WorldWideScience

Sample records for volumetric solar receivers

  1. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    Science.gov (United States)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  2. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    Science.gov (United States)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  3. Optical property characterization of molten salt mixtures for thermal modeling of volumetrically absorbing solar receiver applications

    Science.gov (United States)

    Tetreault-Friend, Melanie; McKrell, Thomas; Baglietto, Emilio; Gil, Antoni; Slocum, Alexander H.; Calvet, Nicolas

    2017-06-01

    A method for experimentally determining the attenuation coefficient of high temperature semi-transparent liquids for volumetrically absorbing solar receiver applications was developed. The method was used to measure the attenuation coefficient over a broad spectral range in a 40 wt. % KNO3:60 wt. % NaNO3 binary nitrate molten salt mixture (solar salt). The measured absorption bands extend over 98% of the re-emission spectrum of the salt, indicating that thermal redistribution within the salt itself via radiative participating media effects is negligible. In addition, the effects of the salt's purity and thermal decomposition on the optical properties were also investigated and the light penetration depth is shown to vary significantly in the presence of impurities. The implications of these results for solar receiver design and modeling are discussed.

  4. Transient Simulation Of A Solar-Hybrid Tower Power Plant With Open Volumetric Receiver At The Location Barstow

    OpenAIRE

    2013-01-01

    In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine’s flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well a...

  5. A comprehensive optical characterization of a porous open volumetric air receiver in a solar power tower

    CERN Document Server

    Qiu, Yu; He, Ya-Ling; Cheng, Ze-Dong

    2016-01-01

    A comprehensive optical model for a solar power tower with an open volumetric air receiver (OVAR) was developed and validated in this work. Based on the model, the optical characteristics of the OVAR were studied. Firstly, the detailed distributions of the non-uniform solar flux (qsr) on the aperture and the solar source (Ssr) in the OVAR were studied. The incident flux was found to be relatively uniform across the aperture for a single OVAR. However the incident angle of the rays varies between 0o and 42o, which indicates that the parallel assumption of the rays is not appropriate at this condition. Furthermore, the Ssr in the absorber decreases from the inlet to the outlet, and the maximum source (Ssr,max) of 2.414X108 Wm-3 appears at the inlet. Moreover, the Ssr,max was found to appear at the region near the wall rather than the center of the receiver as usual for the combined effect of the non-parallel incident rays and the diffuse reflection on the wall. The revelation of this phenomenon could offer help...

  6. Thermal Performance Evaluation of the 200kWth SolAir Volumetric Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Tellez Sufrategui, F. M.

    2003-07-01

    The goal of the Solair project the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safety operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW Hitrec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MWth receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fully accomplished. Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 ({+-}6)% for configuration 1 and 83({+-}6)% for configuration 2 of the absorber. (Author). 20 refs.

  7. Optimal spacing within a tubed, volumetric, cavity receiver suitable for modular molten salt solar towers

    Science.gov (United States)

    Turner, Peter

    2016-05-01

    A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.

  8. The duct selective volumetric receiver: potential for different selectivity strategies and stability issues

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Casals, X. [Universidad Pontificia Comillas-ICAI, Madrid (Spain). Dept. de Fluidos y Calor; Ajona, J.I. [Departamento de Energia Solar, Viessemann, Poligono Industrial San Marcos, Getafe (Spain)

    1999-07-01

    Recently much theoretical and experimental work has been conducted on volumetric receivers. However, not much attention has been paid to the possibilities of using different selectivity mechanisms to minimize radiation thermal losses, which are the main ones at high operating temperature. In this paper we present a duct volumetric receiver model and its results, which allow the evaluation of different selectivity strategies such as: conventional {epsilon}/{alpha}, geometry, frontal absorption and diffuse/specular reflection. We propose a new concept of selective volumetric receivers based on a solar-specular/infrared-diffuse radiative behaviour and evaluate its potential for efficiency improvement. In recent work on volumetric receivers based on simplified models, it has been concluded that the duct volumetric receiver is inherently unstable when working with high solar flux. We didn't find any unstable receiver behaviour even at very high solar fluxes, and conclude that a substantial potential for efficiency improvement exists if selectivity mechanisms are properly combined. (author)

  9. Concentrated solar power generation using solar receivers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  10. Preliminary performance analysis of a transverse flow spectrally selective two-slab packed bed volumetric receiver

    CSIR Research Space (South Africa)

    Roos, TH

    2016-05-01

    Full Text Available stream_source_info Roos_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 2694 Content-Encoding UTF-8 stream_name Roos_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 21st SolarPACES... International Conference (SolarPACES 2015), 13-16 October 2015 Preliminary Performance Analysis of a Transverse Flow Spectrally Selective Two-slab Packed Bed Volumetric Receiver Thomas H. Roos1, a) and Thomas M. Harms2, b) 1Aeronautical Systems...

  11. Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Martin, F.J.; Camacho, E.F. [Universidad de Sevilla (Spain). Escuela Superior de Ingenieros; Berenguel, M. [Universidad de Almeria (Spain). Dpto. de Lenguajes y Computacion; Valverde, A. [Plataforma Solar de Almeria (Spain)

    1999-08-01

    The paper presents the development and implementation of a heuristic knowledge-based heliostat control strategy optimizing the temperature distribution within a volumetric receiver at the Plataforma Solar de Almeria (PSA) power tower plant. The experience in operating the plant has been used in the development of an automatic control strategy that provides an appropriate flux distribution within the volumetric receiver in order to obtain a desired temperature profile, and allows for operation without a continuous intervention of the operator, which is one of the main characteristics,and drawbacks in the exploitation of these kinds of plants. Experimental results are included and discussed in the paper. (author)

  12. Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques

    Science.gov (United States)

    Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel

    2016-05-01

    Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.

  13. Dish Stirling solar receiver program

    Science.gov (United States)

    Haglund, R. A.

    1980-01-01

    A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.

  14. Variable velocity in solar external receivers

    Science.gov (United States)

    Rodríguez-Sánchez, M. R.; Sánchez-González, A.; Acosta-Iborra, A.; Santana, D.

    2017-06-01

    One of the major problems in solar external receivers is tube overheating, which accelerates the risk of receiver failure. It can be solved implementing receivers with high number of panels. However, it exponentially increases the pressure drop in the receiver and the parasitic power consumption of the Solar Power Tower (SPT), reducing the global efficiency of the SPT. A new concept of solar external receiver, named variable velocity receiver, is able to adapt their configuration to the different flux density distributions. A set of valves allows splitting in several independent panels those panels in which the wall temperature is over the limit. It increases the velocity of the heat transfer fluid (HTF) and its cooling capacity. This receiver does not only reduce the wall temperature of the tubes, but also simplifies the control of the heliostat field and allows to employ more efficient aiming strategies. In this study, it has been shown that variable velocity receiver presents high advantages with respect to traditional receiver. Nevertheless, more than two divisions per panels are not recommendable, due to the increment of the pressure drop over 70 bars. In the design point (12 h of the Spring Equinox), the use of a variable number of panels between 18 and 36 (two divisions per panel), in a SPT similar to Gemasolar, improves the power capacity of the SPT in 5.7%, with a pressure drop increment of 10 bars. Off-design, when the flux distribution is high and not symmetric (e.g. 10-11 h), the power generated by the variable velocity receiver is 18% higher than the generated by the traditional receiver, at these hours the pressure drop increases almost 20 bars.

  15. A handbook for solar central receiver design

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, P.K.

    1986-12-01

    This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

  16. Solar Stirling receiver alternatives for the terrestrial solar application

    Science.gov (United States)

    Stearns, J.

    1986-01-01

    Concept studies have been completed for four dish-Stirling receivers, i.e., solar only and thermal storage receiver, each of which is either directly coupled or indirectly (heat pipe) coupled to the Stirling engine. The results of these studies are to be applied to systems benefit/cost analysis to determine the most desirable development approach.

  17. Solar central receiver heliostat reflector assembly

    Science.gov (United States)

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  18. Fused silica windows for solar receiver applications

    Science.gov (United States)

    Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg

    2016-05-01

    A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.

  19. Solar receiver performance of point focusing collector system

    Science.gov (United States)

    Wu, Y. C.; Wen, L. C.

    1978-01-01

    The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.

  20. Dish stirling solar receiver combustor test program

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  1. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  2. Test Facility for Volumetric Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, M.; Dibowski, G.; Pfander, M.; Sack, J. P.; Schwarzbozl, P.; Ulmer, S.

    2006-07-01

    Long-time testing of volumetric absorber modules is an inevitable measure to gain the experience and reliability required for the commercialization of the open volumetric receiver technology. While solar tower test facilities are necessary for performance measurements of complete volumetric receivers, the long-term stability of individual components can be tested in less expensive test setups. For the qualification of the aging effects of operating cycles on single elements of new absorber materials and designs, a test facility was developed and constructed in the framework of the KOSMOSOL project. In order to provide the concentrated solar radiation level, the absorber test facility is integrated into a parabolic dish system at the Plataforma Solar de Almeria (PSA) in Spain. Several new designs of ceramic absorbers were developed and tested during the last months. (Author)

  3. Development of 2.8-GHz Solar Flux Receivers

    Science.gov (United States)

    Yun, Youngjoo; Park, Yong-Sun; Kim, Chang-Hee; Lee, Bangwon; Kim, Jung-Hoon; Yoo, Saeho; Lee, Chul-Hwan; Han, Jinwook; Kim, Young Yun

    2014-12-01

    We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at 100° C. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

  4. Lumenhaus solar decathlon team receives 2010 XCaliber Award

    OpenAIRE

    Owczarski, Mark

    2010-01-01

    Eight faculty members working collaboratively together on Virginia Tech's Lumenhaus solar decathlon project received the university's 2010 XCaliber Award for excellence in creating and applying technologies on a large scale team project.

  5. Evaluation of solar-air-heating central-receiver concepts

    Energy Technology Data Exchange (ETDEWEB)

    Bird, S.P.; Drost, M.K.; Williams, T.A.; Brown, D.R.; Fort, J.A.; Garrett-Price, B.A.; Hauser, S.G.; McLean, M.A.; Paluszek, A.M.; Young, J.K.

    1982-06-01

    The potential of seven proposed air-heating central receiver concepts are evaluated based on an independent, uniform of each one's performance and cost. The concepts include: metal tubes, ceramic tubes, sodium heat pipes, ceramic matrix, ceramic domes, small particles, and volumetric heat exchange. The selection of design points considered in the analysis, the method and ground rules used in formulating the conceptual designs are discussed, and each concept design is briefly described. The method, ground rules, and models used in the performance evaluation and cost analysis and the results are presented. (LEW)

  6. Solar advanced internal film receiver; Receptor avanzado de pelicular interna

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1990-07-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs.

  7. Thermal modeling of a secondary concentrator integrated with an open direct-absorption molten-salt volumetric receiver in a beam-down tower system

    Science.gov (United States)

    Lahlou, Radia; Armstrong, Peter; Grange, Benjamin; Almheiri, Saif; Calvet, Nicolas; Slocum, Alexander; Shamim, Tariq

    2016-05-01

    An upward-facing three-dimensional secondary concentrator, herein termed Final Optical Element (FOE), is designed to be used in a beam-down tower in combination with an open volumetric direct-absorption molten-salt receiver tank acting simultaneously as a thermal energy storage system. It allows reducing thermal losses from the open receiver by decreasing its aperture area while keeping minimal spillage losses. The FOE is exposed to high solar fluxes, a part of which is absorbed by its reflector material, leading to material degradation by overheating. Consequently, the FOE may require active cooling. A thermal model of the FOE under passive cooling mechanism is proposed as a first step to evaluate its sensitivity to some design parameters. Then, it will be used to evaluate the requirements for the active cooling system. The model provides insights on the FOE thermal behavior and highlights the effectiveness of a design modification on passive cooling enhancement. First prototype tests under reduced flux and with no active cooling will be used for model adjustment.

  8. An assessment on hydrogen production using central receiver solar systems

    Science.gov (United States)

    Bilgen, C.; Bilgen, E.

    An assessment is presented on hydrogen production using a dedicated central receiver solar system concept coupled to two types of hydrogen producing processes, electrolysis and thermochemical. The study on solar electrolytic hydrogen was carried out using solar electricity and four different electrolytic technologies, namely, industrial unipolar 1980 and 1983 technologies, industrial bipolar and solid polymer electrolyte technology. The thermochemical process was the sulphur/iodine cycle, which is being developed by General Atomic Co. Systems, which is capable of producing about one-million GJ hydrogen per year, was developed at the conceptual level, and site specific computations were carried out. A general mathematical model was developed to predict the optical and thermal performance of the central receiver system coupled directly to the chemical plant. Cost models were developed for each subsystem based on the database published in the literature. Levelized and delevelized costs of solar hydrogen were then computed.

  9. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  10. Reduction of convective losses in solar cavity receivers

    Science.gov (United States)

    Hughes, Graham; Pye, John; Kaufer, Martin; Abbasi-Shavazi, Ehsan; Zhang, Jack; McIntosh, Adam; Lindley, Tim

    2016-05-01

    Two design innovations are reported that can help improve the thermal performance of a solar cavity receiver. These innovations utilise the natural variation of wall temperature inside the cavity and active management of airflow in the vicinity of the receiver. The results of computational fluid dynamics modelling and laboratory-scale experiments suggest that the convective loss from a receiver can be reduced substantially by either mechanism. A further benefit is that both radiative and overall thermal losses from the cavity may be reduced. Further work to assess the performance of such receiver designs under operational conditions is discussed.

  11. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long term objective of the Solar Central Receiver Hybrid Power System is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumpton, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains appendices to the conceptual design and systems analysis studies gien in Volume II, Books 1 and 2. (WHK)

  12. A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators

    Science.gov (United States)

    Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary

    2015-09-01

    Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.

  13. Evaluation and Error Analysis for a Solar thermal Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Pfander, M.

    2001-07-01

    In the following study a complete balance over the REFOS receiver module, mounted on the tower power plant CESA-1 at the Plataforma Solar de Almeria (PSA), is carried out. Additionally an error inspection of the various measurement techniques used in the REFOS project is made. Especially the flux measurement system Prohermes that is used to determine the total entry power of the receiver module and known as a major error source is analysed in detail. Simulations and experiments on the particular instruments are used to determine and quantify possible error sources. After discovering the origin of the errors they are reduced and included in the error calculation. the ultimate result is presented as an overall efficiency of the receiver module in dependence on the flux density at the receiver module's entry plane and the receiver operating temperature. (Author) 26 refs.

  14. Solar central receiver hybrid - A cost effective future power alternative

    Science.gov (United States)

    Beshore, D. G.; Bolton, C. N.; Montague, J. E.

    1980-05-01

    System analyses and conceptual designs of solar central receiver hybrid concepts using molten salt (60% NaNO3, 40% KNO3 by weight) and fossil fired nonsolar energy sources (coal, oil, or gas) have been performed. Analyses have developed plant configurations with various solar energy storage capacities and fossil fuels. Economic analyses support the final configuration selection based on minimization of the cost of energy produced from the plant. A 500 MWe commercial plant size installed for a 1990 initial year of operation is competitive with new coal, oil, and nuclear power generation sources. This hybrid plant will save an estimated 5 million barrels of oil per year.

  15. Heat pipe central solar receiver. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1979-04-01

    The objective of this project was the conceptual design of a Central Solar Receiver Gas Turbine Plant which utilizes a high temperature heat pipe receiver. Technical and economic feasibility of such a plant was to be determined and preliminary overall cost estimates obtained. The second objective was the development of the necessary heat pipe technology to meet the requirements of this receiver. A heat pipe receiver is ideally suited for heating gases to high temperatures. The heat pipes are essentially loss free thermal diffusers which accept a high solar flux and transform it to a lower flux which is compatible with heat transferred to gases. The high flux capability reduces receiver heating surface, thereby reducing receiver heat losses. An open recuperative air cycle with a turbine inlet temperature of 816/sup 0/C (1500/sup 0/F) was chosen as the baseline design. This results in peak metal temperatures of about 870/sup 0/C (1600/sup 0/F). The receiver consists of nine modular panels which form the semicircular backwall of a cavity. Gas enters the panels at the bottom and exits from the top. Each panel carries 637 liquid metal heat pipes which are mounted at right angle to the gas flow. The evaporators of the heat pipes protrude from the flux absorbing front surface of the panels, and the finned condensors traverse the gas stream. Capital cost estimates were made for a 10 MW(e) pilot plant. The total projected costs, in mid-1978 dollars, range from $1,947 to $2,002 per electrical kilowatt. On the same basis, the cost of a water/steam solar plant is approximately 50% higher.

  16. Solar Central Receiver Prototype Heliostat. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The objective of this project was to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs; and (2) Identification of needs for near term and future research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from solar central receiver power plants. The prototype heliostat design is presented in detail; and manufacturing, installation, and maintenance procedures described. (WHK)

  17. Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries

    Science.gov (United States)

    Yellowhair, Julius; Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.

    2014-09-01

    Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.

  18. Testing of Stirling engine solar reflux heat-pipe receivers

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  19. Finite element method for thermal analysis of concentrating solar receivers

    OpenAIRE

    Shtrakov, Stanko; Stoilov, Anton

    2006-01-01

    Application of finite element method and heat conductivity transfer model for calculation of temperature distribution in receiver for dish-Stirling concentrating solar system is described. The method yields discretized equations that are entirely local to the elements and provides complete geometric flexibility. A computer program solving the finite element method problem is created and great number of numerical experiments is carried out. Illustrative numerical results are given for an array...

  20. Solar central receiver prototype heliostat. Interim technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-05

    The objective of Phase I of this project is to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs. (2) Identification of needs for near term and further research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from Solar Central Receiver Power Plants. The Phase I study will define a low-cost heliostat preliminary design and the conceptual design of a heliostat manufacturing/installation plan which will result in low life cycle cost when produced and installed at high rate and large quantities for commercial Solar Central Receiver Power Plants. The study will develop the annualized life cycle cost and the performance of heliostats for a 30 year plant life, for each of three rates of continuous production and installation. The three specified rates are 25,000, 250,000, and 1,000,000 heliostats per year. The analysis of these varying production rates, requiring highly automated tooling and installation equipment concepts, will define the economies of large scale not realizable on Pilot Plant or Demonstration Plant installations. Project status is described in detail. (WHK)

  1. Second-law efficiency of solar-thermal cavity receivers

    Science.gov (United States)

    Moynihan, P. I.

    1983-01-01

    Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. An equation for the Second Law efficiency of a cavity receiver is derived from the definition of available energy, which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding environment. The fundamental concepts of the entropy and availability of radiation were explored from which a workable relationship among the reflected cone half-angle, the insolation, and the concentrator geometric characteristics was developed as part of the derivation of the Second Law efficiency. First and Second Law efficiencies were compared for data collected from two receivers that were designed for different purposes. A Second Law approach to quantifying the performance of a solar-thermal cavity receiver lends greater insight into the total performance than does the conventional First Law method.

  2. Optimized molten salt receivers for ultimate trough solar fields

    Science.gov (United States)

    Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas

    2016-05-01

    Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.

  3. Combustion system for hybrid solar fossil fuel receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  4. Heat loss investigation from spherical cavity receiver of solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, V. C. [Dept. of Mechanical Engineering, NDMVPS KBT College of Engineering, Nashik (India); Dongarwar, P. R. [Dept. of Mechanical Engineering, College of Military Engineering, Pune (India); Gawande, R. P. [Dept. of Mechanical Engineering, B.D.C.O.E. Wardha, Nagpur University, NagpurI (India)

    2016-11-15

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results.

  5. Dosimetric and volumetric changes in the rectum and bladder in patients receiving CBCT-guided prostate IMRT: analysis based on daily CBCT dose calculation.

    Science.gov (United States)

    Pearson, David; Gill, Sukhdeep K; Campbell, Nina; Reddy, Krishna

    2016-11-08

    Delivered dose can be calculated by transferring the planned treatment beams onto the daily CBCT. Bladder and rectum volumetric doses were calculated and cor-related to the daily bladder and rectum fullness. Patients for this study underwent hypofractionated prostate IMRT to 70 Gy in 28 fractions. Daily CBCT was utilized for image guidance. A clinically acceptable plan was created using a CTV-to-PTV uniform margin of 5 mm. Image fusion was performed to transfer the bladder and rectum contours onto each CBCT. Contours were then edited to match the anatomy of each CBCT. Using the daily treatment isocenter, the planned beams were transferred onto the CBCT and daily and cumulative DVHs calculated. For the results a total of 168 daily CBCTs were evaluated. The bladder was found to be smaller for 74.7% of the 168 daily CBCTs accessed in this study. This reduction in volume correlated to an increase in the cumulative bladder V70 Gy from 9.47% on the planning CT to 10.99% during treatment. V70Gy for the rectum was 7.27% on the planning CT, when all six patients were averaged, and increased to 11.56% on the average of all daily treatment CBCTs. Increases in volumetric rectum dose correlated with increases in rectal volume. For one patient, the rectum and blad-der absolute V70 Gy, averaged over the course of treatment, increased by 295% and 61%, respectively. Larger variations in the daily bladder and rectal volume were observed and these correlated to large deviations from the volumetric dose received by these structures. In summary, bladder and rectum volume changes during treatment have an effect on the cumulative dose received by these organs. It was observed that the volumetric dose received by the bladder decreases as the volume of the bladder increases. The inverse was true for the rectum.

  6. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  7. Evaluation of Veda, Inc. , central receiver solar collection system concept

    Energy Technology Data Exchange (ETDEWEB)

    Ator, J.

    1981-08-01

    The Unified Heliostat Array (UHA) is a geometrical heliostat field layout with rows of mirrors placed at various levels on terraces. The Veda Industrial Heliostat (VIH) is a toroidal segment mirror mounted on an equatorial mount. These two concepts are evaluated to assess the credibility of the optical designs and the validity of UHA and VIH performance estimates, to determine what the distinctive features embodied in UHA AND VIH concepts offer that more conventional central receiver technologies do not, and to determine where the UHA and VIH concepts might be most applicable in DOE's Solar Thermal Program. The UHA area efficiency, flux density distribution, and beam safety are evaluated, and the feasibility of using a secondary mirror and the potential for special applications are assessed. The optical design, equatorial mount, and manufacturability of the VIH are evaluated. (LEW)

  8. Erythemal ultraviolet solar radiation doses received by young skiers.

    Science.gov (United States)

    Serrano, María-Antonia; Cañada, Javier; Moreno, Juan Carlos

    2013-11-01

    Children are a special group since epidemiological evidence indicates that excessive exposure to sunlight at an early age increases the risk of skin cancer in later life. The purpose of this study is to quantify children's UV exposure when skiing, using dosimeters (VioSpor) placed on the shoulders of 10 participants. The children received a median daily Standard Erythema Dose of 2.1 within a range of 4.9-0.71, this being approximately 35% of the calculated 24 h ambient UV radiation on the horizontal plane. According to the results obtained, young skiers are exposed to UV radiation that can potentially cause skin damage and erythema and increase the risk of skin cancer in the course of a lifetime. These findings emphasise the need for adequate protective measures against solar radiation when skiing. The results also suggest that sun-protection campaigns should be undertaken aimed at children engaged in outdoor sports, including winter activities.

  9. Analysis of Using a Heliostat with Non-Rotating Solar Energy Receivers

    OpenAIRE

    Janpavlis, V; Suzdaļenko, A; Stepanovs, A; Dzelzkalēja, L

    2014-01-01

    The use of solar energy in Northern countries is not as obviously reasonable as in the countries that are located closer to the Equator due to bigger differences of daytime during changes of seasons, as well as lower solar irradiance. This paper investigates the advantages of using a heliostat with non-rotating solar energy receivers (like water/air heating collectors, stationary PV panels or solar illumination collectors). The optimal orientation of the solar receiver and the heliostat is di...

  10. The CAESAR project: Experimental and modeling investigations of methane reforming in a CAtalytically Enhanced Solar Absorption Receiver on a parabolic dish

    Energy Technology Data Exchange (ETDEWEB)

    Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. [Sandia National Labs., Albuquerque, NM (US); Buck, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Stuttgart (DE). Inst. of Technical Thermodynamics

    1993-07-01

    A joint US/Federal Republic of Germany (FRG) project has successfully tested a unique solar-driven chemical reactor in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment. The CAESAR test was a {open_quotes}proof-of-concept{close_quotes} demonstration of carbon-dioxide reforming of methane in a commercial-scale, solar, volumetric receiver/reactor on a parabolic dish concentrator. The CAESAR design; test facility and instrumentation; thermal and chemical tests; and analysis of test results are presented in detail. Numerical models for the absorber and the receiver are developed and predicted performance is compared with test data. Post test analyses to assess the structural condition of the absorber and the effectiveness of the rhodium catalyst are presented. Unresolved technical issues are identified and future development efforts are recommended.

