WorldWideScience

Sample records for volumetric water control

  1. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  2. Volumetric fat-water separated T2-weighted MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Sonik, Arvind; Madhuranthakam, Ananth J.; Venkatesan, Ramesh; Lai, Peng; Brau, Anja C.S.

    2011-01-01

    Pediatric body MRI exams often cover multiple body parts, making the development of broadly applicable protocols and obtaining uniform fat suppression a challenge. Volumetric T2 imaging with Dixon-type fat-water separation might address this challenge, but it is a lengthy process. We develop and evaluate a faster two-echo approach to volumetric T2 imaging with fat-water separation. A volumetric spin-echo sequence was modified to include a second shifted echo so two image sets are acquired. A region-growing reconstruction approach was developed to decompose separate water and fat images. Twenty-six children were recruited with IRB approval and informed consent. Fat-suppression quality was graded by two pediatric radiologists and compared against conventional fat-suppressed fast spin-echo T2-W images. Additionally, the value of in- and opposed-phase images was evaluated. Fat suppression on volumetric images had high quality in 96% of cases (95% confidence interval of 80-100%) and were preferred over or considered equivalent to conventional two-dimensional fat-suppressed FSE T2 imaging in 96% of cases (95% confidence interval of 78-100%). In- and opposed-phase images had definite value in 12% of cases. Volumetric fat-water separated T2-weighted MRI is feasible and is likely to yield improved fat suppression over conventional fat-suppressed T2-weighted imaging. (orig.)

  3. Adaptive controller for volumetric display of neuroimaging studies

    Science.gov (United States)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  4. Volumetric water control in a large-scale open canal irrigation system with many smallholders: The case of Chancay-Lambayeque in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.; Vincent, L.F.

    2011-01-01

    Volumetric water control (VWC) is widely seen as a means to increase productivity through flexible scheduling and user incentives to apply just enough water. However, the technical and social requirements for VWC are poorly understood. Also, many experts assert that VWC in large-scale open canals

  5. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  6. The Influence of Water and Mineral Oil On Volumetric Losses in a Hydraulic Motor

    Directory of Open Access Journals (Sweden)

    Śliwiński Pawel

    2017-04-01

    Full Text Available In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effective rotational speed have been developed and presented. The results of calculation of volumetric losses according to the model are compared with the results of experiment. It was found that the difference is not more than 20%. Furthermore, it has been demonstrated that this model well describes in both the volumetric losses in the motor supplied with water and oil. Experimental studies have shown that the volumetric losses in the motor supplied with water are even three times greater than the volumetric losses in the motor supplied with oil. It has been shown, that in a small constant stream of water the speed of the motor is reduced even by half in comparison of speed of motor supplied with the same stream of oil.

  7. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  8. DIFFERENTIAL ANALYSIS OF VOLUMETRIC STRAINS IN POROUS MATERIALS IN TERMS OF WATER FREEZING

    Directory of Open Access Journals (Sweden)

    Rusin Z.

    2013-06-01

    Full Text Available The paper presents the differential analysis of volumetric strain (DAVS. The method allows measurements of volumetric deformations of capillary-porous materials caused by water-ice phase change. The VSE indicator (volumetric strain effect, which under certain conditions can be interpreted as the minimum degree of phase change of water contained in the material pores, is proposed. The test results (DAVS for three materials with diversified microstructure: clinker brick, calcium-silicate brick and Portland cement mortar were compared with the test results for pore characteristics obtained with the mercury intrusion porosimetry.

  9. Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties

    OpenAIRE

    Al Majou , Hassan; Bruand , Ary; Duval , Odile

    2008-01-01

    International audience; Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties. Most pedotransfer functions (PTFs) developed over the last three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite of the high number of PTFs published, most being class- or continuous-PTFs, accuracy of prediction remains limited. In this study, we compared the performance ...

  10. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  11. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    Science.gov (United States)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  12. Impact of electricity prices and volumetric water allocation on energy and groundwater demand management: analysis from Western India

    International Nuclear Information System (INIS)

    Kumar, M.D.

    2005-01-01

    In recent years, power tariff policy has been increasingly advocated as a mean to influence groundwater use and withdrawal decisions of farmers in view of the failure of existing direct and indirect regulations on groundwater withdrawal in India. Many researchers argue that pro rata electricity tariff, with built in positive marginal cost of pumping could bring about efficient use of the resource, though some argue that the levels of tariff in which demand becomes elastic to pricing are too high to be viable from political and socio-economic points of view. The paper presents a theoretical model to analyze farmers' response to changes in power tariff and water allocation regimes vis a vis energy and groundwater use. It validates the model by analyzing water productivity in groundwater irrigation under different electricity pricing structures and water allocation regimes. Water productivity was estimated using primary data of gross crop inputs, cost of all inputs, and volumetric water inputs. The analysis shows that unit pricing of electricity influences groundwater use efficiency and productivity positively. It also shows that the levels of pricing at which demand for electricity and groundwater becomes elastic to tariff are socio-economically viable. Further, water productivity impacts of pricing would be highest when water is volumetrically allocated with rationing. Therefore, an effective power tariff policy followed by enforcement of volumetric water allocation could address the issue of efficiency, sustainability and equity in groundwater use in India

  13. Electromagnetically controlled measuring device for measuring injection quantities in a diesel injection pump volumetrically. Elektromagnetisch gesteuerte Messvorrichtung zur volumetrischen Messung von Einspritzmengen einer Dieseleinspritzpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K H; Mueller, M; Decker, R; Huber, G

    1990-11-22

    The invention concerns a measuring device for volumetric measurements of injection quantities of a diesel injection pump which injects its contents into a volumetric chamber controlled electromagnetically by a discharge valve and enclosed by a non-impact gas pressure loaded volumetric vessel and effects a retreating movement of the latter. The device is provided with an inductive path controller fitted with a differential pair of coils containing an axially movable ferromagnetic core. The path controller forms a part of a lifter rod connected to the volumetric vessel. It gives an opening signal to the discharge valve after each retreat of the volumetric vessel and a closing signal as soon as a defined height of suspension corresponding to the original position of the volumetric vessel after its return is reached.

  14. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    Science.gov (United States)

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  15. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures

    International Nuclear Information System (INIS)

    Huang Aimin; Liu Chunli; Ma Lin; Tong Zhangfa; Lin Ruisen

    2012-01-01

    Graphical abstract: Together with static light scattering measurement, volumetric properties of glycine, L-alanine and L-serine were determined and utilized to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrated that the interaction between amino acids and DMSO was greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. Hydrophobic aggregating of DMSO lead to a decrease in the hydrophobic effect of DMSO and the hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids, which was reflected by the solvation of proteins. Highlights: ► Determine volumetric properties of three amino acids in aqueous DMSO in details. ► Static light scattering measurement for clustering structure of aqueous DMSO. ► Volumetric behaviour of amino acids depends on clustering structure of aqueous DMSO. ► Clustering structure of aqueous DMSO influences solvation of protein and cellulose. - Abstract: For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, L-alanine and L-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2

  16. Reference method for total water in lint cotton by automated oven drying combined with volumetric Karl Fischer titration

    Science.gov (United States)

    In a preliminary study to measure total water in lint cotton we demonstrated that volumetric Karl Fischer Titration of moisture transported by a carrier gas from an attached small oven is more accurate than standard oven drying in air. The objective of the present study was to assess the measuremen...

  17. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  18. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  19. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    Science.gov (United States)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  20. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  1. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  2. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging.

    Science.gov (United States)

    Benkert, Thomas; Feng, Li; Sodickson, Daniel K; Chandarana, Hersh; Block, Kai Tobias

    2017-08-01

    Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Determination of density and volumetric water content of soil at multiple photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Un, A., E-mail: ademun25@yahoo.co [Department of Physics, Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100 Agri (Turkey); Demir, D.; Sahin, Y. [Department of Physics, Faculty of Science, Atatuerk University, 25240 Erzurum (Turkey)

    2011-08-15

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm{sup 3} cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were {sup 241}Am, {sup 133}Ba and {sup 137}Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  4. Determination of density and volumetric water content of soil at multiple photon energies

    International Nuclear Information System (INIS)

    Un, A.; Demir, D.; Sahin, Y.

    2011-01-01

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm 3 cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were 241 Am, 133 Ba and 137 Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  5. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  6. Water-powder mixtures at the onset of flowing

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    The knowledge of water demands of the manifold concrete ingredients is of vital interest for the design of concrete mixes. Physical properties like workability or strength and durability in hardened state are controlled by the total water content. Water demand is defined as the volumetric ratio of

  7. Need and trends of volumetric tests in recurring inspection of pressurized components in pressurized water reactors

    International Nuclear Information System (INIS)

    Bergemann, W.

    1982-01-01

    On the basis of the types of stress occurring in nuclear power plants and of practical results it has been shown that cracks in primary circuit components arise due to operating stresses in both the materials surfaces and the bulk of the materials. For this reason, volumetric materials testing is necessary in addition to surface testing. An outlook is given on the trends of volumetric testing. (author)

  8. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  9. In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...

    African Journals Online (AJOL)

    Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...

  10. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    International Nuclear Information System (INIS)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi; Has, Arzu Ceylan; Ogur, Methiye Gonul; Alhan, Aslihan

    2017-01-01

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  11. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  12. Measuring the layer-average volumetric water content in the uppermost 5 cm of soil using printed circuit board TDR probes

    International Nuclear Information System (INIS)

    Wang, W.; Kobayashi, T.; Chikushi, J.

    2000-01-01

    Newly designed printed circuit board TDR probes (PCBPs) were made, and they were calibrated by indoor experiment. A regression equation for estimating the volumetric water content from the dielectric constant measured with the PCBP was determined, which is almost the same as the well-known Topp's equation when the soil is rather wet while the difference becomes larger as the soil dries. The PCBP was designed to measure the average water content over a soil layer 5 cm thick because the thickness of soil layer involved in measuring water content by microwave remote sensing is several centimeters. A comparison experiment of measurements with PCBPs and those by microwave remote sensing was conducted in an arid area in the northwest of China. The results of this experiment show that the newly designed TDR probe is promising as the sensor to get ground truth of the surface wetness. This paper describes only the calibration of probes and the observations taken using them

  13. Control and design of volumetric composition in pultruded hybrid fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Hashemi, Fariborz; Tahir, Paridah

    2016-01-01

    composition (i.e. volume fractions of fibres, matrix and porosity) in hybrid fibre composites. The model is based on a constant local fibre volume fraction criterion. Good agreement is found between model predictions and experimental data of pultruded hybrid kenaf/glass fibre composites with variable hybrid...... fibre weight mixing ratios. To demonstrate the suitability of the model, simulations are performed for four different cases of volumetric composition in hybrid kenaf/glass composites....

  14. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi [Ondokuz Mayis University, Faculty of Medicine, Department of Radiology, Kurupelit, Samsun (Turkey); Has, Arzu Ceylan [Bilkent University, National Magnetic Resonance Research Center, Ankara (Turkey); Ogur, Methiye Gonul [Ondokuz Mayis University, Department of Genetics, Samsun (Turkey); Alhan, Aslihan [Ufuk University, Department of Statistics, Ankara (Turkey)

    2017-07-15

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  15. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  16. Clarification of the volumetric properties of the (tetrahydrofuran + water) systems [J. Chem. Thermodyn. 41 (2009) 1382–1386]: Author’s statement

    International Nuclear Information System (INIS)

    Belandria, Veronica; Pimentel-Rodas, Alfredo; Mohammadi, Amir H.; Galicia-Luna, Luis A.; Richon, Dominique

    2013-01-01

    Highlights: ► New experimental density data are reported for the (THF + water) systems. ► A vibrating tube densimeter has been used to perform the measurements. ► A discussion is made on the reliability of the generated data and other questions raised in the literature. - Abstract: Although reliable and consistent volumetric data can be derived from density measurements, the greatest experimental difficulty and largest measurement errors often occur in the very dilute regions of concentration. Such data are of great interest in separation processes where a high degree of purity is required. In this communication, the densities of the (tetrahydrofuran + water) systems have been carefully investigated in dilute regions. A vibrating tube densimeter has been used to perform the measurements. A discussion is made on the reliability of the generated experimental data and the questions raised in the literature.

  17. A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Jenkins, Thomas M; Burness, Christine; Connolly, Daniel J; Rao, D Ganesh; Hoggard, Nigel; Mawson, Susan; McDermott, Christopher J; Wilkinson, Iain D; Shaw, Pamela J

    2013-09-01

    Our objective was to investigate the potential of muscle volume, measured with magnetic resonance (MR), as a biomarker to quantify disease progression in patients with amyotrophic lateral sclerosis (ALS). In this longitudinal pilot study, we first sought to determine the stability of volumetric muscle MR measurements in 11 control subjects at two time-points. We assessed feasibility of detecting atrophy in four patients with ALS, followed at three-month intervals for 12 months. Muscle power and MR volume were measured in thenar eminence (TEm), first dorsal interosseous (1DIO), tibialis anterior (TA) and tongue. Changes over time were assessed using linear regression models and t-tests. Results demonstrated that, in controls, no volumetric MR changes were seen (mean volume variation in all muscles 0.1). In patients, between-subject heterogeneity was identified. Trends for volume loss were found in TEm (mean, - 26.84%, p = 0.056) and TA (- 8.29%, p = 0.077), but not in 1DIO (- 18.47%, p = 0.121) or tongue (< 5%, p = 0.367). In conclusion, volumetric muscle MR appears a stable measure in controls, and progressive volume loss was demonstrable in individuals with ALS in whom clinical weakness progressed. In this small study, subclinical atrophy was not demonstrable using muscle MR. Clinico-radiological discordance between muscle weakness and MR atrophy could reflect a contribution of upper motor neuron pathology.

  18. Volumetric changes and clinical outcome for petroclival meningiomas after primary treatment with Gamma Knife radiosurgery.

    Science.gov (United States)

    Sadik, Zjiwar H A; Lie, Suan Te; Leenstra, Sieger; Hanssens, Patrick E J

    2018-01-26

    OBJECTIVE Petroclival meningiomas (PCMs) can cause devastating clinical symptoms due to mass effect on cranial nerves (CNs); thus, patients harboring these tumors need treatment. Many neurosurgeons advocate for microsurgery because removal of the tumor can provide relief or result in symptom disappearance. Gamma Knife radiosurgery (GKRS) is often an alternative for surgery because it can cause tumor shrinkage with improvement of symptoms. This study evaluates qualitative volumetric changes of PCM after primary GKRS and its impact on clinical symptoms. METHODS The authors performed a retrospective study of patients with PCM who underwent primary GKRS between 2003 and 2015 at the Gamma Knife Center of the Elisabeth-Tweesteden Hospital in Tilburg, the Netherlands. This study yields 53 patients. In this study the authors concentrate on qualitative volumetric tumor changes, local tumor control rate, and the effect of the treatment on trigeminal neuralgia (TN). RESULTS Local tumor control was 98% at 5 years and 93% at 7 years (Kaplan-Meier estimates). More than 90% of the tumors showed regression in volume during the first 5 years. The mean volumetric tumor decrease was 21.2%, 27.1%, and 31% at 1, 3, and 6 years of follow-up, respectively. Improvement in TN was achieved in 61%, 67%, and 70% of the cases at 1, 2, and 3 years of follow-up, respectively. This was associated with a mean volumetric tumor decrease of 25% at the 1-year follow-up to 32% at the 3-year follow-up. CONCLUSIONS GKRS for PCMs yields a high tumor control rate with a low incidence of neurological deficits. Many patients with TN due to PCM experienced improvement in TN after radiosurgery. GKRS achieves significant volumetric tumor decrease in the first years of follow-up and thereafter.

  19. Soft bilateral filtering volumetric shadows using cube shadow maps.

    Directory of Open Access Journals (Sweden)

    Hatam H Ali

    Full Text Available Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications.

  20. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  1. Transfer laws between water and freon 113 for average volumetric steam quality, pressure drop, and critical heat flux

    International Nuclear Information System (INIS)

    Nabizadeh, H.

    1977-01-01

    Simulation of the thermohydraulic processes of the steady-state reactor operation with boiling water and typical fuel element geometries leads to considerable increase of the heat rates to be tranferred and thus to an increase of the experimental cost which can hardly be justified. By proper choice of a model fluid with low heat of evaporation the system parameters like pressure, temperature, and heat rate, while retaining the original geometry, may be reduced to a fraction of those of the original fluid water. This permits not only a decrease in experimental cost but also a modification of the existing calculation data under more favorable experimental conditions. Starting from these considerations the cooling medium R113 was used as model fluid in carrying out the experiments. The necessary knowledge of the thermodynamical laws of simularity, however, have to be determined first of all in simple geometries and the scaling factors are then derived from them. In this connection the following experimental studies have been carried out with R113: a) average volumetric steam quality; b) two-phase pressure drop; c) critical heat flux. (orig.) [de

  2. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.

    Directory of Open Access Journals (Sweden)

    Abbas Cheddad

    Full Text Available INTRODUCTION: Mammographic density, the white radiolucent part of a mammogram, is a marker of breast cancer risk and mammographic sensitivity. There are several means of measuring mammographic density, among which are area-based and volumetric-based approaches. Current volumetric methods use only unprocessed, raw mammograms, which is a problematic restriction since such raw mammograms are normally not stored. We describe fully automated methods for measuring both area and volumetric mammographic density from processed images. METHODS: The data set used in this study comprises raw and processed images of the same view from 1462 women. We developed two algorithms for processed images, an automated area-based approach (CASAM-Area and a volumetric-based approach (CASAM-Vol. The latter method was based on training a random forest prediction model with image statistical features as predictors, against a volumetric measure, Volpara, for corresponding raw images. We contrast the three methods, CASAM-Area, CASAM-Vol and Volpara directly and in terms of association with breast cancer risk and a known genetic variant for mammographic density and breast cancer, rs10995190 in the gene ZNF365. Associations with breast cancer risk were evaluated using images from 47 breast cancer cases and 1011 control subjects. The genetic association analysis was based on 1011 control subjects. RESULTS: All three measures of mammographic density were associated with breast cancer risk and rs10995190 (p0.10 for risk, p>0.03 for rs10995190. CONCLUSIONS: Our results show that it is possible to obtain reliable automated measures of volumetric and area mammographic density from processed digital images. Area and volumetric measures of density on processed digital images performed similar in terms of risk and genetic association.

  3. Aspects of volumetric efficiency measurement for reciprocating engines

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2013-01-01

    Full Text Available The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined. [Acknowledgments. The paper is the result of the research within the project TR 35041 financed by the Ministry of Science and Technological Development of the Republic of Serbia

  4. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  5. The Effect of Elevation on Volumetric Measurements of the Lower Extremity

    Directory of Open Access Journals (Sweden)

    Cordial M. Gillette

    2017-07-01

    Full Text Available Background: The empirical evidence for the use of RICE (rest, ice, compression, elevation has been questioned regarding its   clinical effectiveness. The component of RICE that has the least literature regarding its effectiveness is elevation. Objective: The objective of this study was to determine if various positions of elevation result in volumetric changes of the lower extremity. Methodology: A randomized crossover design was used to determine the effects of the four following conditions on volumetric changes of the lower extremity: seated at the end of a table (seated, lying supine (flat, lying supine with the foot elevated 12 inches off the table (elevated, and lying prone with the knees bent to 90 degrees (prone. The conditions were randomized using a Latin Square. Each subject completed all conditions with at least 24 hours between each session. Pre and post volumetric measurements were taken using a volumetric tank. The subject was placed in one of the four described testing positions for 30 minutes. The change in weight of the displaced water was the main outcome measure. The data was analyzed using an ANOVA of the pre and post measurements with a Bonferroni post hoc analysis. The level of significance was set at P<.05 for all analyses. Results: The only statistically significant difference was between the gravity dependent position (seated and all other positions (p <.001. There was no significant difference between lying supine (flat, on a bolster (elevated, or prone with the knees flexed to 90 degrees (prone. Conclusions: From these results, the extent of elevation does not appear to have an effect on changes in low leg volume. Elevation above the heart did not significantly improve reduction in limb volume, but removing the limb from a gravity dependent position might be beneficial.

  6. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  7. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...

  8. Water pressure control device for control rod drive

    International Nuclear Information System (INIS)

    Sato, Hideyuki.

    1981-01-01

    Purpose: To minimize the fluctuations in the reactor water level upon occurrence of abnormality by inputting the level signal of the reactor to an arithmetic unit for controlling the pressure of control rod drive water to thereby enable effective reactor level control. Constitution: Signal from a flow rate transmitter is inputted into an arithmetic unit to perform constant flow rate control upon normal operation. While on the other hand, if abnormality occurs such as feedwater pump trips, the arithmetic unit is switched from the constant flow rate control to the reactor water level control. Reactor water level signal is inputted into the arithmetic unit and the control valve is most suitably controlled, whereby water is fed from CST to the reactor by way of control rod drive water system to secure the reactor water level if feedwater to the reactor is interrupted by loss of coolants on the feedwater system. Since this enables to minimize the fluctuations in the reactor water level upon abnormality, the reactor water level can be controlled most suitably by the reactor water level signal. (Moriyama, K.)

  9. Volumetric and viscometric properties of binary and ternary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate, monoethanolamine and water

    International Nuclear Information System (INIS)

    Yin, Yaran; Zhu, Chunying; Ma, Youguang

    2016-01-01

    Highlights: • Densities and viscosities of [Bmim][BF 4 ] + MEA + H 2 O solutions were measured. • Volumetric and viscometric properties were deduced from experimental results. • Intermolecular interactions were analysed by volumetric and viscometric properties. - Abstract: Densities and viscosities of binary {[Bmim][BF 4 ] + H 2 O}, {[Bmim][BF 4 ] + MEA}, (MEA + H 2 O) and ternary mixtures {[Bmim][BF 4 ] + MEA + H 2 O} were measured at T = (293.15–333.15) K. The volumetric and viscometric properties, such as excess molar volume V E , viscosity deviation Δη, and excess Gibbs energy of activation of viscous flow ΔG ∗E for all mixtures, and apparent molar volume, excess partial molar volume and Grunberg-Nissan interaction parameter G 12 for binary mixtures, were deduced from experimental results, and the intermolecular interactions in solutions were also analysed. The excess molar volumes were correlated using the Redlich-Kister polynomial equation for binary mixtures, and Singh et al. equation for the ternary mixture with corresponding binary parameters. The viscosities of binary and ternary solutions were respectively fitted by Jouyban-Acree equation and its extended equation at each measurement temperature, the correlated values are in good agreement with the corresponding experimental data.

  10. Volumetrics relate to the development of depression after traumatic brain injury.

    Science.gov (United States)

    Maller, Jerome J; Thomson, Richard H S; Pannek, Kerstin; Bailey, Neil; Lewis, Philip M; Fitzgerald, Paul B

    2014-09-01

    Previous research suggests that many people who sustain a traumatic brain injury (TBI), even of the mild form, will develop major depression (MD). We previously reported white matter integrity differences between those who did and did not develop MD after mild TBI. In this current paper, we aimed to investigate whether there were also volumetric differences between these groups, as suggested by previous volumetric studies in mild TBI populations. A sample of TBI-with-MD subjects (N=14), TBI-without-MD subjects (N=12), MD-without-TBI (N=26) and control subjects (no TBI or MD, N=23), received structural MRI brain scans. T1-weighted data were analysed using the Freesurfer software package which produces automated volumetric results. The findings of this study indicate that (1) TBI patients who develop MD have reduced volume in temporal, parietal and lingual regions compared to TBI patients who do not develop MD, and (2) MD patients with a history of TBI have decreased volume in the temporal region compared to those who had MD but without a history of TBI. We also found that more severe MD in those with TBI-with-MD significantly correlated with reduced volume in anterior cingulate, temporal lobe and insula. These findings suggest that volumetric reduction to specific regions, including parietal, temporal and occipital lobes, after a mild TBI may underlie the susceptibility of these patients developing major depression, in addition to altered white matter integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  12. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  13. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  14. Volumetric formulation of lattice Boltzmann models with energy conservation

    OpenAIRE

    Sbragaglia, M.; Sugiyama, K.

    2010-01-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. ...

  15. Cost-effectiveness of volumetric alcohol taxation in Australia.

    Science.gov (United States)

    Byrnes, Joshua M; Cobiac, Linda J; Doran, Christopher M; Vos, Theo; Shakeshaft, Anthony P

    2010-04-19

    To estimate the potential health benefits and cost savings of an alcohol tax rate that applies equally to all alcoholic beverages based on their alcohol content (volumetric tax) and to compare the cost savings with the cost of implementation. Mathematical modelling of three scenarios of volumetric alcohol taxation for the population of Australia: (i) no change in deadweight loss, (ii) no change in tax revenue, and (iii) all alcoholic beverages taxed at the same rate as spirits. Estimated change in alcohol consumption, tax revenue and health benefit. The estimated cost of changing to a volumetric tax rate is $18 million. A volumetric tax that is deadweight loss-neutral would increase the cost of beer and wine and reduce the cost of spirits, resulting in an estimated annual increase in taxation revenue of $492 million and a 2.77% reduction in annual consumption of pure alcohol. The estimated net health gain would be 21 000 disability-adjusted life-years (DALYs), with potential cost offsets of $110 million per annum. A tax revenue-neutral scenario would result in an 0.05% decrease in consumption, and a tax on all alcohol at a spirits rate would reduce consumption by 23.85% and increase revenue by $3094 million [corrected]. All volumetric tax scenarios would provide greater health benefits and cost savings to the health sector than the existing taxation system, based on current understandings of alcohol-related health effects. An equalized volumetric tax that would reduce beer and wine consumption while increasing the consumption of spirits would need to be approached with caution. Further research is required to examine whether alcohol-related health effects vary by type of alcoholic beverage independent of the amount of alcohol consumed to provide a strong evidence platform for alcohol taxation policies.

  16. [The water content reference material of water saturated octanol].

    Science.gov (United States)

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  17. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  18. Methodology for monitoring radionuclide activity in waste waters; Metodologia para el control de radionuclidos en aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R; Hernandez, R; Fernandez, J; Vizcaino, M [Centro de Estudios Aplicados al Desarrollo Nuclear (CEADEN), La Habana (Cuba)

    1996-03-01

    A procedure for the determination of the volumetric specific activity of the liquid effluents of the CEADEN was established. The waters of the retention tank are sampled weekly and analyzed by gamma and beta spectrometry, determining the activity of several isotopes used in the radiochemistry works.

  19. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli.

    Science.gov (United States)

    Harder, Björn-Johannes; Bettenbrock, Katja; Klamt, Steffen

    2018-01-01

    Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two-stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr -1 at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (p R ) and its expression was controlled by the temperature-sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one-stage and two-stage bioreactor cultivations. The two-stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one-stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature-dependent activation of gene expression by the Lambda promoters (p R /p L ) has been frequently used to improve protein or, in a few cases, metabolite production in two-stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock-down an essential gene (icd) in E. coli to design a two-stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the

  20. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  1. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    Science.gov (United States)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    failure envelope of the Mohr-Coulomb criterion that describes shear-related rupture. The critical value of the volumetric strain for rupture may be controlled by the apparent cohesion and apparent angle of internal friction of the Mohr-Coulomb criterion.

  2. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  3. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    Science.gov (United States)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  4. Volumetric full-range magnetomotive optical coherence tomography

    Science.gov (United States)

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  5. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  6. Determination of Uncertainty for a One Milli Litre Volumetric Pipette

    International Nuclear Information System (INIS)

    Torowati; Asminar; Rahmiati; Arif-Sasongko-Adi

    2007-01-01

    An observation had been conducted to determine the uncertainty of volumetric pipette. The uncertainty was determined from data obtained from a determine process which used method of gravimetry. Calculation result from an uncertainty of volumetric pipette the confidence level of 95% and k=2. (author)

  7. Accuracy and Reliability of Cone-Beam Computed Tomography for Linear and Volumetric Mandibular Condyle Measurements. A Human Cadaver Study.

    Science.gov (United States)

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Hernández, Virginia; Serrano-Sánchez, Pedro; Guarinos, Juan; Paredes-Gallardo, Vanessa

    2017-09-20

    The accuracy of Cone-Beam Computed Tomography (CBCT) on linear and volumetric measurements on condyles has only been assessed on dry skulls. The aim of this study was to evaluate the reliability and accuracy of linear and volumetric measurements of mandibular condyles in the presence of soft tissues using CBCT. Six embalmed cadaver heads were used. CBCT scans were taken, followed by the extraction of the condyles. The water displacement technique was used to calculate the volumes of the condyles and three linear measurements were made using a digital caliper, these measurements serving as the gold standard. Surface models of the condyles were obtained using a 3D scanner, and superimposed onto the CBCT images. Condyles were isolated on the CBCT render volume using the surface models as reference and volumes were measured. Linear measurements were made on CBCT slices. The CBCT method was found to be reliable for both volumetric and linear measurements (CV  0.90). Highly accurate values were obtained for the three linear measurements and volume. CBCT is a reliable and accurate method for taking volumetric and linear measurements on mandibular condyles in the presence of soft tissue, and so a valid tool for clinical diagnosis.

  8. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  9. Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures

    International Nuclear Information System (INIS)

    Xu, Yingjie

    2013-01-01

    Highlights: • Densities and viscosities of N4AC + water and N4NO 3 + water mixtures were measured. • Volumetric and viscosity properties were calculated. • Redlich–Kister equation was used to correlate the excess molar volumes and viscosity deviations. • Electrical conductivity was fitted according to the empirical Casteel–Amis equation. • The interactions and structural effects of N4AC or N4NO 3 with water were analyzed. -- Abstract: Densities and viscosities of (n-butylammonium acetate (N4AC) protic ionic liquid + water) and (n-butylammonium nitrate (N4NO 3 ) protic ionic liquid + water) mixtures were measured at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K under atmospheric pressure. Electrical conductivities of the above-mentioned systems were determined at 298.15 K. Excess molar volumes and viscosity deviations were obtained from the experimental results and fitted to the Redlich–Kister equation with satisfactory results. Other volumetric properties, such as apparent molar volumes, partial molar volumes, and excess partial molar volumes were also calculated. The concentration dependence of electrical conductivity was fitted according to the empirical Casteel–Amis equation. Based on the measured and derived properties, the molecular interactions and structural factors in the above-mentioned systems were discussed

  10. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  11. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  12. Change of deuterium volume content in heavy water during carbon dioxide dissolution in it

    International Nuclear Information System (INIS)

    Efimova, T.I.; Kapitanov, V.F.; Levchenko, G.V.

    1985-01-01

    Carbon dioxide solution density in heavy water at increased temperature and pressure is measured and the influence of carbon dioxide solubility in heavy water on volumetric content of deuterium in it is determined. Investigations were conducted in the temperature range of 303-473 K and pressure range of 3-20 MPa by the autoclave method. Volumetric content of deuterium in heavy water decreases sufficiently with CO 2 dissolved in it in comparison with pure D 2 O under the similar conditions, and this decrease becomes more sufficient with the pressure increase. With the temperature increase the volumetric content of deuterium both for heavy water and for saturated carbon solution in heavy water decreases

  13. Volumetric breast density affects performance of digital screening mammography

    OpenAIRE

    Wanders, JO; Holland, K; Veldhuis, WB; Mann, RM; Pijnappel, RM; Peeters, PH; Van Gils, CH; Karssemeijer, N

    2016-01-01

    PURPOSE: To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). METHODS: We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the Ameri...

  14. MR volumetric assessment of endolymphatic hydrops

    International Nuclear Information System (INIS)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E.; Dietrich, O.; Flatz, W.; Ertl-Wagner, B.; Keeser, D.

    2015-01-01

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  15. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  16. Volumetric display using a roof mirror grid array

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuuki; Ohno, Keisuke; Maekawa, Satoshi

    2010-02-01

    A volumetric display system using a roof mirror grid array (RMGA) is proposed. The RMGA consists of a two-dimensional array of dihedral corner reflectors and forms a real image at a plane-symmetric position. A two-dimensional image formed with a RMGA is moved at thigh speed by a mirror scanner. Cross-sectional images of a three-dimensional object are displayed in accordance with the position of the image plane. A volumetric image can be observed as a stack of the cross-sectional images by high-speed scanning. Image formation by a RMGA is free from aberrations. Moreover, a compact optical system can be constructed because a RMGA doesn't have a focal length. An experimental volumetric display system using a galvanometer mirror and a digital micromirror device was constructed. The formation of a three-dimensional image consisting of 1024 × 768 × 400 voxels is confirmed by the experimental system.

  17. A comparison of substantia nigra T1 hyperintensity in Parkinson's disease dementia, Alzheimer's disease and age-matched controls: Volumetric analysis of neuromelanin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Won Jin; Park, Ju Yeon; Yun, Won Sung; Jeon, Ji Yeong; Moon, Yeon Sil; Kim, Hee Jin; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of); Kwak, Ki Chang; Lee, Jong Min [Dept. of Biomedical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-09-15

    Neuromelanin loss of substantia nigra (SN) can be visualized as a T1 signal reduction on T1-weighted high-resolution imaging. We investigated whether volumetric analysis of T1 hyperintensity for SN could be used to differentiate between Parkinson's disease dementia (PDD), Alzheimer's disease (AD) and age-matched controls. This retrospective study enrolled 10 patients with PDD, 18 patients with AD, and 13 age-matched healthy elderly controls. MR imaging was performed at 3 tesla. To measure the T1 hyperintense area of SN, we obtained an axial thin section high-resolution T1-weighted fast spin echo sequence. The volumes of interest for the T1 hyperintense SN were drawn onto heavily T1-weighted FSE sequences through midbrain level, using the MIPAV software. The measurement differences were tested using the Kruskal-Wallis test followed by a post hoc comparison. A comparison of the three groups showed significant differences in terms of volume of T1 hyperintensity (p < 0.001, Bonferroni corrected). The volume of T1 hyperintensity was significantly lower in PDD than in AD and normal controls (p < 0.005, Bonferroni corrected). However, the volume of T1 hyperintensity was not different between AD and normal controls (p = 0.136, Bonferroni corrected). The volumetric measurement of the T1 hyperintensity of SN can be an imaging marker for evaluating neuromelanin loss in neurodegenerative diseases and a differential in PDD and AD cases.

