WorldWideScience

Sample records for voluntary contraction torque

  1. Twitch potentiation induced by stimulated and voluntary isometric contractions at various torque levels in human knee extensor muscles.

    Science.gov (United States)

    Miyamoto, Naokazu; Yanai, Toshimasa; Kawakami, Yasuo

    2011-03-01

    The purpose of this study was to compare the extent of twitch potentiation (TP) after stimulated or voluntary contractions at identical intensities for the human knee extensor muscles. Isometric knee extensions of 10 s were performed at 20%, 40%, and 60% of maximal voluntary contraction (MVC) torque level, through percutaneous electrical stimulation of the quadriceps at 80 Hz or voluntary contraction. Twitch responses were evoked by stimulating the femoral nerve percutaneously with supramaximal intensity. The extent of TP after the stimulated contraction was greater than that after the voluntary contraction at the 20% MVC torque level, whereas a stimulated contraction induced a smaller extent of TP than did a voluntary contraction at contraction intensities higher than 40% MVC. We suggest that this contraction intensity dependence of differences in TP after stimulated and voluntary isometric conditioning contractions is responsible for differences in the recruitment pattern of motor units during the conditioning contractions.

  2. Effect of remote voluntary contractions on knee extensor torque and rate of velocity development.

    Science.gov (United States)

    Cherry, Emily A; Brown, Lee E; Coburn, Jared W; Noffal, Guillermo J

    2010-09-01

    Remote voluntary contractions (RVCs) are described as a muscle action of the prime mover while performing a simultaneous muscle action with another part of the body. Previous studies have shown that RVCs may elicit augmented performance of the prime mover. The purpose of this study was to evaluate the effect of RVCs on knee extensor rate of velocity development (RVD) and peak torque. Fourteen men and 16 women who were regularly active and free of any knee pathology for the past year took part in this study. Subjects performed 3 maximal dynamic knee extensions at 3 velocities with and without an RVC condition. The RVC condition consisted of holding hand dynamometers in each hand and maximally gripping while performing a maximal knee extension movement. The NO-RVC condition was the same only without gripping. Men produced greater peak torque and RVD than did women across speeds and conditions. Analysis demonstrated that RVC had no effect on knee extension peak torque, but RVD decreased in the RVC condition (NO-RVC 2,012.07 [46.52] degrees xs-1xs-1; RVC 1,882.61 [51.84] degrees xs-1xs-1). Grip strength of the left hand at 180 degrees xs-1decreased from 42.03 (14.40) to 38.83 (14.65) kg in the RVC condition. In conclusion, RVC should not be used when attempting to maximize RVD, because it may hinder results when performing a single joint movement.

  3. Neuromuscular fatigue following isometric contractions with similar torque time integral.

    Science.gov (United States)

    Rozand, V; Cattagni, T; Theurel, J; Martin, A; Lepers, R

    2015-01-01

    Torque time integral (TTI) is the combination of intensity and duration of a contraction. The aim of this study was to compare neuromuscular alterations following different isometric sub-maximal contractions of the knee extensor muscles but with similar TTI. Sixteen participants performed 3 sustained contractions at different intensities (25%, 50%, and 75% of Maximal Voluntary Contraction (MVC) torque) with different durations (68.5±33.4 s, 35.1±16.8 s and 24.8±12.9 s, respectively) but similar TTI value. MVC torque, maximal voluntary activation level (VAL), M-wave characteristics and potentiated doublet amplitude were assessed before and immediately after the sustained contractions. EMG activity of the vastus lateralis (VL) and -rectus femoris (RF) muscles was recorded during the sustained contractions. MVC torque reduction was similar in the 3 conditions after the exercise (-23.4±2.7%). VAL decreased significantly in a similar extent (-3.1±1.3%) after the 3 sustained contractions. Potentiated doublet amplitude was similarly reduced in the 3 conditions (-19.7±1.5%), but VL and RF M-wave amplitudes remained unchanged. EMG activity of VL and RF muscles increased in the same extent during the 3 contractions (VL: 54.5±40.4%; RF: 53.1±48.7%). These results suggest that central and peripheral alterations accounting for muscle fatigue are similar following isometric contractions with similar TTI. TTI should be considered in the exploration of muscle fatigue during sustained isometric contractions.

  4. Neuromuscular performance of maximal voluntary explosive concentric contractions is influenced by angular acceleration.

    Science.gov (United States)

    Hahn, D; Bakenecker, P; Zinke, F

    2016-12-28

    Torque production during maximal voluntary explosive contractions is considered to be a functionally more relevant neuromuscular measure than steady-state torque, but little is known about accelerated concentric contractions. This study investigated torque, muscle activity, and fascicle behavior during isometric and fast concentric contractions of quadriceps femoris. Ten participants performed maximal voluntary explosive isometric, isovelocity, and additional concentric knee extensions at angular accelerations ranging from 700 to 4000° s(-2) that resulted in an angular velocity of 300° s(-1) at 40° knee flexion. Concentric torque at 40° knee flexion was corrected for inertia, and the corresponding isometric torque was matched to the time when the target knee angle of 40° was reached during concentric contractions. Electromyography of quadriceps femoris and hamstrings and ultrasound of vastus lateralis were measured to determine muscle activity, fascicle length, and fascicle velocity (FV). The faster the acceleration, the more torque was produced during concentric contractions at 40° knee flexion, which was accompanied by a reduction in FV. In comparison with isometric conditions, concentric quadriceps muscle activity was increased and torque during accelerations ≥3000° s(-2) equaled the time-matched isometric torque. Our results provide novel evidence that acceleration influences torque production during maximal voluntary explosive concentric contractions. This is suggested to be due to series elasticity and reduced force depression.

  5. Differences in twitch potentiation between voluntary and stimulated quadriceps contractions of equal intensity.

    Science.gov (United States)

    Jubeau, M; Gondin, J; Martin, A; Van Hoecke, J; Maffiuletti, N A

    2010-02-01

    This study compared the extent of twitch and M-wave potentiation (POT) between voluntary and stimulated quadriceps contractions performed at the same intensity. Sixteen healthy men completed 10-s isometric knee extensions at 40% of the maximal voluntary contraction torque under electrical stimulation and voluntary conditions. Single stimuli were delivered to the femoral nerve to evoke twitches before (PRE) and from 3 to 600 s after the end of each conditioning contraction. Changes in twitch contractile properties and M-wave characteristics were compared between the conditions. The extent of twitch peak torque POT was smaller for the stimulated (122+/-20% of PRE) than for the voluntary condition (133+/-20% of PRE). The magnitude of POT for the maximal rate of twitch torque development was also smaller for the stimulated trial. Rectus femoris M-wave amplitude was potentiated by the voluntary but not by the stimulated contraction. It was concluded that stimulated contractions resulted in smaller twitch and M-wave POT than voluntary contractions, despite equivalent torque output and duration. The spatially and temporally fixed recruitment of motor units with electrical stimulation and therefore the lower number of activated motor units compared with voluntary actions of equal intensity could explain the present findings.

  6. Is co-contraction responsible for the decline in maximal knee joint torque in older males?

    Science.gov (United States)

    Billot, Maxime; Duclay, Julien; Simoneau-Buessinger, Emilie M; Ballay, Yves; Martin, Alain

    2014-04-01

    While it is often reported that muscular coactivation increases with age, the mechanical impact of antagonist muscles, i.e., the antagonist torque, remains to be assessed. The aim of this study was to determine if the mechanical impact of the antagonist muscles may contribute to the age-related decline in the resultant torque during maximal voluntary contraction in knee flexion (KF) and knee extension (KE). Eight young (19-28 years old) and eight older (62-81 years old) healthy males participated in neuromuscular testing. Maximal resultant torque was simultaneously recorded with the electromyographic activity of quadriceps and hamstring muscles. The torque recorded in the antagonist muscles was estimated using a biofeedback technique. Resultant torques significantly decreased with age in both KF (-41 %, p torques were significantly reduced in KF (-44 %, p torque elicited by double twitch stimulation (-37 %, p torques were not responsible for age-related declines in KF and KE resultant torques. Therefore, decreased resultant torques with age, in particular in KE, can primarily be explained by impairments of the peripheral factors (excitation-contraction coupling) as well as by decreased neural agonist activation.

  7. Within- and between-session reliability of the maximal voluntary knee extension torque and activation.

    Science.gov (United States)

    Park, Jihong; Hopkins, J Ty

    2013-01-01

    A ratio between the torque generated by maximal voluntary isometric contraction (MVIC) and exogenous electrical stimulus, central activation ratio (CAR), has been widely used to assess quadriceps function. To date, no data exist regarding between-session reliability of this measurement. Thirteen neurologically sound volunteers underwent three testing sessions (three trials per session) with 48 hours between-session. Subjects performed MVICs of the quadriceps with the knee locked at 90° flexion and the hip at 85°. Once the MVIC reached a plateau, an electrical stimulation from superimposed burst technique (SIB: 125 V with peak output current 450 mA) was manually delivered and transmitted directly to the quadriceps via stimulating electrodes. CAR was calculated by using the following equation: CAR = MVIC torque/MVIC + SIB torque. Intraclass correlation coefficients (ICC) were calculated within- (ICC((2,1))) and between-session (ICC((2,k))) for MVIC torques and CAR values. Our data show that quadriceps MVIC and CAR are very reliable both within- (ICC((2,1)) = 0.99 for MVIC; 0.94 for CAR) and between-measurement sessions (ICC((2,k)) = 0.92 for MVIC; 0.86 for CAR) in healthy young adults. For clinical research, more data of the patients with pathological conditions are required to ensure reproducibility of calculation of CAR.

  8. Neural activation during submaximal contractions seems more reflective of neuromuscular ageing than maximal voluntary activation

    Directory of Open Access Journals (Sweden)

    Gil eScaglioni

    2016-02-01

    Full Text Available This study aimed at testing the hypothesis that differences in neural activation strategy during submaximal but not maximal plantarflexions exist between young and older men. Eleven young men (YM, 26±4 yr and 13 OM (76±3 yr volunteered for the investigation. Maximal voluntary torque (MVT was 38.2%, lower (P<0.001 in OM than in YM, while voluntary activation was equivalent (~97%. The relationship between the interpolated twitch-torque and the voluntary torque (IT-VT relationship was composite (curvilinear+exponential for both age-groups. However, the OM showed accentuated concavity, as attested by the occurrence of the deviation from linearity at a lower contraction intensity (OM: 54.9 vs. YM: 71.9% MVT. In conclusion, ageing does not affect the capacity to fully activate the plantar flexors during maximal performances, but it alters the activation pattern for submaximal levels of effort. The greater age-related concavity of the IT-VT relationship suggests that, during submaximal contractions, OM need to reach a level of activation higher than YM to develop an equivalent relative torque.

  9. Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions.

    Science.gov (United States)

    Beltman, J G M; Sargeant, A J; van Mechelen, W; de Haan, A

    2004-08-01

    Voluntary activation levels during lengthening, isometric, and shortening contractions (angular velocity 60 degrees/s) were investigated by using electrical stimulation of the femoral nerve (triplet, 300 Hz) superimposed on maximal efforts. Recruitment of fiber populations was investigated by using the phosphocreatine-to-creatine ratio (PCr/Cr) of single characterized muscle fibers obtained from needle biopsies at rest and immediately after a series of 10 lengthening, isometric, and shortening contractions (1 s on/1 s off). Maximal voluntary torque was significantly higher during lengthening (270 +/- 55 N.m) compared with shortening contractions (199 +/- 47 N.m, P < 0.05) but was not different from isometric contractions (252 +/- 47 N.m). Isometric torque was higher than torque during shortening (P < 0.05). Voluntary activation level during maximal attempted lengthening contractions (79 +/- 8%) was significantly lower compared with isometric (93 +/- 5%) and shortening contractions (92 +/- 3%, P < 0.05). Mean PCr/Cr values of all fibers from all subjects at rest were 2.5 +/- 0.6, 2.0 +/- 0.7, and 2.0 +/- 0.7, respectively, for type I, IIa, and IIax fibers. After 10 contractions, the mean PCr/Cr values for grouped fiber populations (regardless of fiber type) were all significantly different from rest (1.3 +/- 0.2, 0.7 +/- 0.3, and 0.8 +/- 0.6 for lengthening, isometric, and shortening contractions, respectively; P < 0.05). The cumulative distributions of individual fiber populations after either contraction mode were significantly different from rest (P < 0.05). Curves after lengthening contractions were less shifted compared with curves from isometric and shortening contractions (P < 0.05), with a smaller shift for the type IIax compared with type I fibers in the lengthening contractions. The results indicate a reduced voluntary drive during lengthening contractions. PCr/Cr values of single fibers indicated a hierarchical order of recruitment of all fiber

  10. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.

    Science.gov (United States)

    Yeadon, Maurice R; King, Mark A; Wilson, Cassie

    2006-01-01

    The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

  11. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue.

    Science.gov (United States)

    Hunter, Sandra K; McNeil, Chris J; Butler, Jane E; Gandevia, Simon C; Taylor, Janet L

    2016-09-01

    This study determined whether short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) change during a sustained submaximal isometric contraction. On 2 days, 12 participants (6 men, 6 women) performed brief (7-s) elbow flexor contractions before and after a 10-min fatiguing contraction; all contractions were performed at the level of integrated electromyographic activity (EMG) which produced 25 % maximal unfatigued torque. During the brief 7-s and 10-min submaximal contractions, single (test) and paired (conditioning-test) transcranial magnetic stimuli were applied over the motor cortex (5 s apart) to elicit motor-evoked potentials (MEPs) in biceps brachii. SICI and ICF were elicited on separate days, with a conditioning-test interstimulus interval of 2.5 and 15 ms, respectively. On both days, integrated EMG remained constant while torque fell during the sustained contraction by ~51.5 % from control contractions, perceived effort increased threefold, and MVC declined by 21-22 %. For SICI, the conditioned MEP during control contractions (74.1 ± 2.5 % of unconditioned MEP) increased (less inhibition) during the sustained contraction (last 2.5 min: 86.0 ± 5.1 %; P contractions at 2 min (82.0 ± 3.8 %; P contractions (conditioned MEP 129.7 ± 4.8 % of unconditioned MEP) decreased (less facilitation) during the sustained contraction (last 2.5 min: 107.6 ± 6.8 %; P contractions after 2 min of recovery. Both intracortical inhibitory and facilitatory circuits become less excitable with fatigue when assessed during voluntary activity, but their different time courses of recovery suggest different mechanisms for the fatigue-related changes of SICI and ICF.

  12. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions.

    Science.gov (United States)

    Behrens, Martin; Mau-Moeller, Anett; Mueller, Karoline; Heise, Sandra; Gube, Martin; Beuster, Nico; Herlyn, Philipp K E; Fischer, Dagmar-C; Bruhn, Sven

    2016-02-01

    This study investigated effects of plyometric training (6 weeks, 3 sessions/week) on maximum voluntary contraction (MVC) strength and neural activation of the knee extensors during isometric, concentric and eccentric contractions. Twenty-seven participants were randomly assigned to the intervention or control group. Maximum voluntary torques (MVT) during the different types of contraction were measured at 110° knee flexion (180°=full extension). The interpolated twitch technique was applied at the same knee joint angle during isometric, concentric and eccentric contractions to measure voluntary activation. In addition, normalized root mean square of the EMG signal at MVT was calculated. The twitch torque signal induced by electrical nerve stimulation at rest was used to evaluate training-related changes at the muscle level. In addition, jump height in countermovement jump was measured. After training, MVT increased by 20Nm (95% CI: 5-36Nm, P=0.012), 24Nm (95% CI: 9-40Nm, P=0.004) and 27Nm (95% CI: 7-48Nm, P=0.013) for isometric, concentric and eccentric MVCs compared to controls, respectively. The strength enhancements were associated with increases in voluntary activation during isometric, concentric and eccentric MVCs by 7.8% (95% CI: 1.8-13.9%, P=0.013), 7.0% (95% CI: 0.4-13.5%, P=0.039) and 8.6% (95% CI: 3.0-14.2%, P=0.005), respectively. Changes in the twitch torque signal of the resting muscle, induced by supramaximal electrical stimulation of the femoral nerve, were not observed, indicating no alterations at the muscle level, whereas jump height was increased. Given the fact that the training exercises consisted of eccentric muscle actions followed by concentric contractions, it is in particular relevant that the plyometric training increased MVC strength and neural activation of the quadriceps muscle regardless of the contraction mode. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Multi-digit maximum voluntary torque production on a circular object

    Science.gov (United States)

    SHIM, JAE KUN; HUANG, JUNFENG; HOOKE, ALEXANDER W.; LATSH, MARK L.; ZATSIORSKY, VLADIMIR M.

    2010-01-01

    Individual digit-tip forces and moments during torque production on a mechanically fixed circular object were studied. During the experiments, subjects positioned each digit on a 6-dimensional force/moment sensor attached to a circular handle and produced a maximum voluntary torque on the handle. The torque direction and the orientation of the torque axis were varied. From this study, it is concluded that: (1) the maximum torque in the closing (clockwise) direction was larger than in the opening (counter clockwise) direction; (2) the thumb and little finger had the largest and the smallest share of both total normal force and total moment, respectively; (3) the sharing of total moment between individual digits was not affected by the orientation of the torque axis or by the torque direction, while the sharing of total normal force between the individual digit varied with torque direction; (4) the normal force safety margins were largest and smallest in the thumb and little finger, respectively. PMID:17454086

  14. Forearm muscle oxygenation decreases with low levels of voluntary contraction

    Science.gov (United States)

    Murthy, G.; Kahan, N. J.; Hargens, A. R.; Rempel, D. M.

    1997-01-01

    The purpose of our investigation was to determine if the near infrared spectroscopy technique was sensitive to changes in tissue oxygenation at low levels of isometric contraction in the extensor carpi radialis brevis muscle. Nine subjects were seated with the right arm abducted to 45 degrees, elbow flexed to 85 degrees, forearm pronated 45 degrees, and wrist and forearm supported on an armrest throughout the protocol. Altered tissue oxygenation was measured noninvasively with near infrared spectroscopy. The near infrared spectroscopy probe was placed over the extensor carpi radialis brevis of the subject's right forearm and secured with an elastic wrap. After 1 minute of baseline measurements taken with the muscle relaxed, four different loads were applied just proximal to the metacarpophalangeal joint such that the subjects isometrically contracted the extensor carpi radialis brevis at 5, 10, 15, and 50% of the maximum voluntary contraction for 1 minute each. A 3-minute recovery period followed each level of contraction. At the end of the protocol, with the probe still in place, a value for ischemic tissue oxygenation was obtained for each subject. This value was considered the physiological zero and hence 0% tissue oxygenation. Mean tissue oxygenation (+/-SE) decreased from resting baseline (100% tissue oxygenation) to 89 +/- 4, 81 +/- 8, 78 +/- 8, and 47 +/- 8% at 5, 10, 15, and 50% of the maximum voluntary contraction, respectively. Tissue oxygenation levels at 10, 15, and 50% of the maximum voluntary contraction were significantly lower (p muscle contraction and that near infrared spectroscopy is a sensitive technique for detecting deoxygenation noninvasively at low levels of forearm muscle contraction. Our findings have important implications in occupational medicine because oxygen depletion induced by low levels of muscle contraction may be directly linked to muscle fatigue.

  15. Stimulated contractions delay and prolong central fatigue compared with voluntary contractions in men.

    Science.gov (United States)

    Chaubet, Vincent; Cormery, Bruno; Maitre, Julien; Paillard, Thierry

    2013-05-01

    Voluntary and stimulated contractions are commonly used in sports training and rehabilitation, and it is well known that both these kinds of contractions generate central fatigue. However, to date, there is a lack of research on the comparison of the mechanisms by which these 2 exercises induce central disturbances. Central fatigue can be characterized by central activation failure during maximal voluntary contraction (MVC). Superimposition of an electrical stimulation onto MVC has been used to detect central activation failure. Completeness of activation has been quantified by the central activation ratio (CAR) = MVC/(MVC + stimulated force). The aim was not only to evaluate the CAR immediately after fatiguing voluntary (VOL) and stimulated (STIM) contractions but also to compare recovery duration over different time periods (prefatigue: PRE condition; immediate postfatigue: POST condition; after a 5-minute recovery: POST 5 condition; after a 30-minute recovery: POST 30 condition) (n = 18). Results showed that in the POST condition, the CAR is more affected for the VOL contractions than for the STIM contractions (p contractions only in the POST 5 condition (p contractions, whereas it was complete for the VOL contractions (p contractions alter the CAR more than the STIM contractions immediately after their completion. However, the effects of the STIM contractions on the CAR are delayed and prolonged.

  16. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man.

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2015-04-15

    Neuromuscular fatigue increases the amplitude of fluctuations in torque output during isometric contractions, but the effect of fatigue on the temporal structure, or complexity, of these fluctuations is not known. We hypothesised that fatigue would result in a loss of temporal complexity and a change in fractal scaling of the torque signal during isometric knee extensor exercise. Eleven healthy participants performed a maximal test (5 min of intermittent maximal voluntary contractions, MVCs), and a submaximal test (contractions at a target of 40% MVC performed until task failure), each with a 60% duty factor (6 s contraction, 4 s rest). Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified by calculating approximate entropy (ApEn), sample entropy (SampEn) and the detrended fluctuation analysis (DFA) scaling exponent α. Fresh submaximal contractions were more complex than maximal contractions (mean ± SEM, submaximal vs. maximal: ApEn 0.65 ± 0.09 vs. 0.15 ± 0.02; SampEn 0.62 ± 0.09 vs. 0.14 ± 0.02; DFA α 1.35 ± 0.04 vs. 1.55 ± 0.03; all P contractions (ApEn to 0.24 ± 0.05; SampEn to 0.22 ± 0.04; DFA α to 1.55 ± 0.03; all P contractions (ApEn to 0.10 ± 0.02; SampEn to 0.10 ± 0.02; DFA α to 1.63 ± 0.02; all P < 0.01). This loss of complexity and shift towards Brownian-like noise suggests that as well as reducing the capacity to produce torque, fatigue reduces the neuromuscular system's adaptability to external perturbations.

  17. Individual finger contribution in submaximal voluntary contraction of gripping.

    Science.gov (United States)

    Kong, Yong-Ku; Lee, Kyung-Sun; Kim, Dae-Min; Jung, Myung-Chul

    2011-11-01

    The objective of this study was to evaluate individual finger force and contribution to a gripping force, the difference between actual and expected finger forces and subjective discomfort rating at 10 different submaximal voluntary contraction (%MVC) levels (10-100% in 10 increments). Seventy-two participants randomly exerted gripping force with a multi-finger force measurement system. The individual finger force, gripping force and discomfort increased as %MVC levels increased. The middle and ring fingers exerted more force and contributed to a gripping force more than the index and little fingers due to their larger mass fractions of the digit flexor muscles. It was apparent at MVC; however, the index finger increased its contribution and exerted even more force than expected at more than 50% MVC. Subjective discomfort supported the results of the objective measures. This could explain the conflicting findings between index and ring fingers in previous finger contribution studies. STATEMENT OF RELEVANCE: Hand tool design is of special interest in ergonomics due to its association with musculoskeletal disorders in the hand. This study reveals a different contribution pattern of the fingers in submaximal voluntary contraction of gripping exertion.

  18. Combined application of neuromuscular electrical stimulation and voluntary muscular contractions.

    Science.gov (United States)

    Paillard, Thierry

    2008-01-01

    Electromyostimulation (EMS) and voluntary muscle contraction (VC) constitute different modes of muscle activation and induce different acute physiological effects on the neuromuscular system. Long-term application of each mode of muscle activation can produce different muscle adaptations. It seems theoretically possible to completely or partially cumulate the muscle adaptations induced by each mode of muscle activation applied separately. This work consisted of examining the literature concerning the muscle adaptations induced by long-term application of the combined technique (CT) [i.e. EMS is combined with VC - non-simultaneously] compared with VC and/or EMS alone in healthy subjects and/or athletes and in post-operative knee-injured subjects. In general, CT induced greater muscular adaptations than VC whether in sports training or rehabilitation. This efficiency would be due to the fact that CT can facilitate cumulative effects of training completely or partially induced by VC and EMS practiced alone. CT also provides a greater improvement of the performance of complex dynamic movements than VC. However, EMS cannot improve coordination between different agonistic and antagonistic muscles and thus does not facilitate learning the specific coordination of complex movements. Hence, EMS should be combined with specific sport training to generate neuromuscular adaptations, but also allow the adjustment of motor control during a voluntary movement. Likewise, in a therapeutic context, CT was particularly efficient to accelerate recovery of muscle contractility during a rehabilitation programme. Strength loss and atrophy inherent in a traumatism and/or a surgical operation would be more efficiently compensated with CT than with VC. Furthermore, CT also restored more functional abilities than VC. Finally, in a rehabilitation context, EMS is complementary to voluntary exercise because in the early phase of rehabilitation it elicits a strength increase, which is necessary

  19. Real-time changes in corticospinal excitability during voluntary contraction with concurrent electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Tomofumi Yamaguchi

    Full Text Available While previous studies have assessed changes in corticospinal excitability following voluntary contraction coupled with electrical stimulation (ES, we sought to examine, for the first time in the field, real-time changes in corticospinal excitability. We monitored motor evoked potentials (MEPs elicited by transcranial magnetic stimulation and recorded the MEPs using a mechanomyogram, which is less susceptible to electrical artifacts. We assessed the MEPs at each level of muscle contraction of wrist flexion (0%, 5%, or 20% of maximum voluntary contraction during voluntary wrist flexion (flexor carpi radialis (FCR voluntary contraction, either with or without simultaneous low-frequency (10 Hz ES of the median nerve that innervates the FCR. The stimulus intensity corresponded to 1.2 × perception threshold. In the FCR, voluntary contraction with median nerve stimulation significantly increased corticospinal excitability compared with FCR voluntary contraction without median nerve stimulation (p<0.01. In addition, corticospinal excitability was significantly modulated by the level of FCR voluntary contraction. In contrast, in the extensor carpi radialis (ECR, FCR voluntary contraction with median nerve stimulation significantly decreased corticospinal excitability compared with FCR voluntary contraction without median nerve stimulation (p<0.05. Thus, median nerve stimulation during FCR voluntary contraction induces reciprocal changes in cortical excitability in agonist and antagonist muscles. Finally we also showed that even mental imagery of FCR voluntary contraction with median nerve stimulation induced the same reciprocal changes in cortical excitability in agonist and antagonist muscles. Our results support the use of voluntary contraction coupled with ES in neurorehabilitation therapy for patients.

  20. Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort.

    Directory of Open Access Journals (Sweden)

    Daniel Hahn

    Full Text Available This study was designed to investigate the sites of potential specific modulations in the neural control of lengthening and subsequent isometric maximal voluntary contractions (MVCs versus purely isometric MVCs of the plantar flexor muscles, when there is enhanced torque during and following stretch. Ankle joint torque during maximum voluntary plantar flexion was measured by a dynamometer when subjects (n = 10 lay prone on a bench with the right ankle tightly strapped to a foot-plate. Neural control was analysed by comparing soleus motor responses to electrical nerve stimulation (M-wave, V-wave, electrical stimulation of the cervicomedullary junction (CMEP and transcranial magnetic stimulation of the motor cortex (MEP. Enhanced torque of 17 ± 8% and 9 ± 8% was found during and 2.5-3 s after lengthening MVCs, respectively. Cortical and spinal responsiveness was similar to that in isometric conditions during the lengthening MVCs, as shown by unchanged MEPs, CMEPs and V-waves, suggesting that the major voluntary motor pathways are not subject to substantial inhibition. Following the lengthening MVCs, enhanced torque was accompanied by larger MEPs (p ≤ 0.05 and a trend to greater V-waves (p ≤ 0.1. In combination with stable CMEPs, increased MEPs suggest an increase in cortical excitability, and enlarged V-waves indicate greater motoneuronal output or increased stretch reflex excitability. The new results illustrate that neuromotor pathways are altered after lengthening MVCs suggesting that the underlying mechanisms of the enhanced torque are not purely mechanical in nature.

  1. Maximum isometric knee flexor and extensor muscle contractions: normal patterns of torque versus time.

    Science.gov (United States)

    Murray, M P; Baldwin, J M; Gardner, G M; Sepic, S B; Downs, W J

    1977-06-01

    Isometric torque of the knee flexor and extensor muscles were recorded for 5 seconds at three knee joint positions. The subjects included healthy men in age groups from 20 to 35 and 45 to 65 years of age. The amplitudes and duration of peak torque and the time to peak torque were measured for each contraction. Peak torque was usually maintaned less than 0.1 second and never longer than 0.9 second. At each of the three angles, the mean extensor muscle torque was higher than the mean flexor muscle torque in both age groups, and the mean torque for both muscle group was higher among the younger than among the older man. The highest average torque was recorded at the knee angle of 60 degrees for the extensor muscles and 45 degrees for the flexor muscles, but this was not always a stereotyped response either for a given individual or among individuals.

  2. Hierarchical control of motor units in voluntary contractions.

    Science.gov (United States)

    De Luca, Carlo J; Contessa, Paola

    2012-01-01

    For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.

  3. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    Science.gov (United States)

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  4. Reflex changes in muscle spindle discharge during a voluntary contraction.

    Science.gov (United States)

    Aniss, A M; Gandevia, S C; Burke, D

    1988-03-01

    1. This study was undertaken to determine whether low-threshold cutaneous and muscle afferents from mechanoreceptors in the foot reflexly affect fusimotor neurons innervating the plantar and dorsiflexors of the ankle during voluntary contractions. 2. Recordings were made from 29 identified muscle spindle afferents innervating triceps surae and the pretibial flexors. Trains of electrical stimuli (5 stimuli, 300 impulses per second) were delivered to the sural nerve at the ankle (intensity: 2-4 times sensory threshold) and to the posterior tibial nerve at the ankle (intensity: 1.5-3 times motor threshold for the small muscles of the foot). The stimuli were delivered while the subject maintained an isometric voluntary contraction of the receptor-bearing muscle, sufficient to accelerate the discharge of each spindle ending. This ensured that the fusimotor neurons directed to the ending were active and influencing the spindle discharge. The effects of these stimuli on muscle spindle discharge were assessed using raster displays, frequencygrams, poststimulus time histograms (PSTHs) and cumulative sums ("CUSUMs") of the PSTHs. Reflex effects onto alpha-motoneurons were determined from poststimulus changes in the averaged rectified electromyogram (EMG). Reflex effects of these stimuli onto single-motor units were assessed in separate experiments using PSTHs and CUSUMs. 3. Electrical stimulation of the sural or posterior tibial nerves at nonnoxious levels had no significant effect on the discharge of the 14 spindle endings in the pretibial flexor muscles. The electrical stimuli also produced no significant change in discharge of 11 of 15 spindle endings in triceps surae. With the remaining four endings in triceps surae, the overall change in discharge appeared to be an increase for two endings (at latencies of 60 and 68 ms) and a decrease for two endings (at latencies of 110 and 150 ms). The difference in the incidence of the responses of spindle endings in tibialis

  5. Superimposed electrical stimulation comfortably improves the endurance of maximal voluntary contractions.

    OpenAIRE

    Boisgontier, Matthieu; Moineau, Bastien; Nougier, Vincent

    2012-01-01

    International audience; AIM: Electrical stimulation has shown to improve muscle endurance in sub-maximal contractions but sessions were painful due to the electric stimuli parameters. Therefore, the present study tested the effects of the superimposed electrical stimulation technique using comfortable current on endurance in repetitions of maximal voluntary contraction. METHODS: Seventeen young healthy subjects performed fifty maximal voluntary contractions of the triceps brachii in two condi...

  6. Time-dependent cortical activation in voluntary muscle contraction.

    Science.gov (United States)

    Yang, Qi; Wang, Xiaofeng; Fang, Yin; Siemionow, Vlodek; Yao, Wanxiang; Yue, Guang H

    2011-01-01

    This study was to characterize dynamic source strength changes estimated from high-density scalp electroencephalogram (EEG) at different phases of a submaximal voluntary muscle contraction. Eight healthy volunteers performed isometric handgrip contractions of the right arm at 20% maximal intensity. Signals of the handgrip force, electromyography (EMG) from the finger flexor and extensor muscles and 64-channel EEG were acquired simultaneously. Sources of the EEG were analyzed at 19 time points across preparation, execution and sustaining phases of the handgrip. A 3-layer boundary element model (BEM) based on the MNI (Montréal Neurological Institute) brain MRI was used to overlay the sources. A distributed current density model, LORETA L1 norm method was applied to the data that had been processed by independent component analysis (ICA). Statistical analysis based on a mixed-effects polynomial regression model showed a significant and consistent time-dependent non-linear source strength change pattern in different phases of the handgrip. The source strength increased at the preparation phase, peaked at the force onset time and decreased in the sustaining phase. There was no significant difference in the changing pattern of the source strength among Brodmann's areas 1, 2, 3, 4, and 6. These results show, for the first time, a high time resolution increasing-and-decreasing pattern of activation among the sensorimotor regions with the highest activity occurs at the muscle activity onset. The similarity in the source strength time courses among the cortical centers examined suggests a synchronized parallel function in controlling the motor activity.

  7. Trainability of muscular activity level during maximal voluntary co-contraction: comparison between bodybuilders and nonathletes.

    Directory of Open Access Journals (Sweden)

    Sumiaki Maeo

    Full Text Available Antagonistic muscle pairs cannot be fully activated simultaneously, even with maximal effort, under conditions of voluntary co-contraction, and their muscular activity levels are always below those during agonist contraction with maximal voluntary effort (MVE. Whether the muscular activity level during the task has trainability remains unclear. The present study examined this issue by comparing the muscular activity level during maximal voluntary co-contraction for highly experienced bodybuilders, who frequently perform voluntary co-contraction in their training programs, with that for untrained individuals (nonathletes. The electromyograms (EMGs of biceps brachii and triceps brachii muscles during maximal voluntary co-contraction of elbow flexors and extensors were recorded in 11 male bodybuilders and 10 nonathletes, and normalized to the values obtained during the MVE of agonist contraction for each of the corresponding muscles (% EMGMVE. The involuntary coactivation level in antagonist muscle during the MVE of agonist contraction was also calculated. In both muscles, % EMGMVE values during the co-contraction task for bodybuilders were significantly higher (P<0.01 than those for nonathletes (biceps brachii: 66±14% in bodybuilders vs. 46±13% in nonathletes, triceps brachii: 74±16% vs. 57±9%. There was a significant positive correlation between a length of bodybuilding experience and muscular activity level during the co-contraction task (r = 0.653, P = 0.03. Involuntary antagonist coactivation level during MVE of agonist contraction was not different between the two groups. The current result indicates that long-term participation in voluntary co-contraction training progressively enhances muscular activity during maximal voluntary co-contraction.

  8. Force depression following muscle shortening in sub-maximal voluntary contractions of human adductor pollicis.

    Science.gov (United States)

    Rousanoglou, Elissavet N; Oskouei, Ali E; Herzog, Walter

    2007-01-01

    Mechanical properties of skeletal muscles are often studied for controlled, electrically induced, maximal, or supra-maximal contractions. However, many mechanical properties, such as the force-length relationship and force enhancement following active muscle stretching, are quite different for maximal and sub-maximal, or electrically induced and voluntary contractions. Force depression, the loss of force observed following active muscle shortening, has been observed and is well documented for electrically induced and maximal voluntary contractions. Since sub-maximal voluntary contractions are arguably the most important for everyday movement analysis and for biomechanical models of skeletal muscle function, it is important to study force depression properties under these conditions. Therefore, the purpose of this study was to examine force depression following sub-maximal, voluntary contractions. Sets of isometric reference and isometric-shortening-isometric test contractions at 30% of maximal voluntary effort were performed with the adductor pollicis muscle. All reference and test contractions were executed by controlling force or activation using a feedback system. Test contractions included adductor pollicis shortening over 10 degrees, 20 degrees, and 30 degrees of thumb adduction. Force depression was assessed by comparing the steady-state isometric forces (activation control) or average electromyograms (EMGs) (force control) following active muscle shortening with those obtained in the corresponding isometric reference contractions. Force was decreased by 20% and average EMG was increased by 18% in the shortening test contractions compared to the isometric reference contractions. Furthermore, force depression was increased with increasing shortening amplitudes, and the relative magnitudes of force depression were similar to those found in electrically stimulated and maximal contractions. We conclude from these results that force depression occurs in sub

  9. Repeatability of maximal voluntary force and of surface EMG variables during voluntary isometric contraction of quadriceps muscles in healthy subjects.

    Science.gov (United States)

    Rainoldi, A; Bullock-Saxton, J E; Cavarretta, F; Hogan, N

    2001-12-01

    The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC). Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC>70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions.

  10. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles

    NARCIS (Netherlands)

    Zijdewind, Inge; Butler, Jane E.; Gandevia, Simon C.; Taylor, Janet L.

    2006-01-01

    During strong voluntary contractions, activity is not restricted to the target muscles. Other muscles, including contralateral muscles, often contract. We used transcranial magnetic stimulation (TMS) to analyse the origin of these unintended contralateral contractions (termed "associated" contractio

  11. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles

    NARCIS (Netherlands)

    Zijdewind, Inge; Butler, Jane E.; Gandevia, Simon C.; Taylor, Janet L.

    2006-01-01

    During strong voluntary contractions, activity is not restricted to the target muscles. Other muscles, including contralateral muscles, often contract. We used transcranial magnetic stimulation (TMS) to analyse the origin of these unintended contralateral contractions (termed "associated"

  12. Potentiation Increases Peak Twitch Torque by Enhancing Rates of Torque Development and Relaxation

    OpenAIRE

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscle...

  13. Time to Maximal Voluntary Isometric Contraction (MVC) for Five Different Muscle Groups in College Adults.

    Science.gov (United States)

    Morris, A. F.; And Others

    1983-01-01

    College men and women were studied to ascertain the force-time components of a rapid voluntary muscle contraction for five muscle groups. Researchers found that the time required for full contraction differs: (1) in men and women; and (2) among the five muscle groups. (Authors/PP)

  14. Disturbance of contralateral unipedal postural control after stimulated and voluntary contractions of the ipsilateral limb.

    Science.gov (United States)

    Paillard, Thierry; Chaubet, Vincent; Maitre, Julien; Dumitrescu, Michel; Borel, Liliane

    2010-12-01

    One session of sustained unilateral voluntary muscular contractions increases central fatigue and induces a cross-over of fatigue of homologous contralateral muscles. It is not known, however, how this cross-transfer affects contralateral unipedal postural control. Moreover, contralateral neurophysiological effects differ between voluntary muscular contractions and electrically stimulated contractions. The aims of this study were thus to examine the effects of muscle fatigue on contralateral unipedal postural control and to compare the effects of stimulated and voluntary contractions. Fifteen subjects took part in the protocol. Fatigue of the ipsilateral quadriceps femoris was generated either by neuromuscular electrical stimulation (NMES) or by isometric voluntary muscular contraction (VOL). Postural control on the contralateral limb was measured before (PRE condition) and after the completion of the two fatiguing exercises (POST condition) using a force platform. We analyzed body sway area and the spectral power density given by the wavelet transform. In POST condition, postural control recorded in the unipedal stance on the contralateral limb was disturbed after NMES and VOL fatiguing exercises. In addition, postural control was similarly disturbed for both exercises. These results suggest that cross-over fatigue is able to disturb postural control after both stimulated and voluntary contractions.

  15. Effect of antagonist muscle fatigue on knee extension torque.

    Science.gov (United States)

    Beltman, J G M; Sargeant, A J; Ball, D; Maganaris, C N; de Haan, A

    2003-09-01

    The effect of hamstring fatigue on knee extension torque was examined at different knee angles for seven male subjects. Before and after a dynamic flexion fatigue protocol (180 degrees s(-1), until dynamic torque had declined by 50%), maximal voluntary contraction extension torque was measured at four knee flexion angles (90 degrees, 70 degrees, 50 degrees and 30 degrees ). Maximal torque generating capacity and voluntary activation of the quadriceps muscle were determined using electrical stimulation. Average rectified EMG of the biceps femoris was determined. Mean dynamic flexion torque declined by 48+/-11%. Extensor maximal voluntary contraction torque, maximal torque generating capacity, voluntary activation and average rectified EMG at the four knee angles were unaffected by the hamstring fatigue protocol. Only at 50 degrees knee angle was voluntary activation significantly lower (15.7%) after fatigue ( P<0.05). In addition, average rectified EMG before fatigue was not significantly influenced by knee angle. It was concluded that a fatigued hamstring muscle did not increase the maximal voluntary contraction extension torque and knee angle did not change coactivation. Three possible mechanisms may explain the results: a potential difference in recruited fibre populations in antagonist activity compared with the fibres which were fatigued in the protocol, a smaller loss in isometric torque generating capacity of the hamstring muscle than was expected from the dynamic measurements and/or a reduction in voluntary activation.

  16. Maximal intermittent contractions of the first dorsal interosseous inhibits voluntary activation of the contralateral homologous muscle.

    Science.gov (United States)

    Kavanagh, Justin J; Feldman, Matthew R; Simmonds, Michael J

    2016-09-07

    The aim of this study was to investigate how maximal intermittent contractions for a hand muscle influence cortical and reflex activity, as well as the ability to voluntarily activate, the homologous muscle in the opposite limb. Twelve healthy subjects (age: 24 ± 3 years, all right hand dominant) performed maximal contractions of the dominant limb first dorsal interosseous (FDI), and activity of the contralateral FDI was examined in a series of experiments. Index finger abduction force, FDI EMG, motor evoked potentials and heteronomous reflexes were obtained from the contralateral limb during brief non-fatiguing contractions. The same measures, as well as the ability to voluntarily activate the contralateral FDI, were then assessed in an extended intermittent contraction protocol that elicited fatigue. Brief contractions under non-fatigued conditions increased index finger abduction force, FDI EMG, and motor evoked potential amplitude of the contralateral limb. However, when intermittent maximal contractions were continued until fatigue, there was an inability to produce maximal force with the contralateral limb (~30%) which was coupled to a decrease in the level of voluntary activation (~20%). These declines were present without changes in reflex activity, and regardless of whether cortical or motor point stimulation was used to assess voluntary activation. It is concluded that performing maximal intermittent contractions with a single limb causes an inability of the CNS to maximally drive the homologous muscle of the contralateral limb. This was, in part, mediated by mechanisms that involve the motor cortex ipsilateral to the contracting limb.

  17. Voluntary activation during maximal contraction with advancing age: a brief review.

    Science.gov (United States)

    Klass, Malgorzata; Baudry, Stéphane; Duchateau, Jacques

    2007-07-01

    It is well established that the loss of muscle mass (i.e. sarcopenia) is the primary factor contributing to the reduction in muscle force with ageing. Based on the observation that force declines at a faster rate than muscle mass, neural alterations are also thought to contribute to muscle weakness by reducing central drive to the agonist muscles and by increasing coactivation of the antagonist muscles. Researchers have attempted to quantify the contribution of impaired voluntary drive to the decline in muscle force using superimposed electrical stimulation during maximal voluntary contractions (MVCs) and by recording surface electromyographic (EMG) activity. Although reduced voluntary activation of agonist muscles and increased coactivation of antagonist muscles during a MVC have been reported with advancing age, such changes are not supported by all studies. These discrepancies may be explained by differences in sensitivity between the methods used to assess voluntary activation, as well as differences between the characteristics of the study population, the muscle group that is tested, and the type of contraction that is performed. The objective of this review is to summarize current knowledge regarding the activation of agonist and antagonist muscles during MVC in elderly and to try to clarify the disparities in literature concerning the influence of a possible deficit in voluntary activation on the maximal force capacity of muscles in elderly adults.

  18. M-wave potentiation after voluntary contractions of different durations and intensities in the tibialis anterior.

    Science.gov (United States)

    Rodriguez-Falces, Javier; Duchateau, Jacques; Muraoka, Yoshiho; Baudry, Stéphane

    2015-04-15

    The study was undertaken to provide insight into the mechanisms underlying the potentiation of the muscle compound action potential (M wave) after conditioning contractions. M waves were evoked in the tibialis anterior before and after isometric maximal voluntary contractions (MVC) of 1, 3, 6, 10, 30, and 60 s, and after 3-s contractions at 10, 30, 50, 70, 90, and 100% MVC. The amplitude, duration, and area of the first and second phases of the M wave, together with the median frequency (Fmedian) and muscle fiber conduction velocity (MFCV) were recorded. Furthermore, twitch force, muscle fascicle length, and pennation angle were measured at rest, before, and 1 s after the conditioning contractions. The results indicate that only the amplitude of the second phase of the M wave was significantly increased after conditioning contractions. The extent of this potentiation was similar for MVC durations ranging from 1 to 10 s and augmented progressively with contraction intensity from 30 to 70% MVC. After these conditioning contractions, the duration and area of the two M-wave phases decreased (P contraction. Changes in MFCV after the contractions were correlated with those in M-wave second-phase amplitude (r(2) = 0.42; P contractions. It is concluded that the potentiation of the second phase of the M wave is mainly due to an increased MFCV.

  19. Time-Course of Neuromuscular Changes during and after Maximal Eccentric Contractions.

    Science.gov (United States)

    Doguet, Valentin; Jubeau, Marc; Dorel, Sylvain; Couturier, Antoine; Lacourpaille, Lilian; Guével, Arnaud; Guilhem, Gaël

    2016-01-01

    This study tested the relationship between the magnitude of muscle damage and both central and peripheral modulations during and after eccentric contractions of plantar flexors. Eleven participants performed 10 sets of 30 maximal eccentric contractions of the plantar flexors at 45°·s(-1). Maximal voluntary torque, evoked torque (peripheral component) and voluntary activation (central component) were assessed before, during, immediately after (POST) and 48 h after (48 h) the eccentric exercise. Voluntary eccentric torque progressively decreased (up to -36%) concomitantly to a significant alteration of evoked torque (up to -34%) and voluntary activation (up to -13%) during the exercise. Voluntary isometric torque (-48 ± 7%), evoked torque (-41 ± 14%) and voluntary activation (-13 ± 11%) decreased at POST, but only voluntary isometric torque (-19 ± 6%) and evoked torque (-10 ± 18%) remained depressed at 48 h. Neither changes in voluntary activation nor evoked torque during the exercise were related to the magnitude of muscle damage markers, but the evoked torque decrement at 48 h was significantly correlated with the changes in voluntary activation (r = -0.71) and evoked torque (r = 0.77) at POST. Our findings show that neuromuscular responses observed during eccentric contractions were not associated with muscle damage. Conversely, central and peripheral impairments observed immediately after the exercise reflect the long-lasting reduction in force-generating capacity.

  20. Effects of vibratory stimulations on maximal voluntary isometric contraction from delayed onset muscle soreness.

    Science.gov (United States)

    Koh, Hyung-Woo; Cho, Sung-Hyoun; Kim, Cheol-Yong; Cho, Byung-Jun; Kim, Jin-Woo; Bo, Kak Hwang

    2013-09-01

    [Purpose] The aim of this study was to investigate the effect of vibratory stimulation on maximal voluntary isometric contraction (MVIC) from delayed onset muscle soreness (DOMS). [Subjects] Sixty healthy adults participated in this study. The exclusion criteria were orthopedic or neurologic disease. [Methods] The researchers induced DOMS in the musculus extensor carpi radialis longus of each participant. Subjects in the control group received no treatment. The ultrasound group received ultrasound treatment (intensity, 1.0 W/cm(2;) frequency 1 MHz; time, 10 minutes). The vibration group received vibration stimulation (frequency, 20 MHz; time, 10 minutes). Maximal voluntary isometric contraction (MVIC) was recorded at baseline, immediately after exercise, and 24, 48, and 72 hours after exercise. [Results] MVIC measurements showed statistically significant differences in the vibration group compared with the control group. [Conclusion] Vibratory stimulation had a positive effect on recovery of muscle function from DOMS.

  1. Comparison of maximum voluntary isometric contraction of the biceps on various posture and respiration conditions for normalization of electromyography data

    OpenAIRE

    Lee, Sang-Yeol; Jo, Marg-Eun

    2016-01-01

    [Purpose] Maximum voluntary isometric contraction can increase the reliability of electromyography data by controlling respiration; however, many studies that use normalization of electromyography data fail to account for this. This study aims to check changes in maximum voluntary isometric contraction based on changes in posture and respiration conditions. [Subjects and Methods] Twenty-two healthy volunteers were included in this study. Using 22 healthy subjects, MVIC of the biceps brachii m...

  2. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  3. The effect of knee joint angle on torque control.

    Science.gov (United States)

    Sosnoff, Jacob J; Voudrie, Stefani J; Ebersole, Kyle T

    2010-01-01

    The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque.

  4. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Islam, Md Anamul; Kean, Victor S P; Davis, Glen M

    2016-08-01

    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; Pcontractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.

  5. Brain Functional Connectivity is Different during VoluntaryConcentric and Eccentric Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Wan X Yao

    2016-11-01

    Full Text Available Previous studies report greater activation in the cortical motor network in controlling eccentric contraction (EC than concentric contraction (CC of human skeletal muscles despite lower activation level of the muscle associated with EC. It is unknown, however, whether the strength of functional coupling between the primary motor cortex (M1 and other involved areas in the brain differs as voluntary movements are controlled by a network of regions in the primary, secondary and association cortices. Examining fMRI-based functional connectivity (FC offers an opportunity to measure strength of such coupling. To address the question, we examined functional MRI (fMRI data acquired during EC and CC (20 contractions each with similar movement distance and speed of the right first dorsal interosseous (FDI muscle in 11 young (20-32 years and healthy individuals and estimated FC between the M1 and a number of cortical regions in the motor control network. The major findings from the behavioral and fMRI-based FC analysis were that (1 no significant differences were seen in movement distance, speed and stability between the EC and CC; (2 significantly stronger mean FC was found for CC than EC. Our finding provides novel insights for a better understanding of the control mechanisms underlying voluntary movements produced by EC and CC. The finding is potentially helpful for guiding the development of targeted sport training and/or therapeutic programs for performance enhancement and injury prevention.