  11. An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Berenguel, M. [Universidad de Almeria, Dept. de Lenguajes y Computacion, La Canada Almeria (Spain); Rubio, F.R.; Lara, P.J.; Arahal, M.R.; Camacho, E.F.; Lopez, M. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain); Valverde, A. [Plataforma Solar de Almeria (PSA-CIEMAT), Tabernas (Almeria) (Spain)

    2004-07-01

    This paper presents the development of a simplified and automatic heliostat positioning offset correction control system using artificial vision techniques and common CCD devices. The heliostats of a solar power plant reflect solar radiation onto a receiver (in this case, a volumetric receiver) placed at the top of a tower in order to provide a desired energy flux distribution correlated with the coolant flow (in this case air mass flow) through the receiver, usually in an open loop control configuration. There exist error sources that increase the complexity of the control system, some of which are systematic ones, mainly due to tolerances, wrong mirror facets alignment (optical errors), errors due to the approximations made when calculating the solar position, etc., that produce errors (offsets) in the heliostat orientation (aiming point). The approximation adopted in this paper is based on the use of a B/W CCD camera to correct these deviations in an automatic way imitating the same procedure followed by the operators. The obtained images are used to estimate the distance between the sunbeam centroid projected by the heliostats and a target placed on the tower, this distance thus is used for low accuracy offset correction purposes. Basic threshold-based image processing techniques are used for automatic correction. (Author)

  12. Techno-economic assessment of a hybrid solar receiver and combustor

    Science.gov (United States)

    Lim, Jin Han; Nathan, Graham; Dally, Bassam; Chinnici, Alfonso

    2016-05-01

    A techno-economic analysis is performed to compare two different configurations of hybrid solar thermal systems with fossil fuel backup to provide continuous electricity output. The assessment compares a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device with a reference conventional solar thermal system using a regular solar cavity receiver with a backup boiler, termed the Solar Gas Hybrid (SGH). The benefits of the integration is assessed by varying the size of the storage capacity and heliostat field while maintaining the same overall thermal input to the power block.

  13. A Stable Carbon Nanotube Nanofluid for Latent Heat-Driven Volumetric Absorption Solar Heating Applications

    OpenAIRE

    Nathan Hordy; Delphine Rabilloud; Jean-Luc Meunier; Sylvain Coulombe

    2015-01-01

    Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids) has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over ex...

  14. The formation of strong electric fields and volumetric charges in the Solar atmosphere

    CERN Document Server

    Sarsembaeva, A T; Kato, K

    2012-01-01

    The processes occurring in the solar atmosphere are diverse and depend on many important factors. For example, from magnetic fields, their sudden changes, from emissions of substance from the depths of the Sun, distribution of shock waves and plasma jets, etc. The paper describes the model of formation of the charged volumes of gas in solar atmosphere, which is called solar "storm clouds" by analogy with terrestrial storm clouds. The model will be based on the theory ionization equilibrium and the Saha equation.

  15. A Stable Carbon Nanotube Nanofluid for Latent Heat-Driven Volumetric Absorption Solar Heating Applications

    Directory of Open Access Journals (Sweden)

    Nathan Hordy

    2015-01-01

    Full Text Available Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over extended periods of time at high temperatures and throughout repetitive evaporation/condensation cycles. In this work, we report for the first time a nanofluid consisting of plasma-functionalized multiwalled carbon nanotubes (MWCNTs suspended in denatured alcohol, which achieves this required stability. In addition, optical characterization of the nanofluid demonstrates that close to 100% of solar irradiation can be absorbed over a relatively small nanofluid thickness.

  16. Mathematical Modeling of a developed Central Receiver Based on Evacuated Solar Tubes

    Directory of Open Access Journals (Sweden)

    Ali Basil. H.

    2016-01-01

    Full Text Available Solar central receiver plays a considerable role in the plant output power; it is one of the most important synthesis in the solar power tower plants. Its performance directly affects the efficiency of the entire solar power generation system. In this study, a new designed receiver model based on evacuated solar tube was proposed, and the dynamic characteristics of the developed receiver were investigated. In order to optimise and evaluate the dynamic characteristics of solar power plant components, the model investigates the solar radiation heat conversion process through the developed receiver, where the energy and mass conservation equations are used to determine the working fluid temperature and state through the receiver parts, beside the calculation and analysis of the thermal losses.

  17. Plastic windows for concentrating solar furnace receiver-reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.L.; Fletcher, E.A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Mechanical Engineering

    1995-10-01

    Inexpensive window materials are needed for high temperature solar processors. The authors studied how the solar transmission and tensile elongation of plastic materials changed when exposed to high solar concentration ratios. Teflon, Tefzel, Flex 2800, and Lexan were tested. Solar transmissions before and after 240 hours exposure for the fluorinated materials and 119 hours exposure for Lexan averaged: Teflon, 0.952 and 0.943; Tefzel, 0.913 and 0.915; Flex 2800, 9.910 and 0.905; and Lexan, 0.864 and 0.859. The average transmission changes for Tefzel, Flex 2800 and Lexan were not statistically significant. The level of solar concentration had no statistically significant effect on optical properties of the fluorinated materials. Lexan suffered a 90% loss in ultimate elongation. High concentration ratios do not substantially affect the transmission loss rate of these windows. If plastic windows are kept cool, they should have long service lives.

  18. Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance

    Science.gov (United States)

    Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.

    2015-09-01

    Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.

  19. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Science.gov (United States)

    Li, Zhi-Gang; Tang, Da-Wei; Li, Tie; Du, Jing-Long

    2011-05-01

    We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface. Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solar-thermal efficiency of 67.1%.

  20. Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

  1. Analysis of volumetric response of pituitary adenomas receiving adjuvant CyberKnife stereotactic radiosurgery with the application of an exponential fitting model

    Science.gov (United States)

    Yu, Yi-Lin; Yang, Yun-Ju; Lin, Chin; Hsieh, Chih-Chuan; Li, Chiao-Zhu; Feng, Shao-Wei; Tang, Chi-Tun; Chung, Tzu-Tsao; Ma, Hsin-I; Chen, Yuan-Hao; Ju, Da-Tong; Hueng, Dueng-Yuan

    2017-01-01

    Abstract Tumor control rates of pituitary adenomas (PAs) receiving adjuvant CyberKnife stereotactic radiosurgery (CK SRS) are high. However, there is currently no uniform way to estimate the time course of the disease. The aim of this study was to analyze the volumetric responses of PAs after CK SRS and investigate the application of an exponential decay model in calculating an accurate time course and estimation of the eventual outcome. A retrospective review of 34 patients with PAs who received adjuvant CK SRS between 2006 and 2013 was performed. Tumor volume was calculated using the planimetric method. The percent change in tumor volume and tumor volume rate of change were compared at median 4-, 10-, 20-, and 36-month intervals. Tumor responses were classified as: progression for >15% volume increase, regression for ≤15% decrease, and stabilization for ±15% of the baseline volume at the time of last follow-up. For each patient, the volumetric change versus time was fitted with an exponential model. The overall tumor control rate was 94.1% in the 36-month (range 18–87 months) follow-up period (mean volume change of −43.3%). Volume regression (mean decrease of −50.5%) was demonstrated in 27 (79%) patients, tumor stabilization (mean change of −3.7%) in 5 (15%) patients, and tumor progression (mean increase of 28.1%) in 2 (6%) patients (P = 0.001). Tumors that eventually regressed or stabilized had a temporary volume increase of 1.07% and 41.5% at 4 months after CK SRS, respectively (P = 0.017). The tumor volume estimated using the exponential fitting equation demonstrated high positive correlation with the actual volume calculated by magnetic resonance imaging (MRI) as tested by Pearson correlation coefficient (0.9). Transient progression of PAs post-CK SRS was seen in 62.5% of the patients receiving CK SRS, and it was not predictive of eventual volume regression or progression. A three-point exponential model is of potential predictive value

  2. LCOE reduction for parabolic trough CSP: Innovative solar receiver with improved performance at medium temperature

    Science.gov (United States)

    Stollo, A.; Chiarappa, T.; D'Angelo, A.; Maccari, A.; Matino, F.

    2016-05-01

    Concentrated Solar Power (CSP) applications represent an effective possibility to gain energy from the Sun; however, the lasting CSP market crisis compels continuous improvements in terms of cost reduction and performance increase. Focused on parabolic trough technology, this paper describes the innovation studied and realized on solar receivers to gain optimized optical performance while increasing the production versatility, hence boosting the solar plant efficiency and finally reducing the estimated LCOE.

  3. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research project by Advanced Cooling Technologies, Inc. (ACT) will develop an advanced high temperature heat pipe solar receiver that...

  4. Effects of pointing errors on receiver performance for parabolic dish solar concentrators

    Science.gov (United States)

    Hughes, R. O.

    1978-01-01

    The effects of dynamic (moving) pointing errors on the performance of solar thermal receivers is investigated. Only point focusing types of solar collectors are considered. The key element in the study is the analytical derivation of the intercept factor that relates pointing errors to captured energy at the receiver. A detailed example using typical parameter values is modeled on the digital computer and demonstrates the theory and the dynamic nature of the problem.

  5. CFD analysis of supercritical CO2 used as HTF in a solar tower receiver

    Science.gov (United States)

    Roldán, M. I.; Fernández-Reche, J.

    2016-05-01

    The relative cost of a solar receiver can be minimized by the selection of an appropriate heat transfer fluid capable of achieving high receiver efficiencies. In a conventional central receiver system, the concentrated solar energy is transferred from the receiver tube walls to the heat transfer fluid (HTF), which passes through a heat exchanger to generate steam for a Rankine cycle. Thus, higher working fluid temperature is associated with greater efficiency in receiver and power cycle. Emerging receiver designs that can enable higher efficiencies using advanced power cycles, such as supercritical CO2 (s-CO2) closed-loop Brayton cycles, include direct heating of s-CO2 in tubular receiver designs capable of withstanding high internal fluid pressures (around 20 MPa) and temperatures (900 K). Due to the high pressures required and the presence of moving components installed in pipelines (ball-joints and/or flexible connections), the use of s-CO2 presents many technical challenges due to the compatibility of seal materials and fluid leakages of the moving connections. These problems are solved in solar tower systems because the receiver is fixed. In this regard, a preliminary analysis of a tubular receiver with s-CO2 as HTF has been developed using the design of a molten-salt receiver which was previously tested at Plataforma Solar de Almería (PSA). Therefore, a simplified CFD model has been carried out in this study in order to analyze the feasibility of s-CO2 as HTF in solar towers. Simulation results showed that the heat gained by s-CO2 was around 75% greater than the one captured by molten salts (fluid inlet temperature of 715 K), but at a pressure range of 7.5-9.7 MPa. Thus, the use of s-CO2 as HTF in solar tower receivers appears to be a promising alternative, taking into account both the operating conditions required and their maintenance cost.

  6. Solar augmentation for process heat with central receiver technology

    Science.gov (United States)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  7. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    Science.gov (United States)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  8. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  9. Solar central receiver prototype heliostat. Volume III. Cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The Boeing heliostat design can be produced and installed for a Capital Cost of $42 per square meter at high commercial plant quantities and rates. This is 14% less than the DOE cost target. Even at a low commercial plant production rate of 25,000 heliostats per year the Capital Cost of $48 per square meter is 2% less than the cost goal established by the DOE. Projected capital costs and 30 year maintenance costs for three scenarios of production and installation are presented: (1) commercial rate production of 25,000, 250,000, and 1,000,000 heliostats per year; (2) a one-time only production quantity of 2500 heliostats; and (3) commercial rate production of 25,000 heliostats per year with each plant (25,000 heliostats) installed at widely dispersed sites throughout the Southwestern United States. These three scenarios for solar plant locations and the manufacturing/installation processes are fully described, and detailed cost breakdowns for the three scenarios are provided.

  10. Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

  11. Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

  12. Measurements of solar flux density distribution on a plane receiver due to a flat heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.M.; Fathalah, K.A.; Al-Rabghi, O.M. [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    1995-06-01

    An experimental facility is designed and manufactured to measure the solar flux density distribution on a central flat receiver due to a single flat heliostat. The tracking mechanism of the heliostat is controlled by two stepping motors, one for tilt angle control and the other for azimuth angle control. A x-y traversing mechanism is also designed and mounted on a vertical central receiver plane, where the solar flux density is to be measured. A miniature solar sensor is mounted on the platform of the traversing mechanism, where it is used to measure the solar flux density distribution on the receiver surface. The sensor is connected to a data acquisition card in a host computer. The two stepping motors of the heliostat tracking mechanism and the two stepping motors of the traversing mechanism are all connected to a controller card in the same host computer. A software `TOWER` is prepared to let the heliostat track the sun, move the platform of the traversing mechanism to the points of a preselected grid, and to measure the solar flux density distribution on the receiver plane. Measurements are carried out using rectangular flat mirrors of different dimensions at several distances from the central receiver. Two types of images were identified on the receiver plane - namely, apparent (or visible) and mirror-reflected radiation images. Comparison between measurements and a mathematical model validates the mathematical model. 13 refs., 12 figs., 1 tab.

  13. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    Science.gov (United States)

    Przenzak, Estera; Filipowicz, Mariusz

    2016-03-01

    This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30%) is not satisfactory but possibility of improvements exist.

  14. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    Directory of Open Access Journals (Sweden)

    Przenzak Estera

    2016-01-01

    Full Text Available This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30% is not satisfactory but possibility of improvements exist.

  15. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Gang; TANG Da-Wei; LI Tie; DU Jing-Long

    2011-01-01

    @@ We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing.Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results,we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.%We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.

  16. Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting.

    Science.gov (United States)

    Shin, Won-Ho; Yang, Se-Hoon; Kwon, Do-Hoon; Han, Sang-Kook

    2016-10-31

    We propose a self-reverse-biased solar panel optical receiver for energy harvesting and visible light communication. Since the solar panel converts an optical component into an electrical component, it provides both energy harvesting and communication. The signal component can be separated from the direct current component, and these components are used for communication and energy harvesting. We employed a self-reverse-biased receiver circuit to improve the communication and energy harvesting performance. The reverse bias on the solar panel improves the responsivity and response time. The proposed system achieved 17.05 mbps discrete multitone transmission with a bit error rate of 1.1 x 10-3 and enhanced solar energy conversion efficiency.

  17. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  18. Reflux heat-pipe solar receivers for dish-electric systems

    Science.gov (United States)

    Andraka, Charles E.; Diver, Richard B.

    1988-04-01

    The feasibility of competitive, modular bulk electric power from the sun may be greatly enhanced by the use of a reflux heat pipe receiver to combine a heat engine with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of dish-electric technology in terms of enhanced performance, lower cost, longer life, and greater flexibility in engine design. In the reflux (i.e., gravity assisted) heat pipe receiver, concentrated solar radiation causes liquid metal (sodium, potassium, or NaK) to evaporate. The vapor flows to the engine interface heat exchanger, where it condenses and releases the latent heat. The condensate is returned to the receiver absorber by gravity (refluxing), and distributed over the surface by gravity and/or capillary forces in a wick lining the receiver. It is essentially an adaptation of heat pipe technology to the peculiar requirements of concentrated solar flux, and provides many advantages over conventional heated tub receiver technology. This overview paper describes the current status and future plans for the U.S. Solar Thermal Program reflux receiver development program at Sandia National Laboratories. Current work includes conventional mesh wick receivers, sintered metal wicks, and pool boiler receivers. The relative design merits and concerns of the different approaches and technology development test plans are discussed.

  19. General formula for the incidence factor of a solar heliostat receiver system.

    Science.gov (United States)

    Wei, L Y

    1980-09-15

    A general formula is derived for the effective incidence factor of an array of heliostat mirrors for solar power collection. The formula can be greatly simplified for arrays of high symmetry and offers quick computation of the performance of the array. It shows clearly how the mirror distribution and locations affect the overall performance and thus provide a useful guidance for the design of a solar heliostat receiver system.

  20. Optical and Structural Characterization of Nickel Coatings for Solar Collector Receivers

    Directory of Open Access Journals (Sweden)

    Stefano Pratesi

    2014-01-01

    Full Text Available The development of spectrally selective materials is gaining an increasing role in solar thermal technology. The ideal spectrally selective solar absorber requires high absorbance at the solar spectrum wavelengths and low emittance at the wavelengths of thermal spectrum. Selective coating represents a promising route to improve the receiver efficiency for parabolic trough collectors (PTCs. In this work, we describe an intermediate step in the fabrication of black-chrome based solar absorbers, namely, the fabrication and characterization of nickel coatings on stainless steel substrates. Microstructural characteristics of nickel surfaces are known to favorably affect further black chrome deposition. Moreover, the high reflectivity of nickel in the thermal infrared wavelength region can be advantageously exploited for reducing thermal emission losses. Thus, this report investigates structural features and optical properties of the nickel surfaces, correlating them to coating thickness and deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  1. In-situ measurement of concentrated solar flux and distribution at the aperture of a central solar receiver

    Science.gov (United States)

    Ferriere, Alain; Volut, Mikael; Perez, Antoine; Volut, Yann

    2016-05-01

    A flux mapping system has been designed, implemented and experimented at the top of the Themis solar tower in France. This system features a moving bar associated to a CCD video camera and a flux gauge mounted onto the bar used as reference measurement for calibration purpose. Images and flux signal are acquired separately. The paper describes the equipment and focus on the data processing to issue the distribution of flux density and concentration at the aperture of the solar receiver. Finally, the solar power entering into the receiver is estimated by integration of flux density. The processing is largely automated in the form of a dedicated software with fast execution. A special attention is paid to the accuracy of the results, to the robustness of the algorithm and to the velocity of the processing.

  2. Development of a solar thermal central heat receiver using molten salt

    Science.gov (United States)

    Tracey, T. R.

    1981-06-01

    The development and test of a 5 MWth solar heat receiver using a molten nitrate salt (60 percent NaNO3, 40 percent KNaNO3) as the heat transfer fluid is described. The application of the receiver concept in a central receiver solar power system is explained. The advantages of using molten nitrate salts as the receiver heat transfer fluid and the storage fluid are discussed. The problems associated with the receiver development including the need for high temperatures and combinations of creep and fatigue in the receiver tubes are discussed. Our approach to scaling from the 5 MWth test receiver to commercial receivers in the range of 200 MWth to 500 MWth is defined. The 5 MWth test system is described including the instrumentation used. The test facility which has a 60 m tower and 222 heliostats is described. The test results are presented. The receiver was in test for 500 hr at temperature and heat flux levels expected in commercial receiver systems.

  3. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  4. Performance assessment of GPS receivers during the September 24, 2011 solar radio burst even

    DEFF Research Database (Denmark)

    Bilal, Muhammad; Alberti, Valentina; Cianca, Ernestina

    2015-01-01

    The sudden outburst of in-band solar radio noise from the Sun is recognized as one of the potential Radio Frequency Interference (RFI) sources that directly impact the performance of Global Navigation Satellite System (GNSS) receivers. On September 24, 2011, the solar active region 1302 unleashed...... the impact of September 24, 2011 SRB event on the performance of a significant subset of NAVSTAR Global Positioning System (GPS) receivers located in the sunlit hemisphere. The performance assessment is carried out in terms of Carrier-to-Noise power spectral density ratio (C/N0) degradation, dual...

  5. Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver

    Science.gov (United States)

    Kolb, Gregory J [Albuquerque, NM

    2012-02-07

    A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

  6. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  7. High-temperature solar receiver integrated with a short-term storage system

    Science.gov (United States)

    Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria

    2017-06-01

    Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.

  8. Optical design and optimization of parabolic dish solar concentrator with a cavity hybrid receiver

    Science.gov (United States)

    Blázquez, R.; Carballo, J.; Silva, M.

    2016-05-01

    One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.

  9. Master Control and Data Acquisition System for a Solar Central Receiver Electric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Soderstrand, M.A. (Sandia Labs., Albuquerque, NM); Darsey, D.M. (Aerospace Corp., El Segundo, CA); Rountree, R.C. (California Univ., Livermore); Sheahan, R.R. (Southern California Edison Co., Los Angeles)

    1979-09-01

    A design of the 10-megawatt electric Solar Central Receiver Power Plant currently under construction in Barstow, California is described. Consideration is given to the collector, receiver, and thermal storage subsystems. The circuits and systems concepts related to the Master Control and Data Acquisition Systems are emphasized. Implementation of the Master Control Subsystem, operational requirements, and software are discussed along with its status and expectations.

  10. Light-receiving characteristics of a distributed solar module with a plant shoot configuration

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Shin' ya; Tanno, Itaru; Shiratori, Taichiro [Department of Mechanical Engineering, Tomakomai National College of Technology, Nishikioka 443, Tomakomai, Hokkaido 0591275 (Japan)

    2009-05-15

    The object of this study is to develop a solar power generation system with high energy density. In order to improve the energy density of a solar power generation system, compaction of the system (improvement of light-receiving density) and a directive fall (dependency on the solar position is excluded) are required. So, in this study, because the issues described above are resolved, a solar cell module is divided and distributed. In this paper, the relation between the shoot shape of a 'dogwood tree,' 'ginkgo tree,' 'Dendropanax trifidus,' and 'Acer palmatum var. matsumurae' and the light-receiving amount is clarified by numerical analysis, and the optimal solution of each shoot shape and result of the light-receiving density were obtained. Furthermore, the characteristics of variables, such as leaf size, installation location, length of the branch of a leaf, and light-receiving amount of each shoot, were examined. As a result, in the distribution of the solar cell module with the shoot shape of each plant except dogwood, the light-receiving density showed clear improvement compared with the distribution of a square module. Compared with a square leaf, the maximum differences of each light-receiving density of D. trifidus, ginkgo, and A. palmatum var. matsumurae were 2.0 times, 7.4 times, and 6.4 times in January, respectively. On the other hand, they were 1.9 times, 8.7 times, and 7.3 times in July. (author)

  11. Solar receiver heliostat reflector having a linear drive and position information system

    Science.gov (United States)

    Horton, Richard H.

    1980-01-01

    A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

  12. Heat pipe central solar receiver. Semiannual progress report, September 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1977-09-01

    It is proposed to develop a solar-to-gas heat exchanger for a Central Solar Receiver Power Plant. The concept employs heat pipes to transfer the concentrated solar flux to the gaseous working medium of a Brayton cycle conversion system. During early phases of the program, an open air cycle with recuperator and a turbine inlet temperature of 800/sup 0/C was selected as the optimum design. The predicted cycle efficiency is 33 percent and the overall solar-to-electric efficiency is 20 percent. Three potential receiver configurations were also identified during the initial phases of the program. Optimum heat pipe diameter is approximately 5 cm for all three receiver configurations, and typical lengths are 2 to 3 meters. The required number of heat pipes for a 10 MWe receiver ranges from 2000 to 8000. Heat transport requirements per pipe vary from 4 to 18 Kw. Several wick structures were developed and evaluated in subscale heat pipe tests using sodium as the working fluid. One full scale heat pipe (5 cm diameter by 183 cm long) was developed and tested with sodium as the working fluid.

  13. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  14. Spillage and flux density on a receiver aperture lip. [of solar thermal collector

    Science.gov (United States)

    Jaffe, L. D.

    1985-01-01

    In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.

  15. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...... with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...... and the economic perspectives, the results suggest that it is not beneficial to use the Kalina cycle for high temperature concentrating solar power plants....

  16. Fatigue life prediction of Ni-base thermal solar receiver tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hartrott, Philipp von; Schlesinger, Michael [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Uhlig, Ralf; Jedamski, Jens [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2010-07-01

    Solar receivers for tower type Solar Thermal Power Plants are subjected to complex thermo-mechanical loads including fast and severe thermo-mechanical cycles. The material temperatures can reach more than 800 C and fall to room temperature very quickly. In order to predict the fatigue life of a receiver design, receiver tubes made of Alloy 625 with a wall thickness of 0.5 mm were tested in isothermal and thermo-cyclic experiments. The number of cycles to failure was in the range of 100 to 100,000. A thermo-mechanical fatigue life prediction model was set up. The model is based on the cyclic deformation of the material and the damage caused by the growth of fatigue micro cracks. The model reasonably predicts the experimental results. (orig.)

  17. Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

    Science.gov (United States)

    Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng; Velazquez-Vargas, Luis G; Maryamchik, Mikhail

    2016-10-04

    A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vessel connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.

  18. Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng; Velazquez-Vargas, Luis G; Maryamchik, Mikhail

    2016-10-04

    A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vessel connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.

  19. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  20. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    Science.gov (United States)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  1. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  2. The transient behavior of solar-heated radiation receivers for small gas turbines

    Science.gov (United States)

    Bammert, Karl; Johanning, Joachim; Lange, Hans

    1987-03-01

    Model-simulation techniques for estimating the dynamic behavior of hollow radiation receivers for use in hybrid solar/fossil-fuel gas-turbine systems are described and demonstrated. The reference configuration is characterized; the receiver model, the system of differential equations, and the computation procedures used in the simulations are explained in detail; and typical results are presented graphically. A receiver with internal ceramic cladding in addition to glass-wool insulation is found to be less sensitive to intermittent insolation decreases (simulating clouds passing overhead) than a receiver with glass wool only; it is predicted that the lower stress loading of the receiver tubing in the ceramic-clad design will increase the service life of the system.

  3. Sodium reflux pool-boiler solar receiver on-sun test results

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  4. Thermal buffering of receivers for parabolic dish solar thermal power plants

    Science.gov (United States)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  5. Thermal performance and stress analyses of the cavity receiver tube in the parabolic trough solar collector

    Science.gov (United States)

    Cao, F.; Li, Y.; Wang, L.; Zhu, T. Y.