  18. Evaluation of respiratory dynamics by volumetric capnography during submaximal exercise protocol of six minutes on treadmill in cystic fibrosis patients.

    Science.gov (United States)

    Parazzi, Paloma L F; Marson, Fernando A L; Ribeiro, Maria A G O; Schivinski, Camila I S; Ribeiro, José D

    2017-11-29

    Volumetric capnography provides the standard CO 2 elimination by the volume expired per respiratory cycle and is a measure to assess pulmonary involvement. Thus, the objective of this study was to evaluate the respiratory dynamics of healthy control subjects and those with cystic fibrosis in a submaximal exercise protocol for six minutes on the treadmill, using volumetric capnography parameters (slope 3 [Slp3], Slp3/tidal volume [Slp3/TV], and slope 2 [Slp2]). This was a cross-sectional study with 128 subjects (cystic fibrosis, 64 subjects; controls, 64 subjects]. Participants underwent volumetric capnography before, during, and after six minutes on the treadmill. Statistical analysis was performed using the Friedman, Mann-Whitney, and Kruskal-Wallis tests, considering age and sex. An alpha=0.05 was considered. Six minutes on the treadmill evaluation: in cystic fibrosis, volumetric capnography parameters were different before, during, and after six minutes on the treadmill; the same was observed for the controls, except for Slp2. Regarding age, an Slp3 difference was observed in cystic fibrosis patients regardless of age, at all moments, and in controls for age≥12 years; a difference in Slp3/TV was observed in cystic fibrosis and controls, regardless of age; and an Slp2 difference in the cystic fibrosis, regardless of age. Regarding sex, Slp3 and Slp3/TV differences were observed in cystic fibrosis regardless of sex, and in controls in male participants; an Slp2 difference was observed in the cystic fibrosis and female participants. The analysis between groups (cystic fibrosis and controls) indicated that Slp3 and Slp3/TV has identified the CF, regardless of age and sex, while the Slp2 showed the CF considering age. Cystic fibrosis showed greater values of the parameters before, during, and after exercise, even when stratified by age and sex, which may indicate ventilation inhomogeneity in the peripheral pathways in the cystic fibrosis. Copyright © 2017

  19. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  20. Volumetric PIV behind mangrove-type root models

    Science.gov (United States)

    Kazemi, Amirkhosro; van de Riet, Keith; Curet, Oscar M.

    2017-11-01

    Mangrove trees form dense networks of prop roots in coastal intertidal zones. The interaction of mangroves with the tidal flow is fundamental in estuaries and shoreline by providing water filtration, protection against erosion and habitat for aquatic animals. In this work, we modeled the mangrove prop roots with a cluster of rigid circular cylinders (patch) to investigate its hydrodynamics. We conducted 2-D PIV and V3V in the near- and far-wake in the recirculating water channel. Two models were considered: (1) a rigid patch, and (2) a flexible patch modeled as rigid cylinders with a flexible hinge. We found that Strouhal number changes with porosity while the patch diameter is constant. Based on the wake signature, we defined an effective diameter length scale. The volumetric flow measurements revealed a regular shedding forming von Kármán vortices for the rigid patch while the flexible patch produced a less uniform wake where vortices were substantially distorted. We compare the wake structure between that 2-D PIV and V3V. This analysis of the hydrodynamics of mangrove-root like models can also be extended to understand other complex flows including bio-inspired coastal infrastructures, damping-wave systems, and energy harvesting devices.

  1. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    Science.gov (United States)

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  2. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  3. Degree of contribution (DoC) feature selection algorithm for structural brain MRI volumetric features in depression detection.

    Science.gov (United States)

    Kipli, Kuryati; Kouzani, Abbas Z

    2015-07-01

    Accurate detection of depression at an individual level using structural magnetic resonance imaging (sMRI) remains a challenge. Brain volumetric changes at a structural level appear to have importance in depression biomarkers studies. An automated algorithm is developed to select brain sMRI volumetric features for the detection of depression. A feature selection (FS) algorithm called degree of contribution (DoC) is developed for selection of sMRI volumetric features. This algorithm uses an ensemble approach to determine the degree of contribution in detection of major depressive disorder. The DoC is the score of feature importance used for feature ranking. The algorithm involves four stages: feature ranking, subset generation, subset evaluation, and DoC analysis. The performance of DoC is evaluated on the Duke University Multi-site Imaging Research in the Analysis of Depression sMRI dataset. The dataset consists of 115 brain sMRI scans of 88 healthy controls and 27 depressed subjects. Forty-four sMRI volumetric features are used in the evaluation. The DoC score of forty-four features was determined as the accuracy threshold (Acc_Thresh) was varied. The DoC performance was compared with that of four existing FS algorithms. At all defined Acc_Threshs, DoC outperformed the four examined FS algorithms for the average classification score and the maximum classification score. DoC has a good ability to generate reduced-size subsets of important features that could yield high classification accuracy. Based on the DoC score, the most discriminant volumetric features are those from the left-brain region.

  4. Spirometry and volumetric capnography in lung function assessment of obese and normal-weight individuals without asthma.

    Science.gov (United States)

    Ferreira, Mariana S; Mendes, Roberto T; Marson, Fernando A L; Zambon, Mariana P; Antonio, Maria A R G M; Paschoal, Ilma A; Toro, Adyléia A D C; Severino, Silvana D; Ribeiro, Maria A G O; Ribeiro, José D

    To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV 1 /FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p11 years (p<0.05). Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV 1 /FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  5. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  6. Assessing the Blue and Green Water Footprint of Lucerne for Milk Production in South Africa

    OpenAIRE

    Morne E. Scheepers; Henry Jordaan

    2016-01-01

    The Global Water Footprint Standard approach was used to calculate the volumetric blue and green water footprint indicator for lucerne production as important feed for dairy cows in a major lucerne production region in South Africa. The degree of sustainability of water use then was assessed by comparing water use to water availability for the region. The results show a volumetric water footprint indicator of 378 m3/tonne of lucerne. Of the total blue and green water footprint, 55% is green w...

  7. Volumetric properties of glucose in aqueous HCI solutions at temperatures from 278.15 to 318.15 K

    Institute of Scientific and Technical Information of China (English)

    ZHUO Kelei; ZHANG Qiufen; XUAN Xiaopeng; ZHANG Hucheng; WANG Jianji

    2007-01-01

    Densities have been measured for Glucose+HC1 +Water at 10-degree intervals from 278.15 to 318.15 K.The apparent molar volumes (Vφ,G) and standard partial molar volumes (V0φ,G) for Glucose in aqueous solution of 0.2,0.4,0.7,1.1,1.6,2.1 mol.kg-1 HCI have been calculated as well as volumetric interaction parameters (VEG) for Glucose-HC1 in water and standard partial molar expansion coefficients ((e)V0φ,G/(e)T)p.Results show that (1) the apparent molar volume for Glucose in aqueous HC1 solutions increases lineally with increasing molality of Glucose and HC1; (2) V0φ,Gfor Glucose in aqueous HC1 solutions increases lineally with increasing molality of HC1; (3) the volumetric interaction parameters for Glucose-HC1 pair in water are small positive and vary slightly with temperature; (4) the relation between V0φ,G and temperature exists as V0φ,G =α0+α1(T-273.15 K)2/3;(5)values of((e)V0φ,G/(e)T)p are positive and increase as temperatures rise,and at given temperatures decrease slightly with increasing molalities of HC1,indicating that the hydration of glucose decreases with increasing temperature and molality of HCI.These phenomena are interpreted successfully by the structure interaction model.

  8. Improved Second-Generation 3-D Volumetric Display System. Revision 2

    Science.gov (United States)

    1998-10-01

    computer control, uses infrared lasers to address points within a rare-earth-infused solid glass cube. Already, simple animated computer-generated images...Volumetric Display System permits images to be displayed in a three- dimensional format that can be observed without the use of special glasses . Its...MM 120 nm 60 mm nI POLARIZING I $-"• -’’""BEAMSPLI’i-ER ) 4P40-MHz 50-MHz BW PLRZN i TeO2 MODULATORS TeO2 DEFLECTORS Figure 1-4. NEOS four-channel

  9. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  10. Reference volumetric samples of gamma-spectroscopic sources

    International Nuclear Information System (INIS)

    Taskaev, E.; Taskaeva, M.; Grigorov, T.

    1993-01-01

    The purpose of this investigation is to determine the requirements for matrices of reference volumetric radiation sources necessary for detector calibration. The first stage of this determination consists in analysing some available organic and nonorganic materials. Different sorts of food, grass, plastics, minerals and building materials have been considered, taking into account the various procedures of their processing (grinding, screening, homogenizing) and their properties (hygroscopy, storage life, resistance to oxidation during gamma sterilization). The procedures of source processing, sample preparation, matrix irradiation and homogenization have been determined. A rotation homogenizing device has been elaborated enabling to homogenize the matrix activity irrespective of the vessel geometry. 33 standard volumetric radioactive sources have been prepared: 14 - on organic matrix and 19 - on nonorganic matrix. (author)

  11. Effects of Prepolymerized Particle Size and Polymerization Kinetics on Volumetric Shrinkage of Dental Modeling Resins

    Directory of Open Access Journals (Sweden)

    Tae-Yub Kwon

    2014-01-01

    Full Text Available Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control. The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P>0.05 or significantly larger (P<0.05 than that of the control resin and were related to the polymerization kinetics (P<0.05 rather than the PMMA bead size (P=0.335. Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins.

  12. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study

    International Nuclear Information System (INIS)

    Fabel, M.; Biederer, J.; Jochens, A.; Bornemann, L.; Soza, G.; Heller, M.; Bolte, H.

    2011-01-01

    Purpose: Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Materials and methods: Fifty artificial lymph nodes were produced in a size range from 10 to 55 mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST ® ) within different surrounding tissues. MDCT was performed using different collimations (1–5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. Results: The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. Conclusion: The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3 mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable

  13. Systematic bias in the measurement of water in oils by tubular oven evaporation and azeotropic distillation.

    Science.gov (United States)

    Margolis, S A; Mele, T

    2001-10-15

    Water in oil has been measured by tubular oven evaporation and by azeotropic distillation into a coulometric moisture analyzer. The results of these measurements were compared to the results obtained by volumetric titration of water in oil. The volumetric measurements were consistently higher than the measurements made by tubular oven evaporation or azeotropic distillation. A mass balance study was performed by volumetric Karl Fischer titration of the water in the oil that remained in the tubular oven and in the distillation apparatus. This study indicated that measurable amounts of water were not removed after exhaustive evaporation or distillation. The sum of the water removed by distillation from toluene and that remaining in the distillation chamber was equal to the amount of water measured in the oil by the volumetric method. The data are consistent with the existence of an oil-water azeotrope that does not release water upon evaporation at 160 degrees C or upon dissolution in toluene and distillation of the water-toluene azeotrope. These results were obtained for oils varying in viscosity from 8 to 850 m2/s, and the amount of water remaining associated with the oil appears to be dependent upon the composition of the oil and the method of analysis.

  14. A volumetric three-dimensional digital light photoactivatable dye display

    Science.gov (United States)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  15. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  16. Modeling of boron control during power transients in a pressurized water reactor

    International Nuclear Information System (INIS)

    Mathieu, P.; Distexhe, E.

    1986-01-01

    Accurate control instructions in a reactor control aid computer are included in order to realize the boron makeup throughput, which is required to obtain the boron concentration in the primary coolant loop, predicted by a neutronic code. A modeling of the transfer function between the makeup and the primary loop is proposed. The chemical and volumetric control system, the pressurizer, and the primary loop are modeled as instantaneous diffusion cells. The pipes are modeled as time lag lines. The model provides the unstationary boron distributions in the different elements of the setup. A numerical code is developed to calculate the time evolutions of the makeup throughput during power transients

  17. Volumetric 3-component velocimetry measurements of the flow field on the rear window of a generic car model

    Directory of Open Access Journals (Sweden)

    Tounsi Nabil

    2012-01-01

    Full Text Available Volumetric 3-component Velocimetry measurements are carried out in the flow field around the rear window of a generic car model, the so-called Ahmed body. This particular flow field is known to be highly unsteady, three dimensional and characterized by strong vortices. The volumetric velocity measurements from the present experiments provide the most comprehensive data for this flow field to date. The present study focuses on the wake flow modifications which result from using a simple flow control device, such as the one recently employed by Fourrié et al. [1]. The mean data clearly show the structure of this complex flow and confirm the drag reduction mechanism suggested by Fourrié et al. The results show that strengthening the separated flow leads to weakening the longitudinal vortices and vice versa. The present paper shows that the Volumetric 3-component Velocimetry technique is a powerful tool used for a better understanding of a threedimensional unsteady complex flow such that developing around a bluffbody.

  18. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  19. Volumetric changes and peri-implant health at implant sites with or without soft tissue grafting in the esthetic zone, a retrospective case-control study with a 5-year follow-up.

    Science.gov (United States)

    Bienz, Stefan P; Jung, Ronald E; Sapata, Vitor M; Hämmerle, Christoph H F; Hüsler, Jürg; Thoma, Daniel S

    2017-11-01

    To evaluate the volumetric changes and peri-implant health at implant sites with and without previous soft tissue grafting over a 5-year observation period. In 18 partially edentulous patients, dental implants were placed in the esthetic zone (15-25) with simultaneous guided bone regeneration, followed by submerged healing. During the healing phase, eight patients (test) received a subepithelial connective tissue graft, whereas 10 patients (control) did not receive any soft tissue augmentation. Subsequently, abutment connection was performed and final reconstructions were inserted. Impressions were taken 1 week after crown insertion and at 5 years. Obtained casts were scanned and superimposed for volumetric and linear measurements. The mean distance (MD) in the mid-buccal area between the two surfaces and the differences in buccal marginal mucosal level (bMML change ) and in ridge width (RW change ) were evaluated. Peri-implant health was assessed using probing pocket depth (PPD) values, plaque index (PlI) and bleeding on probing (BOP). At a median follow-up time of 60.5 months a median MD of -0.38 mm (Min: -0.94; Max: -0.03) (test) and of -0.51 mm (Min: -0.76; Max: 0.05) (control) was calculated. The level of the margo mucosae (bMML change ) demonstrated a median loss of -0.42 mm (Min: -1.1; Max: -0.01) (test) and of -0.33 mm (Min: -1.02; Max: 0.00) (control). The median RW change ranged between -0.44 mm and -0.73 mm (test) and between -0.49 mm and -0.54 mm (control). Mean PPD values slightly increased, whereas PlI and BOP remained stable over time in both groups. None of the comparisons between the groups revealed statistically significant differences (P > 0.35). A small sample size must be considered, however. Limited by a retrospective case-control study design, implant sites with and without soft tissue grafting on the buccal side revealed only minimal volumetric and linear changes and stability of peri-implant parameters over 5 years. © 2017

  20. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  1. Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI

    NARCIS (Netherlands)

    Potters, Wouter V.; van Ooij, Pim; Marquering, Henk; VanBavel, Ed; Nederveen, Aart J.

    2015-01-01

    PurposeTo assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. Materials and MethodsVolumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized

  2. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  3. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  4. Volumetric humidity timely variation, at different depths, in soils of a toposequence of the Reconcavo Baiano - Brazil

    International Nuclear Information System (INIS)

    Ribeiro, Antonio Carlos; Costa, Liovando Marciano da; Paiva, Arlicelio de Queiroz; Souza, Luciano da Silva; Santana, Marlete Bastos

    1997-01-01

    Aiming the time basis volumetric humidity evaluation, at different depths, the present work has been developed in a Reconcavo Baiano toposequence consisting of three different soils, in accordance with the distances from the toposequence begin. A neutron probe has been used for determination of the soil water contents. The relative counting of the neutron probe has been converted to gravimetric humidity by using regression equation for each type of soil

  5. Volumetric B1 (+) mapping of the brain at 7T using DREAM.

    Science.gov (United States)

    Nehrke, Kay; Versluis, Maarten J; Webb, Andrew; Börnert, Peter

    2014-01-01

    To tailor and optimize the Dual Refocusing Echo Acquisition Mode (DREAM) approach for volumetric B1 (+) mapping of the brain at 7T. A new DREAM echo timing scheme based on the virtual stimulated echo was derived to minimize potential effects of transverse relaxation. Furthermore, the DREAM B1 (+) mapping performance was investigated in simulations and experimentally in phantoms and volunteers for volumetric applications, studying and optimizing the accuracy of the sequence with respect to saturation effects, slice profile imperfections, and T1 and T2 relaxation. Volumetric brain protocols were compiled for different isotropic resolutions (5-2.5 mm) and SENSE factors, and were studied in vivo for different RF drive modes (circular/linear polarization) and the application of dielectric pads. Volumetric B1 (+) maps with good SNR at 2.5 mm isotropic resolution were acquired in about 20 s or less. The specific absorption rate was well below the safety limits for all scans. Mild flow artefacts were observed in the large vessels. Moreover, a slight contrast in the ventricle was observed in the B1 (+) maps, which could be attributed to T1 and T2 relaxation effects. DREAM enables safe, very fast, and robust volumetric B1 (+) mapping of the brain at ultrahigh fields. Copyright © 2013 Wiley Periodicals, Inc.

  6. A new method for calculating volumetric sweeps efficiency using streamline simulation concepts

    International Nuclear Information System (INIS)

    Hidrobo, E A

    2000-01-01

    One of the purposes of reservoir engineering is to quantify the volumetric sweep efficiency for optimizing reservoir management decisions. The estimation of this parameter has always been a difficult task. Until now, sweep efficiency correlations and calculations have been limited to mostly homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir becomes difficult due to inherent complexity of multiple layers and arbitrary well configurations. In this paper, a new method for computing volumetric sweep efficiency for any arbitrary heterogeneity and well configuration is presented. The proposed method is based on Datta-Gupta and King's formulation of streamline time-of-flight (1995). Given the fact that the time-of-flight reflects the fluid front propagation at various times, then the connectivity in the time-of-flight represents a direct measure of the volumetric sweep efficiency. The proposed approach has been applied to synthetic as well as field examples. Synthetic examples are used to validate the volumetric sweep efficiency calculations using the streamline time-of-flight connectivity criterion by comparison with analytic solutions and published correlations. The field example, which illustrates the feasibility of the approach for large-scale field applications, is from the north Robertson unit, a low permeability carbonate reservoir in west Texas

  7. Active and Precise Control of Microdroplet Division Using Horizontal Pneumatic Valves in Bifurcating Microchannel

    Directory of Open Access Journals (Sweden)

    Shuichi Shoji

    2013-05-01

    Full Text Available This paper presents a microfluidic system for the active and precise control of microdroplet division in a micro device. Using two horizontal pneumatic valves formed at downstream of bifurcating microchannel, flow resistances of downstream channels were variably controlled. With the resistance control, volumetric ratio of downstream flows was changed and water-in-oil microdroplets were divided into two daughter droplets of different volume corresponding to the ratio. The microfluidic channels and pneumatic valves were fabricated by single-step soft lithography process of PDMS (polydimethylsiloxane using SU-8 mold. A wide range control of the daughter droplets’ volume ratio was achieved by the simple channel structure. Volumetric ratio between large and small daughter droplets are ranged from 1 to 70, and the smallest droplet volume of 14 pL was obtained. The proposed microfluidic device is applicable for precise and high throughput droplet based digital synthesis.

  8. Region-of-interest volumetric visual hull refinement

    KAUST Repository

    Knoblauch, Daniel; Kuester, Falko

    2010-01-01

    This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual

  9. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  11. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Paradelo Pérez, Marcos

    2016-01-01

    tracer mass could be well fitted to an analytical solution to the classical convection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were hereby reasonable well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass......Solute transport through the soil matrix is heterogeneous and greatly affected by soil texture, soil structure, and macropore networks. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. Hundred...... of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5 % and up to 50 % of the tracer mass were found to be strongly correlated with volumetric fines content. The hereby predicted tracer concentration breakthrough points up to 50% of applied...

  12. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  13. Volumetric formulation for a class of kinetic models with energy conservation.

    Science.gov (United States)

    Sbragaglia, M; Sugiyama, K

    2010-10-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum, and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.

  14. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  15. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  16. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  17. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    Science.gov (United States)

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Power control device for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Matsushima, Hidesuke; Masuda, Hiroyuki.

    1978-01-01

    Purpose: To improve self controllability of a nuclear power plant, as well as enable continuous power level control by a controlled flow of moderators in void pipes provided in a reactor core. Constitution: Hollow void pipes are provided in a reactor core to which a heavy water recycle loop for power control, a heavy water recycle pump for power control, a heavy water temperature regulator and a heavy water flow rate control valve for power control are connected in series to constitute a heavy water recycle loop for flowing heavy water moderators. The void ratio in each of the void pipes are calculated by a process computer to determine the flow rate and the temperature for the recycled heavy water. Based on the above calculation result, the heavy water temperature regulator is actuated by way of a temperature setter at the heavy water inlet and the heavy water flow rate is controlled by the actuation of the heavy water flow rate control valve. (Kawakami, Y.)

  19. Model of a thermal driven volumetric pump for energy harvesting in an underwater glider

    International Nuclear Information System (INIS)

    Falcão Carneiro, J.; Gomes de Almeida, F.

    2016-01-01

    Underwater gliders are one of the most promising approaches to achieve an increase of human presence in the oceans. Among existing solutions, thermal driven gliders present long range and endurance capabilities, offering the possibility of remaining years beneath water collecting and transmitting data to shore. A key component in thermal gliders lies in the process used to collect ocean's thermal energy. In this paper a new quasi-static model of a thermal driven volumetric pump, for use in underwater gliders, is presented. The study also encompasses an analysis of the influence different hydraulic system parameters have on the thermodynamic cycle efficiency. Finally, the paper proposes a simple dynamic model of a heat exchanger that uses commercially available materials for the Phase Change Material (PCM) container. Simulation results validate the models developed. - Highlights: • A new model of a thermal driven volumetric pump for underwater gliders is proposed. • The effect hydraulic system parameters have on the cycle efficiency is analyzed. • The energy efficiency may be increased tenfold using adequate hydraulic parameters. • It's shown that the PCM PVT transition surface may not alter the cycle efficiency.

  20. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  1. Correlation of volumetric mismatch and mismatch of Alberta Stroke program Early CT scores on CT perfusion maps

    International Nuclear Information System (INIS)

    Lin, Ke; Rapalino, Otto; Lee, Benjamin; Do, Kinh G.; Sussmann, Amado R.; Pramanik, Bidyut K.; Law, Meng

    2009-01-01

    We aimed to determine if volumetric mismatch between tissue at risk and tissue destined to infarct on computed tomography perfusion (CTP) can be described by the mismatch of Alberta Stroke Program Early CT Score (ASPECTS). Forty patients with nonlacunar middle cerebral artery infarct 6 s and <2.0 mL per 100 g, respectively. Two other raters assigned ASPECTS to the same MTT and CBV maps while blinded to the volumetric data. Volumetric mismatch was deemed present if ≥20%. ASPECTS mismatch (=CBV ASPECTS - MTT ASPECTS) was deemed present if ≥1. Correlation between the two types of mismatches was assessed by Spearman's coefficient (ρ). ROC curve analyses were performed to determine the optimal ASPECTS mismatch cut point for volumetric mismatch ≥20%, ≥50%, ≥100%, and ≥150%. Median volumetric mismatch was 130% (range 10.9-2,031%) with 31 (77.5%) being ≥20%. Median ASPECTS mismatch was 2 (range 0-6) with 26 (65%) being ≥1. ASPECTS mismatch correlated strongly with volumetric mismatch with ρ = 0.763 [95% CI 0.585-0.870], p < 0.0001. Sensitivity and specificity for volumetric mismatch ≥20% was 83.9% [95% CI 65.5-93.5] and 100% [95% CI 65.9-100], respectively, using ASPECTS mismatch ≥1. Volumetric mismatch ≥50%, ≥100%, and ≥150% were optimally identified using ASPECTS mismatch ≥1, ≥2, and ≥2, respectively. On CTP, ASPECTS mismatch showed strong correlation to volumetric mismatch. ASPECTS mismatch ≥1 was the optimal cut point for volumetric mismatch ≥20%. (orig.)

  2. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  3. Volumetric 3D display with multi-layered active screens for enhanced the depth perception (Conference Presentation)

    Science.gov (United States)

    Kim, Hak-Rin; Park, Min-Kyu; Choi, Jun-Chan; Park, Ji-Sub; Min, Sung-Wook

    2016-09-01

    Three-dimensional (3D) display technology has been studied actively because it can offer more realistic images compared to the conventional 2D display. Various psychological factors such as accommodation, binocular parallax, convergence and motion parallax are used to recognize a 3D image. For glass-type 3D displays, they use only the binocular disparity in 3D depth cues. However, this method cause visual fatigue and headaches due to accommodation conflict and distorted depth perception. Thus, the hologram and volumetric display are expected to be an ideal 3D display. Holographic displays can represent realistic images satisfying the entire factors of depth perception. But, it require tremendous amount of data and fast signal processing. The volumetric 3D displays can represent images using voxel which is a physical volume. However, it is required for large data to represent the depth information on voxel. In order to simply encode 3D information, the compact type of depth fused 3D (DFD) display, which can create polarization distributed depth map (PDDM) image having both 2D color image and depth image is introduced. In this paper, a new volumetric 3D display system is shown by using PDDM image controlled by polarization controller. In order to introduce PDDM image, polarization states of the light through spatial light modulator (SLM) was analyzed by Stokes parameter depending on the gray level. Based on the analysis, polarization controller is properly designed to convert PDDM image into sectioned depth images. After synchronizing PDDM images with active screens, we can realize reconstructed 3D image. Acknowledgment This work was supported by `The Cross-Ministry Giga KOREA Project' grant from the Ministry of Science, ICT and Future Planning, Korea

  4. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  5. Application of fuzzy logic control system for reactor feed-water control

    International Nuclear Information System (INIS)

    Iijima, T.; Nakajima, Y.

    1994-01-01

    The successful actual application of a fuzzy logic control system to the a nuclear Fugen nuclear power reactor is described. Fugen is a heavy-water moderated, light-water cooled reactor. The introduction of fuzzy logic control system has enabled operators to control the steam drum water level more effectively in comparison to a conventional proportional-integral (PI) control system

  6. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose

    2016-01-01

    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...... consumer pressure desire. A model predictive controller, MPC, is based on a simple model that models the main characteristics of a water distribution network, optimizes a desired cost minimisation, and keeps the system inside specified constraints. In comparison to a logic (on/off) control design...

  7. Spatial and volumetric changes of retroperitoneal sarcomas during pre-operative radiotherapy

    International Nuclear Information System (INIS)

    Wong, Philip; Dickie, Colleen; Lee, David; Chung, Peter; O’Sullivan, Brian; Letourneau, Daniel; Xu, Wei; Swallow, Carol; Gladdy, Rebecca; Catton, Charles

    2014-01-01

    Purpose: To determine the positional and volumetric changes of retroperitoneal sarcomas (RPS) during pre-operative external beam radiotherapy (PreRT). Material and methods: After excluding 2 patients who received chemotherapy prior to PreRT and 15 RPS that were larger than the field-of-view of cone-beam CT (CBCT), the positional and volumetric changes of RPS throughout PreRT were characterized in 19 patients treated with IMRT using CBCT image guidance. Analysis was performed on 118 CBCT images representing one image per week of those acquired daily during treatment. Intra-fraction breathing motions of the gross tumor volume (GTV) and kidneys were measured in 22 RPS patients simulated using 4D-CT. Fifteen other patients were excluded whose tumors were incompletely imaged on CBCT or who received pre-RT chemotherapy. Results: A GTV volumetric increase (mean: 6.6%, p = 0.035) during the first 2 weeks (CBCT1 vs. CBCT2) of treatment was followed by GTV volumetric decrease (mean: 4%, p = 0.009) by completion of radiotherapy (CBCT1 vs. CBCT6). Internal margins of 8.6, 15 and 15 mm in the lateral, anterior/posterior and superior/inferior directions would be required to account for inter-fraction displacements. The extent of GTV respiratory motion was significantly (p < 0.0001) correlated with more superiorly positioned tumors. Conclusion: Inter-fraction CBCT provides important volumetric and positional information of RPS which may improve PreRT quality and prompt re-planning. Planning target volume may be reduced using online soft-tissue matching to account for interfractional displacements of GTVs. Important breathing motion occurred in superiorly placed RPS supporting the utility of 4D-CT planning

  8. Comparison of surface contour and volumetric three-dimensional imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Guilford, W.B.; Ullrich, C.G.; Moore, T.

    1988-01-01

    Both surface contour and volumetric three-dimensional image processing from CT data can provide accurate demonstration of skeletal anatomy. While realistic, surface contour images may obscure fine detail such as nondisplaced fractures, and thin bone may disappear. Volumetric processing can provide high detail, but the transparency effect is unnatural and may yield a confusing image. Comparison of both three-dimensional modes is presented to demonstrate those findings best shown with each and to illustrate helpful techniques to improve volumetric display, such as disarticulation of unnecessary anatomy, short-angle repeating rotation (dithering), and image combination into overlay displays

  9. Rapid volumetric imaging with Bessel-Beam three-photon microscopy

    Science.gov (United States)

    Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng; Zhou, Zhuan; Wu, Haitao; Cheng, Heping; Zhang, Zhigang; Xu, Chris; Li, Yulong; Chen, Liangyi; Wang, Aimin

    2018-01-01

    Owing to its tissue-penetration ability, multi-photon fluorescence microscopy allows for the high-resolution, non-invasive imaging of deep tissue in vivo; the recently developed three-photon microscopy (3PM) has extended the depth of high-resolution, non-invasive functional imaging of mouse brains to beyond 1.0 mm. However, the low repetition rate of femtosecond lasers that are normally used in 3PM limits the temporal resolution of point-scanning three-photon microscopy. To increase the volumetric imaging speed of 3PM, we propose a combination of an axially elongated needle-like Bessel-beam with three-photon excitation (3PE) to image biological samples with an extended depth of focus. We demonstrate the higher signal-to-background ratio (SBR) of the Bessel-beam 3PM compared to the two-photon version both theoretically and experimentally. Finally, we perform simultaneous calcium imaging of brain regions at different axial locations in live fruit flies and rapid volumetric imaging of neuronal structures in live mouse brains. These results highlight the unique advantage of conducting rapid volumetric imaging with a high SBR in the deep brain in vivo using scanning Bessel-3PM.

  10. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation... ADDITIVES Detergent Gasoline § 80.170 Volumetric additive reconciliation (VAR), equipment calibration, and...) For a facility which uses a gauge to measure the inventory of the detergent storage tank, the total...

  11. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  12. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  13. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Tamoh, K.