  6. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography

    DEFF Research Database (Denmark)

    Blangsted, Anne Katrine; Sjøgaard, Gisela; Madeleine, Pascal

    2005-01-01

    ) and in particular mechanomyography (MMG) during low-force rather than high-force test contractions. Seven subjects performed static wrist extension at 10% maximal voluntary contraction (MVC) for 10 min (10%MVC10 min). Wrist force response to electrical stimulation of extensor carpi radialis muscle (ECR) quantified...

  7. Temporal muscle activation assessment by ultrasound imaging during flexor withdrawal reflex and voluntary contraction.

    Science.gov (United States)

    Jose, Gomez-Tames; Shuto, Nakamura; Jose, Gonzalez; Wenwei, Yu

    2013-01-01

    Activating flexor reflexes by electrical stimulation has been used as a mechanism to initiate the swing phase or to enhance it for spinal cord injured patients. However, it is necessary to know their contraction dynamics in order to artificially induce them at the right moment of a walking cycle. This requires understanding the temporal activation pattern of both surface and deep muscles simultaneously. This study aimed at developing a system to measure and analyze the temporal activation of both surface and deep muscles during voluntary contraction and flexor reflexes (also called withdrawal reflexes) using ultrasound imaging. A set of experiments were done to verify the validity of the system, while exploring the temporal pattern of muscle activation during flexor reflexes. As a result, we were able to quantify the surface and deep muscle activity by measuring the muscle thickness, pennation angle and long-axis displacement, from the ultrasound images.

  8. Clinical Value of the Assessment of Changes in MEP Duration with Voluntary Contraction.

    Science.gov (United States)

    Brum, Marisa; Cabib, Christopher; Valls-Solé, Josep

    2015-01-01

    Transcranial magnetic stimulation (TMS) gives rise to muscle responses, known as motor evoked potentials (MEP), through activation of the motor pathways. Voluntary contraction causes facilitation of MEPs, which consists of shortening MEP latency, increasing MEP amplitude and widening MEP duration. While an increase in excitability of alpha motorneurons and the corticospinal tract can easily explain latency shortening and amplitude increase, other mechanisms have to be accounted for to explain the increase in duration. We measured the increase in duration of the MEP during contraction with respect to rest in a group of healthy volunteers and retrospectively assessed this parameter in patients who were examined in a standardized fashion during the past 5 years. We included 25 healthy subjects, 21 patients with multiple sclerosis, 33 patients with acute stroke, 5 patients with hereditary spastic paraparesis, and 5 patients with signs suggesting psychogenic paresis. We found already significant differences among groups in the MEP duration at rest, patients with MS had a significantly longer duration, and patients with stroke had significantly shorter duration, than the other two groups. The increase in MEP duration during voluntary contraction was different in patients and in healthy subjects. It was significantly shorter in MS and significantly longer in stroke patients. It was absent in the five patients with suspected psychogenic weakness. In patients with HSP, an abnormally increase in duration occurred only in leg muscles. Our results suggest that the increase in duration of the MEP during contraction may reveal the contribution of propriospinal interneurons to the activation of alpha motorneurons. This mechanism may be altered in some diseases and, therefore, the assessment proposed in this work may have clinical applicability for the differential diagnosis of weakness.

  9. Clinical value of the assessment of changes in MEP duration with voluntary contraction

    Directory of Open Access Journals (Sweden)

    Josep eValls-Sole

    2016-01-01

    Full Text Available Transcranial magnetic stimulation (TMS gives rise to muscle responses, known as motor evoked potentials (MEP, through activation of the motor pathways. Voluntary contraction causes facilitation of MEPs, which consists of shortening MEP latency, increasing MEP amplitude and widening MEP duration. While an increase in excitability of alpha motorneurons and the corticospinal tract can easily explain latency shortening and amplitude increase, other mechanisms have to be accounted for to explain the increase in duration. We measured the extent of the increase in duration that adds at the end of the MEP during contraction with respect to rest in a group of healthy volunteers and retrospectively assessed this parameter in patients who were examined in a standardized fashion during the past 5 years. We included 25 healthy subjects, 21 patients with multiple sclerosis, 33 patients with acute stroke, 5 patients with hereditary spastic paraparesis and 5 patients with signs suggesting psychogenic paresis. We found already significant differences among groups in the MEP duration at rest, patients with MS had a significantly longer duration, and patients with stroke had significantly shorter duration, than the other two groups. The increase in MEP duration during voluntary contraction was different in patients and in healthy subjects. It was significantly shorter in MS and significantly longer in stroke patients. It was absent in the 5 patients with suspected psychogenic weakness. In patients with HSP, an abnormally increase in duration occurred only in leg muscles. Our results suggest that the increase in duration of the MEP during contraction may reveal the contribution of propriospinal interneurons to the activation of alpha motorneurons. This mechanism may be altered in some diseases and, therefore, the assessment proposed in this work may have clinical applicability for the differential diagnosis of weakness.

  10. Effect of red bull energy drink on auditory reaction time and maximal voluntary contraction.

    Science.gov (United States)

    Goel, Vartika; Manjunatha, S; Pai, Kirtana M

    2014-01-01

    The use of "Energy Drinks" (ED) is increasing in India. Students specially use these drinks to rejuvenate after strenuous exercises or as a stimulant during exam times. The most common ingredient in EDs is caffeine and a popular ED available and commonly used is Red Bull, containing 80 mg of caffeine in 250 ml bottle. The primary aim of this study was to investigate the effects of Red Bull energy drink on Auditory reaction time and Maximal voluntary contraction. A homogeneous group containing twenty medical students (10 males, 10 females) participated in a crossover study in which they were randomized to supplement with Red Bull (2 mg/kg body weight of caffeine) or isoenergetic isovolumetric noncaffeinated control drink (a combination of Appy Fizz, Cranberry juice and soda) separated by 7 days. Maximal voluntary contraction (MVC) was recorded as the highest of the 3 values of maximal isometric force generated from the dominant hand using hand grip dynamometer (Biopac systems). Auditory reaction time (ART) was the average of 10 values of the time interval between the click sound and response by pressing the push button using hand held switch (Biopac systems). The energy and control drinks after one hour of consumption significantly reduced the Auditory reaction time in males (ED 232 ± 59 Vs 204 ± 34 s and Control 223 ± 57 Vs 210 ± 51 s; p caffeine in the beneficial effect seen after the drinks.

  11. Handgrip Maximal Voluntary Isometric Contraction Does Not Correlate with Thenar Motor Unit Number Estimation

    Directory of Open Access Journals (Sweden)

    Arun Aggarwal

    2012-01-01

    Full Text Available In slowly progressive conditions, such as motor neurone disease (MND, 50–80% of motor units may be lost before weakness becomes clinically apparent. Despite this, maximal voluntary isometric contraction (MVIC has been reported as a clinically useful, reliable, and reproducible measure for monitoring disease progression in MND. We performed a study on a group of asymptomatic subjects that showed a lack of correlation between isometric grip strength and thenar MUNE. Motor unit number estimation (MUNE estimates the number of functioning lower motor neurones innervating a muscle or a group of muscles. We used the statistical electrophysiological technique of MUNE to estimate the number of motor units in thenar group of muscles in 69 subjects: 19 asymptomatic Cu, Zn superoxide dismutase 1 (SOD 1 mutation carriers, 34 family controls, and 16 population controls. The Jamar hand dynamometer was used to measure isometric grip strength. This study suggests that MUNE is more sensitive for monitoring disease progression than maximal voluntary isometric contraction (MVIC, as MUNE correlates with the number of functional motor neurones. This supports the observation that patients with substantial chronic denervation can maintain normal muscle twitch tension until 50–80% of motor units are lost and weakness is detectable.

  12. The nature of corticospinal paths driving human motoneurones during voluntary contractions.

    Science.gov (United States)

    Butler, Jane E; Larsen, Thomas S; Gandevia, Simon C; Petersen, Nicolas T

    2007-10-15

    The properties of the human motor cortex can be studied non-invasively using transcranial magnetic stimulation (TMS). Stimulation at high intensity excites corticospinal cells with fast conducting axons that make direct connections to motoneurones of human upper limb muscles, while low-intensity stimulation can suppress ongoing EMG. To assess whether these cells are used in normal voluntary contractions, we used TMS at very low intensities to suppress the firing of single motor units in biceps brachii (n = 14) and first dorsal interosseous (FDI, n = 6). Their discharge was recorded with intramuscular electrodes and cortical stimulation was delivered at multiple intensities at appropriate times during sustained voluntary firing at approximately 10 Hz. For biceps, high-intensity stimulation produced facilitation at 17.1 +/- 2.1 ms (lasting 2.4 +/- 0.9 ms), while low-intensity stimulation (below motor threshold) produced suppression (without facilitation) at 20.2 +/- 2.1 ms (lasting 7.6 +/- 2.2 ms). For FDI, high-intensity stimulation produced facilitation at 23.3 +/- 1.2 ms (lasting 1.8 +/- 0.4 ms), with suppression produced by low-intensity stimulation at 25.2 +/- 2.6 ms (lasting 7.5 +/- 2.6 ms). The difference between the onsets of facilitation and suppression was short: 3.1 +/- 1.2 ms for biceps and 2.0 +/- 1.5 ms for FDI. This latency difference is much less than that previously reported using surface EMG recordings ( approximately 10 ms). These data suggest that low-intensity cortical stimulation inhibits ongoing activity in fast-conducting corticospinal axons through an oligosynaptic (possibly disynaptic) path, and that this activity is normally contributing to drive the motoneurones during voluntary contractions.

  13. Sustained maximal voluntary contraction produces independent changes in human motor axons and the muscle they innervate.

    Directory of Open Access Journals (Sweden)

    David A Milder

    Full Text Available The repetitive discharges required to produce a sustained muscle contraction results in activity-dependent hyperpolarization of the motor axons and a reduction in the force-generating capacity of the muscle. We investigated the relationship between these changes in the adductor pollicis muscle and the motor axons of its ulnar nerve supply, and the reproducibility of these changes. Ten subjects performed a 1-min maximal voluntary contraction. Activity-dependent changes in axonal excitability were measured using threshold tracking with electrical stimulation at the wrist; changes in the muscle were assessed as evoked and voluntary electromyography (EMG and isometric force. Separate components of axonal excitability and muscle properties were tested at 5 min intervals after the sustained contraction in 5 separate sessions. The current threshold required to produce the target muscle action potential increased immediately after the contraction by 14.8% (p<0.05, reflecting decreased axonal excitability secondary to hyperpolarization. This was not correlated with the decline in amplitude of muscle force or evoked EMG. A late reversal in threshold current after the initial recovery from hyperpolarization peaked at -5.9% at ∼35 min (p<0.05. This pattern was mirrored by other indices of axonal excitability revealing a previously unreported depolarization of motor axons in the late recovery period. Measures of axonal excitability were relatively stable at rest but less so after sustained activity. The coefficient of variation (CoV for threshold current increase was higher after activity (CoV 0.54, p<0.05 whereas changes in voluntary (CoV 0.12 and evoked twitch (CoV 0.15 force were relatively stable. These results demonstrate that activity-dependent changes in motor axon excitability are unlikely to contribute to concomitant changes in the muscle after sustained activity in healthy people. The variability in axonal excitability after sustained activity

  14. Mechanomyographic responses during voluntary ramp contractions of the human first dorsal interosseous muscle.

    Science.gov (United States)

    Akataki, Kumi; Mita, Katsumi; Watakabe, Makoto; Itoh, Kunihiko

    2003-08-01

    The aim of this study was to examine the mechanomyogram (MMG) and force relationship of the first dorsal interosseous (FDI) muscle as well as the biceps brachii (BB) muscle during voluntary isometric ramp contractions, and to elucidate the MMG responses resulting from the intrinsic motor unit (MU) activation strategy of FDI muscle with reference to the MMG of BB muscle. The subjects were asked to exert ramp contractions of FDI and BB muscle from 5% to 70% of the maximal voluntary contraction (MVC) at a constant rate of 10% MVC/s. In FDI muscle, the root-mean-squared amplitude (RMS) of the MMG decreased slowly with force up to 21%, and then a progressive increase was followed by a relatively rapid decrease beyond 41% MVC. The RMS/%MVC relationship in BB muscle consisted of an initial slow increase followed by a rapid increase from 23% MVC and a progressive decrease beyond 61% MVC. With respect to the mean power frequency (MPF), FDI muscle demonstrated no obvious inflection point in the MPF/%MVC relationship compared with that in BB muscle. Namely, the MPF of FDI muscle increased linearly through the force levels exerted. In contrast to FDI muscle, the MPF/%MVC relationship in BB muscle was decomposed into four specific regions: (1) a relative rapidly increase (62% MVC). The different MMG responses between FDI and BB muscles are considered to reflect the fact that the MU activation strategy varies among different muscles in relation to their morphology and histochemical type. Namely, the rate coding of the MUs plays a more prominent role in force production in relatively small FDI muscle than does MU recruitment compared with their respective roles in the relatively large BB muscle.

  15. Effect of motor imagery and voluntary muscle contraction on the F wave.

    Science.gov (United States)

    Hara, Motohiko; Kimura, Jun; Walker, D David; Taniguchi, Shinichirou; Ichikawa, Hiroo; Fujisawa, Reiko; Shimizu, Hiroshi; Abe, Tatsuya; Yamada, Thoru; Kayamori, Ryoji; Mizutani, Tomohiko

    2010-08-01

    We tested the validity of instructing patients to minimally contract the muscle to facilitate F-wave recording in clinical practice. In 12 healthy subjects, F waves were recorded from the first dorsal interosseous muscle at rest, during motor imagery, and at up to 30% of the maximal voluntary contraction (MVC). F-wave persistence increased significantly from 32.5 +/- 11.9% (mean +/- SD) at rest to 58.3 +/- 15.2% during motor imagery and 90.0 +/- 8.7% during 3% MVC. It then remained the same during stepwise changes to and from 30% MVC before decreasing significantly from 80.8 +/- 18.5% during 3% MVC to 48.7 +/- 23.8% during motor imagery and 27.0 +/- 16.0% at rest. The trial average of F-wave amplitude showed a similar pattern of facilitation. Motor imagery enhances F-wave persistence and amplitude, which further increase with a slight muscle contraction and show no additional change with a stronger effort.

  16. Motor unit firing during and after voluntary contractions of human thenar muscles weakened by spinal cord injury

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, CK

    2003-01-01

    Spinal cord injury may change both the distribution and the strength of the synaptic input within a motoneuron pool and therefore alter force gradation. Here, we have studied the relative contributions of motor unit recruitment and rate modulation to force gradation during voluntary contractions of

  17. Torque loss induced by repetitive maximal eccentric contractions is marginally influenced by work-to-rest ratio.

    Science.gov (United States)

    McNeil, Chris J; Allman, Brian L; Symons, T Brock; Vandervoort, Anthony A; Rice, Charles L

    2004-05-01

    The influence of different work-to-rest (W:R) ratios during fatigue induced by maximal eccentric contractions is unknown. The present study sought to expand the understanding of the task-dependent nature of eccentric contractions, and the associated fatigue, during exercise and acute as well as extended recovery periods. Using a Biodex multi-joint dynamometer, the ankle dorsiflexors of eight men [26 (4) years] were fatigued with 150 maximal eccentric contractions. Set structure was manipulated such that one leg performed 3 sets of 50 repetitions (short rest protocol, SRP), and the other leg performed 15 sets of 10 repetitions (long rest protocol, LRP). A 1-min rest interval separated each set, which resulted in 2 and 14 min of total rest for the SRP and the LRP, respectively. At fatigue, the SRP demonstrated a marginally greater loss of average peak eccentric torque than the LRP ( Ptorque loss and the degree of low-frequency fatigue (LFF) were not recovered ( Ptorque was persistent and equal for each protocol at 96 h of recovery ( Pratio has a modest influence on the fatigue (torque loss) induced by maximal eccentric contractions, but maximal isometric torque during recovery and LFF are insensitive to changes in total rest time.

  18. Depression of corticomotor excitability after muscle fatigue induced by electrical stimulation and voluntary contraction

    Directory of Open Access Journals (Sweden)

    Shinichi eKotan

    2015-06-01

    Full Text Available In this study, we examined the effect of muscle fatigue induced by tetanic electrical stimulation (ES and submaximal isometric contraction on corticomotor excitability. Experiments were performed in a cross-over design. Motor-evoked potentials (MEPs were elicited by transcranial magnetic stimulation. Corticomotor excitability was recorded before and after thumb opposition muscle fatigue tasks, in which 10% of the maximal tension intensity was induced by tetanic ES or voluntary contraction (VC. The participants were 10 healthy individuals who performed each task for 10 min. Surface electrodes placed over the abductor pollicis brevis (APB muscle recorded MEPs. F- and M-waves were elicited from APB by supramaximal ES of the median nerve. After the ES1-and VC tasks, MEP amplitudes were significantly lower than before the task. However, F-and M-wave amplitudes remained unchanged. These findings suggest that corticospinal excitability is reduced by muscle fatigue as a result of intracortical inhibitory mechanisms. Our results also suggest that corticomotor excitability is reduced by muscle fatigue caused by both VC and tetanic ES.

  19. Post-exercise depression following submaximal and maximal isometric voluntary contraction.

    Science.gov (United States)

    Cunningham, David A; Janini, Daniel; Wyant, Alexandria; Bonnett, Corin; Varnerin, Nicole; Sankarasubramanian, Vishwanath; Potter-Baker, Kelsey A; Roelle, Sarah; Wang, Xiaofeng; Siemionow, Vlodek; Yue, Guang H; Plow, Ela B

    2016-06-21

    It is well known that corticomotor excitability is altered during the post-exercise depression following fatigue within the primary motor cortex (M1). However, it is currently unknown whether corticomotor reorganization following muscle fatigue differs between magnitudes of force and whether corticomotor reorganization occurs measured with transcranial magnetic stimulation (TMS). Fifteen young healthy adults (age 23.8±1.4, 8 females) participated in a within-subjects, repeated measures design study, where they underwent three testing sessions separated by one-week each. Subjects performed separate sessions of each: low-force isometric contraction (30% maximal voluntary contraction [MVC]), high-force isometric contraction (95% MVC) of the first dorsal interosseous (FDI) muscle until self-perceived exhaustion, as well as one session of a 30-min rest as a control. We examined changes in corticomotor map area, excitability and location of the FDI representation in and around M1 using TMS. The main finding was that following low-force, but not high-force fatigue (HFF) corticomotor map area and excitability reduced [by 3cm(2) (t(14)=-2.94, p=0.01) and 56% respectively t(14)=-4.01, p<0.001)]. Additionally, the region of corticomotor excitability shifted posteriorly (6.4±2.5mm) (t(14)=-6.33, p=.019). Corticomotor output became less excitable particularly in regions adjoining M1. Overall, post-exercise depression is present in low-force, but not for HFF. Further, low-force fatigue (LFF) results in a posterior shift in corticomotor output. These changes may be indicative of increased sensory feedback from the somatosensory cortex during the recovery phase of fatigue.

  20. System identification of the mechanomyogram from single motor units during voluntary isometric contraction.

    Science.gov (United States)

    Uchiyama, Takanori; Hashimoto, Erika

    2011-09-01

    A mechanomyogram (MMG) from single motor units of the anconeus muscle in voluntary isometric contraction was recorded from seven subjects using a spike-triggered averaging technique. The MMG system, in which the input was an ideal impulse and the output was the MMG detected with an acceleration sensor, was identified as the fifth-order model by the subspace-based state-space model identification method. The transfer function of the MMG system was factorized to the second- and the first-order models. The second-order model was compared to the standard form of the second-order model, and its resonance frequency was calculated. The resonance frequencies of the second-order models were 166 ± 61 and 93 ± 27 Hz, which were within the range of the values estimated from mechanical impedance in the literature. The equivalent mechanical model of the MMG system of the single motor unit was proposed on the basis of the fifth-order model. The model might be useful to evaluate the visco-elastic properties of the anconeus muscle.

  1. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions

    Directory of Open Access Journals (Sweden)

    Bret Contreras

    2015-09-01

    Full Text Available Background. The purpose of this study was to compare the peak electromyography (EMG of the most commonly-used position in the literature, the prone bent-leg (90° hip extension against manual resistance applied to the distal thigh (PRONE, to a novel position, the standing glute squeeze (SQUEEZE.Methods. Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg, before three maximum voluntary isometric contraction (MVIC trials for each position were obtained in a randomized, counterbalanced fashion.Results. No statistically significant (p < 0.05 differences were observed between PRONE (upper: 91.94%; lower: 94.52% and SQUEEZE (upper: 92.04%; lower: 85.12% for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects.Conclusions. In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

  2. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions.

    Science.gov (United States)

    Contreras, Bret; Vigotsky, Andrew D; Schoenfeld, Brad J; Beardsley, Chris; Cronin, John

    2015-01-01

    Background. The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE). Methods. Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg), before three maximum voluntary isometric contraction (MVIC) trials for each position were obtained in a randomized, counterbalanced fashion. Results. No statistically significant (p < 0.05) differences were observed between PRONE (upper: 91.94%; lower: 94.52%) and SQUEEZE (upper: 92.04%; lower: 85.12%) for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects. Conclusions. In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

  3. Transcranial Magnetic Stimulation with the Maximum Voluntary Muscle Contraction Facilitates Motor Neuron Excitability and Muscle Force

    Directory of Open Access Journals (Sweden)

    Tetsuo Touge

    2012-01-01

    Full Text Available Three trials of transcranial magnetic stimulation (TMS during the maximum voluntary muscle contraction (MVC were repeated at 15-minute intervals for 1 hour to examine the effects on motor evoked potentials (MEPs in the digital muscles and pinching muscle force before and after 4 high-intensity TMSs (test 1 condition or sham TMS (test 2 condition with MVC. Under the placebo condition, real TMS with MVC was administered only before and 1 hour after the sham TMS with MVC. Magnetic stimulation at the foramen magnum level (FMS with MVC was performed by the same protocol as that for the test 2 condition. As a result, MEP sizes in the digital muscles significantly increased after TMS with MVC under test conditions compared with the placebo conditions (P<0.05. Pinching muscle force was significantly larger 45 minutes and 1 hour after TMS with MVC under the test conditions than under the placebo condition (P<0.05. FMS significantly decreased MEP amplitudes 60 minutes after the sham TMS with MVC (P<0.005. The present results suggest that intermittently repeated TMS with MVC facilitates motor neuron excitabilities and muscle force. However, further studies are needed to confirm the effects of TMS with MVC and its mechanism.

  4. Effects of proprioceptive neuromuscular facilitation stretching and static stretching on maximal voluntary contraction.

    Science.gov (United States)

    Miyahara, Yutetsu; Naito, Hisashi; Ogura, Yuji; Katamoto, Shizuo; Aoki, Junichiro

    2013-01-01

    This study was undertaken to investigate and compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching and static stretching on maximal voluntary contraction (MVC). Thirteen male university students (age, 20 ± 1 years; height, 172.2 ± 4.6 cm; weight, 68.4 ± 6.7 kg; mean ± SD) completed 3 different conditions on 3 nonconsecutive days in randomized order: static stretching (SS), PNF stretching (PNF), and no stretching (control, CON). Each condition consisted of a 5-minute rest accompanied by one of the following activities: (a) control, (b) SS, or (c) PNF stretching. The hip flexion range of motion (ROM) was evaluated immediately before and after the activity. The MVC of knee flexion was then measured. Surface electromyography was recorded from the biceps femoris and vastus lateralis muscles during MVC tests and stretching. Although increases in ROM were significantly greater after PNF than after SS (p stretching increases ROM more than SS, PNF stretching and SS is detrimental to isometric maximal strength.

  5. Feasibility of an Isometric Maximal Voluntary Contraction Test in Hematological Cancer Patients during Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Philipp Zimmer

    2013-01-01

    Full Text Available Introduction. Resistance training is rarely offered to hemato-oncological patients in the daily clinical routine due to its potential harmful impact on the cardiovascular system and the long periods of thrombocytopenia experienced by these patients. Therefore, it is important to determine a valid assessment to define and control resistance training. In this study, the feasibility of a maximal voluntary contraction (MVC test was investigated in hemato-oncological patients. This inexpensive assessment may be a practicable alternative to the one repetition maximum test which is currently described as the gold standard. Methods. 29 hemato-oncological patients with platelet counts between 30000/μL and 70000/μL were recruited for this pilot study. Complications like petechial bleedings, muscle convulsion, and pain were assessed using the Brief Pain Inventory before and 48 hours after the MVC test, which was performed unidirectionally for the quadriceps muscle. Results. We did not detect any statistically significant test-related exacerbations or pain development. Discussion. MVC testing seems to be a feasible method to control a resistance training program in hemato-oncological patients. Further studies need to extend their methods and, for example, compare the MVC test with the one repetition maximum test.

  6. Transcranial magnetic stimulation with the maximum voluntary muscle contraction facilitates motor neuron excitability and muscle force.

    Science.gov (United States)

    Touge, Tetsuo; Urai, Yoshiteru; Ikeda, Kazuyo; Kume, Kodai; Deguchi, Kazushi

    2012-01-01

    Three trials of transcranial magnetic stimulation (TMS) during the maximum voluntary muscle contraction (MVC) were repeated at 15-minute intervals for 1 hour to examine the effects on motor evoked potentials (MEPs) in the digital muscles and pinching muscle force before and after 4 high-intensity TMSs (test 1 condition) or sham TMS (test 2 condition) with MVC. Under the placebo condition, real TMS with MVC was administered only before and 1 hour after the sham TMS with MVC. Magnetic stimulation at the foramen magnum level (FMS) with MVC was performed by the same protocol as that for the test 2 condition. As a result, MEP sizes in the digital muscles significantly increased after TMS with MVC under test conditions compared with the placebo conditions (P MVC under the test conditions than under the placebo condition (P MVC (P MVC facilitates motor neuron excitabilities and muscle force. However, further studies are needed to confirm the effects of TMS with MVC and its mechanism.

  7. Strength Training to Contraction Failure Increases Voluntary Activation of the Quadriceps Muscle Shortly After Total Knee Arthroplasty

    DEFF Research Database (Denmark)

    Mikkelsen, Elin Karin; Jakobsen, Thomas Linding; Holsgaard-Larsen, Anders;

    2016-01-01

    OBJECTIVE: The objective of this study was to investigate voluntary activation of the quadriceps muscle during one set of knee extensions performed until contraction failure in patients shortly after total knee arthroplasty. DESIGN: This was a cross-sectional study of 24 patients with total knee...... arthroplasty. One set of knee extensions was performed until contraction failure, using a predetermined 10 repetition maximum loading. In the operated leg, electromyographic (EMG) activity of the lateral and medial vastus, semitendinosus, and biceps femoris muscles was recorded during the set. Muscle activity...... (%EMGmax) and median power frequency of the EMG power spectrum were calculated for each repetition decile (10%-100% contraction failure). RESULTS: Muscle activity increased significantly over contractions from a mean of 90.0 and 93.6 %EMGmax (lateral vastus and medial vastus, respectively) at 10...

  8. Voluntary activation of human knee extensors measured using transcranial magnetic stimulation.

    Science.gov (United States)

    Goodall, S; Romer, L M; Ross, E Z

    2009-09-01

    The aim of this study was to determine the applicability and reliability of a transcranial magnetic stimulation twitch interpolation technique for measuring voluntary activation of a lower limb muscle group. Cortical voluntary activation of the knee extensors was determined in nine healthy men on two separate visits by measuring superimposed twitch torques evoked by transcranial magnetic stimulation during isometric knee extensions of varying intensity. Superimposed twitch amplitude decreased linearly with increasing voluntary torque between 50 and 100% of mean maximal torque, allowing estimation of resting twitch amplitude and subsequent calculation of voluntary activation. There were no systematic differences for maximal voluntary activation within day (mean +/- s.d. 90.9 +/- 6.2 versus 90.7 +/- 5.9%; P = 0.98) or between days (90.8 +/- 6.0 versus 91.2 +/- 5.7%; P = 0.92). Systematic bias and random error components of the 95% limits of agreement were 0.23 and 9.3% within day versus 0.38 and 7.5% between days. Voluntary activation was also determined immediately after a 2 min maximal voluntary isometric contraction; in four of these subjects, voluntary activation was determined 30 min after the sustained contraction. Immediately after the sustained isometric contraction, maximal voluntary activation was reduced from 91.2 +/- 5.7 to 74.2 +/- 12.0% (P knee extensors.

  9. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-06-13

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL.

  10. Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

    Directory of Open Access Journals (Sweden)

    Kohn André F

    2010-06-01

    Full Text Available Abstract Background High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons. This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods Subjects (n = 6 were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise applied to the triceps surae muscle group. In an additional investigation, Mmax and F-waves were elicited at different times before or after the vibratory stimulation. Results The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC due to the spinal recruitment of motoneurons. The association of vibration and electrical

  11. Different Effects of Startling Acoustic Stimuli (SAS) on TMS-Induced Responses at Rest and during Sustained Voluntary Contraction.

    Science.gov (United States)

    Chen, Yen-Ting; Li, Shengai; Zhou, Ping; Li, Sheng

    2016-01-01

    Previous studies have shown that a habituated startling acoustic stimulus (SAS) can cause a transient suppression of motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) during light muscle contraction. However, it is still unknown whether this phenomenon persists when at rest or during a sustained voluntary contraction task. Therefore, the purpose of this study was to determine whether a conditioning SAS has different effects. TMS was delivered to the hot spot for the left biceps on 11 subjects at rest both with and without a conditioning SAS. Of the 11subjects, 9 also had TMS delivered during isometric flexion of the left elbow, also with and without a conditioning SAS. TMS-induced MEPs, TMS-induced force, and silent periods were used to determine the effect of conditioning SAS. Consistent with previous findings, TMS-induced MEPs were smaller with a conditioning SAS (0.49 ± 0.37 mV) as compared without the SAS (0.69 ± 0.52 mV) at rest. However, a conditioning SAS during the voluntary contraction tasks resulted in a significant shortening of the MEP silent period (187.22 ± 22.99 ms with SAS vs. 200.56 ± 29.71 ms without SAS) without any changes in the amplitude of the MEP (1.37 ± 0.9 mV with SAS V.S. 1.32 ± 0.92 mV without SAS) or the TMS-induced force (3.11 ± 2.03 N-m with SAS V.S. 3.62 ± 1.33 N-m without SAS). Our results provide novel evidence that a conditioning SAS has different effects on the excitability of the motor cortex when at rest or during sustained voluntary contractions.

  12. Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions.

    Science.gov (United States)

    Guo, Jing-Yi; Zheng, Yong-Ping; Xie, Hong-Bo; Chen, Xin

    2010-11-01

    In this study we simultaneously collected ultrasound images, EMG, MMG from the rectus femoris (RF) muscle and torque signal from the leg extensor muscle group of nine male subjects (mean±SD, age=30.7±.4.9 years; body weight=67.0±8.4kg; height=170.4±6.9cm) during step, ramp increasing, and decreasing at three different rates (50%, 25% and 17% MVC/s). The muscle architectural parameters extracted from ultrasound imaging, which reflect muscle contractions, were defined as sonomyography (SMG) in this study. The cross-sectional area (CSA) and aspect ratio between muscle width and thickness (width/thickness) were extracted from ultrasound images. The results showed that the CSA of RF muscles decreased by 7.25±4.07% when muscle torque output changed from 0% to 90% MVC, and the aspect ratio decreased by 41.66±7.96%. The muscle contraction level and SMG data were strongly correlated (R(2)=0.961, P=0.003, for CSA and R(2)=0.999, PEMG RMS in ramp increasing was 8.25±4.00% higher than step (P=0.002). The normalized MMG RMS of step contraction was significantly lower than ramp increasing and decreasing, with averaged differences of 12.22±3.37% (P=0.001) and 12.06±3.37% (P=0.001), respectively. The results of this study demonstrated that the CSA and aspect ratio, i.e., SMG signals, can provide useful information about muscle contractions. They may therefore complement EMG and MMG for studying muscle activation strategies under different conditions.

  13. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Eduardo H. Estigoni

    2014-12-01

    Full Text Available This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES. Eight subjects with spinal cord injury (SCI were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA, and the m-wave area (Area were significantly increased, while the time between the stimulus artefact and the positive peak (PosT were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery.

  14. Pattern classification of Myo-Electrical signal during different Maximum Voluntary Contractions: A study using BSS techniques

    Science.gov (United States)

    Naik, Ganesh R.; Kumar, Dinesh K.; Arjunan, Sridhar P.

    2010-01-01

    The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when the level of muscle contraction is very low. Due to this the current applications of surface electromyogram (sEMG) are infeasible and unreliable in pattern classification. This research reports a new technique of sEMG using Independent Component Analysis (ICA). The technique uses blind source separation (BSS) methods to classify the patterns of Myo-electrical signals during different Maximum Voluntary Contraction (MVCs) at different low level finger movements. The results of the experiments indicate that patterns using ICA of sEMG is a reliable (pMVC. The authors propose that ICA is a useful indicator of muscle properties and is a useful indicator of the level of muscle activity.

  15. Effectiveness of adding voluntary pelvic floor muscle contraction to a Pilates exercise program: an assessor-masked randomized controlled trial.

    Science.gov (United States)

    Torelli, Luiza; de Jarmy Di Bella, Zsuzsanna Ilona Katalin; Rodrigues, Claudinei Alves; Stüpp, Liliana; Girão, Manoel João Batista Castello; Sartori, Marair Gracio Ferreira

    2016-11-01

    The purpose of this study was to evaluate the effectiveness of adding voluntary pelvic floor muscle contraction (PFMC) to a Pilates exercise program in sedentary nulliparous women. Fifty-seven healthy nulliparous and physically inactive women were randomized to a Pilates exercise program (PEP) with or without PFMC. Forty-eight women concluded this study (24 participants for each group). Each woman was evaluated before and after the PEP, by a physiotherapist and an urogynecologist (UG). Neither of the professionals was revealed to them. This physiotherapist measured their pelvic floor muscle strength by using both a perineometer (Peritron) and vaginal palpation (Oxford Scale). The UG, who performed 3D perineal ultrasound examinations, collected their data and evaluated the results for pubovisceral muscle thickness and the levator hiatus area (LA). Both professionals were blinded to the group allocation. The protocol for both groups consisted of 24 bi-weekly 1-h individual sessions of Pilates exercises, developed by another physiotherapist who specializes in PFM rehabilitation and the Pilates technique. The PEP+ PFMC group showed significantly greater strength improvements than the PEP group when comparing the Oxford scale, vaginal pressure and pubovisceral muscle thickness during contraction measurements at baseline and post-treatment. Our findings suggest that adding a voluntary PFMC to a Pilates exercise program is more effective than Pilates alone in improving PFM strength in sedentary nulliparous women.

  16. Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions

    DEFF Research Database (Denmark)

    Vedsted, Pernille; Blangsted, Anne Katrine; Søgaard, Karen

    2006-01-01

    Dynamic muscle contractions have been shown to cause greater energy turnover and fatigue than static contractions performed at a corresponding force level. Therefore, we hypothesized that: (1) electro- (EMG) and mechanomyography (MMG), intramuscular pressure (IMP), and reduction in muscle oxygen...... similar in spite of major differences in the MMG and EMG responses of the muscle during contraction periods. This may relate to the surprisingly lower IMP in DYN than IST....

  17. Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles

    Science.gov (United States)

    Prasartwuth, O; Taylor, JL; Gandevia, SC

    2005-01-01

    Muscle damage reduces voluntary force after eccentric exercise but impaired neural drive to the muscle may also contribute. To determine whether the delayed-onset muscle soreness, which develops ∼1 day after exercise, reduces voluntary activation and to identify the possible site for any reduction, voluntary activation of elbow flexor muscles was examined with both motor cortex and motor nerve stimulation. We measured maximal voluntary isometric torque (MVC), twitch torque, muscle soreness and voluntary activation in eight subjects before, immediately after, 2 h after, 1, 2, 4 and 8 days after eccentric exercise. Motor nerve stimulation and motor cortex stimulation were used to derive twitch torques and measures of voluntary activation. Eccentric exercise immediately reduced the MVC by 38 ± 3% (mean ±s.d., n = 8). The resting twitch produced by motor nerve stimulation fell by 82 ± 6%, and the estimated resting twitch by cortical stimulation fell by 47 ± 15%. While voluntary torque recovered after 8 days, both measures of the resting twitch remained depressed. Muscle tenderness occurred 1–2 days after exercise, and pain during contractions on days 1–4, but changes in voluntary activation did not follow this time course. Voluntary activation assessed with nerve stimulation fell 19 ± 6% immediately after exercise but was not different from control values after 2 days. Voluntary activation assessed by motor cortex stimulation was unchanged by eccentric exercise. During MVCs, absolute increments in torque evoked by nerve and cortical stimulation behaved differently. Those to cortical stimulation decreased whereas those to nerve stimulation tended to increase. These findings suggest that reduced voluntary activation contributes to the early force loss after eccentric exercise, but that it is not due to muscle soreness. The impairment of voluntary activation to nerve stimulation but not motor cortical stimulation suggests that the activation deficit lies in the

  18. The effect of heating and cooling on time course of voluntary and electrically induced muscle force variation.

    Science.gov (United States)

    Brazaitis, Marius; Skurvydas, Albertas; Vadopalas, Kazys; Daniusevičiūtė, Laura; Senikienė, Zibuoklė

    2011-01-01

    The aim of this study was to investigate the effect of heating and cooling on time course of voluntary and electrically induced muscle force variation. Ten volunteers performed 50 maximal voluntary and electrically induced contractions of the knee extensors at an angle of 120 degrees under the control conditions and after passive lower body heating and cooling in the control, heating, and cooling experiments. Peak torque, torque variation, and half-relaxation time were assessed during the exercise. Passive lower body heating increased muscle and core temperatures, while cooling lowered muscle temperature, but did not affect core temperature. We observed significantly lower muscle fatigue during voluntary contraction compared with electrically induced contractions. Body heating (opposite to cooling) increased involuntarily induced muscle force, but caused greater electrically induced muscle fatigue. In the middle of the exercise, the coefficient of correlation for electrically induced muscle torque decreased significantly as compared with the beginning of the exercise, while during maximal voluntary contractions, this relation for torque remained significant until the end of the exercise. It was shown that time course of voluntary contraction was more stable than in electrically induced contractions.

  19. Inhibitory interneuron circuits at cortical and spinal levels are associated with individual differences in corticomuscular coherence during isometric voluntary contraction

    Science.gov (United States)

    Matsuya, Ryosuke; Ushiyama, Junichi; Ushiba, Junichi

    2017-01-01

    Corticomuscular coherence (CMC) is an oscillatory synchronization of 15–35 Hz (β-band) between electroencephalogram (EEG) of the sensorimotor cortex and electromyogram of contracting muscles. Although we reported that the magnitude of CMC varies among individuals, the physiological mechanisms underlying this variation are still unclear. Here, we aimed to investigate the associations between CMC and intracortical inhibition (ICI) in the primary motor cortex (M1)/recurrent inhibition (RI) in the spinal cord, which probably affect oscillatory neural activities. Firstly, we quantified ICI from changes in motor-evoked potentials induced by paired-pulse transcranial magnetic stimulation in M1 during tonic isometric voluntary contraction of the first dorsal interosseous. ICI showed a significant, negative correlation with the strength of EEG β-oscillation, but not with the magnitude of CMC across individuals. Next, we quantified RI from changes in H-reflexes induced by paired-pulse electrical nerve stimulation to the posterior tibial nerve during isometric contraction of the soleus muscle. We observed a significant, positive correlation between RI and peak CMC across individuals. These results suggest that the local inhibitory interneuron networks in cortical and spinal levels are associated with the oscillatory activity in corticospinal loop. PMID:28290507

  20. [Changes in the position of the ureterovesical junction during maximal voluntary contractions and during maximal vaginal electric stimulation of the pelvic floor muscles].

    Science.gov (United States)

    Martan, A; Masata, J; Halaska, M; Voigt, R

    1998-06-01

    The objective of the study was to evaluate and compare the effect of the maximal voluntary muscle contraction of the pelvic floor (PFM) and contractions of the PFM evoked by maximal electric stimulation using an electrostimulation apparatus Conmax by monitoring the position of the urethrovesical junction by ultrasound. The trial comprised 20 women with confirmed stress incontinence of urine. With the patients in a supine position with abducted lower extremities an electrostimulation probe was inserted into the vagina. This was followed by perineal ultrasound (US) examination using an ACUSON 128 XP-10 apparatus and a convex tube 5 MHz. The ultrasound examination was made using the electrostimulation probe--at rest and during maximal voluntary contraction of the PFM. This was followed by maximal electric stimulation and after five minutes during stimulation the US examination was repeated. It was performed also during maximal electric stimulation (MES) concurrently with maximal voluntary contraction of the PFM. For electrostimulation a Conmax appartus was used. The applied frequency was 50 Hz, amplitude from 0 to 90 mA (grade 0-6), duration of pulse 0.75 ms. The maximum intensity of stimulation was determined by the patient, i.e. when stimulation was not yet painful. During US the authors investigated the gamma angle, i.e. the angle between the axis of the symphysis and the connecting line between the UV junction and the lower borderline of the symphysis. The mean difference of the gamma angle during voluntary contraction of the PFM and at rest was 13.6. During contraction caused by maximal electric stimulation of the PFM and at rest this difference was 21.3. The difference did not differ significantly during maximal electric stimulation of the PFM and during maximal electric stimulation and voluntary contraction of the PFM. From the trial ensues that contraction of the pelvic floor muscles during maximal electric stimulation is stronger as compared with the

  1. RELATIONSHIP BETWEEN ELECTRICAL AND VIBRATORY OUTPUT OF MUSCLE DURING VOLUNTARY CONTRACTION AND FATIGUE

    NARCIS (Netherlands)

    ZWARTS, MJ; KEIDEL, M

    1991-01-01

    Measurements were done on the biceps muscles of 6 healthy volunteers to record simultaneously the surface electromyogram (EMG) and vibromyogram (VMG) by means of a piezoelectric device (accelerometer). The VMG is generated by mechanical waves due to the contraction mechanism and often measured as so

  2. Effects of Series Elasticity on the Human Knee Extension Torque-Angle Relationship in Vivo

    Science.gov (United States)

    Kubo, Keitaro; Ohgo, Kazuya; Takeishi, Ryuichi; Yoshinaga, Kazunari; Tsunoda, Naoya; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2006-01-01

    The purpose of this study was to investigate the effects of series elasticity on the torque-angle relationship of the knee extensors in vivo. Forty-two men volunteered to take part in the present study. The participants performed maximal voluntary isometric contractions at eight knee-joint angles (40, 50, 60, 70, 80, 90, 100, 110[degree]). The…

  3. Co-Activity during Maximum Voluntary Contraction: A Study of Four Lower-Extremity Muscles in Children with and without Cerebral Palsy

    Science.gov (United States)

    Tedroff, Kristina; Knutson, Loretta M.; Soderberg, Gary L.

    2008-01-01

    This study was designed to determine whether children with cerebral palsy (CP) showed more co-activity than comparison children in non-prime mover muscles with regard to the prime mover during maximum voluntary isometric contraction (MVIC) of four lower-extremity muscles. Fourteen children with spastic diplegic CP (10 males, four females; age…

  4. Specific modulation of corticospinal and spinal excitabilities during maximal voluntary isometric, shortening and lengthening contractions in synergist muscles.

    Science.gov (United States)

    Duclay, Julien; Pasquet, Benjamin; Martin, Alain; Duchateau, Jacques

    2011-06-01

    This study was designed to investigate the cortical and spinal mechanisms involved in the modulations of neural activation during lengthening compared with isometric and shortening maximal voluntary contractions (MVCs). Two muscles susceptible to different neural adjustments at the spinal level, the soleus (SOL) and medial gastrocnemius (MG), were compared. Twelve healthy males participated in at least two experimental sessions designed to assess corticospinal and spinal excitabilities. We compared the modulation of motor evoked potentials (MEPs) in response to transcranial magnetic stimulation and Hoffmann reflexes (H-reflexes) during isometric and anisometric MVCs. The H-reflex and MEP responses, recorded during lengthening and shortening MVCs, were compared with those obtained during isometric MVCs. The results indicate that the maximal amplitude of both MEP and H-reflex in the SOL were smaller (P shortening MVCs but similar (P > 0.05) in MG for all three muscle contraction types. The silent period that follows maximal MEPs was reduced (P muscle. Collectively, the current results indicate that the relative contribution of both cortical and spinal mechanisms to the modulation of neural activation differs during lengthening MVCs and between two synergist muscles. The comparison of SOL and MG responses further suggests that the specific modulation of the corticospinal excitability during lengthening MVCs depends mainly on pre- and postsynaptic inhibitory mechanisms acting at the spinal level.

  5. Acute effect of static stretching on rate of force development and maximal voluntary contraction in older women.

    Science.gov (United States)

    Gurjão, André L D; Gonçalves, Raquel; de Moura, Rodrigo F; Gobbi, Sebastião

    2009-10-01

    The purpose of this study was to investigate, in older women, the acute effect of static stretching (SS) on both muscle activation and force output. Twenty-three older women (64.6 +/- 7.1 yr) participated in the study. The maximal voluntary contraction (MVC), rate of force development (RFD) (50, 100, 150, and 200 ms relative to onset of muscular contraction), and peak RFD (PRFD) (the steepest slope of the curve during the first 200 ms) were tested under 2 randomly separate conditions: SS and control (C). Electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), and biceps femoris (BF) muscles also was assessed. The MVC was significantly lower (p force decreased after their performance of SS exercises. The mechanisms responsible for this effect do not appear to be related to muscle activation. Thus, if flexibility is to be trained, it is recommended that SS does not occur just before the performance of activities that require high levels of muscular force.

  6. Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits.

    Science.gov (United States)

    Buccolieri, Alessandro; Abbruzzese, Giovanni; Rothwell, John C

    2004-07-15

    Termination of a muscle contraction is as important a part of movement as muscle activation yet the mechanisms responsible are less well understood. In the present experiments we examined the possible role of intracortical inhibitory circuits in terminating a 20% maximum isometric contraction of the first dorsal interosseous muscle (FDI) in eight healthy subjects. Subjects performed the task simultaneously with both hands and received single or pairs (at an interstimulus interval of 3 ms to evaluate short interval intracortical inhibition, SICI) of transcranial magnetic stimuli (TMS) via a focal coil over the motor hand area of the left hemisphere at different times before and after the onset of relaxation. The amplitude of the motor-evoked potential (MEP) following a single or a pair of TMS pulses was measured in the right FDI and plotted relative to the onset of relaxation as estimated from the surface electromyogram (EMG) of the left FDI. MEPs were larger during contraction than after relaxation whereas SICI was absent during contraction and reappeared after relaxation. We found that in all subjects, the time course of MEP changes during relaxation was closely fitted by a Boltzmann sigmoidal curve which allowed us to estimate the mean MEP amplitudes as well as the ratio of the amplitudes after single or pairs of TMS pulses (i.e.%SICI) at any time in the task. The data showed that the amplitude of MEPs to single pulse TMS had started to decline at about the same time as the onset of EMG silence. Furthermore, the size of the MEPs evoked by paired pulses decreased up to 30 ms beforehand. The latter suggests that an increase in SICI occurs prior to the onset of MEP changes, and hence that increased cortical inhibition may play a role in suppressing corticospinal excitability during relaxation. A subsidiary experiment showed that the time relations of changes in SICI and MEP were unchanged by a period of 10 min training on the task.

  7. Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans

    DEFF Research Database (Denmark)

    Hansen, M; Trappe, T; Crameri, R M;

    2008-01-01

    Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl-histidine......Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl....... Only after ES did the histochemical stainings show significant disruption of cytoskeletal proteins. Furthermore, intracellular disruption and destroyed Z-lines were markedly more pronounced in ES vs VOL. In conclusion, the local level of interstitial 3-MH in the skeletal muscle was significantly...... enhanced after ES compared with VOL immediately after exercise, while the level of 3-MH did not change in the post-exercise period after VOL. These results indicate that the local myofibrillar breakdown is accelerated after ES associated with severe myofiber damage....

  8. Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury

    Science.gov (United States)

    Kim, Hyosub E.; Corcos, Daniel M.