    2016-08-01

    A light ray tracing model and a heat transfer model were built to analyse the heat flux distribution and heat transfer in a 1m cavity receiver tube with Parabolic Trough Collectors as the concentrator. The numerical methods were used to simulate the thermal stress and deformation of the receiver tube. The temperature fields of the receiver tube and the thermal stress distribution in the steel tube at the cross section and along the fluid flowing direction were presented. It is obtained from this study that non-uniform heat flux distribution is absorbed at the receiver tube outer surface due to the structure of the cavity receiver tube. Temperature fields in the steel receiver tube at the inlet and the outlet match well with the incident solar radiation. An eccentric circle temperature gradient is observed at cross section of the outlet fluid. The equivalent stress is a complex result of solar heating flux, energy transfer inside the PTC and the fluid and steel characteristics. Highest deformation is 3.1mm at 0.82m. On increasing the fluid mass flow rate, higher fluid mass flow rate results in higher equivalent stress along the absorber tube.

  6. High-flux solar absorber concept for central receiver power plants

    Science.gov (United States)

    Pomeroy, B. D.; Roberts, J. M.; Narayanan, T. V.

    1981-02-01

    For cylindrical receivers with a capacity of about 400 MW/t, an aim-at-the belt focusing strategy can produce average fluxes the order of 0.5 MW/sq m with peaks as high as 2 MW/sq m. An absorber concept is described which uses liquid sodium coolant and a three-header configuration to efficiently capture this solar power. The mechanical design of this absorber is discussed and thermal performance estimates are presented showing the solar-capture efficiency over a range of solar intensities. The sodium-flow characteristics and some potential flow-control problems are also described. A thermal-stress analysis is presented which shows that a limiting factor on the flux capability may be tube-wall creep/fatigue failure and not the heat-transfer capability of sodium.

  7. Solar Central Receiver Prototype Heliostat. Volume II. Phase II planning (preliminary)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A currently planned DOE program will develop and construct a 10 MW/sub e/ Pilot Plant to demonstrate the feasibility and operational characteristics of Solar Central Receiver Power Generation. The field of heliostats is a major element of the Solar Central Receiver Power Generation system. The primary objective of the program described is to establish and verify the manufacturability, performance, durability, and maintenance requirements of the commercial plant heliostat design. End products of the 16 month effort include: (1) design, fabrication, and test of heliostats; (2) preliminary designs of manufacturing, assembly, installation, and maintenance processes for quantity production; (3) detailed design of critical tooling or other special equipment for such processes; (4) refined cost estimates for heliostats and maintenance; and (5) an updated commercial plant heliostat preliminary design. The program management and control system is discussed. (WHK)

  8. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    Science.gov (United States)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  9. Thermodynamic Analysis of Beam down Solar Gas Turbine Power Plant equipped with Concentrating Receiver System

    Science.gov (United States)

    Azharuddin; Santarelli, Massimo

    2016-09-01

    Thermodynamic analysis of a closed cycle, solar powered Brayton gas turbine power plant with Concentrating Receiver system has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage where the water is scarce. With the normal Brayton cycle a Concentrating Receiver System has been analysed which has a dependence on field density and optical system. This study presents a method of optimization of design parameter, such as the receiver working temperature and the heliostats density. This method aims at maximizing the overall efficiency of the three major subsystem that constitute the entire plant, namely, the heliostat field and the tower, the receiver and the power block. The results of the optimization process are shown and analysed.

  10. Research on high-temperature heat receiver in concentrated solar radiation system

    Directory of Open Access Journals (Sweden)

    Estera Przenzak

    2017-01-01

    Full Text Available The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system.

  11. 10-MWe pilot-plant-receiver-panel test-requirements document: Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-10

    Plans are presented for insolation testing of a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally the design planned for the 10 MWe pilot plant. Testing includes operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. A brief description of the pilot plant receiver subsystem is presented, followed by a detailed description of the receiver assembly to be tested at the Solar Thermal Test Facility. Major subassemblies are described, including the receiver panel, flow control, electrical control and instrumentation, and the structural assembly. Requirements of the Solar Thermal Test Facility for the tests are given. System safety measures are described. The tests, operating conditions, and expected results are presented. Quality assurance, task responsibilities, and test documentation are also discussed. (LEW)

  12. Effects of Absorber Emissivity on Thermal Performance of a Solar Cavity Receiver

    Directory of Open Access Journals (Sweden)

    Jiabin Fang

    2014-01-01

    Full Text Available Solar cavity receiver is a key component to realize the light-heat conversion in tower-type solar power system. It usually has an aperture for concentrated sunlight coming in, and the heat loss is unavoidable because of this aperture. Generally, in order to improve the thermal efficiency, a layer of coating having high absorptivity for sunlight would be covered on the surface of the absorber tubes inside the cavity receiver. As a result, it is necessary to investigate the effects of the emissivity of absorber tubes on the thermal performance of the receiver. In the present work, the thermal performances of the receiver with different absorber emissivity were numerically simulated. The results showed that the thermal efficiency increases and the total heat loss decreases with increasing emissivity of absorber tubes. However, the thermal efficiency increases by only 1.6% when the emissivity of tubes varies from 0.2 to 0.8. Therefore, the change of absorber emissivity has slight effect on the thermal performance of the receiver. The reason for variation tendency of performance curves was also carefully analyzed. It was found that the temperature reduction of the cavity walls causes the decrease of the radiative heat loss and the convective heat loss.

  13. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  14. First on-sun test of NaK pool-boiler solar receiver

    Science.gov (United States)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.; Cordeiro, P. G.; Dudley, V. E.; Rawlinson, K. S.

    During 1989-1990, a refluxing liquid-metal pool-boiler solar receiver designed for dish/Stirling application at 75 kW(sub t) throughput was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver included (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Following this first demonstration, a second-generation pool-boiler receiver that brings the concept closer to commercialization has been designed, constructed, and successfully tested. For long life, the new receiver is built from Haynes Alloy 230. For increased safety factors against film boiling and flooding, the absorber area and vapor-flow passages have been enlarged. To eliminate the need for trace heating, sodium has been replaced by the sodium-potassium alloy NaK-78. To reduce manufacturing costs, the receiver has a powdered-metal coating instead of EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it contains a small amount of xenon. In this paper, we present the receiver design and report the results of on-sun tests using a nominal 75 kW(sub t) test-bed concentrator to characterize boiling stability, hot-restart behavior, and thermal efficiency at temperatures up to 750 C. We also report briefly on late results from an advanced-concepts pool-boiler receiver.

  15. Free convective heat loss from cavity-type solar furnace; Solar receiver kara no shizen tairyu ni yoru netsusonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I.; Ito, N. [Meiji University, Tokyo (Japan)

    1996-10-27

    Free convective heat loss from solar heat receivers was studied, using three laboratory model receivers (different in depth L and aperture diameter d) heated by electric heaters. Most of the heat produced by heaters was transmitted to the air inside. The cylindrical vessel walls were fully insulated against heat. Heat loss being supposed to result mainly from transfer by free convection, the experiment results were edited by use of Nusselt number Nu and Rayley number Ra. Relations between Nu(D/d){sup m1} and Ra(L/D){sup m2} were plotted in a chart. Here, D is the receiver inner diameter, and m1 and m2 are constants that can be determined by computation. Tests points were provided approximately lineally, irrespective of D, L, or receiver inclination. Air currents were found to produce one or more swirls inside, thanks to the current visualization technique, when the receiver inclination was not sharper than 120{degree} (except 0{degree}). The number of swirls increased as the inner wall temperature rose. This kind of behavior of air currents directly affects the degree of heat loss. 9 refs., 4 figs.

  16. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  17. Full-size solar dynamic heat receiver thermal-vacuum tests

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  18. Solar central receiver hybrid power system. Monthly technical progress report for the month of December 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-17

    Levelized busbar energy costs for the sodium-cooled hybrid central receiver concept using both oil and coal as a fuel were developed as a function of the plant capacity factor and as a function of the solar multiple. The fuel escalation question was reviewed in detail on the basis of past historical data, and it was concluded that the lower escalation numbers that are provided in the requirements definition document appear to be more likely to represent the real situation. Subsystem-level trade studies were continued during this reporting period. A detailed investigation of the series/parallel arrangement of the sodium heater and solar receiver was conducted. The various performance, lifetime, and cost factors were determined for each arrangement for the receiver and nonsolar subsystems, respectively. Collector subsystem studies were continued. Revised cost algorithms that include levelized O and M costs for the heliostats were generated in order that they can be used in the field optimization. On the basis of the subsystem studies and the economic assessment work, a reference configuration was tentatively derived. This configuration does not require storage and uses a parallel arrangement of the receiver and the heater. At this time, a coal-fired heater seems to have a potential economic advantage under realistic assumptions for the escalation of coal relative to oil over the next decade or so.

  19. Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function

    CERN Document Server

    Huang, Weidong; Hu, Peng; Chen, Zeshao

    2011-01-01

    Parabolic solar dish concentrator with sphere receiver is less studied. We present an analytic function to calculate the intercept factor of the system with real sun bright distribution and Gaussian distribution, the results indicate that the intercept factor is related to the rim angle of reflector and the ratio of open angle of receiver at the top of reflector to optical error when the optical error is larger than or equal to 5 mrad, but is related to the rim angle, open angle and optical error in less than 5 mrad optical error. Furthermore we propose a quick process to optimize the system to provide the maximum solar energy to net heat efficiency for different optical error under typical condition. The results indicate that the parabolic solar dish concentrator with sphere receiver has rather high solar energy to net heat efficiency which is 20% more than solar trough and tower system including higher cosine factor and lower heat loss of the receiver.

  20. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  1. Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid

    Directory of Open Access Journals (Sweden)

    Claudia Toro

    2016-10-01

    Full Text Available The latest developments in solar technologies demonstrated that the solar central receiver configuration is the most promising application among concentrated solar power (CSP plants. In CSPs solar-heated air can be used as the working fluid in a Brayton thermal cycle and as the heat transfer fluid for a Rankine thermal cycle as an alternative to more traditional working fluids thereby reducing maintenance operations and providing the power section with a higher degree of flexibility To supply thermal needs when the solar source is unavailable, an auxiliary burner is requested. This configuration is adopted in the Julich CSP (J-CSP plant, operating in Germany and characterized by a nominal power of 1.5 MW, the heat transfer fluid (HTF is air which is heated in the solar tower and used to produce steam for the bottoming Rankine cycle. In this paper, the J-CSP plant with thermal energy storage has been compared with a hybrid CSP plant (H-CSP using air as the working fluid. Thermodynamic and economic performances of all the simulated plants have been evaluated by applying both exergy analysis and thermoeconomic analysis (TA to determine the yearly average operation at nominal conditions. The exergy destructions and structure as well as the exergoeconomic costs of products have been derived for all the components of the plants. Based on the obtained results, the thermoeconomic design evaluation and optimization of the plants has been performed, allowing for improvement of the thermodynamic and economic efficiency of the systems as well as decreasing the exergy and exergoeconomic cost of their products.

  2. Solar central receiver hybrid power system, Phase I. Volume 3. Appendices. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A design study for a central receiver/fossil fuel hybrid power system using molten salts for heat transfer and heat storage is presented. This volume contains the appendices: (A) parametric salt piping data; (B) sample heat exchanger calculations; (C) salt chemistry and salt/materials compatibility evaluation; (D) heliostat field coordinates; (E) data lists; (F) STEAEC program input data; (G) hybrid receiver design drawings; (H) hybrid receiver absorber tube thermal math model; (I) piping stress analysis; (J) 100-MWe 18-hour storage solar central receiver hybrid power system capital cost worksheets; and (K) 500-MWe 18-hour solar central receiver hybrid power system cost breakdown. (WHK)

  3. Design of a Protection Thermal Energy Storage Using Phase Change Material Coupled to a Solar Receiver

    Science.gov (United States)

    Verdier, D.; Falcoz, Q.; Ferrière, A.

    2014-12-01

    Thermal Energy Storage (TES) is the key for a stable electricity production in future Concentrated Solar Power (CSP) plants. This work presents a study on the thermal protection of the central receiver of CSP plant using a tower which is subject to considerable thermal stresses in case of cloudy events. The very high temperatures, 800 °C at design point, impose the use of special materials which are able to resist at high temperature and high mechanical constraints and high level of concentrated solar flux. In this paper we investigate a TES coupling a metallic matrix drilled with tubes of Phase Change Material (PCM) in order to store a large amount of thermal energy and release it in a short time. A numerical model is developed to optimize the arrangement of tubes into the TES. Then a methodology is given, based from the need in terms of thermal capacity, in order to help the choice of the geometry.

  4. Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey

    Directory of Open Access Journals (Sweden)

    Raad Kadhim Al-Dualimi

    2016-08-01

    Full Text Available A prior study on the performance of high-efficient models for a heliostat field and solar receiver at various candidate locations (e.g., certain regions in the south of Turkey helped determine suitable locations for installing solar tower power plant units. This study considered the fact that solar tower power plants are affected by the working conditions of a particular site, which helps realize the highest performance of the solar power tower plant. An optimized heliostat field consisting of 2650 SENER heliostats and a model of a solar receiver based on the data obtained using Gemasolar in Seville, Spain, was used as a reference in this work. Each heliostat position is specified using an optimization algorithm that refines previously proposed models, and two parameters are added to this model to further optimize the heliostat layout. Then, a sample analytical thermal model is used for predicting the radiative and convective heat losses from the receiver system. Article History: Received March 13rd 2016; Received in revised form Jun 22nd 2016; Accepted July 3rd 2016; Available onlineHow to Cite This Article: Ra'ad, K, M, A. and Mehmet, S, S. (2016, Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey. Int. Journal of Renewable Energy Development, 5(2, 151-161, http://dx.doi.org/10.14710/ijred.5.2.151-161

  5. Evaluation of creep-fatigue life-prediction models for the solar central receiver

    Science.gov (United States)

    Hyzak, J. M.; Hughes, D. A.

    1981-09-01

    The applicability of several creep fatigue models to life prediction of boiler tubes in a solar central receiver (SCR) was evaluated. The SCR boiler tubes will experience compressive strain dwell loading with hold times up to 6 to 8 hours at temperatures where time dependent deformation will occur. The evaluation criteria include the ability of the model to account for mean stress effects and to be practical in the long life, small strain range regime. A correlation between maximum tensile stress and fatigue life is presented. Using this correlation, compressive dwell behavior is predicted based on continuous cycling data. The limits of this predictive scheme are addressed.

  6. Solar central receiver prototype heliostat CDRL item B. d. Final technical report, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Easton, C. R.

    1978-08-01

    This is volume II of a two volume report which presents the results of a study to define a low-cost approach to the production, installation, and operation of heliostats for central receiver solar thermal power plants. Performance and cost analyses are presented, and critical R and D areas are identified. Also, computer printed work sheets are included for heliostat investment, maintenance equipment investment, initial spares investment, and first years operations and maintenance for 2,500, 25,000, 250,000, and 1,000,000 units per year production. (WHK)

  7. Design and thermal analysis of a direct steam generation central-receiver solar thermal power plant

    OpenAIRE

    Garrido Camino, Carlos

    2013-01-01

    Thermo-solar central receiver power plants use radiation coming from the Sun, a clean energy source, to produce electricity. The best locations for this type of installations are the ones between 30º and 40º of latitude, both in the northern and southern hemisphere, what makes Spain to be one of the most suitable and attractive places all over the world for this energy source. However, this technology is not well developed yet comparing to other renewable energy sources such as wind energy or...

  8. Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

    Science.gov (United States)

    Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.

    2015-09-01

    Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ~90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

  9. Line focus solar thermal central receiver research study. Final report, April 30, 1977-March 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Di Canio, D.G.; Treytl, W.J.; Jur, F.A.; Watson, C.D.

    1979-04-01

    The results of a study to examine the line focus central receiver alternative for solar thermal generation of electric power on a commercial scale are presented. The baseline concept consists of the following elements: (1) a solar collector (heliostat) whose geometry is the equivalent of a focused parabolic cylinder. The heliostat reflecting surface is composed of an array of flexible rectangular mirror panels supported along their long edges by a framework which rotates about an axis parallel to the ground plane. The mirror panels in one section (18.3 meters by 3.05 meters (60 feet by 10 feet)) are defocused in unison by a simple mechanism under computer control to achieve the required curvature. Two sections (110 meters/sup 2/(591 feet/sup 2/)) are controlled and driven in elevation by one control/drive unit. (2) A linear cavity receiver, composed of 61-meter (200-foot) sections supported by towers at an elevation of 61 meters (200 feet). Each section receives feedwater and produces turbine-rated steam. The cavity is an open cylinder 1.83 meters (6 feet) in inside diameter, with a 1.22 meter (4 foot) aperture oriented at 45 degrees to the collector field. (3) Heliostat control, consisting of a local controller at each heliostat module which communicates with a master control computer to perform elevation tracking and focal length adjustment. The control logic is open-loop, with sun position computer by the master computer with an algorithm. Image sensors, mounted above and below the receiver aperture, are used to monitor the collector field and provide feedback to the master computer for detection of misaligned heliostats. (WHK)

  10. Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-10-01

    Full Text Available In the present article, six symmetric compound parabolic solar concentrators (CPCs with all-glass evacuated solar tubes (EST as the receiver are designed, and a comparative study on their optical performance is performed based on theoretical analysis and ray-tracing simulations. In terms of optical loss through gaps of CPCs and optical efficiency averaged for radiation over the acceptance angle, CPC-6, designed based on a fictitious “hat”-shaped absorber with a “V” groove at the bottom, is the optimal design, and CPC-1, designed based on the cover tube, is the worst solution, whereas from the point of view of the annual collectible radiation on the EST, it is found that CPC-4, designed based on a fictitious “ice-cream” absorber, is the optimal design and CPC-1 is the worst solution. CPC-6, commonly regarded as the best design in the past, is not an optimal design in terms of annual collectible radiation after truncation. Results also indicate that, for high temperature applications, CPC-6 and CPC-4 are advisable due to the high solar flux on the EST resulting from the high optical efficiency for radiation within the acceptance angle.

  11. Optical system design of solar-blind UV target receiver with large FOV

    Science.gov (United States)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2014-11-01

    Ultraviolet (UV) radiation of 200nm-300nm waveband from the sun is absorbed by atmosphere, which is often referred to the solar-blind region of the solar spectrum. Solar-blind characteristics of this waveband have important application value in forest-fire prevention, UV security communication, UV corona detection and other aspects. Especially in military fields such as missile warning, the application of solar-blind waveband has developed very rapidly, which is receiving more and more attention recently. In this paper, ZEMAX software is used to design an optical system of solar-blind UV target receiver with waveband 240nm-280nm, with which UV target signal can be detected. The optional materials are very few for UV optical systems to choose from, in which only CaF2 and JGS1 are commonly used. Various aberrations are not easy to be corrected. So it is very difficult to design a good UV system. Besides, doublet or triplet cannot be used in UV optical system considering possible cracking for different thermal expansion coefficients of different materials. So the doublet in initial structure is separated for this reason. During the optimization process, an aspheric surface is used to correct the aberrations. But this surface is removed before the design is finished to save production cost and enhance the precision of fabrication and test, which still keeps the image quality meeting the usage requirements. What we care for is the converging condition for different field of view from the far object on image plane. So this is an energy system. Spot diagram is taken as the evaluation criterion of image quality. The system is composed of 6 lenses with field of view (FOV) 31 degrees. In the final design results, the root mean square (RMS) radius for marginal FOV is less than 6.3 microns, while the value is only 4 microns for zero FOV. Point Spread Function and diffraction encircled energy diagram within the maximum FOV confirms the good performance of system further.

  12. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    Science.gov (United States)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  13. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  14. Conceptual design of solar central-receiver hybrid power system: sodium-cooled-receiver concept. Volume I of II. Conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A market analysis is reported consisting of estimates of overall market size derived from projections of electric power growth, examination of utility plans, and projections of potential regulatory action. Market share is projected by comparisons of the levelized costs of busbar power produced by hybrid coal solar units with costs of other electric power producers such as coal only, nuclear and solar only units. Parametric analyses of the major subsystems, consisting of the collector, receiver, storage, non-solar, electric power generation, and master control subsystems were conducted over a wide range of independent parameters in order to define subsystem operation and interfaces for use in the preferred system selection studies. The selection of the system, subsystems, and components of the 0.8 and 1.4 solar multiple sodium-cooled hybrid central receiver configurations were done. Technically feasible alternatives were compared on an economic basis. Detailed conceptual designs of the selected system concepts for the 0.8 and 1.4 solar multiple plants are presented. Cost estimates are also presented for both plants based on the conceptual designs. (LEW)

  15. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    Science.gov (United States)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  16. User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants

    Energy Technology Data Exchange (ETDEWEB)

    Leary, P L; Hankins, J D

    1979-02-01

    MIRVAL is a Monte Carlo program which simulates the heliostats and a portion of the receiver for solar energy central receiver power plants. Models for three receiver types and four kinds of heliostats are included in the code. The three receiver types modeled are an external cylinder, a cylindrical cavity with a downward-facing aperature, and a north-facing cavity. Three heliostats which track in elevation and azimuth are modeled, one of which is enclosed in a plastic dome. The fourth type consists of a rack of louvered reflective panels with the rack rotatable about a fixed horizontal axis. Phenomena whose effects are simulated are shadowing, blocking, mirror tracking, random errors in tracking and in the conformation of the reflective surface, optical figure of the reflective surface, insolation, angular distribution of incoming sun rays to account for limb darkening and scattering, attenuation of light between the mirrors and the receiver, reflectivity of the mirror surface, and mirror aiming strategy.

  17. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    Energy Technology Data Exchange (ETDEWEB)

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  18. A study of solid particle flow characterization in solar particle receiver

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kibum [Mechanical Engineering Department, Hanyang University, 1271 Sa-3 dong, Sangnok-gu, Ansan, Kyeonggi-do, 426-791 (Korea); Siegel, Nathan; Kolb, Greg [Sandia National Laboratories Solar Technologies Department, P.O. Box 5800, Albuquerque, NM 87185-1127 (United States); Rangaswamy, Vijayarangan; Moujaes, Samir F [Mechanical Engineering Department, University of Nevada Las Vegas, 4505 Maryland Pkwy Las Vegas, NV 89154-4027 (United States)

    2009-10-15

    The solid particle receiver (SPR) is a direct absorption receiver in which solar energy heats a curtain of falling ceramic particle to a temperature in excess of 1000 C. A small scale test platform was built to investigate particle flow properties. The curtain was comprised of approximately 697 {mu}m ceramic particles that were dropped within the receiver cavity of the test platform. Tests were conducted to experimentally determine the distribution of particles velocity, curtain thickness, and curtain opacity along a drop length of approximately 3 m. Velocity data were measured using a high speed digital camera to obtain images of the particle flow at 1000 frames per second with an exposure time of 100 {mu}s. Five mass flow rates ranging from 1 kg/s-m to 22 kg/s-m were examined, and it was found that all flows approached a terminal velocity of about 6-7 m/s in a vertical drop distance of 3 m. The experimental results were validated with computational results and were found in excellent agreement with the simulation results. In addition, a similar study was performed with various sizes of the particles to better understand how the particle flow characteristics were affected by the size of the particles. (author)

  19. Second Generation Novel High Temperature Commercial Receiver & Low Cost High Performance Mirror Collector for Parabolic Solar Trough

    Energy Technology Data Exchange (ETDEWEB)

    Stettenheim, Joel [Norwich Technologies, White River Junction, VT (United States)

    2016-02-29

    Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramatically increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.

  20. Solar-receiver heat-flux capability and structural integrity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, R.D.

    1976-05-01

    An experimental program was conducted to determine the operating characteristics of full length (65 feet) single and multi-tube once-through steam generator test sections subjected to radiant heat flux levels commensurate with commercial solar tower receiver application. Absorbed heat flux levels ranging from 0.15 to 0.71 Btu/in./sup 2/-sec (0.25 to 1.16 MW/m/sup 2/) were achieved in a horizontal facility utilizing graphite radiant heater arrays. Steam exit temperatures ranged from 625 F (two-phase) to 1380 F at pressures of 1000 to 2300 psia. Wall temperature profiles and fluid pressure losses were obtained and compared with an existing computer model.

  1. Experimental and numerical analysis of convective heat losses from spherical cavity receiver of solar concentrator

    Directory of Open Access Journals (Sweden)

    Shewale Vinod C.