    2015-07-01

    Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher. (Author)

  14. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  15. Volumetric Radiosurgery for 1 to 10 Brain Metastases: A Multicenter, Single-Arm, Phase 2 Study

    Energy Technology Data Exchange (ETDEWEB)

    Nichol, Alan, E-mail: anichol@bccancer.bc.ca [Department of Radiation Oncology, BC Cancer Agency, Vancouver Centre, Vancouver, British Columbia (Canada); University of British Columbia, Vancouver, British Columbia (Canada); Ma, Roy [Department of Radiation Oncology, BC Cancer Agency, Vancouver Centre, Vancouver, British Columbia (Canada); University of British Columbia, Vancouver, British Columbia (Canada); Hsu, Fred [University of British Columbia, Vancouver, British Columbia (Canada); Department of Radiation Oncology, BC Cancer Agency, Abbotsford Centre, Abbotsford, British Columbia (Canada); Gondara, Lovedeep [Department of Surveillance and Outcomes, BC Cancer Agency, Vancouver, British Columbia (Canada); Carolan, Hannah [Department of Radiation Oncology, BC Cancer Agency, Vancouver Centre, Vancouver, British Columbia (Canada); University of British Columbia, Vancouver, British Columbia (Canada); Olson, Robert [University of British Columbia, Vancouver, British Columbia (Canada); Department of Radiation Oncology, BC Cancer Agency, Centre for the North, Prince George, British Columbia (Canada); Schellenberg, Devin [University of British Columbia, Vancouver, British Columbia (Canada); Department of Radiation Oncology, BC Cancer Agency, Fraser Valley Centre, Surrey, British Columbia (Canada); Germain, François [University of British Columbia, Vancouver, British Columbia (Canada); Department of Radiation Oncology, BC Cancer Agency, Sindi Ahluwalia Centre for the Southern Interior, Kelowna, British Columbia (Canada); Cheung, Arthur [University of British Columbia, Vancouver, British Columbia (Canada); Department of Radiation Oncology, BC Cancer Agency, Fraser Valley Centre, Surrey, British Columbia (Canada); Peacock, Michael [Department of Radiation Oncology, BC Cancer Agency, Vancouver Centre, Vancouver, British Columbia (Canada); University of British Columbia, Vancouver, British Columbia (Canada); and others

    2016-02-01

    Purpose: Interest is growing in treating multiple brain metastases with radiosurgery. We report on the effectiveness and tolerability of volumetric radiosurgery (VRS). Methods and Materials: We enrolled patients with a ≥6-month estimated life expectancy and 1 to 10 brain metastases with a diameter of ≤3 cm at 5 cancer centers. Volumetric radiosurgery was delivered in 5 fractions with 98% target coverage, prescribed as 95% of 50 Gy (47.5 Gy in 5 fractions) to the metastases with no margin and 95% of 40 Gy (38 Gy in 5 fractions) to their 2-mm planning target volumes, concurrent with 20 Gy to the whole brain planning target volume. The treatment was delivered with daily image guidance using conventional linear accelerators and volumetric modulated arc therapy. A magnetic resonance imaging scan was obtained every 3 months. The primary endpoint was the 3-month objective response in the brain according to the Response Evaluation Criteria in Solid Tumors, version 1.1. The principal secondary endpoint was 1-year actuarial control of treated metastases. Toxicities were graded using the Common Terminology Criteria for Adverse Events, version 4.0. The present study is registered with (ClinicalTrials.gov) ( (clinicaltrials.gov) identifier (NCT01046123)). Results: From July 2010 to May 2013, 60 patients underwent VRS with 47.5 Gy in 5 fractions for 12 metastases in the thalamus and basal ganglia (deep metastases) and 207 non-deep metastases. The median follow-up period was 30.5 months, and the median survival was 10.1 months. For the 43 patients assessable at 3 months, the objective response in the brain was 56%. The treated metastases were controlled in 88% of patients at 1 year and 84% at 3 years. Overall survival did not differ for patients with 4 to 10 versus 1 to 3 metastases (hazard ratio 1.18, P=.6). The crude incidence of severe radionecrosis (grade 3-5) was 25% (3 of 12) per deep metastasis, 1.9% (4 of 219) per non-deep metastasis, and 10% (6 of 60

  16. Reactor water level control device

    International Nuclear Information System (INIS)

    Hiramatsu, Yohei.

    1980-01-01

    Purpose: To increase the rapid response of the waterlevel control converting a reactor water level signal into a non-linear type, when the water level is near to a set value, to stabilize the water level reducting correlatively the reactor water level variation signal to stabilize greatly from the set value, and increasing the variation signal. Constitution: A main vapor flow quality transmitter detects the vapor flow generated in a reactor and introduced into a turbine. A feed water flow transmitter detects the quantity of a feed water flow from the turbine to the reactor, this detected value is sent to an addition operating apparatus. On the other hand, the power signal of the reactor water level transmitter is sent to the addition operating apparatus through a non-linear water level signal converter. The addition operation apparatus generates a signal for requesting the feed water flow quantity from both signals. Upon this occasion, the reactor water level signal converter makes small the reactor water level variation when the reactor level is close the set value, and when the water level deviates greatly from the set value, the reactor water level variation is made large thereby to improve the rapid response of the reactor coater level control. (Yoshino, Y.)

  17. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    Science.gov (United States)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  18. Water chemistry control at FBTR

    International Nuclear Information System (INIS)

    Panigrahi, B.S.; Jambunathan, D.; Suresh Kumar, K.V.; Ramanathan, V.; Srinivasan, G.; Ramalingam, P.V.

    2008-01-01

    Condenser cooling and service water systems together serve as the cooling water system of Fast Breeder Test Reactor (FBTR). Palar river water serves as the make-up to the cooling water system. Initially, the service water system alone was commissioned in phases depending upon the arrival of auxiliary equipments at site. During this period, the water was not treated chemically and it also inadvertently remained stagnant for some time in some systems. Thereafter, a threshold chemical treatment was started. However, pin-hole leaks and reduced flow through the heat exchangers were observed and therefore chemical cleaning of headers was done and small diameter pipelines were replaced. Following this a full fledged chemistry control with proprietary formulations was initiated. Later the condenser cooling system was commissioned and the chemical treatment was reviewed. With adoption of improved monitoring methodology and treatment formulation satisfactory corrosion control (< 3 mpy) with minimum deposition problem in this system could be achieved. The primary coolant (primary sodium) of FBTR transfers the nuclear heat to the secondary coolant (secondary sodium) that in turn transfers heat to water in Once Through Steam Generator (OTSG) to generate superheated steam (480 deg C at 125 bar). Efficient water chemistry control plays the vital role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. Therefore, the technical specifications of chemistry parameters of feed/steam water at FBTR are made very stringent to maintain the purity of water at the best attainable level. To meet this stringent feed water and steam quality specifications, online monitoring techniques have been employed in the steam/water circuit to get continuous information about the purity. These monitors have helped significantly in achieving the required feed water quality and running the steam generator for more than 25000 hours without any tube

  19. Water-controlled wealth of nations.

    Science.gov (United States)

    Suweis, Samir; Rinaldo, Andrea; Maritan, Amos; D'Odorico, Paolo

    2013-03-12

    Population growth is in general constrained by food production, which in turn depends on the access to water resources. At a country level, some populations use more water than they control because of their ability to import food and the virtual water required for its production. Here, we investigate the dependence of demographic growth on available water resources for exporting and importing nations. By quantifying the carrying capacity of nations on the basis of calculations of the virtual water available through the food trade network, we point to the existence of a global water unbalance. We suggest that current export rates will not be maintained and consequently we question the long-term sustainability of the food trade system as a whole. Water-rich regions are likely to soon reduce the amount of virtual water they export, thus leaving import-dependent regions without enough water to sustain their populations. We also investigate the potential impact of possible scenarios that might mitigate these effects through (i) cooperative interactions among nations whereby water-rich countries maintain a tiny fraction of their food production available for export, (ii) changes in consumption patterns, and (iii) a positive feedback between demographic growth and technological innovations. We find that these strategies may indeed reduce the vulnerability of water-controlled societies.

  20. Establishing a volumetric measurement control program

    International Nuclear Information System (INIS)

    Holt, S.H.; Jenkins, E.W.

    1993-01-01

    At the Savannah River Site (SRS), several facilities have nearly all their special nuclear material in solution and therefore, volume measurements play a key role in the accountability of these materials. Normally, facilities rely on frequent instrument calibrations, periodic tank calibrations and proper instrument configuration to ensure measurement control. At SRS, methods have been employed that go beyond these basic steps to monitor the volume measurement systems and provide real time indication of measurement control. These methods can be used to indicate if a tank requires recalibration, if there is a sampling problem, or if there is an instrument problem. The methods include: sample density comparison, in-tank to laboratory density comparison, redundant instrument comparison and tank to tank transfer comparison. This paper describes these methods and the generation of control charts to track these comparisons in real time

  1. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  2. DYNAMIC SIMULATION AND COMPOSITION CONTROL IN A 10 L MIXING TANK

    Directory of Open Access Journals (Sweden)

    Yulius Deddy Hermawan

    2012-11-01

    Full Text Available The open loop experiment of composition dynamic in a 10 L mixing tank has been successfully done inlaboratory. A 10 L tank was designed for mixing of water (as a stream-1 and salt solution (as astream-2 with salt concentration, c2 constant. An electric stirrer was employed to obtain uniformcomposition in tank. In order to keep the liquid volume constant, the system was designed overflow. Inthis work, 2 composition control configurations have been proposed; they are Alternative-1 andAlternative-2. For Alternative-1, the volumetric-rate of stream-1 was chosen as a manipulatedvariable, while the volumetric-rate of stream-2 was chosen as a manipulated variable for Alternative-2. The composition control parameters for both alternatives have been tuned experimentally. Thevolumetric-rate of manipulated variable was changed based on step function. The outlet stream’scomposition response (c3 to a change in the input volumetric-rate has been investigated. Thisexperiment gave Proportional Integral Derivative (PID control parameters. The gain controllers Kc[cm6/(gr.sec] for Alternative-1 and Alternative-2 are -34200 and 40459 respectively. Integral timeconstant ( tI and Derivative time constant (tD for both alternatives are the same, i.e. tI = 16 second,and tD = 4 second. Furthermore, closed loop dynamic simulation using computer programming wasalso done to evaluate the resulted tuning parameters. The developed mathematical model ofcomposition control system in a mixing tank was solved numerically. Such mathematical model wasrigorously examined in Scilab software environment. The results showed that closed loop responses inPID control were faster than those in P and PI controls.

  3. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    Science.gov (United States)

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  4. Non-uniform volumetric structures in Richtmyer-Meshkov flows

    NARCIS (Netherlands)

    Staniç, M.; McFarland, J.; Stellingwerf, R.F.; Cassibry, J.T.; Ranjan, D.; Bonazza, R.; Greenough, J.A.; Abarzhi, S.I.

    2013-01-01

    We perform an integrated study of volumetric structures in Richtmyer-Meshkov (RM) flows induced by moderate shocks. Experiments, theoretical analyses, Smoothed Particle Hydrodynamics simulations, and ARES Arbitrary Lagrange Eulerian simulations are employed to analyze RM evolution for fluids with

  5. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    International Nuclear Information System (INIS)

    Wulff, A.M.; Fabel, M.; Freitag-Wolf, S.; Tepper, M.; Knabe, H.M.; Schäfer, J.P.; Jansen, O.; Bolte, H.

    2013-01-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future

  6. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M., E-mail: a.wulff@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Fabel, M. [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Freitag-Wolf, S., E-mail: freitag@medinfo.uni-kiel.de [Institut für Medizinische Informatik und Statistik, Brunswiker Str. 10, 24105 Kiel (Germany); Tepper, M., E-mail: m.tepper@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Knabe, H.M., E-mail: h.knabe@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Schäfer, J.P., E-mail: jp.schaefer@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Jansen, O., E-mail: o.jansen@neurorad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Bolte, H., E-mail: hendrik.bolte@ukmuenster.de [Klinik für Nuklearmedizin, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster (Germany)

    2013-10-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future.

  7. Analysis of air return alternatives for CRS-type open volumetric receiver

    International Nuclear Information System (INIS)

    Marcos, Ma. Jesus; Romero, Manuel; Palero, Silvia

    2004-01-01

    Even though air-cooled receivers provide substantial benefits, such as low inertia and quick sun-following dispatchability, and the volumetric effect leads to designs with aperture areas similar to those used in molten salt or water/steam receivers, some concern persists regarding absorber durability, reduction of radiation losses and improvement of the air return ratio (ARR). The paper focuses on this last issue, since the ARR is a source of significant receiver losses in current designs. Today's scaled-up receivers claim values between 45 and 70% for ARR, which means, in terms of energy loss, between 5 and 15%. As a consequence of ARR and the radiation loss stemming from high working temperatures, open volumetric receivers efficiencies below 75% are reported at temperatures usable by the power block. Those values may be acceptable for a first demonstration plant, but are categorically not competitive for commercial schemes in which receiver efficiency should approach 90%. This paper discusses the impact of several geometrical properties of the absorber and air injection system used. The study was performed by CFD with the FLUENT code. The assessment considered such alternatives as modularity of the air return system (HITREC receiver concept), outer ring injection with air curtain effect or cavity aperture (with and without secondary concentrator). A detailed analysis reveals that some parts of the receiver aperture achieve an ARR above 90% at well-selected operating conditions, but average values hardly surpass 70%. Therefore, a careful design should keep in mind important variables such as the effects of receiver edge and lateral wind, as well as air injection angle

  8. Metric matters : the performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru

    OpenAIRE

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in the coast of Peru is considered to be badly managed, however this study shows that performance is more optimal than critics assume. Apart from the relevance in the local water management discussion,...

  9. Hierarchical TiN nanoparticles-assembled nanopillars for flexible supercapacitors with high volumetric capacitance.

    Science.gov (United States)

    Qin, Ping; Li, Xingxing; Gao, Biao; Fu, Jijiang; Xia, Lu; Zhang, Xuming; Huo, Kaifu; Shen, Wenli; Chu, Paul K

    2018-05-10

    Titanium nitride (TiN) is an attractive electrode material in fast charging/discharging supercapacitors because of its excellent conductivity. However, the low capacitance and mechanical brittleness of TiN restricts its further application in flexible supercapacitors with high energy density. Thus, it is still a challenge to rationally design TiN electrodes with both high electrochemical and mechanical properties. Herein, the hierarchical TiN nanoparticles-assembled nanopillars (H-TiN NPs) array as binder free electrodes were obtained by nitriding of hierarchical titanium dioxide (TiO2) nanopillars, which was produced by a simple hydrothermal treatment of anodic TiO2 nanotubes (NTs) array in water. The porous TiN nanoparticles connected to each other to form ordered nanopillar arrays, effectively providing larger specific surface area and more active sites for charge storage. The H-TiN NPs delivered a high volumetric capacitance of 120 F cm-3 at 0.83 A cm-3, which is better than that of TiN NTs arrays (69 F cm-3 at 0.83 A cm-3). After assembling into all-solid-state devices, the H-TiN NPs based supercapacitors exhibited outstanding volumetric capacitance of 5.9 F cm-3 at 0.02 A cm-3 and a high energy density of 0.53 mW h cm-3. Our results reveal a new strategy to optimize the supercapacitive performance of metal nitrides.

  10. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  11. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  12. Metric matters : the performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in

  13. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    International Nuclear Information System (INIS)

    Vos, C.G.; Paul, M.A.; Dahele, M.; Soernsen de Koste, J.R. van; Senan, S.; Bahce, I.; Smit, E.F.; Thunnissen, E.; Hartemink, K.J.

    2014-01-01

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R 2 = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  14. 40 CFR 80.157 - Volumetric additive reconciliation (“VAR”), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation (â... ADDITIVES Detergent Gasoline § 80.157 Volumetric additive reconciliation (“VAR”), equipment calibration, and... other comparable VAR supporting documentation. (ii) For a facility which uses a gauge to measure the...

  15. Determination of uranium by a gravimetric-volumetric titration method

    International Nuclear Information System (INIS)

    Krtil, J.

    1998-01-01

    A volumetric-gravimetric modification of a method for the determination of uranium based on the reduction of uranium to U (IV) in a phosphoric acid medium and titration with a standard potassium dichromate solution is described. More than 99% of the stoichiometric amount of the titrating solution is weighed and the remainder is added volumetrically by using the Mettler DL 40 RC Memotitrator. Computer interconnected with analytical balances collects continually the data on the analyzed samples and evaluates the results of determination. The method allows to determine uranium in samples of uranium metal, alloys, oxides, and ammonium diuranate by using aliquot portions containing 30 - 100 mg of uranium with the error of determination, expressed as the relative standard deviation, of 0.02 - 0.05%. (author)

  16. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  17. Water quality control device and water quality control method for reactor primary coolant system

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Eishi; Watanabe, Atsushi.

    1995-01-01

    The present invention is suitable for preventing defects due to corrosion of structural materials in a primary coolant system of a BWR type reactor. Namely, a concentration measuring means measures the concentration of oxidative ingredients contained in a reactor water. A reducing electrode is disposed along a reactor water flow channel in the primary coolant system and reduces the oxidative ingredients. A reducing counter electrode is disposed along the reactor water flow channel in the primary coolant system, and electrically connected to the reducing electrode. The reactor structural materials are used as a reference electrode providing a reference potential to the reducing electrode and the reducing counter electrode. A potential control means controls the potential of the reducing electrode relative to the reference potential based on the signals from the concentration measuring means. A stable reference potential in a region where an effective oxygen concentration is stable can be obtained irrespective of the change of operation conditions by using the reactor structural materials disposed to a boiling region in the reactor core as a reference electrode. As a result, the water quality can be controlled at high accuracy. (I.S.)

  18. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    Science.gov (United States)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  19. Effect of cup inclination on predicted contact stress-induced volumetric wear in total hip replacement.

    Science.gov (United States)

    Rijavec, B; Košak, R; Daniel, M; Kralj-Iglič, V; Dolinar, D

    2015-01-01

    In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ϑA) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ϑA. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.

  20. Water control at certain karst U-mining area

    International Nuclear Information System (INIS)

    Lei Mingxin; Xu Qiang

    2010-01-01

    To ensure mining security, water control for certain mining area is designed. Hydrogeological conditions in the studied area are analyzed. Four methods were used to calculate the inflow of water at mineral area, such as 'bigwell' method and 'groundwater isostatic' method according to the karst development. The calculated data for average inflow of water for the 100 m middle section are mainly compared with the data for the inflow of spring water in this deposit observed during the last five years. The difference between them is found minor. This indicates that the parameters selected for the calculation of inflow of water are reasonable and the methods used are suitable. Taking into account the above, it is decided to use the combination of surface water control and groundwater control Surface water control first,and groundwater control second, Five methods are used for surface water control such as plugging, filling, stopping, draining and dredging. Three methods for groundwater control such as curtain grouting, drainage in advance and blocking. The implimentation of this program will greatly reduce the threat of groundwater in ming area to mining operation and the cost of treatment of water discharge in mining pits and wells ,and effectively protect the environment and ensure the local people's living and production. (authors)

  1. Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control

    International Nuclear Information System (INIS)

    Johns, Paul M.; Baciak, James E.; Nino, Juan C.

    2016-01-01

    Some of the more attractive semiconducting compounds for ambient temperature radiation detector applications are impacted by low charge collection efficiency due to the presence of point and volumetric defects. This has been particularly true in the case of BiI_3, which features very attractive properties (density, atomic number, band gap, etc.) to serve as a gamma ray detector, but has yet to demonstrate its full potential. We show that by applying growth techniques tailored to reduce defects, the spectral performance of this promising semiconductor can be realized. Gamma ray spectra from >100 keV source emissions are now obtained from high quality Sb:BiI_3 bulk crystals with limited concentrations of defects (point and extended). The spectra acquired in these high quality crystals feature photopeaks with resolution of 2.2% at 662 keV. Infrared microscopy is used to compare the local microstructure between radiation sensitive and non-responsive crystals. This work demonstrates that BiI_3 can be prepared in melt-grown detector-grade samples with superior quality and can acquire the spectra from a variety of gamma ray sources.

  2. Determining the water content in concrete by gamma scattering method

    International Nuclear Information System (INIS)

    Priyada, P.; Ramar, R.; Shivaramu

    2014-01-01

    Highlights: • Gamma scattering technique for estimation of water content in concrete is given. • The scattered intensity increases with the volumetric water content. • Attenuation correction is provided to the scattered intensities. • Volumetric water content of 137 Cs radioactive source and a high resolution HPGe detector based energy dispersive gamma ray spectrometer. Concrete samples of uniform density ≈2.4 g/cm 3 are chosen for the study and the scattered intensities found to vary with the amount of water present in the specimen. The scattered intensities are corrected for attenuation effects and the results obtained with reference to a dry sample are compared with those obtained by gravimetrical and gamma transmission methods. A good agreement is seen between gamma scattering results and those obtained by gravimetric and transmission methods within accuracy of 6% and <2% change in water content can be detected

  3. Volumetric determination of tumor size abdominal masses. Problems -feasabilities

    International Nuclear Information System (INIS)

    Helmberger, H.; Bautz, W.; Sendler, A.; Fink, U.; Gerhardt, P.

    1995-01-01

    The most important indication for clinically reliable volumetric determination of tumor size in the abdominal region is monitoring liver metastases during chemotherapy. Determination of volume can be effectively realized using 3D reconstruction. Therefore, the primary data set must be complete and contiguous. The mass should be depicted strongly enhanced and free of artifacts. At present, this prerequisite can only be complied with using thin-slice spiral CT. Phantom studies have proven that a semiautomatic reconstruction algorithm is recommendable. The basic difficulties involved in volumetric determination of tumor size are the problems in differentiating active malignant mass and changes in the surrounding tissue, as well as the lack of histomorphological correlation. Possible indications for volumetry of gastrointestinal masses in the assessment of neoadjuvant therapeutic concepts are under scientific evaluation. (orig./MG) [de

  4. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  6. A feasibility study of digital tomosynthesis for volumetric dental imaging

    International Nuclear Information System (INIS)

    Cho, M K; Kim, H K; Youn, H; Kim, S S

    2012-01-01

    We present a volumetric dental tomography method that compensates for insufficient projection views obtained from limited-angle scans. The reconstruction algorithm is based on the backprojection filtering method which employs apodizing filters that reduce out-of-plane blur artifacts and suppress high-frequency noise. In order to accompolish this volumetric imaging two volume-reconstructed datasets are synthesized. These individual datasets provide two different limited-angle scans performed at orthogonal angles. The obtained reconstructed images, using less than 15% of the number of projection views needed for a full skull phantom scan, demonstrate the potential use of the proposed method in dental imaging applications. This method enables a much smaller radiation dose for the patient compared to conventional dental tomography.

  7. Operating scheme for the light-emitting diode array of a volumetric display that exhibits multiple full-color dynamic images

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-07-01

    We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.

  8. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    Science.gov (United States)

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  9. MR volumetric measurement of medial temporal lobe in differentiating Alzheimer disease and subcortical ischemic vascular dementia

    International Nuclear Information System (INIS)

    Wang Liang; Li Kuncheng; Liu Shuliang

    2003-01-01

    Objective: To evaluate the value of measurement of medial temporal structure by MR imaging volumetry in the differential diagnosis for patients with Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SIVD). Methods: Thirty-three probable patients of AD, 33 normal controls, and 17 patients suspected with SIVD had been scanned by MRI, and volumetric measurements of amygdala (AMY), hippocampal formations (HF), entorhinal cortices (EC), parahippocampal gyri (PHG), and temporal horn of lateral ventricle (TH) were done on a serial reconstructed MR images. Results: Both atrophy of HF and dilatation of TH were significant (P<0.05) in SIVD group compared with that in control group. All the measurements with the exception of TH were atrophied significantly (P<0.001) in AD group compared with that in SIVD group and could significantly discriminate the two group. Among these indexes, the left EC provided the best discrimination with the specificity of 82.4%, sensitivity of 87.9%, and accuracy of 86.0%, respectively, and the average accuracy of bilateral EC in discrimination was 85%. Conclusion: The MR imaging volumetric measurements of medial temporal structure could offer useful information in discriminating individuals with AD from that with SIVD. Meanwhile, it should be understood that the AD-type pathological changes could also be induced by cerebrovascular disease

  10. Water availability pollution and control

    International Nuclear Information System (INIS)

    Qureshi, K.A.

    2001-01-01

    Water has played a very important role in the development of human society. Resources of water have shaped the development of people and nations. Management of water gave the birth to innovations and technologies. Our complex metropolitan civilization and advanced technologies have generated new demands for water. Its importance to society and government has never diminished. The growing concern over resources availability and a rapid spread of water pollution, the link between water supply and water quality have become more apparent. The global management of water demands economy in use, restricted chemical and sanitation emissions, population control, discouragement of urbanization and water pollution awareness can greatly assist in averting the water holocaust that the world is expecting to face in the years to come. The scientific community in Pakistan is required to diagnose these problems in a systematic way to give advance warning of expected water scarcity, water pollution, water related land degradation, urban growth and population to assure the water cycle integrity of our world. (author)

  11. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids

    International Nuclear Information System (INIS)

    Ali, Hafiz Muhammad; Ali, Hassan; Liaquat, Hassan; Bin Maqsood, Hafiz Talha; Nadir, Malik Ahmed

    2015-01-01

    New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11 LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%. - Highlights: • ZnO–water nanofluids were used for car radiator thermal enhancement. • Heat transfer enhancement up to 46% was achieved comparing pure water. • 0.2% vol. concentration of ZnO found to be optimum for heat transfer. • Heat transfer was found weakly dependant on the fluid inlet temperature

  12. Reducing uncertainties in volumetric image based deformable organ registration

    International Nuclear Information System (INIS)

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  13. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  14. Biological control component [Management of water hyacinth

    International Nuclear Information System (INIS)

    Harley, K.L.S.

    1981-01-01

    Both chemical and biological control have been used with limited success for the management of water hyacinth in Fiji. In some cases heavy application of chemicals have been successful in completely killing limited areas of water hyacinth, but have resulted in the destruction of biological agents introduced to control the water hyacinth and high contamination of natural water supplies. It is proposed that under the direction of Mr S R Singh, the Senior Research Scientist (Entomology) of the Koronivia Research Station, Suva, Fiji, a collaborative programme with Dr Harley of Australia on chemical and biological control of water hyacinth be initiated. This programme would be fundamentally short-term with the prime objective being an investigation of levels of insect population following varying levels of application of chemical sprays. By comparison with control areas, observations would be made of both chemical damage and insect damage within the limited time span of the period

  15. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  16. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  17. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A; Toga, Arthur W; Thompson, Paul M

    2011-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic "Demons" algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future.

  18. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  19. Volumetric properties of ammonium nitrate in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Vranes, Milan; Dozic, Sanja; Djeric, Vesna; Gadzuric, Slobodan

    2012-01-01

    Highlights: ► We observed interactions and changes in the solution using volumetric properties. ► The greatest influence on the solvent–solvent interactions has temperature. ► The smallest influence temperature has on the ion–ion interactions. ► Temperature has no influence on concentrated systems and partially solvated melts. - Abstract: The densities of the ammonium nitrate in N,N-dimethylformamide (DMF) mixtures were measured at T = (308.15 to 348.15) K for different ammonium nitrate molalities in the range from (0 to 6.8404) mol·kg −1 . From the obtained density data, volumetric properties (apparent molar volumes and partial molar volumes) have been evaluated and discussed in the term of respective ionic and dipole interactions. From the apparent molar volume, determined at various temperatures, the apparent molar expansibility and the coefficients of thermal expansion were also calculated.

  20. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  1. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  2. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  3. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.; Martin, Tobias; Grosset, A. V Pascal; Brownlee, Carson; Hollt, Thomas; Brown, Benjamin P.; Smith, Sean T.; Hansen, Charles D.

    2012-01-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  4. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.

    2012-02-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  5. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    International Nuclear Information System (INIS)

    Neyman, G

    2016-01-01

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002 vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB

  6. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    Energy Technology Data Exchange (ETDEWEB)

    Neyman, G [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002 vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.

  7. Output control system in a boiling water atomic power plant

    International Nuclear Information System (INIS)

    Sadakane, Ken-ichiro.

    1975-01-01

    Object: To provide a line in bypass relation with a water heater, a flow rate of said bypass being adjusted to thereby perform quick responsive sub-cool control of a core inlet. Structure: A steam line and a water line are disposed so as to feed water from the reactor core to the water heater via turbine and thence to the core. A line disposed in bypass relation with the water heater arranged in the water line includes a control valve for controlling water passing through the bypass line and a main control for sending a signal to said control valve, said main control receiving loads from the outside, whereby a control signal is transmitted to the control valve, causing water passing through the water heater and water line to the core to be bypassed, a period of time for supplying time to be reduced, and quick response to be enhanced. (Kamimura, M.)

  8. SU-F-J-54: Towards Real-Time Volumetric Imaging Using the Treatment Beam and KV Beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Rozario, T; Liu, A; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Existing real-time imaging uses dual (orthogonal) kV beam fluoroscopies and may result in significant amount of extra radiation to patients, especially for prolonged treatment cases. In addition, kV projections only provide 2D information, which is insufficient for in vivo dose reconstruction. We propose real-time volumetric imaging using prior knowledge of pre-treatment 4D images and real-time 2D transit data of treatment beam and kV beam. Methods: The pre-treatment multi-snapshot volumetric images are used to simulate 2D projections of both the treatment beam and kV beam, respectively, for each treatment field defined by the control point. During radiation delivery, the transit signals acquired by the electronic portal image device (EPID) are processed for every projection and compared with pre-calculation by cross-correlation for phase matching and thus 3D snapshot identification or real-time volumetric imaging. The data processing involves taking logarithmic ratios of EPID signals with respect to the air scan to reduce modeling uncertainties in head scatter fluence and EPID response. Simulated 2D projections are also used to pre-calculate confidence levels in phase matching. Treatment beam projections that have a low confidence level either in pre-calculation or real-time acquisition will trigger kV beams so that complementary information can be exploited. In case both the treatment beam and kV beam return low confidence in phase matching, a predicted phase based on linear regression will be generated. Results: Simulation studies indicated treatment beams provide sufficient confidence in phase matching for most cases. At times of low confidence from treatment beams, kV imaging provides sufficient confidence in phase matching due to its complementary configuration. Conclusion: The proposed real-time volumetric imaging utilizes the treatment beam and triggers kV beams for complementary information when the treatment beam along does not provide sufficient

  9. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  10. GPU-based Scalable Volumetric Reconstruction for Multi-view Stereo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Duchaineau, M; Max, N

    2011-09-21

    We present a new scalable volumetric reconstruction algorithm for multi-view stereo using a graphics processing unit (GPU). It is an effectively parallelized GPU algorithm that simultaneously uses a large number of GPU threads, each of which performs voxel carving, in order to integrate depth maps with images from multiple views. Each depth map, triangulated from pair-wise semi-dense correspondences, represents a view-dependent surface of the scene. This algorithm also provides scalability for large-scale scene reconstruction in a high resolution voxel grid by utilizing streaming and parallel computation. The output is a photo-realistic 3D scene model in a volumetric or point-based representation. We demonstrate the effectiveness and the speed of our algorithm with a synthetic scene and real urban/outdoor scenes. Our method can also be integrated with existing multi-view stereo algorithms such as PMVS2 to fill holes or gaps in textureless regions.

  11. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  12. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  13. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  14. Review of state of the art methods for measuring water in landfills

    International Nuclear Information System (INIS)

    Imhoff, Paul T.; Reinhart, Debra R.; Englund, Marja; Guerin, Roger; Gawande, Nitin; Han, Byunghyun; Jonnalagadda, Sreeram; Townsend, Timothy G.; Yazdani, Ramin

    2007-01-01

    In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field

  15. Examining the Effectiveness of Hacked, Commercial, Self-Tuning RFID Tags to Passively Sense the Volumetric Water Content of Soil

    Science.gov (United States)

    Stoddard, B. S.; Udell, C.; Selker, J. S.

    2017-12-01

    Currently available soil volumetric water content (VWC) sensors have several drawbacks that pose certain challenges for implementation on large scale for farms. Such issues include cost, scalability, maintenance, wires running through fields, and single-spot resolution. The development of a passive soil moisture sensing system utilizing Radio Frequency Identification (RFID) would allay many of these issues. The type of passive RFID tags discussed in this paper currently cost between 8 to 15 cents retail per tag when purchased in bulk. An incredibly cheap, scalable, low-maintenance, wireless, high-resolution system for sensing soil moisture would be possible if such tags were introduced into the agricultural world. This paper discusses both the use cases as well as examines one implementation of the tags. In 2015, RFID tag manufacturer SmarTrac started selling RFID moisture sensing tags for use in the automotive industry to detect leaks during quality assurance. We place those tags in soil at a depth of 4 inches and compared the moisture levels sensed by the RFID tags with the relative permittivity (ɛr) of the soil as measured by an industry-standard probe. Using an equation derived by Topp et al, we converted to VWC. We tested this over a wide range of moisture conditions and found a statistically significant, correlational relationship between the sensor values from the RFID tags and the probe's measurement of ɛr. We also identified a possible function for mapping vales from the RFID tag to the probe bounded by a reasonable margin of error.

  16. Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis.

    Science.gov (United States)

    Wang, Zhi-Wei; Lee, Wayne Yuk-Wai; Lam, Tsz-Ping; Yip, Benjamin Hon-Kei; Yu, Fiona Wai-Ping; Yu, Wing-Sze; Zhu, Feng; Ng, Bobby Kin-Wah; Qiu, Yong; Cheng, Jack Chun-Yiu

    2017-06-01

    Osteopenia has been widely reported in about 30 % of girls with adolescent idiopathic scoliosis (AIS). However, the bone quality profile of the 70 % non-osteopenic AIS defined by areal bone mineral density (BMD) with conventional dual-energy X-ray absorptiometry (DXA) has not been adequately studied. Our purpose was to verify whether abnormal volumetric BMD (vBMD) and bone structure (morphometry and micro-architecture) also existed in the non-osteopenic AIS when compared with matched controls using both DXA and high-resolution peripheral computed tomography (HR-pQCT). This was a case-control cross-sectional study. 257 AIS girls with a mean age of 12.7 (SD = 0.8) years old and 187 age- and gender-matched normal controls with an average age of 12.9 (SD = 0.5) years old were included. Areal BMD (aBMD) and bone quality were measured with standard DXA and HR-pQCT, respectively. The parameters of HR-pQCT could be categorized as bone morphometry, vBMD and bone micro-architecture. The results were compared between the osteopenic AIS and osteopenic control, and between the non-osteopenic AIS and non-osteopenic control. In addition to the lower aBMD and vBMD, osteopenic AIS showed significantly greater cortical perimeter and trabecular area than the osteopenic control even after adjustments of age (P architecture and volumetric density profile compared with their normal matched controls. The observed abnormalities were suggestive of decreased endocortical bone apposition or active endocortical resorption that could affect the mechanical bone strength in AIS. The underlying pathomechanism might be attributed to abnormal bone modeling/remodeling that could be associated with the etiopathogenesis of AIS.

