha- and beta-adrenergic stimulation on ketogenesis were examined in freshly isolated rat hepatocytes in order to determine which alpha- or beta-adrenergic stimulation is involved in the enhancement of ketogenesis. In the presence of 0.3 mmol/L (U-14C)-palmitate, epinephrine, norepinephrine, and phenylephrine at 500 ng/mL increased ketogenesis by 25% (16.0 +/- 0.17 v 12.8 +/- 0.13 nmol/mg protein per hour), 20% (15.3 +/- 0.28) and 20% (15.4 +/- 0.36), respectively. However, isoproterenol even at 1 microgram/mL did not stimulate ketogenesis. Phentolamine (5 micrograms/mL) almost completely abolished the effect of epinephrine on ketogenesis (13.7 +/- 0.30 v 16.0 +/- 0.17) but propranolol did not inhibit the stimulation by epinephrine (15.6 +/- 0.38 v 16.0 +/- 0.17). Trifluoperazine (10 mumol/L), presumably an inhibitor of calcium-dependent protein kinase, abolished the effect of epinephrine (13.6 +/- 0.22 v 16.0 +/- 0.17). These results indicate that catecholamines increase ketogenesis predominantly through the alpha-adrenergic system independent of cyclic AMP, and calcium-dependent protein kinase is thought to be involved in the activation of ketogenesis. On the other hand, glucagon stimulated ketogenesis with an increase of cyclic AMP, which was not inhibited by alpha- and beta-adrenergic antagonists. Alpha-adrenergic stimulation increased hepatic glycogenolysis much more at much lower concentrations when compared with ketogenesis. Stimulation of ketogenesis by catecholamines seemed to be less sensitive and responsive compared with hepatic glycogenolysis.

  12. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Stephanie Grehl

    2016-11-01

    Full Text Available Non-invasive electromagnetic field brain stimulation (NIBS appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined.Here we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS delivered at 3 frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modelling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency (BHFS, which we have previously shown induces neural circuit reorganisation. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-minute stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially

  13. In vitro Magnetic Stimulation: A Simple Stimulation Device to Deliver Defined Low Intensity Electromagnetic Fields

    Science.gov (United States)

    Grehl, Stephanie; Martina, David; Goyenvalle, Catherine; Deng, Zhi-De; Rodger, Jennifer; Sherrard, Rachel M.

    2016-01-01

    Non-invasive brain stimulation (NIBS) by electromagnetic fields appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although, in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits) so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined. Here, we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS) delivered at three frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modeling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency, which we have previously shown induces neural circuit reorganization. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-min stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially modified

  14. Feeding stimulants for larvae of Graphium sarpedon nipponum (Lepidoptera: Papilionidae) from Cinnamomum camphora.

    Science.gov (United States)

    Zhang, Yong; Zhan, Zhi-Hui; Tebayashi, Shin-Ichi; Kim, Chul-Sa; Li, Jing

    2015-01-01

    The feeding response of larvae of the swallowtail butterfly, Graphium sarpedon nipponum (Lepidoptera: Papilionidae), is elicited by a methanolic extract from camphor tree (Cinnamomum camphora) leaves. Based on bioassay-guided fractionation, three compounds, isolated from the methanolic extract of fresh leaves of the camphor tree, were revealed to be involved in a multi-component system of feeding stimulants. Structures of these feeding stimulants were identified as sucrose, 5-O-caffeoylquinic acid and quercetin 3-O-β-glucopyranoside by NMR and LC-MS.

  15. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.

    Science.gov (United States)

    Arfin, Scott K; Sarpeshkar, Rahul

    2012-02-01

    In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.

  16. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    Science.gov (United States)

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  17. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  18. Transcranial magnetic stimulation of the cerebellum.

    Science.gov (United States)

    Minks, Eduard; Kopickova, Marie; Marecek, Radek; Streitova, Hana; Bares, Martin

    2010-06-01

    The cerebellum is a very complex structure with many motor/non-motor functions and direct and indirect connections with almost the entire central nervous system. Transcranial magnetic stimulation (TMS) is a non-invasive electrophysiological method for studying, diagnosing, and treating disorders of the nervous system. The aim of the present review is to summarise the research and potential clinical uses of cerebellar TMS. PubMed literature search using the key words "cerebellum TMS". TMS of the cerebellum is used in two types of protocols. The first type involves the separate stimulation of the cerebellum while tracking its clinical or electrophysiological influence on motor and non-motor functions. The second involves stimulation of the cerebellum as a conditioning stimulus before stimulating the motor cortex, to monitor the electrophysiological impact of cerebellar stimulation on the motor cortex. Most studies are performed on small groups of healthy volunteers; isolated studies are performed on patients with neurological disorders (spinocerebellar ataxia, migraine, dystonia, Miller Fisher syndrome). It has been shown that cerebellar TMS is able to influence motor systems, memory, and perception of time, and there is evidence of its electrophysiological effects in the frontal cortex. Published studies suggest that cerebellar TMS is currently only important in research. There is not yet any clear or reliable evidence of the therapeutic effects of cerebellar TMS. However, its use as a treatment method can be anticipated.

  19. Noninvasive brain stimulation improves language learning.

    Science.gov (United States)

    Flöel, Agnes; Rösser, Nina; Michka, Olesya; Knecht, Stefan; Breitenstein, Caterina

    2008-08-01

    Anodal transcranial direct current stimulation (tDCS) is a reliable technique to improve motor learning. We here wanted to test its potential to enhance associative verbal learning, a skill crucial for both acquiring new languages in healthy individuals and for language reacquisition after stroke-induced aphasia. We applied tDCS (20 min, 1 mA) over the posterior part of the left peri-sylvian area of 19 young right-handed individuals while subjects acquired a miniature lexicon of 30 novel object names. Every subject participated in one session of anodal tDCS, one session of cathodal tDCS, and one sham session in a randomized and double-blinded design with three parallel versions of the miniature lexicon. Outcome measures were learning speed and learning success at the end of each session, and the transfer to the subjects' native language after the respective stimulation. With anodal stimulation, subjects showed faster and better associative learning as compared to sham stimulation. Mood ratings, reaction times, and response styles were comparable between stimulation conditions. Our results demonstrate that anodal tDCS is a promising technique to enhance language learning in healthy adults and may also have the potential to improve language reacquisition after stroke.

  20. Vestibular stimulation for management of premenstrual syndrome

    Science.gov (United States)

    Johny, Minu; Kumar, Sai Sailesh; Rajagopalan, Archana; Mukkadan, Joseph Kurien

    2017-01-01

    Objectives: The present study was undertaken to observe the effectiveness of vestibular stimulation in the management of premenstrual syndrome (PMS). Materials and Methods: The present study was an experimental study; twenty female participants of age group 18–30 years were recruited in the present study. Conventional swing was used to administer vestibular stimulation. Variables were recorded before and after vestibular stimulation and compared. Results: Depression and stress scores are significantly decreased after 2 months of intervention. Anxiety scores decreased followed by vestibular stimulation. However, it is no statistically significant. Serum cortisol levels significantly decreased after 2 months of intervention. WHOQOL-BREF-transformed scores were not significantly changed followed by the intervention. However, psychological domain score (T2) and social relationships domain score (T3) were increased followed by intervention. Systolic blood pressure was significantly decreased after 2 months of intervention. No significant change was observed in diastolic pressure and pulse rate. Pain score was significantly decreased after 2 months of intervention. Mini mental status examination scores and spatial and verbal memory score were significantly improved followed by intervention. Conclusion: The present study provides preliminary evidence for implementing vestibular stimulation for management of PMS as a nonpharmacological therapy. Hence, we recommend further well-controlled, detailed studies in this area with higher sample size. PMID:28250680

  1. Stimulation of suicidal erythrocyte death by sulforaphane.

    Science.gov (United States)

    Alzoubi, Kousi; Calabrò, Salvatrice; Faggio, Caterina; Lang, Florian

    2015-03-01

    Sulforaphane, an isothiocyanate from cruciferous vegetable, counteracts malignancy. The effect is at least in part due to the stimulation of suicidal death or apoptosis of tumour cells. Mechanisms invoked in sulforaphane-induced apoptosis include mitochondrial depolarization and altered gene expression. Despite the lack of mitochondria and nuclei, erythrocytes may, similar to apoptosis of nucleated cells, enter eryptosis, a suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). This study explored whether sulforaphane stimulates eryptosis. Cell volume was estimated from forward scatter, phosphatidylserine exposure at the cell surface from annexin V binding and [Ca(2+)]i from Fluo-3 fluorescence. A 48-hr treatment of human erythrocytes with sulforaphane (50-100 μM) significantly decreased forward scatter, significantly increased the percentage of annexin V binding cells and significantly increased [Ca(2+)]i. The effect of sulforaphane (100 μM) on annexin V binding was significantly blunted but not abrogated by the removal of extracellular Ca(2+). Sulforaphane (100 μM) significantly increased ceramide formation. In conclusion, sulforaphane stimulates suicidal erythrocyte death or eryptosis, an effect at least partially, but not exclusively, due to the stimulation of Ca(2+) entry and ceramide formation. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Development of Receiver Stimulator for Auditory Prosthesis

    Directory of Open Access Journals (Sweden)

    K. Raja Kumar

    2010-05-01

    Full Text Available The Auditory Prosthesis (AP is an electronic device that can provide hearing sensations to people who are profoundly deaf by stimulating the auditory nerve via an array of electrodes with an electric current allowing them to understand the speech. The AP system consists of two hardware functional units such as Body Worn Speech Processor (BWSP and Receiver Stimulator. The prototype model of Receiver Stimulator for Auditory Prosthesis (RSAP consists of Speech Data Decoder, DAC, ADC, constant current generator, electrode selection logic, switch matrix and simulated electrode resistance array. The laboratory model of speech processor is designed to implement the Continuous Interleaved Sampling (CIS speech processing algorithm which generates the information required for electrode stimulation based on the speech / audio data. Speech Data Decoder receives the encoded speech data via an inductive RF transcutaneous link from speech processor. Twelve channels of auditory Prosthesis with selectable eight electrodes for stimulation of simulated electrode resistance array are used for testing. The RSAP is validated by using the test data generated by the laboratory prototype of speech processor. The experimental results are obtained from specific speech/sound tests using a high-speed data acquisition system and found satisfactory.