    2017-01-01

    Full Text Available Spherical cavity receiver of solar concentrator is made up of Cu tubing material having cavity diameter 385 mm to analyze the different heat losses such as conduction, convection and radiation. As the convection loss plays major role in heat loss analysis of cavity receiver, the experimental analysis is carried out to study convective heat loss for the temperature range of 55-75°C at 0°, 15°, 30°, 45°, 60°, and 90° inclination angle of downward facing cavity receiver. The numerical analysis is carried out to study convective heat loss for the low temperature range (55-75°C as well as high temperature range (150-300 °C for no wind condition only. The experimental set-up mainly consists of spherical cavity receiver which is insulated with glass wool insulation to reduce the heat losses from outside surface. The numerical analysis is carried out by using CFD software and the results are compared with the experimental results and found good agreement. The result shows that the convective loss increases with decrease in cavity inclination angle and decreases with decrease in mean cavity receiver temperature. The maximum losses are obtained at 0° inclination angle and the minimum losses are obtained at 90° inclination angle of cavity due to increase in stagnation zone in to the cavity from 0° to 90° inclination. The Nusselt number correlation is developed for the low temperature range 55-75°C based on the experimental data. The analysis is also carried out to study the effect of wind speed and wind direction on convective heat losses. The convective heat losses are studied for two wind speeds (3 m/s and 5 m/s and four wind directions [α is 0° (Side-on wind, 30°, 60°, and 90° (head-on wind]. It is found that the convective heat losses for both wind speed are higher than the losses obtained by no wind test. The highest heat losses are found for wind direction α is 60° with respect to receiver stand and lowest heat losses are found

  2. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 2. Design drawings

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report consists of design drawings for this plant.

  3. Modeling and Zoning Solar Energy Received at the Earth's Surface in Arid and Semiarid Regions of Central Iran

    Directory of Open Access Journals (Sweden)

    azam gholamnia

    2017-02-01

    Full Text Available Introduction: Solar radiation (Rs energy received at the Earth's surface is measured usingclimatological variables in horizontal surface and is widely used in various fields. Domination of hot and dry climates especially in the central regions of Iran results from decreasing cloudiness and precipitation and increasing sunshine hours, which shows the high potential of solar energy in Iran. There is a reasonable climatic field and solar radiation in most of regions and seasons which have provided an essential and suitable field to use and extend new and pure energy. Materials and Methods: One of the common methods to estimate the solar energy received by the earthis usingtemperature variables in any place . An empirical model is proposed to estimate the solar energy as a function of other climatic variables (maximum temperature recorded in 50 climatological, conventional stations; this model is helpful inextending the climatological solar-energy estimation in the study area. The mean values of both measured and estimated solar energy wereobjectively mapped to fill the observation gaps and reduce the noise associated with inhomogeneous statistics and estimation errors. This analysis and the solar irradiation estimation method wereapplied to 50 different climatologicalstations in Iran for monthly data during1980–2005. The main aim of this study wasto map and estimate the solar energy received in four provinces of Yazd, Esfahan, Kerman and Khorasan-e-Jonoubi.The data used in this analysis and its processing, as well as the formulation of an empirical model to estimate the climatological incident of solar energy as a function of other climatic variables, which is complemented with an objective mapping to obtain continuous solar-energy maps. Therefore, firstly the Rswasestimated using a valid model for 50 meteorological stations in which the amounts of solar radiation weren't recorded for arid and semi-arid areas in Iran. Then, the appropriate method

  4. Particle-laden turbulence under radiation: toward a novel small-particle solar receiver

    Science.gov (United States)

    Frankel, Ari; Mani, Ali; Iaccarino, Gianluca

    2016-11-01

    In particle-based solar receivers, an array of mirrors focuses sunlight onto a falling curtain of particles in a duct that absorb the light and warm up. The heated particles can be stored for later energy extraction. In this work we consider a design concept in which the particles and air are in a co-flowing configuration, and as the particles are heated they conduct the energy to the surrounding air. The air-particle mixture can then be separated and the heated air used for energy extraction. To assess the viability of this energy concept we have developed a simulation capability to analyze the flow of small particles in a turbulent flow with radiation. The code combines a point-particle direct numerical simulation of the particle-air flow in the low Mach number limit with the discrete ordinates solution of the gray, quasi-steady radiative transfer equation. We will describe the individual solution components and the coupling methodology. We will then demonstrate some results from the replication of a lab-scale experiment of a laser diode array irradiating a transparent channel with a flowing air-particle mixture. This work was supported by the Predictive Science Academic Alliance Program 2 at Stanford.

  5. Experimental study of heat transfer in parabolic trough solar receiver: Using two different heat transfer fluids

    Science.gov (United States)

    Tahtah, Reda; Bouchoucha, Ali; Abid, Cherifa; Kadja, Mahfoud; Benkafada, Fouzia

    2017-02-01

    The sun provides the earth with huge amounts of energy that can be exploited in various forms. Its exploitation can be done by using a parabolic through solar concentrator integrated with thermal storage tank, that we already made, and it is our main study. This study obviously requires special attention to the effect of the parameters of the fluids, in addition to thermal performances of this system. To do this, we studied the thermal behavior of this concentrator, and by choosing the summer period because of its stable illumination (clear sky). Before starting the test, it is necessary to check the flow circuit and the storage tank which completely filled with fluid, started the measures on the morning, the concentrator directed towards the sun until the sunset, we recorded the variation of different temperatures such as Tin, Tout, Tsur, Tfluid and Tamb. We have compared the evaluation of temperatures between water and thermal oil in order to determine the best thermal behavior and the importance of the specific heat of each fluid. The obtained results of this paper show that by using water inside the receiver, we obtained better performance than by using oil. It can be observed that the oil temperature increasing rapidly compared to water, however, water temperature takes long time to cool down compared to the first fluid which will help in the storage of heat.

  6. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years - with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use...... without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 C...... direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures...

  7. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  8. Dynamic modeling of a solar receiver/thermal energy storage system based on a compartmented dense gas fluidized bed

    Science.gov (United States)

    Solimene, Roberto; Chirone, Roberto; Chirone, Riccardo; Salatino, Piero

    2017-06-01

    Fluidized beds may be considered a promising option to collection and storage of thermal energy of solar radiation in Concentrated Solar Power (CSP) systems thanks to their excellent thermal properties in terms of bed-to-wall heat transfer coefficient and thermal diffusivity and to the possibility to operate at much higher temperature. A novel concept of solar receiver for combined heat and power (CHP) generation consisting of a compartmented dense gas fluidized bed has been proposed to effectively accomplish three complementary tasks: collection of incident solar radiation, heat transfer to the working fluid of the thermodynamic cycle and thermal energy storage. A dynamical model of the system laid the basis for optimizing collection of incident radiative power, heat transfer to the steam cycle, storage of energy as sensible heat of bed solids providing the ground for the basic design of a 700kWth demonstration CSP plant.

  9. Volumetric Virtual Environments

    Institute of Scientific and Technical Information of China (English)

    HE Taosong

    2000-01-01

    Driven by fast development of both virtual reality and volume visualization, we discuss some critical techniques towards building a volumetric VR system, specifically the modeling, rendering, and manipulations of a volumetric scene.Techniques such as voxel-based object simplification, accelerated volume rendering,fast stereo volume rendering, and volumetric "collision detection" are introduced and improved, with the idea of demonstrating the possibilities and potential benefits of incorporating volumetric models into VR systems.

  10. Design and evaluation of a high temperature/pressure supercritical carbon dioxide direct tubular receiver for concentrating solar power applications

    Science.gov (United States)

    Ortega, Jesus Daniel

    This work focuses on the development of a solar power thermal receiver for a supercritical-carbon dioxide (sCO2), Brayton power-cycle to produce ~1 MWe. Closed-loop sCO2 Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. High temperatures (923--973 K) and pressures (20--25 MPa) are required in the solar receiver to achieve thermal efficiencies of ~50%, making concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. In this study, the CSP receiver is required to achieve an outlet temperature of 923 K at 25 MPa or 973 K at 20 MPa to meet the operating needs. To obtain compatible receiver tube material, an extensive material review was performed based the ASME Boiler and Pressure Vessel Code, ASME B31.1 and ASME B313.3 codes respectively. Subsequently, a thermal-structural model was developed using a commercial computational fluid (CFD) dynamics and structural mechanics software for designing and analyzing the tubular receiver that could provide the heat input for a ~2 MWth plant. These results were used to perform an analytical cumulative damage creep-fatigue analysis to estimate the work-life of the tubes. In sequence, an optical-thermal-fluid model was developed to evaluate the resulting thermal efficiency of the tubular receiver from the NSTTF heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. The K-ω SST turbulence model and P-1 radiation model used in Fluent were coupled with SolTrace to provide the heat flux distribution on the receiver surface. The creep-fatigue analysis displays the damage accumulated due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. The receiver surface temperatures were found to be within the safe

  11. A long-term study of the impact of solar flares on ionospheric characteristics measured by digisondes and GNSS receivers

    Science.gov (United States)

    Tripathi, Sharad Chandra; Haralambous, Haris; Das, Tanmay

    2016-07-01

    Solar Flares are highly transient phenomena radiating over a wide spectrum of wavelengths with EUV and X-rays imposing the most significant effect on ionospheric characteristics. This study presents an attempt to examine qualitatively and quantitatively these effects as measured by digisondes and GNSS receivers on a global scale. For this purpose we have divided the whole globe in three sectors (American, African-European and Asian) based on longitude. We have extracted data for ionospheric characteristics by scaling, manually, the ionograms being provided by DIDBase (Digital Ionogram Database) as provided by the Global Ionospheric Radio Observatory (GIRO) during X-class flares for an approximate period of a solar cycle . We have also used TEC data extracted from GPS observations from collocated IGS Stations. Spectral analysis of Solar Flares are added to the methodology to compare the effects in terms of spectral characteristics.

  12. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...

  13. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 1. Design description

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report discusses in detail the design of the collector system, heat transport system, thermal storage subsystem, heat transport loop, steam generation subsystem, electrical, instrumentation, and control systems, power conversion system, master control system, and balance of plant. The performance, facility cost estimate and economic analysis, and development plan are also discussed.

  14. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.

    1983-12-31

    The auxiliary heat transport systems of the Carrisa Plains Solar Power Plant (CPSPP) comprise facilities which are used to support plant operation and provide plant safety and maintenance. The facilities are the sodium purification system, argon cover gas system, sodium receiving and filling system, sodium-water reaction product receiving system, and safety and maintenance equipment. The functions of the facilities of the auxiliary system are described. Design requirements are established based on plant operating parameters. Descriptions are given on the system which will be adequate to perform the function and satisfy the requirements. Valve and equipment lists are included in the appendix.

  15. Solar energy incident at the receiver of a solar tower plant, derived from remote sensing: Computation of both DNI and slant path transmittance

    Science.gov (United States)

    Elias, Thierry; Ramon, Didier; Garnero, Marie-Agnès; Dubus, Laurent; Bourdil, Charles

    2017-06-01

    By scattering and absorbing solar radiation, aerosols generate production losses in solar plants. Due to the specific design of solar tower plants, solar radiation is attenuated not only in the atmospheric column but also in the slant path between the heliostats and the receiver. Broadband attenuation by aerosols is estimated in both the column and the slant path for Ouarzazate, Morocco, using spectral measurements of aerosol optical thickness (AOT) collected by AERONET. The proportion of AOT below the tower's height is computed assuming a single uniform aerosol layer of height equal to the boundary layer height computed by ECMWF for the Operational Analysis. The monthly average of the broadband attenuation by aerosols in the slant path was 6.9±3.0% in August 2012 at Ouarzazate, for 1-km distance between the heliostat and the receiver. The slant path attenuation should be added to almost 40% attenuation along the atmospheric column, with aerosols in an approximate 4.7-km aerosol layer. Also, around 1.5% attenuation is caused by Rayleigh and water vapour in the slant path. The monochromatic-broadband extrapolation is validated by comparing computed and observed direct normal irradiance (DNI). DNI observed around noon varied from more than 1000 W/m2 to around 400 W/m2 at Ouarzazate in 2012 because of desert dust plumes transported from North African desert areas.

  16. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Shaun D. [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, James [Brayton Energy, LLC, Portsmouth, NH (United States); Nash, James [Brayton Energy, LLC, Portsmouth, NH (United States); Farias, Jason [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, Devon [Brayton Energy, LLC, Portsmouth, NH (United States); Caruso, William [Brayton Energy, LLC, Portsmouth, NH (United States)

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  17. Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 2. Central receiver optical model users manual. CDRL item 2. [HELIAKI code

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist's concept of this plant is shown.

  18. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    Science.gov (United States)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new

  19. Heat exchanger modelling in central receiver solar power plant using dense particle suspension

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Gómez-García, Fabrisio; González-Aguilar, José; Romero, Manuel; Benoit, Hadrien; Flamant, Gilles

    2017-06-01

    In this paper, a detailed thermodynamic model for a heat exchanger (HX) working with a dense particle suspension (DPS) as heat transfer fluid (HTF) in the solar loop and water-steam as working fluid is presented. HX modelling is based on fluidized bed (FB) technology and its design has been conceived to couple solar plant using DPS as HTF and storage media with Rankine cycle for power generation. Using DPS as heat transfer fluid allows extending operating temperature range what will help to reduce thermal energy storage costs favoring higher energy densities but will also allow running power cycle at higher temperature what will increase its efficiency. Besides HX modelling description, this model will be used to reproduce solar plant performance under steady state and transient conditions.

  20. Optimization of a point-focusing, distributed receiver solar thermal electric system

    Science.gov (United States)

    Pons, R. L.

    1979-01-01

    This paper presents an approach to optimization of a solar concept which employs solar-to-electric power conversion at the focus of parabolic dish concentrators. The optimization procedure is presented through a series of trade studies, which include the results of optical/thermal analyses and individual subsystem trades. Alternate closed-cycle and open-cycle Brayton engines and organic Rankine engines are considered to show the influence of the optimization process, and various storage techniques are evaluated, including batteries, flywheels, and hybrid-engine operation.

  1. High Flux Central Receivers of Molten Salts for the New Generation of Commercial Stand-Alone Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lata, J. M.; Rodriguez, M.; Alvarez de Lara, M.

    2006-07-01

    Molten salt technology represents nowadays the most cost-effective technology for electricity generation for stand-alone Solar Power Plants. Although this technology can be applied to both concentrating technologies, Parabolic TROUGH and Central Receiver Systems (CRS), CRS technology can take advantages from its high concentration, allowing to work at high temperatures and therefore with a reduction in the size and cost of the storage system. The Receiver System is the door for which the energy passes from the field collector to the thermal-electric cycle; it represents, therefore, the core of the CRS System. SENER and CIEMAT are joining forces to face up the challenge of sizing and designing a molten salt Receiver of high thermal efficiency, able to operate at high fluxes without compromising its durability (at least 25 years). The advances in design and studies of different materials, to operate at high fluxes using molten salts as heat transfer fluid, will be presented hereafter. (Author)

  2. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    Science.gov (United States)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  3. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  4. Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver

    CERN Document Server

    Chat, G Le; Meyer-Vernet, N; Issautier, K; Belheouane, S; Pantellini, F; Maksimovic, M; Zouganelis, I; Bale, S D; Kasper, J C

    2013-01-01

    New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to speeds up to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal, despite their low mass. The WAVES instruments on the twin Solar TErre...

  5. Conceptual design of an advanced water/steam central solar receiver, volume 1

    Science.gov (United States)

    Matthews, F. T.; Payne, H. M.; Jones, B. O.; Snyder, T. K.; Davidson, M. J.

    1980-06-01

    A drum type boiler with forced circulation evaporator using rifled tubing can be designed for the high heat flux of a North field collector without the problems associated with departure of nuclear boiling. Existing boiler technology and materials can be used to design an advanced water/steam receiver. Rifled tubing was shown by test data to provide protection to evaporator panels at peak heat flux levels 30 percent greater than the design point of these receivers. Estimated budgetary type costs of these receivers vary from $10 per pound of steam for the large receiver to $13 per pound of steam for the smaller units. Fatigue life was conservatively calculated to be 30,000 full strain range cycles. This is adequate for the diurnal cycling, plus some cloud over a 30 year period. It is possible that the allowable creep fatigue cycles may be increased to 40,000 - 50,000 by an inelastic stress analysis. This analysis was recommended for future work and is required to resolve the cyclic lifetime of these receivers. Additional analysis is also needed to resolve receiver and plant control systems.

  6. Central Receiver Solar Thermal Power System, Phase 1. CDRL Item 10. First quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1976-01-01

    The current definition of a 10-MWe pilot plant preliminary design base line is presented, as well as a summary of a 100-MWe commercial plant base line. The subsystems described for the plants include the collector, receiver, thermal storage, and electrical power generation. A master control concept employing a centralized computer is also described. The subsystem research experiment activities for the collector, receiver, and thermal storage subsystems are presented, including a summary of SRE test requirements, overall test scheduling, and status through the conceptual design review phase of the SRE effort.

  7. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Mouradian, E. M.

    1983-12-31

    Thermal analyses for the preliminary design phase of the Receiver of the Carrizo Plains Solar Power Plant are presented. The sodium reference operating conditions (T/sub in/ = 610/sup 0/F, T/sub out/ = 1050/sup 0/F) have been considered. Included are: Nominal flux distribution on receiver panal, Energy input to tubes, Axial temperature distribution; sodium and tubes, Sodium flow distribution, Sodium pressure drop, orifice calculations, Temperature distribution in tube cut (R-0), Backface structure, and Nonuniform sodium outlet temperature. Transient conditions and panel front face heat losses are not considered. These are to be addressed in a subsequent design phase. Also to be considered later are the design conditions as variations from the nominal reference (operating) condition. An addendum, designated Appendix C, has been included describing panel heat losses, panel temperature distribution, and tube-manifold joint thermal model.

  8. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ladewig, T.D.

    1981-03-01

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  9. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids

    Science.gov (United States)

    Amina, Benabderrahmane; Miloud, Aminallah; Samir, Laouedj; Abdelylah, Benazza; Solano, J. P.

    2016-10-01

    In this paper, we present a three dimensional numerical investigation of heat transfer in a parabolic trough collector receiver with longitudinal fins using different kinds of nanofluid, with an operational temperature of 573 K and nanoparticle concentration of 1% in volume. The outer surface of the absorber receives a non-uniform heat flux, which is obtained by using the Monte Carlo ray tracing technique. The numerical results are contrasted with empirical results available in the open literature. A significant improvement of heat transfer is derived when the Reynolds number varies in the range 2.57×104 ≤ Re ≤ 2.57×105, the tube-side Nusselt number increases from 1.3 to 1.8 times, also the metallic nanoparticles improve heat transfer greatly than other nanoparticles, combining both mechanisms provides better heat transfer and higher thermo-hydraulic performance.

  10. Solar central receiver hybrid power system, Phase I. Volume 2. Conceptual design. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The objectives of this study were to develop a hybrid power system design that (1) produces minimum cost electric power, (2) minimizes the capital investment and operating cost, (3) permits capacity displacement, (4) and achieves utility acceptance for market penetration. We have met the first three of these objectives and therefore believe that the fourth, utility acceptance, will become a reality. These objectives have been met by utilizing the Martin Marietta concept that combines the alternate central receiver power system design and a high-temperature salt primary heat transfer fluid and thermal storage media system with a fossil-fired nonsolar energy source. Task 1 reviewed the requirements definition document and comments and recommendations were provided to DOE/San Francisco. Task 2 consisted of a market analysis to evaluate the potential market of solar hybrid power plants. Twenty-two utilities were selected within nine regions of the country. Both written and verbal correspondence was used to assess solar hybrid power plants with respect to the utilities' future requirements and plans. The parametric analysis of Task 3 evaluated a wide range of subsystem configurations and sizes. These analyses included subsystems from the solar standalone alternate central receiver power system using high-temperature molten salt and from fossil fuel nonsolar subsystems. Task 4, selection of the preferred commerical system configuration, utilized the parametric analyses developed in Task 3 to select system and subsystem configurations for the commercial plant design. Task 5 developed a conceptual design of the selected commercial plant configuration and assessed the related cost and performance. Task 6 assessed the economics and performance of the selected configuration as well as future potential improvements or limitations of the hybrid power plants.

  11. High performance felt-metal-wick heat pipe for solar receivers

    Science.gov (United States)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  12. Development of a high temperature solar receiver for high-efficient thermionic conversion systems; Fukugo netsuden henkan system yo chokoon taiyo junetsuki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Umeoka, T.; Naito, H.; Yugami, H.; Arashi, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    For thermionic conversion systems (TIC) using concentrated sunlight as heat source, the newly developed solar receiver was tested. Concentrated sunlight aims at the inner surface of the cavity type solar receiver. The emitter of TIC installed in the rear of the solar receiver is uniformly heated over 1700K by thermal radiation from the rear of the solar receiver, emitting thermion. Electric power is generated by collecting the thermion by collector. Mo is used as emitter material, however, because of poor heat absorption of Mo, high-absorptive TiC is used for heat absorption surface to heat Mo by thermal conduction from high-temperature TiC. Functionally gradient material (FGM) with an intermediate layer of gradient TiC/Mo ratios between TiC and Mo is used as emitter material. The emitter is thus uniformly heated at high temperatures of 1723{plus_minus}12K. As a result, the developed solar receiver is applicable to heat the emitter of TIC. Heat flux measurement at the graphite cavity clarified that cavity temperature of as high as 1780K and heat flow of 50W/cm{sup 2} are obtained at 4.7kW in input. 6 figs.

  13. Solar steam generation by heat localization.

    Science.gov (United States)

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-01-01

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

  14. Coupled optical/thermal/fluid analysis and design requirements for operation and testing of a supercritical CO2 solar receiver.

    Energy Technology Data Exchange (ETDEWEB)

    Khivsara, Sagar [Indian Institute of Science, Bangalor (India)

    2015-01-01

    Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (~50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. To satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression, it is required to heat s-CO2 by a temperature of ~200 K as it passes through the solar receiver. Our objective was to develop an optical-thermal-fluid model to design and evaluate a tubular receiver that will receive a heat input ~1 MWth from a heliostat field. We also undertook the documentation of design requirements for the development, testing and safe operation of a direct s-CO2 solar receiver. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of s-CO2 receivers.

  15. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    Detailed characterisation of the properties of composite materials with nanoscale fibres is central for the further progress in optimization of their manufacturing and properties. In the present study, a methodology for the determination and analysis of the volumetric composition of nanocomposites...... is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  16. In vivo proton observed carbon edited (POCE) (13) C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive-only surface coil on the proton channel.

    Science.gov (United States)

    Kumaragamage, Chathura; Madularu, Dan; Mathieu, Axel P; De Feyter, Henk; Rajah, M Natasha; Near, Jamie

    2017-05-12

    In vivo carbon-13 ((13) C) MR spectroscopy (MRS) is capable of measuring energy metabolism and neuroenergetics, noninvasively in the brain. Indirect ((1) H-[(13) C]) MRS provides sensitivity benefits compared with direct (13) C methods, and normally includes a (1) H surface coil for both localization and signal reception. The aim was to develop a coil platform with homogenous B1+ and use short conventional pulses for short echo time proton observed carbon edited (POCE) MRS. A (1) H-[(13) C] MRS coil platform was designed with a volumetric resonator for (1) H transmit, and surface coils for (1) H reception and (13) C transmission. The Rx-only (1) H surface coil nullifies the requirement for a T/R switch before the (1) H preamplifier; the highpass filter and preamplifier can be placed proximal to the coil, thus minimizing sensitivity losses inherent with POCE-MRS systems described in the literature. The coil platform was evaluated with a PRESS-POCE sequence (TE = 12.6 ms) on a rat model. The coil provided excellent localization, uniform spin nutation, and sensitivity. (13) C labeling of Glu-H4 and Glx-H3 peaks, and the Glx-H2 peaks were observed approximately 13 and 21 min following the infusion of 1-(13) C glucose, respectively. A convenient and sensitive platform to study energy metabolism and neurotransmitter cycling is presented. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants

    Energy Technology Data Exchange (ETDEWEB)

    Dellin, T.A.; Fish, M.J.; Yang, C.L.

    1981-08-01

    DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

  18. Flexible Volumetric Structure

    Science.gov (United States)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  19. Reflectance measurement in heliostats field of Solar Thermal Central Receivers Systems; Medida de reflectancia en campos de heliostatos de sistemas de Torre Central

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Monterreal, R.

    2004-07-01

    Determination of the mean reflectance of Heliostats field of Solar Thermal Central Receivers Systems takes high relevance, from both the operational point of view and the components evaluation. To calculate the mean reflectance calculation becomes essential to establish a procedure that allows offering its value without measuring all and each one of the facets that constitute the field, since this is a long-time consuming and little operational task. This work presents the results of the statistical reflectance study of the CRS heliostats field of the Plataforma Solar de Almeria. In addition, to validate the results, the obtained average reflectance is introduced in the heliostats field simulation code Fiat{sub L}ux. A comparison between the simulation and real incident solar power measurement was performed. (Author)

  20. OPTICAL MODEL AND NUMERICAL SIMULATION OF THE NEW OFFSET TYPE PARABOLIC CONCENTRATOR WITH TWO TYPES OF SOLAR RECEIVERS

    Directory of Open Access Journals (Sweden)

    Saša Pavlović

    2015-08-01

    Full Text Available The paper presents a physical and mathematical model of the new offset type parabolic concentrator and a numerical procedure for predicting its optical performances. Also presented is the process of design and optical ray tracing analysis of a low cost solar concentrator for medium temperature applications. This study develops and applies a new mathematical model for estimating the intercept factor of the solar concentrator based on its geometrical and optical behavior. The solar concentrating system consists of three offset parabolic dish reflectors and a solar thermal absorber at the focus. Two types of absorbers are discussed. One is a flat plate circular absorber and the other a spiral smooth pipe absorber. The simulation results could serve as a useful reference for design and optimization of offset parabolic concentrators.

