WorldWideScience

Sample records for volumetric water contents

  1. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  2. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  3. Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties

    OpenAIRE

    Al Majou , Hassan; Bruand , Ary; Duval , Odile

    2008-01-01

    International audience; Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties. Most pedotransfer functions (PTFs) developed over the last three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite of the high number of PTFs published, most being class- or continuous-PTFs, accuracy of prediction remains limited. In this study, we compared the performance ...

  4. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    Science.gov (United States)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  5. [The water content reference material of water saturated octanol].

    Science.gov (United States)

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  6. Determination of density and volumetric water content of soil at multiple photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Un, A., E-mail: ademun25@yahoo.co [Department of Physics, Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100 Agri (Turkey); Demir, D.; Sahin, Y. [Department of Physics, Faculty of Science, Atatuerk University, 25240 Erzurum (Turkey)

    2011-08-15

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm{sup 3} cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were {sup 241}Am, {sup 133}Ba and {sup 137}Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  7. Determination of density and volumetric water content of soil at multiple photon energies

    International Nuclear Information System (INIS)

    Un, A.; Demir, D.; Sahin, Y.

    2011-01-01

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm 3 cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were 241 Am, 133 Ba and 137 Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  8. Measuring the layer-average volumetric water content in the uppermost 5 cm of soil using printed circuit board TDR probes

    International Nuclear Information System (INIS)

    Wang, W.; Kobayashi, T.; Chikushi, J.

    2000-01-01

    Newly designed printed circuit board TDR probes (PCBPs) were made, and they were calibrated by indoor experiment. A regression equation for estimating the volumetric water content from the dielectric constant measured with the PCBP was determined, which is almost the same as the well-known Topp's equation when the soil is rather wet while the difference becomes larger as the soil dries. The PCBP was designed to measure the average water content over a soil layer 5 cm thick because the thickness of soil layer involved in measuring water content by microwave remote sensing is several centimeters. A comparison experiment of measurements with PCBPs and those by microwave remote sensing was conducted in an arid area in the northwest of China. The results of this experiment show that the newly designed TDR probe is promising as the sensor to get ground truth of the surface wetness. This paper describes only the calibration of probes and the observations taken using them

  9. Change of deuterium volume content in heavy water during carbon dioxide dissolution in it

    International Nuclear Information System (INIS)

    Efimova, T.I.; Kapitanov, V.F.; Levchenko, G.V.

    1985-01-01

    Carbon dioxide solution density in heavy water at increased temperature and pressure is measured and the influence of carbon dioxide solubility in heavy water on volumetric content of deuterium in it is determined. Investigations were conducted in the temperature range of 303-473 K and pressure range of 3-20 MPa by the autoclave method. Volumetric content of deuterium in heavy water decreases sufficiently with CO 2 dissolved in it in comparison with pure D 2 O under the similar conditions, and this decrease becomes more sufficient with the pressure increase. With the temperature increase the volumetric content of deuterium both for heavy water and for saturated carbon solution in heavy water decreases

  10. Determining the water content in concrete by gamma scattering method

    International Nuclear Information System (INIS)

    Priyada, P.; Ramar, R.; Shivaramu

    2014-01-01

    Highlights: • Gamma scattering technique for estimation of water content in concrete is given. • The scattered intensity increases with the volumetric water content. • Attenuation correction is provided to the scattered intensities. • Volumetric water content of 137 Cs radioactive source and a high resolution HPGe detector based energy dispersive gamma ray spectrometer. Concrete samples of uniform density ≈2.4 g/cm 3 are chosen for the study and the scattered intensities found to vary with the amount of water present in the specimen. The scattered intensities are corrected for attenuation effects and the results obtained with reference to a dry sample are compared with those obtained by gravimetrical and gamma transmission methods. A good agreement is seen between gamma scattering results and those obtained by gravimetric and transmission methods within accuracy of 6% and <2% change in water content can be detected

  11. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  12. Volumetric fat-water separated T2-weighted MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Sonik, Arvind; Madhuranthakam, Ananth J.; Venkatesan, Ramesh; Lai, Peng; Brau, Anja C.S.

    2011-01-01

    Pediatric body MRI exams often cover multiple body parts, making the development of broadly applicable protocols and obtaining uniform fat suppression a challenge. Volumetric T2 imaging with Dixon-type fat-water separation might address this challenge, but it is a lengthy process. We develop and evaluate a faster two-echo approach to volumetric T2 imaging with fat-water separation. A volumetric spin-echo sequence was modified to include a second shifted echo so two image sets are acquired. A region-growing reconstruction approach was developed to decompose separate water and fat images. Twenty-six children were recruited with IRB approval and informed consent. Fat-suppression quality was graded by two pediatric radiologists and compared against conventional fat-suppressed fast spin-echo T2-W images. Additionally, the value of in- and opposed-phase images was evaluated. Fat suppression on volumetric images had high quality in 96% of cases (95% confidence interval of 80-100%) and were preferred over or considered equivalent to conventional two-dimensional fat-suppressed FSE T2 imaging in 96% of cases (95% confidence interval of 78-100%). In- and opposed-phase images had definite value in 12% of cases. Volumetric fat-water separated T2-weighted MRI is feasible and is likely to yield improved fat suppression over conventional fat-suppressed T2-weighted imaging. (orig.)

  13. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Paradelo Pérez, Marcos

    2016-01-01

    tracer mass could be well fitted to an analytical solution to the classical convection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were hereby reasonable well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass......Solute transport through the soil matrix is heterogeneous and greatly affected by soil texture, soil structure, and macropore networks. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. Hundred...... of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5 % and up to 50 % of the tracer mass were found to be strongly correlated with volumetric fines content. The hereby predicted tracer concentration breakthrough points up to 50% of applied...

  14. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain)

    Science.gov (United States)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Paz-González, Antonio

    2010-05-01

    The direct and continuous assessment of the temporal variation on soil water content is of paramount importance for agricultural practices and, in particular, for the management of water resources. Soil water content is affected by many factors such as topography, particle size, clay and organic matter contents, and tillage systems. There are several techniques to measure or estimate soil water content. Among them, Frequency Domain Reflectometry (FDR) stands out. It is based on measuring the dielectrical constant of the soil environment. This technique allows to describe water dynamics in time and space, to determine the main patterns of soil moisture, the water uptake by roots, the evapotranspiration and the drainage. Therefore, the aim of this study was to assess the daily variation of soil water content in the root-influenced zone in plots devoted to maize and grassland as a function of the soil water volumetric content. The studied site is located in an experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo located in the province of A Coruña, Spain (43°14'N, 8°15'W; 91 masl). The study was carried out from June 2008 to September 2009 in a field devoted to maize (Zea mays, L.) and another field devoted to grassland. The soil of these sites is silt-clay textured. Long-term mean annual temperature and rainfall figures are 13.3 °C and 1288 mm, respectively. During the study period, maize crop was subjected to conventional agricultural practices. A weekly evaluation of the phenological stage of the crop was performed. An EnviroSCAN FDR equipment, comprising six capacitance sensors, was installed in the studied sites following the manufacturer's recommendations, thus assuring a proper contact between the probe and the soil. Soil water content in the root-influenced zone (40 cm depth in grassland and 60 cm depth in maize were considered) was hourly monitored in 20 cm ranges (0-20 cm, 20-40 cm, and 40-60 cm) using FDR. Evaluations were

  15. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  16. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    Science.gov (United States)

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  17. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  18. Water content of aged aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2011-02-01

    Full Text Available The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008. A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH as low as 20%. The aerosol was acidic during most of the measurement campaign, which likely contributed to the water uptake at low RH. The water content observations were compared to the thermodynamic model E-AIM, neglecting any contribution of the organics to aerosol water content. There was good agreement between the water measurements and the model predictions. Adding the small amount of water associated with the organic aerosol based on monoterpene water absorption did not change the quality of the agreement. These results strongly suggest that the water uptake by aged organic aerosol is relatively small (a few percent of the total water for the conditions during FAME-08 and generally consistent with what has been observed in laboratory experiments. The water concentration measured by a Q-AMS was well correlated with the DAASS measurements and in good agreement with the predicted values for the RH of the Q-AMS inlet. This suggests that, at least for the conditions of the study, the Q-AMS can provide valuable information about the aerosol water concentrations if the sample is not dried.

  19. QUANTITATIVE ESTIMATION OF VOLUMETRIC ICE CONTENT IN FROZEN GROUND BY DIPOLE ELECTROMAGNETIC PROFILING METHOD

    Directory of Open Access Journals (Sweden)

    L. G. Neradovskiy

    2018-01-01

    Full Text Available Volumetric estimation of the ice content in frozen soils is known as one of the main problems in the engineering geocryology and the permafrost geophysics. A new way to use the known method of dipole electromagnetic profiling for the quantitative estimation of the volumetric ice content in frozen soils is discussed. Investigations of foundation of the railroad in Yakutia (i.e. in the permafrost zone were used as an example for this new approach. Unlike the conventional way, in which the permafrost is investigated by its resistivity and constructing of geo-electrical cross-sections, the new approach is aimed at the study of the dynamics of the process of attenuation in the layer of annual heat cycle in the field of high-frequency vertical magnetic dipole. This task is simplified if not all the characteristics of the polarization ellipse are measured but the only one which is the vertical component of the dipole field and can be the most easily measured. Collected data of the measurements were used to analyze the computational errors of the average values of the volumetric ice content from the amplitude attenuation of the vertical component of the dipole field. Note that the volumetric ice content is very important for construction. It is shown that usually the relative error of computation of this characteristic of a frozen soil does not exceed 20% if the works are performed by the above procedure using the key-site methodology. This level of accuracy meets requirements of the design-and-survey works for quick, inexpensive, and environmentally friendly zoning of built-up remote and sparsely populated territories of the Russian permafrost zone according to a category of a degree of the ice content in frozen foundations of engineering constructions.

  20. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  1. Mapping soil water content on golf course greens with GPR

    Science.gov (United States)

    Ground-penetrating radar (GPR) can be an effective and efficient method for high-resolution mapping of volumetric water content in the sand layer directly beneath the ground surface at a golf course green. This information could potentially be very useful to golf course superintendents for determi...

  2. The Influence of Water and Mineral Oil On Volumetric Losses in a Hydraulic Motor

    Directory of Open Access Journals (Sweden)

    Śliwiński Pawel

    2017-04-01

    Full Text Available In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effective rotational speed have been developed and presented. The results of calculation of volumetric losses according to the model are compared with the results of experiment. It was found that the difference is not more than 20%. Furthermore, it has been demonstrated that this model well describes in both the volumetric losses in the motor supplied with water and oil. Experimental studies have shown that the volumetric losses in the motor supplied with water are even three times greater than the volumetric losses in the motor supplied with oil. It has been shown, that in a small constant stream of water the speed of the motor is reduced even by half in comparison of speed of motor supplied with the same stream of oil.

  3. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    Science.gov (United States)

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  4. Volumetric water content measurement probes in earth-dam construction

    Directory of Open Access Journals (Sweden)

    Bardanis Michael

    2016-01-01

    Full Text Available Two frequency domain reflectometry (FDR probes have been used. They were used on compacted soils both in the laboratory and in the field. Measurements in the laboratory were intended for calibration. The range of densities and types of materials where insertion of the probes can be achieved was investigated first. The effect of sporadic presence of coarser grains and density on these calibrations, once insertion could be achieved, were investigated second. Measurements on laboratory prepared samples with the same moisture content were different when the sample was kept in the mould from when it was extruded from it. Also both these measurements were different from that in a sample of the same density but significantly larger in diameter. It was found that measurements with these probes are affected by dilation exhibited by soil around the rods of the probes during insertion. Readings immediately after insertion of the sensors on samples extruded from their moulds were the ones closer to measured values. These readings combined with total volume and mass obtained from sand-cone tests during the construction of an earth-dam allowed fairly accurate estimation of the dry unit weight but not the gravimetric water content.

  5. DIFFERENTIAL ANALYSIS OF VOLUMETRIC STRAINS IN POROUS MATERIALS IN TERMS OF WATER FREEZING

    Directory of Open Access Journals (Sweden)

    Rusin Z.

    2013-06-01

    Full Text Available The paper presents the differential analysis of volumetric strain (DAVS. The method allows measurements of volumetric deformations of capillary-porous materials caused by water-ice phase change. The VSE indicator (volumetric strain effect, which under certain conditions can be interpreted as the minimum degree of phase change of water contained in the material pores, is proposed. The test results (DAVS for three materials with diversified microstructure: clinker brick, calcium-silicate brick and Portland cement mortar were compared with the test results for pore characteristics obtained with the mercury intrusion porosimetry.

  6. Water content estimated from point scale to plot scale

    Science.gov (United States)

    Akyurek, Z.; Binley, A. M.; Demir, G.; Abgarmi, B.

    2017-12-01

    Soil moisture controls the portioning of rainfall into infiltration and runoff. Here we investigate measurements of soil moisture using a range of techniques spanning different spatial scales. In order to understand soil water content in a test basin, 512 km2 in area, in the south of Turkey, a Cosmic Ray CRS200B soil moisture probe was installed at elevation of 1459 m and an ML3 ThetaProbe (CS 616) soil moisture sensor was established at 5cm depth used to get continuous soil moisture. Neutron count measurements were corrected for the changes in atmospheric pressure, atmospheric water vapour and intensity of incoming neutron flux. The calibration of the volumetric soil moisture was performed, from the laboratory analysis, the bulk density varies between 1.719 (g/cm3) -1.390 (g/cm3), and the dominant soil texture is silty clay loam and silt loamThe water content reflectometer was calibrated for soil-specific conditions and soil moisture estimates were also corrected with respect to soil temperature. In order to characterize the subsurface, soil electrical resistivity tomography was used. Wenner and Schlumberger array geometries were used with electrode spacing varied from 1m- 5 m along 40 m and 200 m profiles. From the inversions of ERT data it is apparent that within 50 m distance from the CRS200B, the soil is moderately resistive to a depth of 2m and more conductive at greater depths. At greater distances from the CRS200B, the ERT results indicate more resistive soils. In addition to the ERT surveys, ground penetrating radar surveys using a common mid-point configuration was used with 200MHz antennas. The volumetric soil moisture obtained from GPR appears to overestimate those based on TDR observations. The values obtained from CS616 (at a point scale) and CRS200B (at a mesoscale) are compared with the values obtained at a plot scale. For the field study dates (20-22.06.2017) the volumetric moisture content obtained from CS616 were 25.14%, 25.22% and 25

  7. Effect of water content on the water repellency for hydrophobized sands

    Science.gov (United States)

    Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum

  8. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    Science.gov (United States)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  9. Pressure drop, steam content and turbulent cross exchange in water/steam flows

    International Nuclear Information System (INIS)

    Teichel, H.

    1978-01-01

    For describing the behaviour of two-phase flows of water and steam with the help of calculating patterns, a number of empirical correlations are required. - In this article, correlations for the friction pressure drop in water/steam flows are compared, as well as for the steam mass and the volumetric steam content with each other and with the test results on simple geometries. As the mutual effect between cooling chanels plays an important part at the longitudinal flow through bar bundles, the appertaining equations are evaluated, in addition. (orig.) 891 HP [de

  10. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M., E-mail: kangm@ornl.gov [Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN (United States); Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bilheux, H.Z., E-mail: bilheuxhn@ornl.gov [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Voisin, S. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Cheng, C.L.; Perfect, E. [Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN (United States); Horita, J. [Department of Geosciences, Texas Tech University, Lubbock, TX (United States); Warren, J.M. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2013-04-21

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  11. Influence of water content on the ablation of skin with a 532 nm nanosecond Nd:YAG laser

    Science.gov (United States)

    Kim, Soogeun; Eom, Tae Joong; Jeong, Sungho

    2015-01-01

    This work reports that the ablation volume and rate of porcine skin changed significantly with the change of skin water content. Under the same laser irradiation conditions (532 nm Nd:YAG laser, pulse width=11.5 ns, pulse energy=1.54 J, beam radius=0.54 mm), the ablation volume dropped by a factor of 4 as the skin water content decreased from 40 wt. % (native) to 19 wt. % with a change in the ablation rate below and above around 25 wt. %. Based on the ablation characteristics observed by in situ shadowgraph images and the calculated tissue temperatures, it is considered that an explosive rupture by rapid volumetric vaporization of water is responsible for the ablation of the high water content of skin, whereas thermal disintegration of directly irradiated surface layer is responsible for the low water content of skin.

  12. Non-invasive Field Measurements of Soil Water Content Using a Pulsed 14 MeV Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra S.; Wielopolski L.; Omonode, R.; Novak, J.; Frederick, J.; Chan, A.

    2012-01-26

    Current techniques of soil water content measurement are invasive and labor-intensive. Here, we demonstrate that an in situ soil carbon (C) analyzer with a multi-elemental analysis capability, developed for studies of terrestrial C sequestration, can be used concurrently to non-invasively measure the water content of large-volume ({approx}0.3 m{sup 3}) soil samples. Our objectives were to investigate the correlations of the hydrogen (H) and oxygen (O) signals with water to the changes in the soil water content in laboratory experiments, and in an agricultural field. Implementing prompt gamma neutron activation analyses we showed that in the field, the signal from the H nucleus better indicates the soil water content than does that from the O nucleus. Using a field calibration, we were able to use the H signal to estimate a minimum detectable change of {approx}2% volumetric water in a 0-30 cm depth of soil.

  13. In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...

    African Journals Online (AJOL)

    Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...

  14. Examining the Effectiveness of Hacked, Commercial, Self-Tuning RFID Tags to Passively Sense the Volumetric Water Content of Soil

    Science.gov (United States)

    Stoddard, B. S.; Udell, C.; Selker, J. S.

    2017-12-01

    Currently available soil volumetric water content (VWC) sensors have several drawbacks that pose certain challenges for implementation on large scale for farms. Such issues include cost, scalability, maintenance, wires running through fields, and single-spot resolution. The development of a passive soil moisture sensing system utilizing Radio Frequency Identification (RFID) would allay many of these issues. The type of passive RFID tags discussed in this paper currently cost between 8 to 15 cents retail per tag when purchased in bulk. An incredibly cheap, scalable, low-maintenance, wireless, high-resolution system for sensing soil moisture would be possible if such tags were introduced into the agricultural world. This paper discusses both the use cases as well as examines one implementation of the tags. In 2015, RFID tag manufacturer SmarTrac started selling RFID moisture sensing tags for use in the automotive industry to detect leaks during quality assurance. We place those tags in soil at a depth of 4 inches and compared the moisture levels sensed by the RFID tags with the relative permittivity (ɛr) of the soil as measured by an industry-standard probe. Using an equation derived by Topp et al, we converted to VWC. We tested this over a wide range of moisture conditions and found a statistically significant, correlational relationship between the sensor values from the RFID tags and the probe's measurement of ɛr. We also identified a possible function for mapping vales from the RFID tag to the probe bounded by a reasonable margin of error.

  15. Computation of porosity and water content from geophysical logs, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1996-01-01

    Neutron and density logs acquired in boreholes at Yucca Mountain, Nevada are used to determine porosity and water content as a function of depth. Computation of porosity requires an estimate of grain density, which is provided by core data, mineralogical data, or is inferred from rock type where neither core nor mineralogy are available. The porosity estimate is merged with mineralogical data acquired by X-ray diffraction to compute the volumetric fractions of major mineral groups. The resulting depth-based portrayal of bulk rock composition is equivalent to a whole rock analysis of mineralogy and porosity. Water content is computed from epithermal and thermal neutron logs. In the unsaturated zone, the density log is required along with a neutron log. Water content can also be computed from dielectric logs, which were acquired in only a fraction of the boreholes, whereas neutron logs were acquired in all boreholes. Mineralogical data are used to compute a structural (or bound) water estimate, which is subtracted from the total water estimate from the neutron-density combination. Structural water can be subtracted only from intervals where mineralogical analyses are available; otherwise only total water can be reported. The algorithms and procedures are applied to logs acquired during 1979 to 1984 at Yucca Mountain. Examples illustrate the results. Comparison between computed porosity and core measurements shows systematic differences ranging from 0.005 to 0.04. These values are consistent with a sensitivity analysis using uncertainty parameters for good logging conditions. Water content from core measurements is available in only one borehole, yielding a difference between computed and core-based water content of 0.006

  16. Precision of neutron scattering and capacitance type soil water content gauges from field calibration

    International Nuclear Information System (INIS)

    Evett, S.R.; Steiner, J.L.

    1995-01-01

    Soil water content gauges based on neutron scattering (NS) have been a valuable tool for soil water investigations for some 40 yr. However, licensing, training, and safety regulations pertaining to the radioactive source in these gauges makes their use expensive and prevents use in some situations such as unattended monitoring. A capacitance probe (CP) gauge has characteristics that would seem to make it an ideal replacement for NS gauges. We determined the relative precision of two brands of NS gauges (three gauges of each) and a brand of CP gauge (four gauges) in a field calibration exercise. Both brands of NS gauges were calibrated vs. volumetric soil water content with coefficients of determination (r2) ranging from 0.97 to 0.99 and root mean squared errors (RMSE) 0.012 m3 m-3 water content. Calibrations for the CP gauges resulted in r2 ranging from 0.68 to 0.71 and RMSE of 0.036 m3 m-3 water content. Average 95% confidence intervals on predictions were three to five times higher for the CP gauges than for the NS gauges, ranging from 0.153 to 0.161 and 0.032 to 0.052 m3 m-3, respectively. Although poorly correlated with soil water content, readings were reproducible among the four CP gauges. The poor correlation for CP gauges may be due to small-scale soil water content variations within the measurement volume of the gauge. The NS gauges provide acceptable precision but the CP gauge has poor precision and is unacceptable for routine soil water content measurements

  17. Effect of Drought Stress and Methanol on Chlorophyll Parameters, Chlorophyll Content and Relative Water Content of Soybean (Glycine max L., var. L 17

    Directory of Open Access Journals (Sweden)

    M Mirakhori

    2011-01-01

    Full Text Available Abstract In order to investigate the effects of methanol application on some physiological properties of soybean under low water stress, a factorial experiment was conducted at Research Field of Faculty of Agriculture and Natural Resources, Islamic Azad University-Karaj Branch, Karaj, Iran, during 2008, based on a randomized complete block design with three replications. The first factor was consisted of different levels of methanol equal to 0 (control, 7, 14, 21, 28 and 35 volumetric percentage (v/v, which were used as foliar applications at three times during growth season of soybean, with 15 days intervals. The second factor was water stress conditions in two levels, based on depletion of 40 and 70% of available soil moisture. Some traits such as grain yield (GY, relative water content (RWC, chlorophyll fluorescence parameters, and chlorophyll content were measured, one day before and after the third methanol application. Results showed that chlorophyll content (Chl, GY, electrolytes leakage (EL at second sampling, photochemical capacity of PSII (Fv/Fm, maximum and variable fluorescence (Fm and FV, respectively were affected by water stress significantly (p

  18. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  19. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  20. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Impact of electricity prices and volumetric water allocation on energy and groundwater demand management: analysis from Western India

    International Nuclear Information System (INIS)

    Kumar, M.D.

    2005-01-01

    In recent years, power tariff policy has been increasingly advocated as a mean to influence groundwater use and withdrawal decisions of farmers in view of the failure of existing direct and indirect regulations on groundwater withdrawal in India. Many researchers argue that pro rata electricity tariff, with built in positive marginal cost of pumping could bring about efficient use of the resource, though some argue that the levels of tariff in which demand becomes elastic to pricing are too high to be viable from political and socio-economic points of view. The paper presents a theoretical model to analyze farmers' response to changes in power tariff and water allocation regimes vis a vis energy and groundwater use. It validates the model by analyzing water productivity in groundwater irrigation under different electricity pricing structures and water allocation regimes. Water productivity was estimated using primary data of gross crop inputs, cost of all inputs, and volumetric water inputs. The analysis shows that unit pricing of electricity influences groundwater use efficiency and productivity positively. It also shows that the levels of pricing at which demand for electricity and groundwater becomes elastic to tariff are socio-economically viable. Further, water productivity impacts of pricing would be highest when water is volumetrically allocated with rationing. Therefore, an effective power tariff policy followed by enforcement of volumetric water allocation could address the issue of efficiency, sustainability and equity in groundwater use in India

  2. TDR water content inverse profiling in layered soils during infiltration and evaporation

    Science.gov (United States)

    Greco, R.; Guida, A.

    2009-04-01

    During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance

  3. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  4. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  5. Performance of electrical spectroscopy using a RESPER probe to measure salinity and water content of concrete and terrestrial soil

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-08-01

    Full Text Available

    This paper discusses the performance of electrical spectroscopy using a RESPER probe to measure the salinity s and volumetric content θW of the water in concrete or terrestrial soil. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements of the electrical RESistivity 1/σ and relative dielectric PERmittivity εr of a subjacent medium. Numerical simulations establish that the RESPER can measure σ and ε with inaccuracies below a predefined limit (10% up to the high frequency band (HF. Conductivity is related to salinity and dielectric permittivity to volumetric water content using suitably refined theoretical models which are consistent with the predictions of Archie’s and Topp’s empirical laws. The better the agreement, the lower the hygroscopic water content and the higher s; so closer agreement is found with concrete containing almost no bonded water molecules provided these are characterized by a high σ. A novelty of the present paper is the application of a mathematical–physical model to the propagation of errors in the measurements, based on a sensitivity functions tool. The inaccuracy of salinity (water content is the ratio (product between the conductivity (permittivity inaccuracy, specified by the probe, and the sensitivity function of salinity (water content relative to conductivity (permittivity, derived from the constitutive equations of the medium. The main result is the model’s prediction that the lower the inaccuracy for the measurements of s and θW (decreasing by as much as an order of magnitude from 10% to 1%, the higher σ; so the inaccuracy for soil is lower. The proposed physical explanation is that water molecules are mostly dispersed as H+ and OH- ions

  6. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  7. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  8. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  9. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Directory of Open Access Journals (Sweden)

    Thierry Bore

    2016-04-01

    Full Text Available Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  10. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  11. Plant Water Content is the Best Predictor of Drought-induced Mortality

    Science.gov (United States)

    Sapes, G.; Roskilly, B.; Dobrowski, S.; Sala, A.

    2017-12-01

    Predicting drought-induced forest mortality remains extremely challenging. Recent research has shown that both plant hydraulics and stored non-structural carbohydrates (NSC) interact during drought-induced mortality. The strong interaction between these two variables and the fact that they are both difficult to measure render drought-induced plant mortality extremely difficult to monitor and predict. A variable that is easier to measure and that integrates hydraulic transport and carbohydrate dynamics may, therefore, improve our ability to monitor and predict mortality. Here, we tested whether plant water content is such an integrator variable and, therefore, a better predictor of mortality under drought. We subjected 250 two-year-old ponderosa pine seedlings to drought until they died in a greenhouse experiment. Periodically during the dry down, we measured percent loss of hydraulic conductivity (PLC), NSC concentration (starch and soluble sugars), and tissue volumetric water content (VWC) in roots, stems and leaves. At each measurement time, a separate set of seedlings were re-watered to estimate the probability of mortality at the population level. Linear models were used to explore whether PLC and NSC were linked to VWC and to determine which of the three variables predicted mortality the best. As expected, plants lost hydraulic conductivity in stems and roots during the dry down. Starch concentrations also decreased in all organs as the drought proceeded. In contrast, soluble sugars increased in stems and roots, consistent with the conversion of stored NSCs into osmotically active compounds. Models containing both PLC and NSC concentrations as predictors of VWC were highly significant in all organs and at the whole plant level, indicating that water content is influenced by both PLC and NSCs. PLC, NSC, and VWC explained mortality across organs and at the whole plant level, but VWC was the best predictor (R2 = 0.99). Our results indicate that plant water

  12. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  13. Review of state of the art methods for measuring water in landfills

    International Nuclear Information System (INIS)

    Imhoff, Paul T.; Reinhart, Debra R.; Englund, Marja; Guerin, Roger; Gawande, Nitin; Han, Byunghyun; Jonnalagadda, Sreeram; Townsend, Timothy G.; Yazdani, Ramin

    2007-01-01

    In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field

  14. Volumetric water control in a large-scale open canal irrigation system with many smallholders: The case of Chancay-Lambayeque in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.; Vincent, L.F.

    2011-01-01

    Volumetric water control (VWC) is widely seen as a means to increase productivity through flexible scheduling and user incentives to apply just enough water. However, the technical and social requirements for VWC are poorly understood. Also, many experts assert that VWC in large-scale open canals

  15. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    Science.gov (United States)

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  16. Farm scale application of EMI and FDR sensors to measuring and mapping soil water content

    Science.gov (United States)

    Rallo, Giovanni; Provenzano, Giuseppe

    2017-04-01

    Soil water content (SWC) controls most water exchange processes within and between the soil-plants-atmosphere continuum and can therefore be considered as a practical variable for irrigation farmer choices. A better knowledge of spatial SWC patterns could improve farmer's awareness about critical crop water status conditions and enhance their capacity to characterize their behavior at the field or farm scale. However, accurate soil moisture measurement across spatial and temporal scales is still a challenging task and, specifically at intermediate spatial (0.1-100 ha) and temporal (minutes to days) scales, a data gap remains that limits our understanding over reliability of the SWC spatial measurements and its practical applicability in irrigation scheduling. In this work we compare the integrated EM38 (Geonics Ltd. Canada) response, collected at different sensor positions above ground to that obtained by integrating the depth profile of volumetric SWC measured with Diviner 2000 (Sentek) in conjunction with the depth response function of the EM38 when operated in both horizontal and vertical dipole configurations. On a 1.0-ha Olive grove site in Sicliy (Italy), 200 data points were collected before and after irrigation or precipitation events following a systematic sampling grid with focused measurements around the tree. Inside two different zone of the field, characterized from different soil physical properties, two Diviner 2000 access tube (1.2 m) were installed and used for the EM38 calibration. After calibration, the work aimed to propose the combined use of the FDR and EMI sensors to measuring and mapping root zone soil water content. We found strong correlations (R2 = 0.66) between Diviner 2000 SWC averaged to a depth of 1.2 m and ECa from an EM38 held in the vertical mode above the soil surface. The site-specific relationship between FDR-based SWC and ECa was linear for the purposes of estimating SWC over the explored range of ECa monitored at field levels

  17. Volumetric humidity timely variation, at different depths, in soils of a toposequence of the Reconcavo Baiano - Brazil

    International Nuclear Information System (INIS)

    Ribeiro, Antonio Carlos; Costa, Liovando Marciano da; Paiva, Arlicelio de Queiroz; Souza, Luciano da Silva; Santana, Marlete Bastos

    1997-01-01

    Aiming the time basis volumetric humidity evaluation, at different depths, the present work has been developed in a Reconcavo Baiano toposequence consisting of three different soils, in accordance with the distances from the toposequence begin. A neutron probe has been used for determination of the soil water contents. The relative counting of the neutron probe has been converted to gravimetric humidity by using regression equation for each type of soil

  18. Water-powder mixtures at the onset of flowing

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    The knowledge of water demands of the manifold concrete ingredients is of vital interest for the design of concrete mixes. Physical properties like workability or strength and durability in hardened state are controlled by the total water content. Water demand is defined as the volumetric ratio of

  19. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures

    International Nuclear Information System (INIS)

    Huang Aimin; Liu Chunli; Ma Lin; Tong Zhangfa; Lin Ruisen

    2012-01-01

    Graphical abstract: Together with static light scattering measurement, volumetric properties of glycine, L-alanine and L-serine were determined and utilized to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrated that the interaction between amino acids and DMSO was greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. Hydrophobic aggregating of DMSO lead to a decrease in the hydrophobic effect of DMSO and the hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids, which was reflected by the solvation of proteins. Highlights: ► Determine volumetric properties of three amino acids in aqueous DMSO in details. ► Static light scattering measurement for clustering structure of aqueous DMSO. ► Volumetric behaviour of amino acids depends on clustering structure of aqueous DMSO. ► Clustering structure of aqueous DMSO influences solvation of protein and cellulose. - Abstract: For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, L-alanine and L-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2

  20. Reference method for total water in lint cotton by automated oven drying combined with volumetric Karl Fischer titration

    Science.gov (United States)

    In a preliminary study to measure total water in lint cotton we demonstrated that volumetric Karl Fischer Titration of moisture transported by a carrier gas from an attached small oven is more accurate than standard oven drying in air. The objective of the present study was to assess the measuremen...

  1. Comparison of invasive and non-invasive electromagnetic methods in soil water content estimation of a dike model

    International Nuclear Information System (INIS)

    Preko, Kwasi; Scheuermann, Alexander; Wilhelm, Helmut

    2009-01-01

    Water infiltration through a dike model under controlled flooding and drainage conditions was investigated using the gravimetric soil water sampling technique and electromagnetic techniques, in particular ground penetrating radar (GPR) applied in different forms, time domain reflectometry with intelligent microelements (TRIME-TDR) and spatial-time domain reflectometry (S-TDR). The experiments were conducted on the model in two phases. In the first phase, the model was flooded with varying water levels between 0 and 1.25 m above the waterproof base of the model. In the second phase, the characteristics of the temporal water content changes were investigated over a period of 65 days as the flood water drained off from the 1.25 m level. The dike model was constructed with soil of the texture class loamy sand. The aim of the experiment was to investigate whether GPR-based invasive and non-invasive methods were able to quantitatively observe and correctly monitor temporal changes in the volumetric water content (VWC) within embankment dams. The VWC values from the various techniques corresponded very well, especially with low VWC values. A comparison with the VWC of gravimetric soil water sampling showed a satisfactory reproducibility. Characteristic discrepancies were recorded with higher values of the VWC. Under saturated conditions only the invasive methods were able to produce reasonable values of the VWC. After the release of the highest flood level, the drainage phase could be characterized by two invasive methods based on the TDR and GPR techniques

  2. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  3. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  4. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  5. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Science.gov (United States)

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-01-01

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007

  6. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    2014-11-01

    Full Text Available The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS. For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0 and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  7. Gamma-ray attenuation to measure water contents and/or bulk densities of porous materials

    International Nuclear Information System (INIS)

    Ferraz, E.S.B.

    1983-01-01

    Attenuation of gamma radiation during transmission through soil and porous materials has been used for approximately three decades as a method for determining volumetric water content, theta, and bulk density, rho. This method is particularly suited for laboratory determinations of theta and rho in soil columns but it also has been used with success under field conditions. Measurements of attentuation of a collimated beam of monoernergetic gamma-rays has been used successfully by many investigators to provide rapid, non-destructive determinations for small volumes of soil. For stable soils, i.e. soils which do not swell upon wetting or shrink upon drying, rho may be assumed to remain constant during water flow through the soil, and thus changes in intensity or transmitted radiation may be attributed to changes in water content, theta. However, for unstable soils, the dry bulk density is subject to change with time during water flow through the soil and cannot be assumed to be a constant. Several investigators have utilized either a single beam of dual-energy gamma photons or two separate monoenergetic photon beams with greatly different energies to simultaneously determine theta and rho in these soils. A general review of gamma-ray attenuation methods for determining theta and rho in laboratory soil cores and in field soil profiles is reported in this paper. Theoretical equations for transmission and attenuation of gamma radiation in soils are presented for both single and double beams of gamma photons. Sensitivity, precision, accuracy, and experimental errors for the method are evaluated and discussed with respect to the theory. (author)

  8. Characterization of Cloud Water-Content Distribution

    Science.gov (United States)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  9. Bread Water Content Measurement Based on Hyperspectral Imaging

    DEFF Research Database (Denmark)

    Liu, Zhi; Møller, Flemming

    2011-01-01

    Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement...... for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology is used for measuring the water content quantitatively. And the definition on bread water content index is presented...