  3. Electrical Stimulation to Promote Peripheral Nerve Regeneration.

    Science.gov (United States)

    Willand, Michael P; Nguyen, May-Anh; Borschel, Gregory H; Gordon, Tessa

    2016-06-01

    Peripheral nerve injury afflicts individuals from all walks of life. Despite the peripheral nervous system's intrinsic ability to regenerate, many patients experience incomplete functional recovery. Surgical repair aims to expedite this recovery process in the most thorough manner possible. However, full recovery is still rarely seen especially when nerve injury is compounded with polytrauma where surgical repair is delayed. Pharmaceutical strategies supplementary to nerve microsurgery have been investigated but surgery remains the only viable option. Brief low-frequency electrical stimulation of the proximal nerve stump after primary repair has been widely investigated. This article aims to review the currently known biological basis for the regenerative effects of acute brief low-frequency electrical stimulation on axonal regeneration and outline the recent clinical applications of the electrical stimulation protocol to demonstrate the significant translational potential of this modality for repairing peripheral nerve injuries. The review concludes with a discussion of emerging new advancements in this exciting area of research. The current literature indicates the imminent clinical applicability of acute brief low-frequency electrical stimulation after surgical repair to effectively promote axonal regeneration as the stimulation has yielded promising evidence to maximize functional recovery in diverse types of peripheral nerve injuries. © The Author(s) 2015.

  4. Stimulants for the control of hedonic appetite

    Directory of Open Access Journals (Sweden)

    Alison Sally Poulton

    2016-04-01

    Full Text Available The focus of this paper is treatment of obesity in relation to the management of hedonic appetite. Obesity is a complex condition which may be potentiated by excessive reward seeking in combination with executive functioning deficits that impair cognitive control of behaviour. Stimulant medications address both reward deficiency and enhance motivation, as well as suppressing appetite. They have long been recognised to be effective for treating obesity. However, stimulants can be abused for their euphoric effect. They induce euphoria via the same neural pathway that underlies their therapeutic effect in obesity. For this reason they have generally not been endorsed for use in obesity. Among the stimulants, only phentermine (either alone or in combination with topiramate and bupropion (which has stimulant-like properties and is used in combination with naltrexone, are approved by the United States Food and Drug Administration (FDA for obesity, although dexamphetamine and methylpenidate are approved and widely used for treating attention deficit hyperactivity disorder (ADHD in adults and children. Experience gained over many years in the treatment of ADHD demonstrates that with careful dose titration, stimulants can be used safely. In obesity, improvement in mood and executive functioning could assist with the lifestyle changes necessary for weight control, acting synergistically with appetite suppression. The obesity crisis has reached the stage that strong consideration should be given to adequate utilisation of this effective and inexpensive class of drug.

  5. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Directory of Open Access Journals (Sweden)

    Sai Ho Yeung

    2015-09-01

    Full Text Available Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC stimulation, magnetic stimulation (MS and transcutaneous electrical nerve stimulation (TENS are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  6. Decision Making and Revealed Preference

    DEFF Research Database (Denmark)

    de la Rosa, Leonidas Enrique

    If our decision-making processes are to some extent shaped by evolutionary pressures and our environment is different from that to which we adapted, some of our choices will not be in our best interest. But revealed preference is the only tool that we have so far to conduct a normative analysis...

  7. Revealed preference with limited consideration

    NARCIS (Netherlands)

    Demuynck, T.; Seel, C.

    2014-01-01

    We derive revealed preference tests for models where individuals use consideration sets to simplify their consumption problem. Our basic test provides necessary and sufficient conditions for consistency of observed choices with the existence of consideration set restrictions. The same conditions can

  8. Single vs. dual mode stimulation in spinal cord stimulation - what is the difference?

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.

    2006-01-01

    Objectives. Stimulation with dual percutaneous leads is often used in SCS. Either a single generator gives pulses to both leads simultaneously (single mode), or two generators give pulses to each lead alternately (dual mode) [1]. The aim was to compare theoretically the performance of these stimul

  9. Paired associative stimulation targeting the tibialis anterior muscle using either mono or biphasic transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas

    2017-01-01

    Paired associative stimulation (PAS) protocols induce plastic changes within the motor cortex. The objectives of this study were to investigate PAS effects targeting the tibialis anterior (TA) muscle using a biphasic transcranial magnetic stimulation (TMS) pulse form and, to determine whether...

  10. Optical stimulation of zebrafish hair cells expressing channelrhodopsin-2.

    Directory of Open Access Journals (Sweden)

    Bryan D Monesson-Olson

    Full Text Available Vertebrate hair cells are responsible for the high fidelity encoding of mechanical stimuli into trains of action potentials (spikes in afferent neurons. Here, we generated a transgenic zebrafish line expressing Channelrhodopsin-2 (ChR2 under the control of the hair-cell specific myo6b promoter, in order to examine the role of the mechanoelectrical transduction (MET channel in sensory encoding in afferent neurons. We performed in vivo recordings from afferent neurons of the zebrafish lateral line while activating hair cells with either mechanical stimuli from a waterjet or optical stimuli from flashes of ∼470-nm light. Comparison of the patterns of encoded spikes during 100-ms stimuli revealed no difference in mean first spike latency between the two modes of activation. However, there was a significant increase in the variability of first spike latency during optical stimulation as well as an increase in the mean number of spikes per stimulus. Next, we compared encoding of spikes during hair-cell stimulation at 10, 20, and 40-Hz. Consistent with the increased variability of first spike latency, we saw a significant decrease in the vector strength of phase-locked spiking during optical stimulation. These in vivo results support a physiological role for the MET channel in the high fidelity of first spike latency seen during encoding of mechanical sensory stimuli. Finally, we examined whether remote activation of hair cells via ChR2 activation was sufficient to elicit escape responses in free-swimming larvae. In transgenic larvae, 100-ms flashes of ∼470-nm light resulted in escape responses that occurred concomitantly with field recordings indicating Mauthner cell activity. Altogether, the myo6b:ChR2 transgenic line provides a platform to investigate hair-cell function and sensory encoding, hair-cell sensory input to the Mauthner cell, and the ability to remotely evoke behavior in free-swimming zebrafish.

  11. Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Aiko Shinko

    Full Text Available In clinical practice, deep brain stimulation (DBS is effective for treatment of motor symptoms in Parkinson's disease (PD. However, the mechanisms have not been understood completely. There are some reports that electrical stimulation exerts neuroprotective effects on the central nervous system diseases including cerebral ischemia, head trauma, epilepsy and PD, although there are a few reports on neuroprotective effects of spinal cord stimulation (SCS. We investigated the neuroprotective effects of high cervical SCS on PD model of rats. Adult female Sprague-Dawley rats received hour-long SCS (2, 50 or 200 Hz with an epidural electrode at C1-2 level for 16 consecutive days. At 2 days after initial SCS, 6-hydroxydopamine (6-OHDA was injected into the right striatum of rats. Behavioral evaluations of PD symptoms were employed, including cylinder test and amphetamine-induced rotation test performed at 1 and 2 weeks after 6-OHDA injection. Animals were subsequently euthanized for immunohistochemical investigations. In order to explore neurotrophic and growth factor upregulation induced by SCS, another cohort of rats that received 50 Hz SCS was euthanized at 1 and 2 weeks after lesion for protein assays. Behavioral tests revealed that the number of amphetamine-induced rotations decreased in SCS groups. Immunohistochemically, tyrosine hydroxylase (TH-positive fibers in the striatum were significantly preserved in SCS groups. TH-positive neurons in the substantia nigra pars compacta were significantly preserved in 50 Hz SCS group. The level of vascular endothelial growth factor (VEGF was upregulated by SCS at 1 week after the lesion. These results suggest that high cervical SCS exerts neuroprotection in PD model of rats, at least partially by upregulation of VEGF. SCS is supposed to suppress or delay PD progression and might become a less invasive option for PD patients, although further preclinical and clinical investigations are needed to confirm the

  12. Transcranial static magnetic field stimulation of the human motor cortex.

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way.

  13. Citrullinemia stimulation test in the evaluation of the intestinal function

    Directory of Open Access Journals (Sweden)

    Beatriz Pinto Costa

    2013-02-01

    Full Text Available Background: Citrullinemia is been reported as a quantitative parameter of the enterocyte mass and function. Aim: The objective of this research is to analyse the value of fasting and stimulated citrullinemias in the intestinal function evaluation. Methods: A case-control study was undertaken, including 11 patients with short bowel syndrome, 13 patients submitted to malabsorptive bariatric surgery and 11 healthy controls. Plasma levels of amino acids were determined, before and after a stimulation test with oral L-glutamine, by ion exchange chromatography. Results: Citrullinemia was inferior in short bowel patients (28,6 ± 11,3 versus 35,5 ± 11 in operated obese versus 32,2 ± 6,6 μmol/L in controls; n.s. and lower than 25,5 μmol/L in 54,5% of them (versus 16,7%; p = 0,041; accuracy = 74%; odds ratio = 3, 95%CI 1,2-7,6. ΔCitrullinemia80 (relative variation of citrullinemia at the 80th minute of test was lower in short bowel patients; its diagnostic accuracy was similar to baseline citrullinemia and also not significant. ΔCitrullinemia80 revealed a high predictive capacity of a short bowel inferior or equal to 50 cm (auR.O.C. = 82,3%; 95%CI 61,7-102,8; p = 0,038. Conclusions: In short bowel syndrome context, citrullinemia stimulation test with oral L-glutamine is feasible and it may improve the predictive capacity of severity. Further investigation is required to determine its clinical relevance and applicability.

  14. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia.