  1. 八达岭太阳能塔式热发电吸热器水动力特性仿真研究%Hydrodynamic Characteristics and Operation Security Study of Solar Receiver for Badaling Solar Tower Power Plant

    Institute of Scientific and Technical Information of China (English)

    高维; 徐蕙; 徐二树; 余强

    2012-01-01

    This paper took overheating cavity receiver of Badaling 1 MW solar power tower plant as study object, developed a hydrodynamic simulation model for receiver based on the working principle of the superheating cavity receiver, simulated the hydrodynamic characteristics of cavity receiver, and obtained the change law of working medium mass flow in different heating surfaces with solar radiation. The results can provide some guidance to design the receiver system and to formulate the control and operating strategy for solar power tower plant.%本文以八达岭塔式太阳能热发电实验电站腔式吸热器为研究对象,根据吸热器的结构和工作原理,利用热力学定律建立了吸热器系统水动力仿真数学模型,模拟了吸热器蒸发受热面系统内工质的流动,通过吸热器水动力的仿真实验从而得到在不同的太阳辐照强度下吸热器蒸发受热面入口流量的分配规律。论文结论对实际太阳能热发电站吸热器的设计及安全运行具有指导意义。

  2. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen; Kumar, Vinod

    2017-01-01

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking, delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.

  3. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  4. 槽式太阳能电站集热管热性能测试%HEAT LOSS TESTING OF PARABOLIC TROUGH SOLAR RECEIVER

    Institute of Scientific and Technical Information of China (English)

    徐荣吉; 何雅玲; 肖杰; 程泽东

    2012-01-01

    The heat loss of the parabolic trough receiver manufactured by SunPu with full intellectual propriety rights was tested using thermal equilibrium method and silicon carbide rod heating technology. The performance of the receiver was tested under eight conditions between 40℃ and 300℃. Experiment results showed that the per-formance of the receiver is nearly the same compared to Schott' s PTR70 receiver at low-and-medium temperature. It can be used for solar parabolic troughs receivers and other fields of solar energy collecting at low-and-medium temperature. Infrared pictures showed that the temperature of glass to metal sealing is obviously higher than that of the glass cover. Thus the heat loss of the glass to metal sealing should not be ignored. The experiment results pro-vide references for the design and construction of domestic parabolic trough solar power plant and offer bases for the set-up of standard of heat loss testing for parabolic trough solar receiver.%采用硅碳棒加热技术和热平衡法测试了桑普生产的具有自主知识产权的槽式太阳能电站集热管的热性能.在40~300℃温度范围内,共测试8个工况下集热管热性能.实验结果显示,集热管中低温性能与肖特公司的PTR70相差不大,完全满足中低温槽式太阳能电站和其他太阳能中低温利用领域的应用.红外图像结果表明,玻璃-金属封接温度明显高于玻璃外管温度,对集热管进行理论分析时不能忽略此部分漏热量.实验数据的获得为国内太阳能槽式电站的设计、建设提供了实验参数,为集热管漏热测试相关标准的制定提供了基础.

  5. 10-MWe solar-thermal central-receiver pilot plant: collector subsystem foundation construction. Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-18

    Bid documents are provided for the construction of the collector subsystem foundation of the Barstow Solar Pilot Plant, including invitation to bid, bid form, representations and certifications, construction contract, and labor standards provisions of the Davis-Bacon Act. Instructions to bidders, general provisions and general conditions are included. Technical specifications are provided for the construction. (LEW)

  6. The impact of optimize solar radiation received on the levels and energy disposal of levels on architectural design result by using computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Davood; Farajzadeh Khosroshahi, Samaneh; Sadegh Falahat, Mohammad [Zanjan University (Iran, Islamic Republic of)], email: d_rezaei@znu.ac.ir, email: ronas_66@yahoo.com, email: Safalahat@yahoo.com

    2011-07-01

    In order to minimize the energy consumption of a building it is important to achieve optimum solar energy. The aim of this paper is to introduce the use of computer modeling in the early stages of design to optimize solar radiation received and energy disposal in an architectural design. Computer modeling was performed on 2 different projects located in Los Angeles, USA, using ECOTECT software. Changes were made to the designs following analysis of the modeling results and a subsequent analysis was carried out on the optimized designs. Results showed that the computer simulation allows the designer to set the analysis criteria and improve the energy performance of a building before it is constructed; moreover, it can be used for a wide range of optimization levels. This study pointed out that computer simulation should be performed in the design stage to optimize a building's energy performance.

  7. Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009

    Science.gov (United States)

    Lin, Chi-Yen; Liu, Jann-Yenq; Lin, Chien-Hung; Sun, Yang-Yi; Araujo-Pradere, Eduardo A.; Kakinami, Yoshihiro

    2012-06-01

    The longest total solar eclipse in the 21st century occurred in Southeast Asia on 22 July 2009 from 00:55 to 04:15 UT, and was accompanied by a moderate magnetic storm starting at 03:00 UT with a D st reduction of -78 nT at 07:00 UT. In this study, we use the ionospheric reference model IRI, the data assimilation model MAGIC, and ground-based GPS receivers to simulate and examine the ionospheric solar eclipse and geomagnetic storm signatures in Taiwan and Japan. Cross-comparisons between the two model results and observations show that IRI fails to simulate the two signatures while MAGIC partially reproduces the storm features. It is essential to include ground-based GPS measurements to improve the IRI performance.

  8. VLF Remote -Sensing of the Lower Ionosphere with AWESOME Receivers: Solar Flares, Lightning-induced Electron Precipitation, Sudden Ionospheric Disturbances, Sprites, Gravity Waves and Gamma-ray Flares

    Science.gov (United States)

    Inan, U. S.; Cohen, M.; Scherrer, P.; Scherrer, D.

    2006-11-01

    Stanford University Very Low Frequency (VLF) radio receivers have been used extensively for remote sensing of the ionosphere and the magnetosphere. Among the phenomena that can be uniquely measured via VLF receivers are radio atmospherics, whistlers, electron precipitation, solar flares, sudden ionospheric disturbances, gravity waves, sprites, and cosmic gamma-ray flares. With the use of simple square air-core magnetic loop antennas of a couple of meters in size, the sensitivity of these instruments allows the measurement of magnetic fields as low as several tens of femtoTesla per root Hz, in the frequency range of ~300 Hz to 50 kHz. This sensitivity well exceeds that required to detect any event above the ambient atmospheric noise floor, determined by the totality of lightning activity on this planet. In recent years, as cost of production, timing accuracy (due to low cost GPS cards), and data handling flexibility of the systems has improved, it has become possible to distribute many of these instruments in the form of arrays, to perform interferometric and holographic imaging of the lower ionosphere. These goals can be achieved using the newest version of the Stanford VLF receiver, known as AWESOME: Atmospheric Weather Educational System for Observation and Modeling of Electromagnetics. In the context of the IHY/UNBSS program for 2007, the AWESOME receivers can be used extensively as part of the United Nations initiative to place scientific instruments in developing countries. Drawing on the Stanford experiences from setting up arrays of VLF receivers, including an interferometer in Alaska, the Holographic Array for Ionospheric and Lightning research (HAIL) consisting of instruments at 13 different high schools in mid-western United States, a broader set of ELF/VLF receivers in Alaska, and various receivers abroad, including in France, Japan, Greece, Turkey, and India, a global network of ELF/VLF receivers offer possibilities for a wide range of scientific topics

  9. 太阳能热管式吸热蓄热器的(火用)分析%Exergy Analysis of Solar Heat Pipe Receiver

    Institute of Scientific and Technical Information of China (English)

    胡爱凤

    2011-01-01

    It is analysed exergy of the solar heat pipe receiver at the thermodynamics,the thermal equilibrium and the exergy equilibrium of which are calculated based on the example. The main reason for the exergy loss of the solar heat pipe receiver is irreversible exergy loss of heat transfer. The key measures to reduce its exergy loss are reduction temperature difference and raising temperatures of hot and cold source.%从热力学的角度(火用)来分析热管式太阳能吸热蓄热器,结合实例计算热管式太阳能吸热蓄热器热平衡和(火用)平衡.得出热管式太阳能吸热蓄热器(火用)损失的主要原因是传热的不可逆性引起的(火用)损失.减少(火用)损失的关键措施是减小冷热源之间的传热温差、提高冷热源的温度水平.

  10. Quantitative Techniques in Volumetric Analysis

    Science.gov (United States)

    Zimmerman, John; Jacobsen, Jerrold J.

    1996-12-01

    Quantitative Techniques in Volumetric Analysis is a visual library of techniques used in making volumetric measurements. This 40-minute VHS videotape is designed as a resource for introducing students to proper volumetric methods and procedures. The entire tape, or relevant segments of the tape, can also be used to review procedures used in subsequent experiments that rely on the traditional art of quantitative analysis laboratory practice. The techniques included are: Quantitative transfer of a solid with a weighing spoon Quantitative transfer of a solid with a finger held weighing bottle Quantitative transfer of a solid with a paper strap held bottle Quantitative transfer of a solid with a spatula Examples of common quantitative weighing errors Quantitative transfer of a solid from dish to beaker to volumetric flask Quantitative transfer of a solid from dish to volumetric flask Volumetric transfer pipet A complete acid-base titration Hand technique variations The conventional view of contemporary quantitative chemical measurement tends to focus on instrumental systems, computers, and robotics. In this view, the analyst is relegated to placing standards and samples on a tray. A robotic arm delivers a sample to the analysis center, while a computer controls the analysis conditions and records the results. In spite of this, it is rare to find an analysis process that does not rely on some aspect of more traditional quantitative analysis techniques, such as careful dilution to the mark of a volumetric flask. Figure 2. Transfer of a solid with a spatula. Clearly, errors in a classical step will affect the quality of the final analysis. Because of this, it is still important for students to master the key elements of the traditional art of quantitative chemical analysis laboratory practice. Some aspects of chemical analysis, like careful rinsing to insure quantitative transfer, are often an automated part of an instrumental process that must be understood by the

  11. Analysis, development and testing of a fixed tilt solar collector employing reversible Vee-Trough reflectors and vacuum tube receivers

    Science.gov (United States)

    Selcuk, M. K.

    1979-01-01

    The Vee-Trough/Vacuum Tube Collector (VTVTC) aimed to improve the efficiency and reduce the cost of collectors assembled from evacuated tube receivers. The VTVTC was analyzed rigorously and a mathematical model was developed to calculate the optical performance of the vee-trough concentrator and the thermal performance of the evacuated tube receiver. A test bed was constructed to verify the mathematical analyses and compare reflectors made out of glass, Alzak and aluminized GEB Teflon. Tests were run at temperatures ranging from 95 to 180 C during the months of April, May, June, July and August 1977. Vee-trough collector efficiencies of 35-40 per cent were observed at an operating temperature of about 175 C. Test results compared well with the calculated values. Test data covering a complete day are presented for selected dates throughout the test season. Predicted daily useful heat collection and efficiency values are presented for a year's duration at operation temperatures ranging from 65 to 230 C. Estimated collector costs and resulting thermal energy costs are presented. Analytical and experimental results are discussed along with an economic evaluation.

  12. Central receiver solar thermal power system, phase 1. Quarterly progress report (final) for period ending June 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-10-01

    During this report period, the major program activities were aimed toward the fabrication of the three major research experiments and continued evaluation of the Pilot Plant performance and operating modes. The detail designs were completed early in this period. Effort was continued in the evaluation of Pilot Plant start transients. Both warm and hot starts from thermal storage were evaluated as was a cold start from the Receiver. In the Collector Subsystem Experiment the heliostat structures and drive mechanisms were completed and delivered. The detail design of the 5 MW Receiver Experiment was completed at Foster Wheeler. In the Thermal Storage Subsystem the detail design of the experiment was completed early in the period. A final selection of the heat transport media was made with Hitec selected as the molten salt and Caloria HT-43 selected as the hydrocarbon oil. During this period Bechtel continued its efforts in the optimization of the Electrical Power Generation Subsystem. Work was also continued on the completion of data that will be used in the Electrical Power Generation Subsystem analytical model being prepared by Martin as a part of the overall Pilot Plant Simulation Model. (WDM)

  13. PERFORMANCE COMPARRIONS OF SOLAR CENTRAL RECEIVERS AND WORKING FLUIDS FOR SOLAR POWER TOWER SYSTEMS%塔式太阳能热发电吸热器性能及工作介质的比较研究

    Institute of Scientific and Technical Information of China (English)

    杨敏林; 杨晓西; 张珊珊

    2008-01-01

    In this paper,comparisons of different receivers were made on the performance of solar power tower systems. Cavity receiver features higher heat efficiency than external receiver but has drawback in economic performance. Direct absorption receiver is obviously superior to indirect absorption receiver by reducing start-up losses,lowering thermal losses and improving absorptance. As the heat transfer fluid,molten salt has higher thermal capacity and better performance in economic and safety aspects,but the receiver needs accurate heliostat tracking and its working temperature is restrictedly restrained. On the contrary,air has no limitations on the working temperature and is quite friendly to the environment. But it has small thermal capacity,which leads to a reduction in the economic capability.Water/steam receiver has good features in efficiency and thermal capacity but the piping and vessels need to tolerate high pressure.%比较了各种吸热器在塔式太阳能系统中的表现,结果发现腔式吸热器比外热式吸热器具有更高的吸热效率,但经济性略差;在工作介质方面,熔盐介质具有热容量大及经济性、安全性较好的优点,但工作温度受限,对反射镜的控制精度要求高;而空气没有温度限制,并且对环境友好,但其热容量较小,导致经济性不好;水/蒸汽式吸热器有较高的效率及热容量,但管路及容器等需承受高压.

  14. Optimal geometry and dimensions for the receiver of a parabolic solar concentrator with an angle of 90 degrees; Determiancion de la geometria y dimensiones optimas de un receptor para un concentrador solar paraboloidal con angulo de apertura de 90 grados

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Claudio A; Arancibia, Camilo [Centro de Investigacion en Energia UNAM, Temixco, Morelos (Mexico); Hernandez, Nestor [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)

    2000-07-01

    The optimal geometry and dimensions for the receiver of a parabolic solar concentrator based on microwave communication antenna are obtained. First, the experiments for the determination of the angular error of the concentrator and the dimensions of its focal region are described. Results are also presented for the ray tracing study, from which the optimal characteristics of the receiver are obtained according to the experimental results. As the aluminum antenna has a rim angle of 90 Celsius degrees, it is necessary to use a cavity receiver to allow external as well as internal absorption of radiative flux. Cylindrical, conical and spherical geometric were considered, as well as combinations of them. The best results are achieved using a conical cavity. Its dimensions are calculated to maximize the radiative transfer efficiency from the aperture of the concentrator to the receiver. [Spanish] Se determinan la geometria y dimensiones optimas del receptor de un concentrador solar parabolico obtenido a partir de una antena de telecomunicaciones para microondas. Primeramente se describen los experimentos realizados para obtener el valor del error angular asociado al concentrador y de las dimensiones de su region focal. Tambien se presentan los resultados del estudio optico de trazado de rayos, que permitio determinar teoricamente las caracteristicas del receptor, de acuerdo a los resultados de los experimentos. Debido a que la antena de aluminio tiene un angulo de borde de 90 grados Celcius, es necesario usar un receptor tipo cavidad que permita la captacion de energia tanto interna como externa. Se consideraron geometrias cilindrica, conica, esferica y combinaciones entre ellas, resultando ser la conica la que da los mejores resultados. Las dimensiones del receptor fueron determinadas maximizando la eficiencia del transporte de radiacion de la apertura del concentrador al receptor.

  15. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    Science.gov (United States)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  16. Thermal Performance Evaluation of Two Thermal Energy Storage Tank Design Concepts for Use with a Solid Particle Receiver-Based Solar Power Tower

    Directory of Open Access Journals (Sweden)

    Abdelrahman El-Leathy

    2014-12-01

    Full Text Available This paper presents the results of an extensive study of two thermal energy storage (TES systems. The goal of the research is to make solar energy cost-competitive with other forms of electricity. A small-scale TES system was first built. The inner to outer layers were made of firebrick (FB, autoclaved aerated concrete (AAC and reinforced concrete brick (CB. The experiments were conducted at temperatures of up to 1000 °C for sustained periods of time. AAC was found to be prone to cracking at temperatures exceeding 900 °C; as a result, AAC was eliminated from the second TES system. The second, larger-scale TES system was subsequently built of multiple layers of readily available materials, namely, insulating firebrick (IFB, perlite concrete (PC, expansion joint (EJ, and CB. All of the surfaces were instrumented with thermocouples to estimate the heat loss from the system. The temperature was maintained at approximately 800 °C to approximate steady state conditions closely. The steady state heat loss was determined to be approximately 4.4% for a day. The results indicate that high-temperature TES systems can be constructed of readily available materials while meeting the heat loss requirements for a falling particle receiver system, thereby contributing to reducing the overall cost of concentrating solar power systems.

  17. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    Science.gov (United States)

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2016-11-22

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced.

  18. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  19. 10-MWe solar-thermal central-receiver pilot plant, solar facilities design integration: collector-field optimization report (RADL item 2-25)

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Appropriate cost and performance models and computer codes have been developed to carry out the collector field optimization, as well as additional computer codes to define the actual heliostat locations in the optimized field and to compute in detail the performance to be expected of the defined field. The range of capabilities of the available optimization and performance codes is described. The role of the optimization code in the definition of the pilot plant is specified, and a complete description of the optimization process itself is given. The detailed cost model used by the optimizer for the commercial system optimization is presented in the form of equations relating the cost element to each of the factors that determine it. The design basis for the commercial system is presented together with the rationale for its selection. The development of the individual heliostat performance code is presented. Use of the individual heliostat code in a completed study of receiver panel power under sunrise startup conditions is described. The procedure whereby performance and heliostat spacing data from the representative commercial-scale system are converted into coefficients of use in the layout processor is described, and the actual procedure used in the layout processor is described. Numerous special studies in support of the pilot plant design are described. (LEW)

  20. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  1. An overview of current activities at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Klimas, P.C.

    1992-01-01

    This paper is a description of the United States Department of Energy's National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and. testing of volumetric and PV central receiver concepts.

  2. An overview of current activities at the National Solar Thermal Test Facility

    Science.gov (United States)

    Cameron, C. P.; Klimas, P. C.

    This paper is a description of the United States Department of Energy's National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and testing of volumetric and PV central receiver concepts.

  3. An overview of current activities at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Klimas, P.C.

    1992-10-01

    This paper is a description of the United States Department of Energy`s National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and. testing of volumetric and PV central receiver concepts.

  4. 吸热过程光-热耦合特性及复杂非稳态传热机理研究%Study on the Sunray-thermo Coupling Characteristics the Sophisticated Transient Heat Transfer Mechanism in the Solar Thermal Receiving Process

    Institute of Scientific and Technical Information of China (English)

    李增耀; 陶于兵; 魏进家; 王跃社; 刘德有

    2016-01-01

    pressurized volumetric receiver (PVR) in high pressure and temperature condition are revealed. The unit-cell model of tetrakaidecahedron for simulating the porous SiC structure is adopted to investigate the flow and heat transfer. The experimental rigs for solar air receiver and DSG solar power are designed and established.%太阳能热发电是太阳能的高品位利用方式,吸热器是太阳能热发电系统中用于聚光太阳辐射能与热能转换的核心部件。根据聚光器类型、传热介质、运行压力和温度的不同,吸热器主要有真空管式和腔体式两种类型。该课题针对极端条件(时空分布随机变化的高温、高热流密度),以提高吸热器吸热效率为目的,研究吸热器内辐射-导热-对流耦合的传热机理,构建设计各类吸热器需要遵循的理论架构,设计新型高效稳定的吸热器。该课题的研究对太阳能热发电的规模化进程具有非常重要的意义。实现了基于蒙特卡罗光线追踪法的自编数值模拟程序,获得了槽式、塔式和碟式吸热器吸热面上的聚焦太阳能流分布,实现了蒙特卡罗光线追踪法和用于求解流动传热问题的有限容积法的耦合,研究了太阳辐射由镜场到吸热器的一体化传播过程。研究了槽式太阳能吸热器内的流动换热特性,建立了槽式DSG集热器的稳态传热计算模型和动态模型,开发了两类管内强化传热技术;基于DSMC方法建立真空管空气夹层内稀薄气体传热模型;耦合管内对流传热、管壁导热、真空夹层稀薄气体传热及辐射传热、管外对流传热及辐射传热,可望建立真空管吸热器的跨尺度传热模型的数值预测方法。建立了腔式水工质吸热器和腔式熔融盐吸热器吸热性能的数学模型,获取了吸热器内部热流密度和吸热管道温度的分布规律以及吸热器的热损失。结合腔式吸热器热性能的数学模型,提出了

  5. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish

    Energy Technology Data Exchange (ETDEWEB)

    Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Labs., Albuquerque, NM (USA)); Buck, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R.). Inst. fuer Technische Thermodynamik)

    1990-01-01

    The concept of solar driven chemical reactions in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH{sub 4}) with carbon dioxide (CO{sub 2}) was achieved in a 64-cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multi-layered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, and catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization. 17 refs., 11 figs., 1 tab.

  6. Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume IV. Receiver subsystem. [10-MW Pilot Plant and 100-MW Commercial Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-11-01

    The conception, design, and testing of the receiver subsystem proposed by the McDonnell Douglas/Rocketdyne Receiver team for the DOE 10-MW Pilot Plant and the 100-MW Commercial Plant are described. The receiver subsystem consists of the receiver unit, the tower on which the receiver unit is mounted above the collector field, and the supporting control and instrumentation equipment. The plans for implementation of the Pilot Plant are given including the anticipated schedule and production plan (procurement, installation, checkout, and maintenance). Specifications for the performance, design, and test requirements for the Pilot Plant receiver subsystem are included. (WHK)

  7. Effect of sand and method of mixing on molten salt properties for an open direct absorption solar receiver/storage system

    Science.gov (United States)

    AlQaydi, Muna; Delclos, Thomas; AlMheiri, Saif; Calvet, Nicolas

    2017-06-01

    The concept of CSPonD Demo project is based on a single and open molten salt tank as a thermal solar receiver and storage unit. Therefore, the effect of external environment such as sand and air on the thermophysical properties of nitrate salt (60 wt. % sodium nitrate, 40 wt. % potassium nitrate) has been investigated in this work. Differential Scanning Calorimeter (DSC) was used to determine the melting, solidification temperatures while the thermal stability and mass loss measurements were carried on Thermal Gravimetric Analysis (TGA). Measurements under nitrogen indicate that the adding 2% (w/w) sand has negative impact by increasing the solidification temperature, mass loss percentage and decreasing the stability limit. While the melting temperature was not affected by the sand and by the preparation method. On the other hand, measurement under air showed an increase of the stability limit and decrease of the mass loss percentage. Furthermore, the measurements for the mass loss under air did not reach a stable value, which required further investigation.

  8. Volumetric Three-Dimensional Display Systems

    Science.gov (United States)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  9. Solar collector array

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  10. 太阳射电30~65 MHz 波段模拟接收机的研制%Design of An Analog Receiver for Solar Radio Observation in the Frequency Range of 30MHz to 65MHz

    Institute of Scientific and Technical Information of China (English)

    郭少杰; 汪敏; 董亮; 施硕彪

    2015-01-01

    Solar radio radiations mainly come from the corona of the sun, and radio waves in different bands reflect activities in different layers of the corona.Observational studies about solar radio radiations are among the most important approaches to derive physical-parameter values of the corona ( e.g., temperature, density, and magnetic-field strength) .Decimeter waves come from a corona layer of heights approximately 1 to 2 times of the solar radius above the solar surface, which makes solar radio observations in decimeter waves particularly important in the coronal physics.For example, such studies can be used to monitor propagations of CME ( Coronal Mass Ejection) and shock waves in high layers of the corona, and to forecast space weather. Currently, there is a lack of solar radio observations in decimeter waves in China.It is urgent to build Chinese decimeter-wave solar radio telescopes and associated key equipments.A solar radio antenna array working in low-frequency bands has been built in the YNAO ( Yunnan Observatories) .The array consists of four antennas. It will work with the YNAO 10m solar radio telescope ( working in the frequency range of 625MHz to 1500MHz) and 11m solar radio telescope ( working in the frequency range of 70MHz to 700MHz) , achieving a complete wavelength coverage of coronal radio observation.In this paper we introduce our design of an analog receiver to be installed in the solar radio antenna array of the YNAO.The receiver is to monitor solar radio bursts in decimeter wavelengths corresponding to the frequency range of 30MHz to 65MHz.The analog receiver consists of Baluns, filters, and amplifiers for direct sampling.The performance parameters of the analog receiver meet the requirements for observations: The gain reaches 60dB, the dynamic range is about 33dB, the input third-order intercept point is about -24dBm, and the noise figure is about 4.3dB.We finally calculate the sensitivity limits of the solar radio antenna array with the

  11. A reduced volumetric expansion factor plot

    Science.gov (United States)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  12. Chemical reactions in a solar furnace 2: Direct heating of a vertical reactor in an insulated receiver. Experiments and computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Levy, M.; Levitan, R.; Meirovitch, E.; Segal, A.; Rosin, H.; Rubin, R. (Weizmann Inst. of Science, Rehovoth (Israel))

    1992-01-01

    The performance of a solar chemical heat pipe was studied using CO{sub 2}reforming of methane as the endothermic reaction. A directly heated vertical reactor, packed with a rhodium catalyst was used. The solar tests were carried out in the Schaeffer solar furnace of the Weizmann Institute of Science. The power absorbed was up to 6.3 KW, the maximal flow rates of the gases reached 11,000 1/h, and the methane conversions reached 85%. A computer model was developed to simulate the process. Agreement of the calculations with the experimental results was quite satisfactory.