  10. Influence of packaging and conditions of storaging on content of mineral water Guber-Srebrenica

    Directory of Open Access Journals (Sweden)

    Blagojević Dragana D.

    2008-01-01

    Full Text Available Mineral waters are found in nature in greater depths most often in reduction conditions, so after surfacing their content alters in contact with oxygen, which is caused by oxidation of certain components. Due to this, efforts were made to make these waters more stabile so they could be used after certain time. This work monitors the stability of Guber (Argentaria-Srebrenica water exposed to light and with addition of ascorbic acid. The methods of analysis and the parameters analyzed are: gravimetric (SO2-4, suspended solids, total dry residue at 180°C, conductometry (electric conductivity, volumetric (Al3+, spectrometric (SiO2 and atomic-absorption spectrophotometry (Fe2+, Mg2+, Mn2+, Zn2+, K+, Ca2+, Na+ i Cu2+. Obtained results of water analysis, after retaining water in PET (polyethylentereftalate and glass bottles, in certain time intervals, show that significant changes of concentration of Fe2+, Al3+, K+, Ca2+, pH value and electric conductivity occurred. Concentration of iron Fe2+ has been slightly changed after 120 days, in sample stabilized with 0,2 g ascorbic acid, while concentrations of Al and K+ were changing the same as without adding of stabilizer. Samples of water in glass packaging without added stabilizer are less stable compared to samples which were retained in PET packaging.

  11. Substrate water availability and seed water content on niger germination

    Directory of Open Access Journals (Sweden)

    Carla Regina Baptista Gordin

    2015-09-01

    Full Text Available Niger is an oleaginous species whose cultivation has been spreading, but there is not much information on the adverse conditions during its seedling establishment. This study aimed at evaluating the effects of substrate water availability and seed water content on niger germination. Seeds were moistened using the humid atmosphere method for 0; 24; 48; and 72 hours, obtaining the water contents of 7.0 %, 12.8 %, 16.8 % and 32.2 %. Then, they were sown in substrate moistened with PEG 6000 solutions with different osmotic potentials: 0.0 MPa (control, -0.1 MPa, -0.2 MPa, -0.3 MPa and -0.4 MPa. A completely randomized design, in a 4 x 5 factorial scheme (water content x osmotic potential, with four replications of 50 seeds, was used. First count and germination percentage, germination speed index and mean time, shoot and root length and seedlings dry weight were evaluated. The reduction in the substrate osmotic potential decreases the niger seed germination and seedling growth, regardless of water content, but with a higher evidence in seed water contents below 32.2 % and 12.8 %, respectively.

  12. [Virtual water content of livestock products in China].

    Science.gov (United States)

    Wang, Hong-rui; Wang, Jun-hong

    2006-04-01

    The paper expatiated the virtual water content concept of livestock products and the study meaning on developing virtual water trade of livestock products in China, then summarized the calculation methods on virtual water and virtual water trade of livestock products. Based on these, the paper analyzed and researched every province virtual water content of livestock products in details, then elicited various situation of every province virtual water content of livestock products in China by year. Moreover, it compared virtual water content of livestock products with local water resources. The study indicated the following results: (1) The virtual water content of livestock products is increasing rapidly in China recently, especially poultry eggs and pork. (2) The distribution of virtual water content of livestock products is not balanced, mainly lies in North China, East China and so on; (3) The increasing production of livestock in Beijing City, Tianjin City, Hebei, Nei Monggol, Liaononing, Jilin, Shandong, Henan and Ningxia province and autonom ous region will bring pressure to local water shortage.

  13. Increased cerebral water content in hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Kathrin Reetz

    Full Text Available Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD on a dialysis-free day and after hemodialysis (2.4±2.2 hours, and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content.

  14. Increased cerebral water content in hemodialysis patients.

    Science.gov (United States)

    Reetz, Kathrin; Abbas, Zaheer; Costa, Ana Sofia; Gras, Vincent; Tiffin-Richards, Frances; Mirzazade, Shahram; Holschbach, Bernhard; Frank, Rolf Dario; Vassiliadou, Athina; Krüger, Thilo; Eitner, Frank; Gross, Theresa; Schulz, Jörg Bernhard; Floege, Jürgen; Shah, Nadim Jon

    2015-01-01

    Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content.

  15. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  16. Cost-effectiveness of volumetric alcohol taxation in Australia.

    Science.gov (United States)

    Byrnes, Joshua M; Cobiac, Linda J; Doran, Christopher M; Vos, Theo; Shakeshaft, Anthony P

    2010-04-19

    To estimate the potential health benefits and cost savings of an alcohol tax rate that applies equally to all alcoholic beverages based on their alcohol content (volumetric tax) and to compare the cost savings with the cost of implementation. Mathematical modelling of three scenarios of volumetric alcohol taxation for the population of Australia: (i) no change in deadweight loss, (ii) no change in tax revenue, and (iii) all alcoholic beverages taxed at the same rate as spirits. Estimated change in alcohol consumption, tax revenue and health benefit. The estimated cost of changing to a volumetric tax rate is $18 million. A volumetric tax that is deadweight loss-neutral would increase the cost of beer and wine and reduce the cost of spirits, resulting in an estimated annual increase in taxation revenue of $492 million and a 2.77% reduction in annual consumption of pure alcohol. The estimated net health gain would be 21 000 disability-adjusted life-years (DALYs), with potential cost offsets of $110 million per annum. A tax revenue-neutral scenario would result in an 0.05% decrease in consumption, and a tax on all alcohol at a spirits rate would reduce consumption by 23.85% and increase revenue by $3094 million [corrected]. All volumetric tax scenarios would provide greater health benefits and cost savings to the health sector than the existing taxation system, based on current understandings of alcohol-related health effects. An equalized volumetric tax that would reduce beer and wine consumption while increasing the consumption of spirits would need to be approached with caution. Further research is required to examine whether alcohol-related health effects vary by type of alcoholic beverage independent of the amount of alcohol consumed to provide a strong evidence platform for alcohol taxation policies.

  17. Water Content of Lunar Alkali Fedlspar

    Science.gov (United States)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a

  18. Monitoring water content in Opalinus Clay within the FE-Experiment: Test application of dielectric water content sensors

    Science.gov (United States)

    Sakaki, T.; Vogt, T.; Komatsu, M.; Müller, H. R.

    2013-12-01

    The spatiotemporal variation of water content in the near field rock around repository tunnels for radioactive waste in clay formations is one of the essential quantities to be monitored for safety assessment in many waste disposal programs. Reliable measurements of water content are important not only for the understanding and prediction of coupled hydraulic-mechanic processes that occur during tunnel construction and ventilation phase, but also for the understanding of coupled thermal-hydraulic-mechanical (THM) processes that take place in the host rock during the post closure phase of a repository tunnel for spent fuel and high level radioactive waste (SF/HLW). The host rock of the Swiss disposal concept for SF/HLW is the Opalinus Clay formation (age of approx. 175 Million years). To better understand the THM effects in a full-scale heater-engineered barrier-rock system in Opalinus Clay, a full-scale heater test, namely the Full-Scale Emplacement (FE) experiment, was initiated in 2010 at the Mont Terri underground rock laboratory in north-western Switzerland. The experiment is designed to simulate the THM evolution of a SF/HLW repository tunnel based on the Swiss disposal concept in a realistic manner during the construction, emplacement, backfilling, and post-closure phases. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors. The sensors will be distributed in the host rock, the tunnel lining, the engineered barrier, which consists of bentonite pellets and blocks, and on the heaters. The excavation is completed and the tunnel is currently being ventilated. Measuring water content in partially saturated clay-rich high-salinity rock with a deformable grain skeleton is challenging. Therefore, we use the ventilation phase (before backfilling and heating) to examine the applicability of commercial water content sensors and to

  19. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    Science.gov (United States)

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  20. A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils

    Directory of Open Access Journals (Sweden)

    Alan Kardek Rêgo Segundo

    2015-10-01

    Full Text Available The scarcity of drinking water affects various regions of the planet. Although climate change is responsible for the water availability, humanity plays an important role in preserving this precious natural resource. In case of negligence, the likely trend is to increase the demand and the depletion of water resources due to the increasing world population. This paper addresses the development, design and construction of a low cost system for measuring soil volumetric water content (θ, electrical conductivity (σ and temperature (T, in order to optimize the use of water, energy and fertilizer in food production. Different from the existing measurement instruments commonly deployed in these applications, the proposed system uses an auto-balancing bridge circuit as measurement method. The proposed models to estimate θ and σ and correct them in function of T are compared to the ones reported in literature. The final prototype corresponds to a simple circuit connected to a pair of electrode probes, and presents high accuracy, high signal to noise ratio, fast response, and immunity to stray capacitance. The instrument calibration is based on salt solutions with known dielectric constant and electrical conductivity as reference. Experiments measuring clay and sandy soils demonstrate the satisfactory performance of the instrument.

  1. A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils.

    Science.gov (United States)

    Rêgo Segundo, Alan Kardek; Martins, José Helvecio; Monteiro, Paulo Marcos de Barros; de Oliveira, Rubens Alves; Freitas, Gustavo Medeiros

    2015-10-05

    The scarcity of drinking water affects various regions of the planet. Although climate change is responsible for the water availability, humanity plays an important role in preserving this precious natural resource. In case of negligence, the likely trend is to increase the demand and the depletion of water resources due to the increasing world population. This paper addresses the development, design and construction of a low cost system for measuring soil volumetric water content (θ), electrical conductivity (σ) and temperature (T), in order to optimize the use of water, energy and fertilizer in food production. Different from the existing measurement instruments commonly deployed in these applications, the proposed system uses an auto-balancing bridge circuit as measurement method. The proposed models to estimate θ and σ and correct them in function of T are compared to the ones reported in literature. The final prototype corresponds to a simple circuit connected to a pair of electrode probes, and presents high accuracy, high signal to noise ratio, fast response, and immunity to stray capacitance. The instrument calibration is based on salt solutions with known dielectric constant and electrical conductivity as reference. Experiments measuring clay and sandy soils demonstrate the satisfactory performance of the instrument.

  2. Influence of water air content on cavitation erosion in distilled water

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available The influence of increased air content of the cavitating liquid (distilled water) was studied in a rotating disk test rig. A rise in the total air content including dissolved and entrained air of the water in the under saturated range resulted...

  3. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Science.gov (United States)

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  4. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    Science.gov (United States)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  5. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments

    International Nuclear Information System (INIS)

    Perkins, B.; Travis, B.; DePoorter, G.

    1985-01-01

    Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables

  6. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging.

    Science.gov (United States)

    Benkert, Thomas; Feng, Li; Sodickson, Daniel K; Chandarana, Hersh; Block, Kai Tobias

    2017-08-01

    Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Soil water diffusivity as a function of water content and time

    International Nuclear Information System (INIS)

    Guerrini, I.A.

    1976-04-01

    The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2γ is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, α, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author) [pt

  8. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  9. shoot water content and reference evapotranspiration

    African Journals Online (AJOL)

    ACSS

    measurement affects irrigation amount, while in the atmospheric-based methods, the soil water content affects evapotranspiration. Most ... stem water potential, leaf water potential, and .... cells. No tillage plots were weeded by hand pulling of weeds; whereas hoes were used in ..... based on soil electrical conductivity and.

  10. [Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].

    Science.gov (United States)

    Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min

    2017-07-18

    The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.

  11. Influence of Water Content on Pullout Behaviour of Geogrid

    Science.gov (United States)

    Chen, Rong; Song, Yang-yang; Hao, Dong-xue; Gao, Yu-cong

    2017-06-01

    The interaction between geogrid and soil is fundamental and crucial factor on safety and stability of geogrid-reinforced earth structure. Therefore, the interface index between geogrid and soil is of vital importance in the design of reinforced earth structures. The pullout behaviour of geogrid in soil is studied, an experimental investigation is conducted using geogrid in four groups of soil with 20%, 24%, 28%, 32% water contents, which correspond to normal stresses of 50, 100, 200 and 300 kPa respectively. The results indicate that the geogrid embedded in soil mainly represents pullout failure, and the ultimate pullout force is sensitive to water content. It decreases with the increase of the water content firstly. Besides, the water content influences the process of the pullout behaviour. The increase of water content leads to the ultimate pullout force soon.

  12. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  13. Sensing the water content of honey from temperature-dependent electrical conductivity

    International Nuclear Information System (INIS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-01-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18–37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey

  14. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Science.gov (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  15. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...... as an internal standard in stroke patients....

  16. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  17. Vegetation Water Content Mapping for Agricultural Regions in SMAPVEX16

    Science.gov (United States)

    White, W. A.; Cosh, M. H.; McKee, L.; Berg, A. A.; McNairn, H.; Hornbuckle, B. K.; Colliander, A.; Jackson, T. J.

    2017-12-01

    Vegetation water content impacts the ability of L-band radiometers to measure surface soil moisture. Therefore it is necessary to quantify the amount of water held in surface vegetation for an accurate soil moisture remote sensing retrieval. A methodology is presented for generating agricultural vegetation water content maps using Landsat 8 scenes for agricultural fields of Iowa and Manitoba for the Soil Moisture Active Passive Validation Experiments in 2016 (SMAPVEX16). Manitoba has a variety of row crops across the region, and the study period encompasses the time frame from emergence to reproduction, as well as a forested region. The Iowa study site is dominated by corn and soybeans, presenting an easier challenge. Ground collection of vegetation biomass and water content were also collected to provide a ground truth data source. Errors for the resulting vegetation water content maps ranged depending upon crop type, but generally were less than 15% of the total plant water content per crop type. Interpolation is done between Landsat overpasses to produce daily vegetation water content maps for the summer of 2016 at a 30 meter resolution.

  18. Active THz inspection of water content in plants

    Science.gov (United States)

    Etayo, D.; Iriarte, J. C.; Palacios, I.; Teniente, J.; Ederra, I.; Gonzalo, R.

    2010-04-01

    The THz range offers the possibility of measuring water content. This can be useful in wine industry to control plants water levels and also to decrease irrigation costs. This paper presents a THz imaging system used to characterise water content in leaves using frequency and time domain methods from 0.14 to 0.22 THz. Our results show the possibility of getting useful information out of the preformed measurements.

  19. Effect of moisture content of concrete on water uptake

    International Nuclear Information System (INIS)

    Rucker-Gramm, P.; Beddoe, R.E.

    2010-01-01

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance ( 1 H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-√t dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from √t behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction γ is defined for the calculation of surface flux.

  20. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  1. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  2. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  3. Rapid myelin water content mapping on clinical MR systems

    International Nuclear Information System (INIS)

    Tonkova, Vyara; Arhelger, Volker; Schenk, Jochen; Neeb, Heiko; Koblenz Univ.

    2012-01-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T 1 , T * 2 and total water content. Employing the multiexponential T * 2 decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T * 2 curve was compromised to 10 echo times with a T Emax of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T 1 , T * 2 , total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  4. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  5. Need and trends of volumetric tests in recurring inspection of pressurized components in pressurized water reactors

    International Nuclear Information System (INIS)

    Bergemann, W.

    1982-01-01

    On the basis of the types of stress occurring in nuclear power plants and of practical results it has been shown that cracks in primary circuit components arise due to operating stresses in both the materials surfaces and the bulk of the materials. For this reason, volumetric materials testing is necessary in addition to surface testing. An outlook is given on the trends of volumetric testing. (author)

  6. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  7. Rapid myelin water content mapping on clinical MR systems

    Energy Technology Data Exchange (ETDEWEB)

    Tonkova, Vyara; Arhelger, Volker [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Schenk, Jochen [Radiologisches Institut, Koblenz (Germany); Neeb, Heiko [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Koblenz Univ. (Germany). Inst. for Medical Engineering and Information Processing - MTI Mittelrhein

    2012-07-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T{sub 1}, T{sup *}{sub 2} and total water content. Employing the multiexponential T{sup *}{sub 2} decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T{sup *}{sub 2} curve was compromised to 10 echo times with a T {sub Emax} of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T{sub 1}, T{sup *}{sub 2}, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  8. Water and deuterium content of chondrites

    International Nuclear Information System (INIS)

    Robert, Francois

    1978-01-01

    The main objective of this research thesis which deals with meteorite study, is to develop an experimental technique to measure the hydrogen isotopic rate in the case of very low quantities of hydrogen, notably in samples in which water content is hundred or thousand times less than in reported experiments, in order to study mechanisms of alteration of chondrites. The author reports an attempt to reconcile obtained results for isotopic rates as well as for water contents with those of the main existing models of chondrite formation. He proposes a detailed description of isotopic exchange mechanisms at low temperature, and shows that this mechanism is not in disagreement with literature published on chondrites

  9. Iodine content in drinking water and other beverages in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Larsen, Erik Huusfeldt; Ovesen, L.

    2000-01-01

    Objective: To investigate the variation in iodine content in drinking water in Denmark and to determine the difference in iodine content between organic and non-organic milk. Further, to analyse the iodine content in other beverages. Design and setting: Tap water samples were collected from 41 ev...

  10. Adaptive controller for volumetric display of neuroimaging studies

    Science.gov (United States)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  11. [Near infrared spectroscopy study on water content in turbine oil].

    Science.gov (United States)

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  12. An analysis of infiltration with moisture content distribution in a two-dimensional discretized water content domain

    KAUST Repository

    Yu, Han; Douglas, Craig C.

    2014-01-01

    On the basis of unsaturated Darcy's law, the Talbot-Ogden method provides a fast unconditional mass conservative algorithm to simulate groundwater infiltration in various unsaturated soil textures. Unlike advanced reservoir modelling methods that compute unsaturated flow in space, it only discretizes the moisture content domain into a suitable number of bins so that the vertical water movement is estimated piecewise in each bin. The dimensionality of the moisture content domain is extended from one dimensional to two dimensional in this study, which allows us to distinguish pore shapes within the same moisture content range. The vertical movement of water in the extended model imitates the infiltration phase in the Talbot-Ogden method. However, the difference in this extension is the directional redistribution, which represents the horizontal inter-bin flow and causes the water content distribution to have an effect on infiltration. Using this extension, we mathematically analyse the general relationship between infiltration and the moisture content distribution associated with wetting front depths in different bins. We show that a more negatively skewed moisture content distribution can produce a longer ponding time, whereas a higher overall flux cannot be guaranteed in this situation. It is proven on the basis of the water content probability distribution independent of soil textures. To illustrate this analysis, we also present numerical examples for both fine and coarse soil textures.

  13. An analysis of infiltration with moisture content distribution in a two-dimensional discretized water content domain

    KAUST Repository

    Yu, Han

    2014-06-11

    On the basis of unsaturated Darcy\\'s law, the Talbot-Ogden method provides a fast unconditional mass conservative algorithm to simulate groundwater infiltration in various unsaturated soil textures. Unlike advanced reservoir modelling methods that compute unsaturated flow in space, it only discretizes the moisture content domain into a suitable number of bins so that the vertical water movement is estimated piecewise in each bin. The dimensionality of the moisture content domain is extended from one dimensional to two dimensional in this study, which allows us to distinguish pore shapes within the same moisture content range. The vertical movement of water in the extended model imitates the infiltration phase in the Talbot-Ogden method. However, the difference in this extension is the directional redistribution, which represents the horizontal inter-bin flow and causes the water content distribution to have an effect on infiltration. Using this extension, we mathematically analyse the general relationship between infiltration and the moisture content distribution associated with wetting front depths in different bins. We show that a more negatively skewed moisture content distribution can produce a longer ponding time, whereas a higher overall flux cannot be guaranteed in this situation. It is proven on the basis of the water content probability distribution independent of soil textures. To illustrate this analysis, we also present numerical examples for both fine and coarse soil textures.

  14. Terahertz Measurement of the Water Content Distribution in Wood Materials

    Science.gov (United States)

    Bensalem, M.; Sommier, A.; Mindeguia, J. C.; Batsale, J. C.; Pradere, C.

    2018-02-01

    Recently, THz waves have been shown to be an effective technique for investigating the water diffusion within porous media, such as biomaterial or insulation materials. This applicability is due to the sufficient resolution for such applications and the safe levels of radiation. This study aims to achieve contactless absolute water content measurements at a steady state case in semi-transparent solids (wood) using a transmittance THz wave range setup. First, a calibration method is developed to validate an analytical model based on the Beer-Lambert law, linking the absorption coefficient, the density of the solid, and its water content. Then, an estimation of the water content on a local scale in a transient-state case (drying) is performed. This study shows that THz waves are an effective contactless, safe, and low-cost technique for the measurement of water content in a porous medium, such as wood.

  15. Influence of water content on the inactivation of P. digitatum spores using an air-water plasma jet

    Science.gov (United States)

    Youyi, HU; Weidong, ZHU; Kun, LIU; Leng, HAN; Zhenfeng, ZHENG; Huimin, HU

    2018-04-01

    In order to investigate whether an air-water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+-X2Πi) and O (3p5P-3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53-9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+-X2Πi) rises with the increase of water content, whereas the O (3p5P-3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air-water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+-X2Πi) is a more effective species in inactivation than O (3p5P-3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+-X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.

  16. Simulation of water movement and NaCl transport

    International Nuclear Information System (INIS)

    Li Xun; Zheng Zhihong; Yang Zeping

    2008-01-01

    Modeling of water flow and solute transport in the near-field of a high-level radioactive waste repository with TOUGH2 is done. The results show that salt accumulation in buffer material is not so significant, precipitation does not occur throughout the period covered by our simualtions. Further more, the changeable law of volumetric water content, liquid velocity and dissolved concentration of sodium chloride with simulated time or distance are attained, which is the base of understanding evolvement of near-field. (authors)

  17. Electromagnetically controlled measuring device for measuring injection quantities in a diesel injection pump volumetrically. Elektromagnetisch gesteuerte Messvorrichtung zur volumetrischen Messung von Einspritzmengen einer Dieseleinspritzpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K H; Mueller, M; Decker, R; Huber, G

    1990-11-22

    The invention concerns a measuring device for volumetric measurements of injection quantities of a diesel injection pump which injects its contents into a volumetric chamber controlled electromagnetically by a discharge valve and enclosed by a non-impact gas pressure loaded volumetric vessel and effects a retreating movement of the latter. The device is provided with an inductive path controller fitted with a differential pair of coils containing an axially movable ferromagnetic core. The path controller forms a part of a lifter rod connected to the volumetric vessel. It gives an opening signal to the discharge valve after each retreat of the volumetric vessel and a closing signal as soon as a defined height of suspension corresponding to the original position of the volumetric vessel after its return is reached.

  18. Peatland water repellency: Importance of soil water content, moss species, and burn severity

    Science.gov (United States)

    Moore, P. A.; Lukenbach, M. C.; Kettridge, N.; Petrone, R. M.; Devito, K. J.; Waddington, J. M.

    2017-11-01

    Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.

  19. [Analysis of spectral features based on water content of desert vegetation].

    Science.gov (United States)

    Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin

    2010-09-01

    By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.

  20. Problems of estimation of water content history of loesses

    International Nuclear Information System (INIS)

    Rendell, H.M.

    1983-01-01

    The estimation of 'mean water content' is a major source of error in the TL dating of many sediments. The engineering behaviour of loesses can be used, under certain circumstances, to interfer their content history. The construction of 'stress history' for particular loesses is therefore proposed in order to establish the critical conditions of moisture and applied stress (overburden) at which irreversible structural change occurs. A programme of field and laboratory tests should enable more precise estimates of water content history to be made. (author)

  1. Activated carbon oxygen content influence on water and surfactant adsorption.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  2. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  3. Soil water retention curves of remoulded clay on drying and wetting paths

    International Nuclear Information System (INIS)

    Zhang Xiwei; Zhang Jian

    2010-01-01

    The present research focuses on the laboratory measurement of the Soil Water Retention Curve (SWRC), that expresses the relationship between water content (gravimetric or volumetric) or degree of saturation and soil suction. The SWRC plays an important role in an unsaturated soil mechanics framework and is required for the numerical modelling of any process of flow and transport in unsaturated soil problems, already as a part of constitutive model of unsaturated soil. Six remoulded London Clay samples were performed SWRC testing on the drying and wetting path, meanwhile measurement the volume change. The effect of initial water content and various drying/wetting paths were considered in the tests. The results of SWRC show that hysteretic characteristic in boundary drying/wetting curve, the water holding capacity was increased due to the increase of the initial water content. The shape of the SWRC strongly depended on the volume change. (authors)

  4. Estimating water content in an active landfill with the aid of GPR

    Energy Technology Data Exchange (ETDEWEB)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable

  5. Estimating water content in an active landfill with the aid of GPR

    International Nuclear Information System (INIS)

    Yochim, April; Zytner, Richard G.; McBean, Edward A.; Endres, Anthony L.

    2013-01-01

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable

  6. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    Science.gov (United States)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good

  7. Spectrophotometric determination of iron (III) in tap water using 8 ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... Beers law was obeyed in the range of 1 to 14 ug/ml Fe3+. The recovery was between 98.60 ... Federal and state regulations limit the iron content of drinking water to <1 ppm, though iron is easily .... weighed and dissolved in chloroform in a 100 ml volumetric flask and made up to the mark with chloroform.

  8. Crop growth and two dimensional modeling of soil water transport in drip irrigated potatoes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Iversen, Bo Vangsø; Mollerup, Mikkel

    2009-01-01

    of abscisic acid (ABA). Model outputs from the mechanistic simulation model Daisy, in SAFIR developed to include 2D soil processes and gas exchange processes based on Ball et al. and Farquhar were compared with measured crop dynamics, final DM yield and volumetric water content in the soil measured by TDR...

  9. Auto Detection For High Level Water Content For Oil Well

    Science.gov (United States)

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.

    2010-06-01

    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  10. The correlation of metal content in medicinal plants and their water extracts

    Directory of Open Access Journals (Sweden)

    Ranđelović Saša S.

    2013-01-01

    Full Text Available The quality of some medicinal plants and their water extracts from South East Serbia is determined on the basis of metal content using atomic absorption spectrometry. The two methods were used for the preparation of water extracts, to examine the impact of the preparation on the content of metals in them. Content of investigated metals in both water extracts is markedly lower then in medicinal plants, but were higher in water extract prepared by method (I, with exception of lead content. The coefficients of extraction for the observed metal can be represented in the following order: Zn > Mn > Pb > Cu > Fe. Correlation coefficients between the metal concentration in the extract and total metal content in plant material vary in the range from 0.6369 to 0.9956. This indicates need the plants to be collected and grown in the unpolluted area and to examine the metal content. The content of heavy metals in the investigated medicinal plants and their water extracts is below the maximum allowable values, so they are safe to use.

  11. Water solubility in monzogranite melts: experimental and calculated water contents at 6 kbar

    OpenAIRE

    García Moreno, Olga; Castro Dorado, Antonio; Corretgé, Luis Guillermo

    2002-01-01

    Several piston-cylinder crystallisation experiments have been performed with a synthetic monzogranitic glass with different initial water contents at 6 kbar. Comparison with calculated water contents shows: 1) some differences of the order of 10% of XH2Q; 2) "non-linear" behaviour in XH2C/T curves; and 3) similar pattern in the XH2JT curves in both measured and calculated data. Resumen Se han realizado varios experimentos de cristalización en aparatos "piston-cylinder" a 6 kbar, u...

  12. Determining the in situ water content of the Geysers Graywacke of Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, A.

    1994-12-01

    The water content, porosity and permeability measurements of the Northern California Geysers rocks are used to predict the lifetime of the geothermal resource, which provides 10% of Northern California`s electricity. The Geysers rock was drilled from defunct well SB-15-D, and some cores wee sealed in aluminum tubes to preserve the in situ water content. These cores were sent to the Lawrence Livermore Laboratory to measure the water content. Humidity measurements were taken of the air around a one and a half foot encased core, recovered from a depth of 918.9 feet. Over a seven day period, the humidity reached almost 100% indicating that the air around the core was saturated in water vapor. We believe the sealing method is effective, preserving the in-situ water content. To measure water content, I will use Archimede`s principle to determine the density of the core before and after drying in an oven. Ultrasonic measurements will be taken of the core upon removal from aluminum tube to determine the change of p-wave velocity with change in water content. Water in the pores increases the effective compressibility of the rock therefore increasing the p-velocity. The measured p-wave velocities can then be used in the field to determine in-situ water content. Three dimensional x-ray images will be used to determine the deviations from average density within individual cores. Since the density depends on water content as well as mineralogy, images can show the location of pore fluid and drilling mud. Archimede`s principle, humidity detection, ultrasonics and x-ray scanning are viable methods to measure the in-situ water content and pore water distribution in the graywacke.

  13. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    Science.gov (United States)

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  14. Effect of water content on dispersion of transferred solute in unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Latrille, C. [CEA Saclay, DEN/DANS/DPC/SECR/L3MR, 91191 Gif sur Yvette (France)

    2013-07-01

    Estimating contaminant migration in the context of waste disposal and/or environmental remediation of polluted soils requires a complete understanding of the underlying transport processes. In unsaturated porous media, water content impacts directly on porous solute transfer. Depending on the spatial distribution of water content, the flow pathway is more complex than in water saturated media. Dispersivity is consequently dependent on water content. Non-reactive tracer experiments performed using unsaturated sand columns confirm the dependence of dispersivity with pore velocity; moreover, a power law relationship between dispersivity and water content is evidenced. (authors)

  15. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)

    2005-01-21

    Jan 21, 2005 ... silt (0.002 to 0.05 mm) percentage to estimate the soil-water content at a given soil-water .... ar and br are the intercept and slope values of the regres- .... tions use the particle size classification of the South African Soil.

  16. Tritium content in tissue free water of Japanese bodies

    Energy Technology Data Exchange (ETDEWEB)

    Ujeno, Y.; Yamamoto, K.; Aoki, T.; Kurihara, N.

    1986-01-01

    The tritium content of tissue free water was measured in fresh, non-diseased organs (brain, lungs, liver, kidneys and muscle) removed by forensic autopsy from 4 male and 4 female bodies. Tissue free water was extracted by freeze drying and distillation and tritium measured in the absence of background radon gas. A typical count was approximately 2.70 cpm. The mean tritium content of tissue free water in all the organs examined was 2.50 + - 0.67 Bq.1/sup -1/ (67.6 + -18.2 pCi1/sup -1/). This value was much lower than that obtained for tissues from Italian bodies: the value was, however, similar to that obtained for tap water (70.2 + -28.0 pCi.1/sup -1/), rain water (77.8 + - 47.4 pCi.1/sup -1/) and tissue free water of foods (55.6 + - 26.2 pCi.1/sup -1/).

  17. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    Science.gov (United States)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  18. Determination of water content in natural zeolites by reflection method

    International Nuclear Information System (INIS)

    Sarria, Lopez P.; Desdin Garcia, V.; Freixas Lemus, V.; Dominguez Ley, O.; Csikai, G.

    1989-01-01

    Water content in natural zeolites collected from different site places in Cuba has been determined by neutron reflection method. Results show that it is possible to separate the minerals abundant in zeolite from the surrounding barren rocks. Water content of about 10% can be determined with 2-3% relative accuracy for different matrices, using 10 m measuring time

  19. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Talma, A.S.

    1987-01-01

    Variations of the isotopic ratios 18 O/ 16 O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18 O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '1 8 O content of river water reflects that of the prevailing rains within the catchment. 18 O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  20. Decoupling Seasonal Changes in Water Content and Dry Matter to Predict Live Conifer Foliar Moisture Content.

    OpenAIRE

    Jolly, W. M.; Hadlow, A. M.; Huguet, K.

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples fromPinus contorta for two growing seasons and quantified their LFMC, relative water content (RWC) and dry matter chemistry. LFMC quantifies the amou...

  1. Application of acoustical methods to the measurement of water content in sand

    International Nuclear Information System (INIS)

    Nazarov, V.E.; Radostin, A.V.; Stepanyants, Y.A.

    2000-10-01

    Results of laboratory experiments on the propagation of high-frequency acoustic waves (f = 100 kHz) in a glass tube, filled with river sand are presented. Several sand samples have been used with different water content: dry, unsaturated and completely water saturated. It is shown that the dissipative coefficient of acoustic waves decreases with increasing wave amplitude. This 'self-brightening' phenomenon takes place over the whole range of moisture content, from zero to 100%, but its degree of manifestation depends on the moisture content. The exponent of the dissipative nonlinearity α, is found to be the most sensitive parameter to the moisture content and is determined on the basis of measurements. It is considered to be a good indicator of water content in porous media and provides an opportunity to measure water content in such materials indirectly by means of an acoustic method. A simple phenomenological model is presented to explain the experimental results

  2. CAMEX-4 CVI CLOUD CONDENSED WATER CONTENT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow virtual impactor (CVI) was used to measure condensed water content (liquid water or ice in particles about 8 microns in diameter and up) and cloud...

  3. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  4. Evaluation of surface nuclear magnetic resonance-estimated subsurface water content

    International Nuclear Information System (INIS)

    Mueller-Petke, M; Dlugosch, R; Yaramanci, U

    2011-01-01

    The technique of nuclear magnetic resonance (NMR) has found widespread use in geophysical applications for determining rock properties (e.g. porosity and permeability) and state variables (e.g. water content) or to distinguish between oil and water. NMR measurements are most commonly made in the laboratory and in boreholes. The technique of surface NMR (or magnetic resonance sounding (MRS)) also takes advantage of the NMR phenomenon, but by measuring subsurface rock properties from the surface using large coils of some tens of meters and reaching depths as much as 150 m. We give here a brief review of the current state of the art of forward modeling and inversion techniques. In laboratory NMR a calibration is used to convert measured signal amplitudes into water content. Surface NMR-measured amplitudes cannot be converted by a simple calibration. The water content is derived by comparing a measured amplitude with an amplitude calculated for a given subsurface water content model as input for a forward modeling that must account for all relevant physics. A convenient option to check whether the measured signals are reliable or the forward modeling accounts for all effects is to make measurements in a well-defined environment. Therefore, measurements on top of a frozen lake were made with the latest-generation surface NMR instruments. We found the measured amplitudes to be in agreement with the calculated amplitudes for a model of 100 % water content. Assuming then both the forward modeling and the measurement to be correct, the uncertainty of the model is calculated with only a few per cent based on the measurement uncertainty.

  5. K-Basins particulate water content, and behavior

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage

  6. K-Basins particulate water content, and behavior

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, D.R.

    1999-02-25

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage.

  7. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Science.gov (United States)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  8. Clarification of the volumetric properties of the (tetrahydrofuran + water) systems [J. Chem. Thermodyn. 41 (2009) 1382–1386]: Author’s statement

    International Nuclear Information System (INIS)

    Belandria, Veronica; Pimentel-Rodas, Alfredo; Mohammadi, Amir H.; Galicia-Luna, Luis A.; Richon, Dominique

    2013-01-01

    Highlights: ► New experimental density data are reported for the (THF + water) systems. ► A vibrating tube densimeter has been used to perform the measurements. ► A discussion is made on the reliability of the generated data and other questions raised in the literature. - Abstract: Although reliable and consistent volumetric data can be derived from density measurements, the greatest experimental difficulty and largest measurement errors often occur in the very dilute regions of concentration. Such data are of great interest in separation processes where a high degree of purity is required. In this communication, the densities of the (tetrahydrofuran + water) systems have been carefully investigated in dilute regions. A vibrating tube densimeter has been used to perform the measurements. A discussion is made on the reliability of the generated experimental data and the questions raised in the literature.