    2015-01-01

    This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) values during lengthening (i.e., eccentric) maximal voluntary contractions (MVCs), compared with during isometric or shortening (i.e., concentric) MVCs. In contrast, healthy controls demonstrated lower lengthening CAR values compared with their isometric and shortening CARs. For the present investigation, we hypothesized SCI subjects would again produce their highest CAR values during lengthening MVCs, and that these increases in central activation were partially attributable to greater efficacy of Ia-α motoneuron transmission during muscle lengthening following SCI. Results show SCI subjects produced higher CAR values during lengthening vs. isometric or shortening MVCs (all P reflex testing revealed normalized H-reflexes (maximal SOL H-reflex-to-maximal M-wave ratios) were greater for SCI than controls during passive (P = 0.023) and active (i.e., 75% MVC; P = 0.017) lengthening, suggesting facilitation of Ia transmission post-SCI. Additionally, measures of spinal reflex excitability (passive lengthening maximal SOL H-reflex-to-maximal M-wave ratio) in SCI were positively correlated with soleus electromyographic activity and CAR values during lengthening MVCs (both P < 0.05). The present study presents evidence that patterns of dynamic muscle activation are altered following SCI, and that greater central activation during lengthening contractions is partly due to enhanced efficacy of Ia-α motoneuron transmission. PMID:25972590

  9. Electromyographic Responses during Elbow Movement at Two Angles with Voluntary Contraction: Influences of Muscle Activity on Upper Arm Biceps Brachii

    Directory of Open Access Journals (Sweden)

    Nizam Uddin Ahamed

    2012-11-01

    Full Text Available Analysis of Electromyography (EMG signals generated by individuals is part of human musculoskeletal system research and signals are always influenced by the electrode placement in the muscle. This characteristic is also obvious at Biceps Brachii (BB muscles during the movement of elbow at different angles. The purpose of this study was to monitor and determine the BB muscle function in 3 conditions: (i electrodes were placed at 3 locations on the BB, (ii elbow was fixed at the two angles (90° and 150° and (iii isometric contractions were performed to record EMG data. EMG data were obtained from six healthy subjects (n = 6, mean±SD age = 24.4±3.1 years, body mass = 68±6.3 kg, height = 164±4.1 cm, BMI = 21.2±2.3, right arm dominated. A Bluetooth-enabled laptop, wireless EMG sensors, digital dynamometer and angle meter were used for data recording. EMG data were calculated and analyzed by average value, standard deviation, Root Mean Square (RMS and highest peak of the signal during maximum voluntary contraction. All the dependent variables were calculated using repeated measures Analysis of Variance (ANOVA. The results from the research showed that (i according to the calculation of average RMS and the maximum peaks of EMG signals, there was a significant difference between 2 angles (p = 0.047, i.e., p<0.05, but no interaction at the same angles when overall average EMG and standard deviation value are considered and (ii majority of the outcomes showed that EMG activity is higher in the order of middle, upper and lower BB muscle. It is therefore important that electrical signals generated upon different electrode placements and angles on the BB muscle are used for biceps rehabilitation and other physiological measurements on upper arm.

  10. [Motor unit activities of human masseter muscle during sustained voluntary contractions].

    Science.gov (United States)

    Shimizu, T

    1990-02-01

    The purpose of this paper is to investigate the motor unit activities of the human masseter muscle during sustained the bite force at a constant level. The electrical activities recorded with surface and inserted electrodes were studied, with the following results. 1. The masseter muscle had the changes of activities in two phases as a contraction progressed. 2. In the first phase, surface EMG activities decreased and discharge frequency of motor units also decreased. 3. In the second phase, surface EMG activities increased and discharge frequency of motor units also increased. 4. In the first phase, it was suggested that the bite force was maintained by an increase in the twitch tension produced by a motor unit and that there were no recruitment of additional motor units. 5. In the second phase, it was indicated that the bite force was maintained by the recruitment of new motor units and an increase in the discharge frequency of motor units to compensate a loss of force resulted from the contractile element fatigue.

  11. The effects of verbal encouragement and conscientiousness on maximal voluntary contraction of the triceps surae muscle in elite athletes.

    Science.gov (United States)

    Binboğa, Erdal; Tok, Serdar; Catikkas, Fatih; Guven, Senol; Dane, Senol

    2013-01-01

    We investigated the effect of verbal encouragement on maximal voluntary contraction (MVC) level of the triceps surae muscle group. Our secondary focus was to examine whether the effect of verbal encouragement on MVC level varies as a result of conscientiousness. While the participants performed plantar flexion, MVCs of the triceps surae muscle group were measured using rectified and smoothed surface electromyography (rsEMG) during the absence and presence of verbal encouragement. Participants completed questions from the Five Factor Personality Inventory concerning conscientiousness and were divided into high- and low-conscientiousness groups according to a median split. The sample included 30 female and 53 male elite athletes. In the entire cohort, there was no significant difference in MVCs with and without verbal encouragement. When the sample was partitioned by conscientiousness scores, verbal encouragement led to a significant increase in MVC in the low-conscientiousness group, whereas verbal encouragement led to a non-significant decrease in MVC in the high-conscientiousness group. Percentage change in MVC across experimental conditions was significantly different between the groups, with a 9.72% increase during verbal encouragement of the low-conscientiousness group, and a 2.47% decrease during verbal encouragement of the high-conscientiousness group.

  12. Coherent motor unit rhythms in the 6-10 Hz range during time-varying voluntary muscle contractions: neural mechanism and relation to rhythmical motor control.

    Science.gov (United States)

    Erimaki, Sophia; Christakos, Constantinos N

    2008-02-01

    In quasi-sinusoidal (0.5-3.0 Hz) voluntary muscle contractions, we studied the 6- to 10-Hz motor unit (MU) firing synchrony and muscle force oscillation with emphasis on their neural substrate and relation to rhythmical motor control. Our analyses were performed on data from 121 contractions of a finger muscle in 24 human subjects. They demonstrate that coherent 6- to 10-Hz components of MU discharges coexist with carrier components and coherent modulation components underlying the voluntary force variations. The 6- to 10-Hz synchrony has the frequency of the tremor synchrony in steady contractions and is also widespread and in-phase. Its strength ranges from very small to very large (MU/MU coherence >0.50) among contractions; moreover, it is not related to the contraction parameters, in accord with the notion of a distinct 6- to 10-Hz synaptic input to the MUs. Unlike the coherent MU modulations and the voluntary force variations, the in-phase 6- to 10-Hz MU components are suppressed or even eliminated during ischemia, while the respective force component is drastically reduced. These findings agree with the widely assumed supraspinal origin of the MU modulations, but they also strongly suggest a key role for muscle spindle feedback in the generation of the 6- to 10-Hz synaptic input. They therefore provide important information for the study of generators of the 6- to 10-Hz rhythm which subserves the postulated rhythmical control and is manifested as force and movement components. Moreover, they argue for a participation of oscillating spinal stretch reflex loops in the rhythm generation, possibly in interaction with supraspinal oscillators.

  13. Voluntary Slavery

    Directory of Open Access Journals (Sweden)

    Danny Frederick

    2014-06-01

    Full Text Available The permissibility of actions depends upon facts about the flourishing and separateness of persons. Persons differ from other creatures in having the task of discovering for themselves, by conjecture and refutation, what sort of life will fulfil them. Compulsory slavery impermissibly prevents some persons from pursuing this task. However, many people may conjecture that they are natural slaves. Some of these conjectures may turn out to be correct. In consequence, voluntary slavery, in which one person welcomes the duty to fulfil all the commands of another, is permissible. Life-long voluntary slavery contracts are impermissible because of human fallibility; but fixed-term slavery contracts should be legally enforceable. Each person has the temporarily alienable moral right to direct her own life.

  14. Voluntary Slavery

    Directory of Open Access Journals (Sweden)

    Danny Frederick

    2014-06-01

    Full Text Available The permissibility of actions depends upon facts about the flourishing and separateness of persons. Persons differ from other creatures in having the task of discovering for themselves, by conjecture and refutation, what sort of life will fulfil them. Compulsory slavery impermissibly prevents some persons from pursuing this task. However, many people may conjecture that they are natural slaves. Some of these conjectures may turn out to be correct. In consequence, voluntary slavery, in which one person welcomes the duty to fulfil all the commands of another, is permissible. Life-long voluntary slavery contracts are impermissible because of human fallibility; but fixed-term slavery contracts should be legally enforceable. Each person has the temporarily alienable moral right to direct her own life.

  15. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game

    DEFF Research Database (Denmark)

    Krustrup, Peter; Ortenblad, Niels; Nielsen, Joachim

    2011-01-01

    The aim of this study was to examine maximal voluntary knee-extensor contraction force (MVC force), sarcoplasmic reticulum (SR) function and muscle glycogen levels in the days after a high-level soccer game when players ingested an optimised diet. Seven high-level male soccer players had a vastus...... lateralis muscle biopsy and a blood sample collected in a control situation and at 0, 24, 48 and 72 h after a competitive soccer game. MVC force, SR function, muscle glycogen, muscle soreness and plasma myoglobin were measured. MVC force sustained over 1 s was 11 and 10% lower (P ...

  16. Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle.

    Science.gov (United States)

    Becker, R; Awiszus, F

    2001-05-01

    The purpose of this study was to investigate the influence of different angles of the knee joint on voluntary activation of the quadriceps muscle, estimating the ability of a subject to activate a muscle maximally by means of voluntary contraction. Isometric torque measurement was performed on 6 healthy subjects in 5 degrees intervals between 30 degrees and 90 degrees of knee joint flexion. Superimposed twitches at maximal voluntary contraction (MVC) and at a level of 60% and 40% of the MVC were applied and the voluntary activation estimated. At between 30 degrees and 75 degrees of knee flexion, the maximal extension torque increased at an average rate of 2.67 +/- 0.6 Nm/degree, followed by a decline with further flexion. However, throughout the joint-angle range tested, voluntary activation increased on average by 0.37%/degree with a maximum at 90 degrees of flexion. Due to the influence of joint position it is not possible to generalize results obtained at the knee joint angle of 90 degrees of flexion, which is usually used for the quadriceps twitch-interpolation technique. Consequently, it is useful to investigate voluntary activation deficits in knee joint disorders at a range of knee joint angles that includes, in particular, the more extended joint angles used frequently during daily activity.

  17. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    Science.gov (United States)

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  18. Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque.

    Science.gov (United States)

    Pincivero, Danny M; Salfetnikov, Yuliya; Campy, Robert M; Coelho, Alan J

    2004-11-01

    The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.

  19. Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation.

    Science.gov (United States)

    Dean, J C; Yates, L M; Collins, D F

    2007-07-01

    Neuromuscular electrical stimulation can generate contractions through peripheral and central mechanisms. Direct activation of motor axons (peripheral mechanism) recruits motor units in an unnatural order, with fatigable muscle fibers often activated early in contractions. The activation of sensory axons can produce contractions through a central mechanism, providing excitatory synaptic input to spinal neurons that recruit motor units in the natural order. Presently, we quantified the effect of stimulation frequency (10-100 Hz), duration (0.25-2 s of high-frequency bursts, or 20 s of constant-frequency stimulation), and intensity [1-5% maximal voluntary contraction (MVC) torque generated by a brief 100-Hz train] on the torque generated centrally. Electrical stimulation (1-ms pulses) was delivered over the triceps surae in eight subjects, and plantar flexion torque was recorded. Stimulation frequency, duration, and intensity all influenced the magnitude of the central contribution to torque. Central torque did not develop at frequencies or = 80 Hz. Increasing the duration of high-frequency stimulation increased the central contribution to torque, as central torque developed over 11 s. Central torque was greatest at a relatively low contraction intensity. The largest amount of central torque was produced by a 20-s, 100-Hz train (10.7 +/- 5.5 %MVC) and by repeated 2-s bursts of 80- or 100-Hz stimulation (9.2 +/- 4.8 and 10.2 +/- 8.1% MVC, respectively). Therefore, central torque was maximized by applying high-frequency, long-duration stimulation while avoiding antidromic block by stimulating at a relatively low intensity. If, as hypothesized, the central mechanism primarily activates fatigue-resistant muscle fibers, generating muscle contractions through this pathway may improve rehabilitation applications.

  20. Isometric torque-angle relationships of the elbow flexors and extensors in the transverse plane.

    Science.gov (United States)

    Pinter, Ilona J; Bobbert, Maarten F; van Soest, A J Knoek; Smeets, Jeroen B J

    2010-10-01

    Maximal voluntary isometric torque-angle relationships of elbow extensors and flexors in the transverse plane (humerus elevation angle of 90 degrees ) were measured at two different horizontal adduction angles of the humerus compared to thorax: 20 degrees and 45 degrees . For both elbow flexors and extensors, the torque-angle relationship was insensitive to this 25 degrees horizontal adduction of the humerus. The peak in torque-angle relationship of elbow extensors was found at 55 degrees (0 degrees is full extension). This is closer to full elbow extension than reported by researchers who investigated this relationship in the sagittal plane. Using actual elbow angles during contraction, as we did in this study, instead of angles set by the dynamometer, as others have done, can partly explain this difference. We also measured electromyographic activity of the biceps and triceps muscles with pairs of surface electrodes and found that electromyographic activity level of the agonistic muscles was correlated to measured net torque (elbow flexion torque: Pearson's r=0.21 and extension torque: Pearson's r=0.53). We conclude that the isometric torque-angle relationship of the elbow extensors found in this study provides a good representation of the force-length relationship and the moment arm-angle relationship of the elbow extensors, but angle dependency of neural input gives an overestimation of the steepness. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. The repeated bout effect of eccentric exercise is not associated with changes in voluntary activation.

    Science.gov (United States)

    Kamandulis, Sigitas; Skurvydas, Albertas; Brazaitis, Marius; Skikas, Laimutis; Duchateau, Jacques

    2010-04-01

    The aim of this study was to compare the possible changes in muscle activation level between a first and second bout of damaging eccentric exercise performed at 2 weeks interval (i.e. repeated bout effect). To that purpose, ten physically active males took part in this study. The eccentric exercise consisted of 10 sets of 12 maximal voluntary contractions (MVC) produced by the knee extensors during movements performed at a constant speed of 160 degrees s(-1). Changes in voluntary and electrically evoked torque in concentric and/or isometric conditions were assessed at the following time points: pre-exercise, and 2 min, 1 and 24 h after each eccentric exercise. At the same time points, voluntary activation was quantified by the superimposed electrical stimulation technique. Muscle soreness and plasma CK activity were measured within 48 h after the eccentric exercise. The results showed that the decrease in eccentric peak torque was linear throughout the exercise protocol. At the end of bouts 1 and 2, torque was significantly reduced by 27.7 +/- 9.1 and 23.4 +/- 11.2, respectively, with no difference between bouts (P > 0.05). At 24 h post-exercise, a lower reduction (P eccentric exercise appears to reduce muscle damage, but does not influence the level of voluntary activation.

  2. The number of active motor units and their firing rates in voluntary contraction of human brachialis muscle.

    Science.gov (United States)

    Kanosue, K; Yoshida, M; Akazawa, K; Fujii, K

    1979-01-01

    To make clear the control mechanism of force generation in human muscle, the electrical activity of the brachialis muscle was studied at various levels of contraction force by recording single motor unit discharges as well as mass electromyograms (EMGs). The firing rate of motor units increased with force along an S-shaped curve. At low levels of force, motor units increased their firing rates steeply with force. At intermediate levels of force, each motor unit increased its firing rate linearly with force at lower rates. As the maximum of force was approached, the firing rate increased very steeply, reaching as high as 50 Hz or more. By applying a new method of statistical processing to mass EMGs, the number of active motor units and the size of action potential were estimated at each level of force. The number of active motor units increased monotonously with muscle force. Motor units recruited at high levels of force had larger amplitudes of action potentials than those recruited at lower levels. Calculations were made to determine how the relative contribution to an increase in muscle force is varied between recruitment and the increase in firing rate. The contribution of recruitment gradually decreased with the increase in force. Up to about 70% of the maximum force, recruitment is the major mechanism for increasing the force of contraction.

  3. EMG, bite force, and elongation of the masseter muscle under isometric voluntary contractions and variations of vertical dimension.

    Science.gov (United States)

    Manns, A; Miralles, R; Palazzi, C

    1979-12-01

    The relation EMG activity, bite force, and muscular elongation was studied in eight subjects with complete natural dentition during isometric contractions of the masseter muscle, measured from 7 mm to almost maximum jaw opening. EMG was registered with superficial electrodes and bite force with a gnathodynamometer. In series 1, recordings of EMG activity maintaining bite force constant (10 and 20 kg) show that EMG is high when the bite opening is 7 mm, decreases from 15 to 20 mm, and then increases again as jaw opening approaches maximum opening. In series 2, recordings of bite force maintaining EMG constant show that bite force increases up to a certain range of jaw opening (around 15 to 20 mm) and then decreases as we approach maximum jaw opening. Results show that there is for each experimental subject a physiologically optimum muscular elongation of major efficiency where the masseter develops highest muscular force with least EMG activity.

  4. Contractions

    Science.gov (United States)

    ... the opening to the uterus through which the baby passes during delivery). The contractions tend to increase in the weeks ... experience cramps, contractions and discomfort for weeks before delivery. ... The feeling that the baby has settled lower in your belly. This can ...

  5. The Effects of Positive and Negative Feedback on Maximal Voluntary Contraction Level of the Biceps Brachii Muscle: Moderating Roles of Gender and Conscientiousness.

    Science.gov (United States)

    Sarıkabak, Murat; Yaman, Çetin; Tok, Serdar; Binboga, Erdal

    2016-11-02

    We investigated the effect of positive and negative feedback on maximal voluntary contraction (MVC) of the biceps brachii muscle and explored the mediating effects of gender and conscientiousness. During elbow flexion, MVCs were measured in positive, negative, and no-feedback conditions. Participants were divided into high- and low-conscientiousness groups based on the median split of their scores on Tatar's five-factor personality inventory. Considering all participants 46 college student athletes (21 female, 28 male), positive feedback led to a greater MVC percentage change (-5.76%) than did negative feedback (2.2%). MVC percentage change in the positive feedback condition differed significantly by gender, but the negative feedback condition did not. Thus, positive feedback increased female athletes' MVC level by 3.49%, but decreased male athletes' MVC level by 15.6%. For conscientiousness, MVC percentage change in the positive feedback condition did not differ according to high and low conscientiousness. However, conscientiousness interacted with gender in the positive feedback condition, increasing MVC in high-conscientiousness female athletes and decreasing MVC in low-conscientiousness female athletes. Positive feedback decreased MVC in both high- and low-conscientiousness male athletes.

  6. A comparison of two formulas of topical menthol on vascular responses and perceived intensity prior to and follow a bout of maximum voluntary muscular contractions (MVMCs).

    Science.gov (United States)

    Topp, Robert; Ng, Alex; Cybulski, Alyson; Skelton, Katalin; Papanek, Paula

    2014-07-01

    The purpose of this study was to compare the vascular responses in the brachial artery and perceived intensity of two different formulas of topical menthol gels prior to and following a bout of maximum voluntary muscular contractions (MVMCs). 18 adults completed the same protocol on different days using blinded topical menthol gels (Old Formula and New Formula). Heart rate, brachial artery blood flow (ml/min), vessel diameter and reported intensity of sensation were measured at baseline (T1), at 5 min after application of the gel to the upper arm (T2), and immediately following five MVMCs hand grips (T3). The New Formula exhibited a significant decline in blood flow (-22.6%) between T1 and T2 which was not different than the nonsignificant declines under the Old Formula 1 (-21.8%). Both formulas resulted in a significant increase in perceived intensity of sensation between T1 and T2. Blood flow increased significantly with the New Formula (488%) between T2 and T3 and nonsignificantly with the Old Formula (355%).

  7. Shortening-induced torque depression in old men: implications for age-related power loss.

    Science.gov (United States)

    Power, Geoffrey A; Makrakos, Demetri P; Stevens, Daniel E; Herzog, Walter; Rice, Charles L; Vandervoort, Anthony A

    2014-09-01

    Following active muscle shortening, the steady-state isometric torque at the final muscle length is lower than the steady-state torque obtained for a purely isometric contraction at that same final muscle length. This well-documented property of skeletal muscle is termed shortening-induced torque depression (TD). Despite many investigations into the mechanisms of weakness and power loss in old age, the influence of muscle shortening on the history dependence of isometric torque production remains to be elucidated. Thus, it is unclear whether older adults are disadvantaged for torque and power production following a dynamic shortening contraction. The purpose of this study was to evaluate shortening-induced TD in older adults, and to determine whether shortening-induced TD is related to power loss. Maximal voluntary isometric dorsiflexion contractions (MVC; 10s) in 8 young (25.5±3.7years) and 9 old (76.1±5.4years) men were performed on a HUMAC NORM dynamometer as a reference, and then again following an active shortening of 40° joint excursion (40°PF-0°PF) at angular velocities of 15°/s and 120°/s. Work and instantaneous power were derived during shortening. Shortening-induced TD was calculated and expressed as a percentage by determining the mean torque value over 1s during the isometric steady state of the MVC following shortening, divided by the mean torque value for the same 1s time period during the isometric reference MVC. To assess muscle activation, electromyography (root mean square; EMGRMS) of the tibialis anterior (TA) and soleus (SOL) was calculated at identical time points used in assessing shortening-induced TD, and voluntary activation (VA) was assessed using the interpolated twitch technique. Old were 18% weaker than young for MVC, and ~40% less powerful for 15°/s and 120°/s of shortening. Old produced 37% and 21% less work for 15°/s and 120°/s than young, respectively. Furthermore, old experienced 60% and 70% greater shortening-induced TD

  8. Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles.

    Science.gov (United States)

    Duclay, Julien; Pasquet, Benjamin; Martin, Alain; Duchateau, Jacques

    2014-12-15

    This study investigated the influence of the torque produced by plantar flexor muscles on cortical and spinal excitability during lengthening and shortening voluntary contractions. To that purpose, modulations of motor-evoked potential (MEP) and Hoffmann (H) reflex were compared in the soleus (SOL) and medial gastrocnemius (MG) during anisometric submaximal and maximal voluntary contraction (MVC) of the plantar flexor muscles. For the submaximal shortening and lengthening contractions, the target torque was set at 50% of their respective MVC force. The results indicate that the amplitudes of both MEP and H-reflex responses, normalized to the maximal M wave, were significantly (P 0.05) was observed for MG. In addition, the silent period in the ongoing electromyogram (EMG) activity following the MEP was significantly (P 0.05) between contraction intensities and muscles. Together, these results indicate that cortical and spinal mechanisms involved in the modulation of muscle activation during shortening and lengthening contractions differ between synergistic muscles according to the torque produced. Data further document previous studies reporting that the specific modulation of muscle activation during lengthening contraction is not torque dependent.

  9. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Medeiros, Flávia V A; Vieira, Amilton; Carregaro, Rodrigo L; Bottaro, Martim; Maffiuletti, Nicola A; Durigan, João L Q

    2015-01-01

    Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  10. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Flávia V. A. Medeiros

    2015-12-01

    Full Text Available BACKGROUND: Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES. This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. OBJECTIVE: To investigate the effects of skinfold thickness (SFT on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. METHOD: First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm vs. thinner (n=10; 29.4 mm SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS. RESULTS: NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01 while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01. A positive correlation was found between current intensity and SFT (r=0.540, p=0.017. A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012. No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53. CONCLUSION: These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  11. Fast unilateral isometric knee extension torque development and bilateral jump height.

    Science.gov (United States)

    de Ruiter, Cornelis J; Van Leeuwen, Daniel; Heijblom, Arjan; Bobbert, Maarten F; de Haan, Arnold

    2006-10-01

    We hypothesized that the initial rate (first 40 ms) of unilateral knee extensor torque development during a maximally fast isometric contraction would depend on the subjects' ability for fast neural activation and that it would predict bilateral jumping performance. Nine males (21.8 +/- 0.9 yr, means +/- SD) performed unilateral fast isometric knee extensions (120 degrees knee angle) without countermovement on a dynamometer and bilateral squat jumps (SJ) and countermovement jumps (CMJ) starting from 90 and 120 degrees knee angles (full extension = 180 degrees ). The dynamometer contractions started either from full relaxation or from an isometric pre-tension (15% maximal isometric torque, Tmax). Torque time integral for the first 40 ms after torque onset (TTI-40, normalized to Tmax) and averaged normalized rectified knee extensor EMG for 40 ms before fast torque onset (EMG-40) were used to quantify initial torque rise and voluntary muscle activation. TTI-40 without pre-tension (range: 0.02-0.19% Tmax per second) was significantly lower than TTI-40 with pre-tension, and both were significantly (r = 0.81 and 0.80) related to EMG-40. During jumping, similar significant positive relations were found between jump height and knee extensor EMG during the first 100 ms of the rise in ground reaction force. There also were significant positive linear relations between dynamometer TTI-40 and jump height (r = 0.75 (SJ 90), 0.84 (SJ 120), 0.76 (CMJ 90), and 0.86 (CMJ 120)) but not between dynamometer Tmax and jump height (-0.16 < r < 0.02). One-legged TTI-40 to a large extent explained the variation in jump height. The ability to produce a high efferent neural drive before muscle contraction seemed to dominate performance in both the simple single-joint isometric task and the complex multijoint dynamic task.

  12. Human torque velocity adaptations to sprint, endurance, or combined modes of training

    Science.gov (United States)

    Shealy, M. J.; Callister, R.; Dudley, G. A.; Fleck, S. J.

    1992-01-01

    We had groups of athletes perform sprint and endurance run training independently or concurrently for 8 weeks to examine the voluntary in vivo mechanical responses to each type of training. Pre- and posttraining angle-specific peak torque during knee extension and flexion were determined at 0, 0.84, 1.65, 2.51, 3.35, 4.19, and 5.03 radian.sec-1 and normalized for lean body mass. Knee extension torque in the sprint-trained group increased across all test velocities, the endurance-trained group increased at 2.51, 3.34, 4.19, and 5.03 radian.sec-1, and the group performing the combined training showed no change at any velocity. Knee flexion torque of the sprint and combined groups decreased at 0.84, 1.65, and 2.51 radian.sec-1. Knee flexion torque in the sprint-trained group also decreased at 0 radian.sec-1 and in the combined group at 3.34 radian.sec-1. Knee flexion torque in the endurance-trained group showed no change at any velocity of contraction. Mean knee flexion:extension ratios across the test velocities significantly decreased in the sprint-trained group. Knee extension endurance during 30 seconds of maximal contractions significantly increased in all groups. Only the sprint-trained group showed a significant increase in endurance of the knee flexors. These data suggest that changes in the voluntary in vivo mechanical characteristics of knee extensor and flexor skeletal muscles are specific to the type of run training performed.

  13. Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions

    Directory of Open Access Journals (Sweden)

    Penelope A Mcnulty

    2014-07-01

    Full Text Available Muscle weakness is the most common outcome after stroke and a leading cause of adult-acquired motor disability. Single motor unit properties provide insight into the mechanisms of post-stroke motor impairment. Motor units on the more-affected side are reported to have lower peak firing rates, reduced discharge variability and a more compressed dynamic range than healthy subjects. The activity of 169 motor units was discriminated from surface EMG in 28 stroke patients during sustained voluntary contractions 10% of maximal and compared to 110 units recorded from 16 healthy subjects. Motor units were recorded in three series: ankle dorsiflexion, wrist flexion and elbow flexion. Mean firing rates after stroke were significantly lower on the more-affected than the less-affected side (p< 0.001 with no between-side differences for controls. When data were combined, firing rates on the less-affected side were significantly higher than those either on the more-affected side or healthy subjects (p< 0.001. Motor unit mean firing rate was higher in the upper-limb than the lower-limb (p< 0.05. The coefficient of variation of motor unit discharge rate was lower for motor units after stroke compared to controls for wrist flexion (p< 0.05 but not ankle dorsiflexion. However, the dynamic range of motor units was compressed only for motor units on the more-affected side during wrist flexion. Our results show that the pathological change in motor unit firing rate occurs on the less-affected side after stroke and not the more-affected side as previously reported, and suggest that motor unit behavior recorded in a single muscle after stroke cannot be generalized to muscles acting on other joints even within the same limb. These data emphasize that the less-affected side does not provide a valid control for physiological studies on the more-affected side after stroke and that both sides should be compared to data from age- and sex-matched healthy subjects.

  14. Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation.

    Science.gov (United States)

    Dean, J C; Yates, L M; Collins, D F

    2008-08-01

    Neuromuscular electrical stimulation can generate contractions through both peripheral and central mechanisms. The peripheral mechanism involves the direct activation of motor axons, while the central mechanism involves the activation of sensory axons that recruit spinal neurons through a reflex pathway. For use in functional electrical stimulation. One must have control over turning the central mechanism on and off. We investigated whether inhibition developed through antagonist muscle (tibialis anterior, TA) contractions elicited by electrical stimulation or by volition can turn off the central mechanism in triceps surae. Both electrical stimulation and voluntary contractions of TA reduced or eliminated plantar flexion torque produced by the central mechanism, indicating that inhibition induced via these contractions can effectively turn off the central contribution to force. These findings suggest that patterns of electrical stimulation may be able to generate periodic muscle contractions by turning the central contribution to muscular contractions on and off.

  15. Are joint torque models limited by an assumption of monoarticularity?

    Science.gov (United States)

    Lewis, Martin G C; King, Mark A; Yeadon, Maurice R; Conceição, Filipe

    2012-11-01

    This study determines whether maximal voluntary ankle plantar flexor torque could be more accurately represented using a torque generator that is a function of both knee and ankle kinematics. Isovelocity and isometric ankle plantar flexor torques were measured on a single participant for knee joint angles of 111° to 169° (approximately full extension) using a Contrex MJ dynamometer. Maximal voluntary torque was represented by a 19-parameter two-joint function of ankle and knee joint angles and angular velocities with the parameters determined by minimizing a weighted root mean square difference between measured torques and the two-joint function. The weighted root mean square difference between the two-joint function and the measured torques was 10 N-m or 3% of maximum torque. The two-joint function was a more accurate representation of maximal voluntary ankle plantar flexor torques than an existing single-joint function where differences of 19% of maximum torque were found. It is concluded that when the knee is flexed by more than 40°, a two-joint representation is necessary.

  16. Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation.

    Science.gov (United States)

    Kamper, D G; Rymer, W Z

    2001-05-01

    Subjects with chronic hemiplegia following stroke attempted to perform voluntary isometric, isokinetic, and free contractions of the extensor muscles of the metacarpophalangeal (MCP) joints. We recorded torque, metacarpophalangeal joint angle and velocity, and electromyographic (EMG) activity of the extrinsic extensors and flexors and the first dorsal interosseous (FDI). We found that voluntary MCP joint extension in hemiparetic subjects was greatly impaired in comparison with control subjects: only two of the 11 stroke subjects were able to generate even 0.21 N-m of isometric extension torque, only two could produce positive finger extension with no load, and none could develop an isokinetic concentric extension. Deficits seemed to result from a combination of coactivation of the finger flexor and extensor muscles and decreased voluntary excitation of the extensors, as normalized flexor and FDI EMG activity were greater for stroke than for control subjects (P < 0.001), but normalized extensor activity was reduced (P < 0.001). Copyright 2001 John Wiley & Sons, Inc.

  17. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    Science.gov (United States)

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects

  18. Knee and ankle joint torque-angle relationships of multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Olvermann, Matthias; Richtberg, Jan; Seiberl, Wolfgang; Schwirtz, Ansgar

    2011-07-28

    The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.

  19. MYOELECTRIC ALTERATIONS AFTER VOLUNTARY INDUCED HIGH - AND LOW - FREQUENCY FATIGUE

    Directory of Open Access Journals (Sweden)

    Vojko Strojnik

    2008-06-01

    Full Text Available The aim of the study was to find whether voluntary induced high- and low-frequency peripheral fatigue exhibit specific alteration in surface EMG signal (SEMG during evoked and maximum voluntary contractions. Ten male students of physical education performed 60 s long stretch-shortening cycle (SSC exercise with maximal intensity and 30 s long concentric (CON exercise with maximal intensity. To verify voluntary induced peripheral fatigue, knee torques during low- (T20 and high-frequency electrical stimulation (T100 of relaxed vastus lateralis muscle (VL were obtained. Contractile properties of the VL were measured with passive twitch and maximal voluntary knee extension test (MVC. Changes in M-waves and SEMG during MVC test were used to evaluate the differences in myoelectrical signals. T100/T20 ratio decreased by 10.9 ± 8.4 % (p < 0.01 after the SSC exercise and increased by 35.9 ± 17.5 % (p < 0.001 after the CON exercise. Significant SEMG changes were observed only after the CON exercise where peak to peak time of the M-waves increased by 9.2 ± 13.3 % (p < 0.06, SEMG amplitude during MVC increased by 32.9 ± 21.6 % (p < 0.001 and SEMG power spectrum median frequency decreased by 11.0 ± 10.5 % (p < 0.05. It is concluded that high frequency fatigue wasn't reflected in SEMG, however the SEMG changes after the CON seemed to reflect metabolic changes due to acidosis

  20. Reliability of maximal voluntary isometric contraction testing in a multicenter study of patients with amyotrophic lateral sclerosis. Syntex/Synergen Neuroscience Joint Venture rhCNTF ALS Study Group.

    Science.gov (United States)

    Hoagland, R J; Mendoza, M; Armon, C; Barohn, R J; Bryan, W W; Goodpasture, J C; Miller, R G; Parry, G J; Petajan, J H; Ross, M A

    1997-06-01

    Maximal voluntary isometric contraction (MVIC) is becoming widely used for monitoring disease progression in amyotrophic lateral sclerosis (ALS). We evaluated the variability of MVIC in a large multicenter (29 sites) drug trial in ALS. Intra- and interrater variability were assessed twice during the 19-month study. Intrarater reliability increased from the first to the second test, approaching the reliability reported for a single experienced clinical evaluator, but interrater reliability did not. Multiple clinical evaluators in a single site increased the variability of MVIC measurements. Rigorous quality assurance standards and monitoring of clinical evaluators should be incorporated into the design of multicenter studies using MVIC, since low variability is necessary to detect a modest treatment effect.

  1. High altitude increases alteration in maximal torque but not in rapid torque development in knee extensors after repeated treadmill sprinting

    Directory of Open Access Journals (Sweden)

    Olivier eGIRARD

    2016-03-01

    Full Text Available We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 x 5-s all-out sprints (passive recovery = 25 s on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%, at low (LA; FiO2 = 16.6% and high (HA; FiO2 = 13.3% normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively. Explosive (∼1 s; fast instruction and maximal (∼5 s; hard instruction voluntary isometric contractions (MVC of the knee extensors, with concurrent electromyographic (EMG activity recordings of the vastus lateralis (VL and rectus femoris (RF muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD and EMG (i.e., Root Mean Square or RMS rise from 0 to 30, -50, -100 and -200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P>0.05 in all conditions. A larger (P0.05. Irrespectively of condition (P>0.05, peak RTD (-6±11%; P0.05, whereas it increased (P<0.05 for RF muscle during all epochs post-exercise, independently of the conditions. In summary, alteration in repeated-sprint ability and post-exercise MVC decrease were greater at high altitude than in normoxia or at low altitude. However, the post-exercise alterations in RTD were similar between normoxia and low-to-high hypoxia.

  2. High Altitude Increases Alteration in Maximal Torque but Not in Rapid Torque Development in Knee Extensors after Repeated Treadmill Sprinting

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Millet, Grégoire P.

    2016-01-01

    We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 × 5-s “all-out” sprints (passive recovery = 25 s) on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%), at low (LA; FiO2 = 16.8%) and high (HA; FiO2 = 13.3%) normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively). Explosive (~1 s; “fast” instruction) and maximal (~5 s; “hard” instruction) voluntary isometric contractions (MVC) of the knee extensors (KE), with concurrent electromyographic (EMG) activity recordings of the vastus lateralis (VL) and rectus femoris (RF) muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD) and EMG (i.e., Root Mean Square or RMS) rise from 0 to 30, −50, −100, and −200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P > 0.05) in all conditions. A larger (P sprint decrement score and a shorter (P sprints occurred in HA (−8 ± 4% and 178 ± 11 m) but not in LA (−7 ± 3% and 181 ± 10 m) compared to NM (−5 ± 2% and 183 ± 9 m). Compared to NM (−9 ± 7%), a larger (P 0.05). Irrespectively of condition (P > 0.05), peak RTD (−6 ± 11%; P 0.05), whereas it increased (P repeated-sprint ability and post-exercise MVC decrease were greater at high altitude than in normoxia or at low altitude. However, the post-exercise alterations in RTD were similar between normoxia and low-to-high hypoxia. PMID:27014095

  3. Comparing different approaches for determining joint torque parameters from isovelocity dynamometer measurements.

    Science.gov (United States)

    Forrester, S E; Yeadon, M R; King, M A; Pain, M T G

    2011-03-15

    Strength, or maximum joint torque, is a fundamental factor governing human movement, and is regularly assessed for clinical and rehabilitative purposes as well as for research into human performance. This study aimed to identify the most appropriate protocol for fitting a maximum voluntary torque function to experimental joint torque data. Three participants performed maximum isometric and concentric-eccentric knee extension trials on an isovelocity dynamometer and a separate experimental protocol was used to estimate maximum knee extension angular velocity. A nine parameter maximum voluntary torque function, which included angle, angular velocity and neural inhibition effects, was fitted to the experimental torque data and three aspects of this fitting protocol were investigated. Using an independent experimental estimate of maximum knee extension angular velocity gave lower variability in the high concentric velocity region of the maximum torque function compared to using dynamometer measurements alone. A weighted root mean square difference (RMSD) score function, that forced the majority (73-92%) of experimental data beneath the maximum torque function, was found to best account for the one-sided noise in experimental torques resulting from sub-maximal effort by the participants. The suggested protocol (an appropriately weighted RMSD score function and an independent estimate of maximum knee extension angular velocity) gave a weighted RMSD of between 11 and 13 Nm (4-5% of maximum isometric torque). It is recommended that this protocol be used in generating maximum voluntary joint torque functions in all torque-based modelling of dynamic human movement.

  4. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    Science.gov (United States)

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R(2) that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly.

    Science.gov (United States)

    Chen, Trevor C; Tseng, Wei-Chin; Huang, Guan-Ling; Chen, Hsin-Lian; Tseng, Kou-Wei; Nosaka, Kazunori

    2013-04-01

    This study investigated whether low-intensity eccentric contractions of the knee extensors would attenuate the magnitude of muscle damage induced by maximal eccentric exercise of the same muscle performed 7 days later using elderly individuals. Healthy older men (66.4 ± 4.6 years) were assigned to control or experimental (Exp) group (n = 13 per group). The control group performed six sets of ten maximal eccentric contractions (MaxECC) of the knee extensors of non-dominant leg. The Exp group performed six sets of ten low-intensity eccentric contractions of the knee extensors on a leg extension machine by lowering a weight of 10 % maximal voluntary isometric knee extension strength (10 %ECC) 7 days prior to MaxECC. Changes in maximal voluntary isokinetic concentric torque (MVC-CON), angle at peak torque, range of motion (ROM), upper thigh circumference, muscle soreness, plasma creatine kinase activity and myoglobin (Mb) concentration and B-mode ultrasound echo-intensity before and for 5 days after MaxECC were compared between groups by a mixed factor ANOVA. No significant changes in any variables were observed following 10 %ECC. Following MaxECC, all variables changed significantly, and changes in all variables except for angle at peak torque were significantly different between groups. MVC-CON and ROM decreased smaller and recovered faster (P eccentric contractions was effective for attenuating muscle damage induced by subsequent MaxECC of the knee extensors for elderly individuals.

  6. Two maximal isometric contractions attenuate the magnitude of eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Chen, Hsin-Lian; Nosaka, Kazunori; Pearce, Alan J; Chen, Trevor C

    2012-08-01

    This study investigated whether maximal voluntary isometric contractions (MVC-ISO) would attenuate the magnitude of eccentric exercise-induced muscle damage. Young untrained men were placed into one of the two experimental groups or one control group (n = 13 per group). Subjects in the experimental groups performed either two or 10 MVC-ISO of the elbow flexors at a long muscle length (20° flexion) 2 days prior to 30 maximal isokinetic eccentric contractions of the elbow flexors. Subjects in the control group performed the eccentric contractions without MVC-ISO. No significant changes in maximal voluntary concentric contraction peak torque, peak torque angle, range of motion, upper arm circumference, plasma creatine kinase (CK) activity and myoglobin concentration, muscle soreness, and ultrasound echo intensity were evident after MVC-ISO. Changes in the variables following eccentric contractions were smaller (P MVC-ISO group (e.g., peak torque loss at 5 days after exercise, 23% ± 3%; peak CK activity, 1964 ± 452 IU·L(-1); peak muscle soreness, 46 ± 4 mm) or the 10 MVC-ISO group (13% ± 3%, 877 ± 198 IU·L(-1), 30 ± 4 mm) compared with the control (34% ± 4%, 6192 ± 1747 IU·L(-1), 66 ± 5 mm). The 10 MVC-ISO group showed smaller (P MVC-ISO group. Therefore, two MVC-ISO conferred potent protective effects against muscle damage, whereas greater protective effect was induced by 10 MVC-ISO, which can be used as a strategy to minimize muscle damage.

  7. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors

    Science.gov (United States)

    Girard, Olivier; Racinais, Sébastien; Périard, Julien D

    2014-01-01

    Objectives To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. Methods The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, –50, –100 and –200 ms during brief (3–5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. Results The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (p<0.05). Reductions in KE RTD occurred within the 0–200 ms epoch after contraction onset postmatch and at 24 h, compared with prematch, independent of environmental conditions (p<0.05). A similar reduction in the KE peak RTD was also observed postmatch relative to prematch (p<0.05). No differences in KE RTD values were observed after normalisation to MVC torque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. Conclusions In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF. PMID:24668381

  8. Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions

    Science.gov (United States)

    Muthalib, Makii; Millet, Guillaume Y.; Quaresima, Valentina; Nosaka, Kazunori

    2010-01-01

    We examine the test-retest reliability of biceps brachii tissue oxygenation index (TOI) parameters measured by near-infrared spectroscopy during a 10-s sustained and a 30-repeated (1-s contraction, 1-s relaxation) isometric contraction task at 30% of maximal voluntary contraction (30% MVC) and maximal (100% MVC) intensities. Eight healthy men (23 to 33 yr) were tested on three sessions separated by 3 h and 24 h, and the within-subject reliability of torque and each TOI parameter were determined by Bland-Altman+/-2 SD limits of agreement plots and coefficient of variation (CV). No significant (P>0.05) differences between the three sessions were found for mean values of torque and TOI parameters during the sustained and repeated tasks at both contraction intensities. All TOI parameters were within+/-2 SD limits of agreement. The CVs for torque integral were similar between the sustained and repeated task at both intensities (4 to 7%) however, the CVs for TOI parameters during the sustained and repeated task were lower for 100% MVC (7 to 11%) than for 30% MVC (22 to 36%). It is concluded that the reliability of the biceps brachii NIRS parameters during both sustained and repeated isometric contraction tasks is acceptable.

  9. Cardiovascular responses to voluntary and nonvoluntary static exercise in humans.

    Science.gov (United States)

    Friedman, D B; Peel, C; Mitchell, J H

    1992-11-01

    We have measured the cardiovascular responses during voluntary and nonvoluntary (electrically induced) one-leg static exercise in humans. Eight normal subjects were studied at rest and during 5 min of static leg extension at 20% of maximal voluntary contraction performed voluntarily and nonvoluntarily in random order. Heart rate (HR), mean arterial pressure (MAP), and cardiac output (CO) were determined, and peripheral vascular resistance (PVR) and stroke volume (SV) were calculated. HR increased from approximately 65 +/- 3 beats/min at rest to 80 +/- 4 and 78 +/- 6 beats/min (P voluntary and nonvoluntary contractions, respectively. CO increased from 5.1 +/- 0.7 to 6.0 +/- 0.8 and 6.2 +/- 0.8 l/min (P voluntary and nonvoluntary contractions, respectively. PVR and SV did not change significantly during voluntary or nonvoluntary contractions. Thus the cardiovascular responses were not different between voluntary and electrically induced contractions. These results suggest that the increases in CO, HR, SV, MAP, and PVR during 5 min of static contractions can be elicited without any contribution from a central neural mechanism (central command). However, central command could still have an important role during voluntary static exercise.

  10. Voluntary Environmental Governance Arrangements

    NARCIS (Netherlands)

    van der Heijden, J.

    2012-01-01

    Voluntary environmental governance arrangements have focal attention in studies on environmental policy, regulation and governance. The four major debates in the contemporary literature on voluntary environmental governance arrangements are studied. The literature falls short of sufficiently

  11. Voluntary Environmental Governance Arrangements

    NARCIS (Netherlands)

    van der Heijden, J.

    2012-01-01

    Voluntary environmental governance arrangements have focal attention in studies on environmental policy, regulation and governance. The four major debates in the contemporary literature on voluntary environmental governance arrangements are studied. The literature falls short of sufficiently specify

  12. Voluntary Service System (VSS)

    Data.gov (United States)

    Department of Veterans Affairs — Voluntary Service System (VSS) is a national-level application which replaced the site-based Voluntary Timekeeping System (VTK). VTK was used for many years at the...

  13. EFFECTS OF BETWEEN-SET INTERVENTIONS ON NEUROMUSCULAR FUNCTION DURING ISOKINETIC MAXIMAL CONCENTRIC CONTRACTIONS OF THE KNEE EXTENSORS

    Directory of Open Access Journals (Sweden)

    Carole Cometti

    2011-12-01

    Full Text Available The presents study investigated the effects of between-set interventions on neuromuscular function of the knee extensors during six sets of 10 isokinetic (120°·s-1 maximal concentric contractions separated by three minutes. Twelve healthy men (age: 23.9 ± 2.4 yrs were tested for four different between-set recovery conditions applied during two minutes: passive recovery, active recovery (cycling, electromyostimulation and stretching, in a randomized, crossover design. Before, during and at the end of the isokinetic session, torque and thigh muscles electromyographic activity were measured during maximal voluntary contractions and electrically-evoked doublets. Activation level was calculated using the twitch interpolation technique. While quadriceps electromyographic activity and activation level were significantly decreased at the end of the isokinetic session (-5.5 ± 14.2 % and -2.7 ± 4.8 %; p < 0.05, significant decreases in maximal voluntary contractions and doublets were observed after the third set (respectively -0.8 ± 12.1% and -5.9 ± 9.9%; p < 0.05. Whatever the recovery modality applied, torque was back to initial values after each recovery period. The present results showed that fatigue appeared progressively during the isokinetic session with peripheral alterations occurring first followed by central ones. Recovery interventions between sets did not modify fatigue time course as compared with passive recovery. It appears that the interval between sets (3 min was long enough to provide recovery regardless of the interventions

  14. van der Waals torque

    Science.gov (United States)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  15. An examination of the frequency-specific behavior of the mechanomyographic amplitude versus isometric torque relationship.

    Science.gov (United States)

    Beck, T W

    2009-01-01

    The purpose of this study was to examine the patterns of responses for mechanomyographic (MMG) amplitude versus isometric torque in different frequency bands for the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) muscles. Eleven men (mean +/- SD age = 20.1 +/- 1.1 yrs) performed submaximal to maximal isometric step muscle actions of the dominant leg extensors from 10% to 100% of the maximum voluntary contraction (MVC). During each muscle action, three separate surface mechanomyographic (MMG) signals were detected from the VL, RF and VM. Each MMG signal was decomposed into 9 different frequency bands (5-15, 15-25, 25-35, 35-45, 45-55, 55-65, 65-75, 75-85, and 85-95 Hz), and the root-mean-square amplitude of the signal in each frequency band was calculated. The results showed that for the VL and RF muscles, MMG amplitude plateaued from 80-100% MVC in the 15-25 and 25-35 Hz frequency bands. For the VM, however, the plateau in MMG amplitude from 80-100% MVC occurred in the 5-15 and 15-25 Hz bands. These findings indicated that there were both muscle- and frequency-specific discrepancies in the MMG amplitude versus isometric torque relationship that could be due to differences in muscle architecture and/or fiber type composition.

  16. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model.

    Science.gov (United States)

    de Oliveira, Liliam Fernandes; Menegaldo, Luciano Luporini

    2010-10-19

    EMG-driven models can be used to estimate muscle force in biomechanical systems. Collected and processed EMG readings are used as the input of a dynamic system, which is integrated numerically. This approach requires the definition of a reasonably large set of parameters. Some of these vary widely among subjects, and slight inaccuracies in such parameters can lead to large model output errors. One of these parameters is the maximum voluntary contraction force (F(om)). This paper proposes an approach to find F(om) by estimating muscle physiological cross-sectional area (PCSA) using ultrasound (US), which is multiplied by a realistic value of maximum muscle specific tension. Ultrasound is used to measure muscle thickness, which allows for the determination of muscle volume through regression equations. Soleus, gastrocnemius medialis and gastrocnemius lateralis PCSAs are estimated using published volume proportions among leg muscles, which also requires measurements of muscle fiber length and pennation angle by US. F(om) obtained by this approach and from data widely cited in the literature was used to comparatively test a Hill-type EMG-driven model of the ankle joint. The model uses 3 EMGs (Soleus, gastrocnemius medialis and gastrocnemius lateralis) as inputs with joint torque as the output. The EMG signals were obtained in a series of experiments carried out with 8 adult male subjects, who performed an isometric contraction protocol consisting of 10s step contractions at 20% and 60% of the maximum voluntary contraction level. Isometric torque was simultaneously collected using a dynamometer. A statistically significant reduction in the root mean square error was observed when US-obtained F(om) was used, as compared to F(om) from the literature.

  17. Dynamic Torque Calibration Unit

    Science.gov (United States)

    Agronin, Michael L.; Marchetto, Carl A.