  13. Midtemperature solar systems test facility predictions for thermal performance based on test data. Custom engineering trough with glass reflector surface and Sandia-designed receivers

    Science.gov (United States)

    Harrison, T. D.

    1981-05-01

    Thermal performance predictions based on test data are presented for the trough and receivers for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube, and one without the antireflective coating.

  14. Modeling and dynamic simulation of receiver in a solar tower power station%塔式太阳能电站接收器的建模及动态仿真

    Institute of Scientific and Technical Information of China (English)

    盛玲霞; 李佳燕; 赵豫红

    2016-01-01

    太阳能接收器是塔式太阳能电站的重要组成部分,是光热转换的重要部件,因此接收器的建模和仿真对实现电站的平稳运行具有重要意义。根据能量守恒、质量守恒定律,对以美国Solar Two电站接收器为原型的高温熔盐接收器吸热管进行空间离散化,建立了接收器分段集总参数模型。模型稳态仿真结果与Solar Two电站接收器测试结果的对比验证了模型的正确性。通过接收器动态仿真,分析了输入变化和接收器接收能量不均匀时的传热特性,可为定日镜场聚焦策略以及电站安全运行的研究提供依据。%The receiver is an important part for photothermal conversion in the solar tower power station. Thus, modeling and simulation of the receiver is extremely significant for the safety and steady-operation of the plant. The sectional lumped parameter model of the molten salt receiver, whose prototype is Solar Two located in USA, is established by the space discretization of the heat tubes according to the law of conservation of energy and mass. The validity of the model is verified through the comparisons between the test results of the receiver in Solar Two plant and the simulation results. The heat transfer characteristics of the receiver in the cases where the inputs change and the received energy distribution isn’t uniform are analyzed by the transient simulation, which can provide the foundation for the investigation of the aiming points strategy and safe operation of the station.

  15. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  16. Photovoltaic solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  17. Central Receiver Solar Thermal Power System, Phase 1. CDRL Item 2. Pilot Plant preliminary design report. Volume III, Book 1. Collector subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The central receiver system consists of a field of heliostats, a central receiver, a thermal storage unit, an electrical power generation system, and balance of plant. This volume discusses the collector field geometry, requirements and configuration. The development of the collector system and subsystems are discussed and the selection rationale outlined. System safety and availability are covered. Finally, the plans for collector portion of the central receiver system are reviewed.

  18. 一种太阳能吸热器过热蒸汽温度控制系统%Temperature control system of superheated steam for one type solar water/steam receiver

    Institute of Scientific and Technical Information of China (English)

    郭铁铮; 刘国耀; 刘德有; 郭苏; 许昌

    2012-01-01

    介绍了一种应用于塔式太阳能热发电系统的水/蒸汽吸热器过热蒸汽温度控制系统.受到太阳辐射能间歇性和不确定性的影响,吸热器产生的过热蒸汽温度难于控制.控制系统根据吸热器在蒸汽流量变化、光功率变化和减温水流量变化等3种主要扰动下的过热汽温度动态响应特性,以减温水流量作为控制量,光功率和蒸汽负荷作为前馈信号,设计和研制了两段式过热蒸汽温度控制系统,使吸热器过热区出口汽温维持在允许的范围内.%A superheated steam temperature control system of heat receiver in solar power tower plant was introduced. It is hard to control superheated steam temperature of receiver because solar radiant energy is intermittent and unsteady. A superheated steam temperature control system with two phases was designed and developed based on dynamic response characteristics of superheated steam caused by three main influencing factors such as steam flow, solar radiation and flow of desuperheating water. The flow of desuperheating water was used as control variable, and solar radiation and steam load as feed-forward signal, the steam outlet temperature at superheat zone in receiver changed within allowable arrange.

  19. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  20. Numerical Simulation of Different Start-up Performance of a Solar Cavity Receiver%太阳能腔式吸热器不同启动状态下启动性能研究

    Institute of Scientific and Technical Information of China (English)

    屠楠; 方嘉宾; 魏进家

    2012-01-01

    由于太阳能在时间上的非连续性使得太阳能腔式吸热器要频繁地经历不同的启动过程,对腔式吸热器在冷态启动、温态启动和热态启动过程中的热性能进行了模拟。计算得到了吸热器在三种启动过程中入口处所需的太阳光能量,可为定日镜场的布置及控制提供理论指导,同时还得到了吸热器在启动过程中热效率及辐射热损失、对流热损失随时间变化的曲线。%A solar cavity receiver frequently experiences different start-up processes because of the noncontimfity of solar energy in time. The thermal performance during three start-up processes, including cold start-up, warm start-up and hot start-up, was numerically simulated. The solar energy that the aperture of cavity receiver required was calculated during three start-up processes, and it can provide theoretical guidance for the layout and control of heliostat field. The curves of thermal efficiency, radiative thermal loss and convective thermal loss were also gained.

  1. The PSA Solar Furnace, A Test Facility Ready to Characterize High-ContrationSolar Devices from Solar Thermal Applications to PV Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Canadas, I.; Fernandez, J.; Monterreal, R.

    2006-07-01

    The PSA solar furnace is mainly devoted to materials science research experiments. This is because, due to the high thermal flux delivered onto their focus, solar furnaces are able to obtain the maximum energy density attainable with solar devices and therefore, are very suitable tools for thermal surface treatment of materials, in which the specimens are subjected to thermal shock or high temperatures. This facility has recently been improved with the installation of new equipment and instrumentation, including a flux measuring system, spectro radiometer, high-pressure cooling system with speed regulation, high-speed circular shutter, a test bed for volumetric and rotating receivers and a new Control and Data Acquisition System. Moreover, replacement of the previous four heliostats by a single, larger one, has improved system performance. This paper presents the new PSA Solar Furnace capabilities with the new instrumentation and control, which broaden the fields of application of this facility, from materials treatments and thermal balance to solar thermal processes i.e. porous receivers with calorimetric calculus or solid waste treatments and concentrating PV cells. (Author)

  2. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  3. Effects of solar and geomagnetic activities on the sub-ionospheric very low frequency transmitter signals received by the DEMETER micro-satellite

    Directory of Open Access Journals (Sweden)

    Günter Stangl

    2012-04-01

    Full Text Available

    In the framework of seismic precursor electromagnetic investigations, we analyzed the very low frequency (VLF amplitude signals recorded by the Instrument Champ Electrique (ICE experiment on board the DEMETER micro-satellite. The sun-synchronous orbits of the micro-satellite allowed us to cover an invariant latitude of between –65° and +65° in a time interval of about 40 min. We considered four transmitter signals emitted by stations in Europe (France, FTU, 18.3 kHz; Germany, DFY, 16.58 kHz, Asia (Japan, JP, 17.8 kHz and Australia (Australia, NWC, 19.8 kHz. We studied the variations of these VLF signals, taking into consideration: the signal-to-noise ratio, sunspots, and the geomagnetic activity. We show that the degree of correlation in periods of high geomagnetic and solar activities is, on average, about 40%. Such effects can be fully neglected in the period of weak activity. We also find that the solar activity can have a more important effect on the VLF transmitter signal than the geomagnetic activity. Our data are combined with models where the coupling between the lithosphere, atmosphere and ionosphere is essential to explain how ionospheric disturbances scatter the VLF transmitter signal.


  4. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  5. Influence of the spectral distribution of a solar simulator and of the outer diffuse radiation in the estimation of the optical yield of a thermal solar receiver; Influencia de la distribucion espectral de un simulador solar y de la radiacion difusa exterior en la estimacion del rendimiento optico de un captador solar termico

    Energy Technology Data Exchange (ETDEWEB)

    Sallaberry, F.; Garcia de Jalon, A.; Ramirez, L.; Olano, X.; Bernad, I.; Erice, R.

    2008-07-01

    In this paper we will show the results of the analysis of factors that influence the estimation of optical efficiency of solar thermal collectors testes according to the European standard UNE-EN 12975-2. Indoor tests with solar simulator involve control of the spectrum of its lamps to ensure that the difference with the Sun one does not change the optical efficiency {eta}{sub 0} of the collector. For outdoor tests, the diffuse radiation should be control as well. In the laboratory (LCS) of CENER, solar collectors tests are done according to part 6.1 of the standard UNE{sub E}N 12975-2 in continuous solar simulator. This study estimated the spectral correction applied to the estimation of optical efficiency of some solar collectors, with different selective materials. Likewise, we will weight the influence of terms related to diffuse radiation and spectral distribution. (Author)

  6. Nonequilibrium volumetric response of shocked polymers

    Energy Technology Data Exchange (ETDEWEB)

    Clements, B E [Los Alamos National Laboratory

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  7. Progress in two-dimensional arrays for real-time volumetric imaging.

    Science.gov (United States)

    Light, E D; Davidsen, R E; Fiering, J O; Hruschka, T A; Smith, S W

    1998-01-01

    The design, fabrication, and evaluation of two dimensional array transducers for real-time volumetric imaging are described. The transducers we have previously described operated at frequencies below 3 MHz and were unwieldy to the operator because of the interconnect schemes used in connecting to the transducer handle. Several new transducers have been developed using new connection technology. A 40 x 40 = 1,600 element, 3.5 MHz array was fabricated with 256 transmit and 256 receive elements. A 60 x 60 = 3,600 element 5.0 MHz array was constructed with 248 transmit and 256 receive elements. An 80 x 80 = 6,400 element, 2.5 MHz array was fabricated with 256 transmit and 208receive elements. 2-D transducer arrays were also developed for volumetric scanning in an intra cardiac catheter, a 10 x 10 = 100 element 5.0 MHz forward-looking array and an 11 x 13 = 143 element 5.0 MHz side-scanning array. The-6dB fractional bandwidths for the different arrays varied from 50% to 63%, and the 50 omega insertion loss for all the transducers was about-64 dB. The transducers were used to generate real-time volumetric images in phantoms and in vivo using the Duke University real time volumetric imaging system, which is capable of generating multiple planes at any desired angle and depth within the pyramidal volume.

  8. Research on Operation Security of Solar Thermal Tower Power Plant Receiver%塔式太阳能热发电吸热器运行安全性研究

    Institute of Scientific and Technical Information of China (English)

    高维; 徐蕙; 徐二树; 余强

    2013-01-01

    The Superheating cavity receiver of Badaling 1MW solar thermal power plant had produced successfully superheated steam in August 2011. Because the direct normal irradiation value is changing with time, flux density on each evaporating heating surfaces is different and Superheater has occurred deformation. According to structure of evaporating heating surfaces of Badaling 1 MW solar thermal power plant receiver, a 7-channel evaporator heating surface dynamic simulation model is developed. This model could better simulate the dynamic characteristics of receiver. Basis on the model, this paper analyzed the operation security of the overheating cavity receiver. For evaporative heating surfaces, the most dangerous working condition is a sudden increase in solar irradiance at the high load; for superheator, the most dangerous working condition is a sudden decrease in the turbine regulating valve at the high load.%八达岭1MW塔式太阳能腔式吸热器已于2011年8月成功生产出过热蒸汽.由于太阳辐照随时间变化的特点,腔式吸热器各受热面能流密度分布极不均匀.为了研究腔式吸热器的运行安全性,文中根据八达岭1MW塔式太阳能过热型腔式吸热器蒸发受热面的结构形式,建立了7通道蒸发受热面动态仿真数学模型.该模型能够反映不同蒸发受热面工质流量随能流密度变化的规律性,更好地模拟吸热器动态特性.在此基础上,通过仿真实验分析了过热型腔式吸热器运器运行安全性.对于蒸发受热面,最危险的工况是在高负荷时太阳辐照突然增强;对于过热受热面,最危险的工况是,高负荷时汽轮机调节汽门突然关小.

  9. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated as a fun...... is increased. Altogether, the model is demonstrated to be a valuable tool for a quantitative analysis of the effect of process conditions. Based on the presented findings and considerations, examples of future work are mentioned for the further improvement of the model.......The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...

  10. Indexing Volumetric Shapes with Matching and Packing.

    Science.gov (United States)

    Koes, David Ryan; Camacho, Carlos J

    2015-04-01

    We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X.

  11. Review and future perspective of central receiver design and performance

    Science.gov (United States)

    Zhu, Guangdong; Libby, Cara

    2017-06-01

    Concentrating solar power (CSP) technology provides a commercial solar option to the utility-scale electricity market. CSP is unique in its ability to include low-cost thermal storage; thus, it can generate electricity when the sun is not available and dispatch electricity to meet varying load requirements. Within the suite of CSP technologies, the central receiver design represents the state-of-the-art technology, promising low cost, high performance, and dispatchable energy production. Current total capacity of central receiver plants worldwide is about 1.0 gigawatt (electric) with operating plants in Spain and the United States, as well as projects under construction in Asia, the Middle East, and North Africa. Central receiver technology has been under development since the 1950s, and a variety of central receiver designs have been explored. A distinguishing feature is the heat transfer medium. Central receiver designs exist that use dense fluids, gases, and solid particles in this role. Water/steam and molten salt receivers have been adopted in current commercial plants and are often coupled with a steam-Rankine power cycle with an operating temperature of less than 600°C. Many new central receiver concepts, such as the volumetric air, supercritical carbon dioxide (sCO2), solid particle, and liquid-metal receiver designs, are under active research and development (R&D). New designs target operating temperatures generally higher than 700°C-800°C—and even above 1000°C—so that higher-performance power cycles such as the sCO2-Brayton cycle or air-Brayton/steam-Rankine combined cycle can be used to promote greater overall system efficiency. Central receiver thermal storage provides dispatchability unavailable from variable-output renewables such as solar photovoltaic and wind power. Case study analysis of the California grid shows that there is a limit on the amount of non-dispatchable renewable generation that the grid can accommodate, beyond which

  12. Review and Future Perspective of Central Receiver Design and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong; Libby, Cara

    2017-06-27

    Concentrating solar power (CSP) technology provides a commercial solar option to the utility-scale electricity market. CSP is unique in its ability to include low-cost thermal storage; thus, it can generate electricity when the sun is not available and dispatch electricity to meet varying load requirements. Within the suite of CSP technologies, the central receiver design represents the state-of-the-art technology, promising low cost, high performance, and dispatchable energy production. Current total capacity of central receiver plants worldwide is about 1.0 gigawatt (electric) with operating plants in Spain and the United States, as well as projects under construction in Asia, the Middle East, and North Africa. Central receiver technology has been under development since the 1950s, and a variety of central receiver designs have been explored. A distinguishing feature is the heat transfer medium. Central receiver designs exist that use dense fluids, gases, and solid particles in this role. Water/steam and molten salt receivers have been adopted in current commercial plants and are often coupled with a steam-Rankine power cycle with an operating temperature of less than 600 degrees C. Many new central receiver concepts, such as the volumetric air, supercritical carbon dioxide (sCO2), solid particle, and liquid-metal receiver designs, are under active research and development (R&D). New designs target operating temperatures generally higher than 700 degrees C-800 degrees C -- and even above 1000 degrees C -- so that higher-performance power cycles such as the sCO2-Brayton cycle or air-Brayton/steam-Rankine combined cycle can be used to promote greater overall system efficiency. Central receiver thermal storage provides dispatchability unavailable from variable-output renewables such as solar photovoltaic and wind power. Case study analysis of the California grid shows that there is a limit on the amount of non-dispatchable renewable generation that the grid can

  13. Numerical Simulation of Mixed Convection in Solar Cavity Receiver for Hydrogen Production%太阳能制氢腔式吸热器混合对流的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    肖鹏; 郭烈锦; 吕友军

    2012-01-01

    Mixed convection heat loss is the key factor to determine the thermal efficiency of solar cavity receiver for hydrogen production by biomass gasification using concentrated solar energy. In this paper, the solar cavity receiver, built by State Key Laboratory of Multiphase Flow in Power Engineering, was numerically modeled to study the characteristics of mixed convection heat loss. The RNG k - ε turbulence model was adopted to investigate the flow pattern and mixed convection heat transfer characteristics around the solar cavity with external wind effect. The correlation for Nusselt number was obtained with various wind directions and wind velocity. The result showed that, the side towards wind and semi-side towards wind have the most significant effects on convection heat loss. When the wind velocity was big enough to make Richardson greater than 1, the forced convection drive by external wind is dominated, and mixed convection heat loss increases with augmentation of Re and the increase of wind velocity.%混合对流热损失是影响太阳能与生物质超临界水气化耦合制氢腔式吸热器热效率的关键因素之一。本文以动力工程多相流实验室建成的生物质超临界水与太阳能聚集供热耦合制氢腔式吸热器为研究对象,对腔式吸热器混合对流换热进行了数值模拟研究。通过使用RNG惫一£湍流模型,研究了制氢吸热器在外界风吹掠环境下的混合对流热损失,获得了腔式吸热器在不同风速、风向吹掠下的混合对流换热准则Nusselt数。模拟结果表明,侧向风与侧迎向风对腔内对流热损失影响最大,当风速超过某一数值(Richardson数〉1),外界风诱发的强制对流会在对流热损失中占主导作用,且随着风速增加,混合对流热损失随Re提高而增大。

  14. Study on the Solar Collecting Performance of Vacuum Glass Casing & Metal Tube Compound Receiver%玻璃真空套管-金属管复合接收器集热性能研究

    Institute of Scientific and Technical Information of China (English)

    赖艳华; 宋固; 吕明新; 董震

    2011-01-01

    The solar collection process of vacuum glass casing & metal tube compound receiver was studied with energy balance principle. Heat transfer model of this system in steady state was established. Based on this model, thermal performance of this concentrator under different conditions has been analyzed systematically. The simulation results indicate that environmental factors have a little influence on this kind of receiver. Radiation heat transfer of the annular space is the major aspect of the total thermal loss. Improving selective absorbing coating performance to reduce the emissivity is the critical direction to the optimal design of the receiver. The thermal efficiency increases with the addition of solar irradiance and concentration ratio. The outlet temperature of the working fluid can be enhanced with the increase of receiver's length and inlet temperature. This receiver has good thermal collection performance.%采用稳态传热平衡原理,分析了玻璃真空套管一金属管复合太阳能接收器的集热过程,建立了稳态传热模型.利用该模型系统地研究了接收器在不同工况F的集热性能.模拟结果表明:这种结构的接收器受外界环境影响很小,真空套管和金属吸热管之间环形空间的辐射换热是系统热损失的主要环节,提高表面选择性吸收涂层的性能以减小系统发射率是接收器优化设计的重要方向;集热效率随太阳辐照度和聚光比的增加而增大;接收器长度和进口温度的增大有助于提高工质出口温度,玻璃真空套管-金属管复合接收器有着良好的集热性能.

  15. Numerical Research on Dynamic Characteristics in Solar Cavity Receiver Based on Step-Change Radiation Flux%瞬态阶跃热流密度下腔式吸热器动态特性研究

    Institute of Scientific and Technical Information of China (English)

    陈政伟; 王跃社; 陈开拓; 王启志; 李迪

    2012-01-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux of the inner surface in the receiver will present the characteristics of non-continuous change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore it will seriously affect the stability and safe operation of the receiver. In this paper, on the basis of the non-continuous step change of the radiation flux, we established a non-linear dynamic model by sequential modular approach, which gives a comprehensive consideration of flash or condensation in the two-phase flow. This study has obtained the dynamic responses of the characteristic parameters under step change radiation flux. The results can provide scientific guidance to the safe operation and control of the cavity receiver system.%腔式吸热器是塔式太阳能热发电系统光热转换的关键部件,云层遮挡等非正常瞬态气象条件会引起腔体内热流密度呈现出瞬态阶跃扰动的非连续性特点,易造成腔式吸热器状态参数有较大的动态扰动,严重影响了吸热器的稳定和安全运行。本文基于辐照强度阶跃变化的非连续性特点,综合考虑了压力变动时两相流中的闪蒸和闪凝现象,采用序贯模块法构建了腔式吸热器的动态特性非线性数学模型,获得了辐照强度阶跃扰动时腔式吸热器各耦合输出参数的动态响应规律。这些规律对于腔式吸热器的热力系统及控制系统的设计具有重要的指导意义。

  16. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.

    2012-02-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  17. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  18. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    Science.gov (United States)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency

  19. Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005

    Directory of Open Access Journals (Sweden)

    D. S. V. V. D. Prasad

    2006-12-01

    Full Text Available With the recent increase in the satellite-based navigation applications, the ionospheric total electron content (TEC and the L-band scintillation measurements have gained significant importance. In this paper we present the temporal and spatial variations in TEC derived from the simultaneous and continuous measurements made, for the first time, using the Indian GPS network of 18 receivers located from the equator to the northern crest of the equatorial ionization anomaly (EIA region and beyond, covering a geomagnetic latitude range of 1° S to 24° N, using a 16-month period of data for the low sunspot activity (LSSA years of March 2004 to June 2005. The diurnal variation in TEC at the EIA region shows its steep increase and reaches its maximum value between 13:00 and 16:00 LT, while at the equator the peak is broad and occurs around 16:00 LT. A short-lived day minimum occurs between 05:00 to 06:00 LT at all the stations from the equator to the EIA crest region. Beyond the crest region the day maximum values decrease with the increase in latitude, while the day minimum in TEC is flat during most of the nighttime hours, i.e. from 22:00 to 06:00 LT, a feature similar to that observed in the mid-latitudes. Further, the diurnal variation in TEC show a minimum to maximum variation of about 5 to 50 TEC units, respectively, at the equator and about 5 to 90 TEC units at the EIA crest region, which correspond to range delay variations of about 1 to 8 m at the equator to about 1 to 15 m at the crest region, at the GPS L1 frequency of 1.575 GHz. The day-to-day variability is also significant at all the stations, particularly during the daytime hours, with maximum variations at the EIA crest regions. Further, similar variations are also noticed in the corresponding equatorial electrojet (EEJ strength, which is known to be one of the major contributors for the observed day-to-day variability in TEC. The seasonal variation in TEC maximizes during the equinox

  20. Capillary systems integrated in solar collectors : an alternative in the direct steam generation with parabolic trough receivers; Sistemas capilares inegrados en receptores solares: una alternativa en la generacion directa de vapor con colectores clindro parabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, M. E.; Andres, M. C. de

    2004-07-01

    It is presented the experimental study with parabolic trough receiver samples with capillary systems integrated on their inner surfaces. These capillary systems intend to avoid that, under stratified two-phase flow and with an external applied heat flux, thermal gradients appear by increasing the wetted internal surface. The working fluid is water, operation temperatures go from 100 degree Celsius up to 250 degree Celsius and the external heat fluxes up to 12000W/m. Results show that the adequate election of the capillary system can increase the liquid-pipe wall contact area, wetting even completely the internal surface of the pipe. As degradation of capillary systems can be produced, they will have to be carefully chosen to guarantee their durability with time under real conditions. (Author)

  1. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  2. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  3. A SUBDIVISION SCHEME FOR VOLUMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    GhulamMustafa; LiuXuefeng

    2005-01-01

    In this paper, a subdivision scheme which generalizes a surface scheme in previous papers to volume meshes is designed. The scheme exhibits significant control over shrink-age/size of volumetric models. It also has the ability to conveniently incorporate boundaries and creases into a smooth limit shape of models. The method presented here is much simpler and easier as compared to MacCracken and Joy's. This method makes no restrictions on the local topology of meshes. Particularly, it can be applied without any change to meshes of nonmanifold topology.