  9. The virtual water content of major grain crops and virtual water flows between regions in China.

    Science.gov (United States)

    Sun, Shi-Kun; Wu, Pu-Te; Wang, Yu-Bao; Zhao, Xi-Ning

    2013-04-01

    The disproportionate distribution of arable land and water resources has become a bottleneck for guaranteeing food security in China. Virtual water and virtual water trade theory have provided a potential solution to improve water resources management in agriculture and alleviate water crises in water-scarce regions. The present study evaluates the green and blue virtual water content of wheat, maize and rice at the regional scale in China. It then assesses the water-saving benefits of virtual water flows related to the transfer of the three crops between regions. The national average virtual water content of wheat, maize and rice were 1071 m(3) per ton (50.98% green water, 49.02% blue water ), 830 m(3) per ton (76.27% green water, 23.73% blue water) and 1294 m(3) per ton (61.90% green water, 38.10% blue water), respectively. With the regional transfer of wheat, maize and rice, virtual water flows reached 30.08 Gm(3) (59.91% green water, 40.09% blue water). Meanwhile, China saved 11.47 Gm(3) green water, while it consumed 7.84 Gm(3) more blue water than with a no-grain transfer scenario in 2009. In order to guarantee food security in China, the government should improve water productivity (reduce virtual water content of crops) during the grain production process. Meanwhile, under the preconditions of economic feasibility and land-water resources availability, China should guarantee the grain-sown area in southern regions for taking full advantage of green water resources and to alleviate the pressure on water resources. © 2012 Society of Chemical Industry.

  10. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  11. Lead Content of Well Water in Enugu South-East Nigeria | Ogbu ...

    African Journals Online (AJOL)

    Aim: To study the lead content of well water in Enugu, Southeast Nigeria. Method: Wells (101) were located using the multistage sampling procedure and samples were collected into clean plastic containers. Analysis was done using atomic absorption spectrophotometer. Result: The means lead content of well water ...

  12. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    Science.gov (United States)

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  13. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  14. CAMEX-4 DC-8 NEVZOROV TOTAL CONDENSED WATER CONTENT SENSOR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 DC-8 Nevzorov Total Condensed Water Content Sensor dataset was collected by the Nevzorov total condensed water content sensor which was used to measure...

  15. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content.

    Science.gov (United States)

    da Costa, Eduardo Ferreira; de Oliveira, Nestor E; Morais, Flávio J O; Carvalhaes-Dias, Pedro; Duarte, Luis Fernando C; Cabot, Andreu; Siqueira Dias, J A

    2017-03-12

    We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor's capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor's root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 μ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

  16. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content

    Directory of Open Access Journals (Sweden)

    Eduardo Ferreira da Costa

    2017-03-01

    Full Text Available We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor’s capacitance (measured in a laboratory prototype increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor’s root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit is less than 1.5 μ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

  17. Standard test method for water in lint cotton by oven evaporation combined with volumetric Karl Fischer Titration

    Science.gov (United States)

    The referenced test method for total water content and water regain in lint cotton was developed by USDA scientists in New Orleans at the request of the cotton industry. The method covers the determination of the total water (free and bound) in raw and lint cotton at moisture equilibrium from con...

  18. Magmatic water contents determined through clinopyroxene: Examples from the Western Canary Islands, Spain

    Science.gov (United States)

    Weis, Franz A.; Skogby, Henrik; Troll, Valentin R.; Deegan, Frances M.; Dahren, Börje

    2015-07-01

    Water is a key parameter in magma genesis, magma evolution, and resulting eruption styles, because it controls the density, the viscosity, as well as the melting and crystallization behavior of a melt. The parental water content of a magma is usually measured through melt inclusions in minerals such as olivine, a method which may be hampered, however, by the lack of melt inclusions suitable for analysis, or postentrapment changes in their water content. An alternative way to reconstruct the water content of a magma is to use nominally anhydrous minerals (NAMs), such as pyroxene, which take up low concentrations of hydrogen as a function of the magma's water content. During magma degassing and eruption, however, NAMs may dehydrate. We therefore tested a method to reconstruct the water contents of dehydrated clinopyroxene phenocrysts from the Western Canary islands (n = 28) through rehydration experiments followed by infrared and Mössbauer spectroscopy. Employing currently available crystal/melt partitioning data, the results of the experiments were used to calculate parental water contents of 0.71 ± 0.07 to 1.49 ± 0.15 wt % H2O for Western Canary magmas during clinopyroxene crystallization at upper mantle conditions. This H2O range is in agreement with calculated water contents using plagioclase-liquid-hygrometry, and with previously published data for mafic lavas from the Canary Islands and comparable ocean island systems elsewhere. Utilizing NAMs in combination with hydrogen treatment can therefore serve as a proxy for pre-eruptive H2O contents, which we anticipate becoming a useful method applicable to mafic rocks where pyroxene is the main phenocryst phase.

  19. Water contents of clinopyroxenes from sub-arc mantle peridotites

    Science.gov (United States)

    Turner, Michael; Turner, Simon; Blatter, Dawnika; Maury, Rene; Perfit, Michael; Yogodzinski, Gene

    2017-01-01

    One poorly constrained reservoir of the Earth's water budget is that of clinopyroxene in metasomatised, mantle peridotites. This study presents reconnaissance Sensitive High-Resolution, Ion Microprobe–Stable Isotope (SHRIMP–SI) determinations of the H2O contents of (dominantly) clinopyroxenes in rare mantle xenoliths from four different subduction zones, i.e. Mexico, Kamchatka, Philippines, and New Britain (Tabar-Feni island chain) as well as one intra-plate setting (western Victoria). All of the sub-arc xenoliths have been metasomatised and carry strong arc trace element signatures. Average measured H2O contents of the pyroxenes range from 70 ppm to 510 ppm whereas calculated bulk H2O contents range from 88 ppm to 3 737 ppm if the variable presence of amphibole is taken into account. In contrast, the intra-plate, continental mantle xenolith from western Victoria has higher water contents (3 447 ppm) but was metasomatised by alkali and/or carbonatitic melts and does not carry a subduction-related signature. Material similar to the sub-arc peridotites can either be accreted to the base of the lithosphere or potentially be transported by convection deeper into the mantle where it will lose water due to amphibole breakdown.

  20. Increased Cerebral Water Content in Hemodialysis Patients

    OpenAIRE

    Reetz, Kathrin; Abbas, Zaheer; Eitner, Frank; Gross, Theresa; Schulz, Jörg Bernhard; Floege, Jürgen; Shah, N. J.; Costa, Ana Sofia; Gras, Vincent; Tiffin-Richards, Frances; Mirzazade, Shahram; Holschbach, Bernhard; Frank, Rolf Dario; Vassiliadou, Athina; Krüger, Thilo

    2015-01-01

    Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuro...

  1. Measuring water content in soil using TDR: A state-of-the-art in 1998

    International Nuclear Information System (INIS)

    Topp, G.C.; Ferre, P.A.

    2000-01-01

    Over the past decade or so, the development and continuing refinement of the time-domain reflectometry (TDR) technique for in-situ, nondestructive measurement of water content has revolutionized the study and management of the transfer and storage of water within the soil profile. The principles for the application of TDR to water content are now well accepted and straight forward. For many mineral soils, the calibration for water content has a linear relationship with the square root of the relative permittivity measured by TDR. This allows a two-point calibration. TDR-measured water content has been applied successfully to water balance studies ranging from the km scale of small watersheds to the nun scale of the root-soil interface. Soil probes can be designed to meet many and varied requirements. The performance of a number of probe geometries is presented, including some of their strengths and weaknesses. Although coated soil probes allow measurement in more conductive soils, the probe coatings alter the water-content calibration both in sensitivity and linearity. Three general options are available for determining profiles of soil water content from the soil surface to a depth of 1 m. Soil probes of differing total depths extending to the surface are the most accessible. Soil probes buried at selected depths provide easily repeatable values. The vertically installed single probe, Aith depth segments separated by diodes, allows repeated measurement in a single vertical slice. The portability of TDR instrumentation coupled with the simplicity and flexibility of probes has allowed the mapping of spatial patterns of water content and field-based spatial and temporal soil water content distributions. The usefulness and power of the TDR technique for characterizing soil water content is increasing rapidly through continuing improvements in instrument operating range, probe design, multiplexing and automated data collection. (author)

  2. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Andrey E. Krauklis

    2018-04-01

    Full Text Available Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  3. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    Science.gov (United States)

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  4. Formulation and make-up of simulated concentrated water, high ionic content aqueous solution

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    This procedure describes the formulation and make-up of Simulated Concentrated Water (SCW), a high-ionic-content water to be used for Activity E-20-50 Long-Term Corrosion Studies. This water has an ionic content which is nominally a factor of a thousand higher than that of representative waters at or near Yucca Mountain. Representative waters were chosen as J-13 well water [Harrar, 1990] and perched water at Yucca Mountain [Glassley, 1996]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock. The perched water is located in the Topopah Spring tuff, but below the repository horizon and above the water table. A nominal thousand times higher ionic content was chosen to simulate the water that would result from the wetting of salts which have been previously deposited on a container surface

  5. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  6. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index

    Science.gov (United States)

    Pasqualotto, Nieves; Delegido, Jesús; Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Moreno, José

    2018-05-01

    Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (<30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the

  7. A scheme for parameterizing ice cloud water content in general circulation models

    Science.gov (United States)

    Heymsfield, Andrew J.; Donner, Leo J.

    1989-01-01

    A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.

  8. Soft bilateral filtering volumetric shadows using cube shadow maps.

    Directory of Open Access Journals (Sweden)

    Hatam H Ali

    Full Text Available Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications.

  9. MR-based water content estimation in cartilage: design and validation of a method

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Kristiansen, Maja Sophie; Ringgaard, Steffen

    Purpose: Design and validation of an MR-based method that allows the calculation of the water content in cartilage tissue. Methods and Materials: Cartilage tissue T1 map based water content MR sequences were used on a 37 Celsius degree stable system. The T1 map intensity signal was analyzed on 6...... cartilage samples from living animals (pig) and on 8 gelatin samples which water content was already known. For the data analysis a T1 intensity signal map software analyzer used. Finally, the method was validated after measuring and comparing 3 more cartilage samples in a living animal (pig). The obtained...... map based water content sequences can provide information that, after being analyzed using a T1-map analysis software, can be interpreted as the water contained inside a cartilage tissue. The amount of water estimated using this method was similar to the one obtained at the dry-freeze procedure...

  10. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  11. Formulation and make-up of simulate dilute water, low ionic content aqueous solution

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    This procedure describes the formulation and make-up of Simulated Dilute Water (SOW), a low-ionic-content water to be used for Activity E-20-50, Long-Term Corrosion Studies. This water has an ionic content which is nominally a factor of ten higher than that of representative waters at or near Yucca Mountain. Representative waters were chosen as J-13 well water [Harrar, 1990] and perched water at Yucca Mountain [Glassley, 1996]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock. The perched water is located in the Topopah Spring tuff, but below the repository horizon and above the water table. A nominal times ten higher ionic content was chosen to simulate the effect of ionic concentrating due to elevated temperature water flowing through fractures where salts and minerals have been deposited due to evaporation and boiling

  12. The reliability and validity of hand-held refractometry water content measures of hydrogel lenses.

    Science.gov (United States)

    Nichols, Jason J; Mitchell, G Lynn; Good, Gregory W

    2003-06-01

    To investigate within- and between-examiner reliability and validity of hand-held refractometry water content measures of hydrogel lenses. Nineteen lenses of various nominal water contents were examined by two examiners on two occasions separated by 1 hour. An Atago N2 hand-held refractometer was used for all water content measures. Lenses were presented in a random order to each examiner by a third party, and examiners were masked to any potential lens identifiers. Intraclass correlation coefficients (ICC), 95% limits of agreement, and Wilcoxon signed rank test were used to characterize the within- and between-examiner reliability and validity of lens water content measures. Within-examiner reliability was excellent (ICC, 0.97; 95% limits of agreement, -3.6% to +5.7%), and the inter-visit mean difference of 1.1 +/- 2.4% was not biased (p = 0.08). Between-examiner reliability was also excellent (ICC, 0.98; 95% limits of agreement, -4.1% to +3.9%). The mean difference between examiners was -0.1 +/- 2.1% (p = 0.83). The mean difference between the nominally reported water content and our water content measures was -2.1 +/- 1.7% (p refractometry and is material dependent. Therefore, investigators may need to account for bias when measuring hydrogel lens water content via hand-held refractometry.

  13. Transfer laws between water and freon 113 for average volumetric steam quality, pressure drop, and critical heat flux

    International Nuclear Information System (INIS)

    Nabizadeh, H.

    1977-01-01

    Simulation of the thermohydraulic processes of the steady-state reactor operation with boiling water and typical fuel element geometries leads to considerable increase of the heat rates to be tranferred and thus to an increase of the experimental cost which can hardly be justified. By proper choice of a model fluid with low heat of evaporation the system parameters like pressure, temperature, and heat rate, while retaining the original geometry, may be reduced to a fraction of those of the original fluid water. This permits not only a decrease in experimental cost but also a modification of the existing calculation data under more favorable experimental conditions. Starting from these considerations the cooling medium R113 was used as model fluid in carrying out the experiments. The necessary knowledge of the thermodynamical laws of simularity, however, have to be determined first of all in simple geometries and the scaling factors are then derived from them. In this connection the following experimental studies have been carried out with R113: a) average volumetric steam quality; b) two-phase pressure drop; c) critical heat flux. (orig.) [de

  14. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    Science.gov (United States)

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  15. Metrologically Traceable Determination of the Water Content in Biopolymers: INRiM Activity

    Science.gov (United States)

    Rolle, F.; Beltramino, G.; Fernicola, V.; Sega, M.; Verdoja, A.

    2017-03-01

    Water content in materials is a key factor affecting many chemical and physical properties. In polymers of biological origin, it influences their stability and mechanical properties as well as their biodegradability. The present work describes the activity carried out at INRiM on the determination of water content in samples of a commercial starch-derived biopolymer widely used in shopping bags (Mater-Bi^{circledR }). Its water content, together with temperature, is the most influencing parameter affecting its biodegradability, because of the considerable impact on the microbial activity which is responsible for the biopolymer degradation in the environment. The main scope of the work was the establishment of a metrologically traceable procedure for the determination of water content by using two electrochemical methods, namely coulometric Karl Fischer (cKF) titration and evolved water vapour (EWV) analysis. The obtained results are presented. The most significant operational parameters were considered, and a particular attention was devoted to the establishment of metrological traceability of the measurement results by using appropriate calibration procedures, calibrated standards and suitable certified reference materials. Sample homogeneity and oven-drying temperature were found to be the most important influence quantities in the whole water content measurement process. The results of the two methods were in agreement within the stated uncertainties. Further development is foreseen for the application of cKF and EWV to other polymers.

  16. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    Science.gov (United States)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  17. MR-based Water Content Estimation in Cartilage: Design and Validation of a Method

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Kristiansen, Maja Sofie; Ringgaard, Steffen

    2012-01-01

    Objective Design and validation of an MR-based method that allows the calculation of the water content in cartilage tissue. Material and Methods We modified and adapted to cartilage tissue T1 map based water content MR sequences commonly used in the neurology field. Using a 37 Celsius degree stable...... was costumed and programmed. Finally, we validated the method after measuring and comparing 3 more cartilage samples in a living animal (pig). The obtained data was analyzed and the water content calculated. Then, the same samples were freeze-dried (this technique allows to take out all the water that a tissue...... contains) and we measured the water they contained. Results We could reproduce twice the 37 Celsius degree system and could perform the measurements in a similar way. We found that the MR T1 map based water content sequences can provide information that, after being analyzed with a special software, can...

  18. The water content of recurring slope lineae on Mars

    Science.gov (United States)

    Edwards, Christopher S.; Piqueux, Sylvain

    2016-01-01

    Observations of recurring slope lineae (RSL) from the High-Resolution Imaging Science Experiment have been interpreted as present-day, seasonally variable liquid water flows; however, orbital spectroscopy has not confirmed the presence of liquid H2O, only hydrated salts. Thermal Emission Imaging System (THEMIS) temperature data and a numerical heat transfer model definitively constrain the amount of water associated with RSL. Surface temperature differences between RSL-bearing and dry RSL-free terrains are consistent with no water associated with RSL and, based on measurement uncertainties, limit the water content of RSL to at most 0.5–3 wt %. In addition, distinct high thermal inertia regolith signatures expected with crust-forming evaporitic salt deposits from cyclical briny water flows are not observed, indicating low water salinity (if any) and/or low enough volumes to prevent their formation. Alternatively, observed salts may be preexisting in soils at low abundances (i.e., near or below detection limits) and largely immobile. These RSL-rich surfaces experience ~100 K diurnal temperature oscillations, possible freeze/thaw cycles and/or complete evaporation on time scales that challenge their habitability potential. The unique surface temperature measurements provided by THEMIS are consistent with a dry RSL hypothesis or at least significantly limit the water content of Martian RSL.

  19. Droplet-Sizing Liquid Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  20. Radio requestable passive SAW water content sensor

    NARCIS (Netherlands)

    Reindl, L.; Ruppel, C.C.W.; Kirmayr, A.; Stockhausen, N.; Hilhorst, M.A.; Balendonk, J.

    2001-01-01

    A new passive sensor for remote measurement of water content in sandy soil was designed, using a surface acoustic wave (SAW) reflective delay line. Information from this sensor can be obtained by an interrogation device via a radio link operating in the European 434-MHz industrial-scientific-medical

  1. Thermo physical properties of lateritic soil bricks: Influence of water content

    International Nuclear Information System (INIS)

    Meukam, P.; Noumowe, A.; Kofane, T.C.

    2002-11-01

    This paper presents an experimental study carried out in order to determine the properties of local materials used as construction materials. Cement stabilized compressed bricks were tested. The thermal properties of lateritic soil based materials were determined. The objectives of work reported in this paper are to determine the effect of addition of pozzolan or sawdust in lateritic soil brick on the thermal properties. It was shown that the effect of the incorporation of pozzolan or sawdust is the decreasing of the thermal conductivity and density. The moisture content of these materials can modify their thermal performance. Thus a study of the influence of the water content on the thermal conductivity k and the thermal diffusivity a is presented. The thermal conductivity, as a function of water content, increases rapidly between O% and 12% for lateritic soil. The thermal diffusivity curve presents a maximum for values of water content of 15% for lateritic soil and 8% for lateritic soil-pozzolan or lateritic soil- sawdust. (author)

  2. Profiling water content in soils with TDR: Comparison with the neutron probe technique

    International Nuclear Information System (INIS)

    Laurent, J.P.

    2000-01-01

    In November 1996, at a site on the Grenoble campus a 1.2-m-long neutron access tube, a 0.8-m fibreglass Trime access tube and three sets of 1-m twin-rod TDR probes were installed. Weekly measurements were made over a 9-month period. In addition, soil samples were taken from time to time with an auger, to determine gravimetric water-contents. The soil bulk density profile was initially characterised by gammametry using a Campbell TM probe. A Troxler TM 4300 was used for the neutron-probe measurements. The TDR signals, for further processing by TDR-SSI, were logged using a Trase 2000 from Soil Moisture Equipment Corporation TM . TDR methods were employed without any special calibration of the permittivity/water-content relationship: standard internal calibrations of the devices or Topp polynomial relation were always applied. The results of all these water-content profiling methods were compared in three ways: (i) the water-content profiles were plotted directly on the same graph for different dates; (ii) all the water contents measured at all dates and all depths were plotted against a corresponding 'reference', namely neutron probe or gravimetry; (iii) water balances were calculated for each method and their respective time-profiles analysed. There was fairly good agreement among the three profiling methods, indicating that TDR is now a viable alternative to nuclear techniques for soil water-content profiling. (author)

  3. Ground penetrating radar water content mapping of golf course green sand layers

    Science.gov (United States)

    Information on the spatial distribution of water content across the sand layer component of a golf course green can be important to golf course superintendents for evaluating drainage effectiveness and scheduling irrigation. To estimate the bulk water content of the sand layer at point locations ac...

  4. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    Science.gov (United States)

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but

  5. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    20

    Soil water retention, Dry lands, Western India, Pedotransfer functions, Soil moisture calculator. 1. 2. 3. 4 ..... samples although it is known that structure and macro-porosity of the sample affect water retention (Unger ..... and OC content has positive influence on water retention whereas interaction of clay and OC has negative ...

  6. Aspects of volumetric efficiency measurement for reciprocating engines

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2013-01-01

    Full Text Available The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined. [Acknowledgments. The paper is the result of the research within the project TR 35041 financed by the Ministry of Science and Technological Development of the Republic of Serbia

  7. Simple, fast, and low-cost camera-based water content measurement with colorimetric fluorescent indicator

    Science.gov (United States)

    Song, Seok-Jeong; Kim, Tae-Il; Kim, Youngmi; Nam, Hyoungsik

    2018-05-01

    Recently, a simple, sensitive, and low-cost fluorescent indicator has been proposed to determine water contents in organic solvents, drugs, and foodstuffs. The change of water content leads to the change of the indicator's fluorescence color under the ultra-violet (UV) light. Whereas the water content values could be estimated from the spectrum obtained by a bulky and expensive spectrometer in the previous research, this paper demonstrates a simple and low-cost camera-based water content measurement scheme with the same fluorescent water indicator. Water content is calculated over the range of 0-30% by quadratic polynomial regression models with color information extracted from the captured images of samples. Especially, several color spaces such as RGB, xyY, L∗a∗b∗, u‧v‧, HSV, and YCBCR have been investigated to establish the optimal color information features over both linear and nonlinear RGB data given by a camera before and after gamma correction. In the end, a 2nd order polynomial regression model along with HSV in a linear domain achieves the minimum mean square error of 1.06% for a 3-fold cross validation method. Additionally, the resultant water content estimation model is implemented and evaluated in an off-the-shelf Android-based smartphone.

  8. Monitoring of Water Content in Building Materials Using a Wireless Passive Sensor

    Directory of Open Access Journals (Sweden)

    Goran Stojanović

    2010-04-01

    Full Text Available This paper describes an innovative design of a wireless, passive LC sensor and its application for monitoring of water content in building materials. The sensor was embedded in test material samples so that the internal water content of the samples could be measured with an antenna by tracking the changes in the sensor’s resonant frequency. Since the dielectric constant of water was much higher compared with that of the test samples, the presence of water in the samples increased the capacitance of the LC circuit, thus decreasing the sensor’s resonant frequency. The sensor is made up of a printed circuit board in one metal layer and water content has been determined for clay brick and autoclaved aerated concrete block, both widely used construction materials. Measurements were conducted at room temperature using a HP-4194A Impedance/Gain-Phase Analyzer instrument.

  9. Measurement of water content and density of soil using photon multiplescattering

    International Nuclear Information System (INIS)

    Ertek, C.; Haselberger, N.

    1981-04-01

    A gamma-backscatter gauge for field and laboratory applications was set up for the measurement of density and water content of soil at the same time. The method works successfully between 0-40 cm depth of the soil and is superior to the neutron gauge between 0-30 cm depth. The system is extremely simple and practical and can be installed on a tractor during ploughing. The developed method also works for absolute values of densities and moisture content and is able to distinguish the bulk density changes due to vacancies in the soil or the water content taken inside the soil grains

  10. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  11. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  12. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples.

    Science.gov (United States)

    van der Hoeven-Hangoor, E; Rademaker, C J; Paton, N D; Verstegen, M W A; Hendriks, W H

    2014-07-01

    Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter were evaluated as additional quality measures. The dietary treatments consisted of nonstarch polysaccharide content (NSP; corn vs. wheat), particle size of insoluble fiber (coarse vs. finely ground oat hulls), viscosity of a nonfermentable fiber (low- and high-viscosity carboxymethyl cellulose), inclusion of a clay mineral (sepiolite), and inclusion of a laxative electrolyte (MgSO4). The 8 treatments were randomly assigned to cages within blocks, resulting in 12 replicates per treatment with 6 birds per replicate. Limited effects of the dietary treatments were noted on excreta and litter water activity, and indications were observed that this measurement is limited in high-moisture samples. Increasing dietary NSP content by feeding a corn-based diet (low NSP) compared with a wheat-based diet (high NSP) increased water intake, excreta moisture and free water, and litter moisture content. Adding insoluble fibers to the wheat-based diet reduced excreta and litter moisture content, as well as litter water activity. Fine grinding of the oat hulls diminished the effect on litter moisture and water activity. However, excreta moisture and free water content were similar when fed finely or coarsely ground oat hulls. The effects of changing viscosity and adding a clay mineral or laxative deviated from results observed in previous studies. Findings of the current experiment indicate a potential for excreta free water measurement as an additional parameter to assess excreta quality besides total moisture. The exact implication of this parameter warrants further investigation. © 2014 Poultry Science Association Inc.

  13. Heavy metal contents and other physical quality indices of sewerage, canal and drinking water

    International Nuclear Information System (INIS)

    Mahmood, S.; Sattar, A.; Ihsanullash; Atta, S.; Arif, S. University of Engineering and Technology, Peshawar

    2001-01-01

    Analysis of Cd, Pb and Cu in canal, sewerage and drinking water by potentiometric stripping analysis (PSA) is described. Other quality indices of water such as temperature, pH, EC and total solid were also determined. The levels of heavy metal contents of sewerage, canal and drinking water revealed marked differences and wide coefficient of variability (CV). Generally Cd and Pb contents were higher in sewerage than canal and drinking water. However, Cu content of drinking waters was higher than other water tested. The total solids were found to be generally higher in sewerage and canal water than drinking water tested. The total solids were found to be generally higher in sewerage and canal water than drinking water The variations in temperature, pH and EC were marginal to marked depending upon the source and the location. (author)

  14. Effect of water content and organic carbon on remote sensing of crop residue cover

    Science.gov (United States)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  15. The Effect of Elevation on Volumetric Measurements of the Lower Extremity

    Directory of Open Access Journals (Sweden)

    Cordial M. Gillette

    2017-07-01

    Full Text Available Background: The empirical evidence for the use of RICE (rest, ice, compression, elevation has been questioned regarding its   clinical effectiveness. The component of RICE that has the least literature regarding its effectiveness is elevation. Objective: The objective of this study was to determine if various positions of elevation result in volumetric changes of the lower extremity. Methodology: A randomized crossover design was used to determine the effects of the four following conditions on volumetric changes of the lower extremity: seated at the end of a table (seated, lying supine (flat, lying supine with the foot elevated 12 inches off the table (elevated, and lying prone with the knees bent to 90 degrees (prone. The conditions were randomized using a Latin Square. Each subject completed all conditions with at least 24 hours between each session. Pre and post volumetric measurements were taken using a volumetric tank. The subject was placed in one of the four described testing positions for 30 minutes. The change in weight of the displaced water was the main outcome measure. The data was analyzed using an ANOVA of the pre and post measurements with a Bonferroni post hoc analysis. The level of significance was set at P<.05 for all analyses. Results: The only statistically significant difference was between the gravity dependent position (seated and all other positions (p <.001. There was no significant difference between lying supine (flat, on a bolster (elevated, or prone with the knees flexed to 90 degrees (prone. Conclusions: From these results, the extent of elevation does not appear to have an effect on changes in low leg volume. Elevation above the heart did not significantly improve reduction in limb volume, but removing the limb from a gravity dependent position might be beneficial.

  16. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  17. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples

    NARCIS (Netherlands)

    Hoeven-Hangoor, van der E.; Rademaker, C.; Paton, N.D.; Verstegen, M.W.A.; Hendriks, W.H.

    2014-01-01

    Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter

  18. Deuterium content on surface waters VI to X Chile regions

    International Nuclear Information System (INIS)

    Aravena C, R; Pollastri J, A.; Suzuki S, O.

    1984-01-01

    One important parameter on any sitting study for a heavy water plant installation is the deuterium content of the feed water. Deuterium data on surface waters from differents areas located in the south of Chile, are presented. These results allow to idently some potential areas for a future heavy water plant. One of these areas, Lago Llanquihue, was sampled more in detail to study the vertical distribution and spatial variations. (Author)

  19. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  20. Compared performance of penetrometers and effect of soil water content on penetration resistance measurements

    Directory of Open Access Journals (Sweden)

    Edison Aparecido Mome Filho

    2014-06-01

    Full Text Available Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ on soil penetration resistance (PR. Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH, one mechanized harvest (1MH and three mechanized harvests (3MH. The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual and by an electromechanical motor (Auto. The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.

  1. Propagation of errors from a null balance terahertz reflectometer to a sample's relative water content

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Zafiropoulos, A

    2009-01-01

    The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.

  2. The effect of water content on the magnetic and structural properties of goethite

    International Nuclear Information System (INIS)

    Betancur, J.D.; Barrero, C.A.; Greneche, J.M.; Goya, G.F.

    2004-01-01

    We have studied the effect of water content on the magnetic and structural properties of goethite. For that purpose, four samples were prepared using two different hydrothermal methods, one of them is derived on the Fe(II) precursors and the other one from Fe(III) precursors. The samples were characterized by X-ray diffraction (XRD), TGA, BET, FTIR, Moessbauer spectrometry at RT, 77 and 4.2 K and ZFC and FC curves. The results suggest that the goethites from the Fe(II) precursors are less crystalline, have higher water contents and do not show magnetic ordered structure at RT in comparison to the goethites from the Fe(III) precursors. The goethites from the last systems exhibit good crystallinity, low water content and magnetic ordering at room temperature. Our results suggest that both structural and adsorbed water contents reduce the magnetic hyperfine field at 4.2 K. A linear correlation with regression coefficient of 0.91 between the saturation hyperfine field and both the structural hydroxyl content and the surface area could be derived

  3. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Tamoh, K.

    2015-07-01

    Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher. (Author)

  4. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  5. Gamma transmission gauge for assay of integral water content in soil

    International Nuclear Information System (INIS)

    Fishman, A.; Notea, A.; Segal, Y.

    1981-01-01

    A photon transmission gauge applied for integral water content measurement in a soil layer was analyzed. The gauge may be used as a control unit for automatic irrigation in a field, or as a scanner employed for establishing an irrigation policy. The characteristic functions of the gauge: response and relative resolving power were developed. The functions provide parameter study at the design stage and interpretational ability at the operational stage. The model led to a design which eliminates sensitivity to water distribution in the examined soil. It is shown that a resolving power of 2% was obtained for a 2.3 mCi 137 Cs source at 53 cm below surface, in measuring water content of 0.2 g water/cm 3 soil during 1000 s. (orig.)

  6. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1995-02-01

    Precipitation totals of 245 and 210 mm were measured at UE-29 UZN {number_sign}91 and UE-29 UZN {number_sign}92 respectively, during the 1992 water year, October 1, 1991 to September 30, 1992. Approximately ninety percent of the precipitation fell during the period December 27 to April 2. Localized streamflow was generated in the Fortymile Wash drainage basin during the February 12-15, 1992 and March 31, 1992 precipitation, and infiltrated into the streambed materials. The streamflow went across the UE-29 UZN {number_sign}91 neutron-access borehole location and within several meters of the UE-29 UZN {number_sign}92 location. Neutron logging in these boreholes showed increases in the volumetric water content of the unsaturated alluvium and indicated streamflow infiltrated to a depth of approximately 5 meters. The volumetric water content in the upper 5 meters then gradually decreased during the remaining part of the water year. Ground-water levels rose over one meter in wells UE-29 a{number_sign}1 and UE-29 a{number_sign}2, and one-half meter in neutron-access borehole LJE-29 UZN {number_sign}91 following the streamflows. Water level declines of 0.5 meter in UE-29 a{number_sign}1 and rises of 0.2 meter in UE-29 a{number_sign}2 and 0.1 meter in UE-29 UZN {number_sign}91 coincided with a June 29, 1992 earthquake at the Little Skull Mountain, located approximately 27 kilometers southeast of the wells.

  7. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water year 1992

    International Nuclear Information System (INIS)

    Savard, C.S.

    1995-01-01

    Precipitation totals of 245 and 210 mm were measured at UE-29 UZN number-sign 91 and UE-29 UZN number-sign 92 respectively, during the 1992 water year, October 1, 1991 to September 30, 1992. Approximately ninety percent of the precipitation fell during the period December 27 to April 2. Localized streamflow was generated in the Fortymile Wash drainage basin during the February 12-15, 1992 and March 31, 1992 precipitation, and infiltrated into the streambed materials. The streamflow went across the UE-29 UZN number-sign 91 neutron-access borehole location and within several meters of the UE-29 UZN number-sign 92 location. Neutron logging in these boreholes showed increases in the volumetric water content of the unsaturated alluvium and indicated streamflow infiltrated to a depth of approximately 5 meters. The volumetric water content in the upper 5 meters then gradually decreased during the remaining part of the water year. Ground-water levels rose over one meter in wells UE-29 a number-sign 1 and UE-29 a number-sign 2, and one-half meter in neutron-access borehole LJE-29 UZN number-sign 91 following the streamflows. Water level declines of 0.5 meter in UE-29 a number-sign 1 and rises of 0.2 meter in UE-29 a number-sign 2 and 0.1 meter in UE-29 UZN number-sign 91 coincided with a June 29, 1992 earthquake at the Little Skull Mountain, located approximately 27 kilometers southeast of the wells

  8. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...

  9. 4.2.1. Water content: nuclear radiation methods

    International Nuclear Information System (INIS)

    Hooli, J.; Kasi, S.

    1975-01-01

    The radiometric methods of measuring the soil water distribution are presented. The neutron method consists of measuring the thermal neutron density around a fast neutron source. Since the moisture in the soil is usually the principle hydrogen compound the thermal neutron density is a function of the water content. The neutron gauge may be of the subsurface type, placed in a vertical access tube, or of the surface type, resting on the soil surface. Cf 252 is a useful neutron source, having low mean energy and being cheap. Tritium-target deuterium bombarded neutron generators may be used in large volume single or dual tube measurements. The hydrogen content of the dry soil matrix and the dry density profile should be determined. Epithermal measurements eliminate the effect of thermal neutron absorbers. The ideal access tube is of thin-walled aluminium, but this in many cases lacks the required strength and durability, and iron or stainless steel may be used. The measured volume ranges from 20cm to 110cm radius, and the resolution is limited to 30cm layers, with measurement intervals of 15cm. Gamma ray sources may also be used, both in single-well density gauges in conjunction with a neutron gauge, and in a dual-tube arrangement, measuring the water content by attenuation, using a Cs 137 source. This can give a resolution of down to 0.5cm, and an accuracy of 0.0015g/cm 3 . Finally radiation dose calculations are briefly discussed. (JIW)

  10. Volumetric and viscometric properties of binary and ternary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate, monoethanolamine and water

    International Nuclear Information System (INIS)

    Yin, Yaran; Zhu, Chunying; Ma, Youguang

    2016-01-01

    Highlights: • Densities and viscosities of [Bmim][BF 4 ] + MEA + H 2 O solutions were measured. • Volumetric and viscometric properties were deduced from experimental results. • Intermolecular interactions were analysed by volumetric and viscometric properties. - Abstract: Densities and viscosities of binary {[Bmim][BF 4 ] + H 2 O}, {[Bmim][BF 4 ] + MEA}, (MEA + H 2 O) and ternary mixtures {[Bmim][BF 4 ] + MEA + H 2 O} were measured at T = (293.15–333.15) K. The volumetric and viscometric properties, such as excess molar volume V E , viscosity deviation Δη, and excess Gibbs energy of activation of viscous flow ΔG ∗E for all mixtures, and apparent molar volume, excess partial molar volume and Grunberg-Nissan interaction parameter G 12 for binary mixtures, were deduced from experimental results, and the intermolecular interactions in solutions were also analysed. The excess molar volumes were correlated using the Redlich-Kister polynomial equation for binary mixtures, and Singh et al. equation for the ternary mixture with corresponding binary parameters. The viscosities of binary and ternary solutions were respectively fitted by Jouyban-Acree equation and its extended equation at each measurement temperature, the correlated values are in good agreement with the corresponding experimental data.