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Laketa, Danijela; Bjelobaba, Ivana; Milenkovic, Ivan; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may

  15. Neuromuscular electrical stimulation improves exercise tolerance in chronic obstructive pulmonary disease patients with better preserved fat-free mass

    Directory of Open Access Journals (Sweden)

    Lara Maris Nápolis

    2011-01-01

    Full Text Available BACKGROUND: High-frequency neuromuscular electrical stimulation increases exercise tolerance in patients with advanced chronic obstructive pulmonary disease (COPD patients. However, it is conceivable that its benefits are more prominent in patients with better-preserved peripheral muscle function and structure. OBJECTIVE: To investigate the effects of high-frequency neuromuscular electrical stimulation in COPD patients with better-preserved peripheral muscle function. Design: Prospective and cross-over study. METHODS: Thirty COPD patients were randomly assigned to either home-based, high-frequency neuromuscular electrical stimulation or sham stimulation for six weeks. The training intensity was adjusted according to each subject's tolerance. Fat-free mass, isometric strength, six-minute walking distance and time to exercise intolerance (Tlim were assessed. RESULTS: Thirteen (46.4% patients responded to high-frequency neuromuscular electrical stimulation; that is, they had a post/pre Δ Tlim >10% after stimulation (unimproved after sham stimulation. Responders had a higher baseline fat-free mass and six-minute walking distance than their seventeen (53.6% non-responding counterparts. Responders trained at higher stimulation intensities; their mean amplitude of stimulation during training was significantly related to their fat-free mass (r = 0.65; p<0.01. Logistic regression revealed that fat-free mass was the single independent predictor of Tlim improvement (odds ratio [95% CI] = 1.15 [1.04-1.26]; p<0.05. CONCLUSIONS: We conclude that high-frequency neuromuscular electrical stimulation improved the exercise capacity of COPD patients with better-preserved fat-free mass because they tolerated higher training stimulus levels. These data suggest that early training with high-frequency neuromuscular electrical stimulation before tissue wasting begins might enhance exercise tolerance in patients with less advanced COPD.

  16. Deep brain stimulation of the posterior hypothalamus activates the histaminergic system to exert antiepileptic effect in rat pentylenetetrazol model.

    Science.gov (United States)

    Nishida, Namiko; Huang, Zhi-Li; Mikuni, Nobuhiro; Miura, Yoshiki; Urade, Yoshihiro; Hashimoto, Nobuo

    2007-05-01

    Deep brain stimulation (DBS) is a promising therapy for intractable epilepsy, yet the optimum target and underlying mechanism remain controversial. We used the rat pentylenetetrazol (PTZ) seizure model to evaluate the effectiveness of DBS to three targets: two known to be critical for arousal, the histaminergic tuberomammillary nucleus (TMN) and the orexin/hypocretinergic perifornical area (PFN), and the anterior thalamic nuclei (ATH) now in clinical trial. TMN stimulation provided the strong protection against the seizure, and PFN stimulation elicited a moderate effect yet accompanying abnormal behavior in 25% subjects, while ATH stimulation aggravated the seizure. Power density analysis showed EEG desynchronization after DBS on TMN and PFN, while DBS on ATH caused no effect with the same stimulation intensity. EEG desynchronization after TMN stimulation was inhibited in a dose-dependent manner by pyrilamine, a histamine H(1) receptor selective antagonist, while the effect of PFN stimulation was inhibited even at a low dose. In parallel, in vivo microdialysis revealed a prominent increase of histamine release in the frontal cortex after TMN stimulation, a moderate level with PFN and none with ATH. Furthermore, antiepileptic effect of DBS to TMN was also blocked by an H(1) receptor antagonist. This study clearly indicates that EEG desynchronization and the activation of the histaminergic system contributed to the antiepileptic effects caused by DBS to the posterior hypothalamus.

  17. Electrical stimulation promotes BDNF expression in spinal cord neurons through Ca(2+)- and Erk-dependent signaling pathways.

    Science.gov (United States)

    Wenjin, Wang; Wenchao, Liu; Hao, Zhu; Feng, Li; Yan, Wo; Wodong, Shi; Xianqun, Fan; Wenlong, Ding

    2011-04-01

    Brief electrical stimulation has been shown to be effective in promoting neuronal regeneration following peripheral nerve injury. These effects are thought to be mediated largely by the upregulation of the expression of brain-derived neurotrophic factor (BDNF) in spinal cord neurons. However, the molecular mechanisms by which electrical stimulation can promote BDNF expression are not known. The mechanism involved in BDNF expression after electrical stimulation was explored in this study. Immunohistochemistry and Western blotting were used to test BDNF expression. Confocal microscopy was utilized to study intracellular Ca(2+) volume. Immunohistochemistry and Western blotting confirmed that brief electrical stimulation increased BDNF expression in spinal cord neurons both in vivo and in vitro. Treatment of cultured neurons with nifedipine, an inhibitor of voltage-gated calcium channels, significantly reduced the BDNF increase produced by electrical stimulation, and an inhibitor of Erk completely abolished the effect of electrical stimulation. Levels of BDNF expression in the presence of the Erk inhibitor were lower that in unstimulated and untreated controls, indicating that Erk activation is required to maintain baseline levels of BDNF. Confocal microscopy using a Ca(2+)-sensitive fluorochrome revealed that electrical stimulation is accompanied by an increase in intracellular Ca(2+) levels; the increase was partly blocked by nifedipine. These findings argue that electrical stimulation increases BDNF expression in spinal cord neurons by activating a Ca(2+)- and Erk-dependent signaling pathways.

  18. Gender and injuries predict stimulant medication

    DEFF Research Database (Denmark)

    Dalsgaard, Søren; Leckman, James F.; Nielsen, Helena Skyt

    2014-01-01

    Objective: The purpose of this article was to examine whether injuries in early childhood and gender predict prescriptions of stimulant medication in three groups of children: With attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and other psychiatric disorders (OPD...... follow-up of all cases. We found that the number of injuries prior to diagnosis was associated with initiation of stimulant treatment in all three groups of patients. In addition, male gender predicted treatment with ADHD medications. Our results suggest that the number of injuries early in life prior......). Methods: This was a population-based study with prospective and complete follow-up of children with ADHD (n=11,553), ASD (n=9698), and OPD (n=48,468), of whom 61%, 16%, and 3%, respectively, were treated with stimulants. For all 69,719 individual children data on psychiatric diagnoses, injuries, and drug...

  19. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  20. Conception of Electro-Stimulation System

    Directory of Open Access Journals (Sweden)

    Adil Salbi

    2014-10-01

    Full Text Available The aim of this work is to suggest a reliable solution of electro-stimulation making it possible to restore defective functions of the nervous systems among certain patients. This solution consists in creating a signal similar to that arriving of the central nervous system. Thus, work presented aims to design an electronic circuit of stimulation allowing the contraction of the muscle to restore its function by a biphasic train of electric impulse. This stimulator system is composed of a clock, an inverter and a logical sequencer which shifts the clock signal. The stage of power makes it possible to adapt the signals newcomers on a transformer booster coupled to a stage of order to regulate the amplitude of the impulse.

  1. Early experiences with tachycardia-triggered vagus nerve stimulation using the AspireSR stimulator.

    Science.gov (United States)

    El Tahry, Riëm; Hirsch, Martin; Van Rijckevorsel, Kenou; Santos, Susana Ferrao; de Tourtchaninoff, Marianne; Rooijakkers, Herbert; Coenen, Volker; Schulze-Bonhage, Andreas

    2016-06-01

    Many epilepsy patients treated with vagus nerve stimulation additionally use an "on-demand" function, triggering an extra stimulation to terminate a seizure or diminish its severity. Nevertheless, a substantial number of patients are not able to actively trigger stimulations by use of a magnet, due to the absence of an aura or inability for voluntary actions in the early phase of a seizure. To address this need, a novel implantable pulse generator, the AspireSR VNS system, was developed to provide automated ictal stimulation triggered by a seizure-detecting algorithm. We report our experience with three patients in assessing the functionality of ictal stimulation, illustrating the detection system in practice. Detection of ictal tachycardia and variable additional detections of physiological tachycardia depended on the individual seizure-detecting algorithm settings.

  2. Lubiprostone stimulates small intestinal mucin release

    Directory of Open Access Journals (Sweden)

    De Lisle Robert C

    2012-11-01

    Full Text Available Abstract Background Lubiprostone is a synthetic bicyclic fatty acid derivative of prostaglandin E1 (PGE1 used for chronic constipation. The best known action of lubiprostone is simulation of Cl- dependent fluid secretion. In a mouse model of the genetic disease cystic fibrosis, we previously showed that in vivo administration of lubiprostone resulted in greater mucus accumulation in the small intestine. The aim of this study was to directly test whether lubiprostone stimulates intestinal mucin release. Methods Mucin release was measured by mounting segments (4-5 cm of mouse proximal-mid small intestine in an organ bath, allowing access to the perfusate (luminal and the bath (serosal solutions. Nifedipine (10-6 M and indomethacin (10-5 M were included in all solutions to inhibit smooth muscle activity and endogenous prostaglandin production, respectively. The tissue was equilibrated under flow for 30 min, using the perfusate collected during the final 10 min of the equilibration period to measure unstimulated release rate. Stimulus was then added to either the perfusate or the bath and the perfusate was collected for another 30 min to measure the stimulated mucin release rate. Mucin in perfusates was quantified by periodic acid-Schiff's base dot-blot assay, using purified pig gastric mucin as a standard. Results When applied luminally at 1 μM lubiprostone was ineffective at stimulating mucin release. When added to the serosal solution, 1 μM lubiprostone stimulated mucin release to ~300% of the unstimulated rate. As a positive control, serosal 1 μM prostaglandin E2 increased mucin release to ~400% of the unstimulated rate. Conclusions These results support the idea that lubiprostone has prostaglandin-like actions on the intestine, which includes stimulation of mucin release. Stimulation of mucin release by lubiprostone may be protective in gastrointestinal conditions where loss of mucus is believed to contribute to pathogenesis. Thus, in

  3. A Mechanism for Stimulated AGN Feedback in Massive Galaxies

    CERN Document Server

    McNamara, B R; Nulsen, P E J; Hogan, M T; Fabian, A C; Pulido, F; Edge, A C

    2016-01-01

    Observation shows that cooling instabilities leading to nebular emission, molecular gas, and star formation in giant galaxies are formed behind buoyantly-rising X-ray bubbles inflated by radio jets launched from massive nuclear black holes. We propose a model where molecular clouds condense from hot but relatively low entropy gas lifted by X-ray bubbles to an altitude where its cooling time is shorter than the time required for it to fall to its equilibrium location in the galaxy i.e., t_c/t_I <~1$. Here the infall time can exceed the free-fall time, t_ff, by factors of a few. This mechanism, which we refer to as stimulated feedback, is motivated by recent ALMA observations of central galaxies in clusters and groups revealing molecular clouds apparently forming in the wakes of rising X-ray bubbles and with surprisingly low cloud velocities. Supported by recent numerical simulations, our model would naturally sustain a continual feedback-loop in galaxies fuelled by cooling gas stimulated by radio-mechanical...