  4. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  5. IMITATION OF STANDARD VOLUMETRIC ACTIVITY METAL SAMPLES

    Directory of Open Access Journals (Sweden)

    A. I. Zhukouski

    2016-01-01

    Full Text Available Due to the specific character of problems in the field of ionizing radiation spectroscopy, the R&D and making process of standard volumetric activity metal samples (standard samples for calibration and verification of spectrometric equipment is not only expensive, but also requires the use of highly qualified experts and a unique specific equipment. Theoretical and experimental studies performed have shown the possibility to use imitators as a set of alternating point sources of gamma radiation and metal plates and their use along with standard volumetric activity metal samples for calibration of scintillation-based detectors used in radiation control in metallurgy. Response functions or instrumental spectra of such spectrometer to radionuclides like 137Cs, 134Cs, 152Eu, 154Eu, 60Co, 54Mn, 232Th, 226Ra, 65Zn, 125Sb+125mTe, 106Ru+106Rh, 94Nb, 110mAg, 233U, 234U, 235U and 238U are required for calibration in a given measurement geometry. Standard samples in the form of a probe made of melt metal of a certain diameter and height are used in such measurements. However, the production of reference materials is costly and even problematic for such radionuclides as 94Nb, 125Sb+125mTe, 234U, 235U  etc. A recognized solution to solve this problem is to use the Monte-Carlo simulation method. Instrumental experimental and theoretical spectra obtained by using standard samples and their imitators show a high compliance between experimental spectra of real samples and the theoretical ones of their Monte-Carlo models, between spectra of real samples and the ones of their imitators and finally, between experimental spectra of real sample imitators and the theoretical ones of their Monte-Carlo models. They also have shown the adequacy and consistency of the approach in using a combination of metal scattering layers and reference point gamma-ray sources instead of standard volumetric activity metal samples. As for using several reference point gamma-ray sources

  6. Magnetic volumetric hologram memory with magnetic garnet.

    Science.gov (United States)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-06-30

    Holographic memory is a promising next-generation optical memory that has a higher recording density and a higher transfer rate than other types of memory. In holographic memory, magnetic garnet films can serve as rewritable holographic memory media by use of magneto-optical effect. We have now demonstrated that a magnetic hologram can be recorded volumetrically in a ferromagnetic garnet film and that the signal image can be reconstructed from it for the first time. In addition, multiplicity of the magnetic hologram was also confirmed; the image could be reconstructed from a spot overlapped by other spots.

  7. Widespread Volumetric Brain Changes following Tooth Loss in Female Mice

    Science.gov (United States)

    Avivi-Arber, Limor; Seltzer, Ze'ev; Friedel, Miriam; Lerch, Jason P.; Moayedi, Massieh; Davis, Karen D.; Sessle, Barry J.

    2017-01-01

    Tooth loss is associated with altered sensory, motor, cognitive and emotional functions. These changes vary highly in the population and are accompanied by structural and functional changes in brain regions mediating these functions. It is unclear to what extent this variability in behavior and function is caused by genetic and/or environmental determinants and which brain regions undergo structural plasticity that mediates these changes. Thus, the overall goal of our research program is to identify genetic variants that control structural and functional plasticity following tooth loss. As a step toward this goal, here our aim was to determine whether structural magnetic resonance imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains of mice of different genetic background receiving tooth extraction or sham operation. We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J (B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1, AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice by recombinations and inbreeding. This panel of 25 inbred strains of genetically diverse inbred strains of mice is used for mapping chromosomal intervals throughout the genome that harbor candidate genes controlling the phenotypic variance of any trait under study. Under general anesthesia, 39 mice received extraction of 3 right maxillary molar teeth and 28 mice received sham operation. On post-extraction day 21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume of 160 brain regions. Compared to sham operation, tooth extraction was associated with a significantly reduced regional and voxel-wise volumes of cortical brain regions involved in processing somatosensory, motor, cognitive and emotional functions, and increased volumes in subcortical sensorimotor and temporal limbic forebrain regions including the amygdala. Additionally, comparison of the 10 BXA14

  8. Analysis of the Solar Thermal Cylinder Receiver Heat Flux Distribution Under Multi-aiming Point Strategy%多点聚焦的太阳能柱式吸热器能流分布研究

    Institute of Scientific and Technical Information of China (English)

    郑建涛; 严俊杰; 韩临武; 曹传钊

    2015-01-01

    Generally, the heliostat field in the solar thermal power tower plant used the multi-aiming point strategy to reduce the non-uniformity of radiation heat flux on the receiver to prevent the overheating. In this paper, a single tube used in solar thermal power tower cylinder receiver was studied theoretically. The heat flux on the tube using the multi-aiming point strategy with multiple concentrated points was achieved by the Gaussian function with multiple maximum values. The thermal parameters characteristic were analyzed by numerical simulation. The results show that each aiming point has the optimal position making the lowest non-uniformity of the radiation heat flux on the tube when the number of the aiming point is constant. What's more, the radiation heat flux on the tube is more and more uniform and the maximum wall temperature decreases with the number on the aiming point increasing, while the maximum absolute temperature gradient increases. As a consequence, the thermal parameters must be considered comprehensively according to the multi-aiming point strategy to choose the optimal number of the aiming point and their optimal positions.%塔式太阳能热发电站定日镜场通常采用多点聚焦策略来降低吸热器表面辐射能流的不均匀性,防止发生过热故障.文中以塔式电站柱式吸热器单根吸热管为研究对象,采用具有多个极大值的高斯函数来描述多点聚焦时吸热管表面具有多个能流集中点的辐射能流分布,数值模拟分析吸热管的热参数特性.结果显示:聚焦点个数一定时,存在最优的聚焦点位置,使得吸热管表面辐射能流不均匀性最低.同时随着聚焦点个数增加,吸热管表面辐射能流更加均匀,最大壁温减小,而轴向最大绝对温度梯度增大.因此对于多点聚焦,应综合考虑吸热管的热参数,选择最优化的聚焦点个数和聚焦点位置.

  9. 塔式太阳能电站集热管非均匀受热特性研究%Heat transfer performance of water-vapor receiver with uneven heat flux in solar power tower plant

    Institute of Scientific and Technical Information of China (English)

    曹传钊; 韩临武; 徐海卫; 刘明义; 裴杰

    2015-01-01

    塔式太阳能电站吸热器中的集热管是光热转换的核心组件。集热管面向镜场的半圆周受热,且热流密度沿圆周和轴向不断变化,背向镜场的半圆周绝热,同时集热管内水-蒸汽工质的沸腾流动换热尤为复杂,研究其受热特性有助于深入了解塔式电站吸热器集热管的整体性能。为此,建立了轴向和周向不均匀热流边界条件下水-蒸汽集热管内的数值模型。基于 Fluent平台,计算三维、非稳态的汽液两相流动,通过模拟分析呈现了管内的汽液两相流动特性,同时揭示了在这种极不均匀热流条件下,集热管的温度分布规律及其传热特性。%Heat collector pipe in receiver of solar thermal power tower plants is a kernel unit to convert solar energy into thermal energy.Only the semi-circumference facing the heliostat field receives heat flux,while the other semi-circumference depart from the heliostat field is adiabatic.What's more,the heat transfer of boiling flow in the pipe with the water-vapor as the working fluid is especially complex.So the understand-ing of the heat transfer characteristics in it is significant and important.Through Fluent software,numeri-cal model of the water-vapor tube under uneven heat flux boundary with semi-circumference heated and the other semi-circumference adiabatic was established.The three-dimensional and unsteady water-vapor two-phase flow was numerically simulated.So,flow characteristics of the two-phase flow were obtained,and temperature distribution and heat transfer characteristics of the tube under uneven heat flux were revealed.

  10. Disentangling volumetric and hydrational properties of proteins.

    Science.gov (United States)

    Voloshin, Vladimir P; Medvedev, Nikolai N; Smolin, Nikolai; Geiger, Alfons; Winter, Roland

    2015-02-05

    We used molecular dynamics simulations of a typical monomeric protein, SNase, in combination with Voronoi-Delaunay tessellation to study and analyze the temperature dependence of the apparent volume, Vapp, of the solute. We show that the void volume, VB, created in the boundary region between solute and solvent, determines the temperature dependence of Vapp to a major extent. The less pronounced but still significant temperature dependence of the molecular volume of the solute, VM, is essentially the result of the expansivity of its internal voids, as the van der Waals contribution to VM is practically independent of temperature. Results for polypeptides of different chemical nature feature a similar temperature behavior, suggesting that the boundary/hydration contribution seems to be a universal part of the temperature dependence of Vapp. The results presented here shine new light on the discussion surrounding the physical basis for understanding and decomposing the volumetric properties of proteins and biomolecules in general.

  11. All Photons Imaging Through Volumetric Scattering

    Science.gov (United States)

    Satat, Guy; Heshmat, Barmak; Raviv, Dan; Raskar, Ramesh

    2016-01-01

    Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational “All Photons Imaging” (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photons. As opposed to other methods which aim to lock on specific photons (coherent, ballistic, acoustically modulated, etc.), this framework aims to use all of the optical signal. Compared to conventional early photon measurements for imaging through a 15 mm tissue phantom, our method shows a two fold improvement in spatial resolution (4db increase in Peak SNR). This all optical, calibration-free framework enables widefield imaging through thick turbid media, and opens new avenues in non-invasive testing, analysis, and diagnosis. PMID:27683065

  12. A Technique for Volumetric CSG Based on Morphology

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2001-01-01

    In this paper, a new technique for volumetric CSG is presented. The technique requires the input volumes to correspond to solids which fulfill a voxelization suitability criterion. Assume the CSG operation is union. The volumetric union of two such volumes is defined in terms of the voxelization...

  13. Feedwater Control System Design of Cavity Type Solar Water/Steam Receiver%腔式太阳能水/蒸汽吸热器给水全程控制系统的设计

    Institute of Scientific and Technical Information of China (English)

    郭铁铮; 刘国耀; 刘德有; 许昌; 郭苏

    2012-01-01

    Feedwater control system of a cavity type water/steam receiver for solar power tower plant was introduced,as well as control requirements of feedwater control system were put forward.Besides,feedwater pressure control system of receiver and speed control system of feedwater pump were designed and developed.At the meantime,in order to avoid interference with each other between two systems and make two systems cooperation in harmony,speed deviation feed-forward signal of feedwater pump was imported to feedwater pressure control system,and pressure deviation feed-forward signal was add to speed control system.By using above mentioned methods to make adjustment for feedwater pressure and speed control of feedwater pump combined and cooperated,so that adjustment speed for drum water level can be quicken.%介绍了一种应用于塔式太阳能热发电系统中的腔式水/蒸汽吸热器给水全程控制系统。提出了系统运行对控制系统的控制要求,给出了吸热器的给水压力控制系统和给水泵转速控制系统的设计和研制方法。同时指出,为了避免两个系统之间的互相干扰,使各系统尽可能地协调动作,在给水压力控制系统中引入了水泵转速偏差前馈信号,在转速系统中引入压力偏差前馈信号,使系统的给水压力调节和给水泵转速控制互相联系起来,加快汽包水位的调节速度。

  14. 塔式太阳能电站聚光镜场的土地利用率研究%Study on ground coverage of heliostats field in central receiver solar power plant

    Institute of Scientific and Technical Information of China (English)

    丁婷婷; 祝雪妹

    2012-01-01

    Most conventional heliostats field consist of rectangular heliostats, which have regular arrangement in central receiver solar power plant. The maximum ground coverage possible of such heliostats field without colliding neighboring reflectors is 58%. In this paper, a regular and radial arrangement of heliostats field is presented, a ground coverage model of different shape reflectors is carried out, and calculates different ground coverage in different situations. The simulation results show that a maximum ground coverage will obtain when width -height ratio of rectangular reflectors and hexagonal reflectors meet necessary condition. With die shape of hexagonal reflectors ground coverage is up to 100%.%塔式太阳能热发电站的聚光镜场大多是由按一定规律排列的矩形定日镜组成,在相邻定日镜间无机械碰撞的情况下,聚光镜场的最大土地利用率仅为58%.文章提出了选用规则交错排列的聚光镜场布置方案,建立不同形状定日镜的土地利用模型,并计算出不同情况下的最大土地利用率.通过仿真得出,矩形定日镜和六边形定日镜在一定长宽比时可获得最大土地利用率,其中六边形定日镜的土地利用率最高,约为100%.

  15. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  16. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  17. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  18. Solar fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.R.

    1978-11-17

    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  19. Dish/stirling hybrid-receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  20. Iterative reconstruction of volumetric particle distribution

    Science.gov (United States)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  1. High Flux Microchannel Receiver Development with Adap-tive Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States)

    2015-08-15

    This project is focused on the demonstration of a microchannel-based solar receiver (MSR). The MSR concept consists of using a modular arrangement of arrayed microchannels to heat a working fluid in a concentrating solar receiver, allowing a much higher solar flux on the receiver and consequently a significant reduction in thermal losses, size, and cost.

  2. Efficient space propulsion and power using a high-temperature, gaseous radiation receiver

    Science.gov (United States)

    Mattick, A. T.; Mcfall, K. A.

    1990-01-01

    A two-dimensional analysis is carried out for a flowing gas radiation heater, a device whereby focused solar radiation is deposited volumetrically in a gas to produce high temperatures for space power or propulsion. The paper includes radiative losses to the walls of the absorption chamber, and demonstrates that if wall reflectivity exceeds 75 percent, gas temperatures above 3000 K are possible.

  3. Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-05-01

    Full Text Available newly proposed hydrostatic compression test procedure. The test procedure applies field loading conditions of off-road construction and mining equipment to closely simulate the volumetric deformation and stiffness behaviour of oil sand materials. Based...

  4. Hyperspectral image classification based on volumetric texture and dimensionality reduction

    Science.gov (United States)

    Su, Hongjun; Sheng, Yehua; Du, Peijun; Chen, Chen; Liu, Kui

    2015-06-01

    A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-supervised k-means (SKM) clustering method with deleting the worst cluster (SKMd) bandclustering algorithms. Moreover, four feature combination schemes were designed for hyperspectral image classification by using spectral and textural features. It has been proven that the proposed method using VGLCM outperforms the gray-level co-occurrence matrices (GLCM) method, and the experimental results indicate that the combination of spectral information with volumetric textural features leads to an improved classification performance in hyperspectral imagery.

  5. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    ... remote web-based mechanical-volumetric flow meter reading systems based on ... damage and also provides the ability to control and manage consumption. ... existing infrastructure of the telecommunications is used in data transmission.

  6. 太阳能发电热管吸热器相变蓄热单元性能分析%Performance analysis of phase change heat storage unit in heat pipe receiver of solar power generation systems

    Institute of Scientific and Technical Information of China (English)

    宋香娥

    2015-01-01

    基于微重力条件下的导热控制微分方程,采用焓法建立热管吸热器相变蓄热单元计算模型,对微重力条件下热管吸热器蓄热容器的相变传热过程进行了模拟计算,分析了空穴率对蓄热容器内部的温度场和热性能的影响。结果表明:经与美国国家航空航天局(NASA)方案进行比较,所建立的计算模型合理、准确,能够较好地模拟热管吸热器蓄热单元蓄、放热过程;热管吸热器壁温与相变蓄热容器温度非常接近,包含着相变材料的整个热管起着均匀热负荷的作用,与基本型吸热器相比热管吸热器相变材料熔化率大幅提高,相变材料利用率较高;随着空穴率的增大,相变材料利用率降低,相变材料容器的蓄热能力降低,同时相变蓄热容器内温度梯度增大,可能导致该处热应力过大,从而降低其使用寿命。%On the basis of thermal conduction differential equations under microgravity condition,the enthal-py method was applied to establish calculation model for phase change heat storage unit in heat pipe receiv-ers.Considering both the void cavity and phase change,numerical simulation was carried out.The effects of void cavity on temperature field and thermal performance of the phase change material (PCM)canister were investigated.The results show that,compared with the National Aeronautics and Space Administra-tion (NASA)results,the established model is reasonable and accurate,which can well simulate the heat storage and release process of the PCM canister.The wall temperature of the heat pipe receiver is close to that of the PCM canister,implying the entire heat pipe containing PCM plays a role in heat load uniformi-ty.The maximum melting rate of the PCM is 92%,indicating the utilization efficiency of the PCM is high. With an increase in void cavity,the unmelted PCM amount increases in the area close to the void during the last stage of solar radiation and

  7. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  8. Serial volumetric registration of pulmonary CT studies

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Sousa Santos, Beatriz

    2008-03-01

    Detailed morphological analysis of pulmonary structures and tissue, provided by modern CT scanners, is of utmost importance as in the case of oncological applications both for diagnosis, treatment, and follow-up. In this case, a patient may go through several tomographic studies throughout a period of time originating volumetric sets of image data that must be appropriately registered in order to track suspicious radiological findings. The structures or regions of interest may change their position or shape in CT exams acquired at different moments, due to postural, physiologic or pathologic changes, so, the exams should be registered before any follow-up information can be extracted. Postural mismatching throughout time is practically impossible to avoid being particularly evident when imaging is performed at the limiting spatial resolution. In this paper, we propose a method for intra-patient registration of pulmonary CT studies, to assist in the management of the oncological pathology. Our method takes advantage of prior segmentation work. In the first step, the pulmonary segmentation is performed where trachea and main bronchi are identified. Then, the registration method proceeds with a longitudinal alignment based on morphological features of the lungs, such as the position of the carina, the pulmonary areas, the centers of mass and the pulmonary trans-axial principal axis. The final step corresponds to the trans-axial registration of the corresponding pulmonary masked regions. This is accomplished by a pairwise sectional registration process driven by an iterative search of the affine transformation parameters leading to optimal similarity metrics. Results with several cases of intra-patient, intra-modality registration, up to 7 time points, show that this method provides accurate registration which is needed for quantitative tracking of lesions and the development of image fusion strategies that may effectively assist the follow-up process.

  9. Volumetric optoacoustic monitoring of endovenous laser treatments

    Science.gov (United States)

    Fehm, Thomas F.; Deán-Ben, Xosé L.; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-03-01

    Chronic venous insufficiency (CVI) is one of the most common medical conditions with reported prevalence estimates as high as 30% in the adult population. Although conservative management with compression therapy may improve the symptoms associated with CVI, healing often demands invasive procedures. Besides established surgical methods like vein stripping or bypassing, endovenous laser therapy (ELT) emerged as a promising novel treatment option during the last 15 years offering multiple advantages such as less pain and faster recovery. Much of the treatment success hereby depends on monitoring of the treatment progression using clinical imaging modalities such as Doppler ultrasound. The latter however do not provide sufficient contrast, spatial resolution and three-dimensional imaging capacity which is necessary for accurate online lesion assessment during treatment. As a consequence, incidence of recanalization, lack of vessel occlusion and collateral damage remains highly variable among patients. In this study, we examined the capacity of volumetric optoacoustic tomography (VOT) for real-time monitoring of ELT using an ex-vivo ox foot model. ELT was performed on subcutaneous veins while optoacoustic signals were acquired and reconstructed in real-time and at a spatial resolution in the order of 200μm. VOT images showed spatio-temporal maps of the lesion progression, characteristics of the vessel wall, and position of the ablation fiber's tip during the pull back. It was also possible to correlate the images with the temperature elevation measured in the area adjacent to the ablation spot. We conclude that VOT is a promising tool for providing online feedback during endovenous laser therapy.

  10. Treatment planning for volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, James L. [Joint Department of Physics, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  11. Light shield for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  12. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  13. Soft bilateral filtering volumetric shadows using cube shadow maps

    Science.gov (United States)

    Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang

    2017-01-01

    Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740

  14. Thermal resistance model for CSP central receivers

    Science.gov (United States)

    de Meyer, O. A. J.; Dinter, F.; Govender, S.

    2016-05-01

    The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.

  15. Semiautomatic segmentation of liver metastases on volumetric CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jiayong [Department of Biomedical Engineering, Shanghai University of Medicine & Health Sciences, 101 Yingkou Road, Yang Pu District, Shanghai 200093 (China); Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@cumc.columbia.edu [Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032 (United States)

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  16. Modified Volumetric Modulated Arc Therapy in Left Sided Breast Cancer After Radical Mastectomy With Flattening Filter Free Versus Flattened Beams

    OpenAIRE

    Lai, Youqun; Chen, Yanyan; Wu, Sangang; Shi, Liwan; Fu, Lirong; Ha, Huiming; Lin, Qin

    2016-01-01

    Abstract Conventional volumetric modulated arc therapy (C-VMAT) for breast cancer after radical mastectomy had its limitation that resulted in larger volumes of normal tissue receiving low doses. We explored whether there was a way to deal with this disadvantage and determined the potential benefit of flattening filter-free (FFF) beams. Twenty patients with breast cancer after radical mastectomy were subjected to 3D conformal radiotherapy (3DCRT) and VMAT treatment planning. For VMAT plans, 3...

  17. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    Science.gov (United States)

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-09-03

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  18. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  19. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remain

  20. Aspects of volumetric efficiency measurement for reciprocating engines

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2013-01-01

    Full Text Available The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined. [Acknowledgments. The paper is the result of the research within the project TR 35041 financed by the Ministry of Science and Technological Development of the Republic of Serbia

  1. Program for Paraboloidal Solar Concentrators

    Science.gov (United States)

    Wen, Liang-Chi; O'Brien, Philip

    1987-01-01

    Solar-Concentrator Code for Paraboloidal Dishes (SOLCOL) aids in design and analysis of solar collectors in space station. Calculates quality of solar image and flux distribution on specified target surface. Receiver target is focal plane cylinder, hemisphere, or any arbitrary surface, normals to which supplied. Used to assess optical performance of concentrator. Written in FORTRAN 77.

  2. Analysis of the omnium-g receiver

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, M.

    1980-03-01

    A thermal analysis of the Omnium-G receiver is presented and the technique is shown to be generally applicable to solar thermal receivers utilizing a directly heated thermal mass. The thermal loss coefficient, including reradiation losses, is calculated and shown to agree quite well with the experimentally measured thermal loss coefficient. The rate of heat transfer to the working fluid is also analyzed and the analysis is used to show that the Omnium-G receiver is well matched to the water/steam working fluid because the steam outlet temperature is almost the same as the receiver temperature. A general procedure for calculating receiver performance is presented. With this procedure, the energy delivery to any working fluid, the delivered temperature of the working fluid, and the pressure drop through the receiver can be determined. An example of the calculation is also presented.

  3. A high volume, high throughput volumetric sorption analyzer

    Science.gov (United States)

    Soo, Y. C.; Beckner, M.; Romanos, J.; Wexler, C.; Pfeifer, P.; Buckley, P.; Clement, J.

    2011-03-01

    In this talk we will present an overview of our new Hydrogen Test Fixture (HTF) constructed by the Midwest Research Institute for The Alliance for Collaborative Research in Alternative Fuel Technology to test activated carbon monoliths for hydrogen gas storage. The HTF is an automated, computer-controlled volumetric instrument for rapid screening and manipulation of monoliths under an inert atmosphere (to exclude degradation of carbon from exposure to oxygen). The HTF allows us to measure large quantity (up to 500 g) of sample in a 0.5 l test tank, making our results less sensitive to sample inhomogeneity. The HTF can measure isotherms at pressures ranging from 1 to 300 bar at room temperature. For comparison, other volumetric instruments such as Hiden Isochema's HTP-1 Volumetric Analyser can only measure carbon samples up to 150 mg at pressures up to 200 bar. Work supported by the US DOD Contract # N00164-08-C-GS37.

  4. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.

    Science.gov (United States)

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-11-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality.

  5. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    Science.gov (United States)

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  6. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    Science.gov (United States)

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies.

  7. Volumetric measurements of a spatially growing dust acoustic wave

    Science.gov (United States)

    Williams, Jeremiah D.

    2012-11-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  8. Volumetric measurements of a spatially growing dust acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  9. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    Science.gov (United States)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  10. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  11. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  12. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  13. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  14. 增透膜在槽式太阳能高温集热管产业化生产中的应用%Application of the enhanced transmission film in industrialized production of solar energy high temperature trough receiver tube

    Institute of Scientific and Technical Information of China (English)

    范兵; 杨兴; 王静; 曹明刚

    2016-01-01

    高温太阳能集热管作为槽式太阳能热发电系统的核心部件,直接影响其发电效率。文章研究了采用溶胶-凝胶技术和提拉法在高温太阳能集热管的玻璃外管上镀制增透膜,大大地提高了集热管的集热效率;研制了年产15万支的集热管增透膜镀膜自动化生产线,产业化能力得到稳步提升。%The high temperature receiver tube is the core component of the parabolic trough solar power generation system, and has a direct bearing on the efficiency of the system. By using the sol-gel and dip coating method, anti-reflective coatings are prepared on the surface of the high temperature receiver tube. Thus the thermal efficiency of the high temperature receiver tube is increased. An automatic production line of anti-reflection coating for solar collector tubes is developed to enhance its industrialized production capacity.

  15. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  16. Space-Time Transfinite Interpolation of Volumetric Material Properties.

    Science.gov (United States)

    Sanchez, Mathieu; Fryazinov, Oleg; Adzhiev, Valery; Comninos, Peter; Pasko, Alexander

    2015-02-01

    The paper presents a novel technique based on extension of a general mathematical method of transfinite interpolation to solve an actual problem in the context of a heterogeneous volume modelling area. It deals with time-dependent changes to the volumetric material properties (material density, colour, and others) as a transformation of the volumetric material distributions in space-time accompanying geometric shape transformations such as metamorphosis. The main idea is to represent the geometry of both objects by scalar fields with distance properties, to establish in a higher-dimensional space a time gap during which the geometric transformation takes place, and to use these scalar fields to apply the new space-time transfinite interpolation to volumetric material attributes within this time gap. The proposed solution is analytical in its nature, does not require heavy numerical computations and can be used in real-time applications. Applications of this technique also include texturing and displacement mapping of time-variant surfaces, and parametric design of volumetric microstructures.

  17. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...