  17. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  18. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    Science.gov (United States)

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

  19. Gamma-index method sensitivity for gauging plan delivery accuracy of volumetric modulated arc therapy.

    Science.gov (United States)

    Park, Jong In; Park, Jong Min; Kim, Jung-In; Park, So-Yeon; Ye, Sung-Joon

    2015-12-01

    The aim of this study was to investigate the sensitivity of the gamma-index method according to various gamma criteria for volumetric modulated arc therapy (VMAT). Twenty head and neck (HN) and twenty prostate VMAT plans were retrospectively selected for this study. Both global and local 2D gamma evaluations were performed with criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm. In this study, the global and local gamma-index calculated the differences in doses relative to the maximum dose and the dose at the current measurement point, respectively. Using log files acquired during delivery, the differences in parameters at every control point between the VMAT plans and the log files were acquired. The differences in dose-volumetric parameters between reconstructed VMAT plans using the log files and the original VMAT plans were calculated. The Spearman's rank correlation coefficients (rs) were calculated between the passing rates and those differences. Considerable correlations with statistical significances were observed between global 1%/2 mm, local 1%/2 mm and local 2%/1 mm and the MLC position differences (rs = -0.712, -0.628 and -0.581). The numbers of rs values with statistical significance between the passing rates and the changes in dose-volumetric parameters were largest in global 2%/2 mm (n = 16), global 2%/1 mm (n = 15) and local 2%/1 mm (n = 13) criteria. Local gamma-index method with 2%/1 mm generally showed higher sensitivity to detect deviations between a VMAT plan and the delivery of the VMAT plan. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures.

    Directory of Open Access Journals (Sweden)

    Luping Zhou

    Full Text Available Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging has been extensively studied in the past decades for prediction of Alzheimer's disease (AD and mild cognitive impairment (MCI. The volumes of gray matter (GM, white matter (WM and cerebrospinal fluid (CSF are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental

  1. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    Science.gov (United States)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  2. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    Science.gov (United States)

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  3. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  4. levels of common ions in bottled mineral waters consumed in addis

    African Journals Online (AJOL)

    Preferred Customer

    ment, cancer, organ damage, nervous system damage, and in ... consumed in any desired amount without adverse effect on ... drinking water which practically costs much .... mg/L) in 100 mL volumetric flask and working .... water and the lowest was in tap water sample. The ... blood pressure and a long list of degenerative.

  5. Volumetric and superficial characterization of carbon activated

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T.

    2000-01-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  6. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  7. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    Science.gov (United States)

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright

  8. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    Science.gov (United States)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  9. Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-05-01

    Full Text Available newly proposed hydrostatic compression test procedure. The test procedure applies field loading conditions of off-road construction and mining equipment to closely simulate the volumetric deformation and stiffness behaviour of oil sand materials. Based...

  10. Common genetic variation and novel loci associated with volumetric mammographic density.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  11. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  12. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  13. Volumetric modulated arc therapy for lung stereotactic radiation therapy can achieve high local control rates.

    Science.gov (United States)

    Yamashita, Hideomi; Haga, Akihiro; Takahashi, Wataru; Takenaka, Ryousuke; Imae, Toshikazu; Takenaka, Shigeharu; Nakagawa, Keiichi

    2014-11-11

    The aim of this study was to report the outcome of primary or metastatic lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). From October 2010 to December 2013, consecutive 67 lung cancer patients received single-arc VMAT-SBRT using an Elekta-synergy system. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on 10 respiratory phases computed tomography (CT) datasets from 4-dimensional (4D) CT and merged into internal target volumes (ITVs). The planning target volume (PTV) margin was isotropically taken as 5 mm. Treatment was performed with a D95 prescription of 50 Gy (43 cases) or 55 Gy (12 cases) in 4 fractions for peripheral tumor or 56 Gy in 7 fractions (12 cases) for central tumor. Among the 67 patients, the median age was 73 years (range, 59-95 years). Of the patients, male was 72% and female 28%. The median Karnofsky performance status was 90-100% in 39 cases (58%) and 80-90% in 20 cases (30%). The median follow-up was 267 days (range, 40-1162 days). Tissue diagnosis was performed in 41 patients (61%). There were T1 primary lung tumor in 42 patients (T1a in 28 patients, T1b in 14 patients), T2 in 6 patients, three T3 in 3 patients, and metastatic lung tumor in 16 patients. The median mean lung dose was 6.87 Gy (range, 2.5-15 Gy). Six patients (9%) developed radiation pneumonitis required by steroid administration. Actuarial local control rate were 100% and 100% at 1 year, 92% and 75% at 2 years, and 92% and 75% at 3 years in primary and metastatic lung cancer, respectively (p =0.59). Overall survival rate was 83% and 84% at 1 year, 76% and 53% at 2 years, and 46% and 20% at 3 years in primary and metastatic lung cancer, respectively (p =0.12). Use of VMAT-based delivery of SBRT in primary in metastatic lung tumors demonstrates high local control rates and low risk of normal tissue complications.

  14. Volumetric modulated arc therapy for lung stereotactic radiation therapy can achieve high local control rates

    International Nuclear Information System (INIS)

    Yamashita, Hideomi; Haga, Akihiro; Takahashi, Wataru; Takenaka, Ryousuke; Imae, Toshikazu; Takenaka, Shigeharu; Nakagawa, Keiichi

    2014-01-01

    The aim of this study was to report the outcome of primary or metastatic lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). From October 2010 to December 2013, consecutive 67 lung cancer patients received single-arc VMAT-SBRT using an Elekta-synergy system. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on 10 respiratory phases computed tomography (CT) datasets from 4-dimensional (4D) CT and merged into internal target volumes (ITVs). The planning target volume (PTV) margin was isotropically taken as 5 mm. Treatment was performed with a D95 prescription of 50 Gy (43 cases) or 55 Gy (12 cases) in 4 fractions for peripheral tumor or 56 Gy in 7 fractions (12 cases) for central tumor. Among the 67 patients, the median age was 73 years (range, 59–95 years). Of the patients, male was 72% and female 28%. The median Karnofsky performance status was 90-100% in 39 cases (58%) and 80-90% in 20 cases (30%). The median follow-up was 267 days (range, 40–1162 days). Tissue diagnosis was performed in 41 patients (61%). There were T1 primary lung tumor in 42 patients (T1a in 28 patients, T1b in 14 patients), T2 in 6 patients, three T3 in 3 patients, and metastatic lung tumor in 16 patients. The median mean lung dose was 6.87 Gy (range, 2.5-15 Gy). Six patients (9%) developed radiation pneumonitis required by steroid administration. Actuarial local control rate were 100% and 100% at 1 year, 92% and 75% at 2 years, and 92% and 75% at 3 years in primary and metastatic lung cancer, respectively (p = 0.59). Overall survival rate was 83% and 84% at 1 year, 76% and 53% at 2 years, and 46% and 20% at 3 years in primary and metastatic lung cancer, respectively (p = 0.12). Use of VMAT-based delivery of SBRT in primary in metastatic lung tumors demonstrates high local control rates and low risk of normal tissue complications

  15. Continuous assessment of carotid intima-media thickness applied to estimate a volumetric compliance using B-mode ultrasound sequences

    International Nuclear Information System (INIS)

    Pascaner, A F; Craiem, D; Casciaro, M E; Graf, S; Danielo, R; Guevara, E

    2015-01-01

    Recent reports have shown that the carotid artery wall had significant movements not only in the radial but also in the longitudinal direction during the cardiac cycle. Accordingly, the idea that longitudinal elongations could be systematically neglected for compliance estimations became controversial. Assuming a dynamic change in vessel length, the standard measurement of cross-sectional compliance can be revised. In this work, we propose to estimate a volumetric compliance based on continuous measurements of carotid diameter and intima-media thickness (IMT) from B-mode ultrasound sequences. Assuming the principle of conservation of the mass of wall volume (compressibility equals zero), a temporal longitudinal elongation can be calculated to estimate a volumetric compliance. Moreover, elongations can also be estimated allowing small compressibility factors to model some wall leakage. The cross-sectional and the volumetric compliance were estimated in 45 healthy volunteers and 19 asymptomatic patients. The standard measurement underestimated the volumetric compliance by 25% for young volunteers (p < 0.01) and 17% for patients (p < 0.05). When compressibility factors different from zero were allowed, volunteers and patients reached values of 9% and 4%, respectively. We conclude that a simultaneous assessment of carotid diameter and IMT can be employed to estimate a volumetric compliance incorporating a longitudinal elongation. The cross-sectional compliance, that neglects the change in vessel length, underestimates the volumetric compliance. (paper)

  16. A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control

    International Nuclear Information System (INIS)

    Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng

    2016-01-01

    A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed “U shape” reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. - Highlights: • The meter chip is a standalone point-of-care diagnostic tool with visible readouts of quantification results. • A fast and low cost fabrication protocol (~3 min and ~$0.2 per chip) of meter chip was proposed. • The chip may hold the potential for rapid scaning of bovine mastitis in cattle farms for food safety control.

  17. A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin [The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an, 710049 (China); Lu, Tian Jian, E-mail: tjlu@mail.xjtu.edu.cn [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an, 710049 (China); Xu, Feng, E-mail: fengxu@mail.xjtu.edu.cn [The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an, 710049 (China)

    2016-09-07

    A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed “U shape” reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. - Highlights: • The meter chip is a standalone point-of-care diagnostic tool with visible readouts of quantification results. • A fast and low cost fabrication protocol (~3 min and ~$0.2 per chip) of meter chip was proposed. • The chip may hold the potential for rapid scaning of bovine mastitis in cattle farms for food safety control.

  18. A comparison of semi-automated volumetric vs linear measurement of small vestibular schwannomas.

    Science.gov (United States)

    MacKeith, Samuel; Das, Tilak; Graves, Martin; Patterson, Andrew; Donnelly, Neil; Mannion, Richard; Axon, Patrick; Tysome, James

    2018-04-01

    Accurate and precise measurement of vestibular schwannoma (VS) size is key to clinical management decisions. Linear measurements are used in routine clinical practice but are prone to measurement error. This study aims to compare a semi-automated volume segmentation tool against standard linear method for measuring small VS. This study also examines whether oblique tumour orientation can contribute to linear measurement error. Experimental comparison of observer agreement using two measurement techniques. Tertiary skull base unit. Twenty-four patients with unilateral sporadic small (linear dimension following reformatting to correct for oblique orientation of VS. Intra-observer ICC was higher for semi-automated volumetric when compared with linear measurements, 0.998 (95% CI 0.994-0.999) vs 0.936 (95% CI 0.856-0.972), p linear measurements, 0.989 (95% CI 0.975-0.995) vs 0.946 (95% CI 0.880-0.976), p = 0.0045. The intra-observer %SDD was similar for volumetric and linear measurements, 9.9% vs 11.8%. However, the inter-observer %SDD was greater for volumetric than linear measurements, 20.1% vs 10.6%. Following oblique reformatting to correct tumour angulation, the mean increase in size was 1.14 mm (p = 0.04). Semi-automated volumetric measurements are more repeatable than linear measurements when measuring small VS and should be considered for use in clinical practice. Oblique orientation of VS may contribute to linear measurement error.

  19. Method for Determining Volumetric Efficiency and Its Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ambrozik Andrzej

    2017-12-01

    Full Text Available Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.

  20. Detection of low activities 90Sr and 137Cs in surface, subsoil and sewage waters

    International Nuclear Information System (INIS)

    Babenko, V.; Isaev, A.; Kazymyrova, G.; Rudyk, O.; Khristenko, U.

    2004-01-01

    In this article the methodic of detection of volumetric activity of radionuclide 90 Sr in surface, subsoil and sewage waters on the basis of measurement of counting samples using beta-spectrometers SEB-01, produced by RPE 'Atom Komplex Prylad' (RPE 'AKP') and mathematical proceeding of spectra by software packages AKWin. At that, the time of receiving of result shortens, comparing to method of radiochemistry, from 14 days to 3 days. Activity measurement range of beta-spectrometers SEB-01 is 0.1-10 4 Bq/l, that by corresponding radionuclides concentration, allows providing control of water objects according to national norms of Ukraine (2 Bq/l). (authors)

  1. Volumetric properties of (piperidine + water) binary system: Measurements and modeling

    International Nuclear Information System (INIS)

    Afzal, Waheed; Valtz, Alain; Coquelet, Christophe; Richon, Dominique

    2008-01-01

    Densities of pure piperidine (CAS No.: 110-89-4) and of its mixtures with water have been measured over the whole range of compositions at temperatures from 283.15 K to 347.15 K using Anton Paar TM digital vibrating tube densimeter. The density of this system has been found increasing with mass fraction of water. Excess molar volumes have been calculated using the measured experimental densities and correlated using the Redlich-Kister equation. Redlich-Kister equation parameters have been adjusted on experimental data. In addition, partial molar volumes and partial excess molar volumes at infinite dilution have been calculated for each component

  2. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  3. Water Pollution Control Industry

    Science.gov (United States)

    Environmental Science and Technology, 1974

    1974-01-01

    A special report on the state of the water pollution control industry reveals that due to forthcoming federal requirements, sales and the backlogs should increase; problems may ensue because of shortages of materials and inflation. Included are reports from various individual companies. (MLB)

  4. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  5. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  6. Device for controlling water supply to nuclear reactor

    International Nuclear Information System (INIS)

    Iwasaki, Toshio.

    1974-01-01

    Object: To smoothly control automatic water supply for realizing stable operation of a nuclear reactor by providing a flow rate limiting signal selection circuit and a preferential circuit in a water supply control device for a nuclear reactor wherein the speed of a recirculation pump may be changed in two-steps. Structure: Opening angle signals for a water supply regulating valve are controlled by a nuclear reactor water level signal, a vapor flow rate signal and a supplied water flow rate signal through an adder and an adjuster in response to a predetermined water level setting signal. When the water in the reactor is maintained at a predetermined level, a selection circuit receives a water pump condition signal for selecting one of the signals from a supplied water rate limiting signal generator generating signals for indicating whether one or two water supply pumps are operated. A low value preferential circuit passes the lower of the values generated from the selection circuit and the adder. The selection circuit receives a recirculation pump condition signal and selects either one of the signals from the supplied water flow rate limiting signal generator operated at high speed or low speed. A high value preferential circuit passes the higher value

  7. 15 CFR 923.45 - Air and water pollution control requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  8. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  9. Effects of Different Reconstruction Parameters on CT Volumetric Measurement 
of Pulmonary Nodules

    Directory of Open Access Journals (Sweden)

    Rongrong YANG

    2012-02-01

    Full Text Available Background and objective It has been proven that volumetric measurements could detect subtle changes in small pulmonary nodules in serial CT scans, and thus may play an important role in the follow-up of indeterminate pulmonary nodules and in differentiating malignant nodules from benign nodules. The current study aims to evaluate the effects of different reconstruction parameters on the volumetric measurements of pulmonary nodules in chest CT scans. Methods Thirty subjects who underwent chest CT scan because of indeterminate pulmonary nodules in General Hospital of Tianjin Medical University from December 2009 to August 2011 were retrospectively analyzed. A total of 52 pulmonary nodules were included, and all CT data were reconstructed using three reconstruction algorithms and three slice thicknesses. The volumetric measurements of the nodules were performed using the advanced lung analysis (ALA software. The effects of the reconstruction algorithms, slice thicknesses, and nodule diameters on the volumetric measurements were assessed using the multivariate analysis of variance for repeated measures, the correlation analysis, and the Bland-Altman method. Results The reconstruction algorithms (F=13.6, P<0.001 and slice thicknesses (F=4.4, P=0.02 had significant effects on the measured volume of pulmonary nodules. In addition, the coefficients of variation of nine measurements were inversely related with nodule diameter (r=-0.814, P<0.001. The volume measured at the 2.5 mm slice thickness had poor agreement with the volumes measured at 1.25 mm and 0.625 mm, respectively. Moreover, the best agreement was achieved between the slice thicknesses of 1.25 mm and 0.625 mm using the bone algorithm. Conclusion Reconstruction algorithms and slice thicknesses have significant impacts on the volumetric measurements of lung nodules, especially for the small nodules. Therefore, the reconstruction setting in serial CT scans should be consistent in the follow

  10. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  11. Fuzzy logic control of steam generator water level in pressurized water reactors

    International Nuclear Information System (INIS)

    Kuan, C.C.; Lin, C.; Hsu, C.C.

    1992-01-01

    In this paper a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical mode of the object to be controlled. The design is based on a set of linguistic rules that were adopted from the human operator's experience. After off-line fuzzy computation, the controller is a lookup table, and thus, real-time control is achieved. Shrink-and-swell phenomena are considered in the linguistic rules, and the simulation results show that their effect is dramatically reduced. The performance of the control system can also be improved by changing the input and output scaling factors, which is convenient for on-line tuning

  12. Computed Tomography-Based Imaging of Voxel-Wise Lesion Water Uptake in Ischemic Brain: Relationship Between Density and Direct Volumetry.

    Science.gov (United States)

    Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre

    2018-04-01

    Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging

  13. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  14. Water Assessment as controlled informality

    International Nuclear Information System (INIS)

    Dijk, Judith van; Vlist, Maarten van der; Tatenhove, Jan van

    2011-01-01

    The expectations about the effectiveness of new developed policy instruments are usually very high. In the case of the introduction of Water Assessment in The Netherlands, the ambitious aim of the instrument was to connect the policy domains of spatial planning and water management. The instrument has been monitored continuously and was evaluated two times after the introduction in 2002, by civil servants of ministries, water boards, provinces and municipalities. By combining elements of rational and communicative planning approaches and introducing a three-layered model of power, it was possible to analyse WA as a form of controlled informality, which enables water managers to use the interplay of informal and formal practices strategically at different levels of power.

  15. MRI volumetric measurement of hippocampal formation based on statistic parametric mapping

    International Nuclear Information System (INIS)

    Hua Jianming; Jiang Biao; Zhou Jiong; Zhang Weimin

    2010-01-01

    Objective: To study MRI volumetric measurement of hippocampal formation using statistic parametric mapping (SPM) software and to discuss the value of the method applied to Alzheimer's disease (AD). Methods: The SPM software was used to divide the three-dimensional MRI brain image into gray matter, white matter and CSF separately. The bilateral hippocampal formations in both AD group and normal control group were delineated and the volumes were measured. The SPM method was compared with conventional method based on region of interest (ROI), which was the gold standard of volume measurement. The time used in measuring the volume by these two methods were respectively recorded and compared by two independent samples't test. Moreover, 7 physicians measured the left hippocampal formation of one same control with both of the two methods. The frequency distribution and dispersion of data acquired with the two methods were evaluated using standard deviation coefficient. Results (1) The volume of the bilateral hippocampal formations with SPM method was (1.88 ± 0.07) cm 3 and (1.93 ± 0.08) cm 3 respectively in the AD group, while was (2.99 ± 0.07) cm 3 and (3.02 ± 0.06) cm 3 in the control group. The volume of bilateral hippocampal formations measured by ROI method was (1.87 ± 0.06) cm 3 and (1.91 ± 0.09) cm 3 in the AD group, while was (2.97 ± 0.08) cm 3 and (3.00 ± 0.05) cm 3 in the control group. There was no significant difference between SPM method and conventional ROI method in the AD group and the control group (t=1.500, 1.617, 1.095, 1.889, P>0.05). However, the time used for delineation and volume measurement was significantly different. The time used in SPM measurement was (38.1 ± 2.0) min, while that in ROI measurement was (55.4 ± 2.4) min (t=-25.918, P 3 respectively. The frequency distribution of hippocampal formation volume measured by SPM method and ROI method was different. The CV SPM was 7% and the CV ROI was 19%. Conclusions: The borders of

  16. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  17. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng

    2012-09-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  18. Hippocampus, caudate nucleus and entorhinal cortex volumetric MRI measurements in discrimination between Alzheimer’s disease, mild cognitive impairment, and normal aging

    Directory of Open Access Journals (Sweden)

    Rasha Elshafey

    2014-06-01

    Conclusion: Semi-automated MR volumetric measurements can be used to determine atrophy in hippocampus, caudate nucleus and entorhinal cortex which aided in discrimination of healthy elderly control subjects from subjects with AD and MCI and predict clinical decline of MCI leading to increase the efficiency of clinical treatments, delay institutionalization and improve cognition and behavioral symptoms.

  19. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  20. Evaluation of structural integrity and controllability of main feed water control valve for APWRS

    International Nuclear Information System (INIS)

    Koji Tachibana; Toshikazu Maeda; Hideyuki Morita; Takaharu Hiroe; Koichiro Oketani

    2005-01-01

    In Pressurized Water Reactors (PWR), the main feed water control valve always controls the mass flow rate of main feed water to maintain the water level of steam generator within the allowable range. For the main feed water control valve of PWR, we have used an air operated globe valve conventionally since it has large capacity and quick responsibility. On the Advanced Pressurized Water Reactors (APWR) system conditions, the mass flow rate of main feed water increases compared with the conventional PWR system conditions as an increase of the generating power. So, it is expected that the fluid force will increase, and it could cause critical damage on internal parts of the valve, such as plug, stem, etc. and uncontrollability of the valve. In this study, we measured the stem strain in the fluid tests using scale model and test loop under the APWR feed water flow rate conditions. The stem strain gave the stem stress and the fluid force acting on the plug surface. We evaluated the stem integrity from the stem stress and confirmed the influence which the fluid force had on the valve controllability by simulating the feed water system considering the fluid force. (authors)

  1. Effective water influx control in gas reservoir development: Problems and countermeasures

    Directory of Open Access Journals (Sweden)

    Xi Feng

    2015-03-01

    Full Text Available Because of the diversity of geological characteristics and the complexity of percolation rules, many problems are found ineffective water influx control in gas reservoir development. The problems mainly focus on how to understand water influx rules, to establish appropriate countermeasures, and to ensure the effectiveness of technical measures. It is hard to obtain a complete applicable understanding through the isolated analysis of an individual gas reservoir due to many factors such as actual gas reservoir development phase, research work, pertinence and timeliness of measures, and so on. Over the past four decades, the exploration, practicing and tracking research have been conducted on water control in gas reservoir development in the Sichuan Basin, and a series of comprehensive water control technologies were developed integrating advanced concepts, successful experiences, specific theories and mature technologies. Though the development of most water-drive gas reservoirs was significantly improved, water control effects were quite different. Based on this background, from the perspective of the early-phase requirements of water influx control, the influencing factors of a water influx activity, the dynamic analysis method of water influx performance, the optimizing strategy of a water control, and the water control experience of typical gas reservoirs, this paper analyzed the key problems of water control, evaluated the influencing factors of water control effect, explored the practical water control strategies, and proposed that it should be inappropriate to apply the previous water control technological model to actual work but the pertinence should be improved according to actual circumstances. The research results in the paper provide technical reference for the optimization of water-invasion gas reservoir development.

  2. Strategies to water pollution control in western China

    Institute of Scientific and Technical Information of China (English)

    JIANGWenchao; CHENGJijian; LONGTengrui; HEQiang

    2003-01-01

    Problems of and main limiting factors to Chinese western eco-environment are analyzea firstly and principles of integrating water pollution control with water resources planning and management, with ecological construction and with economic development planning and setting control priorities according to local conditions are proposed. Following strategies for water pollution control are suggested: 1) a master plan for western area need to be established as soon as possible; 2) total emission control should be regarded as the basic policy and measures such as clean production, charging and subsidy need to be implemented; 3) point sources pollution control should be considered the main task in short term and centralized wasteweter treatment plants by using sustainable processes should be constructed primarily for large and medium-size cities with heavier pollution; 4) sound institutional and regulation systems need to be established to create an enabling environment; 5) multiple investment system should be established; and 6) studies of pragmatic theories and methodologies for water pollution control and cost-effective technologies appropriate to western area, and training of local technicians need to be enhanced as well.

  3. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  4. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain)

    Science.gov (United States)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Paz-González, Antonio

    2010-05-01

    The direct and continuous assessment of the temporal variation on soil water content is of paramount importance for agricultural practices and, in particular, for the management of water resources. Soil water content is affected by many factors such as topography, particle size, clay and organic matter contents, and tillage systems. There are several techniques to measure or estimate soil water content. Among them, Frequency Domain Reflectometry (FDR) stands out. It is based on measuring the dielectrical constant of the soil environment. This technique allows to describe water dynamics in time and space, to determine the main patterns of soil moisture, the water uptake by roots, the evapotranspiration and the drainage. Therefore, the aim of this study was to assess the daily variation of soil water content in the root-influenced zone in plots devoted to maize and grassland as a function of the soil water volumetric content. The studied site is located in an experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo located in the province of A Coruña, Spain (43°14'N, 8°15'W; 91 masl). The study was carried out from June 2008 to September 2009 in a field devoted to maize (Zea mays, L.) and another field devoted to grassland. The soil of these sites is silt-clay textured. Long-term mean annual temperature and rainfall figures are 13.3 °C and 1288 mm, respectively. During the study period, maize crop was subjected to conventional agricultural practices. A weekly evaluation of the phenological stage of the crop was performed. An EnviroSCAN FDR equipment, comprising six capacitance sensors, was installed in the studied sites following the manufacturer's recommendations, thus assuring a proper contact between the probe and the soil. Soil water content in the root-influenced zone (40 cm depth in grassland and 60 cm depth in maize were considered) was hourly monitored in 20 cm ranges (0-20 cm, 20-40 cm, and 40-60 cm) using FDR. Evaluations were

  5. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun [Drexel Univ., Philadelphia, PA (United States); Harbin Engineering Univ., Harbin (China); Ren, Chang E. [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Hatter, Christine B. [Drexel Univ., Philadelphia, PA (United States); Anasori, Babak [Drexel Univ., Philadelphia, PA (United States); Urbankowski, Patrick [Drexel Univ., Philadelphia, PA (United States); Sarycheva, Asya [Drexel Univ., Philadelphia, PA (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-06-30

    A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm–3 at a scan rate of 2 mV s–1, an impressive rate capability with 61% capacitance retention at 1 V s–1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L–1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.

  6. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-07-01

    ... such safe water and such elimination or control of water pollution for all native villages in the State... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a...

  7. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    Science.gov (United States)

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  8. Can irrigation water use be guided by market forces? Theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2006-01-01

    This paper provides insight into the relevance of market forces to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, such as volumetric water charges and tradable water rights, then considers their usefulness in the context

  9. Water chemistry control of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Hino, Yuichi; Makino, Ichiro; Yamauchi, Sumio; Fukuda, Fumihito.

    1992-01-01

    In PWR power plants, the primary system taking heat out of nuclear reactors and the secondary system generating steam and driving turbines are completely separated by steam generators, accordingly, by mutually independent water treatment, both systems are to be maintained in the optimal conditions. Namely, primary system is the closed water circulation circuit of simple liquid phase though under high temperature, high pressure condition, therefore, water shows the stable physical and chemical properties, and the minute water treatment for restraining the corrosion of structural materials and reducing radioactivity can be done. Secondary system is similar to the condensate and feedwater system of thermal power plants, and is the circuit for liquid-vapor two-phase transformation, but due to the local concentration of impurities by evaporation, the strict requirement is set for secondary water quality. However, secondary system can be treated in the state without radioactivity, and this is a great merit. The outline, basic concept and execution of primary water quality control, and the outline, concept, control criteria, facilities and execution of secondary water quality control are reported. (K.I.)

  10. Volumetric capnography for the evaluation of pulmonary disease in adult patients with cystic fibrosis and noncystic fibrosis bronchiectasis.

    Science.gov (United States)

    Veronez, L; Moreira, M M; Soares, S T P; Pereira, M C; Ribeiro, M A G O; Ribeiro, J D; Terzi, R G G; Martins, L C; Paschoal, I A

    2010-06-01

    This study was designed to use volumetric capnography to evaluate the breathing pattern and ventilation inhomogeneities in patients with chronic sputum production and bronchiectasis and to correlate the phase 3 slope of the capnographic curve to spirometric measurements. Twenty-four patients with cystic fibrosis (CF) and 21 patients with noncystic fibrosis idiopathic bronchiectasis (BC) were serially enrolled. The diagnosis of cystic fibrosis was based on the finding of at least two abnormal sweat chloride concentrations (iontophoresis sweat test). The diagnosis of bronchiectasis was made when the patient had a complaint of chronic sputum production and compatible findings at high-resolution computed tomography (HRCT) scan of the thorax. Spirometric tests and volumetric capnography were performed. The 114 subjects of the control group for capnographic variables were nonsmoker volunteers, who had no respiratory symptoms whatsoever and no past or present history of lung disease. Compared with controls, patients in CF group had lower SpO(2) (P volumes normalized for weight (V(E)/kg) (P volume (P3Slp/V(E)) (P capacities and both groups had very similar abnormalities. The capnographic variables in the patient group suggest a restrictive respiratory pattern (greater respiratory rates, smaller expiratory times and expiratory volumes, normal peak expiratory flows). Both groups of patients showed increased phase III slopes compared with controls, which probably indicates the presence of diffuse disease of small airways in both conditions leading to inhomogeneities of ventilation.

  11. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    Science.gov (United States)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  12. Extended Kalman filtering for continuous volumetric MR-temperature imaging.

    Science.gov (United States)

    Denis de Senneville, Baudouin; Roujol, Sébastien; Hey, Silke; Moonen, Chrit; Ries, Mario

    2013-04-01

    Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.

  13. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    Science.gov (United States)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  14. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  15. Semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma stage III/IV-A feasibility study

    International Nuclear Information System (INIS)

    Fabel, M.; Tengg-Kobligk, H. von; Giesel, F.L.; Delorme, S.; Kauczor, H.-U.; Bornemann, L.; Dicken, V.; Kopp-Schneider, A.; Moser, C.

    2008-01-01

    Therapy monitoring in oncological patient care requires accurate and reliable imaging and post-processing methods. RECIST criteria are the current standard, with inherent disadvantages. The aim of this study was to investigate the feasibility of semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma compared to manual volumetric analysis and RECIST. Multislice CT was performed in 47 patients, covering the chest, abdomen and pelvis. In total, 227 suspicious, enlarged lymph nodes were evaluated retrospectively by two radiologists regarding diameters (RECIST), manually measured volume by placement of ROIs and semi-automated volumetric analysis. Volume (ml), quality of segmentation (++/-) and time effort (s) were evaluated in the study. The semi-automated volumetric analysis software tool was rated acceptable to excellent in 81% of all cases (reader 1) and 79% (reader 2). Median time for the entire segmentation process and necessary corrections was shorter with the semi-automated software than by manual segmentation. Bland-Altman plots showed a significantly lower interobserver variability for semi-automated volumetric than for RECIST measurements. The study demonstrated feasibility of volumetric analysis of lymph node metastases. The software allows a fast and robust segmentation in up to 80% of all cases. Ease of use and time needed are acceptable for application in the clinical routine. Variability and interuser bias were reduced to about one third of the values found for RECIST measurements. (orig.)

  16. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  17. Aquatic weed control within an integrated water management framework

    NARCIS (Netherlands)

    Querner, E.P.

    1993-01-01

    Aquatic weed control, carried out by the water boards in the Netherlands, is required to maintain sufficient discharge capacity of the surface water system. Weed control affects the conditions of both surface water and groundwater. The physically based model MOGROW was developed to simulate

  18. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  19. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2014-10-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  20. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Science.gov (United States)

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  1. Understanding the influence of climate change on the embodied energy of water supply.

    Science.gov (United States)

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    Science.gov (United States)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA

  3. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    Science.gov (United States)

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  4. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  5. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  6. The importance of accurate anatomic assessment for the volumetric analysis of the amygdala

    Directory of Open Access Journals (Sweden)

    L. Bonilha

    2005-03-01

    Full Text Available There is a wide range of values reported in volumetric studies of the amygdala. The use of single plane thick magnetic resonance imaging (MRI may prevent the correct visualization of anatomic landmarks and yield imprecise results. To assess whether there is a difference between volumetric analysis of the amygdala performed with single plane MRI 3-mm slices and with multiplanar analysis of MRI 1-mm slices, we studied healthy subjects and patients with temporal lobe epilepsy. We performed manual delineation of the amygdala on T1-weighted inversion recovery, 3-mm coronal slices and manual delineation of the amygdala on three-dimensional volumetric T1-weighted images with 1-mm slice thickness. The data were compared using a dependent t-test. There was a significant difference between the volumes obtained by the coronal plane-based measurements and the volumes obtained by three-dimensional analysis (P < 0.001. An incorrect estimate of the amygdala volume may preclude a correct analysis of the biological effects of alterations in amygdala volume. Three-dimensional analysis is preferred because it is based on more extensive anatomical assessment and the results are similar to those obtained in post-mortem studies.

  7. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    Science.gov (United States)

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  8. Design of Water Temperature Control System Based on Single Chip Microcomputer

    Science.gov (United States)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  9. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    Science.gov (United States)

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, David A.; Dunn, William D. [Emory University School of Medicine, Departments of Neurology, Atlanta, GA (United States); Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Grossmann, Patrick; Alexander, Brian M. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Cooper, Lee A.D. [Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA (United States); Holder, Chad A. [Emory University School of Medicine, Radiology and Imaging Sciences, Atlanta, GA (United States); Ligon, Keith L. [Brigham and Women' s Hospital, Harvard Medical School, Pathology, Dana-Farber Cancer Institute, Boston, MA (United States); Aerts, Hugo J.W.L. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Radiology, Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-12-15

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  11. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  12. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  13. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    International Nuclear Information System (INIS)

    Gutman, David A.; Dunn, William D.; Grossmann, Patrick; Alexander, Brian M.; Cooper, Lee A.D.; Holder, Chad A.; Ligon, Keith L.; Aerts, Hugo J.W.L.