  11. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  12. A calculation method of available soil water content : application to viticultural terroirs mapping of the Loire valley

    Directory of Open Access Journals (Sweden)

    Etienne Goulet

    2004-12-01

    Full Text Available Vine water supply is one of the most important elements in the determination of grape composition and wine quality. Water supply conditions are in relation with available soil water content, therefore this one has to be determined when vineyard terroir mapping is undertaken. The available soil water content depends on soil factors like water content at field capacity, water content at the permanent wilting point, apparent density and rooting depth. The aim of this study is to seek the relationship between these factors and a simple soil characteristic such as texture which could be easily measurable in routine cartography. Study area is located in the Loire valley, in two different geological regions. First results indicate that it is possible to determine available soil water content from clay percentage, then from soil texture. These results also show that available soil water content algorithms differ with geological properties. This calculation can be used at each auger boring and results can be spatialised within a Geographical Information System that allows the production of available water content maps.

  13. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths

    Science.gov (United States)

    Peslier, Anne H.; Bizmis, Michael

    2013-01-01

    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  14. The MODIS Vegetation Canopy Water Content product

    Science.gov (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  15. Correlation between magnetic resonance image and content of water and fat in experimental tumor

    International Nuclear Information System (INIS)

    Sato, Tachio; Yamada, Kenji; Yamada, Susumu; Yoshioka, Seiro; Ono, Shuichi; Hishinuma, Takashi; Abe, Yoshinao; Matsuzawa, Taiju; Ogata, Yuko.

    1987-01-01

    Water and fat are considered to be major protons contributing to magnetic resonance (MR) signals in living tissues. This study compared proton density and T1 and T2 relaxation times with content of water and fat in tumor bearing rabbits. MR scans were performed using a Carr-Purcell-Meiboom-Gill pulse sequence with short and long repetition times. There was a strong correlation between proton density and the content of water and fat. The correlation of the content of water and fat to T1 and T2 relaxation times was not so strong as that to proton density. Viable tumor tissues had significantly shorter T2 relaxation time than the surrounding edematous tissues (p < 0.005), although the content of water and fat did not differ in the two types of tissues. T1 relaxation time did not differ in viable tumorous and edematous tissues. (Namekawa, K.)

  16. Radon content in various types of ground water in south-eastern Sweden. A preliminary report

    International Nuclear Information System (INIS)

    Knutsson, G.

    1977-01-01

    The purpose of investigation has been to study the radon content and its seasonal fluctuations in different types of ground water. The investigation was carried out in an area where the hydrogeological conditions are fairly well known. The geology is dominated by granitic bedrock and till. Water samples were collected from drilled wells in different rocks and from dug wells and springs in till and gravel. The seasonal fluctuations were studied in a small area. All radon measurements were made in the laboratory. The main results are following.(1) The highest radon content (max. 40 nCi/l) was observed in water from wells drilled granite. (2) The radon content in ground water from till never exceeds 8 nCi/l; the highest amount is normally found in springs situated in drumlin terrain with basel till and gravel lenses and beds (3-5 nCi/l) the contents in dug wells are 0.5-3.5 nCi/l.(3) Waters from gravel deposits have constantly low radon contents (0.1-3 nCi/l), and surface water has no radon.(4) The seasonal fluctuations in radon content are rather high and show a similar pattern to that of the fluctuations of the ground-water levels in till in the same area. (author)

  17. The Effect of Water Content of Medium Containing Oryctes rhinoceros Larvae on Metarhizium anisopliae Pathogenicity

    Directory of Open Access Journals (Sweden)

    Dyah Rini Indriyanti

    2017-08-01

    Full Text Available The entomopathogenic fungus, Metarhizium anisopliae (Metschnikoff Sorokin (Ascomycota: Hypocrealeswould effectively infect the target host on the appropriate medium water content. The aim of this study was to analyze the influence of water content of medium on the effectiveness of M. anisopliae fungus infection on O. rhinoceros larvae in the laboratory. Fifty healthy third instar larvae of O. rhinoceros were  obtained from field. The M. anisopliae obtained from Estate Crop Protection Board in Salatiga. The conidia density and viability of M. anisopliae were examined before used. The medium for maintaining the larva was the sawdust that had been sterilized. A total of 50 plastic cups were prepared to place 50 larvae (1 larva/cup. Each cup was filled with 100 g medium  of sawdust plus 2 g of M. anisopliae which was then stirred until mixed, with different water content: P1 (20%, P2 (40%, P3 (60%, P4 (80% and P5 (98%. The result indicated that  the water content of the medium affected the effectiveness of M. anisopliae fungus infection on O. rhinoceros larvae. The water content influenced the duration of larval mortality at each treatment. An important finding in this study is that controlling O. rhineceros larvae  with M. anisopliae can be done by manipulating the water content of medium. The benefit of this study may be used for the recommendation of O. rhinoceros pest control using M. anisopliae  with an effective water media content.

  18. Density and water content measurement with two dual detector probes

    International Nuclear Information System (INIS)

    Cariou, J.; Menard, J.

    1980-01-01

    The ''Laboratoires des Ponts et Chaussees'' have developed an electronic device for geological prospections. This system includes gamma-gamma and neutron-neutron probes for continuous measurement in borehole down to one hundred meters. It is used, as well to measure the density and the water content in the field of soil mechanic engineering. When the diameter is not constant all along the borehole the two probes have to use a dual detector procedure. When constant, a simple detector procedure is sufficient to obtain density and water content. Two examples show the possibilities of this apparatus, particularly to control the borehole diameter and the soil chemical composition [fr

  19. A Simple Beta-Function Model for Soil-Water Repellency as a Function of Water and Organic Carbon Contents

    DEFF Research Database (Denmark)

    Karunarathna, Anurudda Kumara; Kawamoto, Ken; Møldrup, Per

    2010-01-01

    Soil-water content (θ) and soil organic carbon (SOC) are key factors controlling the occurrence and magnitude of soil-water repellency (WR). Although expressions have recently been proposed to describe the nonlinear variation of WR with θ, the inclusion of easily measurable parameters in predictive...... conditions for 19 soils were used to test the model. The beta function successfully reproduced all the measured soil-water repellency characteristic, α(θ), curves. Significant correlations were found between model parameters and SOC content (1%-14%). The model was independently tested against data...

  20. Models for moisture estimation in different horizons of yellow argisol using TDR

    Directory of Open Access Journals (Sweden)

    Karla Silva Santos Alvares de Almeida

    2017-08-01

    Full Text Available The determination of soil moisture is very important because it is the property with the most influence on the dielectric constant of the medium. Time-domain reflectometry (TDR is an indirect technique used to estimate the water content of the soil (? based on its dielectric constant (Ka. Like any other technique, it has advantages and disadvantages. Among the major disadvantages is the need for calibration, which requires consideration of the soil characteristics. This study aimed to perform the calibration of a TDR100 device to estimate the volumetric water content of four horizons of a Yellow Argisol. Calibration was performed under laboratory conditions using disturbed soil samples contained in PVC columns. The three rods of the handcrafted probes were vertically installed in the soil columns. Weight measurements with digital scales and daily readings of the dielectric constant with the TDR device were taken. For all soil horizons evaluated, the best fits between the dielectric constant and the volumetric water content were related to the cubic polynomial model. The Ledieu model overestimated by approximately 68 % the volumetric water content in the A and AB horizons, and underestimating by 69 % in Bt2, in relation to volumetric water content obtained by gravimetry. The underestimation by linear, Topp, Roth, and Malicki models ranged from 50 % to 85 % for all horizons.

  1. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    DEFF Research Database (Denmark)

    Folas, Georgios; Froyna, E.W.; Lovland, J.

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...... predictive (i.e. all binary interaction parameters are set equal to 0), while GERG-water uses a temperature dependent interaction parameter fitted to published data. The GERG-water model is proposed as an ISO standard for determining the water content of natural gas. The data sets for nitrogen cover...... conclusion is that GERG-water must be used with caution outside its specified working range. For some selected natural gas mixtures the two models also perform very much alike. The water content of the mixtures decreases with increasing amount of heavier components, and it seems that both models slightly...

  2. Organic tank safety project: Effect of water partial pressure on the equilibrium water contents of waste samples from Hanford Tank 241-BY-108

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1997-02-01

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the US Department of Energy's Hanford Site. Because of water's importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory (PNNL) to investigate the effect of water partial pressure (P H2O ) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, P H2O is the most susceptible to being controlled by the and Hanford Site's environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, Webb et al. determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. A Conditionally Safe waste is one that satisfies the waste classification criteria based on water content alone or a combination of water content and either total organic carbon (TOC) content or waste energetics. To provide information on the behavior of saltcake wastes, two waste samples taken from Tank 241-BY-108 (BY-108) were selected for study, even though BY-108 is not on the Organic Tanks Watch List because of their ready availability and their similarity to some of the organic-bearing saltcakes

  3. Water retention properties of ashes; Vattenretentionsegenskaper hos aska

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Ezziyani, Samir; Bendz, David

    2009-05-15

    The water holding properties of a material can be described with a water retention curve (also called pF curve or characteristic curve). The importance of this material property has until now been neglected in waste and rest products contexts. There is an eminent need for knowledge of the water holding properties of ash and rest products in order to improve the possibility to perform i) assessment of leaching from rest product used in constructions, ii) dimensioning of covers built with rest products and iii) assessment of long term properties of land fill waste concerning leaching, especially for stabilized ash with a monolithic characteristics. The aim of this project was to increase the knowledge of the water holding properties of ashes by determining water retention curves with laboratory methods on four ash materials with the potential to be used in constructions. In the project, four ashes has been studied; one MSWI bottom ash from SYSAV, one aged MSWI bottom ash from Gaerstadverket and two fly ashes from incineration of biofuels; one from SCA Ortviken and one from Jaemtkraft AB. For comparison, data from a silt soil studied in another SGI project is presented. When determining a water retention curve for a specific material water from the examined, beforehand water saturated, sample is eliminated under controlled circumstances in a pressure plate extractor. The sample is exposed to a pressure, with increasing degree, squeezing excess water out of the material. The excess water is measured for each increased pressure step and the remaining volumetric water content in the material can be calculated. The results from such measurements are presented in water retention curves, in which the volumetric water content is plotted as a function of the capillary pressure. The water retention curves shows how various materials differ in water content at the same pressure. The results from the study showed that ashes have great water holding capacity. The study also

  4. Stabilization of Aley river water content by forest stands

    Directory of Open Access Journals (Sweden)

    E. G. Paramonov

    2016-06-01

    Full Text Available Aley river basin is one of the most developed territories in West Siberia. Initially, the development here was related to the development of ore mining in the Altai. Currently it is associated mainly with the agricultural orientation of economic development. The intensive involvement of basin lands into the economic turnover for the last 100 years contributed to the formation of a number of environmental problems, such as water and wind erosion, loss of soil fertility and salinization, and desertification of the territory. Besides, the decrease of Aley river water content due to natural and anthropogenic reasons was observed. A specific feature of water management in Aley river basin is a significant amount of water resources used for irrigation purposes and agricultural water supply. To ensure the economic and drinking water supply, two reservoirs and a number of ponds have been constructed and operate in the basin. Forest ecosystems of the basin are considered from the viewpoint of preservation and restoration of small rivers. The ability of forest to accumulate solid precipitation and intercept them during the snowmelt for a longer time reduces the surface drainage and promotes transfer into the subsurface flow, significantly influencing the water content of permanent watercourses, is shown. The state of protective forest plantations in Aley river basin is analyzed. Aley river tributaries are compared by area, the length of water flow, and forest coverage of the basin. It is proposed to regulate the runoff through drastic actions on the increase of forest cover in the plain and especially in the mountainous parts of the basin. Measures to increase the forest cover within water protection zones, afforestation of temporary and permanent river basins, and the protection of agricultural soil fertility are worked out.

  5. In-Line Measurement of Water Content in Ethanol Using a PVA-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2014-01-01

    Full Text Available An in-line device for measuring the water content in ethanol was developed using a polyvinyl alcohol (PVA-coated quartz crystal microbalance. Bio-ethanol is widely used as the replacement of gasoline, and its water content is a key component of its specifications. When the PVA-coated quartz crystal microbalance is contacted with ethanol containing a small amount of water, the water is absorbed into the PVA increasing the load on the microbalance surface to cause a frequency drop. The determination performance of the PVA-coated microbalance is examined by measuring the frequency decreases in ethanol containing 2% to 10% water while the ethanol flows through the measurement device. The measurements indicates that the higher water content is the more the frequency reduction is, though some deviation in the measurements is observed. This indicates that the frequency measurement of an unknown concentration of water in ethanol can be used to determine the water content in ethanol. The PVA coating is examined by microscopy and FTIR (Fourier transform infrared spectroscopy.

  6. Influence of free water content on the compressive mechanical ...

    Indian Academy of Sciences (India)

    tars with different water content, the upward section of the stress–strain curve ..... Recent work by Zhou & Hao (2008) also provide computational confirmation ... these volume change may be closely related to micro-capillarity action in the ...

  7. Relationship between arsenic content of food and water applied for food processing.

    Science.gov (United States)

    Sugár, Eva; Tatár, Enikő; Záray, Gyula; Mihucz, Victor G

    2013-12-01

    As part of a survey conducted by the Central Agricultural Office of Hungary, 67 food samples including beverages were taken from 57 food industrial and catering companies, 75% of them being small and medium-sized enterprises (SMEs). Moreover, 40% of the SMEs were micro entities. Water used for food processing was simultaneously sampled. The arsenic (As) content of solid food stuff was determined by hydride generation atomic absorption spectrometry after dry ashing. Food stuff with high water content and water samples were analyzed by inductively coupled plasma mass spectrometry. The As concentration exceeded 10 μg/L in 74% of the water samples taken from SMEs. The As concentrations of samples with high water content and water used were linearly correlated. Estimated As intake from combined exposure to drinking water and food of the population was on average 40% of the daily lower limit of WHO on the benchmark dose for a 0.5% increased incidence of lung cancer (BMDL0.5) for As. Five settlements had higher As intake than the BMDL0.5. Three of these settlements are situated in Csongrád county and the distance between them is less than 55 km. The maximum As intake might be 3.8 μg/kg body weight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A New Method for Sensing Soil Water Content in Green Roofs Using Plant Microbial Fuel Cells.

    Science.gov (United States)

    Tapia, Natalia F; Rojas, Claudia; Bonilla, Carlos A; Vargas, Ignacio T

    2017-12-28

    Green roofs have many benefits, but in countries with semiarid climates the amount of water needed for irrigation is a limiting factor for their maintenance. The use of drought-tolerant plants such as Sedum species, reduces the water requirements in the dry season, but, even so, in semiarid environments these can reach up to 60 L m -2 per day. Continuous substrate/soil water content monitoring would facilitate the efficient use of this critical resource. In this context, the use of plant microbial fuel cells (PMFCs) emerges as a suitable and more sustainable alternative for monitoring water content in green roofs in semiarid climates. In this study, bench and pilot-scale experiments using seven Sedum species showed a positive relationship between current generation and water content in the substrate. PMFC reactors with higher water content (around 27% vs. 17.5% v / v ) showed larger power density (114.6 and 82.3 μW m -2 vs. 32.5 μW m -2 ). Moreover, a correlation coefficient of 0.95 (±0.01) between current density and water content was observed. The results of this research represent the first effort of using PMFCs as low-cost water content biosensors for green roofs.

  9. Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry

    NARCIS (Netherlands)

    de Jong, Steven M.; Addink, Elisabeth A.; Doelman, Jonathan C.

    2014-01-01

    Water content of the vegetation canopy or individual leaves is an important variable in physiological plant processes. In Mediterranean regions where water availability is an important production limiting factor, it is a strong indicator of vegetation stress. Spectroscopic earth-observation

  10. Remote sensing of atmospheric water content from Bhaskara SAMIR data. [using statistical linear regression analysis

    Science.gov (United States)

    Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.

    1982-01-01

    The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.

  11. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  12. Study of the radioactive contents in Barcelona's water supply during 1986

    International Nuclear Information System (INIS)

    Ortega, X.; Valles, I.

    1988-01-01

    Throughout 1986 several determinations were carried out of the contents in α and β radioactivity transmitters of different samples of the Barcelona water supply. It could be verified that beta radioactivity was ten times higher in the waters collected in the basin of Llobregat river than water from Ter river. Both rivers are the main sources of Barcelona supply. The reason for this unbalanced result is the high potassic content of the first river, coming from the mining exploitation of the basin. On the other hand, the contamination that could be measured in May, due to the Chernobyl nuclear accident, showed that the supply system from Llobregat river was more sensitive to the incorporation of contaminants carried down by the rain, whereas in the case of Ter river, owing to the presence of impounding regulation, a higher retention time of these waters was obtained. (author)

  13. Viability study of photodiodes utilization in determination of soil water content by gamma transmission

    International Nuclear Information System (INIS)

    Santos, L.A.P.; Khoury, H.; Carneiro, C.J.G.

    1991-01-01

    An experiment to verify the viability of using silicon photodetectors in a sup(241)Am γ-ray spectroscopy system for measuring soil water content was carried out in disturbed soil cores. The good correlation between the logarithm of the attenuation factor and the water content, r sup(2)=0.99, proves that the low efficiency of these detectors is not a limiting factor in measuring the water content. Furthermore, the small dimensions of the silicon photodetectors and associate electronic equipment are important characteristics that could permit the construction of a portable gammametry system to be used under field conditions. (author)

  14. Sensitivity of probabilistic MCO water content estimates to key assumptions

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    Sensitivity of probabilistic multi-canister overpack (MCO) water content estimates to key assumptions is evaluated with emphasis on the largest non-cladding film-contributors, water borne by particulates adhering to damage sites, and water borne by canister particulate. Calculations considered different choices of damage state degree of independence, different choices of percentile for reference high inputs, three types of input probability density function (pdfs): triangular, log-normal, and Weibull, and the number of scrap baskets in an MCO

  15. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  16. Validation of methods for determination of free water content in poultry meat

    Directory of Open Access Journals (Sweden)

    Jarmila Žítková

    2007-01-01

    Full Text Available Methods for determination of free water content in poultry meat are described in Commission Regulation EEC No 1538/91 as amended and in ČSN 57 3100. Two of them (method A and D have been validated in conditions of a Czech poultry processing plant. The capacity of slaughtering was 6000 pieces per hour and carcasses were chilled by air with spraying. All determinations were carried out in the plant’s lab and in the lab of the Institute of Food Technology. Method A was used to detect the amount of water lost from frozen chicken during thawing in controlled conditions. Twenty carcasses from six weight groups (900 g–1400 g were tested. The average values of thaw loss water contents ranged between 0.46% and 1.71%, the average value of total 120 samples was 1.16%. The results were compared with the required maximum limit value of 3.3%. The water loss content was in negative correlation with the weight of chicken (r = –0.56. Method D (chemical test has been applied to determine the total water content of certain poultry cuts. It involved the determination of water and protein contents of 62 representative samples in total. The average values of ratio of water weight to proteins weight WA/RPA were in breast fillets 3.29, in legs with a portion of the back 4.06, legs 4.00, thighs 3.85 and drumsticks 4.10. The results corresponded to the required limit values for breast fillets 3.40 and for leg cuts 4.15. The ratio of water weight to proteins weight WA/RPA was correlated with the weight of chicken for breast fillets negatively (r = –0.61 and for leg cuts positively (r = 0.70. Different correlations can be explained by the distribution of water, protein and fat in carcasses. The evaluation of methods in the parameter of percentage ratio of the average value to the limit showed that method D (results were at the level of 97% of the limit was more exact than method A (results were at the level 32% of the limit but it is more expensive. Both methods

  17. ICUD-0061 Field station to quantify overland runoff from urban green areas

    DEFF Research Database (Denmark)

    Nielsen, Kristoffer; Duus, L. B.; Møldrup, Per

    2017-01-01

    A hydrological field station is established to measure storm water runoff from a 4300 m2 pervious catchment in an urban landscape. The objective is to explore potential flood early warning indicators and assess the consequences of runoff from pervious surfaces to urban drainage systems in addition...... to runoff from impermeable surfaces. Soil volumetric water content and soil-water matric potential are measured in several sensor clusters in the catchment. It is found that measured surface runoff and soil volumetric water content are well correlated while matric potential is an on-off indicator...

  18. The Effect of Preservative Methods on the Yield, Water Content and ...

    African Journals Online (AJOL)

    .niger, A.aureous and Fusarium spp. A. flavipes was isolated from samples of water activity at 0.33 while A.niger was isolated from samples of water activity at 0.11. It was recommended that the reduction in moisture content of smoke-dried ...

  19. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1983-01-01

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to conrete. A 4.36 mCi 137 Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary conretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method. (orig.)

  20. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, V M; Bhatnagar, P K; Meenakshisundaram, V [Reactor Research Centre, Kalpakkam (India). Safety Research Lab.

    1983-02-15

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to concrete. A 4.36 mCi /sup 137/Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary concretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method.

  1. From water to energy. The virtual water content and water footprint of biofuel consumption in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Elena, Galan-del-Castillo [Universitat Autonoma de Barcelona (Spain); Esther, Velazquez [Pablo de Olavide University, Department of Economics, Crta. Utrera, Km.1, 41013 Seville (Spain)

    2010-03-15

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector. (author)

  2. From water to energy: The virtual water content and water footprint of biofuel consumption in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Galan-del-Castillo, Elena [Universitat Autonoma de Barcelona (Spain); Velazquez, Esther, E-mail: evelalo@upo.e [Pablo de Olavide University, Department of Economics, Crta. Utrera, Km.1, 41013 Seville (Spain)

    2010-03-15

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector.

  3. From water to energy. The virtual water content and water footprint of biofuel consumption in Spain

    International Nuclear Information System (INIS)

    Elena, Galan-del-Castillo; Esther, Velazquez

    2010-01-01

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector. (author)

  4. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  5. Understanding the bias between moisture content by oven drying and water content by Karl Fischer titration at moisture equilibrium

    Science.gov (United States)

    Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...

  6. Activity of water content and storage temperature on the seed-borne mycoflora of lens culinaris

    International Nuclear Information System (INIS)

    Rahim, S.; Dawar, S.

    2014-01-01

    Storage of seeds with high water content and temperatures favors the growth of mould fungi which in turn affect the germination of seeds while low temperature with low water content prevent the growth of storage fungi and help in maintaining seed viability for longer duration of time. Seed sample from Sukkur district was stored at 4 degree C and room temperature (25-30 degree C) with water content of 8, 13 and 17% for about 80 days. The fungi were isolated at 0, 20, 40, 60 and 80 days intervals. Highest infection percentage of fungi was observed at 13 and 17% water contents at room temperature after 20 days of storage. High infection percentage of storage fungi affected the germination of seeds. Aspergillus spp were the most dominant fungi. (author)

  7. In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2015-10-01

    Full Text Available A quartz crystal microbalance (QCM was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate (PMMA binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread.

  8. Two-Region Model for Soil Water Repellency as a Function of Matric Potential and Water Content

    DEFF Research Database (Denmark)

    Karunarathna, Anurudda Kumara; Møldrup, Per; Kawamoto, Ken

    2010-01-01

    by the so-called Dexter index) is useful for predicting if soils are likely to exhibit WR. Expression of soil water repellency depends on soil water content; however, only a limited amount of predictive description is available to date. In this study, based on experimental data, a simple two-region model...

  9. Inactivation of enterohemorrhagic Escherichia coli in rumen content- or feces-contaminated drinking water for cattle.

    Science.gov (United States)

    Zhao, Tong; Zhao, Ping; West, Joe W; Bernard, John K; Cross, Heath G; Doyle, Michael P

    2006-05-01

    Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5 degrees C), and competing E. coli treatment of water had minimal effects (rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21 degrees C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic acid plus 0.9% acidic calcium sulfate (pH 2.1) drank 18.6 liters/day. The

  10. Evolved-Lithology Clasts in Lunar Breccias: Relating Petrogenetic Diversity to Measured Water Content

    Science.gov (United States)

    Christoffersen, R.; Simon, J. J.; Ross, D. K.

    2017-01-01

    Studies of the inventory and distribution of water in lunar rocks have recently begun to focus on alkali suite samples as possible water repositories, particularly the most highly evolved granitoid lithologies. Although H analyses of feldspars in these rocks have so far pointed to 'low' (less than 20 ppm) H2O contents, there is sufficient variability in the dataset (e.g., 2-20 ppm) to warrant consideration of the petrogenetic factors that may have caused some granitoid-to-intermediate rocks to be dryer or wetter than others. Given that all examples of these rocks occur as clasts in complex impact breccias, the role of impact and other factors in altering water contents established by primary igneous processes becomes a major factor. We are supporting our ongoing SIMS studies of water in evolved lunar lithologies with systematic SEM and EPMA observations. Here we report a synthesis of the observations as part of developing discriminating factors for reconstructing the thermal, crystallization and shock history of these samples as compared with their water contents.

  11. Association between drinking water uranium content and cancer risk in Bavaria, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Radespiel-Troeger, M.; Meyer, M. [Population-based cancer registry Bavaria, Erlangen (Germany). Registration office

    2013-10-15

    To evaluate the possible association between uranium (U) content in public drinking water on the one hand and the risk of cancer of the colorectum, lung, female breast, prostate, kidney, and urinary bladder, total cancer, and leukemia on the other hand in Bavaria, an ecologic study on the level of municipalities was performed. Cancer incidence data for the years 2002-2008 were obtained from the population-based cancer registry Bavaria according to sex. Current U content data of public drinking water on the level of municipalities were obtained from a publicly available source. The possible association between drinking water U content and cancer risk adjusted for average socio-economic status was evaluated using Poisson regression. Drinking water U content was below 20 μg/L in 458 out of 461 included municipalities. We found a significantly increased risk of leukemia in men in the intermediate (U level, 1.00-4.99 μg/L; relative risk [RR], 1.14) and in the highest U exposure category (U level, ≥ 5 μg/L; RR, 1.28). Moreover, in women, a significantly elevated risk was identified with respect to kidney cancer in the highest exposure category (RR, 1.16) and with respect to lung cancer in the intermediate exposure category (RR, 1.12). The slightly increased risk of leukemia in men, kidney cancer in women, and lung cancer in women may require further investigation. If an increased cancer risk is confirmed, preventive measures (e.g., introduction of U filters in public water systems) may be considered.

  12. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  13. Wheat dough rheology at low water contents and the influence of xylanases

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2014-01-01

    The effect of low water contents and xylanases on wheat dough rheology is reported. Farinograph, dynamic oscillation, and creep-recovery measurements were performed using water concentrations from 34 to 44.8% (total basis). A water reduction from 43.5–44.8% to 34% increased resistance upon mixing as

  14. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    Science.gov (United States)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  15. Effect of water regime on the growth, flower yield, essential oil and proline contents of Calendula officinalis

    Directory of Open Access Journals (Sweden)

    SAMI ALI METWALLY

    2013-11-01

    Full Text Available Metwally SA,Khalid KA, Abou-Leila BH. 2013. Effect of water regime on the growth, flower yield, essential oil and proline contents of Calendula officinalis. Nusantara Bioscience 5: 63-67. The effects of water regime on the growth, content of essential oil and proline of Calendula officinalis L. plants were investigated. Water regimes of 75% of field water capacity increased certain growth characters [i.e. plant height (cm, leaf area (cm2, flower diameter (cm and spike stem diameter] and vase life (day. Water regime promoted the accumulation of essential oil content and its main components as well as proline contents.

  16. Empirical model to estimate the thermal conductivity of granite with various water contents

    International Nuclear Information System (INIS)

    Cho, Win Jin; Kwon, Sang Ki; Lee, Jae Owan

    2010-01-01

    To obtain the input data for the design and long-term performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The thermal conductivities of granite were measured under the different conditions of water content to investigate the effects of the water content on the thermal conductivity. A simple empirical correlation was proposed to predict the thermal conductivity of granite as a function of effective porosity and water content which can be measured with relative ease while neglecting the possible effects of mineralogy, structure and anisotropy. The correlation could predict the thermal conductivity of granite with the effective porosity below 2.7% from the KURT site with an estimated error below 10%.

  17. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  18. Using near infrared spectrum analysis to predict water and chlorophyll content in tomato leaves

    Science.gov (United States)

    Jiang, Huanyu; Ying, Yibin; Liu, Yande

    2004-11-01

    In this study, we developed a nondestructive way to analyze water and chlorophyll content in tomato leaves. A total of 200 leaves were collected as experimental materials, 120 of them were used to form a calibration data set. Drying chest, SPAD meter and NIR spectrometer were used to get water content, chlorophyll content and spectrums of tomato leaves respectively. The Fourier Transform Infrared (FTNIR) method with a smart Near-IR Updrift was used to test spectrums, and partial least squares (PLS) technique was used to analyze the data we get by normal experimentation and near infrared spectrometer, set up a calibration model to predict the leaf water and chlorophyll content based on the characteristics of diffuse reflectance spectrums of tomato leaves. Three different mathematical treatments were used in spectrums processing: different wavelength range, different smoothing points, first and second derivative. We can get best prediction model when we select full range (800-2500nm), 3 points for spectrums smoothing and spectrums by baseline correction, the best model of chlorophyll content has a root mean square error of prediction (RMSEP) of 8.16 and a calibration correlation coefficient (R2) value of 0.89452 and the best model of water content has a root mean square error of prediction (RMSEP) of 0.0214 and a calibration correlation coefficient (R2) value of 0.91043.

  19. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    Science.gov (United States)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  20. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  1. Corn seed response to gamma radiation as a function of water content

    International Nuclear Information System (INIS)

    Viccini, Lyderson Facio; Saraiva, Luiz Sergio; Cruz, Cosme Damiao

    1997-01-01

    The study of the factors that affect the radiation efficiency is important, because it makes easier to get mutants that may be used as source of variability on improvement programs or as structural chromosomic aberrations for cytogenetics studies. The main of this research was to investigate the influence of corn seed water content on gamma radiation response. As a rule, the damage caused by irradiation was more evident on seeds with higher water content. Also, increased damages were observed with higher radiation doses. (author)

  2. Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray

    International Nuclear Information System (INIS)

    Chen Bingyan; Zhu Changping; He Xiang; Yin Cheng; Fei Juntao; Wang Yuan; Jiang Yongfeng; Chen Longwei; Gao Yuan; Han Qingbang

    2016-01-01

    Electric discharge in and in contact with water can accompany ultraviolet (UV) radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals (OH), oxygen radical (O), ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge (DBD) arrays in water mist spray. The relationship between droplet size and water content was examined, and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O 3 and nitrogen dioxide (NO 2 ) in DBD room decreased with increasing water content. Moreover, the concentrations of H 2 O 2 , O 3 and nitrogen oxides (NO x ) in treated water decreased with increasing water content, and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last, the water containing phenol was tested in this system for the concentration from 100 mg/L to 9.8 mg/L in a period of 35 min. (paper)

  3. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Science.gov (United States)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-03-01

    This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.

  4. Total phenol content and antioxidant activity of water solutions of plant extracts

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP content in the investigated model solutions of selected extracts (olive leaves, green tea, red grape, red wine, pine bark PE 5:1, pine bark PE 95 %, resveratrol, ranging from 11.10 mg GAE/100 mL to 92.19 mg GAE/100 mL was observed. Consequently, large dispersion of total flavonoids (TF content (8.89 mg to 61.75 mg CTE/100 mL was also observed. Since phenols have been mostly responsible for antioxidant activity of extracts, in most cases, antioxidant activity followed the TP content. That was proven by estimation of correlation coefficient between the total phenol content and antioxidant activity. Correlation coefficients between investigated parameters ranged from 0.5749 to 0.9604. During storage of 5 weeks at room temperature loss of phenols and flavonoids occurred. Antioxidant activity decreased with the decrease of TP and TF content. Degradations of phenols and flavonoids were more pronounced in samples stored at light.

  5. Organic Tank Safety Project: Effect of water partial pressure on the equilibrium water content of waste samples from Hanford Tank 241-U-105

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1997-09-01

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the U.S. Department of Energy''s Hanford Site. Because of water''s importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory to investigate the effect of water partial pressure (P H2O ) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, P H2O is the most susceptible to being controlled by the and Hanford Site''s environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. Webb et al. identified Tank U-105 as a Conditionally Safe saltcake tank. A Conditionally Safe waste is one that is currently safe based on waste classification criteria but could, if dried, be classified as open-quotes Unsafe.close quotes To provide information on the behavior of organic-bearing wastes, the Westinghouse Hanford Company provided us with four waste samples taken from Tank 241-U-105 (U-105) to determine the effect of P H2O on their equilibrium water content

  6. Available water and the orange trees growth on soils of a toposequence of the Reconcavo Baiano

    International Nuclear Information System (INIS)

    Paiva, Arlicelio de Queiroz; Souza, Luciano da Silva; Ribeiro, Antonio Carlos; Costa, Liovando Marciano da; Santana, Marlete Bastos

    1997-01-01

    Aiming the study of the influence of available water in soils, at different depths, on the orange trees growth, the present work was carried out on a toposequence located at the Sapeacu-BA-Brazil municipality, with 190 m length and 0.097 mm -1 declivity. Due to the declivity and soils variations, the area was divided into three sectors with different constitutions. Weekly basis measurements of the soil water content have been performed, in the period of Dec 18, 1995 - Dec 18, 1996, at different depths, by using a neutron probe. The water considered as available was the stored water in the soil, at different depths, less the volumetric humidity under the -1,500 kPa

  7. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  8. Volumetric full-range magnetomotive optical coherence tomography

    Science.gov (United States)

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  9. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy.

    Science.gov (United States)

    D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto

    2012-05-01

    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).

  10. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.; Møldrup, Per

    2015-01-01

    Soil texture, in particular the clay fraction, governs numerous environmental, agricultural and engineering soil processes. Traditional measurement methods for clay content are laborious and impractical for large-scale soil surveys. Consequently, clay prediction models that are based on water...... within a RH range from 3 to 93%. The clay contents, which ranged between 1 and 56%, were measured with a combination of sieving and sedimentation methods. Two regression models were developed for both adsorption and desorption at 10 RH levels (5, 10, 20, 30, 40, 50, 60, 70, 80 and 90%). While the first...

  11. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  12. A rapid method for measuring soil water content in the field with a areometer

    Directory of Open Access Journals (Sweden)

    Calbo Adonai Gimenez

    2002-01-01

    Full Text Available The availability of a rapid method to evaluate the soil water content (U can be an important tool to determine the moment to irrigate. The soil areometer consists of an elongated hydrostatic balance with a weighing pan, a graduated neck, a float and a pynometric flask. In this work an areometer was adapted to rapidly measure soil water content without the need of drying the soil. The expression U = (M A - M AD/(M M -M A was used to calculate the soil water content. In this equation M M is the mass to level the areometer with the pycnometric flask filled with water, M A the mass to level the areometer with a mass M M of soil in the pycnometer, the volume being completed with water, and similarly M AD the mass added to the pan to level the areometer with a mass M M of dried soil in the pycnometric flask. The convenience of this method is that the values M M and M AD are known. Consequently, the decision on irrigation can be made after a measurement that takes, about, ten minutes. The procedure involves only stirring the soil with water for at least 2 minutes to remove the adhered air. The soil water content data obtained with the areometric method were similar to those obtained weighing the soil before and after drying to constant weight, in an oven at 105º C.