    1989-01-01

    Proposed dynamic torque calibration unit (DTCU) measures torque in rotary actuator components such as motors, bearings, gear trains, and flex couplings. Unique because designed specifically for testing components under low rates. Measures torque in device under test during controlled steady rotation or oscillation. Rotor oriented vertically, supported by upper angular-contact bearing and lower radial-contact bearing that floats axially to prevent thermal expansion from loading bearings. High-load capacity air bearing available to replace ball bearings when higher load capacity or reduction in rate noise required.

  18. Torque-wrench extension

    Science.gov (United States)

    Peterson, D. H.

    1981-01-01

    Torque-wrench extension makes it easy to install and remove fasteners that are beyond reach of typical wrenches or are located in narrow spaces that prevent full travel of wrench handle. At same time, tool reads applied torque accurately. Wrench drive system, for torques up to 125 inch-pounds, uses 2 standard drive-socket extensions in aluminum frame. Extensions are connected to bevel gear that turns another bevel gear. Gears produce 1:1 turn ratio through 90 degree translation of axis of rotation. Output bevel has short extension that is used to attach 1/4-inch drive socket.

  19. Quantification of muscle co-contraction using supersonic shear wave imaging.

    Science.gov (United States)

    Raiteri, Brent J; Hug, François; Cresswell, Andrew G; Lichtwark, Glen A

    2016-02-01

    Muscle stiffness estimated using shear wave elastography can provide an index of individual muscle force during isometric contraction and may therefore be a promising method for quantifying co-contraction. We estimated the shear modulus of the lateral gastrocnemius (LG) muscle using supersonic shear wave imaging and measured its myoelectrical activity using surface electromyography (sEMG) during graded isometric contractions of plantar flexion and dorsiflexion (n=7). During dorsiflexion, the average shear modulus was 26 ± 6 kPa at peak sEMG amplitude, which was significantly less (P=0.02) than that measured at the same sEMG level during plantar flexion (42 ± 10 kPa). The passive tension during contraction was estimated using the passive LG muscle shear modulus during a passive ankle rotation measured at an equivalent ankle angle to that measured during contraction. The passive shear modulus increased significantly (Pmuscle shear modulus due to active contraction was significantly greater (Pmuscle, despite measured sEMG activity of 19% of maximal voluntary plantar flexion contraction. This strongly suggests that the sEMG activity recorded from the LG muscle during isometric dorsiflexion was primarily due to cross-talk. However, it is clear that passive muscle tension changes can contribute to joint torque during isometric dorsiflexion.

  20. Age-related differences in muscle fatigue vary by contraction type: a meta-analysis.

    Science.gov (United States)

    Avin, Keith G; Law, Laura A Frey

    2011-08-01

    During senescence, despite the loss of strength (force-generating capability) associated with sarcopenia, muscle endurance may improve for isometric contractions. The purpose of this study was to perform a systematic meta-analysis of young versus older adults, considering likely moderators (ie, contraction type, joint, sex, activity level, and task intensity). A 2-stage systematic review identified potential studies from PubMed, CINAHL, PEDro, EBSCOhost: ERIC, EBSCOhost: Sportdiscus, and The Cochrane Library. Studies reporting fatigue tasks (voluntary activation) performed at a relative intensity in both young (18-45 years of age) and old (≥ 55 years of age) adults who were healthy were considered. Sample size, mean and variance outcome data (ie, fatigue index or endurance time), joint, contraction type, task intensity (percentage of maximum), sex, and activity levels were extracted. Effect sizes were (1) computed for all data points; (2) subgrouped by contraction type, sex, joint or muscle group, intensity, or activity level; and (3) further subgrouped between contraction type and the remaining moderators. Out of 3,457 potential studies, 46 publications (with 78 distinct effect size data points) met all inclusion criteria. A lack of available data limited subgroup analyses (ie, sex, intensity, joint), as did a disproportionate spread of data (most intensities ≥ 50% of maximum voluntary contraction). Overall, older adults were able to sustain relative-intensity tasks significantly longer or with less force decay than younger adults (effect size=0.49). However, this age-related difference was present only for sustained and intermittent isometric contractions, whereas this age-related advantage was lost for dynamic tasks. When controlling for contraction type, the additional modifiers played minor roles. Identifying muscle endurance capabilities in the older adult may provide an avenue to improve functional capabilities, despite a clearly established decrement in

  1. Displaceable Gear Torque Controlled Driver

    Science.gov (United States)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  2. Antiferromagnetic domain wall motion driven by spin-orbit torques

    Science.gov (United States)

    Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M.; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin

    2016-01-01

    We theoretically investigate dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet/heavy metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin-waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets. PMID:27588878

  3. Effect of number of stimuli and timing of twitch application on variability in interpolated twitch torque.

    Science.gov (United States)

    Suter, E; Herzog, W

    2001-03-01

    Application of a supramaximal electrical twitch to the voluntarily contracted muscle is used to assess the level of muscle activation. Large variability in the interpolated twitch torque (ITT) has been observed when repeated stimulations are performed. It is hypothesized that this variability in ITT is caused by the stochastic nature of the timing of twitch application relative to pulses of voluntary excitation trains. Two experiments were performed on 12 subjects each to test this hypothesis. For the first experiment, a single twitch was superimposed on a train stimulation at different time intervals relative to the train pulses. For the second experiment, single, double, triple, or quadruple twitches were applied on a voluntarily contracted muscle. The ITT critically depended on the time point of twitch application: a single pulse applied 5 ms before a train pulse consistently evoked higher ITTs than all other stimulation conditions. Furthermore, variability of the ITT decreased as the number of applied twitches increased. The results support the hypothesis that a large part of the variability in the ITT may be caused by the timing of the superimposed twitch relative to the motor unit trains. The variability may be reduced by increasing the number of superimposed twitches.

  4. Low-frequency fatigue at maximal and submaximal muscle contractions

    Directory of Open Access Journals (Sweden)

    R.R. Baptista

    2009-04-01

    Full Text Available Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 ± 4.2 years; weight: 73.8 ± 7.7 kg; height: 1.79 ± 0.05 m executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise, immediately after (after-exercise and after 1 h of recovery (after-recovery. The fatigue test consisted of 60 maximal (100% or submaximal (40% dynamic concentric or eccentric knee extensions at an angular velocity of 60°/s. The isometric torque produced by low- (20 Hz and high- (100 Hz frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05 differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.

  5. Functional torque ratios and torque curve analysis of shoulder rotations in overhead athletes with and without impingement symptoms.

    Science.gov (United States)

    Zanca, Gisele G; Oliveira, Ana B; Saccol, Michele F; Ejnisman, Benno; Mattiello-Rosa, Stela M

    2011-12-01

    In this study, we evaluated the peak torque, functional torque ratios, and torque curve profile of the shoulder rotators in overhead athletes with impingement symptoms so as to examine possible alterations in response to sports training and shoulder pain. Twenty-one overhead athletes with impingement symptoms were compared with 25 overhead athletes and 21 non-athletes, none of whom were symptomatic for impingement. The participants performed five maximal isokinetic concentric and eccentric contractions of medial and lateral shoulder rotations at 1.57 rad · s(-1) and 3.14 rad · s(-1). Isokinetic peak torque was used to calculate the eccentric lateral rotation-to-concentric medial rotation and the eccentric medial rotation-to-concentric lateral rotation ratios. An analysis of the torque curve profiles was also carried out. The eccentric lateral rotation-to-concentric medial rotation torque ratio of asymptomatic athletes was lower than that of non-athletes at both test velocities. The concentric medial rotation isokinetic peak torque of the asymptomatic athletes, at 3.14 rad · s(-1), was greater than that of the non-athletes, and the peak appeared to occur earlier in the movement for athletes than non-athletes. These findings suggest that there may be adaptations to shoulder function in response to throwing practice. The eccentric medial rotation-to-concentric lateral rotation torque ratio was altered neither by the practice of university-level overhead sports nor impingement symptoms.

  6. Ironless armature torque motor

    Science.gov (United States)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  7. Negative optical torque.

    Science.gov (United States)

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C T

    2014-09-17

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of "negative optical torque", meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained.

  8. Effect of shoulder angle on the activation pattern of the elbow extensors during a submaximal isometric fatiguing contraction.

    Science.gov (United States)

    Davidson, Andrew W; Rice, Charles L

    2010-10-01

    The aim of this study was to examine the effect of shoulder angle on the electromyographic (EMG) activation pattern of the elbow extensors during a fatiguing contraction. Ten young men (23.5 ± 1.7) were tested on two occasions with the elbow angle at 90° and the shoulder at either 0° or 90° of flexion. EMG was recorded by fine wire electrodes inserted into the lateral, medial, and long heads of the triceps brachii and the anconeus. An EMG-torque relationship was determined prior to a sustained isometric contraction at 20% of maximum voluntary contraction (MVC) until target failure. Endurance time was shorter, and postfatigue MVC torque was lower at 90° (40.4 ± 12.7 Nm) versus 0° (47.9 ± 14.7 Nm) of flexion. EMG activity of the long head during the final 10% of the fatiguing contraction was significantly greater at 90° versus 0° with no effect of shoulder angle on any other muscle portions. The findings suggest that measures from one muscle portion of the elbow extensors are not representative of the whole group, and the relative activation of the two-joint long head was changed depending on shoulder angle during a fatigue task.

  9. Torque-Splitting Gear Drive

    Science.gov (United States)

    Kish, J.

    1991-01-01

    Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.

  10. Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury?

    Science.gov (United States)

    Zijdewind, Inge; Gant, Katie; Bakels, Rob; Thomas, Christine K

    2012-01-01

    Motor unit firing frequencies are low during maximal voluntary contractions (MVCs) of human thenar muscles impaired by cervical spinal cord injury (SCI). This study aimed to examine whether thenar motor unit firing frequencies increase when driven by both maximal voluntary drive and other concurrent inputs compared with an MVC alone. Motor unit firing rates, force, and surface electromyographic activity (EMG) were compared across 2 contractions: (a) MVC alone and (b) MVC combined with another input (combination contraction). Other inputs (conditions) included vibration, heat, or cold applied to the anterior surface of the forearm, electrical stimulation delivered to the anterior surface of the middle finger, a muscle spasm, or a voluntary contraction of the contralateral thenar muscles against resistance. The maximal firing frequency (n = 68 units), force, and electromyographic activity (n = 92 contraction pairs) were all significantly higher during the combined contractions compared with MVCs alone. There was a 3-way interaction between contraction, condition, and subject for maximal motor unit firing rates, force, and EMG. Thus, combined contraction responses were different for conditions across subjects. Some conditions (eg, a muscle spasm) resulted in more effective and more frequent responses (increases in unit firing frequency, force, EMG in >50% contractions) than others. Recruitment of new units also occurred in combined contractions. Motoneurons are still responsive to additional afferent inputs from various sources when rate modulation from voluntary drive is limited by SCI. Individuals with SCI may be able to combine inputs to control functional tasks they cannot perform with voluntary drive alone.

  11. Lower extremity extension force and electromyography properties as a function of knee angle and their relation to joint torques: implications for strength diagnostics.

    Science.gov (United States)

    Hahn, Daniel

    2011-06-01

    The purpose of this study was to evaluate whether and how isometric multijoint leg extension strength can be used to assess athletes' muscular capability within the scope of strength diagnosis. External reaction forces (Fext) and kinematics were measured (n = 18) during maximal isometric contractions in a seated leg press at 8 distinct joint angle configurations ranging from 30 to 100° knee flexion. In addition, muscle activation of rectus femoris, vastus medialis, biceps femoris c.l., gastrocnemius medialis, and tibialis anterior was obtained using surface electromyography (EMG). Joint torques for hip, knee, and ankle joints were computed by inverse dynamics. The results showed that unilateral Fext decreased significantly from 3,369 ± 575 N at 30° knee flexion to 1,015 ± 152 N at 100° knee flexion. Despite maximum voluntary effort, excitation of all muscles as measured by EMG root mean square changed with knee flexion angles. Moreover, correlations showed that above-average Fext at low knee flexion is not necessarily associated with above-average Fext at great knee flexion and vice versa. Similarly, it is not possible to deduce high joint torques from high Fext just as above-average joint torques in 1 joint do not signify above-average torques in another joint. From these findings, it is concluded that an evaluation of muscular capability by means of Fext as measured for multijoint leg extension is strongly limited. As practical recommendation, we suggest analyzing multijoint leg extension strength at 3 distinct knee flexion angles or at discipline-specific joint angles. In addition, a careful evaluation of muscular capacity based on measured Fext can be done for knee flexion angles ≥ 80°. For further and detailed analysis of single muscle groups, the use of inverse dynamic modeling is recommended.

  12. The envelope of motion of the cervical spine and its influence on the maximum torque generating capability of the neck muscles.

    Science.gov (United States)

    Siegler, Sorin; Caravaggi, Paolo; Tangorra, James; Milone, Mary; Namani, Ramya; Marchetto, Paul A

    2015-10-15

    The posture of the head and neck is critical for predicting and assessing the risk of injury during high accelerations, such as those arising during motor accidents or in collision sports. Current knowledge suggests that the head's range-of-motion (ROM) and the torque-generating capability of neck muscles are both dependent and affected by head posture. A deeper understanding of the relationship between head posture, ROM and maximum torque-generating capability of neck muscles may help assess the risk of injury and develop means to reduce such risks. The aim of this study was to use a previously-validated device, known as Neck Flexibility Tester, to quantify the effects of head's posture on the available ROM and torque-generating capability of neck muscles. Ten young asymptomatic volunteers were enrolled in the study. The tri-axial orientation of the subjects' head was controlled via the Neck Flexibility Tester device. The head ROM was measured for each flexed, extended, axially rotated, and laterally bent head's orientation and compared to that in unconstrained neutral posture. Similarly, the torque applied about the three anatomical axes during Isometric Maximum Voluntary Contraction (IMVC) of the neck muscles was measured in six head's postures and compared to that in fully-constrained neutral posture. The further from neutral the neck posture was the larger the decrease in ROM and IMVC. Head extension and combined two-plane rotations postures, such as extension with lateral bending, produced the largest decreases in ROM and IMVC, thus suggesting that these postures pose the highest potential risk for injury.

  13. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  14. Rethinking voluntary euthanasia.

    Science.gov (United States)

    Stoyles, Byron J; Costreie, Sorin

    2013-12-01

    Our goal in this article is to explicate the way, and the extent to which, euthanasia can be voluntary from both the perspective of the patient and the perspective of the health care providers involved in the patient's care. More significantly, we aim to challenge the way in which those engaged in ongoing philosophical debates regarding the morality of euthanasia draw distinctions between voluntary, involuntary, and nonvoluntary euthanasia on the grounds that drawing the distinctions in the traditional manner (1) fails to reflect what is important from the patient's perspective and (2) fails to reflect the significance of health care providers' interests, including their autonomy and integrity.

  15. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans.

    Science.gov (United States)

    Roatta, Silvestro; Arendt-Nielsen, Lars; Farina, Dario

    2008-11-15

    Animal and in vitro studies have shown that the sympathetic nervous system modulates the contractility of skeletal muscle fibres, which may require adjustments in the motor drive to the muscle in voluntary contractions. In this study, these mechanisms were investigated in the tibialis anterior muscle of humans during sympathetic activation induced by the cold pressor test (CPT; left hand immersed in water at 4 degrees C). In the first experiment, 11 healthy men performed 20 s isometric contractions at 10% of the maximal torque, before, during and after the CPT. In the second experiment, 12 healthy men activated a target motor unit at the minimum stable discharge rate for 5 min in the same conditions as in experiment 1. Intramuscular electromyographic (EMG) signals and torque were recorded and used to assess the motor unit discharge characteristics (experiment 1) and spike-triggered average twitch torque (experiment 2). CPT increased the diastolic blood pressure and heart rate by (mean +/- S.D.) 18 +/- 9 mmHg and 4.7 +/- 6.5 beats min(-1) (P < 0.01), respectively. In experiment 1, motor unit discharge rate increased from 10.4 +/- 1.0 pulses s(-1) before to 11.1 +/- 1.4 pulses s(-1) (P < 0.05) during the CPT. In experiment 2, the twitch half-relaxation time decreased by 15.8 +/- 9.3% (P < 0.05) during the CPT with respect to baseline. These results provide the first evidence of an adrenergic modulation of contractility of muscle fibres in individual motor units in humans, under physiological sympathetic activation.

  16. Motor unit firing rates of the gastrocnemii during maximal brief steady-state contractions in humans.

    Science.gov (United States)

    Graham, Mitchell T; Rice, Charles L; Dalton, Brian H

    2016-02-01

    The human triceps surae (soleus, medial (MG) and lateral (LG) gastrocnemii) is complex and important for posture and gait. The soleus exhibits markedly lower motor unit firing rates (MUFRs; ∼16Hz) during maximal voluntary isometric contraction (MVC) than other limb muscles, but this information is unknown for the MG and LG. During multiple visits, subjects performed a series of 5-7, ∼7-s plantar flexor MVCs with tungsten microelectrodes inserted into the MG and LG. During a separate testing session, another group of subjects performed submaximal isometric contractions at 25%, 50%, and 75% MVC with inserted fine-wires in the MG, LG and soleus. Maximum steady-state MUFRs for MG and LG (∼23Hz) were not different, but faster than prior reports for the soleus. No differences between the three triceps surae components were detected for 25% or 50% MVC, but at 75% MVC, the MG MUFRs were 31% greater than soleus. The triceps surae exhibit similar torque modulation strategies at 75% MVC) the gastrocnemii rely on faster rates to generate maximal torque than the soleus. Therefore, the MG and LG exhibit a larger range of MUFR capacities.

  17. Fatigability and recovery of arm muscles with advanced age for dynamic and isometric contractions.

    Science.gov (United States)

    Yoon, Tejin; Schlinder-Delap, Bonnie; Hunter, Sandra K

    2013-02-01

    This study determined whether age-related mechanisms can increase fatigue of arm muscles during maximal velocity dynamic contractions, as it occurs in the lower limb. We compared elbow flexor fatigue of young (n=10, 20.8±2.7 years) and old men (n=16, 73.8±6.1 years) during and in recovery from a dynamic and an isometric postural fatiguing task. Each task was maintained until failure while supporting a load equivalent to 20% of maximal voluntary isometric contraction (MVIC) torque. Transcranial magnetic stimulation (TMS) was used to assess supraspinal fatigue (superimposed twitch, SIT) and muscle relaxation. Time to failure was longer for the old men than for the young men for the isometric task (9.5±3.1 vs. 17.2±7.0 min, P=0.01) but similar for the dynamic task (6.3±2.4 min vs. 6.0±2.0 min, P=0.73). Initial peak rate of relaxation was slower for the old men than for the young men, and was associated with a longer time to failure for both tasks (PMuscular mechanisms and greater relative muscle activity (EMG activity) explain the greater fatigue during the dynamic task for the old men compared with the young men in the elbow flexor muscles. Recovery of MVC torque however relies more on the recovery of supraspinal fatigue among the old men than among the young men.

  18. Protective effect by maximal isometric contractions against maximal eccentric exercise-induced muscle damage of the knee extensors.

    Science.gov (United States)

    Tseng, Kuo-Wei; Tseng, Wei-Chin; Lin, Ming-Ju; Chen, Hsin-Lian; Nosaka, Kazunori; Chen, Trevor C

    2016-01-01

    This study investigated whether maximal voluntary isometric contractions (MVIC) performed before maximal eccentric contractions (MaxEC) would attenuate muscle damage of the knee extensors. Untrained men were placed to an experimental group that performed 6 sets of 10 MVIC at 90° knee flexion 2 weeks before 6 sets of 10 MaxEC or a control group that performed MaxEC only (n = 13/group). Changes in muscle damage markers were assessed before to 5 days after each exercise. Small but significant changes in maximal voluntary concentric contraction torque, range of motion (ROM) and plasma creatine kinase (CK) activity were evident at immediately to 2 days post-MVIC (p < 0.05), but other variables (e.g. thigh girth, myoglobin concentration, B-mode echo intensity) did not change significantly. Changes in all variables after MaxEC were smaller (p < 0.05) by 45% (soreness)-67% (CK) for the experimental than the control group. These results suggest that MVIC conferred potent protective effect against MaxEC-induced muscle damage.

  19. Voluntary Public Unemployment Insurance

    DEFF Research Database (Denmark)

    O. Parsons, Donald; Tranæs, Torben; Bie Lilleør, Helene

    Denmark has drawn much attention for its active labor market policies, but is almost unique in offering a voluntary public unemployment insurance program requiring a significant premium payment. A safety net program – a less generous, means-tested social assistance plan – completes the system...

  20. Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex.

    Science.gov (United States)

    Todd, Gabrielle; Taylor, Janet L; Gandevia, Simon C

    2016-09-01

    This article reviews the use of transcranial magnetic stimulation (TMS) over the motor cortex to make estimates of the level of voluntary drive to muscles. The method, described in 2003 (Todd et al. J Physiol 551: 661-671, 2003), uses a TMS pulse to produce descending corticospinal volleys that synaptically activate motoneurons, resulting in a muscle twitch. Linear regression of the superimposed twitch amplitude and voluntary force (or torque) can generate an "estimated" resting twitch for muscles involved in a task. This procedure has most commonly been applied to elbow flexors but also to knee extensors and other muscle groups. Data from 44 papers using the method were tabulated. We identify and discuss five major technical challenges, and the frequency with which they are addressed. The technical challenges include inadvertent activation of the cortical representation of antagonist muscles, the role of antagonist torques at the studied joint, uncertainty about the effectiveness of the TMS pulse in activating the motoneuron pool, the linearity of the voluntary force (or torque) and superimposed twitch relationship, and variability in the TMS-evoked EMG and force/torque responses. The ideal situation in which the descending corticospinal volleys recruit all of the agonist motoneurons and none of the antagonist motoneurons is unlikely to ever occur, and hence results must be carefully examined to assess the authenticity of the voluntary activation estimates in the context of the experimental design. A partial compromise lies in the choice of stimulus intensity. We also identify aspects of the procedure that require further investigation.

  1. Single-interface Casimir torque

    Science.gov (United States)

    Morgado, Tiago A.; Silveirinha, Mário G.

    2016-10-01

    A different type of Casimir-type interaction is theoretically predicted: a single-interface torque at a junction of an anisotropic material and a vacuum or another material system. The torque acts to reorient the polarizable microscopic units of the involved materials near the interface, and thus to change the internal structure of the materials. The single-interface torque depends on the zero-point energy of the interface localized and extended modes. Our theory demonstrates that the single-interface torque is essential to understand the Casimir physics of material systems with anisotropic elements and may influence the orientation of the director of nematic liquid crystals.

  2. Do Additional Inputs Change Maximal Voluntary Motor Unit Firing Rates After Spinal Cord Injury?

    NARCIS (Netherlands)

    Zijdewind, Inge; Gant, Katie; Bakels, Rob; Thomas, Christine K.

    Background. Motor unit firing frequencies are low during maximal voluntary contractions (MVCs) of human thenar muscles impaired by cervical spinal cord injury (SCI). Objective. This study aimed to examine whether thenar motor unit firing frequencies increase when driven by both maximal voluntary

  3. Do Additional Inputs Change Maximal Voluntary Motor Unit Firing Rates After Spinal Cord Injury?

    NARCIS (Netherlands)

    Zijdewind, Inge; Gant, Katie; Bakels, Rob; Thomas, Christine K.

    2012-01-01

    Background. Motor unit firing frequencies are low during maximal voluntary contractions (MVCs) of human thenar muscles impaired by cervical spinal cord injury (SCI). Objective. This study aimed to examine whether thenar motor unit firing frequencies increase when driven by both maximal voluntary dri

  4. Quantifying anti-gravity torques for the design of a powered exoskeleton.

    Science.gov (United States)

    Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq

    2013-03-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.

  5. The influence of athletic status on maximal and rapid isometric torque characteristics and postural balance performance in Division I female soccer athletes and non-athlete controls.

    Science.gov (United States)

    Palmer, Ty B; Hawkey, Matt J; Thiele, Ryan M; Conchola, Eric C; Adams, Bailey M; Akehi, Kazuma; Smith, Doug B; Thompson, Brennan J

    2015-07-01

    The purpose of this study was to examine the effectiveness of maximal and rapid isometric torque characteristics of the hip extensor muscles and postural balance performance to discriminate between female collegiate soccer athletes and non-athlete controls. Ten athletes (mean ± SE: age = 19·20 ± 0·36 year; mass = 62·23 ± 3·12 kg; height = 162·43 ± 1·70 cm) and 10 non-athletes (age = 20·30 ± 0·40 year; mass = 69·64 ± 3·20 kg; height = 163·22 ± 2·10 cm) performed two isometric maximal voluntary contractions (MVCs) of the hip extensor muscles. Peak torque (PT) and absolute and relative rate of torque development (RTD) at early (0-50 ms) and late (100-200 ms) phases of muscle contraction were examined during each MVC. Postural balance was assessed using a commercially designed balance testing device, which provides a measurement of static stability based on sway index (SI). Results indicated that absolute and relative RTD at 0-50 ms (RTD50 and RTD50norm) were greater (P = 0·007 and 0·026), and postural SI was lower (P = 0·022) in the athletes compared with the non-athletes. However, no differences (P = 0·375-0·709) were observed for PT nor absolute and relative RTD at 100-200 ms (RTD100-200 and RTD100-200norm). Significant relationships were also observed between RTD50 and RTD50norm and SI (r = -0·559 and -0·521; P = 0·010 and 0·019). These findings suggest that early rapid torque characteristics of the hip extensor muscles and postural balance performance may be sensitive and effective measures for discriminating between college-aged athletes and non-athletes. Coaches and practitioners may use these findings as performance evaluation tools to help in identifying athletes with both superior early rapid torque and balance performance abilities, which may possibly be an indicator of overall athletic potential.

  6. Joint torque and angle estimation by using ultrasonic muscle activity sensor

    Science.gov (United States)

    Tsutsui, Yoichiro; Tanaka, Takayuki; Kaneko, Shun'ichi; Feng, Maria Q.

    2005-12-01

    We have proposed a brand-new noninvasive ultrasonic sensor for measuring muscle activities named as Ultrasonic Muscle Activity Sensor (UMS). In the previous paper, the authors achieved to accurately estimate joint torque by using UMS and electromyogram (EMG) which is one of the most popular sensors. This paper aims to realize to measure not only joint torque also joint angle by using UMS and EMG. In order to estimate torque and angle of a knee joint, muscle activities of quadriceps femoris and biceps femoris were measured by both UMS and EMG. These targeted muscles are related to contraction and extension of knee joint. Simultaneously, actual torque on the knee joint caused by these muscles was measured by using torque sensor. The knee joint angle was fixed by torque sensor in the experiment, therefore the measurement was in isometric state. In the result, we found that the estimated torque and angle have high correlation coefficient to actual torque and angle. This means that the sensor can be used for angle estimation as well torque estimation. Therefore, it is shown that the combined use of UMS and EMG is effective to torque and angle estimation.

  7. Gender differences in fascicular lengthening during eccentric contractions: the role of the patella tendon stiffness.

    Science.gov (United States)

    Hicks, K M; Onambele-Pearson, G L; Winwood, K; Morse, C I

    2013-11-01

    Elastic tendons have been suggested to attenuate fascicle lengthening during eccentric contractions; however, there is no in vivo evidence to support this hypothesis. Therefore, the aim of this study was to determine whether patella tendon stiffness modulates vastus lateralis (VL) fascicle lengthening during eccentric contractions in males and females. Vastus lateralis and patella tendon properties were measured in males and females owing to previously reported intrinsic gender differences in tendon properties. During maximal voluntary eccentric knee extensions, VL fascicle lengthening and torque were recorded at every 10° (range of motion 20-90°). A significant correlation between maximal patella tendon stiffness and change in fascicle length (r=0.476, P=0.023) was observed. Similarly, there was a significant correlation between maximal Young's modulus and change in fascicle length (r=0.470, P=0.049). As expected, patella tendon stiffness and Young's modulus were significantly higher in males compared with females (Pmuscle-tendon unit elongation was estimated to be significantly greater in males compared with females (5.24 and 4.84 cm respectively). The significant difference in fascicle lengthening during eccentric contractions may be partly explained by the significantly higher patella tendon moment arm, patella tendon stiffness and Young's modulus found in males compared with females. The current study provides in vivo evidence to support the hypothesis that the tendon acts as a 'mechanical buffer' during eccentric contractions. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. ESTIMATION OF GRASPING TORQUE USING ROBUST REACTION TORQUE OBSERVER FOR ROBOTIC FORCEPS

    OpenAIRE

    塚本, 祐介; Tsukamoto, Yusuke

    2015-01-01

    Abstract— In this paper, the estimation of the grasping torque of robotic forceps without the use of a force/torque sensor is discussed. To estimate the grasping torque when the robotic forceps driven by a rotary motor with a reduction gear grasps an object, a novel robust reaction torque observer is proposed. In the case where a conventional reaction force/torque observer is applied, the estimated torque includes not only the grasping torque, namely the reaction torque, but also t...

  9. Intrinsic muscle strength and voluntary activation of both lower limbs and functional performance after stroke.

    Science.gov (United States)

    Horstman, Astrid M; Beltman, Marijke J; Gerrits, Karin H; Koppe, Peter; Janssen, Thomas W; Elich, Peter; de Haan, Arnold

    2008-07-01

    The objective of this study was to assess the nature of muscle weakness in both legs after stroke compared with able-bodied control individuals and to examine whether there is a relationship between the degree of muscle weakness and coactivation of knee extensors and flexors as well as voluntary activation capacity of knee extensors of both paretic and non-paretic legs and indices of functional performance. Maximal voluntary isometric torques of knee extensors (MVCe) and flexors (MVCf) were determined in 14 patients (bilaterally) and 12 able-bodied controls. Simultaneous measurements were made of torque and surface EMG from agonist and antagonist muscles. Coactivation was calculated. Supramaximal triplets were evoked with electrical stimulation to estimate maximal torque capacity and degree of voluntary activation of knee extensors. MVCs, activation and coactivation parameters were correlated to scores of seven functional performance tests. MVCe, MVCf and voluntary activation were lower in paretic lower limb (PL) compared with both non-paretic lower limb (NL) and control. Besides, all these parameters of NL were also lower than control. Electrically evoked torque capacity of knee extensors of PL was about 60% of both NL and control, which were not significantly different from each other. Strong significant correlations between strength, as well as voluntary activation, and functional performance were found. Coactivation did not correlate well with functional performance. Thus, whereas for NL activation failure can explain weakness, for PL both activation failure and reduced intrinsic torque capacity are responsible for the severe weakness. Activation capacity and muscle strength correlated strongly to functional performance, while coactivation did not.

  10. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Abdul Wahab, Ahmad Khairi; Hasnan, Nazirah; Olatunji, Sunday Olusanya; Davis, Glen M

    2016-07-19

    The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R²) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.

  11. Voluntary agreements as instruments for international environmental policy; Frivillege avtaler som internasjonalt miljoepolitisk verkemiddel

    Energy Technology Data Exchange (ETDEWEB)

    Torvanger, Asbjoern

    1997-12-31

    According to this report, voluntary agreements have a potential as instruments for environmental policy. Such agreements can be national or international. Through an international voluntary agreement the authorities in one country may make contracts with factories in another country about emission reductions against some kind of compensation. A supranational organisation of voluntary agreements may ensure equal environmental political conditions for factories in different countries and be a useful means for the regulation of environmental problems of regional or global extent. It is most realistic to establish a supranational system of voluntary agreements in a group of countries that have already institutionalized their relations, such as the European Union. 14 refs., 1 table

  12. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  13. Larger plantar flexion torque variability implies less stable balance in the young: an association affected by knee position.

    Science.gov (United States)

    Mello, Emanuele Moraes; Magalhães, Fernando Henrique; Kohn, André Fabio

    2013-12-01

    The present study examined the association between plantar flexion torque variability during isolated isometric contractions and during quiet bipedal standing. For plantar flexion torque measurements in quiet stance (QS), subjects stood still over a force plate. The mean plantar flexion torque level exerted by each subject in QS (divided by 2 to give the torque due to a single leg) served as the target torque level for right leg force-matching tasks in extended knee (KE) and flexed knee (KF) conditions. Muscle activation levels (EMG amplitudes) of the triceps surae and mean, standard deviation and coefficient of variation of plantar flexion torque were computed from signals acquired during periods with and without visual feedback. No significant correlations were found between EMG amplitudes and torque variability, regardless of the condition and muscle being analyzed. A significant correlation was found between torque variability in QS and KE, whereas no significant correlation was found between torque variability in QS and KF, regardless of vision availability. Therefore, torque variability measured in a controlled extended knee plantar flexion contraction is a predictor of torque variability in the anterior-posterior direction when the subjects are in quiet standing. In other words, larger plantar flexion torque variability in KE (but not in KF) implies less stable balance. The mechanisms underlying the findings above are probably associated with the similar proprioceptive feedback from the triceps surae in QS and KE and poorer proprioceptive feedback from the triceps surae in KF due to the slackening of the gastrocnemii. An additional putative mechanism includes the different torque contributions of each component of the triceps surae in the two knee angles. From a clinical and research standpoint, it would be advantageous to be able to estimate changes in balance ability by means of simple measurements of torque variability in a force matching task.

  14. Effect of Preactivation on Torque Enhancement by the Stretch-Shortening Cycle in Knee Extensors.

    Science.gov (United States)

    Fukutani, Atsuki; Misaki, Jun; Isaka, Tadao

    2016-01-01

    The stretch-shortening cycle is one of the most interesting topics in the field of sport sciences, because the performance of human movement is enhanced by the stretch-shortening cycle (eccentric contraction). The purpose of the present study was to examine whether the influence of preactivation on the torque enhancement by stretch-shortening cycle in knee extensors. Twelve men participated in this study. The following three conditions were conducted for knee extensors: (1) concentric contraction without preactivation (CON), (2) concentric contraction with eccentric preactivation (ECC), and (3) concentric contraction with isometric preactivation (ISO). Muscle contractions were evoked by electrical stimulation to discard the influence of neural activity. The range of motion of the knee joint was set from 80 to 140 degrees (full extension = 180 degrees). Angular velocities of the concentric and eccentric contractions were set at 180 and 90 degrees/s, respectively. In the concentric contraction phase, joint torques were recorded at 85, 95, and 105 degrees, and they were compared among the three conditions. In the early phase (85 degrees) of concentric contraction, the joint torque was larger in the ECC and ISO conditions than in the CON condition. However, these clear differences disappeared in the later phase (105 degrees) of concentric contraction. The results showed that joint torque was clearly different among the three conditions in the early phase whereas this difference disappeared in the later phase. Thus, preactivation, which is prominent in the early phase of contractions, plays an important role in torque enhancement by the stretch-shortening cycle in knee extensors.

  15. Effect of Preactivation on Torque Enhancement by the Stretch-Shortening Cycle in Knee Extensors.

    Directory of Open Access Journals (Sweden)

    Atsuki Fukutani

    Full Text Available The stretch-shortening cycle is one of the most interesting topics in the field of sport sciences, because the performance of human movement is enhanced by the stretch-shortening cycle (eccentric contraction. The purpose of the present study was to examine whether the influence of preactivation on the torque enhancement by stretch-shortening cycle in knee extensors. Twelve men participated in this study. The following three conditions were conducted for knee extensors: (1 concentric contraction without preactivation (CON, (2 concentric contraction with eccentric preactivation (ECC, and (3 concentric contraction with isometric preactivation (ISO. Muscle contractions were evoked by electrical stimulation to discard the influence of neural activity. The range of motion of the knee joint was set from 80 to 140 degrees (full extension = 180 degrees. Angular velocities of the concentric and eccentric contractions were set at 180 and 90 degrees/s, respectively. In the concentric contraction phase, joint torques were recorded at 85, 95, and 105 degrees, and they were compared among the three conditions. In the early phase (85 degrees of concentric contraction, the joint torque was larger in the ECC and ISO conditions than in the CON condition. However, these clear differences disappeared in the later phase (105 degrees of concentric contraction. The results showed that joint torque was clearly different among the three conditions in the early phase whereas this difference disappeared in the later phase. Thus, preactivation, which is prominent in the early phase of contractions, plays an important role in torque enhancement by the stretch-shortening cycle in knee extensors.

  16. Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors.

    Science.gov (United States)

    Aldayel, Abdulaziz; Jubeau, Marc; McGuigan, Michael R; Nosaka, Kazunori

    2010-03-01

    This study compared the first and second exercise bouts consisting of electrically evoked isometric contractions for muscle damage profile. Nine healthy men (31 +/- 4 years) had two electrical muscle stimulation (EMS) bouts separated by 2 weeks. The knee extensors of one leg were stimulated by biphasic rectangular pulses (75 Hz, 400 mus, on-off ratio 5-15 s) at the knee joint angle of 100 degrees (0 degrees , full extension) to induce 40 isometric contractions, while the current amplitude was increased to maintain maximal force generation. Maximal voluntary isometric contraction (MVC) torque of the knee extensors at 100 degrees , muscle soreness, pressure pain threshold and plasma creatine kinase (CK) activity were used as indirect markers of muscle damage, and measured before and 1, 24, 48, 72 and 96 h after EMS bout, and the changes over time were compared between bouts. The torque produced during exercise was approximately 30% of MVC, and no significant difference between bouts was evident for the changes in peak and average torque over 40 contractions. MVC decreased significantly (P < 0.05) by 26% immediately and 1 h after both bouts, but the recovery was significantly (P < 0.05) faster after the second bout (100% at 96 h) compared with the first bout (81% at 96 h). Development of muscle soreness and tenderness, and increases in plasma CK activity were significantly (P < 0.05) smaller after the second than the first bout. These results show that changes in muscle damage markers were attenuated in the second EMS bout compared with the initial EMS bout.

  17. ANALYSIS OF INTENTION TO CONTINUE SERVICES AMONG RECRUITED VOLUNTARY SOLDIERS

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Lin

    2012-01-01

    Full Text Available In order to attract more promising young people to join the military and enhance combat capability, Taiwan’s Department of Defense is transforming the nation’s military service system from a draft system, which has been in effect for more than sixty years, to an all-volunteer military force system. The government hopes that the new system not only can recruit promising voluntary soldiers, but that they also continue their military service after the contract expires in order to ensure stability in recruitment sources. This study explores the intention of voluntary soldiers to continue their military service. This study’s questionnaire encompasses five dimensions: Participation motivation, organization commitment, career planning, personality traits and departure tendency. The questionnaires were issued to 350 voluntary soldiers to explore if they intend to continue their service after their contract expires, with a total of 314 effective questionnaires that were recovered and analyzed. The results find that about half of the voluntary soldiers indicate that they do not plan on staying and continuing their service after contract expiration, which will result in understaffing in the military. In order to stabilize the prescribed number of soldiers, the existing recruiting policy and military management system should be re-adjusted.

  18. A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee, and Ankle Torques.

    Science.gov (United States)

    Sánchez, Natalia; Acosta, Ana Maria; Stienen, Arno H A; Dewald, Julius P A

    2015-09-01

    Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee, or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee, and ankle of a single leg during maximum voluntary torque generation. Thus, joint-torque coupling strategies in the hip, knee, and concurrent torques at ankle and/or coupling patterns at the hip and knee driven by the ankle have yet to be quantified. This manuscript describes the design, implementation, and validation of a multiple degree of freedom, lower extremity isometric device (the MultiLEIT) that accurately quantifies simultaneous torques at the hip, knee, and ankle. The system was mechanically validated and then implemented with two healthy control individuals and two post-stroke individuals to test usability and patient acceptance. Data indicated different joint torque coupling strategies used by both healthy individuals. In contrast, data showed the same torque coupling patterns in both post-stroke individuals, comparable to those described in the clinic. Successful implementation of the MultiLEIT can contribute to the understanding of the underlying mechanisms responsible for abnormal movement patterns and aid in the design of therapeutic interventions.

  19. Zero torque gear head wrench

    Science.gov (United States)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  20. Planet migration and magnetic torques

    Science.gov (United States)

    Strugarek, A.; Brun, A. S.; Matt, S. P.; Reville, V.

    2016-10-01

    The possibility that magnetic torques may participate in close-in planet migration has recently been postulated. We develop three dimensional global models of magnetic star-planet interaction under the ideal magnetohydrodynamic (MHD) approximation to explore the impact of magnetic topology on the development of magnetic torques. We conduct twin numerical experiments in which only the magnetic topology of the interaction is altered. We find that magnetic torques can vary by roughly an order of magnitude when varying the magnetic topology from an aligned case to an anti-aligned case. Provided that the stellar magnetic field is strong enough, we find that magnetic migration time scales can be as fast as ~100 Myr. Hence, our model supports the idea that magnetic torques may participate in planet migration for some close-in star-planet systems.

  1. 14 CFR 27.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  2. Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions.

    Science.gov (United States)

    McNeil, Chris J; Allen, Matti D; Olympico, Eric; Shoemaker, J Kevin; Rice, Charles L

    2015-09-01

    A reduction of blood flow to active muscle will precipitate fatigue, and sustained isometric contractions produce intramuscular and compartmental pressures that can limit flow. The present study explored how blood flow and muscle oxygenation respond to isometric contractions at low, moderate, and maximal intensities. Over two visits, 10 males (26 ± 2 yr; means ± SD) performed 1-min dorsiflexion contractions at 30, 60, and 100% of maximal voluntary contraction (MVC) torque. Doppler ultrasound of the anterior tibial artery was used to record arterial diameter and mean blood velocity and to calculate absolute blood flow. The tissue oxygenation index (TOI) of tibialis anterior was acquired with near-infrared spectroscopy (NIRS). There was a progressive increase in blood flow at 30% MVC (peak of 289 ± 139% resting value), no change from rest until an increase in the final 10 s of exercise at 60% MVC (peak of 197 ± 102% rest), and an initial decrease (59 ± 30% resting value) followed by a progressive increase at 100% MVC (peak of 355 ± 133% rest). Blood flow was greater at 30 and 100% than 60% MVC during the last 30 s of exercise. TOI was ∼63% at rest and, within 30 s of exercise, reached steady-state values of ∼42%, ∼22%, and ∼22% for 30, 60, and 100% MVC, respectively. Even maximal contraction of the dorsiflexors is unable to cause more than a transient decrease of flow in the anterior tibial artery. Unlike dynamic or intermittent isometric exercise, our results indicate blood flow is not linearly graded with intensity or directly coupled with oxygenation during sustained isometric contractions.

  3. 41 CFR 105-68.640 - May a settlement include a voluntary exclusion?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May a settlement include a voluntary exclusion? 105-68.640 Section 105-68.640 Public Contracts and Property Management Federal Property Management Regulations System (Continued) GENERAL SERVICES ADMINISTRATION...

  4. Voluntary Simplicity: A Lifestyle Option.

    Science.gov (United States)

    Pestle, Ruth E.

    This guide provides practical ideas for incorporating the concept of voluntary simplicity into home economics classes. Discussed in the first chapter are the need to study voluntary simplicity, its potential contributions to home economics, and techniques and a questionnaire for measuring student attitudes toward the concept. The remaining…

  5. Operant Variability and Voluntary Action

    Science.gov (United States)

    Neuringer, Allen; Jensen, Greg

    2010-01-01

    A behavior-based theory identified 2 characteristics of voluntary acts. The first, extensively explored in operant-conditioning experiments, is that voluntary responses produce the reinforcers that control them. This bidirectional relationship--in which reinforcer depends on response and response on reinforcer--demonstrates the functional nature…

  6. Metabolically assessed muscle fibre recruitment in brief isometric contractions at different intensities.

    Science.gov (United States)

    Beltman, J G M; de Haan, A; Haan, H; Gerrits, H L; van Mechelen, W; Sargeant, A J

    2004-08-01

    This study investigated the recruitment of type I, IIA and IIAX fibres after seven isometric contractions at 40, 70 and 100% maximal voluntary knee extension torque (MVC, 1 s on/1 s off). Biopsies of the vastus lateralis muscle were collected from seven subjects at rest and immediately post-exercise. Fibre fragments were dissected from the freeze-dried samples and characterized as type I, IIA and IIAX using mATPase staining. Phosphocreatine (PCr) and creatine (Cr) content were measured in the remaining part of characterized fibres. A decline in the ratio of PCr to Cr (PCr/Cr) was used as an indication of activation. The mean peak torques were, respectively, 39 (2), 72 (2) and 87 (6)% MVC. Cumulative distributions of type I and IIA fibres were significantly shifted to lower PCr/Cr ratios at all intensities (Kolmogorov-Smirnov test, P<0.05). The cumulative distribution of type IIAX fibres showed a significant leftward shift only at 87% MVC ( P<0.05). A hierarchical order of fibre activation with increasing intensity of exercise was found, with some indication of rate coding for type I and IIA fibres. Evidence for activation of type IIAX fibres was only found at 87% MVC.

  7. Toward voluntary parenthood.

    Science.gov (United States)

    Scarr, S

    2000-06-01

    David Lykken's proposal to license married parents for child rearing, and to deny the same opportunity to single and inept parents, springs from his deep concern for millions of youngsters cruelly subjected to abusive and neglectful rearing circumstances. Children from such inadequate homes grow up to have high rates of school failure, criminality, and drug addiction. The problem is clear, but Lykken's remedies of mandated marriage and parental licensure are unacceptable in U.S. society, where our reproductive rights are fortunately protected by our Constitution. As a devoted proponent of reproductive rights, I propose a legally and morally acceptable proposal to the same end. Increasing women's effective control of reproduction and moving toward entirely voluntary parenthood will accomplish the same goals without compromising our civil liberties.

  8. Premature Contractions

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Premature Contractions - PACs and PVCs Updated:Dec 15,2016 ... You felt this more-forceful beat. Types of premature contractions Premature atrial contractions (PACs) start in the ...

  9. Assessing voluntary muscle activation with the twitch interpolation technique.

    Science.gov (United States)

    Shield, Anthony; Zhou, Shi

    2004-01-01

    The twitch interpolation technique is commonly employed to assess the completeness of skeletal muscle activation during voluntary contractions. Early applications of twitch interpolation suggested that healthy human subjects could fully activate most of the skeletal muscles to which the technique had been applied. More recently, however, highly sensitive twitch interpolation has revealed that even healthy adults routinely fail to fully activate a number of skeletal muscles despite apparently maximal effort. Unfortunately, some disagreement exists as to how the results of twitch interpolation should be employed to quantify voluntary activation. The negative linear relationship between evoked twitch force and voluntary force that has been observed by some researchers implies that voluntary activation can be quantified by scaling a single interpolated twitch to a control twitch evoked in relaxed muscle. Observations of non-linear evoked-voluntary force relationships have lead to the suggestion that the single interpolated twitch ratio can not accurately estimate voluntary activation. Instead, it has been proposed that muscle activation is better determined by extrapolating the relationship between evoked and voluntary force to provide an estimate of true maximum force. However, criticism of the single interpolated twitch ratio typically fails to take into account the reasons for the non-linearity of the evoked-voluntary force relationship. When these reasons are examined, it appears that most are even more challenging to the validity of extrapolation than they are to the linear equation. Furthermore, several factors that contribute to the observed non-linearity can be minimised or even eliminated with appropriate experimental technique. The detection of small activation deficits requires high resolution measurement of force and careful consideration of numerous experimental details such as the site of stimulation, stimulation intensity and the number of interpolated

  10. Effects of effort and EMG levels on short-latency stretch reflex modulation after varying background muscle contractions.

    Science.gov (United States)

    Ogiso, K; McBride, J M; Finni, T; Komi, P V

    2005-08-01

    It is known that the short-latency stretch reflex (SLSR) is modulated by the background muscle activity when it is elicited at matched torque levels. This study was designed to examine the effects of muscle contraction types before a stretch perturbation on SLSR in the human soleus muscle (SOL) when SLSR was elicited at the same levels of effort and at matched electromyographic (EMG) activity levels. A mechanical stretch perturbation was applied to the calf muscles when the ankle joint reached a ninety degree tibio-tarsal joint angle after the muscles performed an isometric (pre-ISO), shortening (pre-SHO) and lengthening contraction (pre-LEN). Subjects were seated on an ankle ergometer chair and developed 0%, 10%, 20%, 30%, 40%, 50%, 60% and 70% ankle joint torque (AJT) of maximum voluntary isometric plantar flexion contraction at 80 degrees in pre-SHO, at 90 degrees in pre-ISO and at 100 degrees in pre-LEN. After that, isometric or dynamic contractions started, and the subjects were asked to maintain effort levels as, needed, to maintain the target torque levels until the end of the stretch. They relaxed their muscles fully after the stretch. This chain of processes was consecutively repeated 10 times. EMG signals obtained from SOL were averaged after they were high-pass filtered and full-wave rectified. Some major findings resulted: (1) there were no differences in SLSR area in the active muscle between pre-ISO and pre-SHO, whereas its waveform was steeper in pre-ISO than in pre-SHO. (2) SLSR p-to-p amplitude and waveform were larger and steeper in the active muscle than in the relaxed one in all conditions, whereas they were independent of the effort levels once the muscle was activated. This led to steady SLSR modulation in response to the background muscle contraction in the active muscle regardless of whether the SLSR was elicited at matched AJT or EMG activity levels. These findings suggest that SLSR is closely related to the muscle spindle sensitivity

  11. Voluntary activation of the trapezius muscle in cases with neck/shoulder pain compared to healthy controls

    DEFF Research Database (Denmark)

    Bech, Katrine Tholstrup; Larsen, Camilla Marie; Sjøgaard, Gisela

    2017-01-01

    Subjects reporting neck/shoulder pain have been shown to generate less force during maximal voluntary isometric contractions (MVC) of the shoulder muscles compared to healthy controls. This has been suggested to be caused by a pain-related decrease in voluntary activation (VA) rather than lack of...