  4. Transient modulation of calcium and parathyroid hormone stimulates bone formation.

    Science.gov (United States)

    Chen, Andy B; Minami, Kazumasa; Raposo, João F; Matsuura, Nariaki; Koizumi, Masahiko; Yokota, Hiroki; Ferreira, Hugo G

    2016-10-01

    Intermittent administration of parathyroid hormone can stimulate bone formation. Parathyroid hormone is a natural hormone that responds to serum calcium levels. In this study, we examined whether a transient increase and/or decrease in the serum calcium can stimulate bone formation. Using a mathematical model previously developed, we first predicted the effects of administration of parathyroid hormone, neutralizing parathyroid hormone antibody, calcium, and EGTA (calcium chelator) on the serum concentration of parathyroid hormone and calcium. The model predicted that intermittent injection of parathyroid hormone and ethylene glycol tetraacetic acid transiently elevated the serum parathyroid hormone, while that of parathyroid hormone antibody and calcium transiently reduced parathyroid hormone in the serum. In vitro analysis revealed that parathyroid hormone's transient changes (both up and down) elevated activating transcription factor 4-mediated osteocalcin expression. In the mouse model of osteoporosis, both intermittent administration of calcium and ethylene glycol tetraacetic acid showed tendency to increase bone mineral density of the upper limb (ulna and humerus) and spine, but the effects varied in a region-specific manner. Collectively, the study herein supports a common bone response to administration of calcium and its chelator through their effects on parathyroid hormone.

  5. Electrodeposited iridium oxide for neural stimulation and recording electrodes.

    Science.gov (United States)

    Meyer, R D; Cogan, S F; Nguyen, T H; Rauh, R D

    2001-03-01

    Iridium oxide films formed by electrodeposition onto noniridium metal substrates are compared with activated iridium oxide films (AIROFs) as a low impedance, high charge capacity coating for neural stimulation and recording electrodes. The electrodeposited iridium oxide films (EIROFs) were deposited on Au, Pt, PtIr, and 316 LVM stainless steel substrates from a solution of IrCl4, oxalic acid, and K2CO3. A deposition protocol involving 50 potential sweeps at 50 mV/s between limits of 0.0 V and 0.55 V (versus Ag AgCl) followed by potential pulsing between the same limits produced adherent films with a charge storage capacity of >25 mC/cm2. Characterization by cyclic voltammetry and impedance spectroscopy revealed no differences in the electrochemical behavior of EIROF on non-Ir substrates and AIROF. The mechanical stability of the oxides was evaluated by ultrasonication in distilled water followed by dehydration and rehydration. Stability under charge injection was evaluated using 200 micros, 5.9 A/cm2 (1.2 mC/cm2) cathodal pulses. Loss of iridium oxide charge capacity was comparable for AIROFs and the EIROFs, ranging from 1% to 8% of the capacity immediately after activation or deposition. The EIROFs were deposited and evaluated on silicon microprobe electrodes and on metallized polyimide electrodes being developed for neural recording and stimulation applications.

  6. Stimulated emission of surface plasmon polaritons

    CERN Document Server

    Noginov, M A; Mayy, M F; Ritzo, B A; Noginova, N; Podolskiy, V A

    2008-01-01

    We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver film. Stimulated emission was characterized by a distinct threshold in the input-output dependence and narrowing of the emission spectrum. The observed stimulated emission and corresponding to it compensation of the metallic absorption loss by gain enables many applications of metamaterials and nanoplasmonic devices.

  7. Effects of Vibrotactile Stimulation During Virtual Sandboarding

    DEFF Research Database (Denmark)

    Lind, Stine; Thomsen, Lui; Egebjerg, Mie;

    underneath the board. The study compared three conditions: no vibration, constant vibration and dynamic vibration. The results suggest that constant vibrotactile feedback led to significantly more compelling self-motion illusions and a higher degree of perceived realism, than the condition devoid......This poster details a within-subjects study (n=17) investigating the effects of vibrotactile stimulation on illusory self-motion, presence and perceived realism during an interactive sandboarding simulation. Vibrotactile feedback was delivered using a low frequency audio transducer mounted...... of vibrotactile feedback. No significant differences were found between the two conditions involving vibrotactile stimulation....

  8. Neural dynamics during repetitive visual stimulation

    Science.gov (United States)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  9. Optically stimulated luminescence in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2002-01-01

    Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes of this progr......Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes...

  10. Tinnitus treatment with sound stimulation during sleep.

    Science.gov (United States)

    M, Pedemonte; D, Drexler; S, Rodio; D, Geisinger; A, Bianco; D, Pol-Fernandes; V, Bernhardt

    2010-01-01

    A new strategy for idiopathic subjective tinnitus treatment - sound stimulation during sleep - has been applied. It was based on the acknowledgement that the auditory system also works during sleep, processing the incoming information. Eleven patients were stimulated every night during 6 months. The stimulus was a sound that mimetized the tinnitus and was fixed at the same tinnitus intensity, applied through an iPod. All patients decreased their tinnitus intensity in the first month of treatment (statistically significant), most of them in the first week. Tinnitus intensity continued decreasing in the following weeks; three patients presented periods of total silence.

  11. Functional electrical stimulation with surface electrodes

    Directory of Open Access Journals (Sweden)

    Bajd Tadej

    2008-01-01

    Full Text Available The review investigates the objective evidences of benefits derived from surface functional electrical stimulation (FES of lower and upper extremities for people after incomplete spinal cord injury (SCI and stroke. FES can offer noticeable benefits in walking ability. It can be efficiently combined with treadmill and body weight support. Voluntary muscle strength and endurance gain can be achieved through FES assisted gait training together with increased gait velocity in absence of electrical stimulator. Cyclic FES, FES augmented by biofeedback, and FES used in various daily activities can result in substantial improvements of the voluntary control of upper extremities.

  12. Field modeling for transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B

    2015-01-01

    Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications...... of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential. This comprises (i) identifying and dealing with the model uncertainties, (ii) establishing a clear link between the induced fields and the physiological stimulation effects, and (iii...

  13. Clinical application of repetitive transcranial magnetic stimulation in stroke rehabilitation☆

    Science.gov (United States)

    Shin, Joonho; Yang, EunJoo; Cho, KyeHee; Barcenas, Carmelo L; Kim, Woo Jin; Min, Yusun; Paik, Nam-Jong

    2012-01-01

    Proper stimulation to affected cerebral hemisphere would promote the functional recovery of patients with stroke. Effects of repetitive transcranial magnetic stimulation on cortical excitability can be can be altered by the stimulation frequency, intensity and duration. There has been no consistent recognition regarding the best stimulation frequency and intensity. This study reviews the intervention effects of repetitive transcranial stimulation on motor impairment, dysphagia, visuospatial neglect and aphasia, and summarizes the stimulation frequency, intensity and area for repetitive transcranial magnetic stimulation to yield the best therapeutic effects. PMID:25745455

  14. Clinical application of repetitive transcranial magnetic stimulation in stroke rehabilitation

    Institute of Scientific and Technical Information of China (English)

    Joonho Shin; EunJoo Yang; KyeHee Cho; Carmelo L Barcenas; Woo Jin Kim; Yusun Min; Nam-Jong Paik

    2012-01-01

    Proper stimulation to affected cerebral hemisphere would promote the functional recovery of patients with stroke. Effects of repetitive transcranial magnetic stimulation on cortical excitability can be can be altered by the stimulation frequency, intensity and duration. There has been no consistent recognition regarding the best stimulation frequency and intensity. This study reviews the intervention effects of repetitive transcranial stimulation on motor impairment, dysphagia, visuospatial neglect and aphasia, and summarizes the stimulation frequency, intensity and area for repetitive transcranial magnetic stimulation to yield the best therapeutic effects.

  15. Viviparity stimulates diversification in an order of fish

    Science.gov (United States)

    Helmstetter, Andrew J.; Papadopulos, Alexander S. T.; Igea, Javier; Van Dooren, Tom J. M.; Leroi, Armand M.; Savolainen, Vincent

    2016-01-01

    Species richness is distributed unevenly across the tree of life and this may be influenced by the evolution of novel phenotypes that promote diversification. Viviparity has originated ∼150 times in vertebrates and is considered to be an adaptation to highly variable environments. Likewise, possessing an annual life cycle is common in plants and insects, where it enables the colonization of seasonal environments, but rare in vertebrates. The extent to which these reproductive life-history traits have enhanced diversification and their relative importance in the process remains unknown. We show that convergent evolution of viviparity causes bursts of diversification in fish. We built a phylogenetic tree for Cyprinodontiformes, an order in which both annualism and viviparity have arisen, and reveal that while both traits have evolved multiple times, only viviparity played a major role in shaping the patterns of diversity. These results demonstrate that changes in reproductive life-history strategy can stimulate diversification. PMID:27070759

  16. Viviparity stimulates diversification in an order of fish.

    Science.gov (United States)

    Helmstetter, Andrew J; Papadopulos, Alexander S T; Igea, Javier; Van Dooren, Tom J M; Leroi, Armand M; Savolainen, Vincent

    2016-04-12

    Species richness is distributed unevenly across the tree of life and this may be influenced by the evolution of novel phenotypes that promote diversification. Viviparity has originated ∼150 times in vertebrates and is considered to be an adaptation to highly variable environments. Likewise, possessing an annual life cycle is common in plants and insects, where it enables the colonization of seasonal environments, but rare in vertebrates. The extent to which these reproductive life-history traits have enhanced diversification and their relative importance in the process remains unknown. We show that convergent evolution of viviparity causes bursts of diversification in fish. We built a phylogenetic tree for Cyprinodontiformes, an order in which both annualism and viviparity have arisen, and reveal that while both traits have evolved multiple times, only viviparity played a major role in shaping the patterns of diversity. These results demonstrate that changes in reproductive life-history strategy can stimulate diversification.