  13. Remote sensing of leaf, canopy and vegetation water contents for satellite climate data records

    Science.gov (United States)

    Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...

  14. influence of molding water content on shear strength characteristic

    African Journals Online (AJOL)

    eobe

    INFLUENCE OF MOLDING WATER CONTENT ON SHEAR STRENGTH OF COMPACTED CEMENT KILN DUST, K. J. Osinub. K. J. Osinub. K. J. Osinubi, et al. Nigerian Journal of Technology,. Vol. 34, No. 2, April 2015 267 pavements or as waste containment materials. Therefore, recent studies have been geared towards.

  15. Determination of Uncertainty for a One Milli Litre Volumetric Pipette

    International Nuclear Information System (INIS)

    Torowati; Asminar; Rahmiati; Arif-Sasongko-Adi

    2007-01-01

    An observation had been conducted to determine the uncertainty of volumetric pipette. The uncertainty was determined from data obtained from a determine process which used method of gravimetry. Calculation result from an uncertainty of volumetric pipette the confidence level of 95% and k=2. (author)

  16. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum.

    Science.gov (United States)

    Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua

    2015-11-30

    The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system.

  17. MONITORING OF PHOSPHORUS CONTENT IN “WATER-PARTICULATE MATERIALS-BOTTOM SEDIMENTS SYSTEM” FOR RIVER PRUT

    Directory of Open Access Journals (Sweden)

    VASILE RUSU

    2011-03-01

    Full Text Available Monitoring of phosphorus content in “water-particulatematerials-bottom sediments system” for river Prut. Seasonal and spatialdynamics of phosphorus forms in water, particulate materials and bottomsediments of river Prut was elucidated. The scheme for determination ofphosphorus forms in water and particulate materials according to World HealthOrganization classification was evaluated. Additionally, this scheme was tested forestimation of phosphorus content in bottom sediments. The supplemented schemeallows the analysis of the phosphorus forms for the entirely system “water –particulate materials – bottom sediments”, extending possibilities for interpretationof phosphorus dynamics in natural waters.

  18. Optimization of Water Content for the Cryopreservation Of Allium sativum In Vitro Cultures by Encapsulation-Dehydration.

    Science.gov (United States)

    Lynch, P T; Souch, G R; Zamecnik, J; Harding, K

    There is a general requirement to determine and correlate water content to viability for the standardization of conservation protocols to facilitate effective cryostorage of plant germplasm. This study examined water content as a critical factor to optimize the cryostorage of Allium sativum. Stem discs were excised from post-harvest, stored bulbs prior to cryopreservation by encapsulation-dehydration and water content was determined gravimetrically. Survival of cryopreserved stem discs was 42.5 %, with 22.5 % exhibiting shoot regrowth following 6 h desiccation. Gravimetric data demonstrated a correlation between water content corresponding with survival / regrowth from desiccated, cryopreserved stem discs. For encapsulated stem discs a 25 % residual moisture and corresponding water content of 0.36 g H2O g -1 d.wt correlated with maximal survival following ~6.5 h of desiccation. The data concurs with the literature suggesting the formation of a stable vitrified state and a 'window' for optimal survival and regrowth that is between 6 - 10 h desiccation. Further studies using differential scanning calorimetry (DSC) are suggested to substantiate these findings.

  19. Accuracy and Reliability of Cone-Beam Computed Tomography for Linear and Volumetric Mandibular Condyle Measurements. A Human Cadaver Study.

    Science.gov (United States)

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Hernández, Virginia; Serrano-Sánchez, Pedro; Guarinos, Juan; Paredes-Gallardo, Vanessa

    2017-09-20

    The accuracy of Cone-Beam Computed Tomography (CBCT) on linear and volumetric measurements on condyles has only been assessed on dry skulls. The aim of this study was to evaluate the reliability and accuracy of linear and volumetric measurements of mandibular condyles in the presence of soft tissues using CBCT. Six embalmed cadaver heads were used. CBCT scans were taken, followed by the extraction of the condyles. The water displacement technique was used to calculate the volumes of the condyles and three linear measurements were made using a digital caliper, these measurements serving as the gold standard. Surface models of the condyles were obtained using a 3D scanner, and superimposed onto the CBCT images. Condyles were isolated on the CBCT render volume using the surface models as reference and volumes were measured. Linear measurements were made on CBCT slices. The CBCT method was found to be reliable for both volumetric and linear measurements (CV  0.90). Highly accurate values were obtained for the three linear measurements and volume. CBCT is a reliable and accurate method for taking volumetric and linear measurements on mandibular condyles in the presence of soft tissue, and so a valid tool for clinical diagnosis.

  20. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  1. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    Science.gov (United States)

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  2. Quantitative modeling of the Water Footprint and Energy Content of Crop and Animal Products Consumption in Tanzania

    Directory of Open Access Journals (Sweden)

    felichesmi Selestine lyakurwa

    2014-05-01

    Full Text Available A comprehensive understanding of the link between water footprint and energy content of crop and animal products is vitally important for the sound management of water resources. In this study, we developed a mathematical relationship between water content, and energy content of many crops and animal products by using an improved LCA approach (water footprint. The standard values of the water and energy contents of crops and animal products were obtained from the databases of Agricultural Research Service, UNESCO Institute for water education and Food, and Agriculture Organization of the United Nations. The water footprint approach was applied to analyze the relationship between water requirement and energy of content of crop and animal products, in which the uncertainty and sensitivity was evaluated by Monte Carlo simulation technique that is contained in the Oracle Crystal Ball Fusion Edition v11.1.1.3.00. The results revealed significant water saving due to changes in food consumption pattern i.e. from consumption of more meat to vegetables. The production of 1kcal of crop and animal products requires about 98% of green, 4.8% blue water and 0.4% of gray water. In which changes in consumption pattern gave annual blue water saving of about 1605 Mm3 that is equivalent to 41.30m3/capita, extremely greater than the standard drinking water requirement for the whole population. Moreover, the projected results indicated, triple increase of dietary water requirement from 30.9 Mm3 in 2005 to 108 Mm3 by 2050. It was also inferred that, Tanzania has a positive virtual water balance of crop and animal products consumption with net virtual water import of 9.1 Mm3 that is the contribution margin to the water scarcity alleviation strategy. Therefore, developed relationship of water footprint and energy content of crops and animal products can be used by water resource experts for sustainable freshwater and food supply.

  3. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  4. Germination, seedling growth and relative water content of shoot in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (mg), root : shoot length (R:S) ratio, and relative water content of shoot (RWC, %) were investigated in this study. The results ... seedlings may provide an advantage by allowing access ... Residual chlorine was eliminated by.

  5. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel

    2014-01-01

    Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...

  6. Effect of water content on partial ternary phase diagram water-in-diesel microemulsion fuel

    Science.gov (United States)

    Mukayat, Hastinatun; Badri, Khairiah Haji; Raman, Ismail Ab.; Ramli, Suria

    2014-09-01

    Introduction of water in the fuel gave a significant effect to the reduction of pollutant such as NOx emission. In this work, water/diesel microemulsion fuels were prepared using compositional method by mixing water and diesel in the presence of non-ionic surfactant and co-surfactant. The effects of water composition on the partial ternary phase diagram were studied at 5%, 10%, 15% and 20% (w/w). The physical stability of the microemulsion was investigated at 45°C over a period of one month. The optimum formulae obtained were diesel/T80/1-penthanol/water 60:20:15:5 wt% (System 1), 55:20:15:10 wt% (System 2), 50:20:15:15 wt% (System 3) and 45:20:15:20 wt% (System 4). Physicochemical characterizations of optimum formulae were studied. The results showed that water content has a significant effect to the formation of microemulsion, its stability, droplet size and viscosity.

  7. Sampling and TDR probe insertion in the determination of the volumetric soil water content Procedimentos de amostragem e do modo de inserção no solo de sondas TDR na determinação da umidade volumétrica do solo

    Directory of Open Access Journals (Sweden)

    W. G. Teixeira

    2003-08-01

    Full Text Available Volumetric soil water content (theta can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR, and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.A umidade volumétrica do solo (teta no campo pode ser avaliada por métodos diretos e indiretos. Dentre os métodos diretos, o gravimétrico é considerado altamente confiável e, conseq

  8. Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures

    International Nuclear Information System (INIS)

    Xu, Yingjie

    2013-01-01

    Highlights: • Densities and viscosities of N4AC + water and N4NO 3 + water mixtures were measured. • Volumetric and viscosity properties were calculated. • Redlich–Kister equation was used to correlate the excess molar volumes and viscosity deviations. • Electrical conductivity was fitted according to the empirical Casteel–Amis equation. • The interactions and structural effects of N4AC or N4NO 3 with water were analyzed. -- Abstract: Densities and viscosities of (n-butylammonium acetate (N4AC) protic ionic liquid + water) and (n-butylammonium nitrate (N4NO 3 ) protic ionic liquid + water) mixtures were measured at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K under atmospheric pressure. Electrical conductivities of the above-mentioned systems were determined at 298.15 K. Excess molar volumes and viscosity deviations were obtained from the experimental results and fitted to the Redlich–Kister equation with satisfactory results. Other volumetric properties, such as apparent molar volumes, partial molar volumes, and excess partial molar volumes were also calculated. The concentration dependence of electrical conductivity was fitted according to the empirical Casteel–Amis equation. Based on the measured and derived properties, the molecular interactions and structural factors in the above-mentioned systems were discussed

  9. Uranium bone content as an indicator of chronic environmental exposure from drinking water.

    Science.gov (United States)

    Larivière, Dominic; Tolmachev, Sergei Y; Kochermin, Vera; Johnson, Sonia

    2013-07-01

    Uranium (U) is an ubiquitous radioelement found in drinking water and food. As a consequence of its prevalence, most humans ingest a few micrograms (μg) of this element daily. It is incorporated in various organs and tissues. Several studies have demonstrated that ingested U is deposited mainly in bones. Therefore, U skeletal content could be considered as a prime indicator for low-level chronic intake. In this study, 71 archived vertebrae bone samples collected in seven Canadian cities were subjected to digestion and U analysis by inductively coupled plasma mass spectrometry. These results were correlated with U concentrations in municipal drinking water supplies, with the data originating from historical studies performed by Health Canada. A strong relationship (r(2) = 0.97) was observed between the averaged U total skeletal content and averaged drinking water concentration, supporting the hypothesis that bones are indeed a good indicator of U intake. Using a PowerBASIC compiler to process an ICRP systemic model for U (ICRP, 1995a), U total skeletal content was estimated using two gastrointestinal tract absorption factors (ƒ1 = 0.009 and 0.03). Comparisons between observed and modelled skeletal contents as a function of U intake from drinking water tend to demonstrate that neither of the ƒ1 values can adequately estimate observed values. An ƒ1value of 0.009 provides a realistic estimate for intake resulting from food consumption only (6.72 μg) compared to experimental data (7.4 ± 0.8 μg), whereas an ƒ1value of 0.03 tends to better estimate U skeletal content at higher levels of U (1-10 μg L(-1)) in drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. High water contents in basaltic melt inclusions from Arenal volcano, Costa Rica

    Science.gov (United States)

    Wade, J. A.; Plank, T.; Hauri, E. H.; Melson, W. G.; Soto, G. J.

    2004-12-01

    Despite the importance of water to arc magma genesis, fractionation and eruption, few quantitative constraints exist on the water content of Arenal magmas. Early estimates, by electron microprobe sum deficit, suggested up to 4 wt% H2O in olivine-hosted basaltic andesite melt inclusions (MI) from pre-historic ET-6 tephra (Melson, 1982), and up to 7 wt% H2O in plagioclase and orthopyroxene-hosted dacitic MI from 1968 lapilli (Anderson, 1979). These high water contents are consistent with abundant hornblende phenocrysts in Arenal volcanics, but inconsistent with geochemical tracers such as 10Be and Ba/La that suggest a low flux of recycled material (and presumably water) from the subduction zone. In order to test these ideas, and provide the first direct measurements of water in mafic Arenal magmas, we have studied olivine-hosted MI from the prehistoric (900 yBP; Soto et al., 1998) ET3 tephra layer. MI range from andesitic (> 58% SiO2) to basaltic compositions ( 4 wt%) found here for Arenal basaltic MI support the semi-quantitative data from earlier studies, but are somewhat unexpected given predictions from slab tracers. Arenal water contents (4%) approach those of the 1995 eruption of Cerro Negro in Nicaragua (4-5 wt% in basaltic MI; Roggensack et al., 1997), despite the fact that the latter has Ba/La of > 100, while Arenal has Ba/La Journal of Geology; Melson, William G. (1982) Boletin de Volcanologia; Roggensack et al. (1997) Science; Soto et al. (1998) OSIVAM; Williams-Jones et al. (2001) Journal of Volc. and Geoth. Res.

  11. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential ( 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  12. Volumetric breast density affects performance of digital screening mammography

    OpenAIRE

    Wanders, JO; Holland, K; Veldhuis, WB; Mann, RM; Pijnappel, RM; Peeters, PH; Van Gils, CH; Karssemeijer, N

    2016-01-01

    PURPOSE: To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). METHODS: We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the Ameri...

  13. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower ... Journal Home > Vol 11, No 1 (2012) > ... The objective of the present work was to determine the mechanisms of tolerance of four ...

  14. MR volumetric assessment of endolymphatic hydrops

    International Nuclear Information System (INIS)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E.; Dietrich, O.; Flatz, W.; Ertl-Wagner, B.; Keeser, D.

    2015-01-01

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  15. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  16. Efficient quantification of water content in edible oils by headspace gas chromatography with vapour phase calibration.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-06-01

    An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Volumetric display using a roof mirror grid array

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuuki; Ohno, Keisuke; Maekawa, Satoshi

    2010-02-01

    A volumetric display system using a roof mirror grid array (RMGA) is proposed. The RMGA consists of a two-dimensional array of dihedral corner reflectors and forms a real image at a plane-symmetric position. A two-dimensional image formed with a RMGA is moved at thigh speed by a mirror scanner. Cross-sectional images of a three-dimensional object are displayed in accordance with the position of the image plane. A volumetric image can be observed as a stack of the cross-sectional images by high-speed scanning. Image formation by a RMGA is free from aberrations. Moreover, a compact optical system can be constructed because a RMGA doesn't have a focal length. An experimental volumetric display system using a galvanometer mirror and a digital micromirror device was constructed. The formation of a three-dimensional image consisting of 1024 × 768 × 400 voxels is confirmed by the experimental system.

  18. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    Science.gov (United States)

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  19. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  20. Toward public volume database management: a case study of NOVA, the National Online Volumetric Archive

    Science.gov (United States)

    Fletcher, Alex; Yoo, Terry S.

    2004-04-01

    Public databases today can be constructed with a wide variety of authoring and management structures. The widespread appeal of Internet search engines suggests that public information be made open and available to common search strategies, making accessible information that would otherwise be hidden by the infrastructure and software interfaces of a traditional database management system. We present the construction and organizational details for managing NOVA, the National Online Volumetric Archive. As an archival effort of the Visible Human Project for supporting medical visualization research, archiving 3D multimodal radiological teaching files, and enhancing medical education with volumetric data, our overall database structure is simplified; archives grow by accruing information, but seldom have to modify, delete, or overwrite stored records. NOVA is being constructed and populated so that it is transparent to the Internet; that is, much of its internal structure is mirrored in HTML allowing internet search engines to investigate, catalog, and link directly to the deep relational structure of the collection index. The key organizational concept for NOVA is the Image Content Group (ICG), an indexing strategy for cataloging incoming data as a set structure rather than by keyword management. These groups are managed through a series of XML files and authoring scripts. We cover the motivation for Image Content Groups, their overall construction, authorship, and management in XML, and the pilot results for creating public data repositories using this strategy.

  1. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    Priyabrata Santra

    2018-03-27

    Mar 27, 2018 ... of the global population (Millennium Ecosystem. Assessment 2005). Likewise, there is a .... Therefore, the main objective of this study was to develop PTFs for arid soils of India to estimate soil water content at FC and PWP.

  2. Estimation of water content in the leaves of fruit trees using infra-red images

    International Nuclear Information System (INIS)

    Muramatsu, N.; Hiraoka, K.

    2006-01-01

    A method was developed to evaluate water contents of fruit trees using infra-red photography. The irrigation of potted satsuma mandarin trees and grapevines was suppressed to induce water stress. During the drought treatment the leaf edges of basal parts of the shoots of grapevines became necrotic and the area of necrosis extended as the duration of stress increased. Necrosis was clearly distinguished from the viable areas on infra-red images. In satsuma mandarin, an abscission layer formed at the basal part of the petiole, then the leaves fell. Thus, detailed analysis was indispensable for detecting of the leaf water content. After obtaining infra-red images of satsuma mandarin leaves with or without water stress, a background treatment (subtraction of the background image) was performed on the images, then the average brightness of the leaf was determined using image analyzing software (Image Pro-plus). Coefficient correlation between the water status index using the infra-red camera and water content determined from dry weight and fresh weight of leaves was significant (r = 0.917 for adaxial surface data and r = 0.880 for abaxial surface data). These data indicate that infra-red photography is useful for detecting the degree of plant water stress

  3. Robust spatialization of soil water content at the scale of an agricultural field using geophysical and geostatistical methods

    Science.gov (United States)

    Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi

    2017-04-01

    Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization

  4. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  5. Determination of the water content in tetra-ammonium uranyl tricarbonate by the Karl Fischer reagent method

    International Nuclear Information System (INIS)

    Sisti, C.; Grigoletto, T.

    1990-08-01

    Two methods are compared for the determination of water content in tetra-ammonium uranyl tricarbonate by the Karl Fischer reagent method. In the first method it is Known that the carbonate reacts stoichiometrically with the iodine content of the Karl Fischer reagent in the same way it reacts with the water (mole of apparent H 2 O per mole of carbonate is produced). In this case, the carbonate content in the sample is determined and a suitable correction is applied to take into account the apparent water results. In the second method it is performed an extraction of the moisture by adding methanol to the sample in an independent flask. After the decantation, an aliquot of the clear supernatant methanol is taken for the determination of water content by the Karl Fischer reagent method. (author) [pt

  6. The modelling influence of water content to mechanical parameter of soil in analysis of slope stability

    Science.gov (United States)

    Gusman, M.; Nazki, A.; Putra, R. R.

    2018-04-01

    One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.

  7. Analytical calculation of electrolyte water content of a Proton Exchange Membrane Fuel Cell for on-board modelling applications

    Science.gov (United States)

    Ferrara, Alessandro; Polverino, Pierpaolo; Pianese, Cesare

    2018-06-01

    This paper proposes an analytical model of the water content of the electrolyte of a Proton Exchange Membrane Fuel Cell. The model is designed by accounting for several simplifying assumptions, which make the model suitable for on-board/online water management applications, while ensuring a good accuracy of the considered phenomena, with respect to advanced numerical solutions. The achieved analytical solution, expressing electrolyte water content, is compared with that obtained by means of a complex numerical approach, used to solve the same mathematical problem. The achieved results show that the mean error is below 5% for electrodes water content values ranging from 2 to 15 (given as boundary conditions), and it does not overcome 0.26% for electrodes water content above 5. These results prove the capability of the solution to correctly model electrolyte water content at any operating condition, aiming at embodiment into more complex frameworks (e.g., cell or stack models), related to fuel cell simulation, monitoring, control, diagnosis and prognosis.

  8. Technological advances in cosmogenic neutron detectors for measuring soil water content

    Science.gov (United States)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is

  9. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    Science.gov (United States)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  10. [Estimation of vegetation canopy water content using Hyperion hyperspectral data].

    Science.gov (United States)

    Song, Xiao-Ning; Ma, Jian-Wei; Li, Xiao-Tao; Leng, Pei; Zhou, Fang-Cheng; Li, Shuang

    2013-10-01

    Vegetation canopy water content (VCWC) has widespread utility in agriculture, ecology and hydrology. Based on the PROSAIL model, a novel model for quantitative inversion of vegetation canopy water content using Hyperion hyperspectral data was explored. Firstly, characteristics of vegetation canopy reflection were investigated with the PROSAIL radiative transfer model, and it was showed that the first derivative at the right slope (980 - 1 070 nm) of the 970 nm water absorption feature (D98-1 070) was closely related to VCWC, and determination coefficient reached to 0.96. Then, bands 983, 993, 1 003, 1 013, 1 023, 1 033, 1 043, 1 053 and 1 063 nm of Hyperion data were selected to calculate D980-1 070, and VCWC was estimated using the proposed method. Finally, the retrieval result was verified using field measured data in Yingke oasis of the Heihe basin. It indicated that the mean relative error was 12.5%, RMSE was within 0.1 kg x m(-2) and the proposed model was practical and reliable. This study provides a more efficient way for obtaining VCWC of large area.

  11. Variation in foliar water content and hyperspectral reflectance of ...

    African Journals Online (AJOL)

    Sirex noctilio, the Eurasian wood wasp, is one of the major pests responsible for declining forest health in pine forests located in KwaZulu-Natal, South Africa. Researchers have shown that stress induced by S. noctilio causes a rapid decrease in foliar water content, with the foliage of the tree changing from a dark green to a ...

  12. Variations of free gas content in water during pressure fluctuations

    International Nuclear Information System (INIS)

    Keller, A.; Zielke, W.

    1977-01-01

    In this paper an experimental programme is described in order to determine the influence of the cavitation nuclei distribution on cavitation inception. This programme has been used to measure air bubbles dimensions and number and particularly to determine the influence of quick pressure variations on the size on the number of bubbles in a pipe. An optical device counting scattered light is used as a measuring technique. Gas bubbles go through an optical control volume where they receive a high intensity light beam and scatter the light, then led to a photomultiplier; the signals are sorted and counted according to their size. If the number of nuclei, the dimensions of the control volume and the velocity of the water are known, it is possible to determine bubbles concentrations and the bulk modulus of the water. This measuring technique has been applied to a flow in a 140 mm diameter pipe with quick pressure variations from 2 bar to 0-10 bar. During the variations, the void fraction depends on the Reynolds number of the flow and on the gas content of the water. The bulk modulus has been computed with different conditions. Most results concern pressures slightly over the vapor pressure. Air content has a strong influence on cavitation and on water compressibility after a vapor cavity collapse

  13. In-situ burning of emulsions: The effects of varying water content and degree of evaporation

    International Nuclear Information System (INIS)

    Bech, C.; Sveum, P.; Buist, I.

    1992-01-01

    In-situ burning of oil is considered to be one of the most promising techniques for rapid removal of large quantities of oil at sea, particularly in ice-infested waters. A series of field experiments was conducted in Spitsbergen, circular basins cut in sea ice, to study the effect of water content, evaporation, thickness of the emulsion layer, and environmental factors on the burn efficiency of Statfjord crude oil and emulsions. Results from the experiments are presented along with preliminary results concerning the dynamics of burning emulsions and the efficiency of conventional and novel igniters. Water-in-oil emulsions with 40% water content could be burned. However, for oils evaporated more than 18% and with a water content of over 20%, conventional gelled gasoline was not a very effective igniter. Ignition success was improved when gelled crude oil was used as the igniter. The results imply that for practical in-situ burning, the igniter technology needs to be improved. 5 refs., 11 figs., 3 tabs

  14. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  15. Uptake of radioactive strontium by fishes in relation to the calcium content of the water

    International Nuclear Information System (INIS)

    Chiosila, J.

    1975-01-01

    The study attempts to compare experimental results obtained with pseudorasbora parava with regard to 85 Sr uptake at various Ca concentrations of the water (4.20 and 50 mg/l Ca) and also to compare these results with natural conditions. The water was contaminated with 500 pCi/ml 85 SrCl 2 only at the onset of the experiments. Radiostrontium uptake is much higher with a very low calcium content of the water; maximum values are reached in about 10 days. - With low or optimum calcium contents of the water, the values are 3-5 times lower and are not reached until 30 days after radioactive contamination. The fish in this Danube water experiment took up somewhat less radioactivity than in an experiment with the same amounts of Ca and Mg in a control medium. The uptake of 85 Sr in fish in dependence of the Ca content of the water varies according to the formula F.C = 2.505 x Casup(-0.909), with Ca given in Mg/l. (orig.) [de

  16. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    Science.gov (United States)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  17. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  18. Factors affecting neutron measurements and calculations. Part F. Water content in granite

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Hasai, Hiromi; Shizuma, Kiyoshi; Hoshi, Masaharu; Endo, Satoru; Oka, Takamitsu; Imanaka, Tetsuji

    2005-01-01

    As part of the DS02 studies to reevaluate neutrons from the atomic bomb, we cored rock samples from a pillar of Motoyasu Bridge, located at a distance of 128 m from the hypocenter in Hiroshima, and measured the depth profile of induced 152 Eu radioactivity in the rock (Hasai et al. 1987). By use of the MCNP neutron transport calculation code, the depth profile of 152 Eu in the rock was calculated, assuming a neutron distribution at the given location around the pillar based on the DS86 calculations. The depth profile was then compared with the distribution of measurements (Endo et al. 1999). For the calculation, it is necessary to know the major components of the rock. It is also necessary to estimate the water content correctly, since the cross section of hydrogen-neutron reactions is large, and neutron moderation effects of hydrogen are significant. For this purpose, the basic characteristics of water content in rock were studied, based on a few characteristic experiments to estimate the water content, which was then used in neutron transport calculations. The following describes our concepts and methods. (author)

  19. Towards Estimating Water Stress through Leaf and Canopy Water Content Derived from Optical and Thermal Hyperspectral Data

    Science.gov (United States)

    Corbin, Amie; Timmermans, Joris; van der Tol, Christiaan; Verhoef, Wout

    2015-04-01

    A competition for available (drinkable) water has arisen. This competition originated due to increasing global population and the respective needs of this population. The water demand for human consumption and irrigation of food producing crops and biofuel related vegetation, has led to early indication of drought as a key issue in many studies. However, while drought monitoring systems might provide some reasonable predictions, at the time of visible symptoms of plant stress, a plant may already be critically affected. Consequently, pre-symptomatic non-destructive monitoring of plants is needed. In many studies of plant stress, this is performed by examining internal plant physiology through existing remote sensing techniques, with varying applications. However, a uniform remote sensing method for identifying early plant stress under drought conditions is still developing. In some instances, observations of vegetation water content are used to assess the impact of soil water deficit on the health of a plant or canopy. When considering water content as an indicator of water stress in a plant, this comments not only on the condition of the plant itself, but also provides indicators of photosynthetic activity and the susceptibility to drought. Several indices of canopy health currently exists (NDVI, DVI, SAVI, etc.) using optical and near infrared reflectance bands. However, these are considered inadequate for vegetation health investigations because such semi-empirical models result in less accuracy for canopy measurements. In response, a large amount of research has been conducted to estimate canopy health directly from considering the full spectral behaviour. In these studies , the canopy reflectance has been coupled to leaf parameters, by using coupling leaf radiative transfer models (RTM), such as PROSPECT, to a canopy RTM such as SAIL. The major shortcomings of these researches is that they have been conducted primarily for optical remote sensing. Recently

  20. [Dynamics and modeling of water content of ten shrub species in their growth period in Maoershan Mountain region of Northeast China].

    Science.gov (United States)

    Jin, Sen; Yan, Xue-Jiao

    2012-12-01

    Based on the two successive years observation of the water content of ten representative shrub species in Maoershan Mountain region of Northeast China, this paper studied the dynamics of the water content of these shrub species during their growth period and related affecting factors, with the prediction models of the shrub water content established. For the ten shrub species, their minimal water content during growth period was higher than 100% , and most of the species had a water content higher than 200% within the period from the late phase of leaf-unfolding to early phase of leaf-falling. Euonymus verrucosus, Sorbaria sorbifolia, and Sambucus williamsii were incombustible in their whole growth period due to the extremely high water content, while Syringa reticulate, Philadelphus schrenkii, Euonymus verrucosus, Spiraea chamaedryfolia, Lonicera maackii, Lonicera ruprechtiana, and Rhamnus parvifolia were combustible only in the phases of budding and leaf-falling. Soil moisture content and daily maximum temperature had effects on the water content of most (7) of the ten shrubs, and canopy drought severity index affected the water content of 5 of the ten shrubs. The established 9 prediction models could explain more than 35% of the water content variance of the shrub species, with a mean MRE of 35.9% and a mean MRE of 13.4%.

  1. Volumetric PIV behind mangrove-type root models

    Science.gov (United States)

    Kazemi, Amirkhosro; van de Riet, Keith; Curet, Oscar M.

    2017-11-01

    Mangrove trees form dense networks of prop roots in coastal intertidal zones. The interaction of mangroves with the tidal flow is fundamental in estuaries and shoreline by providing water filtration, protection against erosion and habitat for aquatic animals. In this work, we modeled the mangrove prop roots with a cluster of rigid circular cylinders (patch) to investigate its hydrodynamics. We conducted 2-D PIV and V3V in the near- and far-wake in the recirculating water channel. Two models were considered: (1) a rigid patch, and (2) a flexible patch modeled as rigid cylinders with a flexible hinge. We found that Strouhal number changes with porosity while the patch diameter is constant. Based on the wake signature, we defined an effective diameter length scale. The volumetric flow measurements revealed a regular shedding forming von Kármán vortices for the rigid patch while the flexible patch produced a less uniform wake where vortices were substantially distorted. We compare the wake structure between that 2-D PIV and V3V. This analysis of the hydrodynamics of mangrove-root like models can also be extended to understand other complex flows including bio-inspired coastal infrastructures, damping-wave systems, and energy harvesting devices.

  2. Capillary and sorbed water content in wood as studied by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Olek, W.; Baranowska, H.M.; Guzenda, R.; Olszewski, K.J.

    1995-01-01

    Water content in wood has been studied by NMR technique. The spin-spin relaxation time has been measured for distinguish the capillary and sorbed water. The qualitative and quantitative determination have been possible by means of proposed method

  3. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    Science.gov (United States)

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  4. Quality of Water Content, Diastase Enzyme Activity and Hidroximetilfurfural (HMF in Rubber and Rambutan Honey

    Directory of Open Access Journals (Sweden)

    Sulis Setio Toto Harjo

    2017-03-01

    Full Text Available The purpose of this research was to determine the water content, diastase enzyme activity and HMF of the rubber and rambutan honey. The method was a laboratory experiments with statistical analysis unpaired student t-test by two treatments and fifteen replications. The variable of this research were water content, diastase enzyme activity and HMF. The results of rubber and rambutan honey showed that there were significant difference effect (P0.05 that is 11 DN and there is a highly significant difference (P<0.01 on the HMF content of 17.23±0.54 mg/kg and 7.61±0.23 mg/kg. Rubber and rambutan honey have good quality based on the water content, diastase enzyme activity and HMF. It was concluded that the rubber and rambutan honey used were of good quality because it has met the requirements of SNI.

  5. From water-in-oil to oil-in-water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems.

    Science.gov (United States)

    Santos, Luísa D F; Coutinho, João A P; Ventura, Sónia P M

    2015-01-01

    Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water-in-oil or oil-in-water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil-in-water emulsions), the imidazolium-based IL acts as an enhancer of the lipase catalytic capacity, super-activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers.

  6. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  7. Proficiency Testing for Determination of Water Content in Toluene of Chemical Reagents by iteration robust statistic technique

    Science.gov (United States)

    Wang, Hao; Wang, Qunwei; He, Ming

    2018-05-01

    In order to investigate and improve the level of detection technology of water content in liquid chemical reagents of domestic laboratories, proficiency testing provider PT0031 (CNAS) has organized proficiency testing program of water content in toluene, 48 laboratories from 18 provinces/cities/municipals took part in the PT. This paper introduces the implementation process of proficiency testing for determination of water content in toluene, including sample preparation, homogeneity and stability test, the results of statistics of iteration robust statistic technique and analysis, summarized and analyzed those of the different test standards which are widely used in the laboratories, put forward the technological suggestions for the improvement of the test quality of water content. Satisfactory results were obtained by 43 laboratories, amounting to 89.6% of the total participating laboratories.

  8. Monitoring and Quantifying Subsurface Ice and Water Content in Permafrost Regions Based on Geophysical Data Sets

    Science.gov (United States)

    Hauck, C.; Bach, M.; Hilbich, C.

    2007-12-01

    Based on recent observational evidence of climate change in permafrost regions, it is now recognised that a detailed knowledge of the material composition of the subsurface in permafrost regions is required for modelling of the future evolution of the ground thermal regime and an assessment of the hazard potential due to degrading permafrost. However, due to the remote location of permafrost areas and the corresponding difficulties in obtaining high-quality data sets of the subsurface, knowledge about the material composition in permafrost areas is scarce. In frozen ground subsurface material may consist of four different phases: rock/soil matrix, unfrozen pore water, ice and air-filled pore space. Applications of geophysical techniques for determining the subsurface composition are comparatively cheap and logistically feasible alternatives to the single point information from boreholes. Due to the complexity of the subsurface a combination of complementary geophysical methods (e.g. electrical resistivity tomography (ERT) and refraction seismic tomography) is often favoured to avoid ambiguities in the interpretation of the results. The indirect nature of geophysical soundings requires a relation between the measured variable (electrical resistivity, seismic velocity) and the rock-, water-, ice- and air content. In this contribution we will present a model which determines the volumetric fractions of these four phases from tomographic electrical and seismic data sets. The so-called 4-phase model is based on two well-known geophysical mixing rules using observed resistivity and velocity data as input data on a 2-dimensional grid. Material properties such as resistivity and P- wave velocity of the host rock material and the pore water have to be known beforehand. The remaining free model parameters can be determined by a Monte-Carlo approach, the results of which are used additionally as indicator for the reliability of the model results. First results confirm the

  9. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2007-06-01

    Full Text Available This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.

  10. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Science.gov (United States)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-06-01

    This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.

  11. A Global Perspective on Drinking-Water and Sanitation Classification: An Evaluation of Census Content.

    Science.gov (United States)

    Yu, Weiyu; Wardrop, Nicola A; Bain, Robert E S; Lin, Yanzhao; Zhang, Ce; Wright, Jim A

    2016-01-01

    Following the recent expiry of the United Nations' 2015 Millennium Development Goals (MDGs), new international development agenda covering 2030 water, sanitation and hygiene (WASH) targets have been proposed, which imply new demands on data sources for monitoring relevant progress. This study evaluates drinking-water and sanitation classification systems from national census questionnaire content, based upon the most recent international policy changes, to examine national population census's ability to capture drinking-water and sanitation availability, safety, accessibility, and sustainability. In total, 247 censuses from 83 low income and lower-middle income countries were assessed using a scoring system, intended to assess harmonised water supply and sanitation classification systems for each census relative to the typology needed to monitor the proposed post-2015 indicators of WASH targets. The results signal a lack of international harmonisation and standardisation in census categorisation systems, especially concerning safety, accessibility, and sustainability of services in current census content. This suggests further refinements and harmonisation of future census content may be necessary to reflect ambitions for post-2015 monitoring.