  12. Percent voluntary inactivation and peak force predictions with the interpolated twitch technique in individuals with high ability of voluntary activation.

    Science.gov (United States)

    Herda, Trent J; Walter, Ashley A; Costa, Pablo B; Ryan, Eric D; Hoge, Katherine M; Stout, Jeffrey R; Cramer, Joel T

    2011-10-01

    The purpose of this study was to examine the sensitivity and peak force prediction capability of the interpolated twitch technique (ITT) performed during submaximal and maximal voluntary contractions (MVCs) in subjects with the ability to maximally activate their plantar flexors. Twelve subjects performed two MVCs and nine submaximal contractions with the ITT method to calculate percent voluntary inactivation (%VI). Additionally, two MVCs were performed without the ITT. Polynomial models (linear, quadratic and cubic) were applied to the 10-90% VI and 40-90% VI versus force relationships to predict force. Peak force from the ITT MVC was 6.7% less than peak force from the MVC without the ITT. Fifty-eight percent of the 10-90% VI versus force relationships were best fit with nonlinear models; however, all 40-90% VI versus force relationships were best fit with linear models. Regardless of the polynomial model or the contraction intensities used to predict force, all models underestimated the actual force from 22% to 28%. There was low sensitivity of the ITT method at high contraction intensities and the predicted force from polynomial models significantly underestimated the actual force. Caution is warranted when interpreting the % VI at high contraction intensities and predicted peak force from submaximal contractions.

  13. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles

    DEFF Research Database (Denmark)

    Søgaard, Karen; Gandevia, Simon C; Todd, Gabrielle

    2006-01-01

    contractions is not clear. This study investigated whether central fatigue developed during prolonged low-force voluntary contractions. Subjects (n=9) held isometric elbow flexions of 15% MVC for 43 min. Voluntary activation was measured during brief MVCs every 3 min. During each MVC, transcranial magnetic...

  14. Casimir torque in weak coupling

    CERN Document Server

    Milton, Kimball A; Long, William

    2013-01-01

    In this paper, dedicated to Johan H{\\o}ye on the occasion of his 70th birthday, we examine manifestations of Casimir torque in the weak-coupling approximation, which allows exact calculations so that comparison with the universally applicable, but generally uncontrolled, proximity force approximation may be made. In particular, we examine Casimir energies between planar objects characterized by $\\delta$-function potentials, and consider the torque that arises when angles between the objects are changed. The results agree very well with the proximity force approximation when the separation distance between the objects is small compared with their sizes. In the opposite limit, where the size of one object is comparable to the separation distance, the shape dependence starts becoming irrelevant. These calculations are illustrative of what to expect for the torques between, for example, conducting planar objects, which eventually should be amenable to both improved theoretical calculation and experimental verific...

  15. High torque miniature rotary actuator

    Science.gov (United States)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  16. Analyzing voluntary medical incident reports.

    Science.gov (United States)

    Gong, Yang; Richardson, James; Zhijian, Luan; Alafaireet, Patricia; Yoo, Illhoi

    2008-11-06

    Voluntary medical incident reports lacking consistency and accuracy impede the ultimate use of the reports for patient safety research. To improve this, two coders examined harm score usage in a voluntary medical incident reporting system where the harm scores were selected from a predefined list by different reporters. The two coders inter-rater agreement percent was 82%. The major categories and reviewed harm score jointly demonstrate that this process is critical and necessary in preparing the voluntary reports for further content and semantics analysis.

  17. 偏瘫型脑瘫患儿腕屈伸肌群最大等长收缩时的表面肌电特征研究%Characteristic surface myoelectric signals of maximum isometric voluntary contraction of the wrist flexors and extensors in children with hemiplegic cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    徐开寿; 何璐; 麦坚凝

    2014-01-01

    目的 观察偏瘫型脑瘫患儿腕屈伸肌群最大等长收缩时肌肉募集和协调功能的肌电信号特征.方法 选取痉挛型偏瘫患儿68例,年龄2~14岁,采用表面肌电图(sEMG)检测其健手和患手腕屈伸肌群最大等长收缩时的表面肌电信号,通过配对t检验和Pearson相关性分析确定其积分肌电值(iEMG)、均方根值(RMS)和协同收缩率的特征.结果 使用患手抓握时,患手腕部的RMS、iEMG均明显高于健手(P<0.05),患手与健手腕伸肌RMS、腕屈伸肌iEMG间具有良好的相关性(P<0.05).使用健手抓握时,健手腕部的RMS、iEMG均明显高于患手(P<0.05),健手与患手腕屈伸肌iEMG间具有良好的相关性(P<0.05).健手抓握时健手腕部的RMS、iEMG均明显高于患手抓握时患手腕部的RMS、iEMG,但健手腕部的协同收缩率(0.48±0.02)明显低于患手(0.54±0.04)(P<0.05).结论 偏瘫型脑瘫患儿使用患手时腕屈肌群存在过度协同激活,患手肌肉募集能力明显弱于健手,其双手的分离运动控制能力可能受限,提示增强腕伸肌收缩功能、抑制腕屈肌协同激活水平、合理引导患手开展功能锻炼应成为偏瘫患儿康复的重点之一.%Objective To study the characteristic surface myoelectric signals generated by children with hemiplegic cerebral palsy (HCP) during maximum isometric voluntary contraction (MIVC) of the wrist flexors and extensors.Methods Sixty-eight children with HCP 2 to 14 years of age were assessed with surface electromyography (sEMG).The electrodes were applied on the skin over the wrist flexors and extensors.The integrated EMG signals (iEMGs),root mean square amplitudes (RMSs) and co-contraction ratios during MIVC were recorded and analyzed.Results In a MIVC,the RMS,iEMG and co-contraction ratio were all significantly different between the involved and uninvolved hands,though the iEMGs of the wrists of the two hands were strongly correlated.The RMSs of the wrists of the

  18. The Notion of Voluntary Unemployment.

    Science.gov (United States)

    Standing, Guy

    1981-01-01

    Considers the distinction between voluntary and involuntary unemployment by analyzing six behavioral characteristics attributed to groups of workers suspected of indulging in the former, and the labor market mechanisms supposedly encouraging them. (Author/CT)

  19. Installation Torque Tables for Noncritical Applications

    Science.gov (United States)

    Rivera-Rosario, Hazel T.; Powell, Joseph S.

    2017-01-01

    The objective of this project is to define torque values for bolts and screws when loading is not a concern. Fasteners require a certain torque to fulfill its function and prevent failure. NASA Glenn Research Center did not have a set of fastener torque tables for non-critical applications without loads, usually referring to hand-tight or wrench-tight torqueing. The project is based on two formulas, torque and pullout load. Torque values are calculated giving way to preliminary data tables. Testing is done to various bolts and metal plates, torqueing them until the point of failure. Around 640 torque tables were developed for UNC, UNF, and M fasteners. Different lengths of thread engagement were analyzed for the 5 most common materials used at GRC. The tables were put together in an Excel spreadsheet and then formatted into a Word document. The plan is to later convert this to an official technical publication or memorandum.

  20. Modulation in voluntary neural drive in relation to muscle soreness

    Science.gov (United States)

    Bringard, A.; Puchaux, K.; Noakes, T. D.; Perrey, S.

    2007-01-01

    The aim of this study was to investigate whether (1) spinal modulation would change after non-exhausting eccentric exercise of the plantar flexor muscles that produced muscle soreness and (2) central modulation of the motor command would be linked to the development of muscle soreness. Ten healthy subjects volunteered to perform a single bout of backward downhill walking exercise (duration 30 min, velocity 1 ms−1, negative grade −25%, load 12% of body weight). Neuromuscular test sessions [H-reflex, M-wave, maximal voluntary torque (MVT)] were performed before, immediately after, as well as 1–3 days after the exercise bout. Immediately after exercise there was a −15% decrease in MVT of the plantar flexors partly attributable to an alteration in contractile properties (−23% in electrically evoked mechanical twitch). However, MVT failed to recover before the third day whereas the contractile properties had significantly recovered within the first day. This delayed recovery of MVT was likely related to a decrement in voluntary muscle drive. The decrease in voluntary activation occurred in the absence of any variation in spinal modulation estimated from the H-reflex. Our findings suggest the development of a supraspinal modulation perhaps linked to the presence of muscle soreness. PMID:17978834

  1. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    Science.gov (United States)

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  2. The role of agonist and antagonist muscles in explaining isometric knee extension torque variation with hip joint angle.

    Science.gov (United States)

    Bampouras, Theodoros M; Reeves, Neil D; Baltzopoulos, Vasilios; Maganaris, Constantinos N

    2017-08-12

    The biarticular rectus femoris (RF), operating on the ascending limb of the force-length curve, produces more force at longer lengths. However, experimental studies consistently report higher knee extension torque when supine (longer RF length) compared to seated (shorter RF length). Incomplete activation in the supine position has been proposed as the reason for this discrepancy, but differences in antagonistic co-activation could also be responsible due to altered hamstrings length. We examined the role of agonist and antagonist muscles in explaining the isometric knee extension torque variation with changes in hip joint angle. Maximum voluntary isometric knee extension torque (joint MVC) was recorded in seated and supine positions from nine healthy males (30.2 ± 7.7 years). Antagonistic torque was estimated using EMG and added to the respective joint MVC (corrected MVC). Submaximal tetanic stimulation quadriceps torque was also recorded. Joint MVC was not different between supine (245 ± 71.8 Nm) and seated (241 ± 69.8 Nm) positions and neither was corrected MVC (257 ± 77.7 and 267 ± 87.0 Nm, respectively). Antagonistic torque was higher when seated (26 ± 20.4 Nm) than when supine (12 ± 7.4 Nm). Tetanic torque was higher when supine (111 ± 31.9 Nm) than when seated (99 ± 27.5 Nm). Antagonistic co-activation differences between hip positions do not account for the reduced MVC in the supine position. Rather, reduced voluntary knee extensor muscle activation in that position is the major reason for the lower MVC torque when RF is lengthened (hip extended). These findings can assist standardising muscle function assessment and improving musculoskeletal modelling applications.

  3. 14 CFR 29.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  4. Measuring the uncertainty of tapping torque

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    An uncertainty budget is carried out for torque measurements performed at the Institut for Procesteknik for the evaluation of cutting fluids. Thirty test blanks were machined with one tool and one fluid, torque diagrams were recorded and the repeatability of single torque measurements was estimat...

  5. Calibration of the optical torque wrench

    NARCIS (Netherlands)

    Pedaci, F.; Huang, Z.; Van Oene, M.; Dekker, N.H.

    2012-01-01

    The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN

  6. Redefining RECs: Additionality in the voluntary Renewable Energy Certificate market

    Science.gov (United States)

    Gillenwater, Michael Wayne

    long-term contracts that would reduce the risk of relying on revenue the voluntary green power market. Although no simple solutions are identified, a proposal for integrating RECs into a load based cap-and-trade system is presented. Keywords: Renewable Energy Certificate (REC); Renewable Portfolio Standard (RPS); emission offset; additionality; attributes

  7. Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.

    Science.gov (United States)

    Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M

    2016-01-01

    Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.

  8. Feasibility of estimating isokinetic knee torque using a neural network model.

    Science.gov (United States)

    Hahn, Michael E

    2007-01-01

    Many studies have investigated the relationships between electromyography (EMG) and torque production. A few investigators have used adjusted learning algorithms and feed-forward artificial neural networks (ANNs) to estimate joint torque in the elbow. This study sought to estimate net isokinetic knee torque using ANN models. Isokinetic knee extensor and flexor torque data were measured simultaneously with agonist and antagonist EMG during concentric and eccentric contractions at joint velocities of 30 degrees /s and 60 degrees /s. Age, gender, height, body mass, agonist EMG, antagonist EMG, joint position and joint velocity were entered as predictive variables of net torque. A three-layer ANN model was developed and trained using an adjusted back-propagation algorithm. Accuracy results were compared against those of forward stepwise regression models. Stepwise regression models included body mass, body height and joint position as the most influential predictors, followed by agonist EMG for concentric and eccentric contractions. Estimation of eccentric torque included antagonist EMG following the agonist activation. ANN models resulted in more accurate torque estimation (R=0.96), compared to the stepwise regression models (R=0.71). ANN model accuracy increased greatly when the number of hidden units increased from 5 to 10, continuing to increase gradually with additional hidden units. The average number of training epochs necessary for solution convergence and the relative accuracy of the model indicate a strong ability for the ANN model to generalize these estimations to a broader sample. The ANN model appears to be a feasible technique for estimating joint torque in the knee.

  9. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2016-07-01

    Full Text Available The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70% and testing (30% subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R2 between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.

  10. Measurement of torque during passive and active ankle movements in patients with muscle hypertonia. A methodological study.

    Science.gov (United States)

    Broberg, C; Grimby, G

    1983-01-01

    Torque curves were recorded during passive and active ankle joint movements at three preset angular velocities (30, 60 and 120 degrees/s) with the subject in the supine position and 45 degrees hip and knee angles. Recordings were performed in normal subjects (n = 11), patients with clinical spasticity (n = 10) and patients with Parkinson's disease (n = 7). The torque curves recorded during passive dorsiflexion followed by plantar flexion showed a counterclockwise hysteresis loop with minimal area in the normal subjects and a large area in patients, especially at the highest velocity. The torque increase during dorsiflexion was proportional to the angular velocity in the patients with spasticity but not in the patients with Parkinson's disease. In the patients with spasticity, a good correlation was found between clinical assessment of hypertonia and measurements of torque during passive movements but not torque values during maximal voluntary dorsiflexion. A model for data reduction and estimation of instant slope values on different parts of the torque-angle curve is suggested. The use of ankle torque recordings for evaluation of treatment effects is exemplified.

  11. Comparing Voluntary and Mandatory Gameplay

    Directory of Open Access Journals (Sweden)

    Esther Kuindersma

    2016-09-01

    Full Text Available Gameplay is commonly considered to be a voluntary activity. Game designers generally believe that voluntary gameplay is essentially different from mandatory gameplay. Such a belief may be a challenge for serious games, as instruction is usually mandatory. The article describes the outcomes of two experiments on the impact of voluntariness on the learning effect and enjoyment of a serious game. In the first experiment freedom of choosing to play a serious game was studied, with participants who had volunteered to participate. The results suggested that, contrary to the opinion of many game designers, being required to play a serious game does not automatically take the fun out of the game. The second experiment had voluntary participants and mandatory participants, who had to participate as part of a homework assignment. The outcomes show that mandatory participants enjoyed the game as much as the voluntary participants, even if they had to play the game for a minimum required time. These studies indicate that mandatory gameplay does not reduce enjoyment and learning effect.

  12. Voluntary organisation and adult education

    Directory of Open Access Journals (Sweden)

    Konrad Elsdon

    1998-12-01

    Full Text Available The author starts by offering a definition of voluntary organisations. He then discusses their importance and role, focusing on the issue of adult education wi­ thin these organisations. He also wells upon learning and change of voluntary organisation members, making use of the results of a study he conducted together with his collaborators. One of their fin­dings has been that voluntary organisati­ons, due to their organisational targets li­ke painting, singing or caring for people in need, lead their members to learning, i.e. essentially content learning. Moreo­ver, voluntary organisations offer a fair number of opportunities for social lear­ning and change. ln spite of the fact that the respondents were mostly not aware of the outcomes of their learning and change, careful listeners conducting the interview made them understand the im­portance of the learning they had gone through. The author concludes by poin­ ting out that formal education of adults can get its inspiration in learning in voluntary organisations. On the other hand, such learning would benefit greatly from findings and methods of formal education of adults.

  13. Análise da translação anterior da tíbia, pico de torque e atividade eletromiográfica do quadríceps e isquiotibiais em indivíduos com lesão do ligamento cruzado anterior em cadeia cinética aberta Analysis of anterior tibial translation, peak torque, and quadriceps and hamstrings coactivation in individuals with anterior cruciate ligament injuries performing isometric open kinetic chain exercises

    Directory of Open Access Journals (Sweden)

    Rodrigo Antunes de Vasconcelos

    2007-01-01

    hamstrings EMG activity, passive and active ATT and isometric peak torque respectively during three maximum isometric voluntary contractions at 30 degrees of knee flexion. The results demonstrated that the passive and active ATT is significant greater in knees with acl rupture compared with the contralateral knees, dominant and non dominant knees of the control group. However the active ATT values were greater than the passive ATT. There is no statistic significant differences between groups concerning quadriceps and hamstring EMG activity and in the peak torque produced during the motor task requested. The results of this study demonstrated that individuals with acl rupture had similar behavior compared with normal knees in relation to isometric peak torque and motor control despite the different arthrokinematics of the tibiofemural joint observed in injured knees.

  14. New Torque Estimation Method Considering Spatial Harmonics and Torque Ripple Reduction in Permanent Magnet Synchronous Motors

    Science.gov (United States)

    Hida, Hajime; Tomigashi, Yoshio; Ueyama, Kenji; Inoue, Yukinori; Morimoto, Shigeo

    This paper proposes a new torque estimation method that takes into account the spatial harmonics of permanent magnet synchronous motors and that is capable of real-time estimation. First, the torque estimation equation of the proposed method is derived. In the method, the torque ripple of a motor can be estimated from the average of the torque calculated by the conventional method (cross product of the fluxlinkage and motor current) and the torque calculated from the electric input power to the motor. Next, the effectiveness of the proposed method is verified by simulations in which two kinds of motors with different components of torque ripple are considered. The simulation results show that the proposed method estimates the torque ripple more accurately than the conventional method. Further, the effectiveness of the proposed method is verified by performing on experiment. It is shown that the torque ripple is decreased by using the proposed method to the torque control.

  15. Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems

    Directory of Open Access Journals (Sweden)

    R. Obreja

    2011-01-01

    Full Text Available A torque motor is a special electric motor that is able to develop the highest possible torque in a certain volume. A torque motor usually has a pancake configuration, and is directly jointed to a drive system (without a gear box. A limited angle torque motor is a torque motor that has no rotary electromagnetic field — in certain papers it is referred to as a linear electromagnet. The main intention of the authors for this paper is to present a means for analyzing and designing a limited angle torque motor only through the finite element method. Users nowadays require very high-performance limited angle torque motors with high density torque. It is therefore necessary to develop the highest possible torque in a relatively small volume. A way to design such motors is by using numerical methods based on the finite element method.

  16. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  17. Significance of peripheral afferent input to the alpha-motoneurone pool for enhancement of tremor during an isometric fatiguing contraction.

    Science.gov (United States)

    Cresswell, A G; Löscher, W N

    2000-05-01

    The objective of this study was to investigate the contribution of peripheral afferent input to the enhancement of isometric tremor during a sustained submaximal isometric contraction. It was hypothesised that during muscle fatigue, when excitatory drive is high, peripheral afferent input may augment oscillations in the stretch reflex arc and result in bursting motor-unit activity and increased tremor. Nine healthy subjects maintained isometric plantar flexions at 30% of their maximum voluntary contraction until the limit of endurance, under three test conditions. Two paradigms were used to reduce afferent input to the triceps surae alpha-motoneurone pool: (1) continued vibration of the Achilles tendon, and (2) ischaemic partial block of the tibial nerve. These were compared to a control experiment, in which there was no intervention. By recording H-reflexes from the gastrocnemius and soleus muscles, it was possible to assess the effectiveness of reducing the afferent input. When H-reflex suppression had stabilised, the fatiguing contraction was commenced and tremor was computed from the continuously recorded torque signal. Superimposed maximum twitches were elicited as indirect measures of excitatory drive. The increase in tremor root mean square throughout the fatiguing contraction was significantly less for both the vibration and ischaemic conditions. Furthermore, tremor mean power frequency decreased significantly with endurance time in the control experiment, while no significant change was seen in the other two experimental conditions. It is concluded that the enhancement of isometric tremor seen during a fatiguing submaximal isometric contraction is facilitated by peripheral afferent input to the alpha-motoneurone pool.

  18. Voluntary euthanasia: a utilitarian perspective.

    Science.gov (United States)

    Singer, Peter

    2003-10-01

    Belgium legalised voluntary euthanasia in 2002, thus ending the long isolation of the Netherlands as the only country in which doctors could openly give lethal injections to patients who have requested help in dying. Meanwhile in Oregon, in the United States, doctors may prescribe drugs for terminally ill patients, who can use them to end their life--if they are able to swallow and digest them. But despite President Bush's oft-repeated statements that his philosophy is to 'trust individuals to make the right decisions' and his opposition to 'distant bureaucracies', his administration is doing its best to prevent Oregonians acting in accordance with a law that its voters have twice ratified. The situation regarding voluntary euthanasia around the world is therefore very much in flux. This essay reviews ethical arguments regarding voluntary euthanasia and physician-assisted suicide from a utilitarian perspective. I shall begin by asking why it is normally wrong to kill an innocent person, and whether these reasons apply to aiding a person who, when rational and competent, asks to be killed or given the means to commit suicide. Then I shall consider more specific utilitarian arguments for and against permitting voluntary euthanasia.

  19. Social Cohesion and Voluntary Associations

    Science.gov (United States)

    Heuser, Brian L.

    2005-01-01

    Voluntary organizations exert great influence over how social norms and ethical codes are guided into action. As such, they have a significant impact on societal levels of social cohesion. Although social capital involves generalized trust becoming manifest as spontaneous sociability, social cohesion is determined by how that sociability is…

  20. Voluntary Incentive Early Retirement Programs.

    Science.gov (United States)

    Research Dialogues, 1988

    1988-01-01

    Arrangements in educational institutions for voluntary early retirement programs are discussed. Retirement at any age can be a profound and stressful lifetime change; and it can also represent a welcome transition into newly satisfying and rewarding opportunities. The focus is on: mandatory retirement (exceptions and the new meaning of "early");…

  1. Voluntary disclosure: Evidence from UK

    NARCIS (Netherlands)

    N.S. Zourarakis (Nicolaos)

    2009-01-01

    textabstractThis paper investigates the voluntary disclosure of Intellectual Capital (IC) of British firms and provides some evidence on an unexplored area of the literature; that of the association of Corporate Governance (CG) with IC disclosure. Inconsistent with expectations, the results show tha

  2. Administrative contracts

    Directory of Open Access Journals (Sweden)

    Vukićević-Petković Milica

    2015-01-01

    Full Text Available Administrative contracts are a special type of contract where usually one of the contracting parties is a public law body and which is concluded for the performance of public service and the realization of a public interest. They go a long way since its inception to its eventual final acceptance of all the legal systems. One of the enduring characteristics of this type of contract is their disquised or unnoticed existence. This is why only monitoring their development may lead to a complete understanding of the importance and essence of this institution as well as the need for its complete legal regulation.

  3. Electrical contracting

    CERN Document Server

    Neidle, Michael

    2013-01-01

    Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an

  4. Landau-Lifshitz theory of thermomagnonic torque

    Science.gov (United States)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2015-07-01

    We derive the thermomagnonic torque associated with smooth magnetic textures subjected to a temperature gradient in the framework of the stochastic Landau-Lifshitz-Gilbert equation. Our approach captures on equal footing two distinct contributions: (i) a local entropic torque that is caused by a temperature dependence of the effective exchange field, the existence of which had been previously suggested based on numerics, and (ii) the well-known spin-transfer torque induced by thermally induced magnon flow. The dissipative components of two torques have the same structure, following a common phenomenology, but opposite signs, with the twice as large entropic torque leading to a domain-wall motion toward the hotter region. We compare the efficiency of the torque-driven domain-wall motion with the recently proposed Brownian thermophoresis.

  5. Voluntary sterilization in Serbia: Unmet need?

    OpenAIRE

    Rašević Mirjana M.

    2002-01-01

    Is voluntary sterilization as a birth control method accepted in Serbia? This is certainly a question that is being imposed for research, regardless of the fact that voluntary sterilization is neither accessible nor promoted. Most importantly because there is no understanding in the social nor political sphere for legalization of voluntary sterilization as a form of birth control, apart from the clear necessity for this, first, step. They are: the recognition that voluntary sterilization is a...

  6. Reaction torque minimization techniques for articulated payloads

    Science.gov (United States)

    Kral, Kevin; Aleman, Roberto M.

    1988-01-01

    Articulated payloads on spacecraft, such as antenna telemetry systems and robotic elements, impart reaction torques back into the vehicle which can significantly affect the performance of other payloads. This paper discusses ways to minimize the reaction torques of articulated payloads through command-shaping algorithms and unique control implementations. The effects of reaction torques encountered on Landsat are presented and compared with simulated and measured data of prototype systems employing these improvements.

  7. Muscle torque of healthy individuals and individuals with spastic hemiparesis after passive static streching.

    Science.gov (United States)

    Tatsukawa DE Freitas, Sérgio Takeshi; DE Carvalho Abreu, Elizângela Márcia; Dos Reis, Mariane Cecilia; DE Souza Cunha, Bruna; Souza Moreira Prianti, Tamires; Pupio Silva Lima, Fernanda; Oliveira Lima, Mário

    2016-01-01

    Spasticity is one of the main causes of contracture, muscle weakness and subsequent functional incapacity. The passive static stretching can be included as having the purpose of increasing musculoskeletal flexibility, however, it also can influence the muscle torque. The objective is to verify the immediate effect of passive static stretching in the muscle strength of healthy and those who present spastic hemiparesis. There were assessed 20 subjects, 10 spastic hemiparetic (EG) and 10 healthy individuals (CG), including both sexes, aged between 22 and 78 years. The torque of extensor muscles of the knee was analyzed using isokinetic dynamometer. Results have shown that EG has less muscle torque compared to CG ( p < 0.01). In addition, EG presented a decrease in significance of muscle torque after stretching ( p < 0.05), however, it has not shown significant alteration in muscle torque of CG after performing the program that was prescribed. Immediately after the passive stretch, a significant torque decrease can be seen in hypertonic muscle; it is believed that this reduction may be associated with the physiological overlap between actin and myosin filaments and so preventing the muscle to develop a maximum contraction.

  8. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom

    Science.gov (United States)

    Pan, Lizhi; Yang, Zhen; Zhang, Dingguo

    2015-10-01

    The wrist joint is a critical part of the human body for movement. Measuring the torque of the wrist with three degrees of freedom (DOFs) is important in some fields, including rehabilitation, biomechanics, ergonomics, and human-machine interfacing. However, the particular structure of the wrist joint makes it difficult to measure the torque in all three directions simultaneously. This work develops a structurally decoupled instrument for measuring and improving the measurement accuracy of 3-DOF wrist torque during isometric contraction. Three single-axis torque sensors were embedded in a customized mechanical structure. The dimensions and components of the instrument were designed based on requirement of manufacturability. A prototype of the instrument was machined, assembled, integrated, and tested. The results show that the structurally decoupled mechanism is feasible for acquiring wrist torque data in three directions either independently or simultaneously. As a case study, we use the device to measure wrist torques concurrently with electromyography signal acquisition in preparation for simultaneous and proportional myoelectric control of prostheses.

  9. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    Science.gov (United States)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-02-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity.

  10. 22 CFR 513.210 - Voluntary exclusion.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Voluntary exclusion. 513.210 Section 513.210... GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (GRANTS) Effect of Action § 513.210 Voluntary exclusion. Persons who accept voluntary exclusions under § 513.315 are excluded in accordance with the terms of...

  11. Evolution and Future of Torque Measurement Technology

    Directory of Open Access Journals (Sweden)

    Dr. W. Krimmel

    2006-03-01

    Full Text Available The journey to the past of torque measurement technology begins in the 17th century. It takes us from the first incipiencies of torque measurement to the problem of the transfer of the measurement signal from a rotating shaft, which existed for several decades. This task was solved by the integration of high-precise digital measuring amplifiers in the torque sensors, which is expressed by broad application fields, today. The future will appertain to highly dynamic measuring sensors as well as to intelligent torque sensors, which are able to transmit their sensor-specific characteristics to evaluation devices.

  12. Game programmer's guide to Torque under the hood of the Torque game engine

    CERN Document Server

    Maurina , Edward F

    2006-01-01

    game programmer working with the Torque game engine must have ""The Game Programmer's Guide To Torque"": it teaches everything needed to design your own game, using experiences of game makers and industry veterans well versed in Torque technology. A Torque Game engine demo is included on an accompanying cd while step-by-step examples tell how to use it. Its focus on all the basics makes for an exceptional coverage for all levels of game programmer. -Bookwatch, August 2006

  13. Fuzzy contractibility

    OpenAIRE

    GÜNER, Erdal

    2007-01-01

    Abstract. In this paper, .rstly some fundamental concepts are included re- lating to fuzzy topological spaces. Secondly, the fuzzy connected set is intro- duced. Finally, de.ning fuzzy contractible space, it is shown that X is a fuzzy contractible space if and only if X is fuzzy homotopic equivalent with a fuzzy single-point space.

  14. High-torque quiet gear

    Science.gov (United States)

    Moody, Paul E.

    1995-07-01

    A high-torque quiet gear construction consists of an inner hub having a plurality of circumferentially spaced arms extending radially outwardly therefrom, and an outer ring member having a plurality of circumferentially spaced-teeth extending radially inwardly therefrom. The ring member further includes a plurality of gear formations on an outer surface thereof for intermeshing with other gears. The teeth of the ring member are received in spaced relation in corresponding spaces formed between adjacent arms of the hub. An elastomeric member is received in the space formed between the hub and the ring member to form a resilient correction between the arms of the hub and the teeth of the ring member. The side surfaces of the arms and the teeth extend generally parallel to each other and at least partially overlap in a longitudinal direction. The purpose of this configuration is to place the elastomeric member in compression when torque is applied to the hub. Since elastomeric material is relatively incompressible, the result is low shear loads on the adhesive bonds which hold the elastomeric member to both the hub and outer ring member.

  15. Reaganomics: Its Impact on the Voluntary Not-for-Profit Sector.

    Science.gov (United States)

    Demone, Harold W., Jr.; Gibelman, Margaret

    1984-01-01

    Uses several data sources to analyze the effects of reduced funding for human services on the voluntary sector in relation to services offered, use of professional personnel, reliance on service contracts, financing patterns, compensatory responses, and use of volunteers. Comments on the future status of volunteerism. (JAC)

  16. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  17. International Voluntary Renewable Energy Markets (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.

    2012-06-01

    This presentation provides an overview of international voluntary renewable energy markets, with a focus on the United States and Europe. The voluntary renewable energy market is the market in which consumers and institutions purchase renewable energy to match their electricity needs on a voluntary basis. In 2010, the U.S. voluntary market was estimated at 35 terawatt-hours (TWh) compared to 300 TWh in the European market, though key differences exist. On a customer basis, Australia has historically had the largest number of customers, pricing for voluntary certificates remains low, at less than $1 megawatt-hour, though prices depend on technology.

  18. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    Science.gov (United States)

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups.

  19. Simultaneous Knee Extensor Muscle Action Induces an Increase in Voluntary Force Generation of Plantar Flexor Muscles.

    Science.gov (United States)

    Suzuki, Takahito; Shioda, Kohei; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-02-01

    Suzuki, T, Shioda, K, Kinugasa, R, and Fukashiro, S. Simultaneous knee extensor muscle action induces an increase in voluntary force generation of plantar flexor muscles. J Strength Cond Res 31(2): 365-371, 2017-Maximum activation of the plantar flexor muscles is required for various sporting activities that involve simultaneous plantar flexion and knee extension. During a multi-joint movement, activation of the plantar flexor muscles is affected by the activity of the knee extensor muscles. We hypothesized that coactivation of the plantar flexor muscles and knee extensor muscles would result in a higher plantar flexion torque. To test this hypothesis, 8 male volunteers performed maximum voluntary isometric action of the plantar flexor muscles with and without isometric action of the knee extensor muscles. Surface electromyographic data were collected from 8 muscles of the right lower limb. Voluntary activation of the triceps surae muscles, evaluated using the interpolated twitch technique, significantly increased by 6.4 percentage points with intentional knee extensor action (p = 0.0491). This finding is in line with a significant increase in the average rectified value of the electromyographic activity of the vastus lateralis, fibularis longus, and soleus muscles (p = 0.013, 0.010, and 0.045, respectively). The resultant plantar flexion torque also significantly increased by 11.5% of the predetermined maximum (p = 0.031). These results suggest that higher plantar flexor activation coupled with knee extensor activation facilitates force generation during a multi-joint task.

  20. Synergists activation pattern of the quadriceps muscle differs when performing sustained isometric contractions with different EMG biofeedback.

    Science.gov (United States)

    Place, Nicolas; Matkowski, Boris; Martin, Alain; Lepers, Romuald

    2006-10-01

    The aims of the present study were to examine (1) endurance time and (2) activation pattern of vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) muscles during fatiguing isometric knee extensions performed with different EMG biofeedbacks. Thirteen men (27 +/- 5 year) volunteered to participate in three experimental sessions. Each session involved a submaximal isometric contraction held until failure at an EMG level corresponding to 40% maximal voluntary contraction torque (MVC), with visual EMG biofeedback provided for either (1) RF muscle (RF task), (2) VL and VM muscles (Vasti task) or (3) the sum of the VL, VM and RF muscles (Quadriceps task). EMG activity of VL, VM and RF muscles was recorded during each of the three tasks and further analyzed. Time to task failures and MVC loss (P 0.05) between the three sessions (182 s and approximately 28%, respectively) (P > 0.05). Moreover, the magnitude of central and peripheral fatigue was not different at failure of the three tasks. Activation pattern was similar for knee extensors at the beginning of each task (P > 0.05). However, RF EMG activity decreased (P pattern for the bi-articular RF muscle compared to the mono-articular vasti muscles during fatigue.

  1. The Casimir Torque on a Cylindrical Gear

    CERN Document Server

    Vaidya, Varun

    2013-01-01

    We utilize Effective Field Theory(EFT) techniques to calculate the casimir torque on a cylindrical gear in the presence of a polarizable but neutral object. We present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.

  2. Casimir torque on a cylindrical gear

    Science.gov (United States)

    Vaidya, Varun

    2014-08-01

    I utilize effective field theory(EFT) techniques to calculate the Casimir torque on a cylindrical gear in the presence of a polarizable but neutral object and present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.

  3. Radiation Forces and Torques without Stress (Tensors)

    Science.gov (United States)

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  4. Forces and torques between nonintersecting straight currents

    Science.gov (United States)

    Binder, P.-M.; Cross, Felicity; Silva, J. K.

    2016-07-01

    We analyse two very long current-carrying straight wires that point in arbitrary directions without touching. We find general expressions for the forces and torques for arbitrary points on one wire due to the other. This allows us to make calculations for the overall forces and torques and statements about the stability of parallel and anti-parallel current arrangements.

  5. 14 CFR 23.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section...

  6. 14 CFR 25.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section...

  7. Radiation Forces and Torques without Stress (Tensors)

    Science.gov (United States)

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  8. A non-unity torque sharing function for torque ripple minimization of switched reluctance generators

    DEFF Research Database (Denmark)

    Park, Kiwoo; Liu, Xiao; Chen, Zhe

    2013-01-01

    This paper presents a new torque ripple minimization technique for a Switched Reluctance Generator (SRG). Although the SRG has many advantageous characteristics as a generator, it has not been widely employed in the industry. One of the most notorious disadvantages of the SRG is its high torque r...... ripple. In this paper, a non-unity Torque Sharing Function (TSF) is proposed to minimize the torque ripple over a wide speed range of operation. Simulation results are presented to verify the effectiveness of the proposed torque ripple minimization technique....

  9. Next generation spin torque memories

    CERN Document Server

    Kaushik, Brajesh Kumar; Kulkarni, Anant Aravind; Prajapati, Sanjay

    2017-01-01

    This book offers detailed insights into spin transfer torque (STT) based devices, circuits and memories. Starting with the basic concepts and device physics, it then addresses advanced STT applications and discusses the outlook for this cutting-edge technology. It also describes the architectures, performance parameters, fabrication, and the prospects of STT based devices. Further, moving from the device to the system perspective it presents a non-volatile computing architecture composed of STT based magneto-resistive and all-spin logic devices and demonstrates that efficient STT based magneto-resistive and all-spin logic devices can turn the dream of instant on/off non-volatile computing into reality.

  10. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...

  11. Tremor irregularity, torque steadiness and rate of force development in Parkinson's disease.

    Science.gov (United States)

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-04-01

    We investigated lower-extremity isometric tremor Approximate Entropy (irregularity), torque steadiness and rate of force development (RFD) and their associations to muscle activation strategy during isometric knee extensions in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and 15 neurologically healthy matched controls performed isometric maximal contractions (extension/flexion) as well as steady submaximal and powerful isometric knee extensions. The patients with PD showed decreased isometric tremor irregularity. Torque steadiness was reduced in PD and the patients had increased muscle coactivation. A markedly lower RFD was found in PD and the decreased RFD correlated with reduced agonist muscle activation. Furthermore, patient RFD correlated with the Movement-Disorder-Society-Unified-Parkinson's-Disease-Rating-Scale 3 (motor part) scores. We concluded that both knee isometric tremor Approximate Entropy and torque steadiness clearly differentiate between patients with PD and healthy controls. Furthermore, severely compromised RFD was found in patients with PD and was associated with decreased agonist muscle activation.

  12. Factors effecting hamstrings to quadriceps peak torque ratio in volleyball players

    Directory of Open Access Journals (Sweden)

    Ayşegül Yapıcı

    2016-12-01

    Full Text Available The aim of this study was to analyze of hamstring to quadriceps peak torque ratio (H:Q measured in isokinetic testing with respect to different angular velocities (60, 180, 300°/s, gender, dominant side and mode of contraction (concentric, eccentric in volleyball players. Twenty male and ten female healthy volleyball players participated in this study. An independent t-test was used to compare the differences between gender. One-way analysis of variance test was conducted to test for differences by effecting factors. There was a statistically significant difference between dominant and non-dominant side in H:Q ratio at 300°/s in males (p0.05. There was no statistically significant difference between at 60-180-300°/s velocities by Hconc:Qconc contractions and at 60°/s by Hconc:Qecc contractions for male and female’s peak torques in dominant side (p>0.05. There was a statistically significant difference between at 60°/s by Hconc:Qconc and Hconc:Qecc contractions for male and female’s peak torques in dominant side (p0.05. It was found in our study that H:Q ratio increases with increasing angular velocity. The findings of the present study indicated that angular velocity, type of contraction and leg dominance influence isokinetic strength profiles of male and female, consequently, muscular balance that is H:Q at the knee. This implies that isokinetic concentric knee strength plays more role in high intensity contractions and has more effect at high velocities of contraction in maximal performance.

  13. Contract Renewal Information - all Contracts

    Data.gov (United States)

    Department of Housing and Urban Development — Multifamily Portfolio datasets (section 8 contracts) - The information has been compiled from multiple data sources within FHA or its contractors. HUD oversees more...

  14. Contract theory and EU Contract Law

    OpenAIRE

    2016-01-01

    This paper explores the relationship between contract theory and European contract law. In particular, it confronts the leading contract law theories with the main characteristics of EU contract law. The conclusion is that the two do not match well. In particular, monist normative contract theories are largely irreconcilable with the contract law of the EU. The paper further addresses the main implications of this mismatch, both for contract theory and for EU contract law. It suggests that in...

  15. Torque Ripple Reduction of Reluctance Torque Assisted Motors Using Asymmetric Flux Barriers

    Science.gov (United States)

    Hiramoto, Kenji; Takeda, Yoji; Sanada, Masayuki; Morimoto, Shigeo

    Interior permanent magnet synchronous motor (IPMSM) is efficient and can be operated in wide speed region; therefore it is used widely. However, torque ripple of reluctance torque assisted motors, for example IPMSM and synchronous reluctance motor (SynRM), is very large. The skew is known in the prior art as a torque ripple reduction method of AC motors. Although the skew is effective for torque ripple reduction, structure is complicated and it has the disadvantage that average torque will decrease. The discontinuous variation of magnetic resistance between flux barriers and teeth cause the torque ripple. In this paper, in order to ease the discontinuous variation of magnetic resistance, flux barriers are asymmetrically designed so that the relative position relation between flux barriers and teeth may not be in agreement as much as possible. As a result, the torque ripple can be reduced dramatically without the average torque decrease. The experimental motor has been fabricated and the results of measuring torque ripple prove the validity of the torque ripple reduction using asymmetric flux barriers.

  16. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  17. Feedforward consequences of isometric contractions: effort and ventilation.

    Science.gov (United States)

    Luu, Billy L; Smith, Janette L; Martin, Peter G; McBain, Rachel A; Taylor, Janet L; Butler, Jane E

    2016-08-01

    The onset of voluntary muscle contractions causes rapid increases in ventilation and is accompanied by a sensation of effort. Both the ventilatory response and perception of effort are proportional to contraction intensity, but these behaviors have been generalized from contractions of a single muscle group. Our aim was to determine how these relationships are affected by simultaneous contractions of multiple muscle groups. We examined the ventilatory response and perceived effort of contraction during separate and simultaneous isometric contractions of the contralateral elbow flexors and of an ipsilateral elbow flexor and knee extensor. Subjects made 10-sec contractions at 25, 50, and 100% of maximum during normocapnia and hypercapnia. For simultaneous contractions, both muscle groups were activated at the same intensities. Ventilation was measured continuously and subjects rated the effort required to produce each contraction. As expected, ventilation and perceived effort increased proportionally with contraction intensity during individual contractions. However, during simultaneous contractions, neither ventilation nor effort reflected the combined muscle output. Rather, the ventilatory response was similar to when contractions were performed separately, and effort ratings showed a small but significant increase for simultaneous contractions. Hypercapnia at rest doubled baseline ventilation, but did not affect the difference in perceived effort between separate and simultaneous contractions. The ventilatory response and the sense of effort at the onset of muscle activity are not related to the total output of the motor pathways, or the working muscles, but arise from cortical regions upstream from the motor cortex.

  18. Gender and contraction mode on perceived exertion.

    Science.gov (United States)

    Pincivero, D M; Polen, R R; Byrd, B N

    2010-05-01

    The purpose of this study was to examine perceived exertion responses during concentric and eccentric elbow flexor contractions between young adult men and women. Thirty healthy young adults participated in two experimental sessions. During the first session, subjects performed five concentric isokinetic maximal voluntary contractions (MVC) of elbow flexion, followed by nine, randomly-ordered sub-maximal contractions (10-90% MVC). The same procedures were repeated during the second session, with the exception that eccentric contractions were performed. Subjects rated their perceived exertion following the sub-maximal contractions with the Borg category-ratio scale. Perceived exertion was significantly (pMVC. A three-factor interaction between 30-40% MVC indicated that perceived exertion increased more during the eccentric, than concentric, contractions in women, while the opposite pattern was evident for the men. There were no significant contraction mode or gender differences. Power function modeling revealed that perceived exertion increased in a negatively accelerating manner, except for the men performing eccentric exercise. Perceived exertion increases in a similar non-linear manner between men and women during concentric contractions, while men exhibited a statistically linear pattern during eccentric contractions.

  19. 78 FR 49382 - Voluntary Education Programs

    Science.gov (United States)

    2013-08-14

    ... English, reading, writing, speaking, mathematics, and computer skills that are essential to successful job... education advisor: Education Services Specialist, Education Services Officer (ESO), Voluntary...

  20. Assessment of torque-steadiness reliability at the ankle level in healthy young subjects: implications for cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin Høyer; Sonne-Holm, Stig;

    2008-01-01

    It was the primary objective of this study to investigate whether quantifying fluctuations in dorsi and plantarflexor torque during submaximal isometric contractions is a reliable measurement in young healthy subjects. A secondary objective was to investigate the reliability of the associated mus...

  1. Relationships between skinfold thickness and electromyographic and mechanomyographic amplitude recorded during voluntary and non-voluntary muscle actions.

    Science.gov (United States)

    Cooper, Michael A; Herda, Trent J; Vardiman, John P; Gallagher, Phillip M; Fry, Andrew C

    2014-04-01

    The purpose of this study was to examine possible correlations between skinfold thicknesses and the a terms from the log-transformed electromyographic (EMGRMS) and mechanomyographic amplitude (MMGRMS)-force relationships, EMG M-Waves, and MMG gross lateral movements (GLM). Forty healthy subjects performed a 6-s isometric ramp contraction from 5% to 85% of their maximal voluntary contraction with EMG and MMG sensors placed on the vastus lateralis (VL) and rectus femoris (RF). A single electrical stimulus was applied to the femoral nerve to record the EMG M-waves and MMG GLMs. Skinfold thickness was assessed at the site of each electrode. Pearson's product correlation coefficients were calculated comparing skinfold thicknesses with the a terms from the log-transformed EMGRMS-and MMGRMS-force relationships, EMG M-waves, and MMG GLMs. There were no significant cor1relations (p>0.05) between the a terms and skinfold thicknesses for the RF and VL from the EMGRMS and MMGRMS-force relationships. However, there were significant correlations (pskinfold thicknesses and the EMG M-waves and MMG GLMs for the RF (r=-0.521, -0.376) and VL (r=-0.479, -0.484). Relationships were only present between skinfold thickness and the amplitudes of the EMG and MMG signals during the non-voluntary muscle actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dynamics of Voluntary Cough Maneuvers

    Science.gov (United States)

    Naire, Shailesh

    2008-11-01

    Voluntary cough maneuvers are characterized by transient peak expiratory flows (PEF) exceeding the maximum expiratory flow-volume (MEFV) curve. In some cases, these flows can be well in excess of the MEFV, generally referred to as supramaximal flows. Understanding the flow-structure interaction involved in these maneuvers is the main goal of this work. We present a simple theoretical model for investigating the dynamics of voluntary cough and forced expiratory maneuvers. The core modeling idea is based on a 1-D model of high Reynolds number flow through flexible-walled tubes. The model incorporates key ingredients involved in these maneuvers: the expiratory effort generated by the abdominal and expiratory muscles, the glottis and the flexibility and compliance of the lung airways. Variations in these allow investigation of the expiratory flows generated by a variety of single cough maneuvers. The model successfully reproduces PEF which is shown to depend on the cough generation protocol, the glottis reopening time and the compliance of the airways. The particular highlight is in simulating supramaximal PEF for very compliant tubes. The flow-structure interaction mechanisms behind these are discussed. The wave speed theory of flow limitation is used to characterize the PEF. Existing hypotheses of the origin of PEF, from cough and forced expiration experiments, are also tested using this model.

  3. Insights into the neural control of eccentric contractions.

    Science.gov (United States)

    Duchateau, Jacques; Baudry, Stéphane

    2014-06-01

    The purpose of this brief review is to examine our current knowledge of the neural control of eccentric contractions. The review focuses on three main issues. The first issue considers the ability of individuals to activate muscles maximally during eccentric contractions. Most studies indicate that, regardless of the experimental approach (surface EMG amplitude, twitch superimposition, and motor unit recordings), it is usually more difficult to achieve full activation of a muscle by voluntary command during eccentric contractions than during concentric and isometric contractions. The second issue is related to the specificity of the control strategy used by the central nervous system during submaximal eccentric contractions. This part underscores that although the central nervous system appears to employ a single size-related strategy to activate motoneurons during the different types of contractions, the discharge rate of motor units is less during eccentric contractions across different loading conditions. The last issue addresses the mechanisms that produce this specific neural activation. This section indicates that neural adjustments at both supraspinal and spinal levels contribute to the specific modulation of voluntary activation during eccentric contractions. Although the available information on the control of eccentric contractions has increased during the last two decades, this review indicates that the exact mechanisms underlying the unique neural modulation observed in this type of contraction at spinal and supraspinal levels remains unknown and their understanding represents, therefore, a major challenge for future research on this topic.

  4. Implementing Torque Control with High-Ratio Gear Boxes and without Joint-Torque Sensors

    OpenAIRE

    Del Prete, Andrea; Mansard, Nicolas; Ramos Ponce, Oscar Efrain; Stasse, Olivier; Nori, Francesco

    2016-01-01

    International audience; This paper presents a complete framework (estimation, identification and control) for the implementation of joint-torque control on the humanoid robot HRP-2. While torque control has already been implemented on a few humanoid robots, this is one of the first implementations of torque control on a robot that was originally built to be position controlled (iCub[1] and Asimo[2] being the first two, to the best of our knowledge). The challenge comes from both the hardware,...

  5. Simple Design Approach for Low Torque Ripple and High Output Torque Synchronous Reluctance Motors

    Directory of Open Access Journals (Sweden)

    Mohamed Nabil Fathy Ibrahim

    2016-11-01

    Full Text Available The rotor design of Synchronous Reluctance Motors (SynRMs has a large effect on their efficiency, torque density and torque ripple. In order to achieve a good compromise between these three goals, an optimized rotor geometry is necessary. A finite element method (FEM is a good tool for the optimization. However, the computation time is an obstacle as there are many geometrical parameters to be optimized. The flux-barrier widths and angles are the two most crucial parameters for the SynRM output torque and torque ripple. This paper proposes an easy-to-use set of parametrized equations to select appropriate values for these two rotor parameters. With these equations, the reader can design a SynRM of distributed windings with a low torque ripple and with a better average torque. The methodology is valid for a wide range of SynRMs. To check the validity of the proposed equations, the sensitivity analysis for the variation of these two parameters on the SynRM torque and torque ripple is carried out. In addition, the analysis in this paper gives insight into the behavior of the machine as a function of these two parameters. Furthermore, the torque and torque ripple of SynRMs having a rotor with three, four and five flux-barriers are compared with three literature approaches. The comparison shows that the proposed equations are effective in choosing the flux-barrier angles and widths for low torque ripple and better average torque. Experimental results have been obtained to confirm the FEM results and to validate the methodology for choosing the rotor parameters.