    2015-01-01

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  14. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  15. Systems analysis approach to the design of efficient water pricing policies under the EU water framework directive

    DEFF Research Database (Denmark)

    Riegels, Niels; Pulido-Velazquez, Manuel; Doulgeris, Charalampos

    2013-01-01

    management objectives. However, the design and implementation of economic instruments for water management, including water pricing, has emerged as a challenging aspect of WFD implementation. This study demonstrates the use of a systems analysis approach to designing and comparing two economic approaches......Economic theory suggests that water pricing can contribute to efficient management of water scarcity. The European Union (EU) Water Framework Directive (WFD) is a major legislative effort to introduce the use of economic instruments to encourage efficient water use and achieve environmental...... to efficient management of groundwater and surface water given EU WFD ecological flow requirements. Under the first approach, all wholesale water users in a river basin face the same volumetric price for water. This water price does not vary in space or in time, and surface water and groundwater are priced...

  16. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  17. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  18. Water content estimated from point scale to plot scale

    Science.gov (United States)

    Akyurek, Z.; Binley, A. M.; Demir, G.; Abgarmi, B.

    2017-12-01

    Soil moisture controls the portioning of rainfall into infiltration and runoff. Here we investigate measurements of soil moisture using a range of techniques spanning different spatial scales. In order to understand soil water content in a test basin, 512 km2 in area, in the south of Turkey, a Cosmic Ray CRS200B soil moisture probe was installed at elevation of 1459 m and an ML3 ThetaProbe (CS 616) soil moisture sensor was established at 5cm depth used to get continuous soil moisture. Neutron count measurements were corrected for the changes in atmospheric pressure, atmospheric water vapour and intensity of incoming neutron flux. The calibration of the volumetric soil moisture was performed, from the laboratory analysis, the bulk density varies between 1.719 (g/cm3) -1.390 (g/cm3), and the dominant soil texture is silty clay loam and silt loamThe water content reflectometer was calibrated for soil-specific conditions and soil moisture estimates were also corrected with respect to soil temperature. In order to characterize the subsurface, soil electrical resistivity tomography was used. Wenner and Schlumberger array geometries were used with electrode spacing varied from 1m- 5 m along 40 m and 200 m profiles. From the inversions of ERT data it is apparent that within 50 m distance from the CRS200B, the soil is moderately resistive to a depth of 2m and more conductive at greater depths. At greater distances from the CRS200B, the ERT results indicate more resistive soils. In addition to the ERT surveys, ground penetrating radar surveys using a common mid-point configuration was used with 200MHz antennas. The volumetric soil moisture obtained from GPR appears to overestimate those based on TDR observations. The values obtained from CS616 (at a point scale) and CRS200B (at a mesoscale) are compared with the values obtained at a plot scale. For the field study dates (20-22.06.2017) the volumetric moisture content obtained from CS616 were 25.14%, 25.22% and 25

  19. VOLUMETRIC METHOD FOR EVALUATION OF BEACHES VARIABILITY BASED ON GIS-TOOLS

    Directory of Open Access Journals (Sweden)

    V. V. Dolotov

    2015-01-01

    Full Text Available In frame of cadastral beach evaluation the volumetric method of natural variability index is proposed. It base on spatial calculations with Cut-Fill method and volume accounting ofboththe common beach contour and specific areas for the each time.

  20. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    Science.gov (United States)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  1. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    Similarly, the control unit of the prototype performs automatic switching control of on and off on a single phase centrifugal water pump, 220volts, 0.5hp motor via a motor driver circuit (relay). It also incorporates a buzzer that beeps briefly when water level hits 100%, thus causing the pump to be switched off but when water ...

  2. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  3. The analysis of colour uniformity for a volumetric display based on a rotating LED array

    International Nuclear Information System (INIS)

    Wu, Jiang; Liu, Xu; Yan, Caijie; Xia, XinXing; Li, Haifeng

    2011-01-01

    There is a colour nonuniformity zone existing in three-dimensional (3D) volumetric displays which is based on the rotating colour light-emitting diode (LED) array. We analyse the reason for the colour nonuniformity zone by measuring the light intensity distribution and chromaticity coordinates of the LED in the volumetric display. Two boundaries of the colour nonuniformity zone are calculated. We measure the colour uniformities for a single cuboid of 3*3*4 voxels to display red, green, blue and white colour in different horizontal viewing angles, and for 64 cuboids distributed in the whole cylindrical image space with a fixed viewpoint. To evaluate the colour uniformity of a 3D image, we propose three evaluation indices of colour uniformity: the average of colour difference, the maximum colour difference and the variance of colour difference. The measurement results show that the character of colour uniformity is different for the 3D volumetric display and the two-dimensional display

  4. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    Science.gov (United States)

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  5. A spiral-based volumetric acquisition for MR temperature imaging.

    Science.gov (United States)

    Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H

    2018-06-01

    To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    Science.gov (United States)

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  7. Verbal Memory Decline following DBS for Parkinson's Disease: Structural Volumetric MRI Relationships.

    Science.gov (United States)

    Geevarghese, Ruben; Lumsden, Daniel E; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Parkinson's disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes.

  8. Method of controlling power of a heavy water reactor

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1975-01-01

    Object: To adjust a level of heavy water in a region of reflection body to control power in a heavy water reactor. Structure: The interior of a core tank filled with heavy water is divided by a partition into a core heavy water region and a reflection body region formed by surrounding the core heavy water region, and a level of heavy water within the reflection body region is adjusted to control power. Preferably, it is desirable to communicate the core heavy water region with the reflection body heavy water region at their lower portion, and gas pressure applied to an upper portion within at least one of said regions is adjusted to adjust the level of heavy water within the reflection body heavy water region. Thereby, the heavy water within the reflection body heavy water region may be introduced into the core region, thus requiring no tank which stores heavy water within the reflection body region. (Kamimura, M.)

  9. A Hierarchical Volumetric Shadow Algorithm for Single Scattering

    OpenAIRE

    Baran, Ilya; Chen, Jiawen; Ragan-Kelley, Jonathan Millar; Durand, Fredo; Lehtinen, Jaakko

    2010-01-01

    Volumetric effects such as beams of light through participating media are an important component in the appearance of the natural world. Many such effects can be faithfully modeled by a single scattering medium. In the presence of shadows, rendering these effects can be prohibitively expensive: current algorithms are based on ray marching, i.e., integrating the illumination scattered towards the camera along each view ray, modulated by visibility to the light source at each sample. Visibility...

  10. Patterns of Tamarix water use during a record drought.

    Science.gov (United States)

    Nippert, Jesse B; Butler, James J; Kluitenberg, Gerard J; Whittemore, Donald O; Arnold, Dave; Spal, Scott E; Ward, Joy K

    2010-02-01

    During a record drought (2006) in southwest Kansas, USA, we assessed groundwater dynamics in a shallow, unconfined aquifer, along with plant water sources and physiological responses of the invasive riparian shrub Tamarix ramosissima. In early May, diel water table fluctuations indicated evapotranspirative consumption of groundwater by vegetation. During the summer drought, the water table elevation dropped past the lowest position previously recorded. Concurrent with this drop, water table fluctuations abruptly diminished at all wells at which they had previously been observed despite increasing evapotranspirative demand. Following reductions in groundwater fluctuations, volumetric water content declined corresponding to the well-specific depths of the capillary fringe in early May, suggesting a switch from primary dependence on groundwater to vadose-zone water. In at least one well, the fluctuations appear to re-intensify in August, suggesting increased groundwater uptake by Tamarix or other non-senesced species from a deeper water table later in the growing season. Our data suggest that Tamarix can rapidly shift water sources in response to declines in the water table. The use of multiple water sources by Tamarix minimized leaf-level water stress during drought periods. This study illustrates the importance of the previous hydrologic conditions experienced by site vegetation for controlling root establishment at depth and demonstrates the utility of data from high-frequency hydrologic monitoring in the interpretation of plant water sources using isotopic methods.

  11. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  12. Exploring Parallel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Mosegaard, Jesper; Sørensen, Thomas Sangild

    2008-01-01

    ) from Nvidia. This paper investigates multiple implementations of volumetric Mass-Spring-Damper systems in CUDA. The obtained performance is compared to previous implementations utilizing the GPU through the OpenGL graphics API. We find that both performance and optimization strategies differ widely...

  13. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  14. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments

    International Nuclear Information System (INIS)

    Perkins, B.; Travis, B.; DePoorter, G.

    1985-01-01

    Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables

  15. Methodology for monitoring radionuclide activity in waste waters

    International Nuclear Information System (INIS)

    Padilla, R.; Hernandez, R.; Fernandez, J.; Vizcaino, M.

    1996-01-01

    A procedure for the determination of the volumetric specific activity of the liquid effluents of the CEADEN was established. The waters of the retention tank are sampled weekly and analyzed by gamma and beta spectrometry, determining the activity of several isotopes used in the radiochemistry works

  16. Steam Generator control in Nuclear Power Plants by water mass inventory

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States); Doster, J. Michael [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)], E-mail: doster@eos.ncsu.edu; Mayo, Charles W. [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)

    2008-04-15

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators.

  17. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  18. Control of water infiltration through SLB trench covers

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1986-01-01

    A technique for control of water infiltration into waste burial trenches is described. Initial results show the procedure to be very promising. In essence, the technique combines engineered or positive control of run-off, along with a vegetative cover, and is named bioengineering management. To investigate control of infiltration, lysimeters are being used to make complete water balance measurements. The studies are underway at the Maxey Flats, Kentucky, low-level waste burial site. Where the original Maxey Flats site closure procedure is followed, it is necessary to pump large amounts of water out of the lysimeters to prevent the water table from rising closer than 2 meters from the surface. Using the fescue grass bioengineering management procedure, no pumping is required. Encouraged by the initial findings in the rather small-scale lysimeters, a large scale demonstration of the bioengineering management technique has been initiated in Beltsville, Maryland. 6 references, 14 figures

  19. Dose-volumetric parameters for predicting hypothyroidism after radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Kim, Mi Young; Yu, Tosol; Wu, Hong-Gyun

    2014-01-01

    To investigate predictors affecting the development of hypothyroidism after radiotherapy for head and neck cancer, focusing on radiation dose-volumetric parameters, and to determine the appropriate radiation dose-volumetric threshold of radiation-induced hypothyroidism. A total of 114 patients with head and neck cancer whose radiotherapy fields included the thyroid gland were analysed. The purpose of the radiotherapy was either definitive (n=81) or post-operative (n=33). Thyroid function was monitored before starting radiotherapy and after completion of radiotherapy at 1 month, 6 months, 1 year and 2 years. A diagnosis of hypothyroidism was based on a thyroid stimulating hormone value greater than the maximum value of laboratory range, regardless of symptoms. In all patients, dose volumetric parameters were analysed. Median follow-up duration was 25 months (range; 6-38). Forty-six percent of the patients were diagnosed as hypothyroidism after a median time of 8 months (range; 1-24). There were no significant differences in the distribution of age, gender, surgery, radiotherapy technique and chemotherapy between the euthyroid group and the hypothyroid group. In univariate analysis, the mean dose and V35-V50 results were significantly associated with hypothyroidism. The V45 is the only variable that independently contributes to the prediction of hypothyroidism in multivariate analysis and V45 of 50% was a threshold value. If V45 was <50%, the cumulative incidence of hypothyroidism at 1 year was 22.8%, whereas the incidence was 56.1% if V45 was ≥50%. (P=0.034). The V45 may predict risk of developing hypothyroidism after radiotherapy for head and neck cancer, and a V45 of 50% can be a useful dose-volumetric threshold of radiation-induced hypothyroidism. (author)

  20. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software.

    Science.gov (United States)

    Waade, Gunvor Gipling; Highnam, Ralph; Hauge, Ingrid H R; McEntee, Mark F; Hofvind, Solveig; Denton, Erika; Kelly, Judith; Sarwar, Jasmine J; Hogg, Peter

    2016-06-01

    Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation; however, the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric density classification and to examine whether the current quality control (QC) standard is sufficient for assessing mammographic density. Raw data from 52 digital screening mammograms were included in the study. For each image, the clinically recorded CBT was artificially increased and decreased in increments of 1 mm to simulate measurement error, until ±15% from the recorded CBT was reached. New images were created for each 1 mm step in thickness resulting in a total of 974 images which then had volpara density grade (VDG) and volumetric density percentage assigned. A change in VDG was observed in 38.5% (n = 20) of mammograms when applying ±15% error to the recorded CBT and 11.5% (n = 6) was within the QC standard prescribed error of ±5 mm. The current QC standard of ±5 mm error in recorded CBT creates the potential for error in mammographic density measurement. This may lead to inaccurate classification of mammographic density. The current QC standard for assessing mammographic density should be reconsidered.

  1. Status of control assembly materials in Indian water reactors

    International Nuclear Information System (INIS)

    Date, V.G.; Kulkarni, P.G.

    2000-01-01

    India's present operating water cooled power reactors comprise boiling water reactors of Tarapur Atomic Power Station (TAPS) and pressurized heavy water reactors (PHWRs) at Kota (RAPS), Kalpakkam (MAPS), Narora (NAPS) and Kakrapara (KAPS). Boiling water reactors of TAPS use boron carbide control blades for control of power as well as for shut down (scram). PHWRs use boron steel and cobalt absorber rods for power control and Cd sandwiched shut off rods (primary shut down system) and liquid poison rods (secondary shut down system) for shut down. In TAPS, Gadolinium rods (burnable poison rods) are also incorporated in fuel assembly for flux flattening. Boron carbide control blades and Gadolinium rods for TAPS, cobalt absorber rods and shut down assemblies for PHWRs are fabricated indigenously. Considerable development work was carried out for evolving material specifications, component and assembly drawings, and fabrication processes. Details of various control and shut off assemblies being fabricated currently are highlighted in the paper. (author)

  2. Thermodynamic and volumetric databases and software for magnesium alloys

    Science.gov (United States)

    Kang, Youn-Bae; Aliravci, Celil; Spencer, Philip J.; Eriksson, Gunnar; Fuerst, Carlton D.; Chartrand, Patrice; Pelton, Arthur D.

    2009-05-01

    Extensive databases for the thermodynamic and volumetric properties of magnesium alloys have been prepared by critical evaluation, modeling, and optimization of available data. Software has been developed to access the databases to calculate equilibrium phase diagrams, heat effects, etc., and to follow the course of equilibrium or Scheil-Gulliver cooling, calculating not only the amounts of the individual phases, but also of the microstructural constituents.

  3. PEMODELAN OBYEK TIGA DIMENSI DARI GAMBAR SINTETIS DUA DIMENSI DENGAN PENDEKATAN VOLUMETRIC

    Directory of Open Access Journals (Sweden)

    Rudy Adipranata

    2005-01-01

    Full Text Available In this paper, we implemented 3D object modeling from 2D input images. Modeling is performed by using volumetric reconstruction approaches by using volumetric reconstruction approaches, the 3D space is tesselated into discrete volumes called voxels. We use voxel coloring method to reconstruct 3D object from synthetic input images by using voxel coloring, we can get photorealistic result and also has advantage to solve occlusion problem that occur in many case of 3D reconstruction. Photorealistic 3D object reconstruction is a challenging problem in computer graphics and still an active area nowadays. Many applications that make use the result of reconstruction, include virtual reality, augmented reality, 3D games, and another 3D applications. Voxel coloring considered the reconstruction problem as a color reconstruction problem, instead of shape reconstruction problem. This method works by discretizing scene space into voxels, then traversed and colored those voxels in special order. The result is photorealitstic 3D object. Abstract in Bahasa Indonesia : Dalam penelitian ini dilakukan implementasi untuk pemodelan obyek tiga dimensi yang berasal dari gambar dua dimensi. Pemodelan ini dilakukan dengan menggunakan pendekatan volumetric. Dengan menggunakan pendekatan volumetric, ruang tiga dimensi dibagi menjadi bentuk diskrit yang disebut voxel. Kemudian pada voxel-voxel tersebut dilakukan metode pewarnaan voxel untuk mendapatkan hasil berupa obyek tiga dimensi yang bersifat photorealistic. Bagaimana memodelkan obyek tiga dimensi untuk menghasilkan hasil photorealistic merupakan masalah yang masih aktif di bidang komputer grafik. Banyak aplikasi lain yang dapat memanfaatkan hasil dari pemodelan tersebut seperti virtual reality, augmented reality dan lain-lain. Pewarnaan voxel merupakan pemodelan obyek tiga dimensi dengan melakukan rekonstruksi warna, bukan rekonstruksi bentuk. Metode ini bekerja dengan cara mendiskritkan obyek menjadi voxel dan

  4. Effective use of surface-water management to control saltwater intrusion

    Science.gov (United States)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control

  5. The control of water radioactivity

    International Nuclear Information System (INIS)

    Bovard, P.; Graubey, A.

    1962-01-01

    This report presents the different apparatuses and devices used to control and adjust routine releases, to detect accidental pollutions, and to identify the origins of an increased radioactivity. The objective is to perform permanent and continuous sampling and measurement. Samplers and measurement devices (Geiger probes, resin-based integrators, dry aerosol radioactivity recorders and dry sample radioactivity recorders) are presented. Water control stations are presented: these stations are either fixed, or mobile or floating

  6. Protection against water or mud inrush in tunnels by grouting: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2016-10-01

    Full Text Available Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (ϕ = 1.5 m, h = 1.2 m was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed.

  7. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    Science.gov (United States)

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  8. A prototype table-top inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N. Robert; Mazin, Samuel R.; Solomon, Edward G.; Fahrig, Rebecca; Pelc, Norbert J.

    2006-01-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a ''Defrise'' phantom was scanned on both the prototype IGCT scanner and a micro CT system with a ±5 deg.cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for

  9. Water quality control program in experimental circuits

    International Nuclear Information System (INIS)

    Cegalla, Miriam A.

    1996-01-01

    The Water Quality Control Program of the Experimental Circuits visualizes studying the water chemistry of the cooling in the primary and secondary circuits, monitoring the corrosion of the systems and studying the mechanism of the corrosion products transport in the systems. (author)

  10. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    Science.gov (United States)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  11. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  12. Three-dimensional volumetric assessment of response to treatment

    International Nuclear Information System (INIS)

    Willett, C.G.; Stracher, M.A.; Linggood, R.M.; Leong, J.C.; Skates, S.J.; Miketic, L.M.; Kushner, D.C.; Jacobson, J.O.

    1988-01-01

    From 1981 to 1986, 12 patients with Stage I and II diffuse large cell lymphoma of the mediastinum were treated with 4 or more cycles of multiagent chemotherapy and for nine patients this was followed by mediastinal irradiation. The response to treatment was assessed by three-dimensional volumetric analysis utilizing thoracic CT scans. The initial mean tumor volume of the five patients relapsing was 540 ml in contrast to an initial mean tumor volume of 360 ml for the seven patients remaining in remission. Of the eight patients in whom mediastinal lymphoma volumes could be assessed 1-2 months after chemotherapy prior to mediastinal irradiation, the three patients who have relapsed had volumes of 292, 92 and 50 ml (mean volume 145 ml) in contrast to five patients who have remained in remission with residual volume abnormalities of 4-87 ml (mean volume 32 ml). Four patients in prolonged remission with CT scans taken one year after treatment have been noted to have mediastinal tumor volumes of 0-28 ml with a mean value of 10 ml. This volumetric technique to assess the extent of mediastinal large cell lymphoma from thoracic CT scans appears to be a useful method to quantitate the amount of disease at presentation as well as objectively monitor response to treatment. 13 refs.; 2 figs.; 1 table

  13. Daily Megavoltage Computed Tomography in Lung Cancer Radiotherapy: Correlation Between Volumetric Changes and Local Outcome

    International Nuclear Information System (INIS)

    Bral, Samuel; De Ridder, Mark; Duchateau, Michael; Gevaert, Thierry; Engels, Benedikt; Schallier, Denis; Storme, Guy

    2011-01-01

    Purpose: To assess the predictive or comparative value of volumetric changes, measured on daily megavoltage computed tomography during radiotherapy for lung cancer. Patients and Methods: We included 80 patients with locally advanced non-small-cell lung cancer treated with image-guided intensity-modulated radiotherapy. The radiotherapy was combined with concurrent chemotherapy, combined with induction chemotherapy, or given as primary treatment. Patients entered two parallel studies with moderately hypofractionated radiotherapy. Tumor volume contouring was done on the daily acquired images. A regression coefficient was derived from the volumetric changes on megavoltage computed tomography, and its predictive value was validated. Logarithmic or polynomial fits were applied to the intratreatment changes to compare the different treatment schedules radiobiologically. Results: Regardless of the treatment type, a high regression coefficient during radiotherapy predicted for a significantly prolonged cause-specific local progression free-survival (p = 0.05). Significant differences were found in the response during radiotherapy. The significant difference in volumetric treatment response between radiotherapy with concurrent chemotherapy and radiotherapy plus induction chemotherapy translated to a superior long-term local progression-free survival for concurrent chemotherapy (p = 0.03). An enhancement ratio of 1.3 was measured for the used platinum/taxane doublet in comparison with radiotherapy alone. Conclusion: Contouring on daily megavoltage computed tomography images during radiotherapy enabled us to predict the efficacy of a given treatment. The significant differences in volumetric response between treatment strategies makes it a possible tool for future schedule comparison.

  14. Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Yuan, Huishu [Department of Radiology, Peking University Third Hospital, Beijing 100191 (China); Duan, Jianghui [Medical School, Peking University, Beijing 100191 (China); Du, Yipeng; Shen, Ning; He, Bei [Department of Respiration Internal Medicine, Peking University Third Hospital, Beijing 100191 (China)

    2013-08-15

    Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lung function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.

  15. Support for external validity of radiological anatomy tests using volumetric images

    NARCIS (Netherlands)

    Ravesloot, Cécile J.; van der Gijp, Anouk; van der Schaaf, Marieke F.; Huige, Josephine C B M; Vincken, Koen L.; Mol, Christian P.; Bleys, Ronald L A W; ten Cate, Olle T.; van Schaik, Jan P J

    2015-01-01

    Rationale and Objectives: Radiology practice has become increasingly based on volumetric images (VIs), but tests in medical education still mainly involve two-dimensional (2D) images. We created a novel, digital, VI test and hypothesized that scores on this test would better reflect radiological

  16. Support for external validity of radiological anatomy tests using volumetric images

    NARCIS (Netherlands)

    Ravesloot, Cecile J.; van der Gijp, Anouk; van der Schaaf, Marieke F; Huige, Josephine C B M; Vincken, Koen L; Mol, Christian P; Bleys, Ronald L A W; ten Cate, Olle T; van Schaik, JPJ

    2015-01-01

    RATIONALE AND OBJECTIVES: Radiology practice has become increasingly based on volumetric images (VIs), but tests in medical education still mainly involve two-dimensional (2D) images. We created a novel, digital, VI test and hypothesized that scores on this test would better reflect radiological

  17. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    Science.gov (United States)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  18. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  19. Effects of alcohols on gas holdup and volumetric liquid-phase mass transfer coefficient in gel-particle-suspended bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Salvacion, J.; Murayama, M.; Otaguchi, K.; Koide, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-20

    The effects of alcohols, column dimensions, gas velocity, physical properties of liquids, and gel particles on the gas holdup e{sub G} and the volumetric liquid-phase mass transfer coefficient k{sub L}a in a gel-particle-suspended bubble column under liquid-solid batch operation were studied experimentally. It was shown that addition of at alcohols to water generally increases e{sub G}. However, k{sub L}a values in aqueous solutions of alcohols became larger or smaller than those in water, according to the kind and concentration of the alcohol added to water. It was also shown that the presence of suspended gel-particles in the bubble column reduces values of e{sub G} and k{sub L}a. Based on these observations, empirical equations for e{sub G} in the transition regime in an ethanol solution, for e{sub G} in the heterogeneous now regime applicable to various alcohol solutions and for k{sub L}a in both now regimes were proposed. 18 refs., 12 figs., 3 tabs.

  20. Translating Response During Therapy into Ultimate Treatment Outcome: A Personalized 4-Dimensional MRI Tumor Volumetric Regression Approach in Cervical Cancer

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Wang, Jian Z.; Lo, Simon S.; Zhang Dongqing; Grecula, John C.; Lu Lanchun; Montebello, Joseph F.; Fowler, Jeffrey M.; Yuh, William T.C.

    2010-01-01

    Purpose: To assess individual volumetric tumor regression pattern in cervical cancer during therapy using serial four-dimensional MRI and to define the regression parameters' prognostic value validated with local control and survival correlation. Methods and Materials: One hundred and fifteen patients with Stage IB 2 -IVA cervical cancer treated with radiation therapy (RT) underwent serial MRI before (MRI 1) and during RT, at 2-2.5 weeks (MRI 2, at 20-25 Gy), and at 4-5 weeks (MRI 3, at 40-50 Gy). Eighty patients had a fourth MRI 1-2 months post-RT. Mean follow-up was 5.3 years. Tumor volume was measured by MRI-based three-dimensional volumetry, and plotted as dose(time)/volume regression curves. Volume regression parameters were correlated with local control, disease-specific, and overall survival. Results: Residual tumor volume, slope, and area under the regression curve correlated significantly with local control and survival. Residual volumes ≥20% at 40-50 Gy were independently associated with inferior 5-year local control (53% vs. 97%, p <0.001) and disease-specific survival rates (50% vs. 72%, p = 0.009) than smaller volumes. Patients with post-RT residual volumes ≥10% had 0% local control and 17% disease-specific survival, compared with 91% and 72% for <10% volume (p <0.001). Conclusion: Using more accurate four-dimensional volumetric regression analysis, tumor response can now be directly translated into individual patients' outcome for clinical application. Our results define two temporal thresholds critically influencing local control and survival. In patients with ≥20% residual volume at 40-50 Gy and ≥10% post-RT, the risk for local failure and death are so high that aggressive intervention may be warranted.

  1. Water level control for a nuclear steam generator

    International Nuclear Information System (INIS)

    Wen Tan

    2011-01-01

    Research highlights: → A water level control system for a nuclear steam generator (SG) is proposed. → The parameters of the control system are directly related to those of the plant model thus scheduling is easy to implement in practice. → The proposed gain-scheduled controller can achieve good performance at both low and high power levels. - Abstract: A water level control system for a nuclear steam generator (SG) is proposed. The control system consists of a feedback controller and a feedforward controller. The feedback controller is of first order, the feedforward controller is of second order, and parameters of the two controllers are directly related to the parameters of plant model thus scheduling is easy to implement in practice. Robustness and performance of the feedback and the feedforward controllers are analyzed in details and tuning of the two parameters of the controllers are discussed. Comparisons among a single robust controller, a multi-model controller and a gain-scheduled controller are studied. It is shown that the proposed gain-scheduled controller can achieve good performance at both low and high power levels.

  2. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data

    OpenAIRE

    Fischer, Felix; Selver, M. Alper; Gezer, Sinem; Dicle, O?uz; Hillen, Walter

    2015-01-01

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant addi...

  3. Water retention properties of ashes; Vattenretentionsegenskaper hos aska

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Ezziyani, Samir; Bendz, David

    2009-05-15

    The water holding properties of a material can be described with a water retention curve (also called pF curve or characteristic curve). The importance of this material property has until now been neglected in waste and rest products contexts. There is an eminent need for knowledge of the water holding properties of ash and rest products in order to improve the possibility to perform i) assessment of leaching from rest product used in constructions, ii) dimensioning of covers built with rest products and iii) assessment of long term properties of land fill waste concerning leaching, especially for stabilized ash with a monolithic characteristics. The aim of this project was to increase the knowledge of the water holding properties of ashes by determining water retention curves with laboratory methods on four ash materials with the potential to be used in constructions. In the project, four ashes has been studied; one MSWI bottom ash from SYSAV, one aged MSWI bottom ash from Gaerstadverket and two fly ashes from incineration of biofuels; one from SCA Ortviken and one from Jaemtkraft AB. For comparison, data from a silt soil studied in another SGI project is presented. When determining a water retention curve for a specific material water from the examined, beforehand water saturated, sample is eliminated under controlled circumstances in a pressure plate extractor. The sample is exposed to a pressure, with increasing degree, squeezing excess water out of the material. The excess water is measured for each increased pressure step and the remaining volumetric water content in the material can be calculated. The results from such measurements are presented in water retention curves, in which the volumetric water content is plotted as a function of the capillary pressure. The water retention curves shows how various materials differ in water content at the same pressure. The results from the study showed that ashes have great water holding capacity. The study also

  4. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density

    KAUST Repository

    Kurra, Narendra

    2014-09-10

    Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top-down photolithographic process and bottom-up chemical synthesis is employed to fabricate the micro-pseudocapacitors (μ-pseudocapacitors). The resulting Ni(OH)2-based devices show several excellent characteristics including high-rate redox activity up to 500 V s-1 and an areal cell capacitance of 16 mF cm-2 corresponding to a volumetric stack capacitance of 325 F cm-3. This volumetric capacitance is two-fold higher than carbon and metal oxide based μ-supercapacitors with interdigitated electrode architecture. Furthermore, these μ-pseudocapacitors show a maximum energy density of 21 mWh cm-3, which is superior to the Li-based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ-pseudocapacitors are shown to be capable of powering a light-emitting diode.

  5. Long-term three-dimensional volumetric assessment of skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode in asians.

    Science.gov (United States)

    Tanaka, Yohei

    2015-10-01

    Non-insulated microneedle radiofrequency (NIMNRF) is a novel method that allows non-thermal penetration of the epidermis followed by radiofrequency (RF) coagulation at selected depths of the dermis that are surrounded by a zone of non-coagulative volumetric heating. The objective of this study was to investigate subjectively and objectively the efficacy of a single fractional NIMNRF treatment. Twenty Japanese patients underwent full face skin tightening using a sharply tapered NIMNRF applicator with a novel fractionated pulse mode. The system platform (1MHZ) incorporated six independent phase controlled RF generators coupled to RF microneedles that induced skin remodeling via controlled dermal coagulation. Patients received from 500 to 1000 pulses that were 80-110 milliseconds in duration at a power of 10-14 W, and a 1.5-2.5 mm penetration depth. Topical anesthetic cream was applied before the treatment. Monthly three-dimensional (3-D) volumetric assessments were performed for 6 months after treatment. Patients rated their satisfaction using a 5-point scale. During the study patients showed significant skin tightening on the lower two-thirds of the face. Objective assessments with superimposed 3-D color images showed significant median volumetric reduction of 12.1 ml at 6 months post-treatment. Ninety percent of the patients were either "satisfied" or "very satisfied" with the treatment results. The treatments were well tolerated with minimal discomfort. Complications included a slight burning sensation and mild erythema that were minor and transitory; both resolved within 5 hours. Side effects such as post-inflammatory hyperpigmentation, epidermal burns, and scar formation were not observed. The advantages of this NIMNRF treatment for skin tightening are its long-lasting high efficacy as shown through 3-D volumetric assessments. Moreover, NIMNRF produced minimal complications and downtime as well as few side effects. This non-invasive novel fractional NIMNRF

  6. Evaluation of Fatigue Crack Initiation for Volumetric Flaw in Pressure Tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Yoo, Hyun Joo

    2005-01-01

    CAN/CSA.N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA-N285.05-2005, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of ASME B and PV Sec. XI, 'Inservice Inspection of Nuclear Power Plant Components'. However, the evaluation methodology for a blunt volumetric flaw is described in CSA-N285.05-2005 code. The object of this paper is to address the fatigue crack initiation evaluation for the blunt volumetric flaw as it applies to the pressure tube at Wolsong NPP

  7. Case-specific comparison of water pollution control alternatives in peat production

    International Nuclear Information System (INIS)

    Savolainen, M.; Kaasinen, A.; Heikkinen, K.; Ihme, R.; Kaemae, T.; Alasaarela, E.

    1996-01-01

    The present practice water pollution control in peat production and the elements of planning were analyzed, the water purification methods were classified and their weaknesses estimated. Furthermore, the cost of the water purification constructions was estimated and their significance for the watercourses evaluated. 54 peat production plans were chosen from the catchment areas of the rivers Iijoki, Siikajoki and Pyhaejoki. The suitability of the chosen water pollution control methods was evaluated on the basis of the plans and, further, on the basis of field surveys. The suitability of the purification methods to practical water pollution control was assessed by making plans for 15 peat mining areas. There is a need to develop the planning and implementation of water pollution control in peat mining. The methods that are used do not always work in the expected way in practice. Despite this planning is compatible with the water protection program and the regulations that are in force. The study gives a good idea of how to update the planning instructions for water pollution control. The accompanying report includes plan for 11 peat mining areas. (orig.)

  8. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  9. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  10. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  11. Careers in Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    Described are the activities, responsibilities, and educational and training requirements of the major occupations directly concerned with water pollution control. Also provided is an overview of employment trends, salaries, and projected demand for employees. Included in the appendix is a list of colleges and universities which offer…

  12. Wind and water erosion control on semiarid lands

    International Nuclear Information System (INIS)

    Siddoway, F.H.