  17. New perspectives in transcranial magnetic stimulation: epilepsy, consciousness and the perturbational approach.

    Science.gov (United States)

    Manganotti, Paolo; Del Felice, Alessandra

    2013-01-01

    Transcranial magnetic stimulation (TMS) evolved from a simple method to stimulate the motor cortex to an invaluable tool for multiple diagnostic, research, and therapeutic applications. A further development of this noninvasive brain stimulation technique is concomitant electroencephalographic (EEG) recording during TMS. The theoretical underpinnings and the technological innovation of TMS-EEG co-registration have opened new ways to study brain excitability in neurological conditions previously investigated with conventional EEG alone. A further advance in TMS research applications is the perturbational approach: magnetic pulses can interfere not only with dynamic, often pathological rhythms in epilepsy or altered consciousness states, but also modulate physiological states such as sleep and sleep deprivation. So applied, TMS-EEG co-registration can reveal different neurophysiological and behavioral patterns in the awake state, sleep or sleep deprivation. In this review, we discuss the use of TMS and TMS-EEG co-registration in epilepsy, a still rather limited although promising area of study.

  18. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    Science.gov (United States)

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  19. In vivo tactile stimulation-evoked responses in Caenorhabditis elegans amphid sheath glia.

    Directory of Open Access Journals (Sweden)

    Gang Ding

    Full Text Available Glial cells are important components of the nervous system. However, how they respond to physiological stimuli in vivo remains largely unknown. In this study, we investigated the electrophysiological activities and Ca2+ responses of the C. elegans amphid sheath glia (AMsh glia to tactile stimulation in vivo. We recorded robust inward currents and Ca2+ elevation in the AMsh cell with the delivery of tactile stimuli of varying displacements to the nose tip of the worm. Compared to the adjacent mechanoreceptor ASH neuron, the AMsh cell showed greater sensitivity to tactile stimulation. Amiloride, an epithelial Na+ channel blocker, blocked the touch-induced currents and Ca2+ signaling in the ASH neuron, but not those in the AMsh cell. Taken together, our results revealed that AMsh glial cells actively respond to in vivo tactile stimulation and likely function cell-autonomously as mechanoreceptors.

  20. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    Science.gov (United States)

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  1. Transient increase of intact visual field size by high-frequency narrow-band stimulation.

    Science.gov (United States)

    Elliott, Mark A; Seifert, Doerthe; Poggel, Dorothe A; Strasburger, Hans

    2015-03-01

    Three patients with visual field defects were stimulated with a square matrix pattern, either static, or flickering at frequencies that had been found to either promote or not promote blindsight performance. Comparison between pre- and post-stimulation perimetric maps revealed an increase in the size of the intact visual field but only for flicker frequencies previously found to promote blindsight. These changes were temporary but dramatic - in two instances the intact field was increased by an area of ∼30 deg(2) of visual angle. These results indicate that not only does specific high-frequency stimulus flicker promote blindsight, but that intact visual field size may be increased by stimulation at the same frequencies. Our findings inform speculation on both the brain mechanisms and the potency of temporal modulation for altering the functional visual field.

  2. Neuropsychiatric Outcome of an Adolescent Who Received Deep Brain Stimulation for Tourette's Syndrome

    Directory of Open Access Journals (Sweden)

    S. J. Pullen

    2011-01-01

    Full Text Available This case study followed one adolescent patient who underwent bilateral deep brain stimulation of the centromedian parafascicular complex (CM-Pf for debilitating, treatment refractory Tourette's syndrome for a period of 1.5 years. Neurocognitive testing showed no significant changes between baseline and follow-up assessments. Psychiatric assessment revealed positive outcomes in overall adaptive functioning and reduction in psychotropic medication load in this patient. Furthermore, despite significant baseline psychiatric comorbidity, this patient reported no suicidal ideation following electrode implantation. Deep brain stimulation is increasingly being used in children and adolescents. This case reports on the positive neurologic and neuropsychiatric outcome of an adolescent male with bilateral CM-Pf stimulation.

  3. Management of overactive bladder review: the role of percutaneous tibial nerve stimulation

    Directory of Open Access Journals (Sweden)

    Elita Wibisono

    2017-01-01

    Full Text Available Overactive bladder (OAB is a common condition that is experienced by around 455 million people (11% of the world population and associated with significant impact in patients’ quality of life. The first line treatments of OAB are conservative treatment and anti-muscarinic medication. For the refractory OAB patients, the treatment options available are surgical therapy, electrical stimulation, and botulinum toxin injection. Among them, percutaneous tibial nerve stimulation (PTNS is a minimally invasive option that aims to stimulate sacral nerve plexus, a group of nerve that is responsible for regulation of bladder function. After its approval by food and drug administration (FDA in 2007, PTNS revealed considerable promise in OAB management. In this review, several non-comparative and comparative studies comparing PTNS with sham procedure, anti-muscarinic therapy, and multimodal therapy combining PTNS and anti-muscarinic had supportive data to this consideration.

  4. Antibody protection reveals extended epitopes on the human TSH receptor.

    Directory of Open Access Journals (Sweden)

    Rauf Latif

    Full Text Available Stimulating, and some blocking, antibodies to the TSH receptor (TSHR have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD. However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.

  5. State of the Art: Novel Applications for Cortical Stimulation.

    Science.gov (United States)

    De Ridder, Dirk; Perera, Sanjaya; Vanneste, Sven

    2017-04-01

    Electrical stimulation via implanted electrodes that overlie the cortex of the brain is an upcoming neurosurgical technique that was hindered for a long time by insufficient knowledge of how the brain functions in a dynamic, physiological, and pathological way, as well as by technological limitations of the implantable stimulation devices. This paper provides an overview of cortex stimulation via implantable devices and introduces future possibilities to improve cortex stimulation. Cortex stimulation was initially used preoperatively as a technique to localize functions in the brain and only later evolved into a treatment technique. It was first used for pain, but more recently a multitude of pathologies are being targeted by cortex stimulation. These disorders are being treated by stimulating different cortical areas of the brain. Risks and complications are essentially similar to those related to deep brain stimulation and predominantly include haemorrhage, seizures, infection, and hardware failures. For cortex stimulation to fully mature, further technological development is required to predict its outcomes and improve stimulation designs. This includes the development of network science-based functional connectivity approaches, genetic analyses, development of navigated high definition transcranial alternating current stimulation, and development of pseudorandom stimulation designs for preventing habituation. In conclusion, cortex stimulation is a nascent but very promising approach to treating a variety of diseases, but requires further technological development for predicting outcomes, such as network science based functional connectivity approaches, genetic analyses, development of navigated transcranial electrical stimulation, and development of pseudorandom stimulation designs for preventing habituation. © 2017 International Neuromodulation Society.

  6. Optimization of epilepsy treatment with vagus nerve stimulation

    Science.gov (United States)

    Uthman, Basim; Bewernitz, Michael; Liu, Chang-Chia; Ghacibeh, Georges

    2007-11-01

    Epilepsy is one of the most common chronic neurological disorders that affects close to 50 million people worldwide. Antiepilepsy drugs (AEDs), the main stay of epilepsy treatment, control seizures in two thirds of patients only. Other therapies include the ketogenic diet, ablative surgery, hormonal treatments and neurostimulation. While other approaches to stimulation of the brain are currently in the experimental phase vagus nerve stimulation (VNS) has been approved by the FDA since July 1997 for the adjunctive treatment of intractable partial onset epilepsy with and without secondary generalization in patients twelve years of age or older. The safety and efficacy of VNS have been proven and duplicated in two subsequent double-blinded controlled studies after two pilot studies demonstrated the feasibility of VNS in man. Long term observational studies confirmed the safety of VNS and that its effectiveness is sustained over time. While AEDs influence seizure thresholds via blockade or modulation of ionic channels, inhibit excitatory neurotransmitters or enhance inhibitory neurotransmitters the exact mechanism of action of VNS is not known. Neuroimaging studies revealed that VNS increases blood flow in certain regions of the brain such as the thalamus. Chemical lesions in the rat brains showed that norepinephrine is an important link in the anticonvulsant effect of VNS. Analysis of cerebrospinal fluid obtained from patients before and after treatment with VNS showed modest decreases in excitatory neurotransmitters. Although Hammond et al. reported no effect of VNS on scalp EEG by visual analysis and Salinsky et al. found no effect of VNS on scalp EEG by spectral analysis, Kuba et al. suggested that VNS reduces interictal epileptiform activity. Further, nonlinear dynamical analysis of the electroencephalogram in the rat and man have reportedly shown predictable changes (decrease in the short term Lyapunov exponent STLmax and T-index) more than an hour prior to the

  7. Coupling BCI and cortical stimulation for brain-state-dependent stimulation: Methods for spectral estimation in the presence of stimulation after-effects

    Directory of Open Access Journals (Sweden)

    Armin eWalter

    2012-11-01

    Full Text Available Brain-state-dependent stimulation combines brain-computer interfaces (BCI and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of brain-state-dependent stimulation because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI.In this work, we compared 4 methods for spectral estimation with autoregressive (AR models in the presence of pulsed cortical stimulation. Using combined EEG-TMS as well as combined ECoG and epidural electrical stimulation, 3 patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1 no stimulation, (2 single stimulation pulses applied independently (open-loop or (3 coupled to the BCI output (closed-loop such that stimulation was given only while an intention to move was detected using neural data.We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized.

  8. Quantum theory of laser-stimulated desorption

    Science.gov (United States)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  9. Neuromagnetic effects of pico-Tesla stimulation.

    Science.gov (United States)

    Troebinger, Luzia; Anninos, Photios; Barnes, Gareth

    2015-09-01

    We used a double-blind experimental design to look for an effect of pico-Tesla magnetic stimulation in healthy subjects. Pico-Tesla stimulation is thought to increase the dominant frequency of 2-7 Hz oscillations in the human brain. We used magnetoencephalography to measure resting state brain activity. Each subject had two separate recording sessions consisting of three runs in between which they were given real or sham pT stimulation. We then tried to predict the real and sham stimulation sessions based on changes in the mean peak frequency in the 2-7 Hz band. Our predictions for these individual runs were 8 out of 14 at chance level (p = 0.39). After unblinding, we found no significant effect (p = 0.11) of an increase in the frequency range (2-7 Hz) across the subject group. Finally, we performed a Bayesian model comparison between the effect size predicted from previous clinical studies and a null model. Even though this study had a sensitivity advantage of at least one order of magnitude over previous work, we found the null model to be significantly (2000 times) more likely.