  6. Contracts and Contracting: A Primer.

    Science.gov (United States)

    Terra, Sandra M; Zimmerling, John

    2016-01-01

    The underlying guiding principles of case management services and practices of the Case Management Body of Knowledge include the following: "Case managers must possess the education, skills, knowledge, competencies, and experiences needed to effectively render appropriate, safe, and quality services to clients/support systems" and "Case management services are offered according to the clients' benefits as stipulated in their health insurance plans (http://www.cmbodyofknowledge.com/content/case-management-knowledge-2). Fulfilling these principles requires that the case manager engage in negotiating and contract execution.This article explores the concepts of negotiation and some of the many ways case managers contribute to the contracting process. Acute care hospitals, individual practice, managed care. Case managers can provide valuable information during the contracting process, in many settings. In the managed care arena, case management can help identify the types of services needed by the population the organization serves. The same understanding of data can assist during the payer contracting process in the acute care setting and ensure that the hospital is fairly reimbursed by third party payers. The independent practitioners will, undoubtedly, face the need to negotiate for themselves as well as their clients. The case manager, regardless of the setting, benefits from an understanding of the principles and processes associated with negotiation and contracting.

  7. High Torque, Direct Drive Electric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such...

  8. High Torque, Direct Drive Electric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to develop an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such devices. Fundamentally,...

  9. Exhaust powered drive shaft torque enhancer

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A.B.

    1986-09-30

    This patent describes a power producing combination including an internal combustion engine and a mounting frame therefor, and power transmission means including rotating drive shaft means connected to the engine. The improvement described here is a drive shaft torque enhancing device, the device comprising: a multiplicity of blades secured to the drive shaft, equally spaced therearound, each generally lying in a plane containing the axis of the drive shaft; torque enhancer feed duct means for selectively directing a stream of exhaust gases from the engine to impact against the blades to impart torque to the drive shaft; and wherein the power producing combination is used in a vehicle, the vehicle having braking means including a brake pedal; and the power producing combination further comprising torque enhancer disengagement means responsive to motion of the brake pedal.

  10. Transmission of torque at the nanoscale

    Science.gov (United States)

    Williams, Ian; Oğuz, Erdal C.; Speck, Thomas; Bartlett, Paul; Löwen, Hartmut; Royall, C. Patrick

    2016-01-01

    In macroscopic mechanical devices, torque is transmitted through gearwheels and clutches. In the construction of devices at the nanoscale, torque and its transmission through soft materials will be a key component. However, this regime is dominated by thermal fluctuations leading to dissipation. Here we demonstrate the principle of torque transmission for a disc-like colloidal assembly exhibiting clutch-like behaviour, driven by 27 particles in optical traps. These are translated on a circular path to form a rotating boundary that transmits torque to additional particles confined to the interior. We investigate this transmission and find that it is determined by solid-like or fluid-like behaviour of the device and a stick-slip mechanism reminiscent of macroscopic gearwheels slipping. The transmission behaviour is predominantly governed by the rotation rate of the boundary and the density of the confined system. We determine the efficiency of our device and thus optimize conditions to maximize power output.

  11. Sensorless vector and direct torque control

    CERN Document Server

    Vas, Peter

    1998-01-01

    This is the first comprehensive book on sensorless high performance a.c. drives. It is essential reading for anyone interested in acquiring a solid background on sensorless torque-controlled drives. It presents a detailed and unified treatment of sensorless vector-controlled and direct-torque controlled drive systems. It also discusses the applications of artificial intelligence to drives. Where possible, space vector theory is used and emphasis is laid on detailed mathematical and physical analysis. Sensorless drive schemes for different types of permanent magnet synchronous motors, synchronous reluctance motors, and induction motors are also presented. These include more than twenty vector drives e.g. five types of MRAS-based vector drives, and eleven types of direct-torque-controlled (DTC) drives, e.g. the ABB DTC drive. However, torque-controlled switched reluctance motor drives are also discussed due to their emerging importance. The book also covers various drive applications using artificial intellige...

  12. Torque Control of Friction Stir Welding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  13. Fundamental limits of optical force and torque

    Science.gov (United States)

    Rahimzadegan, A.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.

    2017-01-01

    Optical force and torque provide unprecedented control on the spatial motion of small particles. A valid scientific question, that has many practical implications, concerns the existence of fundamental upper bounds for the achievable force and torque exerted by a plane wave illumination with a given intensity. Here, while studying isotropic particles, we show that different light-matter interaction channels contribute to the exerted force and torque, and analytically derive upper bounds for each of the contributions. Specific examples for particles that achieve those upper bounds are provided. We study how and to which extent different contributions can add up to result in the maximum optical force and torque. Our insights are important for applications ranging from molecular sorting, particle manipulation, and nanorobotics up to ambitious projects such as laser-propelled spaceships.

  14. Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  15. Ultrahigh Casimir interaction torque in nanowire systems.

    Science.gov (United States)

    Morgado, Tiago A; Maslovski, Stanislav I; Silveirinha, Mário G

    2013-06-17

    We study the Casimir torque arising from the quantum electromagnetic fluctuations due to the interaction of two interfaces in a system formed by a dense array of metallic nanorods embedded in dielectric fluids. It is demonstrated that as a consequence of the ultrahigh density of photonic states in the nanowire array it is possible to channel the quantum fluctuations, and thereby boost the Casimir torque by several orders of magnitude as compared to other known systems (e.g., birefringent parallel plates).

  16. Large amplitude oscillation of magnetization in spin-torque oscillator stabilized by field-like torque

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Tomohiro, E-mail: tomohiro-taniguchi@aist.go.jp; Kubota, Hitoshi; Imamura, Hiroshi [National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba 305-8568 (Japan); Tsunegi, Sumito [Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 Ave. A. Fresnel, Palaiseau (France)

    2015-05-07

    Oscillation frequency of spin torque oscillator with a perpendicularly magnetized free layer and an in-plane magnetized pinned layer is theoretically investigated by taking into account the field-like torque. It is shown that the field-like torque plays an important role in finding the balance between the energy supplied by the spin torque and the dissipation due to the damping, which results in a steady precession. The validity of the developed theory is confirmed by performing numerical simulations based on the Landau-Lifshitz-Gilbert equation.

  17. Agile Contracts

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Pries-Heje, Lene

    2014-01-01

    with “endless” re-negotiation of the requirements; you need a more flexible way to develop IS. A new way of coping with many changes is to use an agile development approach and a fixed budget and resources contract. This paper presents an example case. We analyse the case and design a guideline for how...

  18. Yielding Torque-Tube System Reduces Crash Injuries

    Science.gov (United States)

    Mcsmith, D. G.

    1982-01-01

    Yielding torque-tube system minimizes injuries by limiting load transferred to occupant in crash. When properly integrated into seat structure, torque tube yields in plastic deformation stage of material and maintains a relatively constant resistance to applied torque for many degrees of rotation. Yielding torque-tube system is expected to find application in aircraft and automobile industries.

  19. Influence of Closed Stator Slots on Cogging Torque

    DEFF Research Database (Denmark)

    Ion, Trifu; Leban, Krisztina Monika; Ritchie, Ewen

    2013-01-01

    Cogging torque results due interaction of magnetic field of magnets and stator slots, and have negative effects on permanent magnet machines such as vibrations, noise, torque ripples and problems during turbine start-up and cut-in. In order to reduce cogging torque this paper presents a study...... of influence of closed stator slots on cogging torque using magnetic slot wedges....

  20. Fourth-order acoustic torque in intense sound fields

    Science.gov (United States)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  1. Modelling of a Magnetostrictive Torque Sensor

    Directory of Open Access Journals (Sweden)

    Tsiantos Vasilios

    2016-01-01

    Full Text Available Existing magnetostrictive torque sensor designs typically measure the rotation of the saturation magnetization under an applied torque and their theoretical treatment revolves around the minimization of the free energy equation adapted according to the assumptions considered valid in each design. In the torque measurement design discussed in this paper, Ni-rich NiFe films have been electrodeposited on cylindrical austenitic steel rods. Contrary to existing designs, the excitation field is applied along the axial direction and is low enough to ensure that the resulting magnetization along the same direction remains in the linear region of the M(H characteristic. Assuming homogeneous magnetization, positive magnetostriction constant λ, negligible hysteresis and demagnetizing fields, torque T may be expressed in terms of an effective uniaxial anisotropy constant Ku around 45° to the axial direction. It is shown, that for the proposed arrangement, the resulting M is the linear superposition of the effect of a torque-induced effective field and the excitation field, the applied field accounts for the vertical offset of the magnetization response and the applied torque increases the slope of the M(H characteristic.

  2. Laser-induced torques in metallic ferromagnets

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-10-01

    We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.

  3. Dynamical corotation torques on low-mass planets

    CERN Document Server

    Paardekooper, Sijme-Jan

    2014-01-01

    We study torques on migrating low-mass planets in locally isothermal discs. Previous work on low-mass planets generally kept the planet on a fixed orbit, after which the torque on the planet was measured. In addition to these static torques, when the planet is allowed to migrate it experiences dynamical torques, which are proportional to the migration rate and whose sign depends on the background vortensity gradient. We show that in discs a few times more massive than the Minimum Mass Solar Nebula, these dynamical torques can have a profound impact on planet migration. Inward migration can be slowed down significantly, and if static torques lead to outward migration, dynamical torques can take over, taking the planet beyond zero-torque lines set by saturation of the corotation torque in a runaway fashion. This means the region in non-isothermal discs where outward migration is possible can be larger than what would be concluded from static torques alone.

  4. Validation of dynamic torque response of an electrorheological (ER) clutch

    Science.gov (United States)

    Tan, K. P.; Stanway, R.; Bullough, W. A.

    2006-02-01

    It is now well established that using actuators, which have faster speeds of response than d.c. servomotors, can solve the positional errors of the robot arms. One of the possible robotic actuators can be an electro-rheological (ER) clutch. To justify this objective, the authors measured the output torque response of a co-axial ER clutch. However, due to the dynamic inefficiency of a torque transducer, the measured torque response is inaccurate for analytical studies. Therefore, this measured torque is signal processed by using the transfer functions of this torque sensor and a filter to yield the ER torque response. The validity of this ER torque is investigated by comparing the numerical errors between the measured torque and its inverse torque response. From the torque error analysis, it is concluded that the ER clutch can be an actuator to improve the positioning accuracies of the robot arms.

  5. 75 FR 47504 - Voluntary Education Programs

    Science.gov (United States)

    2010-08-06

    ... America. TTT helps relieve teacher shortages, especially in math, science, special education, and other... of the Secretary 32 CFR Part 68 RIN 0790-AI50 Voluntary Education Programs AGENCY: Office of the... for the operation of voluntary education programs within DoD. Included are: Procedures for Service...

  6. Pedagogical Aspects of Voluntary School Work

    Science.gov (United States)

    Mária Jármai, Erzsébet; Palányi, Ildikó Zsupanekné

    2015-01-01

    The economic importance of voluntary work has been exceedingly appreciated in the last few decades. This is not surprising at all, because it is highly profitable according to the related estimated data. There are 115,9 million people doing voluntary work only in Europe, which means that they would create the world's 7th biggest economy with EUR…

  7. 14 CFR 234.7 - Voluntary reporting.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Voluntary reporting. 234.7 Section 234.7 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS AIRLINE SERVICE QUALITY PERFORMANCE REPORTS § 234.7 Voluntary reporting. (a) In addition to the...

  8. Changing Dynamics in the Voluntary Market (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.

    2014-12-01

    Voluntary green power markets are those in which consumers and institutions voluntarily purchase renewable energy to match their electricity needs. This presentation, presented at the Renewable Energy Markets Conference in December 2014, outlines the voluntary market in 2013, including community choice aggregation and community solar.

  9. 12 CFR 546.4 - Voluntary dissolution.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Voluntary dissolution. 546.4 Section 546.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  10. Between voluntary agreement and legislation

    DEFF Research Database (Denmark)

    Gwozdz, Wencke; Hedegaard, Liselotte; Reisch, Lucia

    2009-01-01

    Voluntary agreements and self-imposed standards are broadly applied to restrict the influence food advertising exerts on children’s food choices – yet their effects are unknown. The current project will therefore investigate whether and, if yes, how the Danish Code for Responsible Food Marketing...... Communication towards Children (hereafter: CODE) – with its dependence on a supportive institutional environment and acceptance of as well as dynamics between involved key stakeholders like consumers, political actors and firms – contributes to fighting the obesity pandemic.Thus, we explore within this article...... what information about the process of implementing the CODE as well as about the evolved dynamics between key stakeholders is already available. Here, the recently published report of the PolMark project sheds light on the dynamics between the key stakeholders in relation to the current Danish...

  11. Cogging torque reduction for interior permanent magnet synchronous motors

    OpenAIRE

    Tost Candel, Miquel

    2015-01-01

    Interior permanent magnet synchronous machines show a good range of behaviours, which make these kinds of machines good candidates for an electromechanical energy conversion. However, in order to improve their accuracy in their torque responses, the cogging torque and torque ripple phenomena should be mitigated to obtain better performance of the machine. In order to reduce the cogging torque and torque ripple, control techniques as well as geometric parameters of the machine have to be im...

  12. Contract theory and EU Contract Law

    NARCIS (Netherlands)

    Hesselink, M.W.; Twigg-Flesner, C.

    2016-01-01

    This paper explores the relationship between contract theory and European contract law. In particular, it confronts the leading contract law theories with the main characteristics of EU contract law. The conclusion is that the two do not match well. In particular, monist normative contract theories

  13. Contract theory and EU Contract Law

    NARCIS (Netherlands)

    Hesselink, M.W.; Twigg-Flesner, C.

    2016-01-01

    This paper explores the relationship between contract theory and European contract law. In particular, it confronts the leading contract law theories with the main characteristics of EU contract law. The conclusion is that the two do not match well. In particular, monist normative contract theories

  14. Botulinum toxin injection improved voluntary motor control in selected patients with post-stroke spasticity

    Institute of Scientific and Technical Information of China (English)

    Shuo-Hsiu Chang; Gerald E Francisco; Sheng Li

    2012-01-01

    The effect of botulinum toxin type A injection on voluntary grip control was examined in a 53-year-old female, who sustained a hemorrhagic right middle cerebral artery stroke 3 years previously, which resulted in finger flexor spasticity and residual weak finger/wrist extension. The patient received 50 units of botulinum toxin type A injection each to the motor points (2 sites/muscle) of the left flexor digitorum superficialis and flexor digitorum profundus, respectively. Botulinum toxin injection led to weakness and tone reduction in the spastic finger flexors, but improved grip release time in grip initiation/release reaction time tasks. Improved release time was accompanied by shortened extensor electromyography activity, and improved release time likely correlated with blocked co-contraction of finger flexors during voluntary finger extension. This case report demonstrated that botulinum toxin injection improved voluntary motor control of the hand in a chronic stroke patient with residual finger extension.

  15. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    Science.gov (United States)

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents.

  16. [Slowly progressive anarthria and disturbed voluntary respiration--a case report].

    Science.gov (United States)

    Lee, Eiyai; Uchihara, Toshiki; Machida, Akira; Watabiki, Sadakiyo

    2007-06-01

    A 68 year-old right-handed male initially felt an abnormal sensation in the throat and slight difficulties in phonation and articulation. The difficulties slowly progressed. Dementia and kinetic disorder of limbs has not been observed over two years after onset. Although bilateral cortico-bulbar tract sign such as pathological laughter was noted. His articulatory movements were small and indistinct. Phonation was slightly explosive and breathy as if panting out. His clinical feature could be differentiated from primary progressive aphasia because he was not aphasic with excellent word finding, and fell into the realm of progressive anarthria. On SPECT, hypoperfusion was seen in the left frontal region, the left parieto-temporal region, and the right frontal region to a lesser extent. A peculiarity of the patient was in that he had accompanied a difficulty in voluntary inspiration such as taking a deep breath. Because fiberoptic examination of the larynx demonstrated that the vocal cords opened normally when he tried to take a deep breath, the difficulty in inspiration was best explained by loss of voluntary control over diaphragmatic contractions. On voluntary expiration, sustained blowing through the pursued lips (soft blowing) was not successful either. On the other hand, blowing out several candles one by one or blowing up a balloon (hard blowing) was successful. In soft blowing, a voluntary and meticulous control of the diaphragm is necessary to counteract the spontaneous recoil of the lungs. In hard blowing, expiratory muscles may contract forcefully without participation of the diaphragm. This discrepancy is again explained by loss of voluntary control over the diaphragmatic movements. This deficit could have affected phonation; maintaining an adequate vibration on the vocal cords for a certain period of time, it is necessary to control the subglotal pressure at an appropriate level by diaphragmatic control. We believe this is the first patient with a

  17. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Directory of Open Access Journals (Sweden)

    Beomsoo Hwang

    2015-04-01

    Full Text Available In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  18. Decoupled Speed and Torque Control of IPMSM Drives Using a Novel Load Torque Estimator

    Directory of Open Access Journals (Sweden)

    ZAKY, M.

    2017-08-01

    Full Text Available This paper proposes decoupled speed and torque control of interior permanent magnet synchronous motor (IPMSM drives using a novel load torque estimator (LTE. The proposed LTE is applied for computing a load torque and yielding a feed-forward value in the speed controller to separate the torque control from the speed control. Indirect flux weakening using direct current component is obtained for high speed operation of the IPMSM drive, and its value for maximum torque per ampere (MTPA control in constant torque region is also used. LTE uses values of direct and quadrature currents to improve the behavior of the speed controller under the reference tracking and torque disturbances. The complete IPMSM drive by Matlab/Simulink is built. The effectiveness of the proposed control scheme using an experimental setup of the complete drive system implemented on a DSP-DS1102 control board is confirmed. Extensive results over a wide speed range are verified. The efficacy of the proposed method is confirmed in comparison to a conventional PI controller under both the reference speed tracking and load torque disturbance.

  19. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Science.gov (United States)

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  20. Design, Implementation and Evaluation of a Torque Transducer with Ability of Real-time Torque Monitoring

    Directory of Open Access Journals (Sweden)

    A Zeinali

    2014-04-01

    Full Text Available Torque, speed, and power as mechanical variables are associated with the functional performance of any rotating machinery. The real-time performance and the efficiency of a machine can be determined with on-line measurement of these parameters. In this investigation a rotary torque meter (transducer was constructed from strain gauge sensors for measuring the torque of rotating shafts. The system converts the torque of rotating shaft into voltage signals, based on the principle of strain gauge resistance. The signals are then amplified and converted into digital signals. These digital signals are sent to a RF receiver circuit for displaying and storage. Results of static calibration and a series of dynamic tests confirmed a satisfactory operation of the designed apparatus in various conditions. Also, the torque measuring range, resolution and the accuracy were from 3 to 700 N m, 3 N m and 1%, respectively.

  1. Improved Torque Control Performance of Direct Torque Control for 5-Phase Induction Machine

    Directory of Open Access Journals (Sweden)

    Logan Raj Lourdes Victor Raj

    2013-12-01

    Full Text Available In this paper, the control of five-phase induction machine using Direct Torque Control (DTC is presented. The general D-Q model of five-phase induction machine is discussed. The de-coupled control of stator flux and electromagnetic torque based on hysteresis controller similar to conventional DTC is applied to maintain the simplicity of the system. Three sets of look-up tables consist of voltage vectors with different amplitude that selects the  most optimal voltage vectors according motor operation condition is proposed. This provides excellent torque dynamic control, reduces torque ripple, lower switching frequency (high efficiency and extension of constant torque. Simulation results validate the improvement achieved.

  2. Relationships between torque, velocity and power output during plantarflexion in healthy subjects.

    Science.gov (United States)

    Nadeau, S; Gravel, D; Arsenault, A B

    1997-03-01

    This study investigated the relationships existing between torque, velocity and power output during plantarflexion. Using a Biodex dynamometric system, 15 healthy subjects performed three maximal dynamic tests, ranging from -12 degrees (-0.209 rad) of dorsiflexion to +47 degrees (+0.818 rad) of plantarflexion and one static test (test 4) at an angle of +10 degrees (+0.174 rad). The dynamic assessment included a 30 degrees s-1 (0.52 rad s-1) concentric isokinetic test (test 1) preceded by a 2-sec maximal pre-loading contraction. The other two dynamic tests were performed using the isotonic mode of testing with a selected torque of 27 N m; one of these tests was executed with pre-loading (test 2) while the other was performed without pre-loading (test 3). The results indicated that the dynamic peak torque, the peak power and the peak velocity were obtained in test 1, test 2 and test 3, respectively. These peak values, as well as the values of torque (test 1 and test 4), power (test 2) and velocity (test 3) obtained at a constant angle +10 degrees (+0.174 rad), were selected for the correlation analyses. The results showed that the torque, velocity and power output during plantarflexion were linearly related to one another with significant correlations (0.71 < r < 0.92; p < 0.01). This finding suggests that a common factor of muscular performance is assessed. Furthermore, these results indicated that the maximal torque produced by a subject can be predictive of his or her maximal velocity and power. Consequently, a stronger subject can generate higher velocity and power than a weaker subject when tested with the same load during maximal effort.

  3. Prevailing Torque Locking Feature Wear-out

    Science.gov (United States)

    Zimandy, Adam J. C.

    This thesis provides much needed representative sample data for reuse life of fully seated and torqued locknuts. Most national requirements for prevailing torque locking fasteners only specify unseated reuse life. This could create a potentially dangerous situation if unseated is misinterpreted for seated. This thesis provides comparative data for seated verses unseated configuration. Six aerospace, 3 all-metal and 3 nylon insert, and one non-aerospace locknuts were tested at preloads levels of unseated, 66%, 75%, and 85% of yield of bolt. The locknuts tested are MS21043-4, NAS1291-4, NAS1805-4, MS17825-4, MS21044D4, NAS1021N4, and Grade 8. A fixture was created in order to allow for the simultaneous data collection of the applied preload and torque, along with the removal of preload without loosening the locknut. The results from testing indicate the number of reuse cycles is greater for nylon locknuts than the all-metal locknuts. Large losses, on the order of 20-50%, in prevailing torque occur between the first and second cycle of each locknut under all preloads. Tightening Torque required to achieve a certain preload was found to increase with reuse. Application of lubrication to nylon locknuts had a significant effect, reducing the reuse life and prevailing torque performance. The testing indicated the effect of preload reduced the number of reuse cycles to failure, failure occurs when the prevailing torque is measured outside the range of 3.5 to 30 in-lb. All locknuts survived unseated and 66% Y preload testing, except MS21043 which lasted about 14.5 reuse cycles at 66% Y and NAS1805 which survived 8 reuse cycles for unseated and 12.67 reuse cycles at 66% Y. NAS1805's loss of reuse life is due to hardness and material compatibility issues. The scatter of the torque measurements was low for the first three to five cycles, then as the coatings and lubrications are worn the scatter increases. The data collected from testing agrees with the torque friction

  4. Bilateral interactions during contractions of intrinsic hand muscles

    NARCIS (Netherlands)

    Zijdewind, Inge; Kernell, D

    2001-01-01

    During demanding voluntary contractions (e.g., high force or fatigue), activation is not restricted to the target muscle but extends to other ipsilateral muscles; even contralateral muscles become activated. The contralateral "irradiation" of activity was measured in five subjects during submaximal

  5. Bilateral interactions during contractions of intrinsic hand muscles

    NARCIS (Netherlands)

    Zijdewind, Inge; Kernell, D

    2001-01-01

    During demanding voluntary contractions (e.g., high force or fatigue), activation is not restricted to the target muscle but extends to other ipsilateral muscles; even contralateral muscles become activated. The contralateral "irradiation" of activity was measured in five subjects during submaximal

  6. Smooth torque speed characteristic of switched reluctance motors

    DEFF Research Database (Denmark)

    Zeng, Hui; Chen, Zhe; Chen, Hao

    2014-01-01

    of the constraints of the supply voltage and peak current. Based on previous work that sought to expand the STO range, a scheme is developed in this study to determine the maximum smooth torque range at each speed. The relationship between the maximum smooth torque and speed is defined as the smooth torque speed......The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because...... characteristics (STSC), a concept similar to torque speed characteristics (TSC). STSC can be utilized to evaluate torque utilization by comparing it with TSC. Thus, the concept benefits the special design of SRMs, especially for the generation of smooth torque. Furthermore, the torque sharing function (TSF...

  7. Changes of Excitability in M1 Induced by Neuromuscular Electrical Stimulation Differ Between Presence and Absence of Voluntary Drive

    Science.gov (United States)

    Sugawara, Kenichi; Tanabe, Shigeo; Higashi, Toshio; Tsurumi, Takamasa; Kasai, Tatsuya

    2011-01-01

    The aim of this study is to investigate excitability changes in the human motor cortex induced by variable therapeutic electrical stimulations (TESs) with or without voluntary drive. We recorded motor-evoked potentials (MEPs) from extensor and flexor carpi radialis (FCR) muscles at rest and during FCR muscle contraction after the application of…

  8. Excitability changes in primary motor cortex just prior to voluntary muscle relaxation.

    Science.gov (United States)

    Suzuki, Tomotaka; Sugawara, Kenichi; Takagi, Mineko; Higashi, Toshio

    2015-01-01

    We postulated that primary motor cortex (M1) activity does not just decrease immediately prior to voluntary muscle relaxation; rather, it is dynamic and acts as an active cortical process. Thus we investigated the detailed time course of M1 excitability changes during muscle relaxation. Ten healthy participants performed a simple reaction time task. After the go signal, they rapidly terminated isometric abduction of the right index finger from a constant muscle force output of 20% of their maximal voluntary contraction force and performed voluntary muscle relaxation. Transcranial magnetic stimulation pulses were randomly delivered before and after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous muscle. We selected the time course relative to an appropriate reference point, the onset of voluntary relaxation, to detect excitability changes in M1. MEP amplitude from 80 to 60 ms before the estimated electromyographic offset was significantly greater than that in other intervals. Dynamic excitability changes in M1 just prior to quick voluntary muscle relaxation indicate that cortical control of muscle relaxation is established through active processing and not by simple cessation of activity. The cortical mechanisms underlying muscle relaxation need to be reconsidered in light of such dynamics. Copyright © 2015 the American Physiological Society.

  9. Facilitation of soleus but not tibialis anterior motor evoked potentials before onset of antagonist contraction

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham Theodore; Nielsen, Jens Bo

    2008-01-01

    the MEP is evoked. Methods: Seated subjects (n=11) were instructed to react to an auditory cue by contracting either the tibialis anterior (TA) or soleus muscle of the left ankle to 30% of their maximal dorsiflexion voluntary contraction (MVC) or plantar flexion MVC, respectively. Focal TMS at 1.2 x motor...

  10. AN ECONOMETRIC APPROACH ABOUT VOLUNTARY TURNOVER

    Directory of Open Access Journals (Sweden)

    ADALET EREN

    2013-06-01

    Full Text Available This study analyzes individual and organizational variables that affect voluntary turnover are determined in the special defence and security companies. A binomial logistic regression model is used to estimate voluntary turnover.  Binomial Logistic regression, reliability test (scale alfa, variance (ANOVA, Post-hoc/Tukey, correlation (Pearson and other basic statistical techniques  with SPSS 13 statistical packet program was used in the analyzes ofresearch data. The study finds that; situation of suppose working, number of child, number of death child, number of home’s moving, support of rent, total monthly income of household, last work’s region, number of prizes, affect voluntary turnover are determined.

  11. Casimir Torque in Inhomogeneous Dielectric Plates

    CERN Document Server

    Long, William

    2013-01-01

    In this work, we consider a torque caused by the well known quantum mechanical Casimir effect arising from quantized field fluctuations between plates with inhomogeneous, sharply discontinuous, dielectric properties. While the Casimir effect is a relatively well understood phenomenon, systems resulting in lateral or rotational forces are far less developed; to our knowledge, a theoretical study of discontinuous dielectric variants of such systems has not been attempted. We utilize a Proximity Force Approximation in conjunction with the Lifshitz dielectric formula to perform theoretical analyses of resultant torques in systems with bisected and quadrisected dielectric regions. We also develop a high precision Monte Carlo type numerical integrator to approximate our derived expressions. Our calculations of an energy density linear with the alignment angle result in a constant torque and have implications in NEMS (nano electromechanical systems) and MEMS (micro electromechanical systems), including a postulated ...

  12. Torque for an Inertial Piezoelectric Rotary Motor

    Directory of Open Access Journals (Sweden)

    Jichun Xing

    2013-01-01

    Full Text Available For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor.

  13. AX-5 space suit bearing torque investigation

    Science.gov (United States)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  14. RFID Torque Sensing Tag System for Fasteners

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)

    2016-01-01

    The present invention provides an RFID-based torque sensor that can be used to quickly monitor off the shelf fasteners including fasteners that are used in expensive satellites or other uses where fastener failure can be very costly. In one embodiment, an antenna, RFID ring and spring comprise a sensor tag that can be interrogated with an interrogation signal produced by an interrogator device. When sufficient torque is applied to the fastener, an RFID circuit is connected, and produces a radio frequency (RF) signal that can be read by the interrogator. In one embodiment, the RFID circuit does not transmit when the spring member is not compressed, thereby indicating insufficient tensioning of the fastener. The present invention offers the ability to remotely, quickly, and inexpensively verify that any number of fasteners are torqued properly upon initial installation. Where applicable, the present invention allows low cost monitoring over the life of the fastener.

  15. Fundamental Limits of Optical Force and Torque

    CERN Document Server

    Rahimzadegan, Aso; Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    Optical force and torque provide unprecedented control on the spatial motion of small particles. A valid scientific question, that has many practical implications, concerns the existence of fundamental upper bounds for the achievable force and torque exerted by a plane wave illumination with a given intensity. Here, while studying isotropic particles, we show that different light-matter interaction channels contribute to the exerted force and torque and analytically derive upper bounds for each of the contributions. Specific examples for particles that achieve those upper bounds are provided. We study how and to which extent different contributions can be made to add up. Our insights are important for applications ranging from molecular sorting, particle manipulation, nanorobotics up to ambitious projects such as laser-propelled spaceships.

  16. Cogging Torque Minimization in Transverse Flux Machines

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method. A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.

  17. Visual influence on haptic torque perception.

    Science.gov (United States)

    Xu, Yangqing; O'Keefe, Shélan; Suzuki, Satoru; Franconeri, Steven L

    2012-01-01

    The brain receives input from multiple sensory modalities simultaneously, yet we experience the outside world as a single integrated percept. This integration process must overcome instances where perceptual information conflicts across sensory modalities. Under such conflicts, the relative weighting of information from each modality typically depends on the given task. For conflicts between visual and haptic modalities, visual information has been shown to influence haptic judgments of object identity, spatial features (e.g., location, size), texture, and heaviness. Here we test a novel instance of haptic-visual conflict in the perception of torque. We asked participants to hold a left-right unbalanced object while viewing a potentially left-right mirror-reversed image of the object. Despite the intuition that the more proximal haptic information should dominate the perception of torque, we find that visual information exerts substantial influences on torque perception even when participants know that visual information is unreliable.

  18. Self-induced torque in hyperbolic metamaterials.

    Science.gov (United States)

    Ginzburg, Pavel; Krasavin, Alexey V; Poddubny, Alexander N; Belov, Pavel A; Kivshar, Yuri S; Zayats, Anatoly V

    2013-07-19

    Optical forces constitute a fundamental phenomenon important in various fields of science, from astronomy to biology. Generally, intense external radiation sources are required to achieve measurable effects suitable for applications. Here we demonstrate that quantum emitters placed in a homogeneous anisotropic medium induce self-torques, aligning themselves in the well-defined direction determined by an anisotropy, in order to maximize their radiation efficiency. We develop a universal quantum-mechanical theory of self-induced torques acting on an emitter placed in a material environment. The theoretical framework is based on the radiation reaction approach utilizing the rigorous Langevin local quantization of electromagnetic excitations. We show more than 2 orders of magnitude enhancement of the self-torque by an anisotropic metamaterial with hyperbolic dispersion, having negative ratio of permittivity tensor components, in comparison with conventional anisotropic crystals with the highest naturally available anisotropy.

  19. Mode of Delivery Affect Voluntary Contraction of the Pelvic Floor Muscle Strength and Pelvic Floor Muscle Training Role to Explore%分娩方式对盆底自主收缩肌肉力量影响与盆底肌力训练作用的探究

    Institute of Scientific and Technical Information of China (English)

    王炎; 董永瑞; 于江; 于锦玉; 吴燕萍

    2012-01-01

      目的探究分娩方式对盆底自主收缩肌肉力量的影响,分析盆底肌力训练的作用.方法选取自然分娩产妇50例为A组;选取剖宫产的产妇50例为B组;抽查未孕妇女50例为C组.对三组妇女的骨盆底肌力评分、15s内肌肉收缩次数、用力收缩持续时间进行对比分析,从而探究分娩方式对盆底自主收缩肌肉力量的影响.之后,从A、B组中各抽取25例组成D组,将A、B组其余妇女组成E组,其中D组妇女进行盆底肌力训练,E组妇女只做常规处理,对D组、E组妇女的骨盆底肌力评分、15s内肌肉收缩次数、用力收缩持续时间进行对比分析,从而分析盆底肌力训练的作用.结果 A组、B组妇女的骨盆底肌力评分、15s肌肉收缩次数、用力收缩持续时间均明显低于C组.B组妇女的骨盆底肌力评分、15s内肌肉收缩次数、用力收缩持续时间均明显低于A组.E组妇女的骨盆底肌力评分、15s内肌肉收缩次数、用力收缩持续时间均明显低于D组.结论剖宫产妇女、自然分娩妇女的骨盆底肌力评分、15s内肌肉收缩次数、用力收缩持续时间低于未孕妇女,剖宫产妇女的骨盆底肌力评分、15s内肌肉收缩次数、用力收缩持续时间低于自然分娩的妇女,盆地肌力训练能够有效地促进盆底自主收缩肌肉力量的恢复.%  Objective Research of mode of delivery on pelvic floor muscle contraction force of independent effects of pelvic floor muscle training, analysis of the role of. Method Select the natural childbirth50 cases of maternal group A;selection of cesarean section in 50 cases of B group;selective nonpregnant women50 cases for C group. Three groups of women with pelvic floor muscle strength score,15s muscle contraction times, forced contraction duration were analyzed, so as to explore ways of delivery on pelvic autonomic contraction influence on muscle strength. After that, from the A, B in each group consisted

  20. Observational Limits on the Spin-down Torque of Accretion Powered Stellar Winds

    Science.gov (United States)

    Zanni, Claudio; Ferreira, Jonathan

    2011-01-01

    The rotation period of classical T Tauri stars (CTTS) represents a longstanding puzzle. While young low-mass stars show a wide range of rotation periods, many CTTS are slow rotators, spinning at a small fraction of breakup, and their rotation period does not seem to shorten, despite the fact that they are actively accreting and contracting. Matt & Pudritz proposed that the spin-down torque of a stellar wind powered by a fraction of the accretion energy would be strong enough to balance the spin-up torque due to accretion. Since this model establishes a direct relation between accretion and ejection, the observable stellar parameters (mass, radius, rotation period, magnetic field) and the accretion diagnostics (accretion shock luminosity) can be used to constrain the wind characteristics. In particular, since the accretion energy powers both the stellar wind and the shock emission, we show in this Letter how the accretion shock luminosity L UV can provide upper limits to the spin-down efficiency of the stellar wind. It is found that luminous sources with L UV >= 0.1 L sun and typical dipolar field components UV Lt 0.1 L sun) are compatible with a zero-torque condition, but the corresponding stellar winds are still very demanding in terms of mass and energy flux. We therefore conclude that accretion powered stellar winds are unlikely to be the sole mechanism to provide an efficient spin-down torque for accreting CTTS.

  1. Diffusion of torqued active Brownian particles

    Science.gov (United States)

    Sevilla, Francisco J.

    An analytical approach is used to study the diffusion of active Brownian particles that move at constant speed in three-dimensional space, under the influence of passive (external) and active (internal) torques. The Smoluchowski equation for the position distribution of the particles is obtained from the Kramer-Fokker-Planck equation corresponding to Langevin equations for active Brownian particles subject to torques. In addition of giving explicit formulas for the mean square-displacement, the non-Gaussian behavior is analyzed through the kurtosis of the position distribution that exhibits an oscillatory behavior in the short-time limit. FJS acknowledges support from PAPIIT-UNAM through the grant IN113114

  2. Quantifying thigh muscle co-activation during isometric knee extension contractions: within- and between-session reliability.

    Science.gov (United States)

    Katsavelis, Dimitrios; Threlkeld, A Joseph

    2014-08-01

    Muscle co-activation around the knee is important during ambulation and balance. The wide range of methodological approaches for the quantification of co-activation index (CI) makes comparisons across studies and populations difficult. The present study determined within- and between-session reliability of different methodological approaches for the quantification of the CI of the knee extensor and flexor muscles during maximum voluntary isometric contractions (MVICs). Eight healthy volunteers participated in two repeated testing sessions. A series of knee extension MVICs of the dominant leg with concomitant torque and electromyographic (EMG) recordings were captured. CI was calculated utilizing different analytical approaches. Intraclass correlation coefficient (ICC) showed that within-session measures displayed higher reliability (ICC>0.861) and lower variability (Coefficient of variation; CV24.2%). A selection of a 500ms or larger window of RMS EMG activity around the PT delivered more reliable and less variable results than other approaches. Our findings suggest that the CI can provide a reliable measure for comparisons among conditions and is best utilized for within-session experimental designs.

  3. Novel torque ripple minimization algorithm for direct torque control of induction motor drive

    Institute of Scientific and Technical Information of China (English)

    LONG Bo; GUO Gui-fang; HAO Xiao-hong; LI Xiao-ning

    2009-01-01

    To elucidate the principles of notable torque and flux ripple during the steady state of the conventional direct torque control (DTC) of induction machines, the factors of influence torque variation are examined. A new torque ripple minimization algorithm is proposed. The novel method eradicated the torque ripple by imposing the required stator voltage vector in each control cycle. The M and T axial components of the stator voltage are accomplished by measuring the stator flux error and the expected incremental value of the torque at every sampling time. The maximum angle rotation allowed is obtained. Experimental results showed that the proposed method combined with the space vector pulse width modulation(SVPWM) could be implemented in most existing digital drive controllers, offering high performance in both steady and transient states of the induction drives at full speed range. The result of the present work imphes that torque fluctuation could be eliminated by imposing proper stator voltage, and the proposed scheme could not only maintain constant switching frequency for the inverter, but also solve the heating problem and current harmonics in traditional induction motor drives.

  4. Anticipatory signatures of voluntary memory suppression.

    Science.gov (United States)

    Hanslmayr, Simon; Leipold, Philipp; Pastötter, Bernhard; Bäuml, Karl-Heinz

    2009-03-04

    Voluntary memory suppression can keep unwanted memories from entering consciousness, inducing later forgetting of the information. In the present study, we searched for the existence of anticipatory processes, mediating such voluntary memory suppression. Using the think/no-think paradigm, subjects received a cue whether to prepare to think of a previously studied cue-target pair or whether to not let a previously studied cue-target pair enter consciousness. Examining event-related potentials, we identified two electrophysiological processes of voluntary memory suppression: (1) an early anticipatory process operating before the memory cue for a to-be-suppressed memory was provided, and (2) a later process operating after memory cue presentation. Both ERP effects were due to a decreased right frontal and left parietal positivity. They were positively related and predicted later forgetting. The results point to the existence of anticipatory processes, mediating voluntary memory suppression.

  5. Pedagogical Aspects of Voluntary School Work

    Directory of Open Access Journals (Sweden)

    Mária Jármai Erzsébet

    2015-03-01

    Full Text Available The economic importance of voluntary work has been exceedingly appreciated in the last few decades. This is not surprising at all, because it is highly profitable according to the related estimated data. There are 115,9 million people doing voluntary work only in Europe, which means that they would create the world's 7th biggest economy with EUR 282 billion value creation if they formed an individual state. The organizations know that voluntary work has several advantages apart from the economic benefits. It is profitable both for the society and for the individuals as well. Several researches have proven that voluntary work positively influences the development of the personality, because the key-competencies - such as: co-operation, empathy, solidarity, conflict handling, problem solving, etc. - expected in the labor market can be improved.

  6. Managing voluntary turnover through challenging assignments

    NARCIS (Netherlands)

    Preenen, P.T.Y.; Pater, I.E. de; Vianen, A.E.M. van; Keijzer, L.

    2011-01-01

    This study examines employees' challenging assignments as manageable means to reduce turnover intentions, job search behaviors, and voluntary turnover. Results indicate that challenging assignments are negatively related to turnover intentions and job search behaviors and that these relationships

  7. Corticospinal excitability in human voluntary movement

    NARCIS (Netherlands)

    Elswijk, G.A.F. van

    2008-01-01

    The research described in this thesis addressed the neurophysiologic changes in the human corticospinal system during preparation and execution of voluntary hand movements. The experiments involved transcranial magnetic stimulation (TMS) of the motor cortex combined with electromyography (EMG) and e

  8. Contemplated Suicide Among Voluntary and Involuntary Retirees

    Science.gov (United States)

    Peretti, Peter O.; Wilson, Cedric

    1978-01-01

    This study explored anomic and egoistic dimensions of contemplated suicide among voluntary and involuntary retired males. Results indicated a direct relationship between anomie and egoism on the one hand, and contemplation of suicide on the other. (Author)

  9. A Free Market Requires Voluntary Actions

    DEFF Research Database (Denmark)

    Sløk-Madsen, Stefan Kirkegaard

    are essential to the construct of consumer sovereignty. Understanding the degree of voluntary actions in a given commercial setting has implications for both business strategy and policy making. This paper thus aims to contribute to explain why restricted markets become crony capitalism.......This paper draws attention to the importance of the understanding of voluntary actions in the free market construct. Failing to understand the role of voluntary actions in the free market construct will often result in discussions of capitalism versus socialism focusing on asset ownership...... and not consumer sovereignty. I argue that asset ownership is less important than true consumer sovereignty, which again is the essential argument for why capitalism is the superior mode of resource allocation and social organization. The paper analyzes how our understanding of markets and voluntary actions...

  10. Contemplated Suicide Among Voluntary and Involuntary Retirees

    Science.gov (United States)

    Peretti, Peter O.; Wilson, Cedric

    1978-01-01

    This study explored anomic and egoistic dimensions of contemplated suicide among voluntary and involuntary retired males. Results indicated a direct relationship between anomie and egoism on the one hand, and contemplation of suicide on the other. (Author)

  11. The role of interaction torque and muscle torque in the control of downward squatting

    OpenAIRE

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Murakami, Kenichi; Kawakami, Shingo; Suzuki, Makoto

    2016-01-01

    [Purpose] The purposes of this study were first to analyze the multijoint dynamics of downward squatting, and to examine the contribution of interaction torque and muscle torque to net torque, and second, to examine mechanisms of movement control. [Subjects] The subjects were 31 healthy men with a mean age of 21.0 ± 1.2 years (range, 19–24 years). [Methods] Squatting tasks with the trunk in two positions, an erect and anterior tilt position, were performed by the subjects. Net, interaction, m...

  12. Pull factors of Finland and voluntary work

    OpenAIRE

    Jurvakainen, Janika

    2016-01-01

    This thesis studies pull factors of Finland and voluntary work. The aim of this study is to understand the pull factors of Finland from the perspective of young travelers. Which pull factors attract to choose Finland as their destination? In addition, which pull factors attract young travelers to participate in international voluntary work? The commissioner of this thesis is Allianssi Youth Exchange. The thesis is research-based and includes a quantitative Webropol survey and some qualit...

  13. Efeitos na medida do ângulo Q com a contração isométrica voluntária máxima do músculo quadricipital Efectos en la medida del ángulo Q con la contracción isométrica voluntária máxima del musculo cuadricipital Effects in the Q angle measurement with maximal voluntary isometric contraction of the quadriceps muscle

    Directory of Open Access Journals (Sweden)

    A.C.G. Belchior

    2006-02-01

    examination situations, having the quadriceps relaxed and in a maximal voluntary isometric contraction (MVIC through radiographic measurement, aiming to contribute to the assessment and treatment of patients with patelofemoral disorder (PFD. Through the standard radiological method twenty 21 years old mean women (40 knees were assessed. All individuals were positioned supine using a U-podalic stabilizer, having their lower limbs relaxed, using a plumb film on the anterior tuberosity of the tibia. For the statistical analysis, the averages for the asymptomatic and symptomatic groups in a relaxed and MVIC status, as well as the Student's t-test with p < 0.05 significance level were used. The mean values to the Q angle compared to the asymptomatic group were 17.15º on relaxation, and 14.5º on MVIC, while the asymptomatic group presented 21.45º, and 15.8º, respectively. The results in the equality analysis between the symptomatic and asymptomatic groups on the relaxed status attained a p = 0.004, and to the maximal voluntary isometric contraction, p = 0.29. Considering the data attained in the present study, it can be verified that in a relaxing status, there is a difference between the value of the Q angle among symptomatic and asymptomatic individuals, being found a higher value in the FPD bearers, while in a maximal isometric contraction of the quadriceps muscle no statistical difference was found in the present study, with a reduction in the angle in both groups.

  14. 47 CFR 80.310 - Watch required by voluntary vessels.

    Science.gov (United States)

    2010-10-01

    ... Watches § 80.310 Watch required by voluntary vessels. Voluntary vessels not equipped with DSC must.... Voluntary vessels equipped with VHF-DSC equipment must maintain a watch on 2182 kHz and on either 156.525... used to communicate. Voluntary vessels equipped with MF-HF DSC equipment must have the radio turned...

  15. Optimizing Casimir torque between corrugated metallic plates

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Robson B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Maia Neto, Paulo A. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: The Casimir effect plays a major role in micro- and nano-electromechanical systems (MEMS and NEMS). Besides the normal Casimir force between metallic or dielectric plates, the observation of the lateral Casimir force between corrugated plates opens novel possibilities of micro-mechanical control. The lateral force results from breaking the translational symmetry along directions parallel to the plates by imprinting periodic corrugations on both metallic plates. As the rotational symmetry is broken by this geometry, a Casimir torque arises when the corrugations are not aligned. We calculate the Casimir torque between two parallel metallic plates with surface profiles in the form of 'fans' with arbitrary relative spatial orientation. As compared to the case of anisotropic dielectric plates, the torque per unit area is increased by up to three orders of magnitude for a given separation distance. The experiment proposed here can be performed with torsion pendulum techniques for separation distances as large as 1 μm. From the point of view of fundamental physics, this torque makes possible a precise experimental investigation of the non-trivial geometry dependence of the Casimir effect. We follow the scattering approach and calculate the Casimir energy up to second order in the corrugation amplitudes, taking into account nonspecular reflections, polarization mixing and the finite conductivity of the metals. We investigate the experimental conditions that optimize the effect. (author)

  16. Planetary Torque in 3D Isentropic Disks

    Science.gov (United States)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  17. Are torque values of preadjusted brackets precise?

    Directory of Open Access Journals (Sweden)

    Alessandra Motta Streva

    Full Text Available OBJECTIVE: The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. MATERIAL AND METHODS: Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. RESULTS: The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º presented statistically significant difference from the proposed values (-7º. For the mandibular canines, American Orthodontics (-6.34º and Ortho Organizers (-6.25º presented statistically significant differences from the standards (-6º. Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. CONCLUSIONS: There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment.

  18. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  19. Are torque values of preadjusted brackets precise?

    Directory of Open Access Journals (Sweden)

    Alessandra Motta Streva

    2011-08-01

    Full Text Available OBJECTIVE: The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. MATERIAL AND METHODS: Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. RESULTS: The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º presented statistically significant difference from the proposed values (-7º. For the mandibular canines, American Orthodontics (-6.34º and Ortho Organizers (-6.25º presented statistically significant differences from the standards (-6º. Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. CONCLUSIONS: There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment.

  20. Direct Torque Control of IPMSM to Improve Torque ripple and Efficiency based on Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    B. Mirzaeian Dehkordi

    2012-09-01

    Full Text Available In this paper, a stator-flux-reference frame control method is proposed in order to control the speed and torque of an Interior Permanent Magnet Synchronous Machine (IPMSM in different loads condition. Direct Torque Control method (DTC based on Space Vector Modulation (SVM is used for control of IPMSM. In the proposed control method, conventional PI controller is used for controlling the stator flux, and torque of the motor. Also, a fuzzy controller is considered to improve the dynamic performance of DTC technique for speed control. In comparison to the conventional reference flux controller methods, this method, in addition, improves the torque profile of the motor drive. Moreover, it reduces copper losses. Simulation results for a 240V, 120A, 2500rpm, IPMSM confirm the appropriate performances of the method.

  1. The influence of familiarization sessions on the stability of ramp and ballistic isometric torque in older adults.

    Science.gov (United States)

    Wallerstein, Lilian F; Barroso, Renato; Tricoli, Valmor; Mello, Marco T; Ugrinowitsch, Carlos

    2010-10-01

    Ramp isometric contractions determine peak torque (PT) and neuromuscular activation (NA), and ballistic contractions can be used to evaluate rate of torque development (RTD) and electrical mechanical delay (EMD). The purposes of this study were to assess the number of sessions required to stabilize ramp and ballistic PT and to compare PT and NA between contractions in older adults. Thirty-five older men and women (age 63.7 ± 3.7 yr, body mass 64.3 ± 10.7 kg, height 159.2 ± 6.6 cm) performed 4 sessions of unilateral ramp and ballistic isometric knee extension, 48 hr apart. PT significantly increased (main time effect p < .05) from the first to the third session, with no further improvements thereafter. There was a trend toward higher PT in ballistic than in ramp contractions. No difference between contraction types on EMG values was observed. Therefore, the authors suggest that 3 familiarization sessions be performed to correctly assess PT. In addition, PT, NA, RTD, and EMD can be assessed with ballistic contraction in older adults.