    1980-01-01

    Commercial crop production on semiarid lands is difficult because insufficient water is often present to manage the system effectively. Erosion control presents the major management problem. The factors contributing to wind erosion and their interaction have been quantified into a wind erosion equation. The control of wind erosion through agronomic alteration of the various factors is discussed. The quantification and control of water erosion is also discussed with respect to the Universal Soil Loss Equation. Radioisotopes tracers have been used in conjunction with these erosion equations to measure soil losses. (author)

  13. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    Science.gov (United States)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  14. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Science.gov (United States)

    2010-07-01

    ..., responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability. This... control management within the Mississippi River Basin. (c) Objectives. The objectives of the Board are: (1...) Composition. The Mississippi River Water Control Management Board is a continuing board consisting of the...

  15. Volumetric and calorimetric properties of aqueous ionene solutions.

    Science.gov (United States)

    Lukšič, Miha; Hribar-Lee, Barbara

    2017-02-01

    The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions - ionenes - were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion's charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH 2 group of the polyion's backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found.

  16. NOESY-WaterControl: a new NOESY sequence for the observation of under-water protein resonances

    International Nuclear Information System (INIS)

    Torres, Allan M.; Zheng, Gang; Price, William S.

    2017-01-01

    Highly selective and efficient water signal suppression is indispensable in biomolecular 2D nuclear Overhauser effect spectroscopy (NOESY) experiments. However, the application of conventional water suppression schemes can cause a significant or complete loss of the biomolecular resonances at and around the water chemical shift (ω 2 ). In this study, a new sequence, NOESY-WaterControl, was developed to address this issue. The new sequence was tested on lysozyme and bovine pancreatic trypsin inhibitor (BPTI), demonstrating its efficiency in both water suppression and, more excitingly, preserving water-proximate biomolecular resonances in ω 2 . The 2D NOESY maps obtained using the new sequence thus provide more information than the maps obtained with conventional water suppression, thereby lessening the number of experiments needed to complete resonance assignments of biomolecules. The 2D NOESY-WaterControl map of BPTI showed strong bound water and exchangeable proton signals in ω 1 but these signals were absent in ω 2 , indicating the possibility of using the new sequence to discriminate bound water and exchangeable proton resonances from non-labile proton resonances with similar chemical shifts to water.

  17. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  18. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    Energy Technology Data Exchange (ETDEWEB)

    Butler, William P. [Emerson Electric Co., St. Louis, MO (United States); Buescher, Tom [Emerson Electric Co., St. Louis, MO (United States)

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  19. Assessment of Volumetric versus Manual Measurement in Disseminated Testicular Cancer; No Difference in Assessment between Non-Radiologists and Genitourinary Radiologist.

    Directory of Open Access Journals (Sweden)

    Çiğdem Öztürk

    Full Text Available The aim of this study was to assess the feasibility and reproducibility of semi-automatic volumetric measurement of retroperitoneal lymph node metastases in testicular cancer (TC patients treated with chemotherapy versus the standardized manual measurements based on RECIST criteria.21 TC patients with retroperitoneal lymph node metastases of testicular cancer were studied with a CT scan of chest and abdomen before and after cisplatin based chemotherapy. Three readers, a surgical resident, a radiological technician and a radiologist, assessed tumor response independently using computerized volumetric analysis with Vitrea software® and manual measurement according to RECIST criteria (version 1.1. Intra- and inter-rater variability were evaluated with intra class correlations and Bland-Altman analysis.Assessment of intra observer and inter observer variance proved non-significant in both measurement modalities. In particularly all intraclass correlation (ICC values for the volumetric analysis were > .99 per observer and between observers. There was minimal bias in agreement for manual as well as volumetric analysis.In this study volumetric measurement using Vitrea software® appears to be a reliable, reproducible method to measure initial tumor volume of retroperitoneal lymph node metastases of testicular cancer after chemotherapy. Both measurement methods can be performed by experienced non-radiologists as well.

  20. Leaked water detection device for control rod drive and BWR type reactor

    International Nuclear Information System (INIS)

    Takahashi, Ken.

    1995-01-01

    The device of the present invention can specify a control rod drive causing great amount of water leakage among a large number of control rod drives. Namely, water leaked from the control rod drives is introduced to each of leaked water pipelines. Further, it is introduced from the leaked water pipelines to flow glasses at which leaked water can visually be recognized individually, and then discharged through a drain pipeline. With such procedures, the amount of leaked water from the leaked water pipelines can visually be recognized at the flow glasses. As a result, the control rod drives which cause a great amount of leakage can be specified among large number of control rod drives. Accordingly, an accurate inspection schedule for a shaft-sealing portion of the control rod drives can be formed. The shaft-sealing portion degradated in the sealing property can reliably be inspected and repaired. Purge water can be ensured to improve reliability of the operation of equipments. (I.S.)

  1. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  2. Quality control in public participation assessments of water quality: the OPAL Water Survey.

    Science.gov (United States)

    Rose, N L; Turner, S D; Goldsmith, B; Gosling, L; Davidson, T A

    2016-07-22

    Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were 'poor' quality while 26.8 % were in the highest water quality band. It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain

  3. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  4. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  5. Multi-camera volumetric PIV for the study of jumping fish

    Science.gov (United States)

    Mendelson, Leah; Techet, Alexandra H.

    2018-01-01

    Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.

  6. Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrubland

    Science.gov (United States)

    Wang, Ben; Zha, Tian Shan; Jia, Xin; Gong, Jin Nan; Bourque, Charles; Feng, Wei; Tian, Yun; Wu, Bin; Qing Zhang, Yu; Peltola, Heli

    2017-09-01

    Explanations for the occurrence of hysteresis (asynchronicity) between diel soil respiration (Rs) and soil temperature (Ts) have evoked both biological and physical mechanisms. The specifics of these explanations, however, tend to vary with the particular ecosystem or biome being investigated. So far, the relative degree of control of biological and physical processes on hysteresis is not clear for drylands. This study examined the seasonal variation in diel hysteresis and its biological control in a desert-shrub ecosystem in northwest (NW) China. The study was based on continuous measurements of Rs, air temperature (Ta), temperature at the soil surface and below (Tsurf and Ts), volumetric soil water content (SWC), and photosynthesis in a dominant desert shrub (i.e., Artemisia ordosica) over an entire year in 2013. Trends in diel Rs were observed to vary with SWC over the growing season (April to October). Diel variations in Rs were more closely associated with variations in Tsurf than with photosynthesis as SWC increased, leading to Rs being in phase with Tsurf, particularly when SWC > 0.08 m3 m-3 (ratio of SWC to soil porosity = 0.26). However, as SWC decreased below 0.08 m3 m-3, diel variations in Rs were more closely related to variations in photosynthesis, leading to pronounced hysteresis between Rs and Tsurf. Incorporating photosynthesis into a Q10-function eliminated 84.2 % of the observed hysteresis, increasing the overall descriptive capability of the function. Our findings highlight a high degree of control by photosynthesis and SWC in regulating seasonal variation in diel hysteresis between Rs and temperature.

  7. A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population

    Science.gov (United States)

    Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.

    2010-03-01

    We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, pwomen with very low-density breasts (peffects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.

  8. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  9. Evaluation of two methods in controlling dental treatment water contamination.

    Science.gov (United States)

    Bansal, Ritu; Puttaiah, Raghunath; Harris, Robert; Reddy, Anil

    2011-03-01

    Dental unit water systems are contaminated with biofilms that amplify bacterial counts in dental treatment water in excess of a million colony forming units per milliliter (cfu/ml). The Centers for Disease Control and Prevention and the American Dental Association have agreed that the maximum allowable contamination of dental treatment water not exceed 500 cfu/ml. This study was conducted to evaluate two protocols in controlling contamination of dental unit water systems and dental treatment water. Both methods used an antimicrobial self-dissolving chlorine dioxide (ClO₂) tablet at a high concentration (50 ppm) to shock the dental unit water system biofilms initially followed by periodic exposure. To treat dental treatment source water for patient care, 3 parts per million (ppm) ClO₂ in municipal/tap water was compared to use of a citrus botanical extract dissolved in municipal water. Heterotrophic microbial counts of effluent water and laser scanning confocal microscopy were performed to evaluate effects of the two treatments. Results from this study indicated that both treatments were effective in controlling biofilm contamination and reducing heterotrophic plate counts Contemp Dent Pract 2011;12(2):73-83. Source of support: Nil Conflict of interest: None declared.

  10. QUANTITATIVE ESTIMATION OF VOLUMETRIC ICE CONTENT IN FROZEN GROUND BY DIPOLE ELECTROMAGNETIC PROFILING METHOD

    Directory of Open Access Journals (Sweden)

    L. G. Neradovskiy

    2018-01-01

    Full Text Available Volumetric estimation of the ice content in frozen soils is known as one of the main problems in the engineering geocryology and the permafrost geophysics. A new way to use the known method of dipole electromagnetic profiling for the quantitative estimation of the volumetric ice content in frozen soils is discussed. Investigations of foundation of the railroad in Yakutia (i.e. in the permafrost zone were used as an example for this new approach. Unlike the conventional way, in which the permafrost is investigated by its resistivity and constructing of geo-electrical cross-sections, the new approach is aimed at the study of the dynamics of the process of attenuation in the layer of annual heat cycle in the field of high-frequency vertical magnetic dipole. This task is simplified if not all the characteristics of the polarization ellipse are measured but the only one which is the vertical component of the dipole field and can be the most easily measured. Collected data of the measurements were used to analyze the computational errors of the average values of the volumetric ice content from the amplitude attenuation of the vertical component of the dipole field. Note that the volumetric ice content is very important for construction. It is shown that usually the relative error of computation of this characteristic of a frozen soil does not exceed 20% if the works are performed by the above procedure using the key-site methodology. This level of accuracy meets requirements of the design-and-survey works for quick, inexpensive, and environmentally friendly zoning of built-up remote and sparsely populated territories of the Russian permafrost zone according to a category of a degree of the ice content in frozen foundations of engineering constructions.

  11. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma

    International Nuclear Information System (INIS)

    Grossmann, Patrick; Gutman, David A.; Dunn, William D. Jr; Holder, Chad A.; Aerts, Hugo J. W. L.

    2016-01-01

    Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between MRI derived quantitative volumetric tumor phenotype features and molecular pathways. One hundred fourty one patients with presurgery MRI and survival data were included in our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available (n = 91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were put into context of molecular subtypes in GBM and prognostication. Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05). While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall survival (C-index = 0.6; Noether test, p = 4x10 −4 ). GBM volumetric features extracted from MRI are significantly enriched for information about the biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this information to develop personalized treatment strategies on the basis of noninvasive imaging. The online version of this article (doi:10.1186/s12885-016-2659-5) contains supplementary material, which is available to authorized users

  12. The relationship between anatomic noise and volumetric breast density for digital mammography

    International Nuclear Information System (INIS)

    Mainprize, James G.; Tyson, Albert H.; Yaffe, Martin J.

    2012-01-01

    Purpose: The appearance of parenchymal/stromal patterns in mammography have been characterized as having a Wiener power spectrum with an inverse power-law shape described by the exponential parameter, β. The amount of fibroglandular tissue, which can be quantified in terms of volumetric breast density (VBD), influences the texture and appearance of the patterns formed in a mammogram. Here, a large study is performed to investigate the variations in β in a clinical population and to indicate the relationship between β and breast density. Methods: From a set of 2686 cranio-caudal normal screening mammograms, the parameter β was extracted from log-log fits to the Wiener spectrum over the range 0.15–1 mm −1 . The Wiener spectrum was calculated from regions of interest in the compression paddle contact region of the breast. An in-house computer program, Cumulus V, was used to extract the volumetric breast density and identify the compression paddle contact regions of the breast. The Wiener spectra were calculated with and without modulation transfer function (MTF) correction to determine the impact of VBD on the intrinsic anatomic noise. Results: The mean volumetric breast density was 25.5% (±12.6%) over all images. The mean β following a MTF correction which decreased the β slightly (≈−0.08) was found to be 2.87. Varying the maximum of the spatial frequency range of the fits from 0.7 to 1.0, 1.25 or 1.5 mm −1 showing small decreases in the result, although the effect of the quantum noise power component on reducing β was clearly observed at 1.5 mm −1 . Conclusions: The texture parameter, β, was found to increase with VBD at low volumetric breast densities with an apparent leveling off at higher densities. The relationship between β and VBD measured here can be used to create probabilistic models for computer simulations of detectability. As breast density is a known risk predictor for breast cancer, the correlation between β and VBD suggests that

  13. Liquid-liquid critical point in a simple analytical model of water

    Science.gov (United States)

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  14. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    Science.gov (United States)

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  15. Corrosion control for open cooling water system

    International Nuclear Information System (INIS)

    Karweer, S.B.; Ramchandran, R.

    2000-01-01

    Frequent stoppage of water circulation due to shut down of the Detritiation Plant in Heavy Water Division, Trombay resulted in considerable algae growth. As polyphosphate is a nutrient to algae growth, studies were directed in the evaluation of a nonpolyphosphate formulation for controlling corrosion and scale formation of carbon-steel, copper and aluminium. A blend of HEDP, polyacrylate, zinc, and benzotriazole was used and the optimum condition was determined. In presence of 25 ppm kw-1002 [proprietary formulation, containing HEDP and polyacrylate], 10 ppm kw-201 [active ingredient benzotriazole] and 2 ppm zinc (as zinc sulphate), the corrosion rate of carbon-steel in Mumbai Municipal Corporation (MMC) water at pH 7.5 ± 0.1 for a period of 31 days was 10.4 x 10 -3 μm/h. When MMC water concentrated to half its original volume was used, the corrosion rate was still 9.74 x 10 -3 μm/h close to the original value without concentration. Hence, this formulation was used for controlling scale and corrosion. The results were satisfactory. (author)

  16. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    Science.gov (United States)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee

  17. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  18. Qualitative values of radioactivity, area and volumetric: Application on phantoms (target and background)

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman Al-Shakhrah, Issa [Department of Physics, University of Jordan, Queen Rania Street, Amman (Jordan)], E-mail: issashak@yahoo.com

    2009-04-15

    The visualization of a lesion depends on the contrast between the lesion and surrounding background (T/B; (target/background) ratio). For imaging in vivo not only is the radioactivity in the target organ important, but so too is the ratio of radioactivity in the target versus that in the background. Nearly all studies reported in the literature have dealt with the surface index, as a standard factor to study the relationship between the target (tissue or organ) and the background. It is necessary to know the ratio between the volumetric activity of lesions (targets) and normal tissues (background) instead of knowing the ratio between the area activity, the volume index being a more realistic factor than the area index as the targets (tissues or organs) are real volumes that have surfaces. The intention is that this work should aid in approaching a quantitative relationship and differentiation between different tissues (target/background or abnormal/normal tissues). For the background, square regions of interest (Rios) (11x11 pixels in size) were manually drawn by the observer at locations far from the border of the plastic cylinder (simulated organ), while an isocontour region with 50% threshold was drawn automatically over the cylinder. The total number of counts and pixels in each of these regions was calculated. The relationship between different phantom parameters, cylinder (target) depth, area activity ratio (background/target, A(B/T)) and real volumetric activity ratio (background/target, V(B/T)), was demonstrated. Variations in the area and volumetric activity ratio values with respect to the depth were deduced. To find a realistic value of the ratio, calibration charts have been constructed that relate the area and real volumetric ratios as a function of depth of the tissues and organs. Our experiments show that the cross-sectional area of the cylinder (applying a threshold 50% isocontour) has a weak dependence on the activity concentrations of the

  19. Qualitative values of radioactivity, area and volumetric: Application on phantoms (target and background)

    International Nuclear Information System (INIS)

    Abdel-Rahman Al-Shakhrah, Issa

    2009-01-01

    The visualization of a lesion depends on the contrast between the lesion and surrounding background (T/B; (target/background) ratio). For imaging in vivo not only is the radioactivity in the target organ important, but so too is the ratio of radioactivity in the target versus that in the background. Nearly all studies reported in the literature have dealt with the surface index, as a standard factor to study the relationship between the target (tissue or organ) and the background. It is necessary to know the ratio between the volumetric activity of lesions (targets) and normal tissues (background) instead of knowing the ratio between the area activity, the volume index being a more realistic factor than the area index as the targets (tissues or organs) are real volumes that have surfaces. The intention is that this work should aid in approaching a quantitative relationship and differentiation between different tissues (target/background or abnormal/normal tissues). For the background, square regions of interest (Rios) (11x11 pixels in size) were manually drawn by the observer at locations far from the border of the plastic cylinder (simulated organ), while an isocontour region with 50% threshold was drawn automatically over the cylinder. The total number of counts and pixels in each of these regions was calculated. The relationship between different phantom parameters, cylinder (target) depth, area activity ratio (background/target, A(B/T)) and real volumetric activity ratio (background/target, V(B/T)), was demonstrated. Variations in the area and volumetric activity ratio values with respect to the depth were deduced. To find a realistic value of the ratio, calibration charts have been constructed that relate the area and real volumetric ratios as a function of depth of the tissues and organs. Our experiments show that the cross-sectional area of the cylinder (applying a threshold 50% isocontour) has a weak dependence on the activity concentrations of the

  20. Volumetric image-guidance: Does routine usage prompt adaptive re-planning? An institutional review

    International Nuclear Information System (INIS)

    Tanyi, James A.; Fuss, Martin H.

    2008-01-01

    Purpose. To investigate how the use of volumetric image-guidance using an on-board cone-beam computed tomography (CBCT) system impacts on the frequency of adaptive re-planning. Material and methods. Treatment courses of 146 patients who have undergone a course of external beam radiation therapy (EBRT) using volumetric CBCT image-guidance were analyzed. Target locations included the brain, head and neck, chest, abdomen, as well as prostate and non-prostate pelvis. The majority of patients (57.5%) were treated with hypo-fractionated treatment regimens (three to 15 fraction courses). The frequency of image-guidance ranged from daily (87.7%) to weekly or twice weekly. The underlying medical necessity for adaptive re-planning as well as frequency and consequences of plan adaptation to dose-volume parameters was assessed. Results. Radiation plans of 34 patients (23.3%) were adapted at least once (up to six time) during their course of EBRT as a result of image-guidance CBCT review. Most common causes for adaptive planning were: tumor change (mostly shrinkage: 10 patients; four patients more than one re-plan), change in abdominal girth (systematic change in hollow organ filling; n=7, two patients more than one re-plan), weight loss (n=5), and systematic target setup deviation from simulation (n=5). Adaptive re-plan was required mostly for conventionally fractionated courses; only 5 patient plans undergoing hypo-fractionated treatment were adjusted. In over 91% of adapted plans, the dose-volume parameters did deviate from the prescribed plan parameters by more than 5% for at least 10% of the target volume, or organs-at-risk in close proximity to the target volume. Discussion. Routine use of volumetric image-guidance has in our practice increased the demand for adaptive re-planning. Volumetric CBCT image-guidance provides sufficient imaging information to reliably predict the need for dose adjustment. In the vast majority of cases evaluated, the initial and adapted dose

  1. Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.

    Science.gov (United States)

    Liu, Hao; Cho, Hyung-Man; Meng, Ying Shirley; Li, Quan

    2014-06-25

    Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit.

  2. Modeling, control and optimization of water systems systems engineering methods for control and decision making tasks

    CERN Document Server

    2016-01-01

    This book provides essential background knowledge on the development of model-based real-world solutions in the field of control and decision making for water systems. It presents system engineering methods for modelling surface water and groundwater resources as well as water transportation systems (rivers, channels and pipelines). The models in turn provide information on both the water quantity (flow rates, water levels) of surface water and groundwater and on water quality. In addition, methods for modelling and predicting water demand are described. Sample applications of the models are presented, such as a water allocation decision support system for semi-arid regions, a multiple-criteria control model for run-of-river hydropower plants, and a supply network simulation for public services.

  3. Reply to Pfister and Hellweg: Water footprint accounting, impact assessment, and life-cycle assessment

    NARCIS (Netherlands)

    Hoekstra, Arjen Y.; Gerbens-Leenes, Winnie; van der Meer, Theo H.

    2009-01-01

    In response to our article on the blue and green water footprint (WF) of bioenergy (1), others propose to multiply each blue WF component by a water-stress index and neglect green WFs, because impacts would be nil (2). They propose to redefine the WF from a volumetric measure to an index resulting

  4. NOESY-WaterControl: a new NOESY sequence for the observation of under-water protein resonances

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Allan M.; Zheng, Gang, E-mail: g.zheng@westernsydney.edu.au; Price, William S. [Western Sydney University, Nanoscale Organisation and Dynamics Group, School of Science and Health (Australia)

    2017-03-15

    Highly selective and efficient water signal suppression is indispensable in biomolecular 2D nuclear Overhauser effect spectroscopy (NOESY) experiments. However, the application of conventional water suppression schemes can cause a significant or complete loss of the biomolecular resonances at and around the water chemical shift (ω{sub 2}). In this study, a new sequence, NOESY-WaterControl, was developed to address this issue. The new sequence was tested on lysozyme and bovine pancreatic trypsin inhibitor (BPTI), demonstrating its efficiency in both water suppression and, more excitingly, preserving water-proximate biomolecular resonances in ω{sub 2}. The 2D NOESY maps obtained using the new sequence thus provide more information than the maps obtained with conventional water suppression, thereby lessening the number of experiments needed to complete resonance assignments of biomolecules. The 2D NOESY-WaterControl map of BPTI showed strong bound water and exchangeable proton signals in ω{sub 1} but these signals were absent in ω{sub 2}, indicating the possibility of using the new sequence to discriminate bound water and exchangeable proton resonances from non-labile proton resonances with similar chemical shifts to water.

  5. Real-time monitoring and operational control of drinking-water systems

    CERN Document Server

    Ocampo-Martínez, Carlos; Pérez, Ramon; Cembrano, Gabriela; Quevedo, Joseba; Escobet, Teresa

    2017-01-01

    This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;...

  6. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  7. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Ozmanyan, Kh.R.; Sandomirskij, B.B.

    1988-01-01

    A superconducting transition with T c0 =82-95 K and T c (R=0)=82-72 K was observed in volumetric and film Bi(Sr 1-x Ca x ) 2 Cu 3 O y samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured

  8. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

    Science.gov (United States)

    Marguerit, Elisa; Brendel, Oliver; Lebon, Eric; Van Leeuwen, Cornelis; Ollat, Nathalie

    2012-04-01

    The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  9. Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations

    International Nuclear Information System (INIS)

    Belandria, Veronica; Mohammadi, Amir H.; Richon, Dominique

    2009-01-01

    In this communication, we report experimental density data for the binary mixtures of (water + tetrahydrofuran) and (water + tetra-n-butyl ammonium bromide) at atmospheric pressure and various temperatures. The densities were measured using an Anton Paar TM digital vibrating-tube densimeter. For the (tetrahydrofuran + water) system, excess molar volumes have been calculated using the experimental densities and correlated using the Redlich-Kister equation. The Redlich-Kister equation parameters have been adjusted on experimental results. The partial molar volumes and partial excess molar volumes at infinite dilution have also been calculated for each component. A simple density equation was finally applied to correlate the measured density of the (tetra-n-butyl ammonium bromide + water) system.

  10. Development of a volumetric projection technique for the digital evaluation of field of view.

    Science.gov (United States)

    Marshall, Russell; Summerskill, Stephen; Cook, Sharon

    2013-01-01

    Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.

  11. Aplicação do diagrama T-S estatístico: volumétrico à análise das massas de água da plataforma continental do Rio Grande do Sul The statistical volumetric T-S diagram applied to the analysis of water masses of Rio Grande do Sul continental shelf

    Directory of Open Access Journals (Sweden)

    Luiz Bruner de Miranda

    1979-06-01

    Full Text Available The general characteristics of the seasonal variation of the thermohaline properties of the continental shelf water off Rio Grande do Sul, under non-conservative and quasi-synoptic conditions were analysed. The method applied - volumetric statistical T-S analysis allows the computation of the water masses budget from the knowledge of their temperature and salinity ranges. The data of 194 hydrographic stations from six oceanographic cruises between April 1968 and March 1969, were used. Water of Tropical and Subtropical origin (47,5% and 64% of the total volume during the winter and summer, respectively was always present during the observation period. Subantarctic water has its maximum and minimum influences during the winter (15% and summer (<3%, respectively. The average minimum and maximum temperature and salinity values of the water masses in the investigated region were observed in June (16,85ºC and 34,72‰, December (35,58‰ and March (20,82ºC.

  12. Graphite-moderated and heavy water-moderated spectral shift controlled reactors

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs

  13. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  14. Control of corrosion and aggression in drinking water systems.

    Science.gov (United States)

    Loewenthal, R E; Morrison, I; Wentzel, M C

    2004-01-01

    Corrosion and/or aggression are common problems arising in pipelines transporting terrestrial waters. The kinetics and severity of such events depend on both the quality of the water being transported and the material properties of the pipeline. Irrespective of the nature of the problem, its solution (or at least its minimisation) is strongly linked to control of pH, calcium concentration and carbonate chemistry of the water (stabilisation). However, application of such chemistry to water treatment problems is complex and time consuming. Various numerical, graphical and computer techniques have been developed to address this, but these are either of insufficient accuracy, too time consuming or lacking in generality. In this paper algorithms are presented for solving a broad spectrum of problems related to control of mineral precipitation/aggression, pH and chemical dosing in water treatment. These have been incorporated into a computer software package, STASOFT, which offers the requisite framework for use in water treatment. Various stabilisation problems pertinent to water supply are addressed.

  15. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  16. Mapping soil water content on golf course greens with GPR

    Science.gov (United States)

    Ground-penetrating radar (GPR) can be an effective and efficient method for high-resolution mapping of volumetric water content in the sand layer directly beneath the ground surface at a golf course green. This information could potentially be very useful to golf course superintendents for determi...

  17. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival

    International Nuclear Information System (INIS)

    Yuan, Mei; Zhang, Yu-Dong; Pu, Xue-Hui; Zhong, Yan; Yu, Tong-Fu; Li, Hai; Wu, Jiang-Fen

    2017-01-01

    To compare a multi-feature-based radiomic biomarker with volumetric analysis in discriminating lung adenocarcinomas with different disease-specific survival on computed tomography (CT) scans. This retrospective study obtained institutional review board approval and was Health Insurance Portability and Accountability Act (HIPAA) compliant. Pathologically confirmed lung adenocarcinoma (n = 431) manifested as subsolid nodules on CT were identified. Volume and percentage solid volume were measured by using a computer-assisted segmentation method. Radiomic features quantifying intensity, texture and wavelet were extracted from the segmented volume of interest (VOI). Twenty best features were chosen by using the Relief method and subsequently fed to a support vector machine (SVM) for discriminating adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC). Performance of the radiomic signatures was compared with volumetric analysis via receiver-operating curve (ROC) analysis and logistic regression analysis. The accuracy of proposed radiomic signatures for predicting AIS/MIA from IAC achieved 80.5% with ROC analysis (Az value, 0.829; sensitivity, 72.1%; specificity, 80.9%), which showed significantly higher accuracy than volumetric analysis (69.5%, P = 0.049). Regression analysis showed that radiomic signatures had superior prognostic performance to volumetric analysis, with AIC values of 81.2% versus 70.8%, respectively. The radiomic tumour-phenotypes biomarker exhibited better diagnostic accuracy than traditional volumetric analysis in discriminating lung adenocarcinoma with different disease-specific survival. (orig.)

  18. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mei; Zhang, Yu-Dong; Pu, Xue-Hui; Zhong, Yan; Yu, Tong-Fu [First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing, Jiangsu Province (China); Li, Hai [First Affiliated Hospital of Nanjing Medical University, Department of Pathology, Nanjing (China); Wu, Jiang-Fen [GE Healthcare, Shanghai (China)

    2017-11-15

    To compare a multi-feature-based radiomic biomarker with volumetric analysis in discriminating lung adenocarcinomas with different disease-specific survival on computed tomography (CT) scans. This retrospective study obtained institutional review board approval and was Health Insurance Portability and Accountability Act (HIPAA) compliant. Pathologically confirmed lung adenocarcinoma (n = 431) manifested as subsolid nodules on CT were identified. Volume and percentage solid volume were measured by using a computer-assisted segmentation method. Radiomic features quantifying intensity, texture and wavelet were extracted from the segmented volume of interest (VOI). Twenty best features were chosen by using the Relief method and subsequently fed to a support vector machine (SVM) for discriminating adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC). Performance of the radiomic signatures was compared with volumetric analysis via receiver-operating curve (ROC) analysis and logistic regression analysis. The accuracy of proposed radiomic signatures for predicting AIS/MIA from IAC achieved 80.5% with ROC analysis (Az value, 0.829; sensitivity, 72.1%; specificity, 80.9%), which showed significantly higher accuracy than volumetric analysis (69.5%, P = 0.049). Regression analysis showed that radiomic signatures had superior prognostic performance to volumetric analysis, with AIC values of 81.2% versus 70.8%, respectively. The radiomic tumour-phenotypes biomarker exhibited better diagnostic accuracy than traditional volumetric analysis in discriminating lung adenocarcinoma with different disease-specific survival. (orig.)

  19. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  20. Prognostic value of (18)F-FDG PET/CT volumetric parameters in recurrent epithelial ovarian cancer.

    Science.gov (United States)

    Mayoral, M; Fernandez-Martinez, A; Vidal, L; Fuster, D; Aya, F; Pavia, J; Pons, F; Lomeña, F; Paredes, P

    2016-01-01

    Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) from (18)F-FDG PET/CT are emerging prognostic biomarkers in various solid neoplasms. These volumetric parameters and the SUVmax have shown to be useful criteria for disease prognostication in preoperative and post-treatment epithelial ovarian cancer (EOC) patients. The purpose of this study was to evaluate the utility of (18)F-FDG PET/CT measurements to predict survival in patients with recurrent EOC. Twenty-six patients with EOC who underwent a total of 31 (18)F-FDG PET/CT studies for suspected recurrence were retrospectively included. SUVmax and volumetric parameters whole-body MTV (wbMTV) and whole-body TLG (wbTLG) with a threshold of 40% and 50% of the SUVmax were obtained. Correlation between PET parameters and progression-free survival (PFS) and the survival analysis of prognostic factors were calculated. Serous cancer was the most common histological subtype (76.9%). The median PFS was 12.5 months (range 10.7-20.6 months). Volumetric parameters showed moderate inverse correlation with PFS but there was no significant correlation in the case of SUVmax. The correlation was stronger for first recurrences. By Kaplan-Meier analysis and log-rank test, wbMTV 40%, wbMTV 50% and wbTLG 50% correlated with PFS. However, SUVmax and wbTLG 40% were not statistically significant predictors for PFS. Volumetric parameters wbMTV and wbTLG 50% measured by (18)F-FDG PET/CT appear to be useful prognostic predictors of outcome and may provide valuable information to individualize treatment strategies in patients with recurrent EOC. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  1. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  2. Triaxial extensometer for volumetric strain measurement in a hydro-compression loading test for foam materials

    International Nuclear Information System (INIS)

    Feng, Bo; Xu, Ming-long; Zhao, Tian-fei; Zhang, Zhi-jun; Lu, Tian-jian

    2010-01-01

    A new strain gauge-based triaxial extensometer (radial extensometers x, y and axial extensometer z) is presented to improve the volumetric strain measurement in a hydro-compression loading test for foam materials. By the triaxial extensometer, triaxial deformations of the foam specimen can be measured directly, from which the volumetric strain is determined. Sensitivities of the triaxial extensometer are predicted using a finite-element model, and verified through experimental calibrations. The axial extensometer is validated by conducting a uniaxial compression test in aluminium foam and comparing deformation measured by the axial extensometer to that by the advanced optical 3D deformation analysis system ARAMIS; the result from the axial extensometer agrees well with that from ARAMIS. A new modus of two-wire measurement and transmission in a hydrostatic environment is developed to avoid the punching and lead sealing techniques on the pressure vessel for the hydro-compression test. The effect of hydrostatic pressure on the triaxial extensometer is determined through an experimental test. An application in an aluminium foam hydrostatic compression test shows that the triaxial extensometer is effective for volumetric strain measurement in a hydro-compression loading test for foam materials

  3. as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Wang, Ruopeng; Dubb, Jay; Varjabedian, Ani; Tirrell, Lee S; Stevens, Allison; Augustinack, Jean C; Konukoglu, Ender; Aganj, Iman; Frosch, Matthew P; Schmahmann, Jeremy D; Fischl, Bruce; Boas, David A

    2018-01-15

    Polarization sensitive optical coherence tomography (PSOCT) with serial sectioning has enabled the investigation of 3D structures in mouse and human brain tissue samples. By using intrinsic optical properties of back-scattering and birefringence, PSOCT reliably images cytoarchitecture, myeloarchitecture and fiber orientations. In this study, we developed a fully automatic serial sectioning polarization sensitive optical coherence tomography (as-PSOCT) system to enable volumetric reconstruction of human brain samples with unprecedented sample size and resolution. The 3.5 μm in-plane resolution and 50 μm through-plane voxel size allow inspection of cortical layers that are a single-cell in width, as well as small crossing fibers. We show the abilities of as-PSOCT in quantifying layer thicknesses of the cerebellar cortex and creating microscopic tractography of intricate fiber networks in the subcortical nuclei and internal capsule regions, all based on volumetric reconstructions. as-PSOCT provides a viable tool for studying quantitative cytoarchitecture and myeloarchitecture and mapping connectivity with microscopic resolution in the human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Water chemistry: cause and control of corrosion degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2008-01-01

    The corrosion degradation of a material is directly determined by the water chemistry, material (composition, fabrication procedure and microstructure) and by the stress/strain in the material under operating conditions. Water chemistry plays an important role in both uniform corrosion and localized forms of corrosion of materials. Once we understand how water chemistry is contributing to corrosion of a material, it is logical to modify/change that water chemistry to control the corrosion degradation. In nuclear power plants, different water chemistries have been used in different components/systems. This paper will cover the origin of corrosion degradation in the Primary Heat Transport system of different reactor types, Steam Generator tubing, secondary circuit pipelines, service water pipelines and auxiliary systems and establish the role of water chemistry in causing corrosion degradation. The history of changes in water chemistry adopted in these systems to control corrosion degradation is also described. It is shown by examples that there is an obvious limitation in changing water chemistry to control corrosion degradation and in those cases, a change of material or change of the state of stresses/fabrication procedure becomes necessary. The role of water chemistry as a causative factor and also as a controlling parameter on particular types of corrosion degradation e.g. stress corrosion cracking, flow accelerated corrosion, pitting, crevice corrosion is illustrated. It will be shown that increase in dissolved oxygen content (due to radiolysis in nuclear reactors) is sufficient to make even the de-mineralized water to cause stress corrosion cracking in Boiling Water Reactors. Hydrogen Water Chemistry (by hydrogen injection) to control dissolved oxygen is shown to control the stress corrosion cracking. However, it is not possible to control dissolved oxygen at all parts of the Boiling Water Reactors. Therefore, a further refinement in terms of noble metal

  5. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  6. Simulation of water movement and NaCl transport

    International Nuclear Information System (INIS)

    Li Xun; Zheng Zhihong; Yang Zeping

    2008-01-01

    Modeling of water flow and solute transport in the near-field of a high-level radioactive waste repository with TOUGH2 is done. The results show that salt accumulation in buffer material is not so significant, precipitation does not occur throughout the period covered by our simualtions. Further more, the changeable law of volumetric water content, liquid velocity and dissolved concentration of sodium chloride with simulated time or distance are attained, which is the base of understanding evolvement of near-field. (authors)

  7. Performance-scalable volumetric data classification for online industrial inspection

    Science.gov (United States)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  8. The study and improvement of water level control of pressurizer

    International Nuclear Information System (INIS)

    Gao Peng; Zhang Qinshun

    2006-01-01

    The PI controller which is used widely in water level control of pressurizer in reactor control system usually leads dynamic overshoot and long setting time. The improvement project for intelligent fuzzy controller to take the place of PI controller is advanced. This paper researches the water level control of pressurizer in reactor control system of Daya Bay Phase I, and describes the method of intelligent fuzzy control in practice. Simulation indicates that the fuzzy control has advantages of small overshoot and short settling time. It can also improve control system's real time property and anti-interference ability. Especially for non-linear and time-varying complicated control systems, it can obtain good control results. (authors)

  9. Effect of water content on the water repellency for hydrophobized sands

    Science.gov (United States)

    Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum

  10. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  11. Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3

    Science.gov (United States)

    Gunda, Rajitha; Madireddy, Buchi Suresh; Dash, Raj Kishora

    2018-02-01

    In the present work, graphite was processed to graphene oxide (GO) using modified Hummer's method by volumetric titration approach, without attaining zero temperature and the addition of toxic chemicals (NaNO2/NaNO3). The complete oxidation of graphite to graphene oxide was obtained by controlled addition (volumetric titration) of KMnO4. The addition of higher KMnO4 resulted in partial oxidation and 2-3 mono-layers with less defects/disordered structure of reduced graphene oxide (RGO) sheets were achieved. Samples were analyzed by XRD, FT-IR, Raman analysis, and TEM analysis. X-ray diffraction displayed the oxidized peak of graphene oxide at 11.9° and reduced graphene oxide at 23.8°. The prolonged stability of the synthesized GO with lower mole ratios of oxidizing agent was confirmed from UV-visible spectroscopy. Based on the results, processed graphene oxide is found to be a candidate material for thermally stable capacitor application.