  12. A Global Perspective on Drinking-Water and Sanitation Classification: An Evaluation of Census Content.

    Directory of Open Access Journals (Sweden)

    Weiyu Yu

    Full Text Available Following the recent expiry of the United Nations' 2015 Millennium Development Goals (MDGs, new international development agenda covering 2030 water, sanitation and hygiene (WASH targets have been proposed, which imply new demands on data sources for monitoring relevant progress. This study evaluates drinking-water and sanitation classification systems from national census questionnaire content, based upon the most recent international policy changes, to examine national population census's ability to capture drinking-water and sanitation availability, safety, accessibility, and sustainability. In total, 247 censuses from 83 low income and lower-middle income countries were assessed using a scoring system, intended to assess harmonised water supply and sanitation classification systems for each census relative to the typology needed to monitor the proposed post-2015 indicators of WASH targets. The results signal a lack of international harmonisation and standardisation in census categorisation systems, especially concerning safety, accessibility, and sustainability of services in current census content. This suggests further refinements and harmonisation of future census content may be necessary to reflect ambitions for post-2015 monitoring.

  13. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  14. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Science.gov (United States)

    Aslam, Muhammad Zubair; Tang, Tong Boon

    2014-01-01

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606

  15. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Aslam

    2014-06-01

    Full Text Available This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design.

  16. Measurements of Iodine Contents in Some Iodized Salts (Consumer Level) in (Myanmar)

    International Nuclear Information System (INIS)

    San Yee; Khin Yi; Sein Htoon

    2004-05-01

    The amount of iodine contents in iodized salt (consumer level) of six brands in Myanmar were measured by means of volumetric method (WHO recommended) and vibrational spectroscopic technique. The results optained from both methods were in good agreement within the statistical error

  17. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  18. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  19. Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves

    Science.gov (United States)

    Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2018-04-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.

  20. Assessing the Blue and Green Water Footprint of Lucerne for Milk Production in South Africa

    OpenAIRE

    Morne E. Scheepers; Henry Jordaan

    2016-01-01

    The Global Water Footprint Standard approach was used to calculate the volumetric blue and green water footprint indicator for lucerne production as important feed for dairy cows in a major lucerne production region in South Africa. The degree of sustainability of water use then was assessed by comparing water use to water availability for the region. The results show a volumetric water footprint indicator of 378 m3/tonne of lucerne. Of the total blue and green water footprint, 55% is green w...

  1. Volumetric properties of glucose in aqueous HCI solutions at temperatures from 278.15 to 318.15 K

    Institute of Scientific and Technical Information of China (English)

    ZHUO Kelei; ZHANG Qiufen; XUAN Xiaopeng; ZHANG Hucheng; WANG Jianji

    2007-01-01

    Densities have been measured for Glucose+HC1 +Water at 10-degree intervals from 278.15 to 318.15 K.The apparent molar volumes (Vφ,G) and standard partial molar volumes (V0φ,G) for Glucose in aqueous solution of 0.2,0.4,0.7,1.1,1.6,2.1 mol.kg-1 HCI have been calculated as well as volumetric interaction parameters (VEG) for Glucose-HC1 in water and standard partial molar expansion coefficients ((e)V0φ,G/(e)T)p.Results show that (1) the apparent molar volume for Glucose in aqueous HC1 solutions increases lineally with increasing molality of Glucose and HC1; (2) V0φ,Gfor Glucose in aqueous HC1 solutions increases lineally with increasing molality of HC1; (3) the volumetric interaction parameters for Glucose-HC1 pair in water are small positive and vary slightly with temperature; (4) the relation between V0φ,G and temperature exists as V0φ,G =α0+α1(T-273.15 K)2/3;(5)values of((e)V0φ,G/(e)T)p are positive and increase as temperatures rise,and at given temperatures decrease slightly with increasing molalities of HC1,indicating that the hydration of glucose decreases with increasing temperature and molality of HCI.These phenomena are interpreted successfully by the structure interaction model.

  2. The role of water content in triboelectric charging of wind-blown sand.

    Science.gov (United States)

    Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah

    2013-01-01

    Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H(+)/OH(-) between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes.

  3. Organic matter and soil water content influence on BRS 188 castor bean growth

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Rogerio Dantas de; Araujo, Ester Luiz de; Nascimento, Elka Costa Santos; Barros Junior, Genival [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Guerra, Hugo O. Carvallo; Chaves, Lucia Helena G. [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola

    2008-07-01

    The castor bean culture has been highlighted due to the several applications of its oil, which constitutes one of the best row materials for biodiesel manufacturing, and the base for several other industrial products. The objective of the present work was to study the effect of different soil water and soil organic matter on the castor bean growth. The experiment was conducted from April to August 2006 under greenhouse conditions using a randomized block 2x4 factorial design with two soil organic mater content (5.0 g.kg{sup -1} e 25.0 g.kg{sup -1}), four levels of available water (100, 90, 80 e 70% ) and three replicates. For this, 24 plastic containers, 75 kg capacity, were used on which was grown one plant 120 days after the seedling. At regular intervals the plant height was measured and the results analyzed statistically. For the qualitative treatments (with and without organic matter) the treatment means were compared through the Tukey test. For the quantitative ones (water levels) were used regressions. The castor bean cultivar height was significantly influenced by the organic matter content only after 80 days. Castor bean height increased significantly with the soil water content after 40 days of growing. (author)

  4. Linking particle and pore-size distribution parameters to soil gas transport properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per

    2012-01-01

    , respectively) and the Campbell water retention parameter b were used to characterize particle and pore size distributions, respectively. Campbell b yielded a wide interval (4.6–26.2) and was highly correlated with α, β, and volumetric clay content. Both Dp/Do and ka followed simple power-law functions (PLFs......) of air-filled porosity (εa). The PLF tortuosity–connectivity factors (X*) for Dp/Do and ka were both highly correlated with all basic soil characteristics, in the order of volumetric clay content = Campbell b > gravimetric clay content > α > β. The PLF water blockage factors (H) for Dp/Do and ka were...... also well (but relatively more weakly) correlated with the basic soil characteristics, again with the best correlations to volumetric clay content and b. As a first attempt at developing a simple Dp/Do model useful at the field scale, we extended the classical Buckingham Dp/Do model (εa2) by a scaling...

  5. Effect of water content on specific heat capacity of porcine septum cartilage

    Science.gov (United States)

    Chae, Yongseok; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    The effect of water content on specific heat capacity was examined using temperature modulated Differential Scanning Calorimetry (TMDSC). This research was motivated in part by the development laser cartilage reshaping operations, which use photothermal heating to accelerate stress relaxation and shape change. Deposition of thermal energy leads to mechanical stress relaxation and redistribution of cartilage internal stresses, which may lead to a permanent shape change. The specific heat of cartilage specimens (dia: 3 mm and thickness 1-2 mm) was measured using a heating rate of 2 degree(s)C/min for conventional DSC and 2 degree(s)C/min with an amplitude 0.38-0.45 degree(s)C and a period 60-100 sec for TMDSC. The amount of water in cartilaginous tissue was determined using thermogravimetry analysis (TGA) under ambient conditions. In order to correlate changes in heat flow with alterations in cartilage mechanical behavior, dynamic mechanical temperature analysis (DMTA) was used to estimate the specific transition temperatures where stress relaxation occurs. With decreasing water content, we identified a phase transition that shifted to a higher temperature after 35-45% water content was measured. The phase transition energy increased from 0.12 J/g to 1.68 J/g after a 45% weight loss. This study is a preliminary investigation focused on understanding the mechanism of the stress relaxation of cartilage during heating. The energy requirement of such a transition estimated using TMDSC and temperature range, where cartilage shape changes likely occur, was estimated.

  6. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  7. Novel Calibration Technique for a Coulometric Evolved Vapor Analyzer for Measuring Water Content of Materials

    Science.gov (United States)

    Bell, S. A.; Miao, P.; Carroll, P. A.

    2018-04-01

    Evolved vapor coulometry is a measurement technique that selectively detects water and is used to measure water content of materials. The basis of the measurement is the quantitative electrolysis of evaporated water entrained in a carrier gas stream. Although this measurement has a fundamental principle—based on Faraday's law which directly relates electrolysis current to amount of substance electrolyzed—in practice it requires calibration. Commonly, reference materials of known water content are used, but the variety of these is limited, and they are not always available for suitable values, materials, with SI traceability, or with well-characterized uncertainty. In this paper, we report development of an alternative calibration approach using as a reference the water content of humid gas of defined dew point traceable to the SI via national humidity standards. The increased information available through this new type of calibration reveals a variation of the instrument performance across its range not visible using the conventional approach. The significance of this is discussed along with details of the calibration technique, example results, and an uncertainty evaluation.

  8. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  9. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  10. BOLE WATER CONTENT SHOWS LITTLE SEASONAL VARIATION IN CENTURY-OLD DOUGLAS-FIR TREES

    Science.gov (United States)

    Purportedly, large Douglas-fir trees in the American Pacific Northwest use water stored in bole tissues to ameliorate the effects of seasonal summer drought, the water content of bole tissues being drawn down over the summer months and replenished during the winter. Continuous mo...

  11. Water content determination of soil surface in an intensive apple orchard

    Science.gov (United States)

    Riczu, Péter; Nagy, Gábor; Tamás, János

    2015-04-01

    Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

  12. Reference volumetric samples of gamma-spectroscopic sources

    International Nuclear Information System (INIS)

    Taskaev, E.; Taskaeva, M.; Grigorov, T.

    1993-01-01

    The purpose of this investigation is to determine the requirements for matrices of reference volumetric radiation sources necessary for detector calibration. The first stage of this determination consists in analysing some available organic and nonorganic materials. Different sorts of food, grass, plastics, minerals and building materials have been considered, taking into account the various procedures of their processing (grinding, screening, homogenizing) and their properties (hygroscopy, storage life, resistance to oxidation during gamma sterilization). The procedures of source processing, sample preparation, matrix irradiation and homogenization have been determined. A rotation homogenizing device has been elaborated enabling to homogenize the matrix activity irrespective of the vessel geometry. 33 standard volumetric radioactive sources have been prepared: 14 - on organic matrix and 19 - on nonorganic matrix. (author)

  13. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study

    International Nuclear Information System (INIS)

    Fabel, M.; Biederer, J.; Jochens, A.; Bornemann, L.; Soza, G.; Heller, M.; Bolte, H.

    2011-01-01

    Purpose: Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Materials and methods: Fifty artificial lymph nodes were produced in a size range from 10 to 55 mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST ® ) within different surrounding tissues. MDCT was performed using different collimations (1–5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. Results: The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. Conclusion: The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3 mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable

  14. Systematic bias in the measurement of water in oils by tubular oven evaporation and azeotropic distillation.

    Science.gov (United States)

    Margolis, S A; Mele, T

    2001-10-15

    Water in oil has been measured by tubular oven evaporation and by azeotropic distillation into a coulometric moisture analyzer. The results of these measurements were compared to the results obtained by volumetric titration of water in oil. The volumetric measurements were consistently higher than the measurements made by tubular oven evaporation or azeotropic distillation. A mass balance study was performed by volumetric Karl Fischer titration of the water in the oil that remained in the tubular oven and in the distillation apparatus. This study indicated that measurable amounts of water were not removed after exhaustive evaporation or distillation. The sum of the water removed by distillation from toluene and that remaining in the distillation chamber was equal to the amount of water measured in the oil by the volumetric method. The data are consistent with the existence of an oil-water azeotrope that does not release water upon evaporation at 160 degrees C or upon dissolution in toluene and distillation of the water-toluene azeotrope. These results were obtained for oils varying in viscosity from 8 to 850 m2/s, and the amount of water remaining associated with the oil appears to be dependent upon the composition of the oil and the method of analysis.

  15. Role of Water Vapor Content in the Effects of Aerosol on the Electrification of Thunderstorms: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Pengguo Zhao

    2016-10-01

    Full Text Available We explored the role of the water vapor content below the freezing level in the response of idealized supercell storm electrical processes to increased concentrations of cloud condensation nuclei (CCN. Using the Weather Research and Forecasting model coupled with parameterizations electrification and discharging, we performed 30 simulations by varying both the CCN concentration and water vapor content below the freezing level. The sensitivity simulations showed a distinct response to increased concentrations of CCN, depending on the water vapor content below the freezing level. Enhancing CCN concentrations increased electrification processes of thunderstorms and produced a new negative charge region above the main positive charge center when there were ample amounts of water vapor below the freezing level. Conversely, there were weak effects on electrification and the charge structure in numerical experiments initialized with lower water vapor content below the freezing level.

  16. A volumetric three-dimensional digital light photoactivatable dye display

    Science.gov (United States)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  17. Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Miura, Nobuhiro; Shinyashiki, Naoki; Yagihara, Shin

    2005-01-01

    We have investigated the dielectric properties of human skin in vivo at frequencies up to 10 GHz using a time-domain reflectometry method with open-ended coaxial probes. Since γ-dispersion results from the reorientation of free water molecules, the free water content of skin is quantitatively determined by dielectric measurements. The free water content of finger skin increased by about 10% after soaking in 37 0 C water for 30 min, and it systematically decreased again through the drying process, as expected. Thus this analytical method has been applied to the study of skin burns. The free water content of burned human cheek skin due to hydrofluoric acid was significantly lower than that of normal skin, and the burned skin recovered through the healing process. In the case of a human hand skin burn due to heat, although the free water content was almost the same as that of normal skin at the beginning, it decreased during the healing process for the first 10 days, then began to increase. Although the number of test subjects was one for each experiment, it was shown that free water content is a good indicator for evaluating skin health and can be well monitored by dielectric spectroscopy

  18. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  19. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  20. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Science.gov (United States)

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  1. Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI

    NARCIS (Netherlands)

    Potters, Wouter V.; van Ooij, Pim; Marquering, Henk; VanBavel, Ed; Nederveen, Aart J.

    2015-01-01

    PurposeTo assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. Materials and MethodsVolumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized

  2. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  3. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  4. Systematized water content calculation in cartilage using T1-mapping MR estimations: design and validation of a mathematical model.

    Science.gov (United States)

    Shiguetomi-Medina, J M; Ramirez-Gl, J L; Stødkilde-Jørgensen, H; Møller-Madsen, B

    2017-09-01

    Up to 80 % of cartilage is water; the rest is collagen fibers and proteoglycans. Magnetic resonance (MR) T1-weighted measurements can be employed to calculate the water content of a tissue using T1 mapping. In this study, a method that translates T1 values into water content data was tested statistically. To develop a predictive equation, T1 values were obtained for tissue-mimicking gelatin samples. 1.5 T MRI was performed using inverse angle phase and an inverse sequence at 37 (±0.5) °C. Regions of interest were manually delineated and the mean T1 value was estimated in arbitrary units. Data were collected and modeled using linear regression. To validate the method, articular cartilage from six healthy pigs was used. The experiment was conducted in accordance with the Danish Animal Experiment Committee. Double measurements were performed for each animal. Ex vivo, all water in the tissue was extracted by lyophilization, thus allowing the volume of water to be measured. This was then compared with the predicted water content via Lin's concordance correlation coefficient at the 95 % confidence level. The mathematical model was highly significant when compared to a null model (p < 0.0001). 97.3 % of the variation in water content can be explained by absolute T1 values. Percentage water content could be predicted as 0.476 + (T1 value) × 0.000193 × 100 %. We found that there was 98 % concordance between the actual and predicted water contents. The results of this study demonstrate that MR data can be used to predict percentage water contents of cartilage samples. 3 (case-control study).

  5. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test

    Directory of Open Access Journals (Sweden)

    A. R. Mangel

    2012-11-01

    Full Text Available A lab scale infiltration experiment was conducted in a sand tank to evaluate the use of time-lapse multi-offset ground-penetrating radar (GPR data for monitoring dynamic hydrologic events in the vadose zone. Sets of 21 GPR traces at offsets between 0.44–0.9 m were recorded every 30 s during a 3 h infiltration experiment to produce a data cube that can be viewed as multi-offset gathers at unique times or common offset images, tracking changes in arrivals through time. Specifically, we investigated whether this data can be used to estimate changes in average soil water content during wetting and drying and to track the migration of the wetting front during an infiltration event. For the first problem we found that normal-moveout (NMO analysis of the GPR reflection from the bottom of the sand layer provided water content estimates ranging between 0.10–0.30 volumetric water content, which underestimated the value determined by depth averaging a vertical array of six moisture probes by 0.03–0.05 volumetric water content. Relative errors in the estimated depth to the bottom of the 0.6 m thick sand layer were typically on the order of 2%, though increased as high as 25% as the wetting front approached the bottom of the tank. NMO analysis of the wetting front reflection during the infiltration event generally underestimated the depth of the front with discrepancies between GPR and moisture probe estimates approaching 0.15 m. The analysis also resulted in underestimates of water content in the wetted zone on the order of 0.06 volumetric water content and a wetting front velocity equal to about half the rate inferred from the probe measurements. In a parallel modeling effort we found that HYDRUS-1D also underestimates the observed average tank water content determined from the probes by approximately 0.01–0.03 volumetric water content, despite the fact that the model was calibrated to the probe data. This error suggests that the assumed conceptual

  6. Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content.

    Science.gov (United States)

    Fontseré Obis, Marta; Germain, Patrick; Troesch, Olivier; Spillemaecker, Michel; Benbelkacem, Hassen

    2017-02-01

    In this study an alternative valorization of Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) for H 2 S elimination from landfill biogas was evaluated. Emphasis was given to the influence of water content in biogas on H 2 S removal efficiency by BA. A small-scale pilot was developed and implemented in a landfill site located in France. A new biogas analyzer was used and allowed real-time continuous measurement of CH 4 , CO 2 , O 2 , H 2 S and H 2 O in raw and treated biogas. The H 2 S removal efficiency of bottom ash was evaluated for different inlet biogas humidities: from 4 to 24g water /m 3 . The biogas water content was found to greatly affect bottom ash efficiency regarding H 2 S removal. With humid inlet biogas the H 2 S removal was almost 3 times higher than with a dry inlet biogas. Best removal capacity obtained was 56gH 2 S/kgdryBA. A humid inlet biogas allows to conserve the bottom ash moisture content for a maximum H 2 S retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Absolute measurement of the isotopic ratio of a water sample with very low deuterium content

    International Nuclear Information System (INIS)

    Hagemann, R.; Nief, G.; Roth, E.

    1968-01-01

    The presence of H 3+ ions which are indistinguishable from HD + ions presents the principal difficulty encountered in the measurement of isotopic ratios of water samples with very low deuterium contents using a mass spectrometer. Thus, when the sample contains no deuterium, the mass spectrometer does not indicate zero. By producing, in situ, from the sample to be measured, water vapor with an isotopic ratio very close to zero using a small distilling column, this difficulty is overcome. This column, its operating parameters, as well as the way in which the measurements are made are described. An arrangement is employed in which the isotopic ratios can be measured with a sensitivity better than 0.01 x 10 -6 . The method is applied to the determination of the isotopic ratios of three low deuterium content water samples. The results obtained permit one to assign to the sample with the lowest deuterium content an absolute value equal to 1.71 ± 0.03 ppm. This water sample is a primary standard from which is determined the isotopic ratio of a natural water sample which serves as the laboratory standard. (author) [fr

  8. The long-term effects of alfalfa on soil water content in the Loess ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... affect the water content in deep soil and continuous growing alfalfa ... Wasteland, wheat field and six seeded alfalfa (Medicago sativa L.) grasslands with ... The crops (wheat, maize, potato, beans and millet) had been rainfed on all ..... Productivity dynamic of alfalfa and its effects on water eco-environment.

  9. Volumetric B1 (+) mapping of the brain at 7T using DREAM.

    Science.gov (United States)

    Nehrke, Kay; Versluis, Maarten J; Webb, Andrew; Börnert, Peter

    2014-01-01

    To tailor and optimize the Dual Refocusing Echo Acquisition Mode (DREAM) approach for volumetric B1 (+) mapping of the brain at 7T. A new DREAM echo timing scheme based on the virtual stimulated echo was derived to minimize potential effects of transverse relaxation. Furthermore, the DREAM B1 (+) mapping performance was investigated in simulations and experimentally in phantoms and volunteers for volumetric applications, studying and optimizing the accuracy of the sequence with respect to saturation effects, slice profile imperfections, and T1 and T2 relaxation. Volumetric brain protocols were compiled for different isotropic resolutions (5-2.5 mm) and SENSE factors, and were studied in vivo for different RF drive modes (circular/linear polarization) and the application of dielectric pads. Volumetric B1 (+) maps with good SNR at 2.5 mm isotropic resolution were acquired in about 20 s or less. The specific absorption rate was well below the safety limits for all scans. Mild flow artefacts were observed in the large vessels. Moreover, a slight contrast in the ventricle was observed in the B1 (+) maps, which could be attributed to T1 and T2 relaxation effects. DREAM enables safe, very fast, and robust volumetric B1 (+) mapping of the brain at ultrahigh fields. Copyright © 2013 Wiley Periodicals, Inc.

  10. A new method for calculating volumetric sweeps efficiency using streamline simulation concepts

    International Nuclear Information System (INIS)

    Hidrobo, E A

    2000-01-01

    One of the purposes of reservoir engineering is to quantify the volumetric sweep efficiency for optimizing reservoir management decisions. The estimation of this parameter has always been a difficult task. Until now, sweep efficiency correlations and calculations have been limited to mostly homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir becomes difficult due to inherent complexity of multiple layers and arbitrary well configurations. In this paper, a new method for computing volumetric sweep efficiency for any arbitrary heterogeneity and well configuration is presented. The proposed method is based on Datta-Gupta and King's formulation of streamline time-of-flight (1995). Given the fact that the time-of-flight reflects the fluid front propagation at various times, then the connectivity in the time-of-flight represents a direct measure of the volumetric sweep efficiency. The proposed approach has been applied to synthetic as well as field examples. Synthetic examples are used to validate the volumetric sweep efficiency calculations using the streamline time-of-flight connectivity criterion by comparison with analytic solutions and published correlations. The field example, which illustrates the feasibility of the approach for large-scale field applications, is from the north Robertson unit, a low permeability carbonate reservoir in west Texas

  11. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    Science.gov (United States)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  12. Optimizing spatial and temporal constraints for cropland canopy water content retrieval through coupled radiative transfer model inversion

    Science.gov (United States)

    Boren, E. J.; Boschetti, L.; Johnson, D.

    2017-12-01

    Water plays a critical role in all plant physiological processes, including transpiration, photosynthesis, nutrient transportation, and maintenance of proper plant cell functions. Deficits in water content cause drought-induced stress conditions, such as constrained plant growth and cellular metabolism, while overabundance of water cause anoxic conditions which limit plant physiological processes and promote disease. Vegetation water content maps can provide agricultural producers key knowledge for improving production capacity and resiliency in agricultural systems while facilitating the ability to pinpoint, monitor, and resolve water scarcity issues. Radiative transfer model (RTM) inversion has been successfully applied to remotely sensed data to retrieve biophysical and canopy parameter estimates, including water content. The successful launch of the Landsat 8 Operational Land Imager (OLI) in 2012, Sentinel 2A Multispectral Instrument (MSI) in 2015, followed by Sentinel 2B in 2017, the systematic acquisition schedule and free data distribution policy provide the opportunity for water content estimation at a spatial and temporal scale that can meet the demands of potential operational users: combined, these polar-orbiting systems provide 10 m to 30 m multi-spectral global coverage up to every 3 days. The goal of the present research is to prototype the generation of a cropland canopy water content product, obtained from the newly developed Landsat 8 and Sentinel 2 atmospherically corrected HLS product, through the inversion of the leaf and canopy model PROSAIL5B. We assess the impact of a novel spatial and temporal stratification, where some parameters of the model are constrained by crop type and phenological phase, based on ancillary biophysical data, collected from various crop species grown in a controlled setting and under different water stress conditions. Canopy-level data, collected coincidently with satellite overpasses during four summer field campaigns

  13. Feeding frequency, but not dietary water content, affects voluntary physical activity in young lean adult female cats.

    Science.gov (United States)

    de Godoy, M R C; Ochi, K; de Oliveira Mateus, L F; de Justino, A C C; Swanson, K S

    2015-05-01

    The objective of this study was to investigate whether increased dietary water content and feeding frequency increased voluntary physical activity of young, lean adult female cats. A replicated 4 × 4 Latin square design with a 2 × 2 factorial treatment arrangement (feeding frequency and water content) was used. The 4 treatments consisted of 1 meal daily dry pet food without added water (1D; 12% moisture as is), 1 meal daily dry pet food with added water (1W; 70% total water content), 4 meals daily dry pet food without added water (4D; 12% moisture as is), and 4 meals daily dry pet food with added water (4W; 70% total water content). Eight healthy adult, lean, intact, young, female domestic shorthair cats were used in this experiment. Voluntary physical activity was evaluated using Actical activity monitors placed on collars and worn around the cats' necks for the last 7 d of each experimental period of 14 d. Food anticipatory activity (FAA) was calculated based on 2 h prior to feeding periods and expressed as a percentage of total daily voluntary physical activity. Increased feeding frequency (4 vs. 1 meal daily) resulted in greater average daily activity (P = 0.0147), activity during the light period (P = 0.0023), and light:dark activity ratio (P = 0.0002). In contrast, physical activity during the dark period was not altered by feeding frequency (P > 0.05). Cats fed 4 meals daily had increased afternoon FAA (P= 0.0029) compared with cats fed once daily. Dietary water content did not affect any measure of voluntary physical activity. Increased feeding frequency is an effective strategy to increase the voluntary physical activity of cats. Thus, it may assist in the prevention and management of obesity.

  14. Region-of-interest volumetric visual hull refinement

    KAUST Repository

    Knoblauch, Daniel; Kuester, Falko

    2010-01-01

    This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual

  15. Comparison of neutron scattering, gravimetric and tensiometric methods for measuring soil water content in the field

    International Nuclear Information System (INIS)

    Jat, R.L.; Das, D.K.; Naskar, G.C.

    1975-01-01

    Water content of a sandy clay loam soil was measured by neutron scattering, gravimetric and tensiometric methods. Tensiometric measurement based on laboratory moisture retention curve gave comparatively higher moisture content than those obtained by other methods. No significant differences were observed among neutron meter, gravimetric and tensiometric measurement based on field calibration curve. Though for irrigation purposes all the methods can be used equally, use of tensiometric method with field calibration curve is suggested for easy and more accurate soil water content measurement where neutron meter is not available. (author)

  16. Effect of residual water content on the physico-chemical properties of sucralfate dried gel obtained by microwave drying.

    Science.gov (United States)

    Gainotti, Alessandro; Losi, Elena; Bettini, Ruggero; Colombo, Paolo; Sonvico, Fabio; Baroni, Daniela; Santi, Patrizia; Colombo, Gaia

    2005-08-01

    The purpose of this study was to investigate the physico-chemical characteristics of sucralfate humid gel dried by microwaves, in relation to the residual water content. Differential scanning calorimetry (DSC) allowed for the determination of the water state in sucralfate samples. Fourier-transform infrared (FT-IR) spectroscopy was used to monitor the changes in sucralfate gel structure induced by the microwave drying. A boundary value of total water content for sucralfate gel samples was found at 42% (w/w). Below this value only bound water was present, whereas above this value, the increase in total water was due to free water. In the physical form of gel, the strength of the coordination between sulfate anions and the positively charged aluminum hydroxide was dependent on the residual water content. The study of the sedimentation behavior of water suspensions prepared with dried sucralfate allowed for the evaluation of the retention of gel properties. We found that the microwave drying process affected the sedimentation of sucralfate dried gel suspensions independent of the residual water content: when suspensions were prepared from sucralfate dried gel powders containing more than 42% (w/w) of residual water, the sedimentation ratio was higher than 0.9. The non-gel powder suspension showed a sedimentation ratio of 0.68 +/- 0.02, whereas the sucralfate humid gel suspension did not sediment.

  17. Flux-gradient relationships and soil-water diffusivity from curves of water content versus time

    Energy Technology Data Exchange (ETDEWEB)

    Nofziger, D.L.; Ahuja, L.R.; Swartzendruber, D.

    Direct analysis of a family of curves of soil-water content vs. time at different fixed positions enables assessment of the flux-gradient relationship prior to the calculations of soil-water diffusivity. The method is evaluated on both smooth and random-error data generated from the solution of the horizontal soil-water intake problem with a known diffusivity function. Interpolation, differentiation, and intergration are carried out by least-squares curve fitting based on the 2 recently developed techniques of parabolic splines and sliding parabolas, with all computations performed by computer. Results are excellent for both smooth and random-error input data, whether in terms of recovering the original known diffusivity function, assessing the nature of the flux-gradient relationship, or in making the numerous checks and validations at various intermediate stages of computation. The method applies for any horizontal soil-wetting process independently of the specific boundary conditions, including water entry through a nonzero inlet resistance. It should be adaptable to horizontal dewatering, and extendable to vertical flow. (11 refs.)

  18. CALCULATED AND MEASURED VALUES OF LIQUID WATER CONTENT IN CLEAN AND POLLUTED ENVIRONMENTS

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Řezáčová, Daniela; Mattanen, J.

    2006-01-01

    Roč. 50, č. 1 (2006), s. 121-130 ISSN 0039-3169 R&D Projects: GA AV ČR(CZ) IAA3042301 Institutional research plan: CEZ:AV0Z30420517 Keywords : liquid water content * visibility * air pollutant * fog /cloud water Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.603, year: 2006

  19. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies.

    Science.gov (United States)

    Saura-Mas, S; Lloret, F

    2007-03-01

    Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.

  20. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  1. Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes

    Science.gov (United States)

    The information on genotypic variation for inulin content, inulin yield and water use efficiency of inulin yield (WUEi) in response to drought is limited. This study was to investigate the genetic variability in inulin content, inulin yield and WUEi of Jerusalem artichoke (Helianthus tuberosus L.) ...

  2. Evidence on dynamic effects in the water contentwater potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    static and dynamic moisture storage data and the more pronounced was the corresponding dynamic hysteresis. The paper thus provides clear experimental evidence on dynamic effects in the water contentwater potential relation of building materials. By that, data published by previous authors as Topp et......Hygrothermal simulation has become a widely applied tool for the design and assessment of building structures under possible indoor and outdoor climatic conditions. One of the most important prerequisites of such simulations is reliable material data. Different approaches exist here to derive...... the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...

  3. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  4. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  5. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  6. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  7. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  8. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2013-01-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  9. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    Science.gov (United States)

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    Science.gov (United States)

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  11. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Cao, Peirang; Li, Bo; Sun, Dewei; Wang, Yong; Li, Jinwei; Liu, Yuanfa

    2017-04-15

    Promotion of water to the thermal oxidation of oleic acid was detected by the combination of EPR, SPME-GC-MS/MS and GC. Spin-trapping technique was used to identify and quantify the radical species formed during thermal oxidation of oleic acid by using DMPO as electron spin trap. The most abundant radical species were identified as DMPO-alkyl radical adducts. EPR intensity plateau of the samples with 5% water content was 140% higher than the samples without water. It implies oleic acid samples with high water content had high level of oxidation rates. The proportion of aldehydes of the samples with 2% water content was the maximum about 59.97%. Among the formed products, (E,E)-2,4-decadienal has genotoxic and cytotoxic effects, whose percentage was nearly twice comparing with that of 5-0% water content. This study demonstrated that higher water content in frying systems would contribute to seriously oxidation and degradation of oleic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Improving water content estimation on landslide-prone hillslopes using structurally-constrained inversion of electrical resistivity data

    Science.gov (United States)

    Heinze, Thomas; Möhring, Simon; Budler, Jasmin; Weigand, Maximilian; Kemna, Andreas

    2017-04-01

    Rainfall-triggered landslides are a latent danger in almost any place of the world. Due to climate change heavy rainfalls might occur more often, increasing the risk of landslides. With pore pressure as mechanical trigger, knowledge of water content distribution in the ground is essential for hazard analysis during monitoring of potentially dangerous rainfall events. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. This applies in many scenarios, as for example during infiltration of water without a clear saturation front. Sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, on the other hand, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. Here the standard smoothness constraint is reduced along layer boundaries identified using seismic data or other additional sources. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in

  13. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  14. Required Accuracy of Structural Constraints in the Inversion of Electrical Resistivity Data for Improved Water Content Estimation

    Science.gov (United States)

    Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.

    2017-12-01

    Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable

  15. Determination of aluminium, silicon and magnesium content in water samples by nuclear physical methods using XRFA and the MT-25 microtron

    International Nuclear Information System (INIS)

    Maslov, O.D.; Gustova, M.V.; Belov, A.G.; Drobina, T.P.

    2011-01-01

    Some of element contents in the samples have been determined by nuclear physical methods (XRFA, GAA and NAA). The possibility of determining Al, Si and Mg content in water samples has been studied. The detection limits of 0.03 mg/1 for Al, 0.3 mg/1 for Si and 0.1 mg/1 for Mg in water samples have been obtained. Monitoring of the aluminium and silicon content in water is important because the high concentration of aluminium or the low content of silicon in drinking water may be risk factors for Alzheimer's disease

  16. Radiation absorption, water content and contrast medium impregnation of gallstones

    International Nuclear Information System (INIS)

    Schmitt, W.G.H.

    1982-01-01

    Gallstones extracted by surgery were examined for CT density, which was compared with the X-ray film, floating performance and chemical analysis of the stones. So far, the water content of the biliary concrements - 14% on the average - has not been given much attention. Drying will considerably reduce the density; examination of the dried gallstones yields a false picture of direct ray absorption. Pure cholesterol stones do not float in water, and they show positive values on Hounsfield's scale (+30 - +60). The article discusses the question whether CT is suitable for effecting a better selection of gallstone patients who can be treated by drug therapy. (orig.) [de

  17. Model of a thermal driven volumetric pump for energy harvesting in an underwater glider

    International Nuclear Information System (INIS)

    Falcão Carneiro, J.; Gomes de Almeida, F.

    2016-01-01

    Underwater gliders are one of the most promising approaches to achieve an increase of human presence in the oceans. Among existing solutions, thermal driven gliders present long range and endurance capabilities, offering the possibility of remaining years beneath water collecting and transmitting data to shore. A key component in thermal gliders lies in the process used to collect ocean's thermal energy. In this paper a new quasi-static model of a thermal driven volumetric pump, for use in underwater gliders, is presented. The study also encompasses an analysis of the influence different hydraulic system parameters have on the thermodynamic cycle efficiency. Finally, the paper proposes a simple dynamic model of a heat exchanger that uses commercially available materials for the Phase Change Material (PCM) container. Simulation results validate the models developed. - Highlights: • A new model of a thermal driven volumetric pump for underwater gliders is proposed. • The effect hydraulic system parameters have on the cycle efficiency is analyzed. • The energy efficiency may be increased tenfold using adequate hydraulic parameters. • It's shown that the PCM PVT transition surface may not alter the cycle efficiency.