  2. Evaluation of torque within manual preparation with root canal instruments

    OpenAIRE

    Gorski, Christof

    2016-01-01

    Used root canal instruments are often deformed; they can fracture, persist and reinfect teeth. There are no evident studies consulting torque and manual preparation of root canals. Thus, the purpose of this study is the evaluation of torque within manual preparation in connection with its impact on file deformation. With the aid of torque measurement a change in dental education could potentially be achieved.

  3. Frictional torque numbers for ball cup and journal bearings

    OpenAIRE

    Ligterink, D.J.

    1982-01-01

    Plastic bearing material wears in ball cup and journal bearings. Contact areas in the ball cup and the journal bearing increase. The frictional torque needed to rotate the ball or journal also increases. When the coefficient of friction is assumed to be constant during wearing out, the frictional torque increases to a maximum of 1.273 times the frictional torque at zero wear.

  4. Research on Torque Ratio Based on the Steering Wheel Torque Characteristic for Steer-by-Wire System

    Directory of Open Access Journals (Sweden)

    Yandong Han

    2014-01-01

    Full Text Available Steer-by-wire system can improve the performance of vehicle handling stability. Removing the mechanical linkages between the front wheels and the steering wheel leads to a key technique of force feedback for steer-by-wire system. In view of the characteristic of variable torque transmission ratio for steer-by-wire system, this paper proposes a method for designing torque ratio based on the steering wheel torque characteristic for steer-by-wire system. It converts the torque ratio design into equivalent assist torque design by analyzing their relationship. It achieves the torque ratio design at different conditions based on the negative equivalent assist torque characteristic curve. Simulations and vehicle experiments are conducted by the proposed method, and the results show that the design goal has been achieved and the steering wheel torque characteristic obtained is very similar to that of the reference car.

  5. Cogging Torque and Acoustic Noise Reduction in High Torque BLDC Motors by Teeth Pairings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Min [Halla Climate Control Co. (Korea, Republic of); Hwang, Sang Moon [Pusan National University (Korea, Republic of)

    1999-03-01

    This paper investigates reduction of acoustic noise and cogging torque in a BLDC motor with larger stator slot open width. Using energy method, cogging torque is analytically determined with airgap MMF function and airgap permeance function and confirmed by FEM analysis. It show that the cogging torque is firstly governed by N{sub L} G{sub NL} B{sub NL} with the fundamental period of N{sub L}, where N{sub L} is the least common multiple of the number of slots and the number of poles, G{sub NL}, airgap permeance function and B{sub NL}, airgap MMF function. It also shows that there exist several tooth width which minimizes the cogging torque, for the motors that smaller slot open width or stator teeth notching is not available. And it proposes a teeth pairing with two different tooth width which can effectively eliminate the cogging torque and thus the acoustic noise. Experimental results show that the proposed teeth pairing reduces the cogging torque by 85% and the acoustic noise by 3.1 dB. (author). 9 refs., 13 figs., 1 tab.

  6. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque.

    Science.gov (United States)

    Abdelli, R; Rekioua, D; Rekioua, T

    2011-04-01

    This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn't require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one.

  7. Effects of warm-up on peak torque, rate of torque development, and electromyographic and mechanomyographic signals.

    Science.gov (United States)

    Altamirano, Kristianna M; Coburn, Jared W; Brown, Lee E; Judelson, Daniel A

    2012-05-01

    The purpose of this study was to determine if an active warm-up affects peak torque (PT), rate of torque development (RTD), and the electromyographic (EMG) and mechanomyographic (MMG) signals. Twenty-one men (mean age ± SD: 24.0 ± 2.7 years) visited the exercise physiology laboratory on 2 occasions. During the first visit, they either performed an active warm-up (10 minutes of stationary cycling at 70% of predicted maximum heart rate) or sat quietly (no warm-up). Participants were then tested for isometric and isokinetic (60°, 180°, and 300°·s) PT, and RTD (measured as S-gradient) on an isokinetic dynamometer. Electromyographic and MMG sensors were placed over the vastus lateralis muscle to monitor the electrical and mechanical aspects of muscle contractions, respectively. The testing protocol used for the first visit was repeated for the second visit, but the preexercise treatment (warm-up, no warm-up) not given during the first visit was administered. The results indicated that an active warm-up did not affect PT, RTD, or measures of muscle activation as reflected by EMG amplitude, EMG frequency, or MMG frequency (p > 0.05). However, MMG amplitude at 180°·s was significantly greater in the warm-up condition compared with the no warm-up condition. The isolated increase in MMG amplitude suggested that warm-up may have affected the mechanical properties of muscle by reducing muscular stiffness or decreasing intramuscular fluid pressure, but that it was not sufficient to influence performance.

  8. Patellar tendon adaptation in relation to load-intensity and contraction type

    DEFF Research Database (Denmark)

    Malliaras, Peter; Kamal, Beenish; Nowell, Alastair

    2013-01-01

    BACKGROUND: Loading leads to tendon adaptation but the influence of load-intensity and contraction type is unclear. Clinicians need to be aware of the type and intensity of loading required for tendon adaptation when prescribing exercise. The aim of this study was to investigate the influence...... of contraction type and load-intensity on patellar tendon mechanical properties. METHOD: Load intensity was determined using the 1 repetition maximum (RM) on a resistance exercise device at baseline and fortnightly intervals in four randomly allocated groups of healthy, young males: (1) control (no training); (2...... maximum torque, patellar tendon CSA and length were measured with dynamometry and ultrasound imaging. Patellar tendon force, stress and strain were calculated at 25%, 50%, 75% and 100% of maximum torque during isometric knee extension contractions, and stiffness and modulus at torque intervals of 50...

  9. Uncertainty of knee joint muscle activity during knee joint torque exertion: the significance of controlling adjacent joint torque.

    Science.gov (United States)

    Nozaki, Daichi; Nakazawa, Kimitaka; Akai, Masami

    2005-09-01

    In the single-joint torque exertion task, which has been widely used to control muscle activity, only the relevant joint torque is specified. However, the neglect of the neighboring joint could make the procedure unreliable, considering our previous result that even monoarticular muscle activity level is indefinite without specifying the adjacent joint torque. Here we examined the amount of hip joint torque generated with knee joint torque and its influence on the activity of the knee joint muscles. Twelve healthy subjects were requested to exert various levels of isometric knee joint torque. The knee and hip joint torques were obtained by using a custom-made device. Because no information about hip joint torque was provided to the subjects, the hip joint torque measured here was a secondary one associated with the task. The amount of hip joint torque varied among subjects, indicating that they adopted various strategies to achieve the task. In some subjects, there was a considerable internal variability in the hip joint torque. Such variability was not negligible, because the knee joint muscle activity level with respect to the knee joint torque, as quantified by surface electromyography (EMG), changed significantly when the subjects were requested to change the strategy. This change occurred in a very systematic manner: in the case of the knee extension, as the hip flexion torque was larger, the activity of mono- and biarticular knee extensors decreased and increased, respectively. These results indicate that the conventional single knee joint torque exertion has the drawback that the intersubject and/or intertrial variability is inevitable in the relative contribution among mono- and biarticular muscles because of the uncertainty of the hip joint torque. We discuss that the viewpoint that both joint torques need to be considered will bring insights into various controversial problems such as the shape of the EMG-force relationship, neural factors that help

  10. Motor unit recruitment pattern during low-level static and dynamic contractions.

    Science.gov (United States)

    Søgaard, K

    1995-03-01

    Motor unit (MU) recruitment patterns were studied during dynamic and static contractions at workloads corresponding to 10% of maximal voluntary contraction force. The dynamic contraction consisted of a 20 degrees flexion and extension of the elbow performed with a velocity of 10 degrees/s. Motor unit potential trains were recorded from the brachial biceps muscle of 6 healthy females using a quadripolar needle electrode and a computerized decomposition program. Properties of the identified MUs were derived from concentric needle EMG. A total of 119 MUs were identified during dynamic contractions, 107 MUs during static anisotonic contractions, and 96 MUs during static isotonic contractions. The main result was that MUs recruited during different contractions showed similar properties and may belong to the same part of the motoneuron pool. This indicates that MU recruitment patterns during dynamic contractions may be almost as stereotypical as during static contractions and may even activate the same MUs.

  11. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.

    Science.gov (United States)

    Pigeon, Pascale; Bortolami, Simone B; DiZio, Paul; Lackner, James R

    2003-01-01

    rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.

  12. Eccentric wrist extensor contractions and the force velocity relationship in muscle.

    Science.gov (United States)

    Walmsley, R P; Pearson, N; Stymiest, P

    1986-01-01

    The torque produced by the wrist extensors during maximal isometric and isokinetic eccentric contractions has been investigated. The torque produced by eccentric contractions was measured at three different velocities: 0.36, 0.93, and 1.64 cmlsec. The speeds of contraction were generated by a specially designed apparatus, consisting of a gear drive and an electric motor that would maintain its speed irrespective of the load applied. Tenison produced by the wrist extensors was measured using a load cell. The results indicated that eccentric contractions of the wrist extensors exceed those produced by isometric contractions. The force-velocity relationship during eccentric contractions was determined to be different from that during concentric contractions. Force values were found to increase as the velocity of eccentric contraction increased. No signficant effect of wrist joint angle on torque values was found, nor was there an interaction effect of velocity and joint angle. The implications for rehabilitation of these findings are outlined. J Orthop Sports Phys Ther 1986;8(6):288-293.

  13. Voluntary attention increases perceived spatial frequency.

    Science.gov (United States)

    Abrams, Jared; Barbot, Antoine; Carrasco, Marisa

    2010-08-01

    Voluntary covert attention selects relevant sensory information for prioritized processing. The behavioral and neural consequences of such selection have been extensively documented, but its phenomenology has received little empirical investigation. Involuntary attention increases perceived spatial frequency (Gobell & Carrasco, 2005), but involuntary attention can differ from voluntary attention in its effects on performance in tasks mediated by spatial resolution (Yeshurun, Montagna, & Carrasco, 2008). Therefore, we ask whether voluntary attention affects the subjective appearance of spatial frequency--a fundamental dimension of visual perception underlying spatial resolution. We used a demanding rapid serial visual presentation task to direct voluntary attention and measured perceived spatial frequency at the attended and unattended locations. Attention increased the perceived spatial frequency of suprathreshold stimuli and also improved performance on a concurrent orientation discrimination task. In the control experiment, we ruled out response bias as an alternative account by using a lengthened interstimulus interval, which allows observers to disengage attention from the cued location. In contrast to the main experiment, the observers showed neither increased perceived spatial frequency nor improved orientation discrimination at the attended location. Thus, this study establishes that voluntary attention increases perceived spatial frequency. This phenomenological consequence links behavioral and neurophysiological studies on the effects of attention.

  14. Influence of obstructive sleep apnea syndrome in the fluctuation of the submaximal isometric torque of knee extensors in patients with early-grade osteoarthritis

    Science.gov (United States)

    Silva, Andressa; Mello, Marco T.; Serrão, Paula R.; Luz, Roberta P.; Bittencourt, Lia R.; Mattiello, Stela M.

    2015-01-01

    OBJECTIVE: The aim of this study was to investigate whether obstructive sleep apnea (OSA) alters the fluctuation of submaximal isometric torque of the knee extensors in patients with early-grade osteoarthritis (OA). METHOD: The study included 60 male volunteers, aged 40 to 70 years, divided into four groups: Group 1 (G1) - Control (n=15): without OA and without OSA; Group 2 (G2) (n=15): with OA and without OSA; Group 3 (G3) (n=15): without OA and with OSA; and Group 4 (G4) (n=15) with OA and with OSA. Five patients underwent maximal isometric contractions of 10 seconds duration each, with the knee at 60° of flexion to determine peak torque at 60°. To evaluate the fluctuation of torque, 5 submaximal isometric contractions (50% of maximum peak torque) of 10 seconds each, which were calculated from the standard deviation of torque and coefficient of variation, were performed. RESULTS: Significant differences were observed between groups for maximum peak torque, while G4 showed a lower value compared with G1 (p=0.005). Additionally, for the average torque exerted, G4 showed a lower value compared to the G1 (p=0.036). However, no differences were found between the groups for the standard deviation (p=0.844) and the coefficient of variation (p=0.143). CONCLUSION: The authors concluded that OSA did not change the parameters of the fluctuation of isometric submaximal torque of knee extensors in patients with early-grade OA. PMID:26443974

  15. Influence of obstructive sleep apnea syndrome in the fluctuation of the submaximal isometric torque of knee extensors in patients with early-grade osteoarthritis

    Directory of Open Access Journals (Sweden)

    Andressa Silva

    2015-08-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate whether obstructive sleep apnea (OSA alters the fluctuation of submaximal isometric torque of the knee extensors in patients with early-grade osteoarthritis (OA.METHOD: The study included 60 male volunteers, aged 40 to 70 years, divided into four groups: Group 1 (G1 - Control (n=15: without OA and without OSA; Group 2 (G2 (n=15: with OA and without OSA; Group 3 (G3 (n=15: without OA and with OSA; and Group 4 (G4 (n=15 with OA and with OSA. Five patients underwent maximal isometric contractions of 10 seconds duration each, with the knee at 60° of flexion to determine peak torque at 60°. To evaluate the fluctuation of torque, 5 submaximal isometric contractions (50% of maximum peak torque of 10 seconds each, which were calculated from the standard deviation of torque and coefficient of variation, were performed.RESULTS: Significant differences were observed between groups for maximum peak torque, while G4 showed a lower value compared with G1 (p=0.005. Additionally, for the average torque exerted, G4 showed a lower value compared to the G1 (p=0.036. However, no differences were found between the groups for the standard deviation (p=0.844 and the coefficient of variation (p=0.143.CONCLUSION: The authors concluded that OSA did not change the parameters of the fluctuation of isometric submaximal torque of knee extensors in patients with early-grade OA.

  16. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang

    2013-05-16

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  17. Methods of torque ripple reduction for flux reversal motor

    Science.gov (United States)

    Vakil, Gaurang; Sheth, N. K.; Miller, David

    2009-04-01

    This paper presents two-dimensional finite element based results for various methods of torque ripple reduction in flux-reversal motors. The effects of variation in magnet and rotor pole heights, rotor pole skewing, and multiple teeth per rotor pole on the cogging torque, developed torque, torque ripple, and phase inductance and also an optimum value of the magnet and rotor pole heights, skew angle, and choice of teeth per rotor pole with the teeth depth resulting in torque ripple reduction are presented.

  18. Research on Drag Torque Prediction Model for the Wet Clutches

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reasonable and it performs well for predicting the drag torque peak.

  19. Displaceable spur gear torque controlled driver and method

    Science.gov (United States)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driver members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  20. Surface Roughness Effects on Vortex Torque of Air Supported Gyroscope

    Institute of Scientific and Technical Information of China (English)

    LIANG Yingchun; LIU Jingshi; SUN Yazhou; LU Lihua

    2011-01-01

    In order to improve the drift precision of air supported gyroscope, effects of surface roughness magnitude and direction on vortex torque of air supported gyroscope are studied. Based on Christensen's rough surface stochastic model and consistency transformation method, Reynolds equation of air supported gyroscope containing surface roughness information is established.Also effects of mathematical models of main machining errors on vortex torque are established. By using finite element method,the Reynolds equation is solved numerically and the vortex torque in the presence of machining errors and surface roughness is calculated. The results show that surface roughness of slit has a significant effect on vortex torque. Transverse surface roughness makes vortex torque greater, while longitudinal surface roughness makes vortex torque smaller. The maximal difference approaches 11.4% during the range analyzed in this article. However surface roughness of journal influences vortex torque insignificantly. The research is of great significance for designing and manufacturing air supported gyroscope and predicting its performance.

  1. From Voluntary Collective Action to Organized Collaboration?

    DEFF Research Database (Denmark)

    Hattke, Fabian; Blaschke, Steffen; Frost, Jetta

    2016-01-01

    internationalization. Based on our results, we suggest that, depending on the field of action, voluntary collective action and organized collaboration are substitutes with regard to performance. Our study contributes to the literature on collective action and to research on public organizations in pluralistic......Our study examines the relationship between voluntary collective action, organized collaboration, and the provision of public goods in pluralistic organizations. Using German higher education as a context, we investigate whether specialized central support structures contribute to performance...... in three fields of action: the training of young scientists, internationalization, and gender diversity. The findings indicate that organized collaboration may lead to improved performance in the training of young scientists and gender diversity. Conversely, voluntary collective action enhances...

  2. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  3. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  4. Measurement of edgewise torque force in vitro.

    Science.gov (United States)

    Steyn, C L

    1977-05-01

    The construction of a model for the measurement of palatal root torque is described. It was demonstrated that: 1. Halfway between the apex of a tooth and the arch wire the force was double that which was delivered at the apex. 2. The lateral incisors were subjected to appreciably more force than the central incisors. 3. The smaller the number of teeth acted upon, the greater the force they received.

  5. An ironless armature brushless torque motor

    Science.gov (United States)

    Studer, P. A.

    1973-01-01

    A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.

  6. Torque Control of Electrorheological Fluidic Actuators

    OpenAIRE

    Vitrani, Marie-Aude; Nikitczuk, Jason; Morel, Guillaume; Mavroidis, Constantinos

    2004-01-01

    International audience; In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress, electroactively. Using the electrically controlled rheological properties of ERFs, we developed actuators for haptic devices that can resist human operator forces in a controlled and tunable fashi...

  7. Voluntary agreements - a measure for energy-efficiency in industry? Lessons from a Swedish programme

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Anna- Lisa [Department of Sociology, Lund University P.O. Box 114, SE-221 00, Lund, (Sweden); Carlsson-Kanyama, Annika [Environmental Strategies Research Group, P.O. Box 2142, SE-103 14, Stockholm, (Sweden)

    2002-08-01

    Voluntary agreements represent a policy instrument for applying new knowledge, routines or technology to specified issues. The traditional role of an authority when using information, and taking economic, or administrative measures is that of an initiator and controller. Voluntary agreements, on the other hand, represent a communication process between an authority and a partner where relations of dependency and mutuality are more important in advancing the programme. This article analyses and discusses the motivational aspects of voluntary agreements, the role of the contract, advising, information, education, time planning and the importance of reporting and evaluation in energy-efficiency programmes. Besides sociological and communication theories, the discussion is based on the outcome of an evaluation of a Swedish energy-efficiency programme. Among the conclusions are that communication processes have to be planned and implemented in time sequences and steps of measures, which was partially neglected in the Swedish programme. Also, agreements between partners have to be defined in ways valid for all partners. In the Swedish programme, quantitative goals, at least measured in kWh, were impossible to achieve for some industries. On the other hand, most industries reported progress in side effects of energy efficiency as for example transportation policy for products, recirculation of waste material, lighting policy and behaviour, qualifications for ISO labelling. Information in combination with voluntary agreements can be efficient for industrial energy conservation. The education and auditing that was part of the Swedish programme were highly appreciated and added to the achievements. (Author)

  8. Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation.

    Science.gov (United States)

    Cros, Didier; Soto, Oscar; Chiappa, Keith H

    2007-12-14

    Single-pulse transcranial magnetic stimulation (TMS) of the human motor cortex evokes simple muscle jerks whose physiological significance is unclear. Indeed, in subjects performing a motor task, there is uncertainty as to whether TMS-evoked outputs reflect the ongoing behavior or, alternatively, a disrupted motor plan. Considering force direction and magnitude to reflect qualitative and quantitative features of the motor plan respectively, we studied the relationships between voluntary forces and those evoked by TMS. In five healthy adults, we recorded the isometric forces acting a hand joint and the electromyographic activity in the first dorsal interosseous (FDI) muscle. Responses obtained at rest were highly invariant. Evoked responses obtained while subjects generated static and dynamic contractions were highly codirectional with the voluntary forces. Such directional relationships were independent of stimulation intensity, stimulated cortical volume, or magnitude of voluntary force exerted. Dynamic force generation was associated with a marked increase in the magnitude of the evoked force that was linearly related to the rate of force generation. The timing of central conduction was different depending on functional role of the target muscle, as either agonist or joint fixator. These results indicate that the architecture of motor plans remain grossly undisrupted by cortical stimulation applied during voluntary motor behavior. The significant magnitude modulation of responses during dynamic force generation suggests an essential role of the corticospinal system in the specification of force changes. Finally, the corticospinal activation depends on the functional role assumed by the target muscle, either postural or agonist.

  9. Hemochromatosis Patients as Voluntary Blood Donors

    Directory of Open Access Journals (Sweden)

    Tara E Power

    2004-01-01

    Full Text Available The present study was designed to investigate hemochromatosis patients' suitability as blood donors as well as their perceptions and experience with the current public donation system. Participants were gathered from a list of current hemochromatosis patients (n=120 and members of the Canadian Hemochromatosis Society (n=1000. Of the 1120 surveys mailed out to these groups, 801 surveys were returned completed. The sample respondents had a mean age of 57.44 years (SD=12.73; range 19 to 87 years, and 57% were men. It was found that 20% (160 of the respondents have donated blood since their diagnosis; however, only 12% of the respondents indicated that they use voluntary blood donation as a means of maintaining their iron levels. Forty per cent of the respondents indicated that they had been refused from voluntary donation. Despite the fact that in May 2001 the Canadian Blood Services, in collaboration with the Canadian Hemochromatosis Society, began a promotion campaign to encourage hemochromatosis patients to become voluntary blood donors, the present study found that 15% of the respondents reported having been refused from the voluntary blood donation service due to the diagnosis of hemochromatosis. With respect to quality of life, it was found that individuals who donate blood were generally healthier with respect to physical functioning and bodily pain, however, these findings may indicate that hemochromatosis patients who are healthier are better able to donate at public blood banks, rather than that voluntary blood donation has an effect on the donors' physical functioning over phlebotomy clinic users. These study findings suggest that although there may be other medical factors limiting individuals from donating, hemochromatosis patients are interested in being voluntary blood donors and this potential resource is currently under-used.

  10. CONTRACT CONSTRUCTION ACTIVITY

    Directory of Open Access Journals (Sweden)

    ANTOANETA CLAUDIA BUTUZA

    2010-01-01

    Full Text Available This paper presents the main types of contractual arrangements used worldwide in construction: traditional contracts, cost reimbursable type contracts, management contracts and other contractual arrangements such as partnership, offering two-phase, contracts in series and turnkey contracts. Also, based on a comparison of the main types of contractual arrangements a number of recommendations are suggested for choosing the appropriate type of contract construction project to be realized.

  11. A Non-Unity Torque Sharing Function for Torque Ripple Minimization of Switched Reluctance Generators in Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Hye-Ung Shin

    2015-10-01

    Full Text Available This paper deals with a new torque ripple minimization method for a Switched Reluctance Generator (SRG. Although, the SRG has many advantages including simple and robust construction, and high power density as a generator, it has not been widely employed in the industry. One of the major drawbacks of the SRG is its high torque ripple that results in high noise operation of the generator. In this paper, a non-unity Torque Sharing Function (TSF is proposed to minimize the torque ripple over a wide speed range of operation. Simulations as well as experimental results are presented to verify the effectiveness of the proposed torque ripple minimization technique.

  12. Cardioprotective Effects of Voluntary Exercise in a Rat Model: Role of Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Anikó Pósa

    2015-01-01

    Full Text Available Background. Regular exercise at moderate intensity reduces cardiovascular risks. Matrix metalloproteinases (MMPs play a major role in cardiac remodeling, facilitating physiological adaptation to exercise. The aim of this study was to examine the influence of voluntary physical exercise on the MMP-2 enzyme activity and to investigate the cardiac performance by measurement of angina susceptibility of the heart, the basal blood pressure, the surviving aorta ring contraction, and the cardiac infarct size after I/R-induced injury. Methods. Male Wistar rats were divided into control and exercising groups. After a 6-week period, the serum level of MMP-2, basal blood pressure, cardiac angina susceptibility (the ST segment depression provoked by epinephrine and 30 s later phentolamine, AVP-induced heart perfusion and aorta ring contraction, infarct size following 30 min ischemia and 120 min reperfusion, and coronary effluent MMP-2 activity were measured. Results. Voluntary wheel-running exercise decreased both the sera (64 kDa and 72 kDa and the coronary effluent (64 kDa MMP-2 level, reduced the development of ST depression, improved the isolated heart perfusion, and decreased the ratio of infarct size. Conclusion. 6 weeks of voluntary exercise training preserved the heart against cardiac injury. This protective mechanism might be associated with the decreased activity of MMP-2.

  13. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  14. Mode coupling in spin torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  15. The institutional dynamics of voluntary organisations

    DEFF Research Database (Denmark)

    Aagaard, Peter

    this theoretical frame to analyse case studies of three voluntary organisations.  As a part of the analysis I describe four sets of institutional settings that can influence voluntary organisations ability to create institutional dynamic: institutionalization, moderation, self-organisation and loose-coupling....... organisations. I establish a theoretical frame of institutional dynamic, build primarily on J.G. March's theory on exploration and exploitation. I focus on two organisational arrangements drawn from the theory: The degree of strategic decision-making and the degree of diversity among the volunteers. I use...

  16. Premature Ventricular Contractions (PVCs)

    Science.gov (United States)

    Diseases and Conditions Premature ventricular contractions (PVCs) By Mayo Clinic Staff Premature ventricular contractions (PVCs) are extra, abnormal heartbeats that begin in one of your heart's two ...

  17. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    Science.gov (United States)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  18. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles.

    Science.gov (United States)

    Senefeld, Jonathon; Yoon, Tejin; Bement, Marie Hoeger; Hunter, Sandra K

    2013-09-01

    Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P contractions for upper and lower limb muscles. Copyright © Published 2013 by Wiley Periodicals, Inc. This article is a US Government wmusork and, as such, is in the public domain in the United States of America.

  19. The effects of joint torque, pace and work:rest ratio on powered hand tool operations.

    Science.gov (United States)

    Lin, Jia-Hua; McGorry, Raymond W; Maikala, Rammohan V

    2012-01-01

    Repetitive use of hand-held power tools is associated with work-related upper extremity musculoskeletal disorders. Using a pneumatic nutrunner, 21 men completed twelve 360 repetitive fastener-driving sessions on three joints (hard, soft and control) at slow and fast pace, and two different work:rest patterns. Handgrip force and perceived exertions were collected throughout each session. For the control joint, the mean grip force exerted was 39.6% of maximum voluntary exertion (MVE) whereas during hard and soft joint sessions it was 48.9% MVE and 56.9% MVE, respectively. Throughout each session, the grip force decreased, more while operating soft and hard joints as compared with the control joint (regression slope: -0.022 and -0.023, compared with -0.007 N/drive, respectively), suggesting considerable upper extremity muscular effort by participants during torque buildup. Fast work pace resulted in higher average grip forces by participants but a greater decrease in the force as the session progressed. Providing rest breaks reduced perceived exertions. The findings gain additional knowledge for assembly task design to possibly reduce the hand/arm injury risks for the operator. Practitioner Summary: Powered hand tools are widely used in assembly and manufacturing industries. However, the nature of their repetitive use on human operator biomechanical and perceptual responses is not fully understood. This study examined work-related risk factors such as joint torque, pace and work:rest ratios on powered hand tool performance.

  20. Haemodynamic changes in human masseter and temporalis muscles induced by different levels of isometric contraction.

    Science.gov (United States)

    Kim, Y J; Kuboki, T; Tsukiyama, Y; Koyano, K; Clark, G T

    1999-08-01

    This study evaluated the influence of low contraction forces on intramuscular haemodynamics in human masseter and temporalis using near-infrared tissue spectroscopy. This method allowed the intramuscular haemoglobin (Hb) to be assessed dynamically before, during and after a 5, 15, 25 and 100% maximum voluntary contraction (MVC). Twenty volunteers, 10 males and 10 females, without pain or dysfunction in the masticatory system were included in this study. Data were recorded for 30 s before, 30 s during and 5 min after the four sustained contraction tasks. The results showed that all four levels of voluntary contraction produced a clear haemodynamic response (during and after contraction) in both muscles. For analytical purposes, the maximum Hb achieved after 100% MVC was set equal to 1.00. In the masseter the mean peak Hb during the 5, 15, 25 and 100% MVC was 0.49, 0.92, 1.30 and 1.73 while after the contractions it was 0.50, 0.65, 0.78 and 1.00, respectively. In the temporalis the peak Hb during the contractions was 0.23, 0.36, 0.48 and 0.66 and after the contractions 0.32, 0.45, 0.56 and 1.00, respectively. Repeated-measures analysis of variance revealed a significant main effect for the different contraction levels both in the masseter (during contraction, p = 0.001; after contraction, parchitecture between the two muscles contributes to these differences in blood flow.

  1. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    Science.gov (United States)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  2. Improved Torque Control Performance in Direct Torque Control using Optimal Switching Vectors

    Directory of Open Access Journals (Sweden)

    Muhd Zharif Rifqi Zuber Ahmadi

    2015-02-01

    Full Text Available This paper presents the significant improvement of Direct Torque Control (DTC of 3-phases induction machine using a Cascaded H-Bidge Multilevel Inverter (CHMI. The largest torque ripple and variable switching frequency are known as the major problem founded in DTC of induction motor. As a result, it can diminish the performance induction motor control. Therefore, the conventional 2-level inverter has been replaced with CHMI the in order to increase the performance of the motor either in dynamic or steady-state condition. By using the multilevel inverter, it can produce a more selection of the voltage vectors. Besides that, it can minimize the torque ripple output as well as increase the efficiency by reducing the switching frequency of the inverter. The simulation model of the proposed method has been developed and tested by using Matlab software. Its improvements were also verified via experimental results.

  3. Bevel gear driver and method having torque limit selection

    Science.gov (United States)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  4. 77 FR 72941 - Voluntary Education Programs

    Science.gov (United States)

    2012-12-07

    ... decision will be made by the selected DoD contractor for the complete `third party review' process. Comment... seeks to enhance the educational opportunities to Service members who may have difficulty in completing... transitions to second careers in teaching. Voluntary education programs. Continuing, adult, or...

  5. Decentralized trade with bargaining and voluntary matching

    DEFF Research Database (Denmark)

    Tranæs, Torben; Sloth, Birgitte; Hendon, Ebbe

    1994-01-01

    Rubinstein and Wolinsky (1990) study a market with one seller, two buyers, and voluntary matching. Both the competitive outcomepc and the bilateral bargaining outcomepb are possible in subgame perfect equilibrium. We consider two variations. First, if there is a cost larger thanpc−pc to the seller...

  6. Social orienting: reflexive versus voluntary control.

    Science.gov (United States)

    Hill, Julia L; Patel, Saumil; Gu, Xue; Seyedali, Nassim S; Bachevalier, Jocelyne; Sereno, Anne B

    2010-09-24

    Many studies have shown that the direction of gaze of a face covertly facilitates the response to a target presented in the matching direction. In this study we seek to determine whether there exist separate reflexive and voluntary forms of such covert social orienting and how they interact with each other. We measured the effect of the predictive value of a gaze cue on manual choice reaction times. When the predictive value of the gaze cue was zero, a facilitatory cueing effect was still observed which peaked at a cue onset to target onset delay (CTD) of 150ms and largely diminished beyond a CTD of 500ms. When the gaze cue was 100% predictive of the future location of the target, at CTDs greater than 200, the predictive cue resulted in a significantly greater facilitation of response than occurred with a non-predictive cue. These results suggest that given enough time (about 200ms), the social cue is interpreted and a willful or voluntary spatially-specific social cueing effect occurs. In addition, we found that a predictive cue resulted in a significant slowing of the observer's responses up to a CTD of 200ms. These findings show that, similar to non-social spatial orienting, there appear to be two forms of social orienting including a reflexive component and voluntary component. We suggest a model of social orienting in which the voluntary social orienting system modulates tonic inhibition of the reflexive social orienting system. Published by Elsevier Ltd.

  7. Equality, self‐respect and voluntary separation

    NARCIS (Netherlands)

    M.S. Merry

    2012-01-01

    This paper argues that self‐respect constitutes an important value, and further, an important basis for equality. It also argues that under conditions of inequality‐producing segregation, voluntary separation in schooling may be more likely to provide the resources necessary for self‐respect. A prim

  8. School Ethical Climate and Teachers' Voluntary Absence

    Science.gov (United States)

    Shapira-Lishchinsky, Orly; Rosenblatt, Zehava

    2010-01-01

    Purpose: This paper aims to offer a theoretical framework for linking school ethical climate with teachers' voluntary absence. The paper attempts to explain this relationship using the concept of affective organizational commitment. Design/methodology/approach: Participants were 1,016 school teachers from 35 high schools in Israel. Data were…

  9. Voluntary Oral Administration of Losartan in Rats.

    Science.gov (United States)

    Diogo, Lucília N; Faustino, Inês V; Afonso, Ricardo A; Pereira, Sofia A; Monteiro, Emília C; Santos, Ana I

    2015-09-01

    Gavage is a widely performed technique for daily dosing in laboratory rodents. Although effective, gavage comprises a sequence of potentially stressful procedures for laboratory animals that may introduce bias into experimental results, especially when the drugs to be tested interfere with stress-dependent parameters. We aimed to test vehicles suitable for drug delivery by voluntary ingestion in rats. Specifically, Male Wistar rats (age, 2 to 3 mo) were used to test nut paste (NUT), peanut butter (PB), and sugar paste (SUG) as vehicles for long-term voluntary oral administration of losartan, an angiotensin II receptor blocker. Vehicles were administered for 28 d without drug to assess effects on the glucose level and serum lipid profile. Losartan was mixed with vehicles and either offered to the rats or administered by gavage (14 d) for subsequent quantification of losartan plasma levels by HPLC. After a 2-d acclimation period, all rats voluntarily ate the vehicles, either alone or mixed with losartan. NUT administration reduced blood glucose levels. The SUG group had higher concentrations of losartan than did the gavage group, without changes in lipid and glucose profiles. Our results showed that NUT, PB, and SUG all are viable for daily single-dose voluntary ingestion of losartan and that SUG was the best alternative overall. Drug bioavailability was not reduced after voluntary ingestion, suggesting that this method is highly effective for chronic oral administration of losartan to laboratory rodents.

  10. Staff's perceptions of voluntary assertiveness skills training.

    Science.gov (United States)

    McVanel, Sarah; Morris, Beth

    2010-01-01

    Clinicians' ability to be assertive when unsure or concerned about procedures, treatment modalities, or patients' symptoms is key in reducing risk and preventing sentinel events. In this article, the authors provide a framework for generic, voluntary assertiveness communication skills workshops that any educator can implement.

  11. Voluntary Organizations: Commitment, Leadership, and Organizational Effectiveness

    Science.gov (United States)

    Ekeland, Terry P.

    2004-01-01

    Voluntary organizations offer a unique opportunity to interpret participant relationships, leadership influences, and organizational effectiveness unencumbered by employment relationships. Regardless of organizational structure or purpose, all organizations are affected to some degree by their leadership and their membership. Based on the…

  12. Environmental Voluntary Agreements in the Dutch Context

    NARCIS (Netherlands)

    Bressers, Johannes T.A.; de Bruijn, Theo; Croci, Edoardo

    2005-01-01

    This paper describes and analyses the use of environmental voluntary agreements, or covenants, in Dutch environmental policy. Covenants have become a widely used policy instrument in the Netherlands. This trend reinforces the strong neo-corporatist traits of Dutch society with its tendency towards

  13. Voluntary Community Organisations in Metropolitan Development

    DEFF Research Database (Denmark)

    Larsen, Jacob Norvig

    While short-term enrolling of citizens in urban regeneration projects often has proven quite successful, permanent embedding of projects in voluntary community-based settings seems to be much more difficult to obtain. This has implications for long term sustainability of urban regeneration projec...

  14. Magnetization switching through giant spin-orbit torque in the magnetically doped topological insulators

    Science.gov (United States)

    Fan, Yabin

    2015-03-01

    Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures (HMFHs) have drawn great interest to spin torques arising from the large spin-orbit coupling (SOC)... in heavy metals. Considering the intrinsic strong SOC, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics.... In this talk, we report the magnetization switching through giant SOT in the magnetically doped TI structures. In particular, we demonstrate the magnetization switching in a chromium-doped TI bilayer heterostructure, and the current induced SOT possibly has contribution from the spin-momentum locked surface states of TI. The critical current density for switching is below 8.9 × 104A/cm2 at 1.9 K. Moreover, we use second-harmonic methods to measure the spin torque efficiencies which are more than three orders of magnitude larger than those reported in heavy metals. The giant SOT and efficient current-induced magnetization switching exhibited by the bilayer heterostructure may lead to innovative spintronics applications such as ultralow power dissipation memory and logic devices. We are grateful to the support from the DARPA Meso program under Contract No. N66001-12-1-4034 and N66001-11-1-4105. We also acknowledge the support from the Western Institute of Nanoelectronics (WIN) and the support from the FAME center.

  15. Differential impact of visual feedback on plantar- and dorsi-flexion maximal torque output.

    Science.gov (United States)

    Toumi, Anis; Jakobi, Jennifer M; Simoneau-Buessinger, Emilie

    2016-05-01

    The effect of visual feedback on enhancing isometric maximal voluntary contractions (MVC) was evaluated. Twelve adults performed plantar-flexion and dorsi-flexion MVCs in 3 conditions (no visual feedback, visual feedback, and visual feedback with target). There was no significant effect of visual conditions on dorsi-flexion MVC but there was an effect on plantar-flexion. Irrespective of whether a target was evident, visual feedback increased plantar-flexion MVC by ∼15%. This study highlights the importance of optimal feedback to enhance MVC.

  16. Eligibility and Exclusion of Hemochromatosis Patients as Voluntary Blood Donors

    Directory of Open Access Journals (Sweden)

    M Levstik

    1998-01-01

    Full Text Available BACKGROUND: Hereditary hemochromatosis patients are excluded in many countries as voluntary blood donors. In 1991, changes in the Canadian Red Cross policy allowed healthy hemochromatosis patients to become voluntary donors.

  17. Results of the global survey on Voluntary Sustainability Standards

    OpenAIRE

    Lernoud, Julia

    2015-01-01

    Results of the global survey on Voluntary Sustainability Standards: - Voluntary Sustainability Standards (VSS) area worldwide and selected commodities - Cocoa: Area growth by VSS 2008-2014 - Growth of VSS compliant area worldwide 2008-2013 (selected crops)

  18. China Initiates Voluntary Certification of Public Security Products

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Reporters learned from the Certification and Accreditation Administration of China(CNCA)that burglar-proof door became the first batch of voluntary certification product in public security products.China has formally initiated voluntary certification of public security products.

  19. Voluntary sterilization in Serbia: Unmet need?

    Directory of Open Access Journals (Sweden)

    Rašević Mirjana M.

    2002-01-01

    Full Text Available Is voluntary sterilization as a birth control method accepted in Serbia? This is certainly a question that is being imposed for research, regardless of the fact that voluntary sterilization is neither accessible nor promoted. Most importantly because there is no understanding in the social nor political sphere for legalization of voluntary sterilization as a form of birth control, apart from the clear necessity for this, first, step. They are: the recognition that voluntary sterilization is an efficient and safe birth control method, respectability of basic human as well as sexual and reproductive rights, spreading of sterilization as a form of birth control among population of both developed and developing countries and an epidemic diffusion of repeated induced abortions in Serbia. Thus individual recognition of the advantages of relying on voluntary sterilization, in a non-encouraging atmosphere, certainly represents one more argument to enable couples to prevent conception by sterilization. Since it was impossible to carry out a representative research among the population of men and women who are at risk for conception, an attempt was made to obtain a reply to the set question among women who decided to induce abortion. It was done out of at least two reasons. The first being that women with induced abortion in their reproductive history were the target group for voluntary sterilization. The second reason was based on the assumption that bringing a decision on induced abortion is preceded by the reconsideration of an earlier adopted strategy regarding children, giving birth and contraception and thus its rational component is revealed more and therefore more easily measurable. The research was carried out in the University Clinic of Obstetrics and Gynecology 'Narodni front' in Belgrade from January 21st o March 1st 2002, and included 296 women. By comparing the social and demographic characteristics of the female respondents, as well as

  20. Effects of transcranial magnetic stimulation during voluntary and non-voluntary stepping movements in humans.

    Science.gov (United States)

    Solopova, I A; Selionov, V A; Kazennikov, O V; Ivanenko, Y P

    2014-09-05

    Here, we compared motor evoked potentials (MEP) in response to transcranial magnetic stimulation of the motor cortex and the H-reflex during voluntary and vibration-induced air-stepping movements in humans. Both the MEPs (in mm biceps femoris, rectus femoris and tibialis anterior) and H-reflex (in m soleus) were significantly smaller during vibration-induced cyclic leg movements at matched amplitudes of angular motion and muscle activity. These findings highlight differences between voluntary and non-voluntary activation of the spinal pattern generator circuitry in humans, presumably due to an extra facilitatory effect of voluntary control/triggering of stepping on spinal motoneurons and interneurons. The results support the idea of active engagement of supraspinal motor areas in developing central pattern generator-modulating therapies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Faculty Growth Contracts.

    Science.gov (United States)

    Seldin, Peter

    Growth contracts, described as faculty plans for personal and professional growth proposed by each member of the faculty, are examined. The rationale for growth contracts is explained and a list of some institutions using growth contracts or variations of the concept is provided. Growth contract advantages, the role of the evaluation committee or…

  2. The Eccentric Torque Production Capacity of the Ankle, Knee, and Hip Muscle Groups in Patients with Unilateral Chronic Ankle Instability

    Science.gov (United States)

    Negahban, Hossein; Moradi-Bousari, Aida; Naghibi, Saeed; Sarrafzadeh, Javad; Shaterzadeh-Yazdi, Mohammad-Jafar; Goharpey, Shahin; Etemadi, Malihe; Mazaheri, Masood; Feizi, Awat

    2013-01-01

    Purpose The aim of this study was to investigate eccentric torque production capacity of the ankle, knee and hip muscle groups in patients with unilateral chronic ankle instability (CAI) as compared to healthy matched controls. Methods In this case-control study, 40 participants (20 with CAI and 20 controls) were recruited based on convenient non-probability sampling. The average peak torque to body weight (APT/BW) ratio of reciprocal eccentric contraction of ankle dorsi flexor/plantar flexor, ankle evertor/invertor, knee flexor/extensor, hip flexor/extensor and hip abductor/adductor was determined using an isokinetic dynamometer. All subjects participated in two separate sessions with a rest interval of 48 to 72 hours. In each testing session, the torque production capacity of the ankle, knee, and hip muscle groups of only one lower limb was measured. At first, 3 repetitions of maximal eccentric-eccentric contraction were performed for the reciprocal muscles of a joint in a given movement direction. Then, the same procedure of practice and testing trials was repeated for the next randomly-ordered muscle group or joint of the same limb. Results There was no significant interaction of group (CAI and healthy controls) by limb (injured and non-injured) for any muscle groups. Main effect of limb was not significant. Main effect of group was only significant for eccentric torque production capacity of ankle dorsi flexor and hip flexor muscle groups. The APT/BW ratio of these muscles was significantly lower in the CAI group than the healthy controls (P<0.05). Conclusion CAI is associated with eccentric strength deficit of ankle dorsi flexor and hip flexor muscles as indicated by reduction in torque production capacity of these muscles compared to healthy controls. This strength deficit appeared to exist in both the injured and non-injured limbs of the patients. PMID:23802057

  3. Contracts in distributed systems

    CERN Document Server

    Bartoletti, Massimo; Zunino, Roberto; 10.4204/EPTCS.59.11

    2011-01-01

    We present a parametric calculus for contract-based computing in distributed systems. By abstracting from the actual contract language, our calculus generalises both the contracts-as-processes and contracts-as-formulae paradigms. The calculus features primitives for advertising contracts, for reaching agreements, and for querying the fulfilment of contracts. Coordination among principals happens via multi-party sessions, which are created once agreements are reached. We present two instances of our calculus, by modelling contracts as (i) processes in a variant of CCS, and (ii) as formulae in a logic. With the help of a few examples, we discuss the primitives of our calculus, as well as some possible variants.

  4. Moving from voluntary euthanasia to non-voluntary euthanasia: equality and compassion.

    Science.gov (United States)

    Amaraskekara, Kumar; Bagaric, Mirko

    2004-09-01

    The recent Dutch law legalising active voluntary euthanasia will reignite the euthanasia debate. An illuminating method for evaluating the moral status of a practice is to follow the implications of the practice to its logical conclusion. The argument for compassion is one of the central arguments in favour of voluntary active euthanasia. This argument applies perhaps even more forcefully in relation to incompetent patients. If active voluntary euthanasia is legalised, arguments based on compassion and equality will be directed towards legalising active non-voluntary euthanasia in order to make accelerated termination of death available also to the incompetent. The removal of discrimination against the incompetent has the potential to become as potent a catch-cry as the right to die. However, the legalisation of non-voluntary euthanasia is undesirable. A review of the relevant authorities reveals that there is no coherent and workable "best interests" test which can be invoked to decide whether an incompetent patient is better off dead. This provides a strong reason for not stepping onto the slippery path of permitting active voluntary euthanasia.

  5. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  6. COMMUTATION TIME ESTIMATOR FOR PM BLDC MOTOR TORQUE SIGNATURE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    WAEL A. SALAH

    2014-12-01

    Full Text Available This paper presents the development of the commutation time estimator (CTE for PM BLDC motor drives. The proposed scheme is aimed to enhance motor output torque by minimizing the generated torque ripples. The torque ripples originating from commutation instances cause spikes and dips in the motor output torque. The motor output torque could be enhanced by mitigating the phase current mismatch rate during phase current commutation period. This rate could be almost matched by introducing the commutation time estimator (CTE in order to control the rate of the energized phase current to be matched with the de-energized phase rate. Results obtained have validated and verified the proposed CTE effectiveness with a 50% average reduction of the generated torque ripples in PM BLDC motor.

  7. 5 CFR 919.1020 - Voluntary exclusion or voluntarily excluded.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Voluntary exclusion or voluntarily excluded. 919.1020 Section 919.1020 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED...) Definitions § 919.1020 Voluntary exclusion or voluntarily excluded. (a) Voluntary exclusion means a person's...

  8. 37 CFR 351.2 - Voluntary negotiation period; settlement.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Voluntary negotiation period... CONGRESS COPYRIGHT ROYALTY JUDGES RULES AND PROCEDURES PROCEEDINGS § 351.2 Voluntary negotiation period..., the Copyright Royalty Judges will announce the beginning of a voluntary negotiation period and...

  9. 15 CFR 12.3 - Development of voluntary product standards.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Development of voluntary product... AND LABELING § 12.3 Development of voluntary product standards. (a) Invitation to participate in the development of a voluntary product standard. Whenever the Secretary publishes a final determination of...

  10. Torque Anomaly in Quantum Field Theory

    CERN Document Server

    Fulling, S A; Trendafilova, C S

    2012-01-01

    The expectation values of energy density and pressure of a quantum field inside a wedge-shaped region appear to violate the expected relationship between torque and total energy as a function of angle. In particular, this is true of the well-known Deutsch--Candelas stress tensor for the electromagnetic field, whose definition requires no regularization except possibly at the vertex. Unlike a similar anomaly in the pressure exerted by a reflecting boundary against a perpendicular wall, this problem cannot be dismissed as an artifact of an ad hoc regularization.

  11. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  12. Calculation of the torque on dielectric elliptical cylinders

    OpenAIRE

    Rockstuhl, Carsten; Herzig, Hans-Peter

    2008-01-01

    We present our investigation of the torque exerted on dielectric elliptical cylinders by highly focused laser beams. The calculations are performed with rigorous diffraction theory, and the size-dependent torque is analyzed as a function of the axis ratio. It is found that highly elongated particles will experience a reversal of the torque for a radius that is approximately one third of the wavelength. This effect is attributed to interference effects inside the structure due to multiple refl...

  13. Electronic measurement of variable torques in precision work technology

    Science.gov (United States)

    Maehr, M.

    1978-01-01

    Approaches for the determination of torques on the basis of length measurements are discussed. Attention is given to torque determinations in which the deformation of a shaft is measured, an electric measurement of the torsion angle, and an approach proposed by Buschmann (1970). Methods for a torque determination conducted with the aid of force measurements make use of piezoelectric approaches. The components used by these methods include a quartz crystal and a charge amplifier.

  14. Transient Effects on Dynamic Torque for Butterfly Valves

    OpenAIRE

    Price, Trevor N.

    2013-01-01

    Butterfly valves are versatile components widely used in hydraulic systems as shutoff and throttling valves. Butterfly valve components must be able to withstand the forces and torques that are generated with use. Dynamic torque data are usually obtained in a test lab for a variety of steady state flow conditions; however the dynamic torque under transient (unsteady flow) conditions may be significantly different than that found in the laboratory. If a valve is closed too fast, especially in ...

  15. DIRECT TORQUE CONTROL FOR INDUCTION MOTOR USING INTELLIGENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    R.Toufouti

    2007-09-01

    Full Text Available In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC of Induction motor such as fuzzy logic (FL and artificial neural network (ANN, applied in switching select voltage vector .The comparison with conventional direct torque control (DTC, show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.