  12. Adsorption indicators in double precipitation volumetric. II. Use of radioactive indicators

    International Nuclear Information System (INIS)

    Carnicero Tejerina, M. I.

    1961-01-01

    1 31I-fluorescein and 1 10Ag-silver sulphate have been used in order to check the role of adsorption indicators in the volumetric analysis of double precipitation reactions. It has been shown by using isotopes that adsorption of fluorescein on silver halides depends on the foreign cations present in the solution. (Author) 8 refs

  13. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanyan, Kh R; Sandomirskij, B B

    1988-07-10

    A superconducting transition with T/sub c0/=82-95 K and T/sub c/(R=0)=82-72 K was observed in volumetric and film Bi(Sr/sub 1-x/Ca/sub x/)/sub 2/Cu/sub 3/O/sub y/ samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured.

  14. Effect of hydrophilic additives on volumetric and viscosity properties of amino acids in aqueous solutions at T = (283.15 to 333.15) K

    International Nuclear Information System (INIS)

    Sastry, Nandhibatla V.; Valand, Pinakin H.; Macwan, Pradip M.

    2012-01-01

    Highlights: ► Densities and viscosities of amino acids in aqueous additive solutions at different temperatures. ► Side chain partial molar volumes, V ¯ 2,tr ∘ and transfer volumes ΔV tr ∘ were calculated. ► Temperature effect on volumetric functions and B-coefficients were analyzed. ► Hydrophobic side chains facilitate the solute–solute interactions and hydrophobic hydration. - Abstract: Apparent molar volumes and partial molar volumes at infinite dilution, V ¯ 2 ∘ for amino acids (glycine, L-valine, L-leucine, L-phenylalanine, and L-aspargine) aqueous solutions in sucrose (0.05 to 0.2 (w/w)), urea (0.05), 2,3-butane diol (0.05) and 2-butoxyethanol (0.05) as additives have been calculated from the experimental densities at T = (283.15 to 233.15) K. Limiting partial molar expansibilities, E 2 ∘ , side chain partial molar volumes, V ¯ 2,tr ∘ and transfer volumes (from water to aqueous additive environment), ΔV tr ∘ for both the amino acids and their side chains have also been calculated. Relative viscosities for same systems were also calculated over the same temperature range and were analyzed in terms of Jones–Dole equation to calculate B-coefficients. The analysis of volumetric functions and B-coefficients suggests that the solute–co-solute interactions are more favored at elevated temperatures and in presence of high concentration of sucrose. Otherwise the hydrophobic side chains facilitate the solute–solute interactions and also time induced hydrophobic hydration in the bulk water.

  15. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  16. Efficient Algorithms for Real-Time GPU Volumetric Cloud Rendering with Enhanced Geometry

    Directory of Open Access Journals (Sweden)

    Carlos Jiménez de Parga

    2018-04-01

    Full Text Available This paper presents several new techniques for volumetric cloud rendering using efficient algorithms and data structures based on ray-tracing methods for cumulus generation, achieving an optimum balance between realism and performance. These techniques target applications such as flight simulations, computer games, and educational software, even with conventional graphics hardware. The contours of clouds are defined by implicit mathematical expressions or triangulated structures inside which volumetric rendering is performed. Novel techniques are used to reproduce the asymmetrical nature of clouds and the effects of light-scattering, with low computing costs. The work includes a new method to create randomized fractal clouds using a recursive grammar. The graphical results are comparable to those produced by state-of-the-art, hyper-realistic algorithms. These methods provide real-time performance, and are superior to particle-based systems. These outcomes suggest that our methods offer a good balance between realism and performance, and are suitable for use in the standard graphics industry.

  17. MDCT linear and volumetric analysis of adrenal glands: Normative data and multiparametric assessment

    International Nuclear Information System (INIS)

    Carsin-Vu, Aline; Mule, Sebastien; Janvier, Annaelle; Hoeffel, Christine; Oubaya, Nadia; Delemer, Brigitte; Soyer, Philippe

    2016-01-01

    To study linear and volumetric adrenal measurements, their reproducibility, and correlations between total adrenal volume (TAV) and adrenal micronodularity, age, gender, body mass index (BMI), visceral (VAAT) and subcutaneous adipose tissue volume (SAAT), presence of diabetes, chronic alcoholic abuse and chronic inflammatory disease (CID). We included 154 patients (M/F, 65/89; mean age, 57 years) undergoing abdominal multidetector row computed tomography (MDCT). Two radiologists prospectively independently performed adrenal linear and volumetric measurements with semi-automatic software. Inter-observer reliability was studied using inter-observer correlation coefficient (ICC). Relationships between TAV and associated factors were studied using bivariate and multivariable analysis. Mean TAV was 8.4 ± 2.7 cm 3 (3.3-18.7 cm 3 ). ICC was excellent for TAV (0.97; 95 % CI: 0.96-0.98) and moderate to good for linear measurements. TAV was significantly greater in men (p < 0.0001), alcoholics (p = 0.04), diabetics (p = 0.0003) and those with micronodular glands (p = 0.001). TAV was lower in CID patients (p = 0.0001). TAV correlated positively with VAAT (r = 0.53, p < 0.0001), BMI (r = 0.42, p < 0.0001), SAAT (r = 0.29, p = 0.0003) and age (r = 0.23, p = 0.005). Multivariable analysis revealed gender, micronodularity, diabetes, age and BMI as independent factors influencing TAV. Adrenal gland MDCT-based volumetric measurements are more reproducible than linear measurements. Gender, micronodularity, age, BMI and diabetes independently influence TAV. (orig.)

  18. Climate change and water supply and demand in western Canada

    International Nuclear Information System (INIS)

    Lawford, R.G.

    1990-01-01

    There is reason to be concerned that water resources on the Canadian Prairies could be at considerable risk due to climatic change. The Canadian Prairies frequently experience variations in the climate, which can reduce crop production by 25-50% and annual volumetric river flows by 70-90%. The potential impacts of climatic change on the Prairies are discussed. Consumptive water uses on the Prairies are dominated by irrigation and the water demands arising from thermal power generation. The overall effect of climatic change on water supplies will depend on the ways in which the various components of the hydrological cycle are affected. At the present time it is unsure whether complementary equations are more realistic in estimating evaporation than mass balance techniques. There is a need to obtain good baseline data which will allow the unequivocal resolution of the most accurate technique for estimating evaporation on the Prairies. Climate change could lead to a decrease in spring runoff, and would also lead to earlier snowmelt and peak flows. This could lead to a longer period of low flows during the summer and fall and a further drawdown of moisture reserves. Some appropriate strategies for adapting to climate change would be: encouraging water conservation; reductions in agricultural water use by developing/utilizing strains of plants with lower water demand; controlling new water developments; and enhancing on-farm retention. 10 refs

  19. Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis?

    Directory of Open Access Journals (Sweden)

    Frank Anders

    2009-08-01

    Full Text Available Abstract Background The work presented here investigates parallel imaging applied to T1-weighted high resolution imaging for use in longitudinal volumetric clinical studies involving Alzheimer's disease (AD and Mild Cognitive Impairment (MCI patients. This was in an effort to shorten acquisition times to minimise the risk of motion artefacts caused by patient discomfort and disorientation. The principle question is, "Can parallel imaging be used to acquire images at 1.5 T of sufficient quality to allow volumetric analysis of patient brains?" Methods Optimisation studies were performed on a young healthy volunteer and the selected protocol (including the use of two different parallel imaging acceleration factors was then tested on a cohort of 15 elderly volunteers including MCI and AD patients. In addition to automatic brain segmentation, hippocampus volumes were manually outlined and measured in all patients. The 15 patients were scanned on a second occasion approximately one week later using the same protocol and evaluated in the same manner to test repeatability of measurement using images acquired with the GRAPPA parallel imaging technique applied to the MPRAGE sequence. Results Intraclass correlation tests show that almost perfect agreement between repeated measurements of both segmented brain parenchyma fraction and regional measurement of hippocampi. The protocol is suitable for both global and regional volumetric measurement dementia patients. Conclusion In summary, these results indicate that parallel imaging can be used without detrimental effect to brain tissue segmentation and volumetric measurement and should be considered for both clinical and research studies where longitudinal measurements of brain tissue volumes are of interest.

  20. Eutrophication of Lake Waters in China: Cost, Causes, and Control

    Science.gov (United States)

    Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B.

    2010-04-01

    Lake water eutrophication has become one of the most important factors impeding sustainable economic development in China. Knowledge of the current status of lake water eutrophicatoin and determination of its mechanism are prerequisites to devising a sound solution to the problem. Based on reviewing the literature, this paper elaborates on the evolutional process and current state of shallow inland lake water eutrophication in China. The mechanism of lake water eutrophication is explored from nutrient sources. In light of the identified mechanism strategies are proposed to control and tackle lake water eutrophication. This review reveals that water eutrophication in most lakes was initiated in the 1980s when the national economy underwent rapid development. At present, the problem of water eutrophication is still serious, with frequent occurrence of damaging algal blooms, which have disrupted the normal supply of drinking water in shore cities. Each destructive bloom caused a direct economic loss valued at billions of yuan. Nonpoint pollution sources, namely, waste discharge from agricultural fields and nutrients released from floor deposits, are identified as the two major sources of nitrogen and phosphorus. Therefore, all control and rehabilitation measures of lake water eutrophication should target these nutrient sources. Biological measures are recommended to rehabilitate eutrophied lake waters and restore the lake ecosystem in order to bring the problem under control.

  1. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha; Efe, Esma

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from the intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.

  2. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    Science.gov (United States)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  3. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    Science.gov (United States)

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  4. Aquaponic Growbed Water Level Control Using Fog Architecture

    Science.gov (United States)

    Asmi Romli, Muhamad; Daud, Shuhaizar; Raof, Rafikha Aliana A.; Awang Ahmad, Zahari; Mahrom, Norfadilla

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is an advance method of aquaculture which combines species with different nutritional needs to live together. The combination between aquatic live and crops is called aquaponics. Aquatic waste that normally removed by biofilters in normal aquaculture practice will be absorbed by crops in this practice. Aquaponics have few common components and growbed provide the best filtration function. In growbed a siphon act as mechanical structure to control water fill and flush process. Water to the growbed comes from fish tank with multiple flow speeds based on the pump specification and height. Too low speed and too fast flow rate can result in siphon malfunctionality. Pumps with variable speed do exist but it is costly. Majority of the aquaponic practitioner use single speed pump and try to match the pump speed with siphon operational requirement. In order to remove the matching requirement some control need to be introduced. Preliminarily this research will show the concept of fill-and-flush for multiple pumping speeds. The final aim of this paper is to show how water level management can be done to remove the speed dependency. The siphon tried to be controlled remotely since wireless data transmission quite practical in vast operational area. Fog architecture will be used in order to transmit sensor data and control command. This paper able to show the water able to be retented in the growbed within suggested duration by stopping the flow in once predefined level.

  5. Dynamics of controlled release systems based on water-in-water emulsions: A general theory

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2008-01-01

    Phase-separated biopolymer solutions, and aqueous dispersions of hydrogel beads, liposomes, polymersomes, aqueous polymer microcapsules, and colloidosomes are all examples of water-in-water emulsions. These systems can be used for encapsulation and controlled release purposes, in for example food or

  6. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone

    Science.gov (United States)

    Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed

    2005-02-01

    A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.

  7. Evaluating water policy options in agriculture: a whole-farm study for the broye river basin (switzerland)†

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.

    2013-01-01

    In this study, we evaluate the impact of an increased volumetric water price and the implementation of a water quota on management decisions, income, income risk and utility of an arable farmer in the Broye River Basin, western Switzerland. We develop a bio-economic whole-farm model, which couples

  8. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    Science.gov (United States)

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  9. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  10. Fuzzy logic controller architecture for water level control in nuclear power plant steam generator using ANFIS training method

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Ekrami, AmirHasan; Naseri, Zahra

    2003-01-01

    Since suitable control of water level can greatly enhance the operation of a power station, a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical model of the object to be controlled. It is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial membership functions will be trained and appropriate functions are generated to control water level inside the steam generator while using the stated rules. The proposed architecture can construct an input-output mapping based on both human knowledge (in the from of fuzzy if - then rules) and stipulated input-output data. This fuzzy logic controller is applied to the steam generator level control by computer simulations. The simulation results confirm the excellent performance of this control architecture in compare with a well-turned PID controller. (author)

  11. Control of water chemistry in operating reactors

    International Nuclear Information System (INIS)

    Riess, R.

    1997-01-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ''modified'' B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs

  12. Control of water chemistry in operating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-02-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ``modified`` B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs.

  13. Lung, liver and lymph node metastases in follow-up MSCT. Comprehensive volumetric assessment of lesion size changes

    International Nuclear Information System (INIS)

    Wulff, A.M.; Fischer, S.; Biederer, J.; Heller, M.; Fabel, M.; Bolte, H.; Freitag-Wolf, S.; Soza, G.; Tietjen, C.

    2012-01-01

    Purpose: To investigate measurement accuracy in terms of precision and inter-rater variability in the simultaneous volumetric assessment of lung, liver and lymph node metastasis size change over time in comparison to RECIST 1.1. Materials and Methods: Three independent readers evaluated multislice CT data from clinical follow-up studies (chest/abdomen) in 50 patients with metastases. A total of 117 lung, 77 liver and 97 lymph node metastases were assessed manually (RECIST 1.1) and by volumetry with semi-automated software. The quality of segmentation and need for manual adjustments were recorded. Volumes were converted to effective diameters to allow comparison to RECIST. For statistical assessment of precision and interobserver agreement, the Wilcoxon-signed rank test and Bland-Altman plots were utilized. Results: The quality of segmentation after manual correction was acceptable to excellent in 95 % of lesions and manual corrections were applied in 21 - 36 % of all lesions, most predominantly in lymph nodes. Mean precision was 2.6 - 6.3 % (manual) with 0.2 - 1.5 % (effective) relative measurement deviation (p <.001). Inter-reader median variation coefficients ranged from 9.4 - 12.8 % (manual) and 2.9 - 8.2 % (volumetric) for different lesion types (p <.001). The limits of agreement were ± 9.8 to ± 11.2 % for volumetric assessment. Conclusion: Superior precision and inter-rater variability of volumetric over manual measurement of lesion change over time was demonstrated in a whole body setting. (orig.)

  14. Lung, liver and lymph node metastases in follow-up MSCT. Comprehensive volumetric assessment of lesion size changes

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M.; Fischer, S.; Biederer, J.; Heller, M.; Fabel, M. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Diagnostische Radiologie; Bolte, H. [Universitaetsklinikum Muenster (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Freitag-Wolf, S. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Medizinische Informatik und Statistik; Soza, G.; Tietjen, C. [Siemens AG (Germany). Imaging and IT Div. Computed Tomography

    2012-09-15

    Purpose: To investigate measurement accuracy in terms of precision and inter-rater variability in the simultaneous volumetric assessment of lung, liver and lymph node metastasis size change over time in comparison to RECIST 1.1. Materials and Methods: Three independent readers evaluated multislice CT data from clinical follow-up studies (chest/abdomen) in 50 patients with metastases. A total of 117 lung, 77 liver and 97 lymph node metastases were assessed manually (RECIST 1.1) and by volumetry with semi-automated software. The quality of segmentation and need for manual adjustments were recorded. Volumes were converted to effective diameters to allow comparison to RECIST. For statistical assessment of precision and interobserver agreement, the Wilcoxon-signed rank test and Bland-Altman plots were utilized. Results: The quality of segmentation after manual correction was acceptable to excellent in 95 % of lesions and manual corrections were applied in 21 - 36 % of all lesions, most predominantly in lymph nodes. Mean precision was 2.6 - 6.3 % (manual) with 0.2 - 1.5 % (effective) relative measurement deviation (p <.001). Inter-reader median variation coefficients ranged from 9.4 - 12.8 % (manual) and 2.9 - 8.2 % (volumetric) for different lesion types (p <.001). The limits of agreement were {+-} 9.8 to {+-} 11.2 % for volumetric assessment. Conclusion: Superior precision and inter-rater variability of volumetric over manual measurement of lesion change over time was demonstrated in a whole body setting. (orig.)

  15. Control and Coordination of Frequency Responsive Residential Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Pratt, Richard M.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  16. [Benefits of volumetric to facial rejuvenation. Part 1: Fat grafting].

    Science.gov (United States)

    Bui, P; Lepage, C

    2017-10-01

    For a number of years, a volumetric approach using autologous fat injection has been implemented to improve cosmetic outcome in face-lift procedures and to achieve lasting rejuvenation. Autologous fat as filling tissue has been used in plastic surgery since the late 19th century, but has only recently been associated to face lift procedures. The interest of the association lies on the one hand in the pathophysiology of facial aging, involving skin sag and loss of volume, and on the other hand in the tissue induction properties of grafted fat, "rejuvenating" the injected area. The strict methodology consisting in harvesting, treating then injecting an autologous fat graft is known as LipoStructure ® or lipofilling. We here describe the technique overall, then region by region. It is now well known and seems simple, effective and reproducible, but is nevertheless delicate. For each individual, it is necessary to restore a harmonious face with well-distributed volumes. By associating volumetric to the face lift procedure, the plastic surgeon plays a new role: instead of being a tailor, cutting away excess skin, he or she becomes a sculptor, remodeling the face to restore the harmony of youth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Automated volumetric breast density estimation: A comparison with visual assessment

    International Nuclear Information System (INIS)

    Seo, J.M.; Ko, E.S.; Han, B.-K.; Ko, E.Y.; Shin, J.H.; Hahn, S.Y.

    2013-01-01

    Aim: To compare automated volumetric breast density (VBD) measurement with visual assessment according to Breast Imaging Reporting and Data System (BI-RADS), and to determine the factors influencing the agreement between them. Materials and methods: One hundred and ninety-three consecutive screening mammograms reported as negative were included in the study. Three radiologists assigned qualitative BI-RADS density categories to the mammograms. An automated volumetric breast-density method was used to measure VBD (% breast density) and density grade (VDG). Each case was classified into an agreement or disagreement group according to the comparison between visual assessment and VDG. The correlation between visual assessment and VDG was obtained. Various physical factors were compared between the two groups. Results: Agreement between visual assessment by the radiologists and VDG was good (ICC value = 0.757). VBD showed a highly significant positive correlation with visual assessment (Spearman's ρ = 0.754, p < 0.001). VBD and the x-ray tube target was significantly different between the agreement group and the disagreement groups (p = 0.02 and 0.04, respectively). Conclusion: Automated VBD is a reliable objective method to measure breast density. The agreement between VDG and visual assessment by radiologist might be influenced by physical factors

  18. Computational assessment of visual search strategies in volumetric medical images.

    Science.gov (United States)

    Wen, Gezheng; Aizenman, Avigael; Drew, Trafton; Wolfe, Jeremy M; Haygood, Tamara Miner; Markey, Mia K

    2016-01-01

    When searching through volumetric images [e.g., computed tomography (CT)], radiologists appear to use two different search strategies: "drilling" (restrict eye movements to a small region of the image while quickly scrolling through slices), or "scanning" (search over large areas at a given depth before moving on to the next slice). To computationally identify the type of image information that is used in these two strategies, 23 naïve observers were instructed with either "drilling" or "scanning" when searching for target T's in 20 volumes of faux lung CTs. We computed saliency maps using both classical two-dimensional (2-D) saliency, and a three-dimensional (3-D) dynamic saliency that captures the characteristics of scrolling through slices. Comparing observers' gaze distributions with the saliency maps showed that search strategy alters the type of saliency that attracts fixations. Drillers' fixations aligned better with dynamic saliency and scanners with 2-D saliency. The computed saliency was greater for detected targets than for missed targets. Similar results were observed in data from 19 radiologists who searched five stacks of clinical chest CTs for lung nodules. Dynamic saliency may be superior to the 2-D saliency for detecting targets embedded in volumetric images, and thus "drilling" may be more efficient than "scanning."

  19. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  20. CT volumetric measurements of the orbits in Graves' disease

    International Nuclear Information System (INIS)

    Krahe, T.; Schlolaut, K.H.; Poss, T.; Trier, H.G.; Lackner, K.; Bonn Univ.; Bonn Univ.

    1989-01-01

    The volumes of the four recti muscles and the orbital fat was measured by CT in 40 normal persons and in 60 patients with clinically confirmed Graves' disease. Compared with normal persons, 42 patients (70%) showed an increase in muscle volume and 28 patients (46.7%) an increase in the amount of fat. In nine patients (15%) muscle volume was normal, but the fat was increased. By using volumetric measurements, the amount of fat in the orbits in patients with Graves' disease could be determined. (orig.) [de

  1. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre...

  2. Liquid-liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature

    International Nuclear Information System (INIS)

    Wang Silu; Jacquemin, Johan; Husson, Pascale; Hardacre, Christopher; Costa Gomes, Margarida F.

    2009-01-01

    The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([C 1 C 4 Im][BF 4 ]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C 1 C 2 Im][EtSO 4 ])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 1 C 2 Im][NTf 2 ]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 1 C 4 Im][NTf 2 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([C 1 C 4 Im][PF 6 ]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C 1 C 4 Pyrro][NTf 2 ]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N 4111 ][NTf 2 ])) were chosen. Small excess volumes (less than 0.5 cm 3 . mol -1 at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[C 1 C 2 Im][EtSO 4 ] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases.

  3. 3D Volumetric Modeling and Microvascular Reconstruction of Irradiated Lumbosacral Defects After Oncologic Resection

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Tutor

    2016-12-01

    Full Text Available Background: Locoregional flaps are sufficient in most sacral reconstructions. However, large sacral defects due to malignancy necessitate a different reconstructive approach, with local flaps compromised by radiation and regional flaps inadequate for broad surface areas or substantial volume obliteration. In this report, we present our experience using free muscle transfer for volumetric reconstruction in such cases, and demonstrate 3D haptic models of the sacral defect to aid preoperative planning.Methods: Five consecutive patients with irradiated sacral defects secondary to oncologic resections were included, surface area ranging from 143-600cm2. Latissimus dorsi-based free flap sacral reconstruction was performed in each case, between 2005 and 2011. Where the superior gluteal artery was compromised, the subcostal artery was used as a recipient vessel. Microvascular technique, complications and outcomes are reported. The use of volumetric analysis and 3D printing is also demonstrated, with imaging data converted to 3D images suitable for 3D printing with Osirix software (Pixmeo, Geneva, Switzerland. An office-based, desktop 3D printer was used to print 3D models of sacral defects, used to demonstrate surface area and contour and produce a volumetric print of the dead space needed for flap obliteration. Results: The clinical series of latissimus dorsi free flap reconstructions is presented, with successful transfer in all cases, and adequate soft-tissue cover and volume obliteration achieved. The original use of the subcostal artery as a recipient vessel was successfully achieved. All wounds healed uneventfully. 3D printing is also demonstrated as a useful tool for 3D evaluation of volume and dead-space.Conclusion: Free flaps offer unique benefits in sacral reconstruction where local tissue is compromised by irradiation and tumor recurrence, and dead-space requires accurate volumetric reconstruction. We describe for the first time the use of

  4. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    International Nuclear Information System (INIS)

    Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L

    2014-01-01

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  5. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  6. Feed water control device in a reactor

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1984-01-01

    Purpose: To prevent substantial fluctuations of the water level in a nuclear reactor and always keep a constant standard level under any operation condition. Constitution: When the causes for fluctuating the reactor water level is resulted, a certain amount of correction signal is added to a level deviation signal for the difference between the reactor standard level and the actual reactor water level to control the flow rate of the feed water pump depending on the addition signal. If reactor scram should occur, for instance, a level correction signal changing stepwise depending on a scram signal is outputted and added to the level deviation signal. As the result, the flow rate of feed water sent into the reactor just after the scram is increased, whereby the lowering in the reactor water level upon scram can be decreased as compared with the case where no such level compensation signal is inputted. (Kamimura, M.)

  7. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis

    Directory of Open Access Journals (Sweden)

    Ana Moreno-Alcázar

    2018-05-01

    Full Text Available Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions.Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM was used to compare the cannabis users against 28 matched controls (HC1 group. Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group obtained from a local database of healthy volunteers.Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001 of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001 and pallidum (p = 0.0015. Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05 and nucleus accumbens (p = 0.047.Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It

  8. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  9. Prediction of breast cancer recurrence using lymph node metabolic and volumetric parameters from {sup 18}F-FDG PET/CT in operable triple-negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [CHA University, Department of Nuclear Medicine, CHA Bundang Medical Center, Seongnam (Korea, Republic of); Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Yong Joong [Veterans Health Service Medical Center, Seoul (Korea, Republic of); Paeng, Jin Chul; Cheon, Gi Jeong; Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of)

    2017-10-15

    Triple-negative breast cancer has a poor prognosis. We evaluated several metabolic and volumetric parameters from preoperative {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in the prognosis of triple-negative breast cancer and compared them with current clinicopathologic parameters. A total of 228 patients with triple-negative breast cancer (mean age 47.0 ± 10.8 years, all women) who had undergone preoperative PET/CT were included. The PET/CT metabolic parameters evaluated included maximum, peak, and mean standardized uptake values (SUVmax, SUVpeak, and SUVmean, respectively). The volumetric parameters evaluated included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Metabolic and volumetric parameters were evaluated separately for tumor (T) and lymph nodes (N). The prognostic value of these parameters was compared with that of clinicopathologic parameters. All lymph node metabolic and volumetric parameters showed significant differences between patients with and without recurrence. However, tumor metabolic and volumetric parameters showed no significant differences. In a univariate survival analysis, all lymph node metabolic and volumetric parameters (SUVmax-N, SUVpeak-N, SUVmean-N, MTV-N, and TLG-N; all P < 0.001), T stage (P = 0.010), N stage (P < 0.001), and TNM stage (P < 0.001) were significant parameters. In a multivariate survival analysis, SUVmax-N (P = 0.005), MTV (P = 0.008), and TLG (P = 0.006) with TNM stage (all P < 0.001) were significant parameters. Lymph node metabolic and volumetric parameters were significant predictors of recurrence in patients with triple-negative breast cancer after surgery. Lymph node metabolic and volumetric parameters were useful parameters for evaluating prognosis in patients with triple-negative breast cancer by {sup 18}F-FDG PET/CT, rather than tumor parameters. (orig.)

  10. Economics of selected water control technologies and their ...

    African Journals Online (AJOL)

    Using a production function, marginal productivity of farm inputs and benefit-cost analysis, we explore the economics of selected water control technologies. From the production function, all farm inputs, including irrigation water is found to have a significant and positive effect on yield. Marginal value products of farm inputs ...

  11. Kinetic, volumetric and structural effects induced by liquid Ga penetration into ultrafine grained Al

    International Nuclear Information System (INIS)

    Naderi, Mehrnoosh; Peterlechner, Martin; Schafler, Erhard; Divinski, Sergiy V.; Wilde, Gerhard

    2015-01-01

    Kinetic, volumetric and structural effects induced by penetration of liquid Ga in ultrafine grained (UFG) Al produced by severe plastic deformation using high-pressure torsion were studied by isothermal dilatometric measurements, electron microscopy, atomic force microscopy and X-ray diffraction. Severe plastic deformation changed the distribution of impurities and their segregation was revealed by transmission electron microscopy. Two-stage length changes of UFG Al were observed which are explained by counteracting effects of expansion due to grain boundary segregation of Ga and contraction due to precipitation and recrystallization. After applying Ga, the kinetics of the liquid Ga penetration in UFG Al is studied in-situ in the electron microscope by the “first appearance” method and the time scales are in agreement with those inducing the volumetric changes

  12. Chemistry control challenges in a supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Guzonas, David; Tremaine, Peter; Jay-Gerin, Jean-Paul

    2009-01-01

    The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers to predict and control water chemistry to minimize corrosion and the transport of corrosion products and radionuclides. Meeting this goal requires an enhanced understanding of water chemistry as the temperature and pressure are raised beyond the critical point. A key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis; preliminary studies suggest markedly different behavior than that predicted from simple extrapolations from conventional water-cooled reactor behavior. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. The behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, anions introduced via make-up water or from ion-exchange resins, and radionuclides (e.g., 60 Co) needs to be understood. The formation of neutral complexes increases with temperature, and can become important under near-critical and supercritical conditions; the most important region is from 300-450 C, where the properties of water change dramatically, and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (active and inactive), leading to (a) increased deposition on fuel cladding surfaces, and (b) increased out-of-core radiation fields and worker dose, must be assessed. There are also significant challenges associated with chemistry sampling and monitoring in an SCWR. The typical methods used in current reactor designs (grab samples, on-line monitors at the end of a cooled, depressurized sample line) will be inadequate, and in-situ measurements of key parameters will be required. This paper describes current Canadian activities in SCWR chemistry and chemistry

  13. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors

    Science.gov (United States)

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-10-01

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm-3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm-3, which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs.

  14. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    Science.gov (United States)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  15. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    Science.gov (United States)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  16. Speed control of boiler feed water pump turbine based on gray correlation compensation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun Long; Wang, Di; Zhou, Hai Chun [Northeast Dianli UniversityJilin (China)

    2017-01-15

    One of the most important controlled parameters of thermal power units is the boiler drum water level. Disturbances of feed water flow rate could cause instability of the drum water level. This study proposes the Gray correlation compensation (GCC) control technology for the Boiler feed water pump turbine (BFPT) to solve this problem. Simulation results indicate that the GCC controller outperforms the traditional proportional-integral-derivative controller when it encounters different disturbances. Furthermore, the GCC controller can rapidly switch to the high-pressure steam source to ensure that the drum water level is in the secure range during steam source switching of the BFPT.