  18. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  19. Correlation of volumetric mismatch and mismatch of Alberta Stroke program Early CT scores on CT perfusion maps

    International Nuclear Information System (INIS)

    Lin, Ke; Rapalino, Otto; Lee, Benjamin; Do, Kinh G.; Sussmann, Amado R.; Pramanik, Bidyut K.; Law, Meng

    2009-01-01

    We aimed to determine if volumetric mismatch between tissue at risk and tissue destined to infarct on computed tomography perfusion (CTP) can be described by the mismatch of Alberta Stroke Program Early CT Score (ASPECTS). Forty patients with nonlacunar middle cerebral artery infarct 6 s and <2.0 mL per 100 g, respectively. Two other raters assigned ASPECTS to the same MTT and CBV maps while blinded to the volumetric data. Volumetric mismatch was deemed present if ≥20%. ASPECTS mismatch (=CBV ASPECTS - MTT ASPECTS) was deemed present if ≥1. Correlation between the two types of mismatches was assessed by Spearman's coefficient (ρ). ROC curve analyses were performed to determine the optimal ASPECTS mismatch cut point for volumetric mismatch ≥20%, ≥50%, ≥100%, and ≥150%. Median volumetric mismatch was 130% (range 10.9-2,031%) with 31 (77.5%) being ≥20%. Median ASPECTS mismatch was 2 (range 0-6) with 26 (65%) being ≥1. ASPECTS mismatch correlated strongly with volumetric mismatch with ρ = 0.763 [95% CI 0.585-0.870], p < 0.0001. Sensitivity and specificity for volumetric mismatch ≥20% was 83.9% [95% CI 65.5-93.5] and 100% [95% CI 65.9-100], respectively, using ASPECTS mismatch ≥1. Volumetric mismatch ≥50%, ≥100%, and ≥150% were optimally identified using ASPECTS mismatch ≥1, ≥2, and ≥2, respectively. On CTP, ASPECTS mismatch showed strong correlation to volumetric mismatch. ASPECTS mismatch ≥1 was the optimal cut point for volumetric mismatch ≥20%. (orig.)

  20. Advective and atmospheric forced changes in heat and fresh water content in the Norwegian Sea, 1951-2010

    Science.gov (United States)

    Mork, Kjell Arne; Skagseth, Øystein; Ivshin, Victor; Ozhigin, Vladimir; Hughes, Sarah L.; Valdimarsson, Hédinn

    2014-09-01

    Climate variability in the Norwegian Sea was investigated in terms of ocean heat and fresh water contents of Atlantic water above a reference surface, using hydrographic data during spring 1951-2010. The main processes acting on this variability were examined and then quantified. The area-averaged water mass cooled and freshened, but a deepening of the reference surface resulted in a positive trend in the heat content of 0.3 W m-2. Air-sea heat fluxes explained about half of the interannual variability in heat content. The effect of the advection of Atlantic and Arctic waters on the variability varied with time, apparently due to large-scale changes in the ocean circulation. The data are consistent with the explanation that changing wind patterns caused buffering and then release of Arctic water in the Iceland Sea during the late 1960s to early 1970s, and this caused large hydrographic changes in the Norwegian Sea.

  1. Development of a new medium frequency EM device: Mapping soil water content variations using electrical conductivity and dielectric permittivity

    Science.gov (United States)

    Kessouri, P.; Buvat, S.; Tabbagh, A.

    2012-12-01

    Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric

  2. Effects of deficit irrigation and partial root-zone drying on soil and plant water status, stomatal conductance, plant growth and water use efficiency in tomato during early fruiting stage

    DEFF Research Database (Denmark)

    Liu, Fulai; Shahnazari, Ali; Jacobsen, S.-E.

    2008-01-01

    The effects of 'partial root-zone drying' (PRD), compared with full irrigation (FI) and deficit irrigation (DI), on soil and plant water status, plant growth and water use efficiency (WUE) were investigated in potted tomatoes (Lycopersicon esculentum L., var. Cedrico) at the early fruiting stage...... system, and the irrigated side of the plants was reversed when volumetric soil water content ( ) of the dry side had decreased to 6%. of FI was about 14%. of DI decreased during the first 4-5 days after the onset of treatment (DAT) and was about 7% and 6% thereafter for DI-70 and DI-50, respectively....... of the wet side in PRD-70 declined during 3-6 DAT and was lower than that of FI by 4-6% thereafter. in both wet and dry sides of PRD-50 was slightly lower than that for PRD-70. After 5 DAT, midday leaf water potential was significantly lower in DI and PRD than in FI plants. FI plants had the highest leaf...

  3. Self-curing concrete types; water retention and durability

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-09-01

    This study was carried out to compare among concretes without or with silica fume (SF along with chemical type of shrinkage reducing admixture, polyethylene-glycol (Ch, and leca as self-curing agents for water retention even at elevated temperature (50 °C and their durability. The cement content of 400 kg/m3, silica fume of 15% by weight of cement, polyethylene-glycol of 2% by weight of cement, pre-saturated lightweight aggregate (leca 15% by volume of sand and water with Ch/binder ratio of 0.4 were selected in this study. Some of the physical and mechanical properties were determined periodically up to 28 days in case of exposure to air curing in temperature of (25 °C and (50 °C while up to 6 months of exposure to 5% of carbon dioxide and wet/dry cycles in 8% of sodium chloride for durability study. The concrete mass loss and the volumetric water absorption were measured, to evaluate the water retention of the investigated concretes. Silica fume concrete either without or with Ch gave the best results under all curing regimes; significant water retention and good durability properties.

  4. CAMEX-4 DC-8 NEVZOROV TOTAL CONDENSED WATER CONTENT SENSOR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nevzorov probe is an instrument that measures the total water content of the sample of air which passes through it. It flew on the NASA DC-8 during the CAMEX-4...

  5. Water content of acacia honey dertermined by two established methods and by optothermal window

    NARCIS (Netherlands)

    Szopos, S.; Doka, O.; Bicanic, D.D.; Ajtony, Z.

    2008-01-01

    The major objective of the research study described here was to explore the potential of the optothermal window (OW) technique as a new approach towards a simple, rapid determination of water content in honey. Water, major component of foods, influences their physical and chemical properties. Single

  6. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. Water content within the oceanic upper mantle of the Southwest Indian Ridge: a FTIR analysis of orthopyroxenes of abyssal peridotites

    Science.gov (United States)

    Li, W.; Li, H.; Tao, C.; Jin, Z.

    2013-12-01

    Water can be present in the oceanic upper mantle as structural OH in nominally anhydrous minerals. Such water has marked effects on manlte melting and rheology properties. However, the water content of MORB source is mainly inferred from MORB glass data that the water budget of oceanic upper mantle is poorly constrained. Here we present water analysis of peridotites from different sites on the Southwest Indian Ridge. The mineral assemblages of these peridotites are olivine, orthopyroxene, clinopyroxene and spinel. As the peridotites have been serpentinized to different degrees, only water contents in orthopyroxnene can be better determined by FTIR spectrometry. The IR absorption bands of all measured orthopyroxenes can be devided into four different groups: (1)3562-3596 cm-1, (2)3515-3520 cm-1, (3)3415-3420 cm-1, (4)3200-3210 cm-1. The positions of these absorption bands are in good agreement with perivious reports. Hydrogen profile measurements performed on larger opx grains in each suite of samples show no obvious variations between core and rims regions, indicating that diffusion of H in orthopyroxene is insignificant. Preliminary measured water contents of orthopyroxene differ by up to one order of magnitude. Opx water contents (80-220 ppm) of most samples are within the range of those found in mantle xenoliths of contentinal settings [1]. Opx water contents of one sample (VM-21V-S9-D5-2: 38-64 ppm) are similar to those from Gakkel Ridge abyssal peridotites (25-60 ppm) [2] but higher than those from Mid-Atlantic Ridge ODP-Leg 209(~15 ppm) [3]. Two other samples show high water concentrations (VM-19ΙΙΙ-S3-TVG2-4: 260-275 ppm, Wb-18-b: 190-265 ppm) which compare well with those from Mid-Atlantic Ridge ODP-Leg 153(160-270 ppm) [4]. Most opx water contents decrease with increasing depletion degree (spl Cr#) consistent with an incompatible behavior of water during partial melting. Recalculated bulk water contents (27-117 ppm) of these peridotites overlap

  8. Effects of salinity on growth, water content and distribution of Na + ...

    African Journals Online (AJOL)

    Effects of 4 different concentrations of NaCl on plant height, on water content and on the distribution of monovalent cations (Na + and K +) in organs of Avicennia germinans seedlings in semi-controlled conditions were investigated. After 4 weeks of cultivation, results showed that 200 mmoles sodium chloride reduced the ...

  9. Stability of infinite slopes under transient partially saturated seepage conditions

    Science.gov (United States)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  10. The Quality of Rambak Cracker from Rabbit Skin (Water Content and Swelling Power using The Different Technique of Fur Picking

    Directory of Open Access Journals (Sweden)

    Dedes Amertaningtyas

    2014-11-01

    Full Text Available This objective of this researchwas to compare the different technique of fur picking (liming and boiling inthe quality rambak cracker from rabbit skin on water content and swelling power.Materials of this research were 20 drying rabbit skin 5 – 6 months old. The tTest was using to compare the different technique of fur picking. Theindependent variables of this research were water content and swelling power onrambak cracker from rabbit skin. The result showed that the different techniqueof fur picking had highly significant effect (P<0.01 on water content and  expanding rate. The best result was limingtechnique of fur picking. It had the following properties: Water content of 1.5922% and expending rate of 855.3798 %. The conclusion showed that the use limingof 4% produced high quality of rambak cracker from rabbit skin or anotheranimal skin (cow, buffalo, chicken or fish. Keywords: rambak cracker, rabbit skin, water content,expanding rate

  11. [Arsenic contents in soil, water, and crops in an e-waste disposal area].

    Science.gov (United States)

    Yao, Chun-xia; Yin, Xue-bin; Song, Jing; Li, Chen-xi; Qian, Wei; Zhao, Qi-guo; Luo, Yong-ming

    2008-06-01

    In order to study whether disposing electronic wastes and secondary metal smelting could cause an arsenic pollution in the environment or not, Luqiao town, Taizhou City, Zhejiang Province was selected as a study area. The main purpose of this paper was to characterize arsenic contents in the local environment, including waters, sediments, soils and rice, and to assess the potential risk to humans. Additionally, the arsenic spatial distribution property and arsenic uptake-translocation rule in soil-rice system were also studied. The results showed that the average arsenic levels in the surface water and the groundwater were 8.26 microg/L and 18.52 microg/L, respectively, which did not exceed the limiting value of Chinese Environment Standards class III . Whereas,some groundwater exceeded the recommended standard by the WHO for drinking water (10 microg/L). The arsenic (on average 7.11 mg/kg) in paddy soils and arsenic (on average 6.17 mg/kg) in the vegetable garden soils were lower than the value recommended by the National Standard (level I). The average arsenic contents in brown rice and husks were 165.1 microg/kg and 144.2 microg/kg, which was also lower than the Chinese Foods Quality Standard. The arsenic contents between the corresponding soils-rice and husks-brown rice showed significantly positive correlations. By comparison, the arsenic contents of soils and husks collected around electroplating were relatively higher than most of other pollutant sources, indicating the electroplating may lead accumulation of arsenic in the paddy soil-rice system.

  12. Mercury content in wetland rice soil and water of two different seasons at small-scale gold mine processing areas

    Directory of Open Access Journals (Sweden)

    T. Sugianti

    2016-04-01

    Full Text Available This study was aimed to identify the impact of small-scale gold processing activities on mercury content in wetland rice soil and water during the rainy and first dry seasons in Central Lombok and West Lombok Districts. The method used for this study was survey method. Measurement of mercury levels in water samples was conducted at Agro Bogor Centre using SNI 6989.77: 2011 methods. The data was collected and processed in a simple statistic presented descriptively, in order to obtain information. Results of the study showed that mercury content soils in the rainy season exceeded the threshold of 0.005 ppm, while in the first dry season the mercury content in soil decreased, but it was still above the threshold value permitted. The contents of mercury in water samples in the rainy season and the first dry season were still at a safe point that was less than 0.05 ppm. The wetland rice soil and water had been polluted with mercury, although the mercury content in the water was still below the threshold, but the accumulation of mercury that could have been absorbed by the plants are of particular concerns. The decrease of mercury content in soil in dry season was due to lack of gold processing activities.

  13. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  14. Liquid water content variation with altitude in clouds over Europe

    Science.gov (United States)

    Andreea, Boscornea; Sabina, Stefan

    2013-04-01

    Cloud water content is one of the most fundamental measurements in cloud physics. Knowledge of the vertical variability of cloud microphysical characteristics is important for a variety of reasons. The profile of liquid water content (LWC) partially governs the radiative transfer for cloudy atmospheres, LWC profiles improves our understanding of processes acting to form and maintain cloud systems and may lead to improvements in the representation of clouds in numerical models. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote sensing techniques. The aim of this paper was to analyze the liquid water content (LWC) measurements in clouds, in time of the aircraft flights. The aircraft and its platform ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research is property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania. The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 m). The processed and analyzed measurements are acquired during 4 flights from Romania (Bucharest, 44°25'57″N 26°06'14″E) to Germany (Berlin 52°30'2″N 13°23'56″E) above the same region of Europe. The flight path was starting from Bucharest to the western part of Romania above Hungary, Austria at a cruse altitude between 6000-8500 m, and after 5 hours reaching Berlin. In total we acquired data during approximately 20 flight hours and we presented the vertical and horizontal LWC variations for different cloud types. The LWC values are similar for each type of cloud to values from literature. The vertical LWC profiles in the atmosphere measured during takeoff and landing of the aircraft have shown their

  15. Variation in faecal water content may confound estimates of gastro-intestinal parasite intensity in wild African herbivores.

    Science.gov (United States)

    Turner, W C; Cizauskas, C A; Getz, W M

    2010-03-01

    Estimates of parasite intensity within host populations are essential for many studies of host-parasite relationships. Here we evaluated the seasonal, age- and sex-related variability in faecal water content for two wild ungulate species, springbok (Antidorcas marsupialis) and plains zebra (Equus quagga). We then assessed whether or not faecal water content biased conclusions regarding differences in strongyle infection rates by season, age or sex. There was evidence of significant variation in faecal water content by season and age for both species, and by sex in springbok. Analyses of faecal egg counts demonstrated that sex was a near-significant factor in explaining variation in strongyle parasite infection rates in zebra (P = 0.055) and springbok (P = 0.052) using wet-weight faecal samples. However, once these intensity estimates were re-scaled by the percent of dry matter in the faeces, sex was no longer a significant factor (zebra, P = 0.268; springbok, P = 0.234). These results demonstrate that variation in faecal water content may confound analyses and could produce spurious conclusions, as was the case with host sex as a factor in the analysis. We thus recommend that researchers assess whether water variation could be a confounding factor when designing and performing research using faecal indices of parasite intensity.

  16. Derivation of an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions

    International Nuclear Information System (INIS)

    Min, Duck Kee; Choi, Byung Il; Ro, Seung Gy; Eom, Tae Yoon; Kim, Zong Goo

    1986-01-01

    Densities of a large number of mixed uranyl nitrate-thorium nitrate solutions were measured with pycnometer. By the least squares analysis of the experimental result, an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions as functions of uranium concentration, thorium concentration and nitric acid normality is derived; W=1.0-0.3580 C u -0.4538 C Th -0.0307H + where W, C u , C Th , and H + stand for water content(g/cc), uranium concentration (g/cc), thorium concentration(g/cc), and nitric acid normality, respectively. Water contents of the mixed uranyl nitrate-thorium nitrate solutions are calculated by using the empirical formular, and compared with the values calculated by Bouly's equation in which an additional data, solution density, is required. The two results show good agreements within 2.7%. (Author)

  17. Modeling the release of E. coli D21g with transients in water content

    Science.gov (United States)

    Transients in water content are well known to mobilize colloids that are retained in the vadose zone. However, there is no consensus on the proper model formulation to simulate colloid release during drainage and imbibition. We present a model that relates colloid release to changes in the air-water...

  18. Microbial and trace metal content of well water in three rural ...

    African Journals Online (AJOL)

    Microbial and trace metal content of well water in three rural communities in Bauchi State, Nigeria*. E Ikeh, PN Durfee, RH Glew, R Amato, FJ Frost, DJ Vanderjagt. Abstract. No Abstract. Nigerian Journal of Health and Biomedical Sciences Vol. 5 (2) 2006: 66-70. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  19. Spatial and volumetric changes of retroperitoneal sarcomas during pre-operative radiotherapy

    International Nuclear Information System (INIS)

    Wong, Philip; Dickie, Colleen; Lee, David; Chung, Peter; O’Sullivan, Brian; Letourneau, Daniel; Xu, Wei; Swallow, Carol; Gladdy, Rebecca; Catton, Charles

    2014-01-01

    Purpose: To determine the positional and volumetric changes of retroperitoneal sarcomas (RPS) during pre-operative external beam radiotherapy (PreRT). Material and methods: After excluding 2 patients who received chemotherapy prior to PreRT and 15 RPS that were larger than the field-of-view of cone-beam CT (CBCT), the positional and volumetric changes of RPS throughout PreRT were characterized in 19 patients treated with IMRT using CBCT image guidance. Analysis was performed on 118 CBCT images representing one image per week of those acquired daily during treatment. Intra-fraction breathing motions of the gross tumor volume (GTV) and kidneys were measured in 22 RPS patients simulated using 4D-CT. Fifteen other patients were excluded whose tumors were incompletely imaged on CBCT or who received pre-RT chemotherapy. Results: A GTV volumetric increase (mean: 6.6%, p = 0.035) during the first 2 weeks (CBCT1 vs. CBCT2) of treatment was followed by GTV volumetric decrease (mean: 4%, p = 0.009) by completion of radiotherapy (CBCT1 vs. CBCT6). Internal margins of 8.6, 15 and 15 mm in the lateral, anterior/posterior and superior/inferior directions would be required to account for inter-fraction displacements. The extent of GTV respiratory motion was significantly (p < 0.0001) correlated with more superiorly positioned tumors. Conclusion: Inter-fraction CBCT provides important volumetric and positional information of RPS which may improve PreRT quality and prompt re-planning. Planning target volume may be reduced using online soft-tissue matching to account for interfractional displacements of GTVs. Important breathing motion occurred in superiorly placed RPS supporting the utility of 4D-CT planning

  20. Comparison of surface contour and volumetric three-dimensional imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Guilford, W.B.; Ullrich, C.G.; Moore, T.

    1988-01-01

    Both surface contour and volumetric three-dimensional image processing from CT data can provide accurate demonstration of skeletal anatomy. While realistic, surface contour images may obscure fine detail such as nondisplaced fractures, and thin bone may disappear. Volumetric processing can provide high detail, but the transparency effect is unnatural and may yield a confusing image. Comparison of both three-dimensional modes is presented to demonstrate those findings best shown with each and to illustrate helpful techniques to improve volumetric display, such as disarticulation of unnecessary anatomy, short-angle repeating rotation (dithering), and image combination into overlay displays

  1. Rapid volumetric imaging with Bessel-Beam three-photon microscopy

    Science.gov (United States)

    Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng; Zhou, Zhuan; Wu, Haitao; Cheng, Heping; Zhang, Zhigang; Xu, Chris; Li, Yulong; Chen, Liangyi; Wang, Aimin

    2018-01-01

    Owing to its tissue-penetration ability, multi-photon fluorescence microscopy allows for the high-resolution, non-invasive imaging of deep tissue in vivo; the recently developed three-photon microscopy (3PM) has extended the depth of high-resolution, non-invasive functional imaging of mouse brains to beyond 1.0 mm. However, the low repetition rate of femtosecond lasers that are normally used in 3PM limits the temporal resolution of point-scanning three-photon microscopy. To increase the volumetric imaging speed of 3PM, we propose a combination of an axially elongated needle-like Bessel-beam with three-photon excitation (3PE) to image biological samples with an extended depth of focus. We demonstrate the higher signal-to-background ratio (SBR) of the Bessel-beam 3PM compared to the two-photon version both theoretically and experimentally. Finally, we perform simultaneous calcium imaging of brain regions at different axial locations in live fruit flies and rapid volumetric imaging of neuronal structures in live mouse brains. These results highlight the unique advantage of conducting rapid volumetric imaging with a high SBR in the deep brain in vivo using scanning Bessel-3PM.

  2. Effect of water content on strontium retardation factor and distribution coefficient in Chinese loess.

    Science.gov (United States)

    Huo, Lijuan; Qian, Tianwei; Hao, Junting; Liu, Hongfang; Zhao, Dongye

    2013-12-01

    Geological burial and landfill are often employed for disposal of nuclear wastes. Typically, radionuclides from nuclear facilities transport through the unsaturated zone before reaching the groundwater aquifer. However, transport studies are often conducted under saturated and steady-state flow conditions. This research aimed to examine the effects of unsaturated flow conditions and soil water content (θ) on Sr sorption and retardation in Chinese loess through 1D column transport experiments. Reagent SrCl2 was used as a surrogate for the radioactive isotope ((90)Sr) in the experiment because of their analogous adsorption and transportation characteristics. The spatial distribution of Sr along the column length was determined by segmenting the soil bed and analysing the Sr content in each soil segment following each column breakthrough test. The single-region (SR) and two-region (TR) models were employed to interpret the transport data of Sr as well as a tracer (Br(-)), which resulted in the dispersion coefficient (D) and retardation factor (Rd) under a given set of unsaturated flow conditions. For the tracer, the SR and TR models offered nearly the same goodness of fitting to the breakthrough curves (R(2) ≈ 0.97 for both models). For the highly sorptive Sr, however, the TR model provided better fitting (R(2), 0.80-0.96) to the Sr retention profiles than the SR model (R(2), 0.20-0.89). The Sr retention curves exhibited physical non-equilibrium characteristics, particularly at lower water content of the soil. For the unsaturated soil, D and the pore water velocity (v) displayed a weak linear correlation, which is attributed to the altering dispersivity as the water content varies. A much improved linear correlation was observed between D and v/θ. The retardation factor of Sr increased from 69.1 to 174.2 as θ decreased from 0.46 to 0.26 (cm(3) cm(-3)), while the distribution coefficient (Kd) based on Rd remained nearly unchanged at various θ levels. These

  3. THE INFLUENCE OF THE CONTENT OF ALUMINIUM ON THE BIOCENOSIS OF THE WATERS OF LAKES WITH POORLY URBANIZED RECEPTION BASINS

    Directory of Open Access Journals (Sweden)

    Jacek Kubiak

    2014-10-01

    Full Text Available The article presents the research results of the content of aluminium in the waters of the largest lakes situated in the reception basin of the Tywa river. The general content of aluminium and its form: dissolved and non-dissolved was examined. The general content of aluminium in those waters varied from 5.3 to 98.9 μg/l, while the content of dissolved aluminium varied from 3.0 to 57.0 and its non-dissolved form from 1.0 to 54.0 μg/l. The average concentration of the content of aluminium in the waters of examined lakes was similar; Dłużec lake – 42.9, Strzeszowskie lake – 39.2, Dołgie lake 45.7, Swobnickie lake 41.4 μg/l. The prevailing form of aluminium in the examined bodies of water was the dissolved form. The greatest amounts of that metal in waters of the examined lakes were present in autumn and spring, and the smallest amounts in summer and winter, the tendency concerned the entire content of aluminium and its non-dissolved form. The dissolved form of aluminium in the waters of examined lakes was present in the largest amounts in winter (on average – 17.4 μg/l, in the smallest amounts in spring (14.0 μg/l, this seasonal diversity – was weakly marked. The existing concentration of aluminium is typical of non-polluted surface waters, and with the stated reaction and the content of sulfurs, carbonates and chlorides in the examined waters, they were not toxic to the biocenosis.

  4. Effects of season on the bathypelagic mysid Gnathophausia ingens: water content, respiration, and excretion

    Science.gov (United States)

    Hiller-Adams, Page; Childress, James J.

    1983-06-01

    Water contents, oxygen consumption rates and ammonia excretion rates of individuals of the large bathypelagic mysid Gnathophausia ingens were measured as a function of size and season (winter and summer). Individuals of the sizes studied live permanently beneath the euphotic zone. Water content, as a percent of wet weight, is higher in winter than in summer, suggesting seasonal variability in the midwater environment. Our data suggest that the seasonal change in water content increases with increasing size. We suggest that the changes are due in part to seasonal changes in food intake. Seasonal differences were not observed in wet-weight-specific rates of either respiration or ammonia excretion. Both rates decrease with increasing size. The constancy of the atomic O:N ratio and its high value (geometric mean = 44.3) indicate that the average proportions of lipid and protein metabolized by individuals were independent of size and season and that lipid stores were not sufficiently depleted, even in small animals, to cause a shift to predominantly protein metabolism in winter or summer. On the average, metabolic rates of individuals were unaffected by seasonal variation in the midwater environment.

  5. Modification of stool's water content in constipated infants: management with an adapted infant formula

    Directory of Open Access Journals (Sweden)

    Alvarez Marina M

    2011-05-01

    Full Text Available Abstract Background Constipation is a common occurrence in formula-fed infants. The aim of this preliminary study was to evaluate the impact of a formula with high levels of lactose and magnesium, in compliance with the official regulations, on stool water content, as well as a parental assessment of constipation. Materials and methods Thirty healthy term-born, formula-fed infants, aged 4-10 weeks, with functional constipation were included. All infants were full-term and fed standard formula. Exclusion criteria were preterm and/or low birth weight, organic constipation, being breast fed or fed a formula specially designed to treat constipation. Stool composition was measured by near-infrared reflectance analysis (NIRA and parents answered questions about crying associated with defecation and stool consistency at baseline and after two weeks of the adapted formula. Results After 2 weeks of the adapted formula, stool water content increased from 71 +/- 8.1% to 84 +/- 5.9%, (p Conclusions This preliminary study suggests that an adapted formula with high levels of lactose and magnesium increases stool water content and improves symptoms of constipation in term-born, formula-fed infants. A larger randomized placebo-controlled trial is indicated.

  6. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults

    Directory of Open Access Journals (Sweden)

    Jean-Francois Ferveur

    2018-02-01

    Full Text Available Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1 experimentally selected desiccation-resistant lines, (2 transgenic flies with altered desaturase expression and (3 natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.

  7. Development of a differential infrared absorption method to measure the deuterium content of natural water

    International Nuclear Information System (INIS)

    D'Alessio, Enrique; Bonadeo, Hernan; Karaianev de Del Carril, Stiliana.

    1975-07-01

    A system to measure the deuterium content of natural water using differential infrared spectroscopy is described. Parameters conducing to an optimized design are analyzed, and the construction of the system is described. A Perkin Elmer 225 infrared spectrometer, to which a scale expansion system has been added, is used. Sample and reference waters are alternatively introduced by a pneumatical-mechanical system into a unique F Ca thermostatized infrared cell. Results and calibration curves shown prove that the system is capable of measuring deuterium content with a precision of 1 part per million. (author)

  8. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation... ADDITIVES Detergent Gasoline § 80.170 Volumetric additive reconciliation (VAR), equipment calibration, and...) For a facility which uses a gauge to measure the inventory of the detergent storage tank, the total...

  9. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth

    OpenAIRE

    Escobar, Hugo; Lara, Nelson; Zapata, Yubinza; Urbina, Camilo; Rodriguez, Manuel; Figueroa, Leonardo

    2013-01-01

    H. Escobar, N. Lara, Y. Zapata, C. Urbina, M. Rodriguez, and L. Figueroa. 2013. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth. Cien. Inv. Agr. 40(3): 597-607. The objective of this study was to analyze the effect of saline-boron stress on the vegetative growth, dry leaf weight, water potential (Ψw), relative water content, and leaf and root B and Cl- contents in 8 accessions of olive. Rooted one-year-old plants were culti...

  10. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2014-01-01

    Full Text Available The role of arbuscular mycorrhizal fungi in alleviating water stress is well documented. In order to study the effects of water stress and two different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower, a field experiment as split plot design with three replications was conducted in the Research Field Station, Zabol University, Zabol, Iran in 2011. Water stress treatments included control as 90% of field capacity (W1, 70% field capacity (W2 and 50% field capacity (W3 assigned to the main plots and two different mycorrhiza species, consisting of M1 = control (without any inoculation, M2 = Glumus mossea and M3 = Glumus etanicatum as sub plots. Results showed that by increasing water stress from control (W1 to W3 treatment, grain yield was significantly decreased. The reduction in the level of W3 was 15.05%. The content of potassium in seeds significantly decreased due to water stress but water stress upto W2 treatment increased the content of phosphorus, nitrogen and oil content of seeds. In between two species of mycorrhiza in sunflower plants, Glumus etanicatum had the highest effect on grain yield and these elements in seeds and increased both.

  11. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    Science.gov (United States)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  12. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    Science.gov (United States)

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  13. Calibration of neutron moisture gauges and their ability to spatially determine soil water content in environmental studies

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Martinez, J.L.; Langhorst, G.J.

    1994-10-01

    Several neutron moisture gauges were calibrated, and their ability to spatially determine soil water content was evaluated. In 1982, the midpoint of sensitivity of each neutron probe to the detection of hydrogen was determined, as well as the radius of investigation of each probe in crushed Bandelier Tuff with varying water contents. After determining the response of one of the moisture gauges to changes in soil water at the soil-air interface, a neutron transport model was successfully calibrated to predict spatial variations in soil water content. The model was then used to predict various shapes and volumes of crushed Bandelier Tuff interrogated by the neutron moisture gauge. From 1991 through 1994, six neutron moisture gauges were calibrated for soil water determinations in a local topsoil and crushed Bandelier Tuff, as well as for a sample of fine sand and soils from a field experiment at Hill Air Force Base. Statistical analysis of the calibration results is presented and summarized, and a final summary of practical implications for future neutron moisture gauge studies at Los Alamos is included

  14. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    Science.gov (United States)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  15. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    Science.gov (United States)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  16. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    OpenAIRE

    Y. Hu; M. Vaughan; C. McClain; M. Behrenfeld; H. Maring; D. Anderson; S. Sun-Mack; D. Flittner; J. Huang; B. Wielicki; P. Minnis; C. Weimer; C. Trepte; R. Kuehn

    2007-01-01

    International audience; This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water...

  17. Release of E.coli D21g with transients in water content

    Science.gov (United States)

    Transients in water content are well known to mobilize microorganisms that are retained in the vadose zone. However, there is no consensus on the relative importance of drainage and imbibition events on microorganism release. To overcome this limitation, we have systematically studied the release o...

  18. Physiology and microbial community structure in soil at extreme water content

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, Eva; Elhottová, Dana; Tříska, Jan; Šantrůčková, Hana

    2005-01-01

    Roč. 50, č. 2 (2005), s. 161-166 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA206/99/1410; GA ČR(CZ) GA526/99/P033 Institutional research plan: CEZ:AV0Z6066911 Keywords : microbial community structure * soils * extreme water content Subject RIV: EH - Ecology, Behaviour Impact factor: 0.918, year: 2005

  19. Seasonal patterns of bole water content in old growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)

    Science.gov (United States)

    Large, old conifer trees in the Pacific Northwest (PNW), USA purportedly ameliorate the effects of seasonal summer drought by drawing down the water content of bole tissues over the summer months and refilling during the winter. Continuous monitoring of bole relative water conten...

  20. Rapid whole brain myelin water content mapping without an external water standard at 1.5T.

    Science.gov (United States)

    Nguyen, Thanh D; Spincemaille, Pascal; Gauthier, Susan A; Wang, Yi

    2017-06-01

    The objective of this study is to develop rapid whole brain mapping of myelin water content (MWC) at 1.5T. The Fast Acquisition with Spiral Trajectory and T2prep (FAST-T2) pulse sequence originally developed for myelin water fraction (MWF) mapping was modified to obtain fast mapping of T1 and receiver coil sensitivity needed for MWC computation. The accuracy of the proposed T1 mapping was evaluated by comparing with the standard IR-FSE method. Numerical simulations were performed to assess the accuracy and reliability of the proposed MWC mapping. We also compared MWC values obtained with either cerebrospinal fluid (CSF) or an external water tube attached to the subject's head as the water reference. Our results from healthy volunteers show that whole brain MWC mapping is feasible in 7min and provides accurate brain T1 values. Regional brain WC and MWC measurements obtained with the internal CSF-based water standard showed excellent correlation (R>0.99) and negligible bias within narrow limits of agreement compared to those obtained with an external water standard. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Assessment of water vapor content from MIVIS TIR data

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2006-06-01

    Full Text Available The main objective of land remotely sensed images is to derive biological, chemical and physical parameters by inverting sample sets of spectral data. For the above aim hyperspectral scanners on airborne platform are a powerful remote sensing instrument for both research and environmental applications because of their spectral resolution and the high operability of the platform. Fine spectral information by MIVIS (airborne hyperspectral scanner operating in 102 channels ranging from VIS to TIR allows researchers to characterize atmospheric parameters and their effects on measured data which produce undesirable features on surface spectral signatures. These effects can be estimated (and remotely sensed radiances corrected if atmospheric spectral transmittance is known at each image pixel. Usually ground-based punctual observations (atmospheric sounding balloons, sun photometers, etc. are used to estimate the main physical parameters (like water vapor and temperature profiles which permit us to estimate atmospheric spectral transmittance by using suitable radiative transfer model and a specific (often too strong assumption which enable atmospheric properties measured only in very few points to be extended to the whole image. Several atmospheric gases produce observable absorption features, but only water vapor strongly varies in time and space. In this work the authors customize a self-sufficient «split-window technique» to derive (at each image pixel atmospheric total columnar water vapor content (TWVC using only MIVIS data collected by the fourth MIVIS spectrometer (Thermal Infrared band. MIVIS radiances have been simulated by means of MODTRAN4 radiative transfer code and the coefficients of linear regression to estimate TWVC from «split-windows» MIVIS radiances, based on 450 atmospheric water vapor profiles obtained by radiosonde data provided by NOAANESDIS. The method has been applied to produce maps describing the spatial variability of

  2. Test of prototype liquid-water-content meter for aircraft use

    Science.gov (United States)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  3. Determination of moisture content in steams and variation in moisture content with operating boiler level by analyzing sodium content in steam generator water and steam condensate of a nuclear power plant using ion chromatographic technique

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    Dry steam with moisture content less than <1% is the stringent requirements in a steam generator for good health of the turbine. In order to confirm the same, determination of sodium is done in steam generator water and steam condensate using Flame photometer in ppm level and ion chromatograph in ppb level. Depending on the carry over of sodium in steam along with the water droplet (moisture), the moisture content in steam was calculated and was found to be < 1% which is requirements of the system. The paper described the salient features of a PHWR, principle of Ion Chromatography, chemistry parameters of Steam Generators and calculation of moisture content in steam on the basis of sodium analysis. (author)

  4. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  6. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  7. Patterns of Tamarix water use during a record drought.

    Science.gov (United States)

    Nippert, Jesse B; Butler, James J; Kluitenberg, Gerard J; Whittemore, Donald O; Arnold, Dave; Spal, Scott E; Ward, Joy K

    2010-02-01

    During a record drought (2006) in southwest Kansas, USA, we assessed groundwater dynamics in a shallow, unconfined aquifer, along with plant water sources and physiological responses of the invasive riparian shrub Tamarix ramosissima. In early May, diel water table fluctuations indicated evapotranspirative consumption of groundwater by vegetation. During the summer drought, the water table elevation dropped past the lowest position previously recorded. Concurrent with this drop, water table fluctuations abruptly diminished at all wells at which they had previously been observed despite increasing evapotranspirative demand. Following reductions in groundwater fluctuations, volumetric water content declined corresponding to the well-specific depths of the capillary fringe in early May, suggesting a switch from primary dependence on groundwater to vadose-zone water. In at least one well, the fluctuations appear to re-intensify in August, suggesting increased groundwater uptake by Tamarix or other non-senesced species from a deeper water table later in the growing season. Our data suggest that Tamarix can rapidly shift water sources in response to declines in the water table. The use of multiple water sources by Tamarix minimized leaf-level water stress during drought periods. This study illustrates the importance of the previous hydrologic conditions experienced by site vegetation for controlling root establishment at depth and demonstrates the utility of data from high-frequency hydrologic monitoring in the interpretation of plant water sources using isotopic methods.