  16. Robot Vibrations Caused by Torque Ripples in Power Transmission Mechanisms

    OpenAIRE

    小島, 宏行; 田口, 和哉; 辻, 浩明

    1989-01-01

    When an industrial robot with a power transmission mechanism such as a harmonic drive gear is operated, vibrations resulting from the torque ripple of the power transmission mechanism are frequently generated. However, few studies on robot vibration characteristics owing to torque ripples have been reported. In this paper, the vibrations of a horizontal two-link robot are investigated with consideration given to the torque ripple and the nonlinearity of the power transmission mechanism. In th...

  17. The Torque of High Speed Scanning Micromirrors with Vertical Combdrives

    Science.gov (United States)

    Wada, Hiroyuki; Lee, Daesung; Zappe, Stefan; Solgaard, Olav

    2003-12-01

    200 μm by 200 μm scanning micromirror actuated by vertical combdrives was fabricated. It is important to estimate the torque in order to know the tilt angle. We propose a way to estimate the torque by using the capacitance derived from the overlap area between the upper and lower comb teeth. The tilt angle that was estimated using the calculated torque was about 80% of the measured tilt.

  18. Different motor learning effects on excitability changes of motor cortex in muscle contraction state.

    Science.gov (United States)

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Higashi, Toshio

    2013-09-01

    We aimed to investigate whether motor learning induces different excitability changes in the human motor cortex (M1) between two different muscle contraction states (before voluntary contraction [static] or during voluntary contraction [dynamic]). For the same, using motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS), we compared excitability changes during these two states after pinch-grip motor skill learning. The participants performed a force output tracking task by pinch grip on a computer screen. TMS was applied prior to the pinch grip (static) and after initiation of voluntary contraction (dynamic). MEPs of the following muscles were recorded: first dorsal interosseous (FDI), thenar muscle (Thenar), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles. During both the states, motor skill training led to significant improvement of motor performance. During the static state, MEPs of the FDI muscle were significantly facilitated after motor learning; however, during the dynamic state, MEPs of the FDI, Thenar, and FCR muscles were significantly decreased. Based on the results of this study, we concluded that excitability changes in the human M1 are differentially influenced during different voluntary contraction states (static and dynamic) after motor learning.

  19. Modeling Grain Alignment by Radiative Torques and Hydrogen Formation Torques in Reflection Nebula

    CERN Document Server

    Hoang, Thiem; Andersson, B-G

    2014-01-01

    Reflection nebulae--dense cores--illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modeling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby $\\gamma$ Cas star and the diffuse interstellar radiation field. We calculate linear polarization $p$ of background stars by radiatively aligned grains and explore the variation of fractional polarization (p/A$_V)$ with visual extinction $A_{V}$ across the cloud. We show that the variation of $p/A_{V}$ from the surface of the dayside toward the IC 63 center can be described by a power law $p/A_{V}\\propto A_{V}^{\\eta}$, having a shallow slope $\\eta \\sim- 0.1$ for $A_{V} 4$. We then consider the effects of additional torques due to H$_{2}$ formation and model grain alignment by joint action of RATs and H$_2$ torques. We find that p/A$_...

  20. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  1. Cogging Torque Characteristics of a Magnetic-Geared Motor

    Science.gov (United States)

    Niguchi, Noboru; Hirata, Katsuhiro

    This paper describes the cogging torque characteristics of a magnetic-geared motor with permanent magnets only on the high-speed rotor. The operational principle, which is different from that of the magnetic-geared motor with permanent magnets on the high-speed rotor and stator, is described. The torque characteristics, especially the order of the cogging torque, are mathematically formulated and verified by conducting 3-D finite element analysis and carrying out measurements on a prototype. Furthermore, a novel cogging torque reduction method is proposed and verified as well.

  2. Analytical studies of torque motor tape active element

    Directory of Open Access Journals (Sweden)

    Dolgih Antonina

    2016-01-01

    Full Text Available The paper presents analytical studies of the torque motor tape active element. The tape active element is a novel type of a motor’s stator organization, where the conventional winding is replaced by a tape winding. Given the operation principle of proposed active element; its torque characteristics are then computationally found with using the finite element method (FEM. The results show the possibility of the optimal value of the relative electrode width, when the torque will be maximal. The analytical studies of the motor’s torque over the number of tape winding coils allowed to receive the recommendations on choosing the number of coils.

  3. Burrowing as a novel voluntary strength training method for mice : A comparison of various voluntary strength or resistance exercise methods

    NARCIS (Netherlands)

    Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A

    2017-01-01

    BACKGROUND: Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. NEW METHOD: The current study tested functional and muscular effects of two novel voluntary strength

  4. Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano- and electromyograms

    DEFF Research Database (Denmark)

    Søgaard, K; Blangsted, A K; Jørgensen, L V

    2003-01-01

    performance of the biceps muscle are more strongly reflected in low than in high force test contractions, more prominent in the MMG than in the EMG signal and less pronounced following contractions controlled by visual compared to proprioceptive feedback. Further, it was investigated if fatigue induced by 30...... min intermittent contractions at 30% as well as 10% of maximal voluntary contraction (MVC) lasted more than 30 min recovery. In six male subjects the EMG and MMG were recorded from the biceps brachii muscle during three sessions with fatiguing exercise at 10% with visual feedback and at 30% MVC...

  5. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.

    Science.gov (United States)

    Ushiyama, Junichi; Masakado, Yoshihisa; Fujiwara, Toshiyuki; Tsuji, Tetsuya; Hase, Kimitaka; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2012-04-01

    The sensorimotor cortex activity measured by scalp EEG shows coherence with electromyogram (EMG) activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate intensity of isometric voluntary contraction. This coupling is known to change its frequency band to the 35- to 60-Hz band (γ-band) during strong contraction. This study aimed to examine whether such contraction level-related modulation of corticomuscular coupling differs between muscles with different muscle compositions and functions. In 11 healthy young adults, we quantified the coherence between EEG over the sensorimotor cortex and rectified EMG during tonic isometric voluntary contraction at 10-70% of maximal voluntary contraction of the tibialis anterior (TA) and soleus (SOL) muscles, respectively. In the TA, the EEG-EMG coherence shifted from the β-band to the γ-band with increasing contraction level. Indeed, the magnitude of β-band EEG-EMG coherence was significantly decreased, whereas that of γ-band coherence was significantly increased, when the contraction level was above 60% of maximal voluntary contraction. In contrast to the TA, the SOL showed no such frequency changes of EEG-EMG coherence with alterations in the contraction levels. In other words, the maximal peak of EEG-EMG coherence in the SOL existed within the β-band, irrespective of the contraction levels. These findings suggest that the central nervous system regulates the frequency of corticomuscular coupling to exert the desired levels of muscle force and, notably, that the applicable rhythmicity of the coupling for performing strong contractions differs between muscles, depending on the physiological muscle compositions and functions of the contracting muscle.

  6. On the torque mechanism of Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N. (Dept. of Mechanical Univ., Kiryu (Japan))

    1992-07-01

    The aerodynamic performance and the flow fields of Savonius rotors at various overlap ratios have been investigated by measuring the pressure distributions on the blades and by visualizing the flow fields in and around the rotors with and without rotation. Experiments have been performed on four rotors having two semicircular blades but with different overlap ratios ranging 0 to 0.5. The static torque performance is improved by increasing the overlap ratio especially on the returning blade, which is due to the pressure recovery effect by the flow through the overlap. On the other hand, the torque and the power performance of the rotating rotor reaches a maximum at an overlap of 0.15. This effect is largely created by the Coanda-like flow on the convex side of the advancing blade, which is strengthened by the flow through the overlap at this small overlap ratio. However, this phenomena is weakened as the overlap ratio is further increased, suggesting a deteriorated performance of the rotor. Observations of the flow inside the rotor indicate an increased recirculation region at such large overlap ratios, which also suggests a reduced aerodynamic efficiency for rotors with large overlap. 11 figs., 16 refs.

  7. Radiative torques: Analytical Model and Basic Properties

    CERN Document Server

    Lazarian, Alex

    2007-01-01

    We attempt to get a physical insight into grain alignment processes by studying basic properties of radiative torques (RATs). For this purpose we consider a simple toy model of a helical grain that reproduces well the basic features of RATs. The model grain consists of a spheroidal body with a mirror attached at an angle to it. Being very simple, the model allows analytical description of RATs that act upon it. We show a good correspondence of RATs obtained for this model and those of irregular grains calculated by DDSCAT. Our analysis of the role of different torque components for grain alignment reveals that one of the three RAT components does not affect the alignment, but induces only for grain precession. The other two components provide a generic alignment with grain long axes perpendicular to the radiation direction, if the radiation dominates the grain precession, and perpendicular to magnetic field, otherwise. We study a self-similar scaling of RATs as a function of $\\lambda/a_{eff}$. We show that th...

  8. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  9. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  10. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  11. Voluntary simulation workshops in nursing education

    DEFF Research Database (Denmark)

    Selberg, Hanne; Nielsen, Mette Elisabeth

    2012-01-01

    Voluntary simulation workshops in nursing education Hanne Selberg1, Mette Elisabeth Nielsen1, Mette Wenzel Horsted2, Karen Bertelsen2, Marianne Linnet Rasmussen2,Rikke Lohmann Panton3, Copenhagen, Mette Kjeldal Jensen4 Background Changes in nursing education in Denmark towards an academic approach...... with more theory and less practical training have resulted in discussions regarding the lack of practical skills amongst novice nurses. A Danish study of students’ drop-out from the nursing education indicates that difficulties in combining theory and practice are one of the motivating factors behind...... the students’ decision to drop out (Jensen et al. 2008). Within the past year our faculty has conducted several projects with the aim of integrating simulation into the curriculum. Furthermore, voluntary simulation workshop has been carried out as an additional offer in the nursing education. The purpose has...

  12. The Political Importance of Voluntary Work.

    Science.gov (United States)

    Kunneman, Harry

    This paper aims to develop a complex articulation of the civic meaningfulness of voluntary work that clarifies its political importance as a countervailing narrative pointing beyond dominant neoliberal and consumptive articulations of a good life. To start with, it sketches a hermeneutic perspective on civic meaningfulness based on the work of Paul Ricoeur. Subsequently, it introduces the ideas of 'ethical complexity', 'epistemological complexity' and 'diapoiesis', building on insights from critical complexity thinking and relational biology. It argues that these notions can provide a bridge between hermeneutic perspectives on meaning and values, on the one hand, and questions of meaning and values on the level of scientific and technological developments and within professional organizations, on the other. Thus a broader, more complex picture emerges of the civic meaningfulness of voluntary work in our times.

  13. Voluntary Management Earnings Forecasts and Discretionary Accruals

    DEFF Research Database (Denmark)

    Gramlich, Jeffrey; Sørensen, Ole Vagn

    2004-01-01

    This paper seeks to determine whether Danish managers exercise discretionary accruals to reach earnings forecast targets they voluntarily specify in conjunction with initial public offerings (IPOs). Because the Danish accounting and legal environment is more permissive than the US, we use Denmark...... as a natural laboratory for learning how business would occur without strict rules, enforcement and sanctions. Danish managers often volunteer pro forma financial statements for results that are expected to occur subsequent to the IPO. We examine a sample of 58 Danish firms that issue voluntary management...... earnings forecasts in connection with IPOs that occur between 1984 and 1996. The evidence we uncover strongly suggests that pre-managed earnings are adjusted toward these targets. In contrast with Kasznik's (1999 Kasznik, R. (1999). On the association between voluntary disclosure and earnings management...

  14. Research on Torque Ratio Based on the Steering Wheel Torque Characteristic for Steer-by-Wire System

    OpenAIRE

    Yandong Han; Lei He; Xiang Wang; Changfu Zong

    2014-01-01

    Steer-by-wire system can improve the performance of vehicle handling stability. Removing the mechanical linkages between the front wheels and the steering wheel leads to a key technique of force feedback for steer-by-wire system. In view of the characteristic of variable torque transmission ratio for steer-by-wire system, this paper proposes a method for designing torque ratio based on the steering wheel torque characteristic for steer-by-wire system. It converts the torque ratio design into ...

  15. ADMINISTRATIVE CONTRACTS. DELIMITATIONS

    Directory of Open Access Journals (Sweden)

    Liana Teodora PASCARIU

    2016-12-01

    Full Text Available Article examines whether all contracts of public persons are administrative contracts; in other words, if the administration may conclude contracts that, according to their legal nature, are not administrative. If we start from the definition of administrative contracts as it appears in Law no. 554/2004, these include contracts by public authorities which concern the enhancement of public property execution of works of public interest, public services, public procurement and other administrative contracts provided by special laws and subject to the jurisdiction of the administrative courts.

  16. Factors that affect voluntary vaccination of children in Japan.

    Science.gov (United States)

    Shono, Aiko; Kondo, Masahide

    2015-03-10

    Some important vaccinations are not included in the routine childhood immunization schedule in Japan. Voluntary vaccinations are usually paid as an out-of-pocket expense. Low voluntary vaccination coverage rates and high target disease incidence are assumed to be a consequence of voluntary vaccination. Therefore, this study aimed to explore factors associated with voluntary vaccination patterns in children. We conducted an online survey of 1243 mothers from a registered survey panel who had at least one child 2 months to vaccination mainly correlated positively with annual household income and mothers' positive opinions about voluntary vaccinations, but negatively with number of children. Financial support, especially for low income households and households with more than one child, may motivate parents to vaccinate their children. Communication is also an important issue. More opportunities for education and information about voluntary vaccinations should be provided to mothers without distinguishing between voluntary and routine vaccination.

  17. Mitigating greenhouse gas emissions: Voluntary reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  18. Voluntary Green Power Market Forecast through 2015

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  19. Effects of contraction path and velocity on the coordination of hand muscles during a three-digit force production task.

    Science.gov (United States)

    Jiayuan He; Xinjun Sheng; Dingguo Zhang; Xiangyang Zhu

    2014-01-01

    Though many studies indicated that the behavior of single muscle was different between contraction and relaxation, the effect of contraction history profile on multiple muscles has not been investigated. In this study, we analyzed the influence of contraction history on the coordination patterns of hand muscles during a three-digit force production task. The effects of the contraction and relaxation paths with two contraction velocities (5% and 10% maximum voluntary contraction per second) were investigated. The results showed that the force-independent characteristic of muscle coordination patterns still held regardless of the contraction history profiles. In addition, the effect of contraction path was more significant than that of velocity. The study provides a potential way to overcome the impact of contraction disturbance for improving the robustness of the human-machine interface (HMI) based on electromyographic (EMG) pattern recognition.

  20. Time course of human motoneuron recovery after sustained low-level voluntary activity.

    Science.gov (United States)

    Héroux, Martin E; Butler, Annie A; Gandevia, Simon C; Taylor, Janet L; Butler, Jane E

    2016-02-01

    Motoneurons often fire repetitively and for long periods. In sustained voluntary contractions the excitability of motoneurons declines. We provide the first detailed description of the time course of human motoneuron recovery after sustained activity at a constant discharge rate. We recorded the discharge of single motor units (MUs, n = 30) with intramuscular wire electrodes inserted in triceps brachii during weak isometric contractions. Subjects (n = 15) discharged single MUs at a constant frequency (∼10 Hz) with visual feedback for prolonged durations (3-7 min) until rectified surface electromyogram (sEMG) of triceps brachii increased by ∼100%. After a rest of 1-2, 15, 30, 60, 120, or 240 s, subjects briefly resumed the contraction with the target MU at the same discharge rate. Each MU was tested with three to four rest periods. The magnitude of sEMG was increased when contractions were resumed, and the target motoneuron discharged at the test frequency following rest intervals of 2-60 s (P = 0.001-0.038). The increased sEMG indicates that greater excitatory drive was needed to discharge the motoneuron at the test rate. The increase in EMG recovered exponentially with a time constant of 28 s but did not return to baseline even after a rest period of ∼240 s. Thus the decline in motoneuron excitability from a weak contraction takes several minutes to recover fully.

  1. Spin-Stabilized Spacecrafts: Analytical Attitude Propagation Using Magnetic Torques

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2009-01-01

    Full Text Available An analytical approach for spin-stabilized satellites attitude propagation is presented, considering the influence of the residual magnetic torque and eddy currents torque. It is assumed two approaches to examine the influence of external torques acting during the motion of the satellite, with the Earth's magnetic field described by the quadripole model. In the first approach is included only the residual magnetic torque in the motion equations, with the satellites in circular or elliptical orbit. In the second approach only the eddy currents torque is analyzed, with the satellite in circular orbit. The inclusion of these torques on the dynamic equations of spin stabilized satellites yields the conditions to derive an analytical solution. The solutions show that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spacecraft's spin axis and the eddy currents torque causes an exponential decay of the angular velocity magnitude. Numerical simulations performed with data of the Brazilian Satellites (SCD1 and SCD2 show the period that analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  2. Very simple torque magnetometer for measuring magnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, M.; Fernandez, A.; Hernando, B.; Carrizo, J.

    1985-11-01

    A new torque magnetometer has been developed and built in order to measure magnetization saturation and perpendicular anisotropy of magnetic thin films. Its main characteristic is that it employs for counteraction the torque exerted on the sample in the same field used for exciting it. This gives rise to a great simplicity and sensitivity of the measuring system.

  3. Van der Waals torque induced by external magnetic fields

    CERN Document Server

    Esquivel-Sirvent, R; Palomono-Ovando, M

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III-IV semiconductors such as $InSb$, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of $InSb$. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of $InSb$ increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropic materials when the magnetic fields is close to 1 T.

  4. Van der Waals torque induced by external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R.; Cocoletzi, G. H.; Palomino-Ovando, M.

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III–IV semiconductors such as InSb, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of InSb. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of InSb increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropicmaterials when the magnetic fields is close to 1 T.

  5. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  6. Contractibility of curves

    Directory of Open Access Journals (Sweden)

    Janusz Charatonik

    1991-11-01

    Full Text Available Results concerning contractibility of curves (equivalently: of dendroids are collected and discussed in the paper. Interrelations tetween various conditions which are either sufficient or necessary for a curve to be contractible are studied.

  7. Fault in Contract Law

    National Research Council Canada - National Science Library

    Eric A. Posner

    2009-01-01

    A promisor is strictly liable for breaching a contract, according to the standard account However, a negligence-based system of contract law can be given an economic interpretation, and this Article...

  8. Effect of muscle contraction strength on gating of somatosensory magnetic fields.

    Science.gov (United States)

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kotan, Shinichi; Kojima, Sho; Miyaguchi, Shota; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-11-01

    Afferent somatosensory information is modulated before the afferent input arrives at the primary somatosensory cortex during voluntary movement. The aim of the present study was to clarify the effect of muscular contraction strength on somatosensory evoked fields (SEFs) during voluntary movement. In addition, we examined the differences in gating between innervated and non-innervated muscle during contraction. We investigated the changes in gating effect by muscular contraction strength and innervated and non-innervated muscles in human using 306-channel magnetoencephalography. SEFs were recorded following the right median nerve stimulation in a resting condition and during isometric muscular contractions from 10 % electromyographic activity (EMG), 20 and 30 % EMG of the right extensor indicis muscle and abductor pollicis brevis muscle. Our results showed that the equivalent current dipole (ECD) strength for P35m decreased with increasing strength of muscular contraction of the right abductor pollicis brevis muscle. However, changes were observed only at 30 % EMG contraction level of the right extensor indicis muscle, which was not innervated by the median nerve. There were no significant changes in the peak latencies and ECD locations of each component in all conditions. The ECD strength did not differ significantly for N20m and P60m regardless of the strength of muscular contraction and innervation. Therefore, we suggest that the gating of SEF waveforms following peripheral nerve stimulation was affected by the strength of muscular contraction and innervation of the contracting muscle.

  9. Democratic contract law

    OpenAIRE

    Hesselink, M.W.

    2015-01-01

    This article discusses the normative relationship between contract law and democracy. In particular, it argues that in order to be legitimate contract law needs to have a democratic basis. Private law is not different in this respect from public law. Thus, the first claim made in this article will be that also for contract law a democratic basis is a necessary condition for legitimacy. A fully democratic basis may also be a sufficient condition for a legitimate and just contract law. However,...

  10. Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

    KAUST Repository

    Manchon, Aurelien

    2014-12-01

    In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, the Dzyaloshinskii-Moriya interaction arises at the interface. When a spin-wave current jm flows in a system with a homogeneous magnetization m, this interaction produces an effective fieldlike torque of the form TFLm×(z×jm) as well as a dampinglike torque, TDLm×[(z×jm)×m], the latter only in the presence of spin-wave relaxation (z is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.

  11. Active element influence on the motor’s torque

    Directory of Open Access Journals (Sweden)

    Dolgih Antonina

    2017-01-01

    Full Text Available The paper presents the numerical and experimental studies of the influence of the torque motor active element on the motor’s torque. The tape active element is a novel type of a motor’s stator organization, where the conventional winding is replaced by a tape winding. The force (torque dependence over the rotor pole position using COMSOL is given; the tape winding resistance and the turns number are defined. The relative motor’s characteristics are investigated and the maximum torque over the certain poles pair number is obtained. The application of the proposed active element in brushless DC motor is considered. The results show the possibility of the further synthesis of the torque motor.

  12. Approaching the Standard Quantum Limit of Mechanical Torque Sensing

    CERN Document Server

    Kim, P H; Doolin, C; Souris, F; Davis, J P

    2016-01-01

    Mechanical transduction of torque has been key to probing a number of physical phenomena, such as gravity, the angular momentum of light, the Casimir effect, magnetism, and quantum oscillations. Following similar trends as mass and force sensing, mechanical torque sensitivity can be dramatically improved by scaling down the physical dimensions, and therefore moment of inertia, of a torsional spring. Yet now, through precision nanofabrication and sub-wavelength cavity optomechanics, we have reached a point where geometric optimization can only provide marginal improvements to torque sensitivity. Instead, nanoscale optomechanical measurements of torque are overwhelmingly hindered by thermal noise. Here we present cryogenic measurements of a cavity-optomechanical torsional resonator cooled in a dilution refrigerator to a temperature of 25 mK, corresponding to an average phonon occupation of = 35, that demonstrate a record-breaking torque sensitivity of 2.9 yNm/Hz^{1/2}. This a 270-fold improvement over previous...

  13. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian Vaslie; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to conventional DTC and the proposed solution is flexible and highly tunable due to the P component. The controller design is presented, and its robust stability is analyzed...

  14. Approaching the standard quantum limit of mechanical torque sensing

    Science.gov (United States)

    Kim, P. H.; Hauer, B. D.; Doolin, C.; Souris, F.; Davis, J. P.

    2016-10-01

    Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins.

  15. Special-Purpose High-Torque Permanent-Magnet Motors

    Science.gov (United States)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  16. Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance

    CERN Document Server

    Lee, Yoonkyung E; Jin, Dafei; Fang, Nicholas

    2014-01-01

    We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamateria...

  17. Torque Characteristics of Saturated Permanent-Magnet Synchronous Motors

    Science.gov (United States)

    Takahashi, Akeshi; Kikuchi, Satoshi; Wakui, Shinichi; Mikami, Hiroyuki; Ide, Kazumasa; Shima, Kazuo

    The evaluation of torque characteristics in a saturated magnetic field for permanent-magnet (PM) synchronous motors is presented. The torque saturation characteristics of non-salient and salient pole machines are investigated by finite element analysis and measurement. Thus, it is found that the torque saturation originates in the magnetic saturation in both the stator teeth, which are located on the leading position toward the direct axis, and in the stator back yoke, which is located on the lagging position toward the direct axis. This mechanism can also explain the reason for the significant torque saturation in the salient-pole machine; the higher inductance of the quadrature axis of the salient-pole machine causes a significant magnetic saturation in the stator back yoke. Therefore, less saliency or a wider back yoke can improve the torque saturation.

  18. Radiative torques on interstellar grains; 1, superthermal spinup

    CERN Document Server

    Draine, B T; Weingartner, Joseph C

    1996-01-01

    Irregular dust grains are subject to radiative torques when irradiated by interstellar starlight. It is shown how these radiative torques may be calculated using the discrete dipole approximation. Calculations are carried out for one irregular grain geometry, and three different grain sizes. It is shown that radiative torques can play an important dynamical role in spinup of interstellar dust grains, resulting in rotation rates which may exceed even those expected from H_2 formation on the grain surface. Because the radiative torque on an interstellar grain is determined by the overall grain geometry rather than merely the state of the grain surface, the resulting superthermal rotation is expected to be long-lived. By itself, long-lived superthermal rotation would permit grain alignment by normal paramagnetic dissipation on the "Davis-Greenstein" timescale. However, radiative torques arising from anisotropy of the starlight background can act directly to alter the grain alignment on much shorter timescales, a...

  19. Teaching about Contracts.

    Science.gov (United States)

    Froman, Michael; Kosnoff, Kathy

    1978-01-01

    Presents teaching strategies for introducing high school students to contract law. Offers as a case study a contract agreement between pro football players and team owners. Stresses basic elements of contracts (offer, acceptance, consideration, and understanding the bargaining process). Journal available from the American Bar Association, 1155…

  20. Contract law as fairness

    NARCIS (Netherlands)

    J. Klijnsma

    2015-01-01

    This article examines the implications for contract law of Rawls' theory of justice as fairness. It argues that contract law as an institution is part of the basic structure of society and as such subject to the principles of justice. Discussing the basic structure in relation to contract law is par

  1. Nanocavity optomechanical torque magnetometry and RF susceptometry

    CERN Document Server

    Wu, Marcelo; Firdous, Tayyaba; Sani, Fatemeh Fani; Losby, Joseph E; Freeman, Mark R; Barclay, Paul E

    2016-01-01

    Nanophotonic optomechanical devices allow observation of nanoscale vibrations with sensitivity that has dramatically advanced metrology of nanomechanical structures [1-9] and has the potential to similarly impact studies of nanoscale physical systems [10, 11]. Here we demonstrate this potential with a nanophotonic optomechanical torque magnetometer and radio-frequency (RF) magnetic susceptometer. Exquisite readout sensitivity provided by a nanocavity integrated within a torsional nanomechanical resonator enables observations of the unique net magnetization and RF driven responses of single mesoscopic magnetic structures in ambient conditions. The magnetic moment resolution is sufficient for observation of Barkhausen steps in the magnetic hysteresis of a lithographically-patterned permalloy island [12]. In addition, significantly enhanced RF susceptibility is found over narrow field ranges and attributed to thermally-assisted driven hopping of a magnetic vortex core between neighboring pinning sites [13]. The ...

  2. Manipulating spin transfer torque with light

    Science.gov (United States)

    Vendelbjerg, Karsten Leding; Rontani, Massimo

    2017-08-01

    We study the spin transfer torque (STT) induced onto a nanomagnet as a spin-polarized current flows through a junction made of the magnet sandwiched between two semiconductors. This junction is one-dimensional and highly idealized, the thin magnetic layer being mimicked by a spin-dependent contact force. We show that the STT may be externally controlled by shining the junction at sub-bandgap frequency with an intense laser beam. The excitonic coherence driven by the laser dresses the virtual electron-hole pairs coupling conduction and valence bands and inducing evanescent waves at the junction interface. The Fano-like quantum interference between these localized states and the continuum spectrum, being different in the two spin channels, significantly affects the STT.

  3. Comparison of different passive knee extension torque-angle assessments.

    Science.gov (United States)

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-11-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.

  4. Torque Splitting by a Concentric Face Gear Transmission

    Science.gov (United States)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  5. Dynamic output feedback linearizing control of saturated induction motors with torque per ampere ratio maximization

    OpenAIRE

    Peresada, Sergei; Kovbasa, Serhii; Dymko, Serhii; BOZHKO, Serhiy

    2016-01-01

    The paper presents a novel maximum torque per Ampere (MTA) controller for induction motor (IM) drives. The proposed controller exploits the concept of direct (observer based) field orientation and guarantees asymptotic torque tracking of smooth reference trajectories and maximizes the torque per Ampere ratio when the developed torque is constant or slowly varying. A dynamic output-feedback linearizing technique is employed for the torque subsystem design. In order to improve torque tracking a...

  6. A New Fixed Switching Frequency Direct Torque Controlled PMSM Drives with Low Ripple in Flux and Torque

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-11-01

    Full Text Available Direct Torque Control (DTC has gained popularity for development of advanced motor control due to its simplicity and offers fast instantaneous torque and flux controls. However, the conventional DTC which is based on hysteresis controller has major drawbacks, namely high torque ripple and variable inverter switching frequency. This paper presents an improved switching strategy for reducing flux and torque ripples in DTC of PMSM drives; wherein the torque hysteresis controller and the look-up table used in the conventional DTC are replaced with a constant frequency torque controller (CFTC and an optimized look-up table, respectively. It can be shown that a constant switching frequency is established due to the use of the CFTC while the reduction of torque and flux ripples is achieved mainly because of the selection of optimized voltage vector (i.e. with an optimized look-up table. This paper also will explain the construction of DTC schemes implemented using MATLAB-Simulink blocks. Simulation results were shown that a significant reduction of flux and torque ripples which is about 90% can be achieved through the proposed DTC scheme.

  7. APAs Constraints to Voluntary Movements: The Case for Limb Movements Coupling

    Science.gov (United States)

    Baldissera, Fausto G.; Tesio, Luigi

    2017-01-01

    When rhythmically moving two limbs in either the same or in opposite directions, one coupling mode meets constraints that are absent in the other mode. Isodirectional (ISO) flexion-extensions of the ipsilateral hand and foot can be easily performed with either the hand prone or supine. Instead, antidirectional (ANTI) movements require attentive effort and irresistibly tend to reverse into ISO when frequency increases. Experimental evidence indicates that the direction dependent easy-difficult dichotomy is caused by interference of the anticipatory postural commands associated to movements of one limb with voluntary commands to the other limb. Excitability of the resting wrist muscles is subliminally modulated at the period of ipsilateral foot oscillations, being phase-opposite in the antagonists and distributed so as to facilitate ISO and obstacle ANTI coupling of the hand (either prone or supine) with the foot. Modulation is driven by cortical signals dispatched to the forearm simultaneously with the voluntary commands moving the foot. If right foot oscillations are performed when standing on the left foot with the right hand touching a fixed support, the subliminal excitability modulation is replaced by overt contractions of forearm muscles conforming the APAs features. This suggests that during hand-foot ANTI coupling the voluntary commands to forearm muscles are contrasted by APAs commands of opposite sign linked to foot oscillations. Correlation between the easy-difficult dichotomy and the APAs distribution is also found in coupled adduction-abduction of the arms or hands in the transverse plane and in coupled flexion-extension of the arms in the parasagittal plane. In all these movements, APAs commands linked to the movement of each limb reach the motor pathways to the contralateral muscles homologous to the prime movers and can interfere during coupling with their voluntary activation. APAs are also generated in postural muscles of trunk and lower limbs and

  8. LONG-LASTING SUPERNORMAL CONDUCTION-VELOCITY AFTER SUSTAINED MAXIMAL ISOMETRIC CONTRACTION IN HUMAN MUSCLE

    NARCIS (Netherlands)

    VANDERHOEVEN, JH; VANWEERDEN, TW; ZWARTS, MJ

    1993-01-01

    Local muscle fatigue (1 min maximal voluntary contraction) and recovery were studied by means of surface and invasive EMG on elbow flexors to record the changes in muscle fiber conduction velocity (MFCV), median power frequency (MPF), integrated EMG (IEMG), and force. The main finding was a long-las

  9. LONG-LASTING SUPERNORMAL CONDUCTION-VELOCITY AFTER SUSTAINED MAXIMAL ISOMETRIC CONTRACTION IN HUMAN MUSCLE

    NARCIS (Netherlands)

    VANDERHOEVEN, JH; VANWEERDEN, TW; ZWARTS, MJ

    1993-01-01

    Local muscle fatigue (1 min maximal voluntary contraction) and recovery were studied by means of surface and invasive EMG on elbow flexors to record the changes in muscle fiber conduction velocity (MFCV), median power frequency (MPF), integrated EMG (IEMG), and force. The main finding was a long-las

  10. Land lease contracts: properties and the value of bundles of property rights

    NARCIS (Netherlands)

    Slangen, L.H.G.; Polman, N.B.P.

    2008-01-01

    Contracts are mechanisms for carrying out transactions. Leasing land is a voluntary transaction in which property rights - such as user and income rights - are transferred from landowners to tenants. The bundle of property rights transferred within a lease transaction varies with the type of contrac

  11. A Novel Direct Torque Control for Induction Machine Drive System with Low Torque And Flux Ripples using XSG

    Directory of Open Access Journals (Sweden)

    Souha Boukadida

    2014-12-01

    Full Text Available The conventional Direct Torque Control (DTC is known to produce a quick and robust response in AC drives. However, during steady state, stator flux and electromagnetic torque which results in incorrect speed estimations and acoustical noise. A modified Direct Torque Control (DTC by using Space Vector Modulation (DTC-SVM for induction machine is proposed in this paper. Using this control strategy, the ripples introduced in torque and flux are reduced. This paper presents a novel approach to design and implementation of a high perfromane torque control (DTC-SVM of induction machine using Field Programmable gate array (FPGA.The performance of the proposed control scheme is evaluated through digital simulation using Matlab\\Simulink and Xilinx System Generator. The simulation results are used to verify the effectiveness of the proposed control strategy.

  12. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan

    2017-03-07

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  13. Interaction torque contributes to planar reaching at slow speed

    Directory of Open Access Journals (Sweden)

    Hoshi Fumihiko

    2008-10-01

    Full Text Available Abstract Background How the central nervous system (CNS organizes the joint dynamics for multi-joint movement is a complex problem, because of the passive interaction among segmental movements. Previous studies have demonstrated that the CNS predictively compensates for interaction torque (INT which is arising from the movement of the adjacent joints. However, most of these studies have mainly examined quick movements, presumably because the current belief is that the effects of INT are not significant at slow speeds. The functional contribution of INT for multijoint movements performed in various speeds is still unclear. The purpose of this study was to examine the contribution of INT to a planer reaching in a wide range of motion speeds for healthy subjects. Methods Subjects performed reaching movements toward five targets under three different speed conditions. Joint position data were recorded using a 3-D motion analysis device (50 Hz. Torque components, muscle torque (MUS, interaction torque (INT, gravity torque (G, and net torque (NET were calculated by solving the dynamic equations for the shoulder and elbow. NET at a joint which produces the joint kinematics will be an algebraic sum of torque components; NET = MUS - G - INT. Dynamic muscle torque (DMUS = MUS-G was also calculated. Contributions of INT impulse and DMUS impulse to NET impulse were examined. Results The relative contribution of INT to NET was not dependent on speed for both joints at every target. INT was additive (same direction to DMUS at the shoulder joint, while in the elbow DMUS counteracted (opposed to INT. The trajectory of reach was linear and two-joint movements were coordinated with a specific combination at each target, regardless of motion speed. However, DMUS at the elbow was opposed to the direction of elbow movement, and its magnitude varied from trial to trial in order to compensate for the variability of INT. Conclusion Interaction torque was important at

  14. Contract modularity in design by contract languages

    OpenAIRE

    Rebêlo, Henrique Emanuel Mostaert

    2014-01-01

    Design by Contract (DbC) is a popular technique for developing programs using behavioral specifications. In this context, researchers have found that the realization of DbC is crosscutting and fares better when modularized by Aspect-Oriented Programming. However, previous efforts aimed at supporting crosscutting contracts modularly actually compromised the main DbC principles. For example, in AspectJ-style, reasoning about the correctness of a method call may require a whole-pr...

  15. Contracts in distributed systems

    Directory of Open Access Journals (Sweden)

    Massimo Bartoletti

    2011-07-01

    Full Text Available We present a parametric calculus for contract-based computing in distributed systems. By abstracting from the actual contract language, our calculus generalises both the contracts-as-processes and contracts-as-formulae paradigms. The calculus features primitives for advertising contracts, for reaching agreements, and for querying the fulfilment of contracts. Coordination among principals happens via multi-party sessions, which are created once agreements are reached. We present two instances of our calculus, by modelling contracts as (i processes in a variant of CCS, and (ii as formulae in a logic. With the help of a few examples, we discuss the primitives of our calculus, as well as some possible variants.

  16. Army Acquisition and Contracting Personnel Requirements: How are the Army’s Current Recruitment, Development and Retention Programs Meeting Current and Future Personnel Requirements?

    Science.gov (United States)

    2011-09-01

    execution. Organizations provided responses they have or are evaluating schedule flexibility, telework policy, and voluntary civilian fitness. Engaging...includes individuals responsible for planning, design, development, testing, contracting, production , introduction, acquisition logistics support... production ; foreign military sales; grants; and other transactions. RDECOM was renamed Army Contracting Command – Aberdeen Proving Ground (SCRT) on

  17. The parallel programming of voluntary and reflexive saccades.

    Science.gov (United States)

    Walker, Robin; McSorley, Eugene

    2006-06-01

    A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.

  18. Voluntary energy optimisation - Taking responsibility; Verantwortungsvoll

    Energy Technology Data Exchange (ETDEWEB)

    Baettig, I.

    2006-07-01

    This interview with Konrad Kyburz, CEO of a printing shop in Dielsdorf, Switzerland, discusses how energy consumption can be reduced on a voluntary basis. The provision free-of-charge of heat recovered from the drying ovens of the printing presses to a nearby sports facility is discussed. The realisation of an energy consumption analysis and the resulting increases in the efficiency of energy usage in the printing facility are discussed. Further improvements such as the use of variable-frequency compressor drives and heating with natural gas that helped in making energy savings of well over 15% are discussed.

  19. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  20. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  1. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  2. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  3. Voluntary participation and cooperation in a collective-good game.

    OpenAIRE

    Kene Boun My; Benoît Chalvignac

    2009-01-01

    We study the effect of voluntary participation in the context of a collective-good experiment. We investigate whether the freedom to participate in the game or not increases contribution levels and enhances their evolution. The analysis of two voluntary participation treatments supports a positive effect of an attractive exit option on both contribution levels and their sustainability. We conclude that the voluntary contribution mechanism can provide sustainable cooperation levels and that th...

  4. Reversal of optic neuropathy secondary to voluntary globe luxation.

    Science.gov (United States)

    Yaman, Aylin; Ozturk, Taylan; Soylev, Meltem F

    2009-04-01

    Luxation of the globe is rare in the general population and may be spontaneous, voluntary, or traumatic. Spontaneous or voluntary globe luxation results from shallow orbit, floppy eyelids, lax orbital ligaments, backward displacement of orbital septum, or proptotic eyes due to orbital tumors or infiltrative processes, as in Grave's ophthalmopathy. The authors report a case with unilateral voluntary globe luxation presented with unilateral progressive visual loss.

  5. Current State of the Voluntary Renewable Energy Market (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.

    2013-09-01

    This presentation highlights the status of the voluntary green power market in 2012. The voluntary green power market totaled more than 48 million MWh in 2012, with about 1.9 million customers participating. The supply continues to be dominated by wind, though solar is increasing its share of utility green pricing programs. Prices for voluntary renewable energy certificates (RECs) increased to above $1/MWh.

  6. Analyzing the installation angle error of a SAW torque sensor

    Science.gov (United States)

    Fan, Yanping; Ji, Xiaojun; Cai, Ping

    2014-09-01

    When a torque is applied to a shaft, normal strain oriented at ±45° direction to the shaft axis is at its maximum, which requires two one-port SAW resonators to be bonded to the shaft at ±45° to the shaft axis. In order to make the SAW torque sensitivity high enough, the installation angle error of two SAW resonators must be confined within ±5° according to our design requirement. However, there are few studies devoted to the installation angle analysis of a SAW torque sensor presently and the angle error was usually obtained by a manual method. Hence, we propose an approximation method to analyze the angle error. First, according to the sensitive mechanism of the SAW device to torque, the SAW torque sensitivity is deduced based on the linear piezoelectric constitutive equation and the perturbation theory. Then, when a torque is applied to the tested shaft, the stress condition of two SAW resonators mounted with an angle deviating from ±45° to the shaft axis, is analyzed. The angle error is obtained by means of the torque sensitivities of two orthogonal SAW resonators. Finally, the torque measurement system is constructed and the loading and unloading experiments are performed twice. The torque sensitivities of two SAW resonators are obtained by applying average and least square method to the experimental results. Based on the derived angle error estimation function, the angle error is estimated about 3.447°, which is close to the actual angle error 2.915°. The difference between the estimated angle and the actual angle is discussed. The validity of the proposed angle error analysis method is testified to by the experimental results.

  7. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.

    Science.gov (United States)

    Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio

    2010-09-01

    Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By

  8. Accurate torque-speed performance prediction for brushless dc motors

    Science.gov (United States)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  9. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  10. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu

    2017-03-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  11. High torque DC motor fabrication and test program

    Science.gov (United States)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  12. Voluntary self-touch increases body ownership

    Directory of Open Access Journals (Sweden)

    Masayuki eHara

    2015-10-01

    Full Text Available Experimental manipulations of body ownership have indicated that multisensory integration is central to forming bodily self-representation. Voluntary self-touch is a unique multisensory situation involving corresponding motor, tactile and proprioceptive signals. Yet, even though self-touch is frequent in everyday life, its contribution to the formation of body ownership is not well understood. Here we investigated the role of voluntary self-touch in body ownership using a novel adaptation of the rubber hand illusion (RHI, in which a robotic system and virtual reality allowed participants self-touch of real and virtual hands. In the first experiment, active and passive self-touch were applied in the absence of visual feedback. In the second experiment, we tested the role of visual feedback in this bodily illusion. Finally, in the third experiment, we compared active and passive self-touch to the classical RHI in which the touch is administered by the experimenter. We hypothesized that active self-touch would increase ownership over the virtual hand through the addition of motor signals strengthening the bodily illusion. The results indicated that active self-touch elicited stronger illusory ownership compared to passive self-touch and sensory only stimulation, and indicate an important role of active self-touch in the formation of bodily self.

  13. Research on a direct torque control for an electrically excited synchronous motor drive with low ripple in flux and torque

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yangzhong; HU Yuwen; HUANG Wenxin; ZHONG Tianyun

    2007-01-01

    The electrically excited synchronous motor (ESM)has typically small synchronous inductance values and quite low transient values because of the damper windings mounted on the rotor.Therefore,the torque and stator flux linkage ripples are high in the direct torque control(DTC)drive of the ESM with a torque and flux linkage hysteresis controller (basic DTC).A DTC scheme with space vector modulation(SVM)for the ESM was investigated in this paper.It is based on the compensation of the stator flux linkage vector error using the space vector modulation in order to decrease the torque and flux linkage ripples and produce fixed switching frequency under the principle that the torque is controlled by the torque angle in the ESM.Compared with the basic DTC,the results of the simulation and experiment show that the torque and flux linkage rippies are reduced,the maximum current value is decreased during the startup,and the current distortion is much smaller in the steady-state under the SVM-DTC.The field-weakening control is incorporated with the SVM-DTC successfully.

  14. Absolute reliability of hamstring to quadriceps strength imbalance ratios calculated using peak torque, joint angle-specific torque and joint ROM-specific torque values.

    Science.gov (United States)

    Ayala, F; De Ste Croix, M; Sainz de Baranda, P; Santonja, F

    2012-11-01

    The main purpose of this study was to determine the absolute reliability of conventional (H/Q(CONV)) and functional (H/Q(FUNC)) hamstring to quadriceps strength imbalance ratios calculated using peak torque values, 3 different joint angle-specific torque values (10°, 20° and 30° of knee flexion) and 4 different joint ROM-specific average torque values (0-10°, 11-20°, 21-30° and 0-30° of knee flexion) adopting a prone position in recreational athletes. A total of 50 recreational athletes completed the study. H/Q(CONV) and H/Q(FUNC) ratios were recorded at 3 different angular velocities (60, 180 and 240°/s) on 3 different occasions with a 72-96 h rest interval between consecutive testing sessions. Absolute reliability was examined through typical percentage error (CVTE), percentage change in the mean (CM) and intraclass correlations (ICC) as well as their respective confidence limits. H/Q(CONV) and H/Q(FUNC) ratios calculated using peak torque values showed moderate reliability values, with CM scores lower than 2.5%, CV(TE) values ranging from 16 to 20% and ICC values ranging from 0.3 to 0.7. However, poor absolute reliability scores were shown for H/Q(CONV) and H/Q(FUNC) ratios calculated using joint angle-specific torque values and joint ROM-specific average torque values, especially for H/Q(FUNC) ratios (CM: 1-23%; CV(TE): 22-94%; ICC: 0.1-0.7). Therefore, the present study suggests that the CV(TE) values reported for H/Q(CONV) and H/Q(FUNC) (≈18%) calculated using peak torque values may be sensitive enough to detect large changes usually observed after rehabilitation programmes but not acceptable to examine the effect of preventitive training programmes in healthy individuals. The clinical reliability of hamstring to quadriceps strength ratios calculated using joint angle-specific torque values and joint ROM-specific average torque values are questioned and should be re-evaluated in future research studies.

  15. Contracting out local services

    DEFF Research Database (Denmark)

    Petersen, Ole Helby; Houlberg, Kurt; Ring Christensen, Lasse

    2015-01-01

    Governments face a fundamental choice between in-house production and contracting out for the delivery of services to citizens. This article examines the importance of ideology, fiscal pressure, and size for contracting out in technical and social services. The analysis builds on a panel data set...... covering municipal spending on services in all 98 Danish municipalities. The authors find that contracting out is shaped by ideology in social services but not in technical services, which indicates that social services are the contemporary ideological battlefield of privatization. The analysis further...... reveals that economically prosperous municipalities are more likely to contract out social services, whereas contracting out of technical services is not influenced by economic affluence. Finally, larger municipalities contract out more in technical services but less in social services, demonstrating...

  16. New staff contract policy

    CERN Multimedia

    HR Department

    2006-01-01

    Following discussion at TREF and on the recommendation of the Finance Committee, Council approved a new staff contract policy, which became effective on 1 January 2006. Its application is covered by a new Administrative Circular No. 2 (Rev. 3) 'Recruitment, appointment and possible developments regarding the contractual position of staff members'. The revised circular replaces the previous Circulars No. 9 (Rev. 3) 'Staff contracts' and No. 2 (Rev. 2) 'Guidelines and procedures concerning recruitment and probation period for staff members'. The main features of the new contract policy are as follows: The new policy provides chances for long-term employment for all staff recruits staying for four years without distinguishing between those assigned to long-term or short-term activities when joining CERN. In addition, it presents a number of simplifications for the award of ICs. There are henceforth only 2 types of contract: Limited Duration (LD) contracts for all recruitment and Indefinite Contracts (IC) for...

  17. BOT Outsourcing Contracts

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2012-01-01

    Build-operate-transfer (BOT) contracting has been widely usen in the engineering and construction industry, but has only recently been introduced in services industry domains. Notably, service provider firms from emerging markets have recently started offering BOT outsourcing contracts. In this p......Build-operate-transfer (BOT) contracting has been widely usen in the engineering and construction industry, but has only recently been introduced in services industry domains. Notably, service provider firms from emerging markets have recently started offering BOT outsourcing contracts....... In this paper we investigate under which circumstances a BOT outsourcing contract (i.e. a contract where the client firm exercises its call option) is beneficial, or the opposite, to the emerging market vendor firm. We draw on various theoretical literatures (transaction cost economics, real options, inter...

  18. Torque Production in a Halbach Machine

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.; Vrnak, Daniel R.

    2006-01-01

    The NASA John H. Glenn Research Center initiated the investigation of torque production in a Halbach machine for the Levitated Ducted Fan (LDF) Project to obtain empirical data in determining the feasibility of using a Halbach motor for the project. LDF is a breakthrough technology for "Electric Flight" with the development of a clean, quiet, electric propulsor system. Benefits include zero emissions, decreased dependence on fossil fuels, increased efficiency, increased reliability, reduced maintenance, and decreased operating noise levels. A commercial permanent magnet brushless motor rotor was tested with a custom stator. An innovative rotor utilizing a Halbach array was designed and developed to fit directly into the same stator. The magnets are oriented at 90deg to the adjacent magnet, which cancels the magnetic field on the inside of the rotor and strengthens the field on the outside of the rotor. A direct comparison of the commercial rotor and the Halbach rotor was made. In addition, various test models were designed and developed to validate the basic principles described, and the theoretical work that was performed. The report concludes that a Halbach array based motor can provide significant improvements in electric motor performance and reliability.

  19. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  20. Radiative torque alignment: Essential Physical Processes

    CERN Document Server

    Hoang, Thiem

    2007-01-01

    We study physical processes that affect the alignment of grains subject to radiative torques (RATs). To describe the action of the RATs we use the analytical model (AMO) of RATs introduced in Paper I, namely, in Lazarian & Hoang (2007). We focus our discussion on the RAT alignment by anisotropic radiation flux in respect to magnetic field. Such an alignment does not invoke paramagnetic, i.e. Davis-Greenstein, dissipation, but, nevertheless, grains tend to align with long axes perpendicular to magnetic field. We use phase space trajectory maps to describe the alignment. When we account for thermal fluctuations within grain material, we show that for grains, which are characterized by a triaxial ellipsoid of inertia, the zero-J attractor point obtained in our earlier study develops into a low-J attractor point. Value at the latter point is the order of thermal angular momentum corresponding to the grain temperature. We show that the alignment of grains with long axes parallel to magnetic field (``wrong alig...