  10. Aromatase inhibitors in stimulated IVF cycles

    Directory of Open Access Journals (Sweden)

    Tournaye Herman

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors have been introduced as a new treatment modality that could challenge clomiphene citrate as an ovulation induction regiment in patients with PCOS. Although several randomized trials have been conducted regarding their use as ovulation induction agents, only few trials are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears to have the potential to increase clinical pregnancy rates when combined with gonadotropins, whereas at the same time reduces the total gonadotropin dose required for ovarian stimulation. However, given that in all of the trials letrozole has been administered in GnRH antagonist cycles, it is intriguing to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels

  11. Ethical issues in deep brain stimulation

    NARCIS (Netherlands)

    M.H.N. Schermer (Maartje)

    2011-01-01

    textabstractDeep brain stimulation (DBS) is currently used to treat neurological disorders like Parkinson's disease, essential tremor, and dystonia, and is explored as an experimental treatment for psychiatric disorders like major depression and obsessive compulsive disorder. This mini review discus

  12. Stimulated secondary emission from semiconductor microcavities

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner

    2001-01-01

    We find strong influence of final-state stimulation on the time-resolved light emission dynamics from semiconductor microcavities after pulsed excitation allowing angle-resonant polariton-polariton scattering on the lower-polariton branch. The polariton dynamics can be controlled by injection of ...

  13. Social Early Stimulation of Trisomy-21 Babies

    Science.gov (United States)

    Aparicio, Maria Teresa Sanz; Balana, Javier Menendez

    2003-01-01

    This study was initiated with twenty Down's syndrome babies to verify whether subjects undergoing social early stimulation would benefit from this type of treatment. An experimental study was designed with two training groups: visual or written instructions. The analyses of the results established statistically significant differences in the…

  14. Stimulant ADHD Medications -- Methylphenidate and Amphetamines

    Science.gov (United States)

    ... to improve ADHD symptoms along with the patient’s self-esteem, thinking ability, and social and family interactions. Do ... that stimulants prescribed to treat a child’s or adolescent’s ADHD could affect an individual’s vulnerability to developing ...

  15. Anal sphincter responses after perianal electrical stimulation

    DEFF Research Database (Denmark)

    Pedersen, Ejnar; Klemar, B; Schrøder, H D

    1982-01-01

    By perianal electrical stimulation and EMG recording from the external anal sphincter three responses were found with latencies of 2-8, 13-18 and 30-60 ms, respectively. The two first responses were recorded in most cases. They were characterised by constant latency and uniform pattern, were...

  16. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  17. Strigolactones stimulate internode elongation independently of gibberellins.

    Science.gov (United States)

    de Saint Germain, Alexandre; Ligerot, Yasmine; Dun, Elizabeth A; Pillot, Jean-Paul; Ross, John J; Beveridge, Christine A; Rameau, Catherine

    2013-10-01

    Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation.

  18. Multimodal pain stimulation of the gastrointestinal tract

    Institute of Scientific and Technical Information of China (English)

    Asbjφrn Mohr Drewes; Hans Gregersen

    2006-01-01

    Understanding and characterization of pain and other sensory symptoms are among the most important issues in the diagnosis and assessment of patient with gastrointestinal disorders. Methods to evoke and assess experimental pain have recently developed into a new area with the possibility for multimodal stimulation (e.g.,electrical, mechanical, thermal and chemical stimulation)of different nerves and pain pathways in the human gut. Such methods mimic to a high degree the pain experienced in the clinic. Multimodal pain methods have increased our basic understanding of different peripheral receptors in the gut in health and disease. Together with advanced muscle analysis, the methods have increased our understanding of receptors sensitive to mechanical,chemical and temperature stimuli in diseases, such as systemic sclerosis and diabetes. The methods can also be used to unravel central pain mechanisms, such as those involved in allodynia, hyperalgesia and referred pain. Abnormalities in central pain mechanisms are often seen in patients with chronic gut pain and hence methods relying on multimodal pain stimulation may help to understand the symptoms in these patients.Sex differences have been observed in several diseases of the gut, and differences in central pain processing between males and females have been hypothesized using multimodal pain stimulations. Finally, multimodal methods have recently been used to gain more insight into the effect of drugs against pain in the GI tract.Hence, the multimodal methods undoubtedly represents a major step forward in the future characterization and treatment of patients with various diseases of the gut.

  19. Optically stimulated luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...

  20. Ovarian hyper stimulation syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Arti Patidar

    2016-07-01

    Full Text Available We present here a rare case ovarian hyper stimulation syndrome. In the case patient came with complain of abdominal pain, distension, nausea, vomiting with known case of secondary infertility. [Int J Reprod Contracept Obstet Gynecol 2016; 5(7.000: 2418-2420

  1. Spinal cord stimulation in chronic pain syndromes

    NARCIS (Netherlands)

    ten Vaarwerk, IAM; Staal, MJ

    1998-01-01

    Spinal cord stimulation (SCS) has been used for more than 30 years now, and although it has shown to be effective under certain well-described conditions of chronic pain, conclusive evidence on its effectiveness is still sparse. There is a need for more prospective and methodological good studies, i

  2. Computer Games Functioning as Motivation Stimulants

    Science.gov (United States)

    Lin, Grace Hui Chin; Tsai, Tony Kung Wan; Chien, Paul Shih Chieh

    2011-01-01

    Numerous scholars have recommended computer games can function as influential motivation stimulants of English learning, showing benefits as learning tools (Clarke and Dede, 2007; Dede, 2009; Klopfer and Squire, 2009; Liu and Chu, 2010; Mitchell, Dede & Dunleavy, 2009). This study aimed to further test and verify the above suggestion,…

  3. Stimulating reflection through engagement in social relationships

    NARCIS (Netherlands)

    Rajagopal, Kamakshi; Verjans, Steven; Van Bruggen, Jan; Sloep, Peter

    2011-01-01

    Rajagopal, K., Verjans, S., Van Bruggen, J., & Sloep, P. B. (2011). Stimulating reflection through engagement in social relationships. In W. Reinhardt, T. D. Ullmann, P. Scott, V. Pammer, O. Conlan, & A. J. Berlanga (Eds.), Proceedings of the 1st European Workshop on Awareness and Reflection in

  4. Heart rate control via vagus nerve stimulation

    NARCIS (Netherlands)

    Buschman, Hendrik P.; Storm, Corstiaan J.; Duncker, Dirk J.; Verdouw, Pieter D.; Aa, van der Hans E.; Kemp, van der Peter

    2006-01-01

    Objectives: There is ample and well-established evidence that direct electrical stimulation of the vagus nerve can change heart rate in animals and humans. Since tachyarrhythmias cannot always be controlled through medication, we sought, in this pilot study, to elucidate whether a clinical implantab

  5. Fidget Blankets: A Sensory Stimulation Outreach Program.

    Science.gov (United States)

    Kroustos, Kelly Reilly; Trautwein, Heidi; Kerns, Rachel; Sobota, Kristen Finley

    2016-01-01

    Behavioral and Psychological Symptoms of Dementia (BPSD) include behaviors such as aberrant motor behavior, agitation, anxiety, apathy, delusions, depression, disinhibition, elation, hallucinations, irritability, and sleep or appetite changes. A student-led project to provide sensory stimulation in the form of "fidget blankets" developed into a community outreach program. The goal was to decrease the use of antipsychotics used for BPSD.

  6. Peripheral neural activity recording and stimulation system.

    Science.gov (United States)

    Loi, D; Carboni, C; Angius, G; Angotzi, G N; Barbaro, M; Raffo, L; Raspopovic, S; Navarro, X

    2011-08-01

    This paper presents a portable, embedded, microcontroller-based system for bidirectional communication (recording and stimulation) between an electrode, implanted in the peripheral nervous system, and a host computer. The device is able to record and digitize spontaneous and/or evoked neural activities and store them in data files on a PC. In addition, the system has the capability of providing electrical stimulation of peripheral nerves, injecting biphasic current pulses with programmable duration, intensity, and frequency. The recording system provides a highly selective band-pass filter from 800 Hz to 3 kHz, with a gain of 56 dB. The amplification range can be further extended to 96 dB with a variable gain amplifier. The proposed acquisition/stimulation circuitry has been successfully tested through in vivo measurements, implanting a tf-LIFE electrode in the sciatic nerve of a rat. Once implanted, the device showed an input referred noise of 0.83 μVrms, was capable of recording signals below 10 μ V, and generated muscle responses to injected stimuli. The results demonstrate the capability of processing and transmitting neural signals with very low distortion and with a power consumption lower than 1 W. A graphic, user-friendly interface has been developed to facilitate the configuration of the entire system, providing the possibility to activate stimulation and monitor recordings in real time.

  7. Investigating Tactile Stimulation in Symbiotic Systems

    DEFF Research Database (Denmark)

    Orso, Valeria; Mazza, Renato; Gamberini, Luciano

    2017-01-01

    The core characteristics of tactile stimuli, i.e., recognition reliability and tolerance to ambient interference, make them an ideal candidate to be integrated into a symbiotic system. The selection of the appropriate stimulation is indeed important in order not to hinder the interaction from the...