  8. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  9. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  10. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  11. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    Science.gov (United States)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  12. Investigation of water content in electrolyte solution on electrochromic properties of WO3 thin Films

    Directory of Open Access Journals (Sweden)

    Zahra Abadi

    2017-05-01

    Full Text Available Tungsten oxide thin films were prepared by a cathodic electrodeposition method at -0.450 mV in order to investigate how water content affects their electrochromic properties. FESEM images exhibit that WO3 thin films consist of 65 nm uniform grains. Thin Films were electrochemically investigated in 0.1M LiClO4 in propylene carbonate electrolyte with and without 5vol% water content by cyclic voltammetry and chronoamperometry. The results indicate that tungsten oxide thin films exhibit faster switching time between coloration and bleaching states and also higher coloration efficiency in hydrated electrolyte.  

  13. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  15. Effects of different irrigation practices using treated wastewater on tomato yields, quality, water productivity, and soil and fruit mineral contents.

    Science.gov (United States)

    Demir, Azize Dogan; Sahin, Ustun

    2017-11-01

    Wastewater use in agricultural irrigation is becoming a common practice in order to meet the rising water demands in arid and semi-arid regions. The study was conducted to determine the effects of the full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation practices using treated municipal wastewater (TWW) and freshwater (FW) on tomato yield, water use, fruit quality, and soil and fruit heavy metal concentrations. The TWW significantly increased marketable yield compared to the FW, as well as decreased water consumption. Therefore, water use efficiency (WUE) in the TWW was significantly higher than in the FW. Although the DI and the PRD practices caused less yields, these practices significantly increased WUE values due to less irrigation water applied. The water-yield linear relationships were statistically significant. TWW significantly increased titratable acidity and vitamin C contents. Reduced irrigation provided significantly lower titratable acidity, vitamin C, and lycopene contents. TWW increased the surface soil and fruit mineral contents in response to FW. Greater increases were observed under FI, and mineral contents declined with reduction in irrigation water. Heavy metal accumulation in soils was within safe limits. However, Cd and Pb contents in fruits exceeded standard limits given by FAO/WHO. Higher metal pollution index values determined for fruits also indicated that TWW application, especially under FI, might cause health risks in long term.

  16. THE STUDIES OF METAL CONTENT IN PRECIPITATION WATER IN LUBELSKIE AND LUBUSKIE VOIVODESHIPS IN 2013

    Directory of Open Access Journals (Sweden)

    Agnieszka Malec

    2015-09-01

    Full Text Available This paper presents the results of the studies of metal content in precipitation water in 2013, recorded at measuring points within Lubelskie and Lubuskie Voivodeships. It provides a detailed description of the method of collecting and analysing water samples in respect of light- and heavy-metal determination. Based on the results, a general assessment was made of the condition of the environment in the areas in question. Also, the sources of pollution in wet precipitation, and the effects of their introduction into the environment, were determined. It was found that the main pollution elements of precipitation water were linked to anthropogenic sources. The study also established that precipitation water, especially in the sparsely industrialised Włodawa region in the Lubelskie Voivodeship, had generally low pollution levels. It was also noted that in 2013, due to low total precipitation, the environmental impact of metal content was lower than in the preceding years.

  17. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    Science.gov (United States)

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  18. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    Science.gov (United States)

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  19. The effects of rainfall partitioning and evapotranspiration on the temporal and spatial variation of soil water content in a Mediterranean agroforestry system

    Science.gov (United States)

    Biel, C.; Molina, A.; Aranda, X.; Llorens, P.; Savé, R.

    2012-04-01

    Tree plantation for wood production has been proposed to mitigate CO2-related climate change. Although these agroforestry systems can contribute to maintain the agriculture in some areas placed between rainfed crops and secondary forests, water scarcity in Mediterranean climate could restrict its growth, and their presence will affect the water balance. Tree plantations management (species, plant density, irrigation, etc), hence, can be used to affect the water balance, resulting in water availability improvement and buffering of the water cycle. Soil water content and meteorological data are widely used in agroforestry systems as indicators of vegetation water use, and consequently to define water management. However, the available information of ecohydrological processes in this kind of ecosystem is scarce. The present work studies how the temporal and spatial variation of soil water content is affected by transpiration and interception loss fluxes in a Mediterranean rainfed plantation of cherry tree (Prunus avium) located in Caldes de Montbui (Northeast of Spain). From May till December 2011, rainfall partitioning, canopy transpiration, soil water content and meteorological parameters were continuously recorded. Rainfall partitioning was measured in 6 trees, with 6 automatic rain recorders for throughfall and 1 automatic rain recorder for stemflow per tree. Transpiration was monitored in 12 nearby trees by means of heat pulse sap flow sensors. Soil water content was also measured at three different depths under selected trees and at two depths between rows without tree cover influence. This work presents the relationships between rainfall partitioning, transpiration and soil water content evolution under the tree canopy. The effect of tree cover on the soil water content dynamics is also analyzed.

  20. Non-uniform volumetric structures in Richtmyer-Meshkov flows

    NARCIS (Netherlands)

    Staniç, M.; McFarland, J.; Stellingwerf, R.F.; Cassibry, J.T.; Ranjan, D.; Bonazza, R.; Greenough, J.A.; Abarzhi, S.I.

    2013-01-01

    We perform an integrated study of volumetric structures in Richtmyer-Meshkov (RM) flows induced by moderate shocks. Experiments, theoretical analyses, Smoothed Particle Hydrodynamics simulations, and ARES Arbitrary Lagrange Eulerian simulations are employed to analyze RM evolution for fluids with

  1. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    J. A. Canova

    2009-01-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  2. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2009-12-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  3. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    International Nuclear Information System (INIS)

    Wulff, A.M.; Fabel, M.; Freitag-Wolf, S.; Tepper, M.; Knabe, H.M.; Schäfer, J.P.; Jansen, O.; Bolte, H.

    2013-01-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future

  4. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M., E-mail: a.wulff@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Fabel, M. [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Freitag-Wolf, S., E-mail: freitag@medinfo.uni-kiel.de [Institut für Medizinische Informatik und Statistik, Brunswiker Str. 10, 24105 Kiel (Germany); Tepper, M., E-mail: m.tepper@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Knabe, H.M., E-mail: h.knabe@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Schäfer, J.P., E-mail: jp.schaefer@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Jansen, O., E-mail: o.jansen@neurorad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Bolte, H., E-mail: hendrik.bolte@ukmuenster.de [Klinik für Nuklearmedizin, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster (Germany)

    2013-10-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future.

  5. Analysis of air return alternatives for CRS-type open volumetric receiver

    International Nuclear Information System (INIS)

    Marcos, Ma. Jesus; Romero, Manuel; Palero, Silvia

    2004-01-01

    Even though air-cooled receivers provide substantial benefits, such as low inertia and quick sun-following dispatchability, and the volumetric effect leads to designs with aperture areas similar to those used in molten salt or water/steam receivers, some concern persists regarding absorber durability, reduction of radiation losses and improvement of the air return ratio (ARR). The paper focuses on this last issue, since the ARR is a source of significant receiver losses in current designs. Today's scaled-up receivers claim values between 45 and 70% for ARR, which means, in terms of energy loss, between 5 and 15%. As a consequence of ARR and the radiation loss stemming from high working temperatures, open volumetric receivers efficiencies below 75% are reported at temperatures usable by the power block. Those values may be acceptable for a first demonstration plant, but are categorically not competitive for commercial schemes in which receiver efficiency should approach 90%. This paper discusses the impact of several geometrical properties of the absorber and air injection system used. The study was performed by CFD with the FLUENT code. The assessment considered such alternatives as modularity of the air return system (HITREC receiver concept), outer ring injection with air curtain effect or cavity aperture (with and without secondary concentrator). A detailed analysis reveals that some parts of the receiver aperture achieve an ARR above 90% at well-selected operating conditions, but average values hardly surpass 70%. Therefore, a careful design should keep in mind important variables such as the effects of receiver edge and lateral wind, as well as air injection angle

  6. Hierarchical TiN nanoparticles-assembled nanopillars for flexible supercapacitors with high volumetric capacitance.

    Science.gov (United States)

    Qin, Ping; Li, Xingxing; Gao, Biao; Fu, Jijiang; Xia, Lu; Zhang, Xuming; Huo, Kaifu; Shen, Wenli; Chu, Paul K

    2018-05-10

    Titanium nitride (TiN) is an attractive electrode material in fast charging/discharging supercapacitors because of its excellent conductivity. However, the low capacitance and mechanical brittleness of TiN restricts its further application in flexible supercapacitors with high energy density. Thus, it is still a challenge to rationally design TiN electrodes with both high electrochemical and mechanical properties. Herein, the hierarchical TiN nanoparticles-assembled nanopillars (H-TiN NPs) array as binder free electrodes were obtained by nitriding of hierarchical titanium dioxide (TiO2) nanopillars, which was produced by a simple hydrothermal treatment of anodic TiO2 nanotubes (NTs) array in water. The porous TiN nanoparticles connected to each other to form ordered nanopillar arrays, effectively providing larger specific surface area and more active sites for charge storage. The H-TiN NPs delivered a high volumetric capacitance of 120 F cm-3 at 0.83 A cm-3, which is better than that of TiN NTs arrays (69 F cm-3 at 0.83 A cm-3). After assembling into all-solid-state devices, the H-TiN NPs based supercapacitors exhibited outstanding volumetric capacitance of 5.9 F cm-3 at 0.02 A cm-3 and a high energy density of 0.53 mW h cm-3. Our results reveal a new strategy to optimize the supercapacitive performance of metal nitrides.

  7. Effect of churning temperature on water content, rheology, microstructure and stability of butter during four weeks of storage

    DEFF Research Database (Denmark)

    Rønholt, Stine; Madsen, Ann Sophie; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    The effect of churning temperature (10 °C vs. 22 °C) is evaluated with respect to water content, rheology, microstructure and stability of butter produced using the batch churning method with a temperature ramp of 4 °C/min. Using pulsed-nuclear magnetic resonance, an increase in relative solid fat...... content from 44% to 49.5% was observed when decreasing the churning temperature. Due to lower solid fat content formed upon churning at high temperatures, average water droplet size significantly increased from 5.5 μm to 18.5 μm and less water could be incorporated into the butter during mixing. Using...... differential scanning calorimetry, it was observed that water addition as well as churning at low temperatures induced a transition toward more stable crystal structures, as the melting point in the high melting fraction was slightly lower for butter churned at high temperature. This did, however, not reflect...

  8. Content and distribution of fluorine in rock, clay and water in fluorosis area Zhaotong, Yunnan Province

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.; Li, H.; Feng, F. (and others) [Chinese Academy of Sciences, Beijing (China)

    2007-04-15

    About 160 samples of coal, pyritic coal balls, coal seam gangue, clay, corn, capsicum and drinking water were collected from the endemic fluorosis area of Zhenxiong and Weixin county, China to determine the fluorine content, distribution pattern and source in this fluorosis area. The study shows that the average fluorine content in the coal samples collected from 3 coal mines of the Late Permian coals in Zhenxiong and Weixin county, Zhaotong City, which are the main mining coals there, is 77.13 mg/kg. The average fluorine content coals collected form thee typical fluorosis villages in 72.56 mg/kg. Both of them are close to the world average and little low than the Chinese average. The fluorine content of drinking water is lower than 0.35 mg/L, the clay used as an additive for coal-burning and as a binfer in briquette-making by local residents has a high content of fluorine, ranging from 367-2,435 mg/kg, with the majority higher than 600 mg/kg and an average of 1,084.2 mg/kg. 29 refs., 5 tabs.

  9. Gas exchange and leaf contents in bell pepper under energized water and biofertilizer doses

    Directory of Open Access Journals (Sweden)

    Francisca R. M. Borges

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of energized water and bovine biofertilizer doses on the gas exchange and NPK contents in leaves of yellow bell pepper plants. The experiment was conducted at the experimental area of the Federal University of Ceará, in Fortaleza-CE, Brazil, from June to November 2011. The experiment was set in a randomized block design, in a split-plot scheme; the plots were composed of treatments with energized and non-energized water and the subplots of five doses of liquid biofertilizer (0, 250, 500, 750 and 1000 mL plant-1 week-1. The following variables were analyzed: transpiration, stomatal conductance, photosynthesis and leaf contents of nitrogen (N, phosphorus (P and potassium (K. Water energization did not allow significant increases in the analyzed variables. The use of biofertilizer as the only source of fertilization was sufficient to provide the nutrients N, P and K at appropriate levels for the bell pepper crop.

  10. Seedling Regeneration in the Alpine Treeline Ecotone: Comparison of Wood Microsites and Adjacent Soil Substrates

    Directory of Open Access Journals (Sweden)

    Adelaide Chapman Johnson

    2016-11-01

    Full Text Available Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates supporting conifer seedlings: rotten downed wood and adjacent soil. Study locations, each with 3 levels of incoming radiation, were randomly selected at forest line–alpine meadow borders in Pacific Northwest wilderness areas extending along an east–west precipitation gradient. Associations among substrate type, seedling density, radiation, site moisture, site temperature, plant water potential, and plant stomatal conductance were assessed. Wood microsites, flush with the ground and supporting Abies spp conifer seedlings, extended up to 20 m into alpine meadows from the forest line. Although wood microsites thawed later in the spring and froze earlier in the fall, they had warmer summer temperatures, greater volumetric water content, and more growing degree hours, and seedlings growing on wood had higher water potentials than seedlings growing on adjacent soil. At drier eastern sites, there was a positive relationship between seedling density and volumetric water content. Further, there was a positive relationship between seedling stomatal conductance and volumetric water content. Our study indicates that in the Pacific Northwest. and likely elsewhere, seedlings benefit from wood microsites, which provide greater water content. Given predictions of increased summer drought in some locations globally, wood microsites at forest line–alpine meadows and forest line–grasslands borders may become increasingly important for successful conifer regeneration.

  11. Polish apparatus for the measurement of dust content in the air of a mine

    Energy Technology Data Exchange (ETDEWEB)

    Krzystolik, P; Piskorska-Kalisz, Z

    1981-01-01

    Some characteristics are presented of the apparatus for the control of the dust content of air in coal mines, developed by the main Polish Institute of Mining Affairs. The Barbara 3 A gravitational dust meter has: volumetric velocity of suction of air of 5 cubic decimeters per minute; the mass is 5.8 kilograms; the range of the determined concentration of dust is from 0.5 to 1 grams per cubic meters; the length of the operation with the supply from four silver-zinc accumulator elements is eight hours; the selector of dust particles is a platy elutriator or a microcyclone; a membrane type of filter, an explosively danger actuation. The Barbar 4 gravitation dust meter has: volumetric velocity of air suction of 10, 20, 50, or 100 cubic decimeters per minute; supply from the network of compressed air; the mass is about eight kilograms; the selector of dust particles is a microcyclone; the filter is a membrane or is in the form of a layer of salicylic acid, placed between two nets. Both dust meters are designated for the determination of dust content as well as the content of finely dispersed dust particles. The mass of the selected specimen of dust is adequate also for the determination of the content of silica, as well as for other special analyses.

  12. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  13. Element Content of Surface and Underground Water Sources around a Cement Factory Site in Calabar, Nigeria

    Directory of Open Access Journals (Sweden)

    Edmund Richard Egbe

    2017-01-01

    Full Text Available Background: Cement production is associated with heavy metal emissions and environmental pollution by cement dust. The degree of contamination of drinking water sources by major and trace elements present in cement dust generated by united cement factory (UNICEM is still uncertain. This study estimated the element content of ground and surface water samples (hand-dug wells, boreholes and streams around the factory site to determine the impact of cement dust exposure on the water levels of these elements. Methods: This study was conducted at UNICEM at Mfamosing, Akamkpa local government area, Cross River State, Nigeria. Drinking water samples (5 from each location were collected from the cement factory quarry site camp, 3 surrounding communities and Calabar metropolis (45 km away from factory serving as control. The lead (Pb, copper (Cu, manganes (Mn, iron (Fe, cadmium (Cd, selenium (Se, chromium (Cr, zinc (Zn and arsenic (As levels of samples were determined using Atomic Absorption Spectrometry (AAS. Data were analyzed using ANOVA and LSD post hoc at P = 0.05. Results: As and Pb content of samples from camp were above the WHO recommendations of 0.01mg/l and 0.01mg/l respectively. Chromium and cadmium content of all water samples were above and others below WHO recommendations. Water levels of Mn, Fe, Zn, As, Se, Cd, Ca and Si were significantly elevated (though below WHO recommendations in camp than other locations (P<0.05. Conclusion: Production of cement results in As, Pb, Cr and cd contamination of drinking water sources near the factory. Treatment of all drinking water sources is recommended before public use to avert deleterious health consequences.

  14. HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION

    Science.gov (United States)

    Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

  15. Hydrodynamic characterization of an alluvial soil for the Cajueiro Reservoir in Tuparetama-PE (Brazil), by using the internal drainage method; Caracterizacao hidrodinamica de um solo aluvial do Acude Cajueiro em Tuparetama-PE utilizando-se o metodo da drenagem interna

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Aviani Maria Bezerra

    2000-10-01

    The determination of the hydraulic properties of an alluvial soil in Cajueiro reservoir has been carried out in two experimental plots of 3.5 m x 3.5 m, installed in the opposite banks of the brook in which is located the dam, (Tuparetama Country, Pernambuco). For the determination of the hydraulic conductivity as a function of the soil water volumetric content K({theta}), the internal driainage method proposed by Hillel et al. (1972) has been applied. The soil-water retention curves h ({theta}) have been determined through the experimental data of volumetric water content and pressure obtained in field experiments. The h ({theta}) and K ({theta}) curves have been fitted to van Genuchten's closed - form equations (1980), using the Burdine's model, and Brooks and Corey's model, respectively. The volumetric water content, matric potential, and total water content estimates have been fitted to two analytical functions: one being composed by the addition of three exponentials terms the other composed and by representation the reverse of the power functions. The latter has been preferred due to its smoother representation between the fast and the slow its drainage phases. Considering the hydraulic behavior, three different layers have been identified in the soil profiles of the two experimental parcels A2 and B4 in the alluvial soil Cajueiro reservoir. The second layer of the soil profile in parcel A2 turned out the more pemeable than the other two layers. As to the soil profile in parcel B4, the first layer turned out more conductive than the other layers. However, the biggest volumetric water content variations were due to the differences found in the texture and structure of the soil profiles under study. The hydrodynamic characterization of the two soil profiles, A2 and B4, brings significant elements for the simulation of scenarios related to the soil of water transport processes. It is of particular importance the study of scenarios related to the

  16. Hydrodynamic characterization of an alluvial soil for the Cajueiro Reservoir in Tuparetama-PE (Brazil), by using the internal drainage method

    International Nuclear Information System (INIS)

    Robalinho, Aviani Maria Bezerra

    2000-10-01

    The determination of the hydraulic properties of an alluvial soil in Cajueiro reservoir has been carried out in two experimental plots of 3.5 m x 3.5 m, installed in the opposite banks of the brook in which is located the dam, (Tuparetama Country, Pernambuco). For the determination of the hydraulic conductivity as a function of the soil water volumetric content K(θ), the internal driainage method proposed by Hillel et al. (1972) has been applied. The soil-water retention curves h (θ) have been determined through the experimental data of volumetric water content and pressure obtained in field experiments. The h (θ) and K (θ) curves have been fitted to van Genuchten's closed - form equations (1980), using the Burdine's model, and Brooks and Corey's model, respectively. The volumetric water content, matric potential, and total water content estimates have been fitted to two analytical functions: one being composed by the addition of three exponentials terms the other composed and by representation the reverse of the power functions. The latter has been preferred due to its smoother representation between the fast and the slow its drainage phases. Considering the hydraulic behavior, three different layers have been identified in the soil profiles of the two experimental parcels A2 and B4 in the alluvial soil Cajueiro reservoir. The second layer of the soil profile in parcel A2 turned out the more pemeable than the other two layers. As to the soil profile in parcel B4, the first layer turned out more conductive than the other layers. However, the biggest volumetric water content variations were due to the differences found in the texture and structure of the soil profiles under study. The hydrodynamic characterization of the two soil profiles, A2 and B4, brings significant elements for the simulation of scenarios related to the soil of water transport processes. It is of particular importance the study of scenarios related to the shallow soil layers, which are

  17. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Science.gov (United States)

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  18. Roles and significance of water conducting features for transport models in performance assessment

    International Nuclear Information System (INIS)

    Carrera, J.; Sanchez-Vila, X.; Medina, A.

    1999-01-01

    The term water conducting features (WCF) refers to zones of high hydraulic conductivity. In the context of waste disposal, it is further implied that they are narrow so that chances of sampling them are low. Yet, they may carry significant amounts of water. Moreover, their relatively small volumetric water content causes solutes to travel fast through them. Water-conducting features are a rather common feature of natural media. The fact that they have become a source of concern in recent years, reflects more the increased level of testing and monitoring than any intrinsic property of low permeability media. Accurate simulations of solute transport require a realistic accounting for water conducting features. Methods are presented to do so and examples are shown to illustrate these methods. Since detailed accounting of WCF's will not be possible in actual performance assessments, efforts should be directed towards typification, so as to identify the essential effects of WCF's on solute transport through different types of rocks. Field evidence suggests that, although individual WCF's may be difficult to characterize, their effects are quite predictable. (author)

  19. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    International Nuclear Information System (INIS)

    Vos, C.G.; Paul, M.A.; Dahele, M.; Soernsen de Koste, J.R. van; Senan, S.; Bahce, I.; Smit, E.F.; Thunnissen, E.; Hartemink, K.J.

    2014-01-01

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R 2 = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  20. 40 CFR 80.157 - Volumetric additive reconciliation (“VAR”), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation (â... ADDITIVES Detergent Gasoline § 80.157 Volumetric additive reconciliation (“VAR”), equipment calibration, and... other comparable VAR supporting documentation. (ii) For a facility which uses a gauge to measure the...

  1. Influence of packaging and conditions of storaging on content of mineral water Guber-Srebrenica

    OpenAIRE

    Blagojević Dragana D.; Lazić Dragica; Škundrić Branko; Škundrić Jelena; Vukić Ljiljana

    2008-01-01

    Mineral waters are found in nature in greater depths most often in reduction conditions, so after surfacing their content alters in contact with oxygen, which is caused by oxidation of certain components. Due to this, efforts were made to make these waters more stabile so they could be used after certain time. This work monitors the stability of Guber (Argentaria)-Srebrenica water exposed to light and with addition of ascorbic acid. The methods of analysis and the parameters analyzed are: gra...

  2. Determination of uranium by a gravimetric-volumetric titration method

    International Nuclear Information System (INIS)

    Krtil, J.

    1998-01-01

    A volumetric-gravimetric modification of a method for the determination of uranium based on the reduction of uranium to U (IV) in a phosphoric acid medium and titration with a standard potassium dichromate solution is described. More than 99% of the stoichiometric amount of the titrating solution is weighed and the remainder is added volumetrically by using the Mettler DL 40 RC Memotitrator. Computer interconnected with analytical balances collects continually the data on the analyzed samples and evaluates the results of determination. The method allows to determine uranium in samples of uranium metal, alloys, oxides, and ammonium diuranate by using aliquot portions containing 30 - 100 mg of uranium with the error of determination, expressed as the relative standard deviation, of 0.02 - 0.05%. (author)

  3. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  4. Effect of drought stress on leaf soluble sugar content, leaf rolling index and relative water content of proso millet (Panicum miliaceum L. genotypes

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available With respect to water shortage in arid and semi- arid regions, the study about drought stress effects on crop plants and selection of resistance cultivars, are among the most important goals in the agricultural researches. In order to examine drought stress effects on millet, an experiment was conducted in Birjand and Sarbisheh, simultaneously. In this experiment, five irrigation treatments (well-watered, drought stress in vegetative stage, in ear emergence stage, in seed filling stage and in vegetative and seed filling stage and five proso millet genotypes (Native, K-C-M.2, K-C-M.4, K-C-M.6 and K-C-M.9 were compared in a split plot design along with three replications. Drought stress increased grain protein content, leaf rolling index and soluble sugars concentration and decreased seed germination and leaf RWC. Although seed protein content and germination percentage of genotypes were not significantly different, there were some differences among leaf rolling index, RWC and soluble sugar content of these genotypes. The results of this study indicated that leaf sugar content, RWC and leaf rolling index can not be considered as the only parameters for selection of high yield genotypes. Therefore, it is recommended that some other factors should also be used apart from the above mentioned ones.

  5. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content.

    Science.gov (United States)

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-06-11

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p water content, and reduced body weight and harmful intestinal enzyme activities. Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  6. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    Effect of soil water stress on yield and proline content of four wheat lines. ... This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at ... from 32 Countries:.

  7. Using Sentinel-1 and Landsat 8 satellite images to estimate surface soil moisture content.

    Science.gov (United States)

    Mexis, Philippos-Dimitrios; Alexakis, Dimitrios D.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.

    2016-04-01

    Nowadays, the potential for more accurate assessment of Soil Moisture (SM) content exploiting Earth Observation (EO) technology, by exploring the use of synergistic approaches among a variety of EO instruments has emerged. This study is the first to investigate the potential of Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Landsat 8) images in combination with ground measurements to estimate volumetric SM content in support of water management and agricultural practices. SAR and optical data are downloaded and corrected in terms of atmospheric, geometric and radiometric corrections. SAR images are also corrected in terms of roughness and vegetation with the synergistic use of Oh and Topp models using a dataset consisting of backscattering coefficients and corresponding direct measurements of ground parameters (moisture, roughness). Following, various vegetation indices (NDVI, SAVI, MSAVI, EVI, etc.) are estimated to record diachronically the vegetation regime within the study area and as auxiliary data in the final modeling. Furthermore, thermal images from optical data are corrected and incorporated to the overall approach. The basic principle of Thermal InfraRed (TIR) method is that Land Surface Temperature (LST) is sensitive to surface SM content due to its impact on surface heating process (heat capacity and thermal conductivity) under bare soil or sparse vegetation cover conditions. Ground truth data are collected from a Time-domain reflectometer (TRD) gauge network established in western Crete, Greece, during 2015. Sophisticated algorithms based on Artificial Neural Networks (ANNs) and Multiple Linear Regression (MLR) approaches are used to explore the statistical relationship between backscattering measurements and SM content. Results highlight the potential of SAR and optical satellite images to contribute to effective SM content detection in support of water resources management and precision agriculture. Keywords: Sentinel-1, Landsat 8, Soil

  8. Characterization of Volume F Trash from Four Recent STS Missions: Weights, Categorization, Water Content

    Science.gov (United States)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The fate of space-generated solid wastes, including trash, for future missions is under consideration by NASA. Several potential treatment options are under consideration and active technology development. Potential fates for space-generated solid wastes are: Storage without treatment; storage after treatment(s) including volume reduction, water recovery, sterilization, and recovery plus recycling of waste materials. Recycling might be important for partial or full closure scenarios because of the prohibitive costs associated with resupply of consumable materials. For this study, we determined the composition of trash returned from four recent STS missions. The trash material was 'Volume F' trash and other trash, in large zip-lock bags, that accompanied the Volume F trash. This is the first of two submitted papers on these wastes. This one will cover trash content, weight and water content. The other will report on the microbial Characterization of this trash. STS trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were catalogued and placed into one of the following categories: food waste (and containers), drink containers, personal hygiene items - including EVA maximum absorbent garments (MAGs)and Elbow packs (daily toilet wipes, etc), paper, and packaging materials - plastic firm and duct tape. Trash generation rates for the four STS missions: Total wet trash was 0.602 plus or minus 0.089 kg(sub wet) crew(sup -1) d(sup -1) containing about 25% water at 0.154 plus or minus 0.030 kg(sub water) crew(sup -1) d(sup -1) (avg plus or minus stdev). Cataloguing by category: personal hygiene wastes accounted for 50% of the total trash and 69% of the total water for the four missions; drink items were 16% of total weight and 16% water; food wastes were 22% of total weight and 15% of the water; office waste and plastic film were 2% and 11% of the total waste and did not contain any water. The results can be

  9. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  10. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  11. Considering Organic Carbon for Improved Predictions of Clay Content from Water Vapor Sorption

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2014-01-01

    Accurate determination of the soil clay fraction (CF) is of crucial importance for characterization of numerous environmental, agricultural, and engineering processes. Because traditional methods for measurement of the CF are laborious and susceptible to errors, regression models relating the CF...... to water vapor sorption isotherms that can be rapidly measured with a fully automated vapor sorption analyzer are a viable alternative. In this presentation we evaluate the performance of recently developed regression models based on comparison with standard CF measurements for soils with high organic...... carbon (OC) content and propose a modification to improve prediction accuracy. Evaluation of the CF prediction accuracy for 29 soils with clay contents ranging from 6 to 25% and with OC contents from 2.0 to 8.4% showed that the models worked reasonably well for all soils when the OC content was below 2...

  12. Automatic checking of heavy element content in polymetallic ores directly in transportation containers

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Mamikon'yan, S.V.; Nagornyj, V.Ya.

    1981-01-01

    An automatic measuring instrument has been developed and used to check rapidly the content of lead in ores transported by trolley cars, dump trucks, dump cars or other open containers. The measuring technique is based on gamma backscattering and X-ray fluorescence. Influences of container movements, volumetric density changes and matrix effects on the achievable accuracy are briefly discussed

  13. [HYGIENIC ASSESSMENT OF WATER-SOLUBLE VITAMINS CONTENT IN THE FOOD RATION OF ADOLESCENTS].

    Science.gov (United States)

    Kozubenko, O V; Turchaninov, D V; Boyarskaya, L A; Glagoleva, O N; Pogodin, I S; Luksha, E A

    2015-01-01

    Adequate, balanced nutrition is a precondition for the formation of health of the younger generation. The study of the dietary intake and peculiarities of the chemical composition offood is needed to substantiate measures aimed at the correction of the ration of adolescents. Hygienic evaluation of the content of water soluble vitamins in foods and the ration of teenage population of the Omsk region. TASKS OF THE STUDY: 1. To determine levels of water-soluble vitamins content in foods forming the basis of the ration of the population the Omsk region. 2. On the base of a study of the actual nutrition of adolescents to determine the levels of water-soluble vitamins consumption. 3. To give a hygienic assessment of adolescent nutrition in the Omsk region in terms of provision with water-soluble vitamins, and to identify priority directions of the alimentary correction of the revealed disorders. The analysis of 389 food samples for the content of water-soluble vitamins (B1, B2, B6, PP C, folic acid) was performed with the use of reversed-phase HPLC high pressure on the Shimadzu LC-20 Prominence detector. The hygienic assessment of the actual nutrition of adolescents aged 13-17 years (sample survey; n = 250; 2012-2014) in the Omsk region was performed by the method of the analysis of food consumption frequency. There were noted significantly lower concentrations of vitamin B1 and B2 in the studied samples of cereals, bread and vegetables in comparison with reference data. Consumption levels of vitamins B1, B2, PP folic acid in the diet of adolescents in the Omsk region are lower than recommended values. In the structure of nutrition there is not enough milk dairy products--in 82.4 ± 2.4%, fish and sea products in 90.8 ± 1.8% of adolescents. The actual nutrition of the adolescent population of the Omsk region is irrational, unbalanced in quantitative and qualitative terms, and does not provide the necessary level of consumption of most important water-soluble vitamins

  14. Investigation on water content in fresco mock-ups in the microwave and near-IR spectral regions

    International Nuclear Information System (INIS)

    Magrini, Donata; Riminesi, Cristiano; Cucci, Costanza; Olmi, Roberto; Picollo, Marcello

    2017-01-01

    Water diffusion inside masonry is responsible for the majority of the decay phenomena observed in wall paintings and frescos. Thus, the diagnostics of moisture and water content and their monitoring represent a key issue. In order to preserve the integrity of surfaces of artistic interest, investigations by means of non-destructive techniques (NDT) are preferred over others. The aim of this research is to determine methodologies to quantify the moisture content (MC) of frescos by means of the integrated use of two non-invasive techniques, namely fiber optic reflectance spectroscopy (FORS) in the near-IR region and evanescent field dielectrometry (EFD) in the microwave range. The FORS technique has been employed in order to assess the amount of water adsorbed from the surface by means of an analysis of the reflectance spectra in the Vis–NIR (350-2200 nm) range. This technique investigates the electronic and vibrational transitions that are characteristic of each compound and enables their identification. The water content is evaluated on the basis of the 1920 nm and 1450 nm absorption bands. The EFD system consists of a resonant probe connected to a network analyzer. The resonance frequency of the cavity under different moisture-content conditions of frescos is in the 1.0–1.5 GHz range. The device makes it possible to compute, in real time, the MC from a measurement of the transmission coefficient (amplitude versus frequency) through the probe. Fresco mock-ups have been prepared in collaboration with the Opificio delle Pietre Dure in order to recreate most of the possible chromatic shades obtained by mixing iron oxides and hydroxide-based pigments. Measurements were performed by employing both techniques on fresco models after wet-dry cycles obtained by means of poultices with a known water content. The results obtained with these two techniques were compared, and cross relationships between the EFD and FORS data were defined. (paper)

  15. Temperature Buffer Test. Measurements of water content and density of the excavated buffer material

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden)

    2010-12-15

    TBT (Temperature Buffer Test) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at understanding and modeling the thermo-hydromechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test was carried out at the - 420 m level in Aespoe HRL in a 8 meters deep and 1.76 m diameter deposition hole, with two heaters (3 m long, 0.6 m diameter), surrounded by a MX-80 bentonite buffer and a confining plug on top anchored with 9 rods. It was installed during spring 2003. The bentonite around upper heater was removed during the period October - December 2009 and the buffer around the lower heater was removed during January - Mars 2010. During dismantling of the buffer, samples were taken on which analyses were made. This report describes the work with the deteroemoeination of the water content and the density of the taken samples. Most of the samples were taken from the buffer by core drilling from the upper surface of each installed bentonite block. The cores had a diameter of about 50 mm and a maximum length equal to the original height of the bentonite blocks (about 500 mm). The water content of the buffer was determined by drying a sample at a temperature of 105 deg C for 24 h and the bulk density was determined by weighing a sample both in the air and immerged in paraffin oil with known density. The water content, dry density, degree of saturation and void ratio of the buffer were then plotted. The plots show that all parts of the buffer had taken up water and the degree of saturation of the buffer varied between 90 - 100%. Large variation in the dry density of the buffer was also observed.

  16. Effect of cup inclination on predicted contact stress-induced volumetric wear in total hip replacement.

    Science.gov (United States)

    Rijavec, B; Košak, R; Daniel, M; Kralj-Iglič, V; Dolinar, D

    2015-01-01

    In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ϑA) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ϑA. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.

  17. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    International Nuclear Information System (INIS)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi; Has, Arzu Ceylan; Ogur, Methiye Gonul; Alhan, Aslihan

    2017-01-01

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  18. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  19. Impact of Soil Water Content on Landmine Detection Using Radar and Thermal Infrared Sensors

    National Research Council Canada - National Science Library

    Hong, Sung-ho

    2001-01-01

    .... The most important of these is water content since it directly influences the three other properties in this study, the ground penetrating radar and thermal infrared sensors were used to identify non...

  20. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...... and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C...