  17. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  18. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    Science.gov (United States)

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  19. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  20. Water Pollution Control Across the Nation

    Science.gov (United States)

    Environmental Science and Technology, 1973

    1973-01-01

    Reviewed are accomplishments, problems, and frustrations faced by individual states in meeting requirements of P.L. 92-500, Federal Water Pollution Control Act Amendments of 1972. State Environmental officials complain the new law may be a hindrance to established cleanup programs. Statistics and charts are given. (BL)

  1. Multicenter assessment of the reproducibility of volumetric radiofrequency-based intravascular ultrasound measurements in coronary lesions that were consecutively stented

    DEFF Research Database (Denmark)

    Huisman, Jennifer; Egede, Rasmus; Rdzanek, Adam

    2012-01-01

    To assess in a multicenter design the between-center reproducibility of volumetric virtual histology intravascular ultrasound (VH-IVUS) measurements with a semi-automated, computer-assisted contour detection system in coronary lesions that were consecutively stented. To evaluate the reproducibility...... of volumetric VH-IVUS measurements, experienced analysts of 4 European IVUS centers performed independent analyses (in total 8,052 cross-sectional analyses) to obtain volumetric data of 40 coronary segments (length 20.0 ± 0.3 mm) from target lesions prior to percutaneous intervention that were performed...... in the setting of stable (65%) or unstable angina pectoris (35%). Geometric and compositional VH-IVUS measurements were highly correlated for the different comparisons. Overall intraclass correlation for vessel, lumen, plaque volume and plaque burden was 0.99, 0.92, 0.96, and 0.83, respectively; for fibrous...

  2. INCREASING EXTINGUISHING EFFECT OF WATER MIST BY ELEKTRIFICATION

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2017-04-01

    Full Text Available This paper describes extinguishing experiments to verify the possibility of increasing the fire-extinguishing efficiency of low-, medium- and high-pressure water mist by its charging by the electric field of high DC voltage. The experimental results confirmed the effects of the electrical voltage, the configuration of electrodes (anode, cathode, the volumetric water flow rate, water pressure and the type of mist nozzle. Higher fire-extinguishing effect of electrically-charged water mist was shown by a shorter extinguishing time, a smaller volume of water to extinguish the fire and a higher percentage of successful extinguishing attempts. Benefit: faster and more efficient fire-fighting with a smaller risk of injury of persons and smaller subsequent damage in the protected space.

  3. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  4. Are adult patients with Laron syndrome osteopenic? A comparison between dual-energy X-ray absorptiometry and volumetric bone densities.

    Science.gov (United States)

    Benbassat, Carlos A; Eshed, Varda; Kamjin, Moshe; Laron, Zvi

    2003-10-01

    Severe short stature resulting from a deficiency in IGF-I is a prominent feature of Laron syndrome (LS). Although low bone mineral density (BMD) has been noted in LS patients examined by dual energy x-ray absorptiometry (DEXA), this technique does not take volume into account and may therefore underestimate the true bone density in patients with small bones. The aim of the present study was to evaluate the BMD yielded by DEXA in our LS patients using estimated volumetric values. Volumetric density was calculated with the following formulas: bone mineral apparent density (BMAD) = bone mineral content (BMC)/(area)(3/2) for the lumbar spine and BMAD = BMC/area(2) for the femoral neck. The study sample included 12 patients (mean age, 43.9 yr; mean height, 123.7 cm). Findings were compared with 10 osteopenic subjects without developmental abnormalities (mean age, 56 yr; mean height, 164.8 cm) and 10 healthy control subjects matched for sex and age to the LS patients (mean height, 165.5 cm). BMAD in the LS group was 0.201 +/- 0.02 g/cm(3) at the lumbar spine and 0.201 +/- 0.04 g/cm(3) at the femoral neck; corresponding values for the osteopenic group were 0.130 +/- 0.01 and 0.140 +/- 0.01 g/cm(3), and for the controls, 0.178 +/- 0.03 and 0.192 +/- 0.02 g/cm(3). Although areal BMD was significantly lower in the LS and osteopenic subjects compared with controls (P < 0.02) at both the lumbar spine and femoral neck, BMAD was low (P < 0.01) in the osteopenic group only. In conclusion, DEXA does not seem to be a reliable measure of osteoporosis in patients with LS.

  5. Volumetric properties of MES, MOPS, MOPSO, and MOBS in water and in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    Taha, Mohamed; Lee, Ming-Jer

    2010-01-01

    4-Morpholineethanesulfonic acid (MES), 4-morpholinepropanesulfonic acid (MOPS), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO), and 4-(N-morpholino)butanesulfonic acid (MOBS), are useful for pH control as standard buffers in the physiological region of 5.5-6.7 for MES, 6.5-7.9 for MOPS, 6.2-7.6 for MOPSO, and 6.9-8.3 for MOBS, respectively. On the basis of density measurements at 298.15 K, the apparent molar volumes, V φ , of the above-mentioned buffers in water and in (0.05, 0.16, and 0.25) mol kg -1 aqueous solutions of NaCl, KCl, KBr, and CH 3 COOK have been calculated. The partial molar volumes at infinite dilution, V φ o , obtained from V φ , have been used to calculate the volume of transfer, Δ tr V φ o , from water to aqueous electrolyte solutions. It was found that both V φ o and Δ tr V φ o vary linearly with increasing the number of carbon atoms in the alkyl group side chain of the zwitterionic buffers. These linear correlations have been utilized to estimate the contributions of the zwitterionic end group (morpholinium ion, -SO 3 - ) and -CH 2 - group to V φ o and Δ tr V φ o . The values of V φ o and Δ tr V φ o for some functional group contributions of the zwittierionic buffers with salts have also been reported.

  6. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  7. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  8. A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control.

    Science.gov (United States)

    Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng

    2016-09-07

    A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed "U shape" reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A vadose zone water fluxmeter with divergence control

    Science.gov (United States)

    Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.

    2002-01-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.

  10. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  11. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-10-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. Most of these systems must provide large volumes of high quality cooling water at reasonable cost and comply with local and state government orders and EPA mandated national pretreatment standards and regulations. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  12. Supercooling of Water Controlled by Nanoparticles and Ultrasound

    Science.gov (United States)

    Cui, Wei; Jia, Lisi; Chen, Ying; Li, Yi'ang; Li, Jun; Mo, Songping

    2018-05-01

    Nanoparticles, including Al2O3 and SiO2, and ultrasound were adopted to improve the solidification properties of water. The effects of nanoparticle concentration, contact angle, and ultrasonic intensity on the supercooling degree of water were investigated, as well as the dispersion stability of nanoparticles in water during solidification. Experimental results show that the supercooling degree of water is reduced under the combined effect of ultrasound and nanoparticles. Consequently, the reduction of supercooling degree increases with the increase of ultrasonic intensity and nanoparticle concentration and decrease of contact angle of nanoparticles. Moreover, the reduction of supercooling degree caused by ultrasound and nanoparticles together do not exceed the sum of the supercooling degree reductions caused by ultrasound and nanoparticles separately; the reduction is even smaller than that caused by ultrasound individually under certain conditions of controlled nanoparticle concentration and contact angle and ultrasonic intensity. The dispersion stability of nanoparticles during solidification can be maintained only when the nanoparticles and ultrasound together show a superior effect on reducing the supercooling degree of water to the single operation of ultrasound. Otherwise, the aggregation of nanoparticles appears in water solidification, which results in failure. The relationships among the meaningful nanoparticle concentration, contact angle, and ultrasonic intensity, at which the requirements of low supercooling and high stability could be satisfied, were obtained. The control mechanisms for these phenomena were analyzed.

  13. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  14. Determination of Geometrical REVs Based on Volumetric Fracture Intensity and Statistical Tests

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-05-01

    Full Text Available This paper presents a method to estimate a representative element volume (REV of a fractured rock mass based on the volumetric fracture intensity P32 and statistical tests. A 150 m × 80 m × 50 m 3D fracture network model was generated based on field data collected at the Maji dam site by using the rectangular window sampling method. The volumetric fracture intensity P32 of each cube was calculated by varying the cube location in the generated 3D fracture network model and varying the cube side length from 1 to 20 m, and the distribution of the P32 values was described. The size effect and spatial effect of the fractured rock mass were studied; the P32 values from the same cube sizes and different locations were significantly different, and the fluctuation in P32 values clearly decreases as the cube side length increases. In this paper, a new method that comprehensively considers the anisotropy of rock masses, simplicity of calculation and differences between different methods was proposed to estimate the geometrical REV size. The geometrical REV size of the fractured rock mass was determined based on the volumetric fracture intensity P32 and two statistical test methods, namely, the likelihood ratio test and the Wald–Wolfowitz runs test. The results of the two statistical tests were substantially different; critical cube sizes of 13 m and 12 m were estimated by the Wald–Wolfowitz runs test and the likelihood ratio test, respectively. Because the different test methods emphasize different considerations and impact factors, considering a result that these two tests accept, the larger cube size, 13 m, was selected as the geometrical REV size of the fractured rock mass at the Maji dam site in China.

  15. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Science.gov (United States)

    2010-07-01

    ... Rate With Add-on Controls Option or the Control Efficiency/Outlet Concentration Compliance Option 4... Add-on Controls Option or the Control Efficiency/Outlet Concentration Compliance Option If you are... volumetric flow rate at a location upstream of the control device, or duct static pressure at a location...

  16. Programmable segmented volumetric modulated arc therapy for respiratory coordination in pancreatic cancer

    International Nuclear Information System (INIS)

    Wu, Jian-Kuen; Wu, Chien-Jang; Cheng, Jason Chia-Hsien

    2012-01-01

    We programmably divided long-arc volumetric modulated arc therapy (VMAT) into split short arcs, each taking less than 30 s for respiratory coordination. The VMAT plans of five pancreatic cancer patients were modified; the short-arc plans had negligible dose differences and satisfied the 3%/3-mm gamma index on a MapCHECK-2 device.

  17. A prototype expert system 'SMART' for water chemistry control in reactor water circuits

    International Nuclear Information System (INIS)

    Rangarajan, S.; Narasimhan, S.V.

    1998-01-01

    The operational safety of a power plant depends mainly on the material compatibility of the system materials with the environment. However, for an operating plant, the material is almost fixed and hence one can improve the safety by controlling the surrounding environment. From the economy point of view, the plant availability factor as well as plant life extension (PLEX) are important considerations and these necessitate a systematic approach for continuous parametric monitoring, rapid data analysis and diagnosis for controlling the water chemistry regime. A prototype expert system 'SMART' was developed in BASIC language. The expert system consists of four modules. The DATA HANDLER module controls all the data handling functions and graphical display of the data parameters. It also generates weekly and monthly reports of the water chemistry data. The DATA INTERPRETER module compares the experimental data with the theoretically calculated values and predicts the presence of impurity ingress in the system. The CHEMISTRY EXPERT contains the knowledge base about the various sub-systems. All the water chemistry specifications are translated in the form of IF... THEN.. rules and are stored in this module. The expert system inferences with the forward chain reasoning mechanism to identify the diagnostic parameters by consulting the knowledge base and applying the appropriate rules. The ACTION EXPERT module collects all the diagnostic parameters and suggests the operator, the remedial actions/counter measures that should be taken immediately. This rule based system can be expanded to accommodate different water chemistry regimes. (author)

  18. design and implementation of a water level controller

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... Nigerian Journal of Technology (NIJOTECH) ... in real time application by using it to control the level of water in a tank fed by a ... chine when a cow is finished in a milking par- .... Robotics Arm. IEEE Control Systems 10(1).

  19. Recent experience in water chemistry control at PWR plants

    International Nuclear Information System (INIS)

    Makino, Ichiro

    2000-01-01

    At present, 23 units of PWRs are under operation in all of Japan, among which 11 units are operated by the Kansai Electric Power Co., Inc. (KEP). Plant availability in KEP's PWRs has been improved for the past several years, through their successive stable operation. Recently, a focus is given not only to maintenance of plant integrity, but also to preventive maintenance and water chemistry control. Various measures have been carried out to enhance exposure reduction of the primary water chemistry control in the Japanese PWRs. As a result, environmental dose equivalent rate is decreasing. A secondary system is now under excellent condition because of application of diversified measures for prevention of the SG tube corrosion. At present, the water chemistry control measures which take into account of efficient chemistry control and plant aging deterioration prevention, are being examined to use for both primary and secondary systems in Japanese PWRs, to further enhance their plant integrity and availability. And, some of them are currently being actually applied. (G.K.)

  20. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  1. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air

  2. Water levels shape fishing participation in flood-control reservoirs

    Science.gov (United States)

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  3. Quality and Control of Water Vapor Winds

    Science.gov (United States)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  4. Vessel suppressed chest Computed Tomography for semi-automated volumetric measurements of solid pulmonary nodules.

    Science.gov (United States)

    Milanese, Gianluca; Eberhard, Matthias; Martini, Katharina; Vittoria De Martini, Ilaria; Frauenfelder, Thomas

    2018-04-01

    To evaluate whether vessel-suppressed computed tomography (VSCT) can be reliably used for semi-automated volumetric measurements of solid pulmonary nodules, as compared to standard CT (SCT) MATERIAL AND METHODS: Ninety-three SCT were elaborated by dedicated software (ClearRead CT, Riverain Technologies, Miamisburg, OH, USA), that allows subtracting vessels from lung parenchyma. Semi-automated volumetric measurements of 65 solid nodules were compared between SCT and VSCT. The measurements were repeated by two readers. For each solid nodule, volume measured on SCT by Reader 1 and Reader 2 was averaged and the average volume between readers acted as standard of reference value. Concordance between measurements was assessed using Lin's Concordance Correlation Coefficient (CCC). Limits of agreement (LoA) between readers and CT datasets were evaluated. Standard of reference nodule volume ranged from 13 to 366 mm 3 . The mean overestimation between readers was 3 mm 3 and 2.9 mm 3 on SCT and VSCT, respectively. Semi-automated volumetric measurements on VSCT showed substantial agreement with the standard of reference (Lin's CCC = 0.990 for Reader 1; 0.985 for Reader 2). The upper and lower LoA between readers' measurements were (16.3, -22.4 mm 3 ) and (15.5, -21.4 mm 3 ) for SCT and VSCT, respectively. VSCT datasets are feasible for the measurements of solid nodules, showing an almost perfect concordance between readers and with measurements on SCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Electric Water Heater Modeling and Control Strategies for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  6. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  7. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  8. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were......) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... be a marker of neurodegenerative disease. KEY POINTS: • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T 2 of the CSF is related...

  9. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    Directory of Open Access Journals (Sweden)

    A. M. Rodríguez-Alloza

    2017-04-01

    Full Text Available Warm Mix Asphalt (WMA refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability.

  10. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    International Nuclear Information System (INIS)

    Rodríguez-Alloza, A.M.; Gallego, J.

    2017-01-01

    Warm Mix Asphalt (WMA) refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR) mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability. [es

  11. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  12. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  13. Skin lipid structure controls water permeability in snake molts.

    Science.gov (United States)

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  15. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    International Nuclear Information System (INIS)

    1999-01-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use

  16. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use.

  17. 33 CFR 222.5 - Water control management (ER 1110-2-240).

    Science.gov (United States)

    2010-07-01

    ... essential to effective relief or assistance. (6) One copy of all water control manuals and subsequent... project benefits and possible hazards. Accordingly, it is essential that appropriate water control and... considering timeliness, reliability, economics and other factors deemed important. (E) Delineate system scope...

  18. Public Information for Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This publication is a handbook for water pollution control personnel to guide them towards a successful public relations program. This handbook was written to incorporate the latest methods of teaching basic public information techniques to the non-professional in this area. Contents include: (1) a rationale for a public information program; (2)…

  19. Characterization of the permittivity of controlled porous water ice-dust mixtures to support the radar exploration of icy bodies

    Science.gov (United States)

    Brouet, Y.; Neves, L.; Sabouroux, P.; Levasseur-Regourd, A. C.; Poch, O.; Encrenaz, P.; Pommerol, A.; Thomas, N.; Kofman, W.

    2016-12-01

    The internal properties of porous and icy bodies in the solar system can be investigated by ground-penetrating radars (GPRs), like the COmet Nucleus Sounding Experiment by Radiowave Transmission instrument on board the Rosetta spacecraft which has sounded the interior of the nucleus of comet 67P/Churyumov-Gerasimenko. Accurate constraints on the permittivity of icy media are needed for the interpretation of the data. We report novel permittivity measurements performed on water ice samples and icy mixtures with porosities in the 31-91% range. The measurements have been performed between 50 MHz and 2 GHz with a coaxial cell on a total of 38 samples with a good reproducibility. We used controlled procedures to produce fine-grained and coarse-grained ice samples with a mean diameter of 4.5 μm and 67 μm, respectively, and to prepare icy mixtures. The JSC-1A lunar regolith simulant was used as the dust component in the mixtures. The results are focused on the real-part ɛ' of the permittivity, which constrains the phase velocity of the radio waves in low-loss media. The values of ɛ' show a nondispersive behavior and are within the range of 1.1 to 2.7. They decrease with the increasing porosity Φ according to E(1 - Φ), with E equal to about 3.13 for pure water ice, and in the 3.8-7.5 range for ice-dust mixtures with a dust-to-ice volumetric ratio in the 0.1-2.8 range, respectively. These measurements are also relevant for radiometers operating in the millimeter-submillimeter domains, as suggested by the nondispersive behavior of the mixtures and of the pure components.

  20. Political Economy and Irrigation Technology Adoption Implications of Water Pricing under Asymmetric Information

    OpenAIRE

    Dridi, Chokri; Khanna, Madhu

    2005-01-01

    We analyze the design of water pricing rules emerging from farmers' lobbying and their implications for the size of the lobby, water use, profits and social welfare. The lobbying groups are the adopters of modern irrigation technology and the non-adopters. The pricing rules are designed to meet budget balance of water provision; we considered (i) a two-part tariff composed of a mandatory per-acre fee plus a volumetric charge and (ii) a nonlinear pricing schedule. Our results show that under e...

  1. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  2. Fuzzy logic control of water level in advanced boiling water reactor

    International Nuclear Information System (INIS)

    Lin, Chaung; Lee, Chi-Szu; Raghavan, R.; Fahrner, D.M.

    1995-01-01

    The feedwater control system in the Advanced Boiling Water Reactor (ABWR) is more challenging to design compared to other control systems in the plant, due to the possible change in level from void collapses and swells during transient events. A basic fuzzy logic controller is developed using a simplified ABWR mathematical model to demonstrate and compare the performance of this controller with a simplified conventional controller. To reduce the design effort, methods are developed to automatically tune the scaling factors and control rules. As a first step in developing the fuzzy controller, a fuzzy controller with a limited number of rules is developed to respond to normal plant transients such as setpoint changes of plant parameters and load demand changes. Various simulations for setpoint and load demand changes of plant performances were conducted to evaluate the modeled fuzzy logic design against the simplified ABWR model control system. The simulation results show that the performance of the fuzzy logic controller is comparable to that of the Proportional-Integral (PI) controller, However, the fuzzy logic controller produced shorter settling time for step setpoint changes compared to the simplified conventional controller

  3. 3-dimensional charge collection efficiency measurements using volumetric tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Daniel [CERN, Geneva (Switzerland)

    2016-07-01

    For a better understanding of the electrical field distribution of 3D semiconductor detectors and to allow efficiency based design improvements, a method to measure the 3D spatial charge collection efficiency of planar, 3D silicon and diamond sensors using 3D volumetric reconstruction techniques is possible. Simulation results and first measurements demonstrated the feasibility of this method and show that with soon available 10 times faster beam telescopes even small structures and efficiency differences will become measurable in few hours.

  4. Evaluation of the effect of temperature, concentration and volumetric flow in the hydrolysis of sucrose by an immobilized invertase in a spherical reactor

    International Nuclear Information System (INIS)

    Zamora Leiton, Maria Monserrath; Molina Cordoba, Manuel; Chacon Valle, Gerardo

    2011-01-01

    The effect of the volumetric flow, the temperature and the initial concentration of sucrose in the reaction of hydrolysis of sucrose by immobilized invertase were evaluated in the laboratory. Invertase was immobilized in 20 g of support of mesh size between 120 and 140. The maximum quantity of immobilized invertase obtained has been 0,130 mg/g of support at 220 min. The first experimental stage has consisted in the evaluation of the effect of the initial concentration of sucrose (1,0 and 1,5 mol/L), the volumetric flow (3,0 mL/min and 4,0 mL/min) and the temperature (45 degrees C and 50 degrees C). The effect of the above three variable has been statistically significant. The conversion has been favorable for a concentration of sucrose 1,0 mol/L, a volumetric flow of 3 mL/min and a temperature of 50 degrees C. The maximum conversion obtained has been 95,4 %. The second experimental stage has analyzed the effect of the initial concentration of sucrose (0,75 and 1,0 mol/L), the volumetric flow (2,5 mL/min and 3,0 mL/min) and the temperature (50 degrees C and 55 degrees C). The variable of volumetric flow and the interaction concentration of sucrose - temperature are found statistically significant. The conversion has been favorable for a volumetric flow of 2,5 mL/min, and it has been preferable to work at a temperature of 50 degrees C with an initial concentration of sucrose of 1,0 mol/L. The maximum conversion has been 94,8 %. The effect of the concentration was analyzed in the last experimental stage, it was found that the maximum conversion percentage was 95,0 % for a concentration of 1,1 mol/L, for a temperature of 50 degrees C and for a volumetric flow of 2,5 mL/min. (author) [es

  5. Integrated petrophysical and sedimentological study of the Middle Miocene Nullipore Formation (Ras Fanar Field, Gulf of Suez, Egypt): An approach to volumetric analysis of reservoirs

    Science.gov (United States)

    Afife, Mohamed M.; Sallam, Emad S.; Faris, Mohamed

    2017-10-01

    the total recoverable oil is 148.5 MMSTB at P50. The volumetric calculations for the Nullipore zones match the production data indicating a good simulation for the reservoir productivity through the petrophysical parameters. Comparison of the volumetric calculations of the oil and the cumulative production of the Ras Fanar Oil Field indicates remaining reserves of less than 30% of the total recoverable oil. Therefore, the search for unconventional and/or deeper reservoirs at other water contacts is recommended.

  6. The puzzle of the 1996 Bárdarbunga, Iceland, earthquake: no volumetric component in the source mechanism

    Science.gov (United States)

    Tkalcic, Hrvoje; Dreger, Douglas S.; Foulger, Gillian R.; Julian, Bruce R.

    2009-01-01

    A volcanic earthquake with Mw 5.6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence of  events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Tensor catalog. Fortunately, it was recorded well by the regional-scale Iceland Hotspot Project seismic experiment. We investigated the event with a complete moment tensor inversion method using regional long-period seismic waveforms and a composite structural model. The moment tensor inversion using data from stations of the Iceland Hotspot Project yields a non-double-couple solution with a 67% vertically oriented compensated linear vector dipole component, a 32% double-couple component, and a statistically insignificant (2%) volumetric (isotropic) contraction. This indicates the absence of a net volumetric component, which is puzzling in the case of a large volcanic earthquake that apparently is not explained by shear slip on a planar fault. A possible volcanic mechanism that can produce an earthquake without a volumetric component involves two offset sources with similar but opposite volume changes. We show that although such a model cannot be ruled out, the circumstances under which it could happen are rare.

  7. Volumetric water content measurement probes in earth-dam construction

    Directory of Open Access Journals (Sweden)

    Bardanis Michael

    2016-01-01

    Full Text Available Two frequency domain reflectometry (FDR probes have been used. They were used on compacted soils both in the laboratory and in the field. Measurements in the laboratory were intended for calibration. The range of densities and types of materials where insertion of the probes can be achieved was investigated first. The effect of sporadic presence of coarser grains and density on these calibrations, once insertion could be achieved, were investigated second. Measurements on laboratory prepared samples with the same moisture content were different when the sample was kept in the mould from when it was extruded from it. Also both these measurements were different from that in a sample of the same density but significantly larger in diameter. It was found that measurements with these probes are affected by dilation exhibited by soil around the rods of the probes during insertion. Readings immediately after insertion of the sensors on samples extruded from their moulds were the ones closer to measured values. These readings combined with total volume and mass obtained from sand-cone tests during the construction of an earth-dam allowed fairly accurate estimation of the dry unit weight but not the gravimetric water content.

  8. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  9. Advances in water chemistry control for BWRs and PWRs

    International Nuclear Information System (INIS)

    Wood, C.J.

    1997-01-01

    This paper is an overview of the effects of water chemistry developments on the current operation of nuclear power plants in the United States, and the mitigation of corrosion-related degradation processes and radiation field build-up processes through the use of advanced water chemistry. Recent modifications in water chemistry to control and reduce radiation fields are outlined, including revisions to the EPRI water chemistry guidelines for BWRs and PWR primary and secondary systems. The change from a single water chemistry specification for all plants to a set of options, from which a plant-specific chemistry programme can be defined, is described. (author)

  10. Water quality determination by photographic analysis. [optical density and water turbidity

    Science.gov (United States)

    Klooster, S. A.; Scherz, J. P.

    1973-01-01

    Aerial reconnaissance techniques to extract water quality parameters from aerial photos are reported. The turbidity can be correlated with total suspended solids if the constituent parts of the effluent remain the same and the volumetric flow remains relatively constant. A monochromator is used for the selection of the bandwidths containing the most information. White reflectance panels are used to locate sampling points and eliminate inherent energy changes from lens flare, radial lens fall-off, and changing subject illumination. Misleading information resulting from bottom effects is avoided by the use of Secchi disc readings and proper choice of wavelength for analyzing the photos.

  11. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    Science.gov (United States)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  12. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  13. Volumetric analysis of the mandibular condyle using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Mehmet, E-mail: dtmehmetbayram@yahoo.com [Karadeniz Technical University, Faculty of Dentistry, Department of Orthodontics, 61080 Trabzon (Turkey); Kayipmaz, Saadettin; Sezgin, Oemer Said [Karadeniz Technical University, Faculty of Dentistry, Department of Oral Radiology, Trabzon (Turkey); Kuecuek, Murat [Karadeniz Technical University, Faculty of Arts and Sciences, Department of Chemistry, Trabzon (Turkey)

    2012-08-15

    Objective: The aim was to determine the accuracy of volumetric analysis of the mandibular condyle using cone-beam computed tomography (CBCT). Materials and methods: Five dry mandibles containing 9 condyles were used. CBCT scans of the mandibles and an impression of each condylar area were taken. The physical volumes of the condyles were calculated as the gold standard using the water displacement technique. After isolating, the condylar volume was sectioned in the sagittal plane, and 0.3 mm thick sections with 0.9 mm intervals were obtained from 3D reconstructions. Using the Cavalieri principle, the volume of each condyle was estimated from the CBCT images by three observers. The accuracy of the CBCT volume measurements and the relation agreements between the results of the three observers were assessed using the Wilcoxon Signed Rank test and Pearson correlation test. The level of statistical significance was set at 0.05. Results: The results of the Pearson correlation showed that there were highly significant positive correlations between the observers' measurements. According to the results of the Wilcoxon Signed Rank test comparing the physical and observers' measurements, there were no statistically significant differences (p > 0.05). Conclusion: The Cavalieri principle, used in conjunction with a planimetry method, is a valid and effective method for volume estimation of the mandibular condyle on CBCT images.

  14. Volumetric analysis of the mandibular condyle using cone beam computed tomography

    International Nuclear Information System (INIS)

    Bayram, Mehmet; Kayipmaz, Saadettin; Sezgin, Ömer Said; Küçük, Murat

    2012-01-01

    Objective: The aim was to determine the accuracy of volumetric analysis of the mandibular condyle using cone-beam computed tomography (CBCT). Materials and methods: Five dry mandibles containing 9 condyles were used. CBCT scans of the mandibles and an impression of each condylar area were taken. The physical volumes of the condyles were calculated as the gold standard using the water displacement technique. After isolating, the condylar volume was sectioned in the sagittal plane, and 0.3 mm thick sections with 0.9 mm intervals were obtained from 3D reconstructions. Using the Cavalieri principle, the volume of each condyle was estimated from the CBCT images by three observers. The accuracy of the CBCT volume measurements and the relation agreements between the results of the three observers were assessed using the Wilcoxon Signed Rank test and Pearson correlation test. The level of statistical significance was set at 0.05. Results: The results of the Pearson correlation showed that there were highly significant positive correlations between the observers’ measurements. According to the results of the Wilcoxon Signed Rank test comparing the physical and observers’ measurements, there were no statistically significant differences (p > 0.05). Conclusion: The Cavalieri principle, used in conjunction with a planimetry method, is a valid and effective method for volume estimation of the mandibular condyle on CBCT images.

  15. Higher energy efficiency and better water quality by using model predictive flow control at water supply systems

    NARCIS (Netherlands)

    Bakker, M.; Verberk, J.Q.J.C.; Palmen, L.J.; Sperber, V.; Bakker, G.

    2011-01-01

    Half of all water supply systems in the Netherlands are controlled by model predictive flow control; the other half are controlled by conventional level based control. The differences between conventional level based control and model predictive control were investigated in experiments at five full

  16. Image processing. Volumetric analysis with a digital image processing system. [GAMMA]. Bildverarbeitung. Volumetrie mittels eines digitalen Bildverarbeitungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, M; Radtke, F; Demel, G

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing.

  17. Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Bose, T.K.

    2005-01-01

    We present high sensitivity (0 to 1 bar, 295 K) gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ sample conditioning at high temperature and high vacuum. These systems are designed especially for experiments on sorbents available in small masses (mg) and requiring thorough degassing prior to sorption measurements. Uncertainty analysis from instrumental specifications and hydrogen absorption measurements on palladium are presented. The gravimetric and volumetric systems yield cross-checkable results within about 0.05 wt % on samples weighing from (3 to 25) mg. Hydrogen storage capacities of single-walled carbon nanotubes measured at 1 bar and 295 K with both systems are presented

  18. Volumetric associations between uncinate fasciculus, amygdala, and trait anxiety

    Directory of Open Access Journals (Sweden)

    Baur Volker

    2012-01-01

    Full Text Available Abstract Background Recent investigations of white matter (WM connectivity suggest an important role of the uncinate fasciculus (UF, connecting anterior temporal areas including the amygdala with prefrontal-/orbitofrontal cortices, for anxiety-related processes. Volume of the UF, however, has rarely been investigated, but may be an important measure of structural connectivity underlying limbic neuronal circuits associated with anxiety. Since UF volumetric measures are newly applied measures, it is necessary to cross-validate them using further neural and behavioral indicators of anxiety. Results In a group of 32 subjects not reporting any history of psychiatric disorders, we identified a negative correlation between left UF volume and trait anxiety, a finding that is in line with previous results. On the other hand, volume of the left amygdala, which is strongly connected with the UF, was positively correlated with trait anxiety. In addition, volumes of the left UF and left amygdala were inversely associated. Conclusions The present study emphasizes the role of the left UF as candidate WM fiber bundle associated with anxiety-related processes and suggests that fiber bundle volume is a WM measure of particular interest. Moreover, these results substantiate the structural relatedness of UF and amygdala by a non-invasive imaging method. The UF-amygdala complex may be pivotal for the control of trait anxiety.

  19. Digitization and simulation realization of full range control system for steam generator water level

    International Nuclear Information System (INIS)

    Qian Hong; Ye Jianhua; Qian Fei; Li Chao

    2010-01-01

    In this paper, a full range digital control system for the steam generator water level is designed by a control scheme of single element control and three-element cascade feed-forward control, and the method to use the software module configuration is proposed to realize the water level control strategy. This control strategy is then applied in the operation of the nuclear power simulation machine. The simulation result curves indicate that the steam generator water level maintains constant at the stable operation condition, and when the load changes, the water level changes but finally maintains the constant. (authors)

  20. In-situ volumetric topography of IC chips for defect detection using infrared confocal measurement with active structured light

    International Nuclear Information System (INIS)

    Chen, Liang-Chia; Le, Manh-Trung; Phuc, Dao Cong; Lin, Shyh-Tsong

    2014-01-01

    The article presents the development of in-situ integrated circuit (IC) chip defect detection techniques for automated clipping detection by proposing infrared imaging and full-field volumetric topography. IC chip inspection, especially held during or post IC packaging, has become an extremely critical procedure in IC fabrication to assure manufacturing quality and reduce production costs. To address this, in the article, microscopic infrared imaging using an electromagnetic light spectrum that ranges from 0.9 to 1.7 µm is developed to perform volumetric inspection of IC chips, in order to identify important defects such as silicon clipping, cracking or peeling. The main difficulty of infrared (IR) volumetric imaging lies in its poor image contrast, which makes it incapable of achieving reliable inspection, as infrared imaging is sensitive to temperature difference but insensitive to geometric variance of materials, resulting in difficulty detecting and quantifying defects precisely. To overcome this, 3D volumetric topography based on 3D infrared confocal measurement with active structured light, as well as light refractive matching principles, is developed to detect defects the size, shape and position of defects in ICs. The experimental results show that the algorithm is effective and suitable for in-situ defect detection of IC semiconductor packaging. The quality of defect detection, such as measurement repeatability and accuracy, is addressed. Confirmed by the experimental results, the depth measurement resolution can reach up to 0.3 µm, and the depth measurement uncertainty with one standard deviation was verified to be less than 1.0% of the full-scale depth-measuring range. (paper)