  8. Stimulating Strategically Aligned Behaviour among Employees

    NARCIS (Netherlands)

    C.B.M. van Riel (Cees); G.A.J.M. Berens (Guido); M. Dijkstra (Majorie)

    2008-01-01

    textabstractStrategically aligned behaviour (SAB), i.e., employee action that is consistent with the company’s strategy, is of vital importance to companies. This study provides insights into the way managers can promote such behaviour among employees by stimulating employee motivation and by inform

  9. Stimulating Strategically Aligned Behaviour Among Employees

    NARCIS (Netherlands)

    C.B.M. van Riel (Cees); G.A.J.M. Berens (Guido); M. Dijkstra (Majorie)

    2007-01-01

    textabstractIn recent years it has become increasingly important for companies to ensure strategically aligned behaviour, i.e., employee actions that are consistent with the company’s strategy. This study provides insights into the way companies can stimulate such behaviour through motivating and in

  10. Motor-Cognitive Stimulation of the Elderly

    Science.gov (United States)

    Cao, Ana Rey; Lacruz, Inmaculada Canales; Pais, Maria Ines Taboas

    2011-01-01

    This article shows the cognitive and motor-perceptive effects of the application of a cognitive stimulating program through motor function on 234 elderly people. The assessment was carried out prior to and after the program. Significant improvements in the experimental group were observed (p [less than or equal to] 0.05) in six of the eight…

  11. Social Early Stimulation of Trisomy-21 Babies

    Science.gov (United States)

    Aparicio, Maria Teresa Sanz; Balana, Javier Menendez

    2003-01-01

    This study was initiated with twenty Down's syndrome babies to verify whether subjects undergoing social early stimulation would benefit from this type of treatment. An experimental study was designed with two training groups: visual or written instructions. The analyses of the results established statistically significant differences in the…

  12. Stimulating reflection through engagement in social relationships

    NARCIS (Netherlands)

    Rajagopal, Kamakshi; Verjans, Steven; Van Bruggen, Jan; Sloep, Peter

    2011-01-01

    Rajagopal, K., Verjans, S., Van Bruggen, J., & Sloep, P. B. (2011). Stimulating reflection through engagement in social relationships. In W. Reinhardt, T. D. Ullmann, P. Scott, V. Pammer, O. Conlan, & A. J. Berlanga (Eds.), Proceedings of the 1st European Workshop on Awareness and Reflection in Lear

  13. Optically stimulated luminescence dating of young sediments

    DEFF Research Database (Denmark)

    Madsen, A.T.; Murray, A.S.

    2009-01-01

    Optically stimulated luminescence (OSL) dating of young (< 1000 years) sediments is used increasingly in a wide variety of late-Holocene studies as a mean of establishing contemporary sedimentation rates or the timing of sediment deposition. This paper provides a summary of the basic principles o...

  14. Motor cortex stimulation in Parkinson's disease.

    Science.gov (United States)

    De Rose, Marisa; Guzzi, Giusy; Bosco, Domenico; Romano, Mary; Lavano, Serena Marianna; Plastino, Massimiliano; Volpentesta, Giorgio; Marotta, Rosa; Lavano, Angelo

    2012-01-01

    Motor Cortex Stimulation (MCS) is less efficacious than Deep Brain Stimulation (DBS) in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27-31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39), and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD). During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27-31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  15. Motor Cortex Stimulation in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Marisa De Rose

    2012-01-01

    Full Text Available Motor Cortex Stimulation (MCS is less efficacious than Deep Brain Stimulation (DBS in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27–31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39, and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD. During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27–31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  16. Ultrasound stimulation of mandibular bone defect healing

    NARCIS (Netherlands)

    Schortinghuis, Jurjen

    2004-01-01

    The conclusions of the experimental work presented in this thesis are: 1. Low intensity pulsed ultrasound is not effective in stimulating bone growth into a rat mandibular defect, either with or without the use of osteoconductive membranes. 2. Low intensity pulsed ultrasound does not seem to have an

  17. Extra Stimulation in Intermediate Grade Reading.

    Science.gov (United States)

    Mason, George E.

    Three types of extra stimulation in reading are discussed: extra teacher time devoted to teaching reading, extra student time devoted to practice in reading, and extra motivation and reinforcement leading to greater amounts of student reading outside the school. Problems are created (1) when teaching time spent on reading is increased in the…

  18. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  19. Deep Brain Stimulation - the challenges ahead

    NARCIS (Netherlands)

    Heida, T.; Holsheimer, J.; Geelen, J.A.G.; Veltink, P.H.

    2005-01-01

    Parkinson’s disease (PD) is characterized by progressive loss of dopamine neurons in the pars compacta of the substantia nigra, which results in reduced activity in the thalamus. Clinically effective deep brain stimulation (DBS) has been achieved with electrode contacts in the anterior- dorsal subth

  20. Growth stimulation of Brevibacterium sp. by siderophores

    NARCIS (Netherlands)

    Noordman, W.H.; Reissbrodt, R.; Bongers, R.S.; Rademaker, J.L.W.; Bockelmann, W.; Smit, G.

    2006-01-01

    To assess which types of siderophores are typically produced by Brevibacterium and how siderophore production and utilization traits are distributed within this genus. Methods and Results: During co-cultivation experiments it was found that growth of B. linens Br5 was stimulated by B. linens NIZO B1

  1. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation.

    Directory of Open Access Journals (Sweden)

    Bryan Howell

    Full Text Available Spinal cord stimulation (SCS is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS

  2. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    Science.gov (United States)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  3. Simultaneous application of slow-oscillation transcranial direct current stimulation and theta burst stimulation prolongs continuous theta burst stimulation-induced suppression of corticomotor excitability in humans.

    Science.gov (United States)

    Doeltgen, Sebastian H; McAllister, Suzanne M; Ridding, Michael C

    2012-09-01

    The objective of this study was to assess whether the simultaneous application of slow-oscillation transcranial direct current stimulation enhances the neuroplastic response to transcranial magnetic theta burst stimulation. Motor evoked potential amplitude was assessed at baseline and at regular intervals up to 60 min following continuous theta burst stimulation, slow-oscillation transcranial direct current stimulation, and the simultaneous application of these paradigms. In addition, the electroencephalographic power spectra of slow and fast delta, and theta frequency bands recorded over the motor cortex were analyzed prior to and up to 5 min following each intervention. There was longer-lasting motor evoked potential suppression following the simultaneous application of continuous theta burst stimulation and slow-oscillation transcranial direct current stimulation compared with when continuous theta burst stimulation was applied alone. Slow-oscillation transcranial direct current stimulation applied alone did not modulate the motor evoked potential amplitude. No significant changes in spectral power were observed following slow-oscillation transcranial direct current stimulation. Simultaneous application of continuous theta burst stimulation and slow-oscillation transcranial direct current stimulation may provide an approach to prolong the induction of neuroplastic changes in motor cortical circuits by repetitive transcranial magnetic brain stimulation.

  4. Rabbits immunized with thyroid-stimulating hormone produce autoantiidiotypic thyroid-stimulating antibodies.

    OpenAIRE

    Beall, G N; Rapoport, B; Chopra, I J; Kruger, S R

    1985-01-01

    We immunized rabbits with thyroid-stimulating hormone (TSH) to investigate the hypothesis that such immunization could result in production of thyroid-stimulating autoantiidiotypic antibodies to anti-TSH. Thyroid-stimulating immunoglobulin (TSI) appeared in the serum of several rabbits after immunization. At 160 d, TSI equivalent to 6-18 microU TSH/1.5 mg IgG was present in two of six human (h)TSH-, two of six hTSH beta chain-, and two of the four surviving bovine (b)TSH-immunized animals. Co...

  5. Geothermal reservoir categorization and stimulation study

    Energy Technology Data Exchange (ETDEWEB)

    Overton, H.L.; Hanold, R.J.

    1977-07-01

    Analyses of the fraction of geothermal wells that are dry (dry-hole fraction) indicate that geothermal reservoirs can be fitted into four basic categories: (i) Quaternary to late Tertiary sediments (almost no dry holes); (ii) Quaternary to late Tertiary extrusives (approximately 20 percent dry holes); (iii) Mesozoic or older metamorphic rocks (approximately 25-30 percent dry holes); and (iv) Precambrian or younger rocks (data limited to Roosevelt Springs where 33 percent of the wells were dry). Failure of geothermal wells to flow economically is due mainly to low-permeability formations in unfractured regions. Generally the permeability correlates inversely with the temperature-age product and directly with the original rock porosity and pore size. However, this correlation fails whenever high-stress fields provide vertical fracturing or faulting, and it is the high-stress/low-permeability category that is most amenable to artificial stimulation by hydraulic fracturing, propellant fracturing, or chemical explosive fracturing. Category (i) geothermal fields (e.g., Cerro Prieto, Mexico; Niland, CA; East Mesa, CA) are not recommended for artificial stimulation because these younger sediments almost always produce warm or hot water. Most geothermal fields fit into category (ii) (e.g., Wairakei, New Zealand; Matsukawa, Japan; Ahuachapan, El Salvador) and in the case of Mt. Home, ID, and Chandler, AZ, possess some potential for stimulation. The Geysers is a category (iii) field, and its highly stressed brittle rocks should make this site amenable to stimulation by explosive fracturing techniques. Roosevelt Springs, UT, well 9-1 is in category (iv) and is a flow failure. It represents a prime candidate for stimulation by hydraulic fracturing because it has a measured temperature of 227/sup 0/C, is cased and available for experimentation, and is within 900 m of an excellent geothermal producing well.

  6. Tissue damage thresholds during therapeutic electrical stimulation

    Science.gov (United States)

    Cogan, Stuart F.; Ludwig, Kip A.; Welle, Cristin G.; Takmakov, Pavel

    2016-04-01

    Objective. Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device

  7. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  8. Provocative stimulation of the hypothalamic-pituitary-testicular axis in men with spinal cord injury.

    Science.gov (United States)

    Bauman, W A; La Fountaine, M F; Cirnigliaro, C M; Kirshblum, S C; Spungen, A M

    2016-11-01

    Prospective study. To determine the integrity of the hypothalamic-pituitary-testicular axis in healthy men with spinal cord injury (SCI). Thirty healthy men with chronic SCI (37±10 years) and thirty-eight able-bodied (AB) controls (36±10 years) participated. Gonadotropin-releasing hormone (GnRH; 100 μg IV) was administered to determine gonadotropin release, and human chorionic gonadotropin (hCG; 4000 IU IM) was administered to determine testosterone (T) secretion. Responses to stimulation were categorized as 'responder' or 'non-responder' by clinical criteria. Single factor ANOVA with repeated measures was performed to identify group differences. The proportion of responders to pituitary GnRH stimulation was similar in the SCI group (22 subjects (73%) for the follicular-stimulating hormone (FSH) and 23 subjects (76%) for the luteinizing hormone (LH) to that of the AB group. The SCI-responder group had an increased FSH response after stimulation compared with the AB-responder group (Pstimulation than the AB-responder group (P=0.06). The peak FSH response was at 60 min and the peak LH response at 30 min, regardless of group designation. All groups had similar increases in serum T concentration to hCG stimulation. The pituitary response to stimulation in healthy men with SCI revealed an augmented FSH response; LH response only trended higher. The testicular response to provocative stimulation was similar in hypogonadal and eugondal subjects and in GnRH responders and non-responders. These findings suggest a lack of hypothalamic drive of pituitary gonadotropin release in healthy people with chronic SCI.

  9. Phase-dependent modulation as a novel approach for therapeutic brain stimulation

    Directory of Open Access Journals (Sweden)

    Ramin eAzodi-Avval

    2015-02-01

    Full Text Available Closed-loop paradigms provide us with the opportunity to optimize stimulation protocols for perturbation of pathological oscillatory activity in brain-related disorders. In this vein, spiking activity of motor cortex neurons and beta activity of local field potentials in the subthalamic nucleus have both been used independently of each other as neuronal signals to trigger deep brain stimulation for alleviating Parkinsonism. These approaches were superior to the standard continuous high-frequency stimulation protocols used in daily practice. However, they achieved their effects by bursts of stimulation that were applied at high-frequency as well, i.e. independent of the phase information in the stimulated region. In this context, we propose that, by timing stimulation pulses relative to the ongoing oscillation, an alternative approach, namely the targeted perturbation of pathological rhythms, could be obtained.In this modeling study, we first captured the underlying dynamics of neuronal oscillations in the human subthalamic nucleus by phased coupled neuronal oscillators. We then quantified the nature of the interaction between these coupled oscillators by obtaining a physiologically informed phase response curve from local field potentials. Reconstruction of the phase response curve predicted the sensitivity of the phase oscillator to external stimuli, revealing phase intervals that optimally maximized the degree of perturbation. We conclude that our specifically timed intervention based on the coupled oscillator concept will enable us to identify personalized ways of delivering stimulation pulses in closed-loop paradigms triggered by the phase of pathological oscillations. This will pave the way for novel physiological insights and substantial clinical benefits. In addition, this precisely phased modulation may be capable of modifying the effective interactions between oscillators in an entirely new manner.

  10. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  11. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    Directory of Open Access Journals (Sweden)

    Abhilash ePonnath

    2014-07-01

    Full Text Available Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds or presented on a sound-by-sound basis (ms, experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses, excitability (spikes / acoustic stimulus to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted < 2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  12. Increased adhesiveness of complement-stimulated neonatal calf neutrophils and its pharmacologic inhibition.

    Science.gov (United States)

    Zwahlen, R D; Slauson, D O; Neilsen, N R; Clifford, C B

    1987-06-01

    Several in vitro functions of neonatal neutrophils (N-PMN) have been reported to be deficient and may be functionally related to the increased susceptibility of the newborn to infection. To evaluate an in vitro event corresponding to one of the early steps in the sequence of inflammation, we used zymosan-activated plasma as a source of activated complement fragments (Cf) and measured adherence of normal and Cf-stimulated bovine N-PMN to columns of Sephadex G-25. Adherence of control N-PMN and adult PMN (A-PMN) was comparable. When N-PMN and A-PMN were stimulated with a subaggregating dose of Cf, both responded with similar increases in adhesiveness. The stimulatory effect of Cf on N-PMN adhesiveness could be inhibited by pre-incubation of the N-PMN with either steroidal (0.05 mM dexamethasone) or non-steroidal (32 mM phenylbutazone) anti-inflammatory drugs. Ultrastructural observations correlated well with the results of the adhesiveness assays, and morphometric evaluation revealed an increase in the sectional circumference of Cf-stimulated N-PMN. Control cells were round with few short cytoplasmic projections, whereas Cf-stimulated cells exhibited marked shape irregularity, polarity, and prominent organelle-free lamellipodia development. There was a highly significant (P less than 0.001) increase in the measured circumference of Cf-stimulated cells. Thus, N-PMN were highly responsive to Cf stimulation, developed morphologic and functional changes indistinguishable from Cf-stimulated A-PMN, and were sensitive to pharmacologic inhibition.

  13. [Endobronchial hamartoma revealed by hemoptysis].

    Science.gov (United States)

    Smati, Belhassen; Boudaya, Mohamed Sadok; Mestiri, Taher; Djilani, Habiba; Mezni, Faouzi; Kilani, Tarek

    2005-05-01

    Hamartoma is the most frequent benign tumor of the lung. Its endo bronchial location is rare. We report two cases of endo bronchial hamartoma occurring in 2 men aged 68 and 60 years respectively. The two cases were revealed by hemoptysis. Bronchial fibroscopy showed a bud respectively in the left stump and in the lower left bronchus. Treatment consisted in a pneumonectomy and a lower lobectomy. A histological examination confirmed the diagnosis of endo bronchial hamartoma. Diagnosis of endobronchial hamartoma before surgery is difficult. Pulmonary resections are often necessary because of parenchyma lelions caused bronchial obstruction.

  14. Transparency masters for mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1980-01-01

    Transparency Masters for Mathematics Revealed focuses on master diagrams that can be used for transparencies for an overhead projector or duplicator masters for worksheets. The book offers information on a compilation of master diagrams prepared by John R. Stafford, Jr., audiovisual supervisor at the University of Missouri at Kansas City. Some of the transparencies are designed to be shown horizontally. The initial three masters are number lines and grids that can be used in a mathematics course, while the others are adaptations of text figures which are slightly altered in some instances. The

  15. Effects of Constant and Doublet Frequency Electrical Stimulation Patterns on Force Production of Knee Extensor Muscles.

    Science.gov (United States)

    Cometti, Carole; Babault, Nicolas; Deley, Gaëlle

    2016-01-01

    This study compared knee extensors' neuromuscular fatigue in response to two 30-minute stimulation patterns: constant frequency train (CFT) and doublet frequency train (DFT). Fifteen men underwent two separate sessions corresponding to each pattern. Measurements included torque evoked by each contraction and maximal voluntary contractions (MVC) measured before and immediately after the stimulation sessions. In addition, activation level and torque evoked during doublets (Pd) and tetanic contractions at 80-Hz (P80) and 20-Hz (P20) were determined in six subjects. Results indicated greater mean torque during the DFT stimulation session as compared with CFT. But, no difference was obtained between the two stimulation patterns for MVC and evoked torque decreases. Measurements conducted in the subgroup depicted a significant reduction of Pd, P20 and P80. Statistical analyses also revealed bigger P20 immediate reductions after CFT than after DFT. We concluded that DFT could be a useful stimulation pattern to produce and maintain greater force with quite similar fatigue than CFT.

  16. Effects of Constant and Doublet Frequency Electrical Stimulation Patterns on Force Production of Knee Extensor Muscles.

    Directory of Open Access Journals (Sweden)

    Carole Cometti

    Full Text Available This study compared knee extensors' neuromuscular fatigue in response to two 30-minute stimulation patterns: constant frequency train (CFT and doublet frequency train (DFT. Fifteen men underwent two separate sessions corresponding to each pattern. Measurements included torque evoked by each contraction and maximal voluntary contractions (MVC measured before and immediately after the stimulation sessions. In addition, activation level and torque evoked during doublets (Pd and tetanic contractions at 80-Hz (P80 and 20-Hz (P20 were determined in six subjects. Results indicated greater mean torque during the DFT stimulation session as compared with CFT. But, no difference was obtained between the two stimulation patterns for MVC and evoked torque decreases. Measurements conducted in the subgroup depicted a significant reduction of Pd, P20 and P80. Statistical analyses also revealed bigger P20 immediate reductions after CFT than after DFT. We concluded that DFT could be a useful stimulation pattern to produce and maintain greater force with quite similar fatigue than CFT.

  17. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    Science.gov (United States)

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  18. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  19. Efficacy of EMG/bioimpedance-triggered functional electrical stimulation on swallowing performance

    Directory of Open Access Journals (Sweden)

    Corinna Schultheiss

    2016-08-01

    Full Text Available In order to support swallowing, the efficacy of functional electrical stimulation for different stimulation settings of the submental musculature has been investigated. The stimulation was administrated at rest and synchronously to voluntary initiated swallows. The onset of a swallow was detected in real-time by a combined electromyography/ bioimpedance measurement at the neck in order to trigger the stimulation. The amplitude and speed of larynx elevation caused by the FES has been assessed by the observed change in bioimpedance whereas a reduction of bioimpedance corresponds to an increase in larynx elevation. Study results from 40 healthy subjects revealed that 73% of the subjects achieved a larger and faster larynx elevation during swallowing with triggered FES and therefor a better protection of their airways. However, we also observed a decrease in larynx elevation compared to normal swallowing in 11 out of the 40 subjects what might not benefit from such a treatment. The largest improvement of larynx elevation and speed during swallowing could be achieved with three stimulation channels formed by four electrodes in the submental region.

  20. Sustained Inhibition of Proliferative Response After Transient FGF Stimulation Is Mediated by Interleukin 1 Signaling.

    Science.gov (United States)

    Poole, Ashleigh; Kacer, Doreen; Cooper, Emily; Tarantini, Francesca; Prudovsky, Igor

    2016-03-01

    Transient FGF stimulation of various cell types results in FGF memory--a sustained blockage of efficient proliferative response to FGF and other growth factors. FGF memory establishment requires HDAC activity, indicating its epigenetic character. FGF treatment stimulates proinflammatory NFκB signaling, which is also critical for FGF memory formation. The search for FGF-induced mediators of FGF memory revealed that FGF stimulates HDAC-dependent expression of the inflammatory cytokine IL1α. Similarly to FGF, transient cell treatment with recombinant IL1α inhibits the proliferative response to further FGF and EGF stimulation, but does not prevent FGF receptor-mediated signaling. Interestingly, like cells pretreated with FGF1, cells pretreated with IL1α exhibit enhanced restructuring of actin cytoskeleton and increased migration in response to FGF stimulation. IRAP, a specific inhibitor of IL 1 receptor, and a neutralizing anti-IL1α antibody prevent the formation of FGF memory and rescue an efficient proliferative response to FGF restimulation. A similar effect results following treatment with the anti-inflammatory agents aspirin and dexamethasone. Thus, FGF memory is mediated by proinflammatory IL1 signaling. It may play a role in the limitation of proliferative response to tissue damage and prevention of wound-induced hyperplasia.