  18. Automatic segmentation of pulmonary segments from volumetric chest CT scans.

    NARCIS (Netherlands)

    Rikxoort, E.M. van; Hoop, B. de; Vorst, S. van de; Prokop, M.; Ginneken, B. van

    2009-01-01

    Automated extraction of pulmonary anatomy provides a foundation for computerized analysis of computed tomography (CT) scans of the chest. A completely automatic method is presented to segment the lungs, lobes and pulmonary segments from volumetric CT chest scans. The method starts with lung segmenta

  19. Volumetric T-spline Construction Using Boolean Operations

    Science.gov (United States)

    2013-07-01

    15213, USA 2 Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA 3 Department of Civil and...and S. Yau. Volumetric harmonic map. Communications in Information and Systems, 3(3):191–202, 2003. 12. C.A.R. Guerra . Simultaneous untangling and

  20. Volumetric motion quantification by 3D tissue phase mapped CMR

    Directory of Open Access Journals (Sweden)

    Lutz Anja

    2012-10-01

    Full Text Available Abstract Background The objective of this study was the quantification of myocardial motion from 3D tissue phase mapped (TPM CMR. Recent work on myocardial motion quantification by TPM has been focussed on multi-slice 2D acquisitions thus excluding motion information from large regions of the left ventricle. Volumetric motion assessment appears an important next step towards the understanding of the volumetric myocardial motion and hence may further improve diagnosis and treatments in patients with myocardial motion abnormalities. Methods Volumetric motion quantification of the complete left ventricle was performed in 12 healthy volunteers and two patients applying a black-blood 3D TPM sequence. The resulting motion field was analysed regarding motion pattern differences between apical and basal locations as well as for asynchronous motion pattern between different myocardial segments in one or more slices. Motion quantification included velocity, torsion, rotation angle and strain derived parameters. Results All investigated motion quantification parameters could be calculated from the 3D-TPM data. Parameters quantifying hypokinetic or asynchronous motion demonstrated differences between motion impaired and healthy myocardium. Conclusions 3D-TPM enables the gapless volumetric quantification of motion abnormalities of the left ventricle, which can be applied in future application as additional information to provide a more detailed analysis of the left ventricular function.

  1. Video-rate volumetric optical coherence tomography-based microangiography

    Science.gov (United States)

    Baran, Utku; Wei, Wei; Xu, Jingjiang; Qi, Xiaoli; Davis, Wyatt O.; Wang, Ruikang K.

    2016-04-01

    Video-rate volumetric optical coherence tomography (vOCT) is relatively young in the field of OCT imaging but has great potential in biomedical applications. Due to the recent development of the MHz range swept laser sources, vOCT has started to gain attention in the community. Here, we report the first in vivo video-rate volumetric OCT-based microangiography (vOMAG) system by integrating an 18-kHz resonant microelectromechanical system (MEMS) mirror with a 1.6-MHz FDML swept source operating at ˜1.3 μm wavelength. Because the MEMS scanner can offer an effective B-frame rate of 36 kHz, we are able to engineer vOMAG with a video rate up to 25 Hz. This system was utilized for real-time volumetric in vivo visualization of cerebral microvasculature in mice. Moreover, we monitored the blood perfusion dynamics during stimulation within mouse ear in vivo. We also discussed this system's limitations. Prospective MEMS-enabled OCT probes with a real-time volumetric functional imaging capability can have a significant impact on endoscopic imaging and image-guided surgery applications.

  2. Low complexity MIMO receivers

    CERN Document Server

    Bai, Lin; Yu, Quan

    2014-01-01

    Multiple-input multiple-output (MIMO) systems can increase the spectral efficiency in wireless communications. However, the interference becomes the major drawback that leads to high computational complexity at both transmitter and receiver. In particular, the complexity of MIMO receivers can be prohibitively high. As an efficient mathematical tool to devise low complexity approaches that mitigate the interference in MIMO systems, lattice reduction (LR) has been widely studied and employed over the last decade. The co-authors of this book are world's leading experts on MIMO receivers, and here they share the key findings of their research over years. They detail a range of key techniques for receiver design as multiple transmitted and received signals are available. The authors first introduce the principle of signal detection and the LR in mathematical aspects. They then move on to discuss the use of LR in low complexity MIMO receiver design with respect to different aspects, including uncoded MIMO detection...

  3. Early clinical experience with volumetric modulated arc therapy in head and neck cancer patients

    Directory of Open Access Journals (Sweden)

    Cozzi Luca

    2010-10-01

    Full Text Available Abstract Background To report about early clinical experience in radiation treatment of head and neck cancer of different sites and histology by volumetric modulated arcs with the RapidArc technology. Methods During 2009, 45 patients were treated at Istituto Clinico Humanitas with RapidArc (28 males and 17 females, median age 65 years. Of these, 78% received concomitant chemotherapy. Thirty-six patients were treated as exclusive curative intent (group A, three as postoperative curative intent (group B and six with sinonasal tumours (group C. Dose prescription was at Planning Target Volumes (PTV with simultaneous integrated boost: 54.45Gy and 69.96Gy in 33 fractions (group A; 54.45Gy and 66Gy in 33 fractions (group B and 55Gy in 25 fractions (group C. Results Concerning planning optimization strategies and constraints, as per PTV coverage, for all groups, D98% > 95% and V95% > 99%. As regards organs at risk, all planning objectives were respected, and this was correlated with observed acute toxicity rates. Only 28% of patients experienced G3 mucositis, 14% G3 dermitis 44% had G2 dysphagia. Nobody required feeding tubes to be placed during treatment. Acute toxicity is also related to chemotherapy. Two patients interrupted the course of radiotherapy because of a quick worsening of general clinical condition. Conclusions These preliminary results stated that volumetric modulated arc therapy in locally advanced head and neck cancers is feasible and effective, with acceptable toxicities.

  4. Volumetric characterization of human patellar cartilage matrix on phase contrast x-ray computed tomography

    Science.gov (United States)

    Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel

    2015-03-01

    Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  5. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images.

    Science.gov (United States)

    Chen, Weijie; Giger, Maryellen L; Li, Hui; Bick, Ulrich; Newstead, Gillian M

    2007-09-01

    Automated image analysis aims to extract relevant information from contrast-enhanced magnetic resonance images (CE-MRI) of the breast and improve the accuracy and consistency of image interpretation. In this work, we extend the traditional 2D gray-level co-occurrence matrix (GLCM) method to investigate a volumetric texture analysis approach and apply it for the characterization of breast MR lesions. Our database of breast MR images was obtained using a T1-weighted 3D spoiled gradient echo sequence and consists of 121 biopsy-proven lesions (77 malignant and 44 benign). A fuzzy c-means clustering (FCM) based method is employed to automatically segment 3D breast lesions on CE-MR images. For each 3D lesion, a nondirectional GLCM is then computed on the first postcontrast frame by summing 13 directional GLCMs. Texture features are extracted from the nondirectional GLCMs and the performance of each texture feature in the task of distinguishing between malignant and benign breast lesions is assessed by receiver operating characteristics (ROC) analysis. Our results show that the classification performance of volumetric texture features is significantly better than that based on 2D analysis. Our investigations of the effects of various of parameters on the diagnostic accuracy provided means for the optimal use of the approach.

  6. Analysis of Changing Swarm Rate using Volumetric Strain

    Science.gov (United States)

    Kumazawa, T.; Ogata, Y.; Kimura, K.; Maeda, K.; Kobayashi, A.

    2015-12-01

    Near the eastern coast of Izu peninsula is an active submarine volcanic region in Japan, where magma intrusions have been observed many times. The forecast of earthquake swarm activities and eruptions are serious concern particularly in nearby hot spring resort areas. It is well known that temporal durations of the swarm activities have been correlated with early volumetric strain changes at a certain observation station of about 20 km distance apart. Therefore the Earthquake Research Committee (2010) investigated some empirical statistical relations to predict sizes of the swarm activity. Here we looked at the background seismicity rate changes during these swarm periods using the non-stationary ETAS model (Kumazawa and Ogata, 2013, 2014), and have found the followings. The modified volumetric strain data, by removing the effect of earth tides, precipitation and coseismic jumps, have significantly higher cross-correlations to the estimated background rates of the ETAS model than to the swarm rate-changes. Specifically, the background seismicity rate synchronizes clearer to the strain change by the lags around a half day. These relations suggest an enhanced prediction of earthquakes in this region using volumetric strain measurements. Hence we propose an extended ETAS model where the background rate is modulated by the volumetric strain data. We have also found that the response function to the strain data can be well approximated by an exponential functions with the same decay rate, but that their intersects are inversely proportional to the distances between the volumetric strain-meter and the onset location of the swarm. Our numerical results by the same proposed model show consistent outcomes for the various major swarms in this region.

  7. The optical performance of the cavity receiver in the solar thermal power system%太阳能热发电系统中腔式吸热器的光学性能

    Institute of Scientific and Technical Information of China (English)

    毛青松; 龙新峰

    2012-01-01

    建立了球形、圆柱形、圆锥形和平顶圆锥形4种典型腔式吸热器与抛物面聚光器的三维模型,利用蒙特卡洛光线追踪法预测了4种典型腔式吸热器内部辐射能流的分布,其中球形吸热器内部的辐射能流分布均匀性最好,且辐射峰值最小,具有较好的光学性能.通过统计逸出腔口的反射光计算出这4种腔式吸热器的反 射光损,其中球形吸热器的反射光损最小.在聚光器反射率为0.9,腔体内壁吸收率为0.9时,球形吸热器反射光损仅为0.66%,聚光器/球形吸热器的光学效率为88.9%.%The 3D model of four typical cavity receivers (spherical,cylindrical,conical,flat -topped cone) and a parabolic concentrator are established. The Monte Carlo ray tracing method is applied to predict the radiation flux distribution in the four cavity receivers.The results reveal that the spherical receiver has the best optical performace because owe to the optimal uniform radiation flux distribution and the lowest peak value of radiation.Through the statistics of the reflected rays leaking from the aperture of the cavity receivers was used to calculate the light loss , the loss of reflected rays from the spherical receiver is the least. The reflected loss ratio is only 0.66% by spherical receiver when the reflectance of the concentrator is 0.9 and the absorptance of the cavity receiver inner surface is 0.9.The concentrator-receiver system finally get a high optical efficency of 88.9%.

  8. Delphi Accounts Receivable Module -

    Data.gov (United States)

    Department of Transportation — Delphi accounts receivable module contains the following data elements, but are not limited to customer information, cash receipts, line of accounting details, bill...

  9. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Performance outlook of the SCRAP receiver

    Science.gov (United States)

    Lubkoll, Matti; von Backström, Theodor W.; Harms, Thomas M.

    2016-05-01

    A combined cycle (CC) concentrating solar power (CSP) plant provides significant potential to achieve an efficiency increase and an electricity cost reduction compared to current single-cycle plants. A CC CSP system requires a receiver technology capable of effectively transferring heat from concentrated solar irradiation to a pressurized air stream of a gas turbine. The small number of pressurized air receivers demonstrated to date have practical limitations, when operating at high temperatures and pressures. As yet, a robust, scalable and efficient system has to be developed and commercialized. A novel receiver system, the Spiky Central Receiver Air Pre-heater (SCRAP) concept has been proposed to comply with these requirements. The SCRAP system is conceived as a solution for an efficient and robust pressurized air receiver that could be implemented in CC CSP concepts or standalone solar Brayton cycles without a bottoming Rankine cycle. The presented work expands on previous publications on the thermal modeling of the receiver system. Based on the analysis of a single heat transfer element (spike), predictions for its thermal performance can be made. To this end the existing thermal model was improved by heat transfer characteristics for the jet impingement region of the spike tip as well as heat transfer models simulating the interaction with ambient. While the jet impingement cooling effect was simulated employing a commercial CFD code, the ambient heat transfer model was based on simplifying assumptions in order to employ empirical and analytical equations. The thermal efficiency of a spike under design conditions (flux 1.0 MW/m2, air outlet temperature just below 800 °C) was calculated at approximately 80 %, where convective heat losses account for 16.2 % of the absorbed radiation and radiative heat losses for a lower 2.9 %. This effect is due to peak surface temperatures occurring at the root of the spikes. It can thus be concluded that the geometric

  11. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  12. Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products

    Science.gov (United States)

    Cunningham, Charles H.; Chen, Albert P.; Lustig, Michael; Hargreaves, Brian A.; Lupo, Janine; Xu, Duan; Kurhanewicz, John; Hurd, Ralph E.; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-07-01

    Dynamic nuclear polarization and dissolution of a 13C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 × 32 × 16 voxels every 3.5 s. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer.

  13. Nonrigid registration of volumetric images using ranked order statistics

    DEFF Research Database (Denmark)

    Tennakoon, Ruwan; Bab-Hadiashar, Alireza; Cao, Zhenwei

    2014-01-01

    Non-rigid image registration techniques using intensity based similarity measures are widely used in medical imaging applications. Due to high computational complexities of these techniques, particularly for volumetric images, finding appropriate registration methods to both reduce the computation...... burden and increase the registration accuracy has become an intensive area of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find...... the important regions for registration and use an appropriate sampling scheme to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments...

  14. Volumetric characterization of delamination fields via angle longitudinal wave ultrasound

    Science.gov (United States)

    Wertz, John; Wallentine, Sarah; Welter, John; Dierken, Josiah; Aldrin, John

    2017-02-01

    The volumetric characterization of delaminations necessarily precedes rigorous composite damage progression modeling. Yet, inspection of composite structures for subsurface damage remains largely focused on detection, resulting in a capability gap. In response to this need, angle longitudinal wave ultrasound was employed to characterize a composite surrogate containing a simulated three-dimensional delamination field with distinct regions of occluded features (shadow regions). Simple analytical models of the specimen were developed to guide subsequent experimentation through identification of optimal scanning parameters. The ensuing experiments provided visual evidence of the complete delamination field, including indications of features within the shadow regions. The results of this study demonstrate proof-of-principle for the use of angle longitudinal wave ultrasonic inspection for volumetric characterization of three-dimensional delamination fields. Furthermore, the techniques developed herein form the foundation of succeeding efforts to characterize impact delaminations within inhomogeneous laminar materials such as polymer matrix composites.

  15. Magnetic Resonance Image Segmentation and its Volumetric Measurement

    Directory of Open Access Journals (Sweden)

    Rahul R. Ambalkar

    2013-02-01

    Full Text Available Image processing techniques make it possible to extract meaningful information from medical images. Magnetic resonance (MR imaging has been widely applied in biological research and diagnostics because of its excellent soft tissue contrast, non-invasive character, high spatial resolution and easy slice selection at any orientation. The MRI-based brain volumetric is concerned with the analysis of volumes and shapes of the structural components of the human brain. It also provides a criterion, by which we recognize the presence of degenerative diseases and characterize their rates of progression to make the diagnosis and treatments as a easy task. In this paper we have proposed an automated method for volumetric measurement of Magnetic Resonance Imaging and used Self Organized Map (SOM clustering method for their segmentations. We have used the MRI data set of 61 slices of 256×256 pixels in DICOM standard format

  16. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    . This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array......Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  17. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  18. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  19. Arrays of ultrathin silicon solar microcells

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2015-08-11

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  20. Arrays of ultrathin silicon solar microcells

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2014-03-25

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  1. Using surface heave to estimate reservoir volumetric strain

    Energy Technology Data Exchange (ETDEWEB)

    Nanayakkara, A.S.; Wong, R.C.K. [Calgary Univ., AB (Canada)

    2008-07-01

    This paper presented a newly developed numerical tool for estimating reservoir volumetric strain distribution using surface vertical displacements and solving an inverse problem. Waterflooding, steam injection, carbon dioxide sequestration and aquifer storage recovery are among the subsurface injection operations that are responsible for reservoir dilations which propagate to the surrounding formations and extend to the surface resulting in surface heaves. Global positioning systems and surface tiltmeters are often used to measure the characteristics of these surface heaves and to derive valuable information regarding reservoir deformation and flow characteristics. In this study, Tikhonov regularization techniques were adopted to solve the ill-posed inversion problem commonly found in standard inversion techniques such as Gaussian elimination and least squares methods. Reservoir permeability was then estimated by inverting the volumetric strain distribution. Results of the newly developed numerical tool were compared with results from fully-coupled finite element simulation of fluid injection problems. The reservoir volumetric strain distribution was successfully estimated along with an approximate value for reservoir permeability.

  2. Volumetric Light-field Encryption at the Microscopic Scale

    Science.gov (United States)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  3. Volumetric Light-field Encryption at the Microscopic Scale

    Science.gov (United States)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  4. Volumetric Light-field Encryption at the Microscopic Scale

    CERN Document Server

    Li, Haoyu; Muniraj, Inbarasan; Schroeder, Bryce C; Sheridan, John T; Jia, Shu

    2016-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve spatially multiplexed discrete and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  5. Volumetric Light-field Encryption at the Microscopic Scale.

    Science.gov (United States)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C; Sheridan, John T; Jia, Shu

    2017-01-06

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  6. THEORETICAL ANALYSIS OF HEAT REMOVAL FACTOR OF LINEAR CONCENTRATING SOLAR COLLECTOR USING CAVITY RECEIVER%太阳能线聚焦腔体结构吸收器热迁移因子理论分析

    Institute of Scientific and Technical Information of China (English)

    白涛; 代彦军; 王如竹

    2011-01-01

    对4种用于线聚焦太阳集热器的腔体吸收器的热迁移因子和效率因子进行理论分析,获得热迁移因子的理论表达公式.搭建了以菲涅尔透镜为聚光器和以抛物槽式反射镜为聚光器的聚焦太阳能集热系统实验台,通过实验验证了热迁移因子理论公式的合理性.结果表明,三角形腔体吸收器具有最好的集热性能.在理论指导下对三角形腔体进行了优化:直接利用管道作为吸收器管道从而提高了热传导;选择合适的管道内径;聚焦比保证在40以上;加大流速强化对流换热.当采用菲涅尔透镜为聚光器时,其热迁移因子为0.834;采用抛物槽式反射镜为聚光器时,优化后的三角形腔体吸收器的热迁移因子可达到0.940.%The heat removal factor and the efficiency factor of four kinds of cavity receivers were analyzed by the theory, which could be used in linear concentrating collectors, and then the theoretical- formula of the heat removal factor FR was obtained. The testing system of parabolic trough collector and fresnel lens using cavity receiver were set up and many tests had been done, the experiment result is in accordance with the theoretical prediction. The results show that the triangle cavity receiver has the best performance, and was improved according to the theoretical model; the pipe was used as cavity wall directly to improve heat conduction; the best inner diameter was chosen; the concentrating ratio was not less than 40; the convection heat transfer was strengthened by increasing the mass flow. The heat removal factor was 0. 834 when the fresnel lens was used as the concentrator; while it could reach 0.940 when parabolic trough collctor was used as the concentrator with the improved triangle cavity receiver.

  7. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  8. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  9. Proposed solar two project Barstow, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This Environmental Assessment (EA) evaluates the environmental consequences of the proposed conversion and operation of the existing Solar One Facility in Daggett, Ca, near the city of Barstow, to a nitrate salt based heat transfer system, Solar Two. The EA also addresses the alternatives of different solar conversion technologies and alternative sites and discusses a no action alternative. A primary objective of the Solar Two Project is to demonstrate the technical and economic feasibility of a solar central receiver power plant using molten salt as the thermal storage and transport fluid medium. If successful, the information gathered from the Solar Two Project could be used to design larger commercial solar power plants.

  10. Zero-power receiver

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W.

    2016-10-04

    An unpowered signal receiver and a method for signal reception detects and responds to very weak signals using pyroelectric devices as impedance transformers and/or demodulators. In some embodiments, surface acoustic wave devices (SAW) are also used. Illustrative embodiments include satellite and long distance terrestrial communications applications.

  11. Sender-Receiver Games

    NARCIS (Netherlands)

    Peeters, R.J.A.P.; Potters, J.A.M.

    1999-01-01

    Standard game-theoretic solution concepts do not guarantee meaningful commu- nication in cheap-talk games. In this paper, we define a solution concept which guarantees communication for a large class of games by designing a behavior pro- tocol which the receiver uses to judge messages sent by the

  12. A New Solar Thermal Facility in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W.; Imenes, A.; Hinkley, J.; Benito, R.; McEvoy, S.; Hart, G.; McGregor, J.; Chensee, M.; Wong, K.; Wong, J.; Bolling, R.

    2006-07-01

    The abundance of high quality solar radiation in Australia has long fuelled activity in solar energy, particularly CSP. The National Solar Energy Centre is being established in Australia as a centre to promote all facets of concentrating solar thermal technology, from fundamental R and D to active demonstrations and testing platforms. The Centre comprises a 550kW solar tower with very high heliostat packing density, linear concentrators that will drive both an organic Rankine cycle and solar chiller, and eventually a dish concentrator. Other papers in these conference proceedings discuss in detail particular aspects of design, fabrication and testing of components of the tower. This paper provides an overview of the intended activities of the Centre and particularly the opportunities for international collaboration, including high temperature receiver design and testing, medium temperature receivers, solarized Brayton cycles, thermochemical reactors and materials for solar hydrogen production, and improved small solar trough technology. (Author)

  13. Design and analysis of a novel concentrated photovoltaic-thermal receiver concept

    Science.gov (United States)

    Hangweirer, Manfred; Höller, Robert; Schneider, Hartmut

    2015-08-01

    Solar concentrators, which focus the sunlight on a small surface of solar cells, are a promising way of reducing expensive semiconductor area and thus also the energy generation costs of photovoltaics. This paper presents the design and the analysis of a concentrated photovoltaic (CPV) receiver for a linear Fresnel concentrator mirror module. The receiver is designed as hybrid concentrated photovoltaic-thermal (CPV-T) receiver, which enables simultaneous generation of power and heat in one compact receiver. Spectral splitting with selective absorptive media and thermal decoupling of heat carrier and solar cells improves the electrical efficiency. Computational fluid dynamics (CFD) simulations of various receiver-setups result in an electrical efficiency of the receiver up to 6.2% and a thermal efficiency of up to 61.2% at a specific selected operating design point. 62% of the wavelengths of the incoming solar spectrum between 500 to 1100 nm hit the solar cells.

  14. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  15. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  16. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  17. Personalized heterogeneous deformable model for fast volumetric registration.

    Science.gov (United States)

    Si, Weixin; Liao, Xiangyun; Wang, Qiong; Heng, Pheng Ann

    2017-02-20

    Biomechanical deformable volumetric registration can help improve safety of surgical interventions by ensuring the operations are extremely precise. However, this technique has been limited by the accuracy and the computational efficiency of patient-specific modeling. This study presents a tissue-tissue coupling strategy based on penalty method to model the heterogeneous behavior of deformable body, and estimate the personalized tissue-tissue coupling parameters in a data-driven way. Moreover, considering that the computational efficiency of biomechanical model is highly dependent on the mechanical resolution, a practical coarse-to-fine scheme is proposed to increase runtime efficiency. Particularly, a detail enrichment database is established in an offline fashion to represent the mapping relationship between the deformation results of high-resolution hexahedral mesh extracted from the raw medical data and a newly constructed low-resolution hexahedral mesh. At runtime, the mechanical behavior of human organ under interactions is simulated with this low-resolution hexahedral mesh, then the microstructures are synthesized in virtue of the detail enrichment database. The proposed method is validated by volumetric registration in an abdominal phantom compression experiments. Our personalized heterogeneous deformable model can well describe the coupling effects between different tissues of the phantom. Compared with high-resolution heterogeneous deformable model, the low-resolution deformable model with our detail enrichment database can achieve 9.4× faster, and the average target registration error is 3.42 mm, which demonstrates that the proposed method shows better volumetric registration performance than state-of-the-art. Our framework can well balance the precision and efficiency, and has great potential to be adopted in the practical augmented reality image-guided robotic systems.

  18. Volumetric measurements of pulmonary nodules: variability in automated analysis tools

    Science.gov (United States)

    Juluru, Krishna; Kim, Woojin; Boonn, William; King, Tara; Siddiqui, Khan; Siegel, Eliot

    2007-03-01

    Over the past decade, several computerized tools have been developed for detection of lung nodules and for providing volumetric analysis. Incidentally detected lung nodules have traditionally been followed over time by measurements of their axial dimensions on CT scans to ensure stability or document progression. A recently published article by the Fleischner Society offers guidelines on the management of incidentally detected nodules based on size criteria. For this reason, differences in measurements obtained by automated tools from various vendors may have significant implications on management, yet the degree of variability in these measurements is not well understood. The goal of this study is to quantify the differences in nodule maximum diameter and volume among different automated analysis software. Using a dataset of lung scans obtained with both "ultra-low" and conventional doses, we identified a subset of nodules in each of five size-based categories. Using automated analysis tools provided by three different vendors, we obtained size and volumetric measurements on these nodules, and compared these data using descriptive as well as ANOVA and t-test analysis. Results showed significant differences in nodule maximum diameter measurements among the various automated lung nodule analysis tools but no significant differences in nodule volume measurements. These data suggest that when using automated commercial software, volume measurements may be a more reliable marker of tumor progression than maximum diameter. The data also suggest that volumetric nodule measurements may be relatively reproducible among various commercial workstations, in contrast to the variability documented when performing human mark-ups, as is seen in the LIDC (lung imaging database consortium) study.

  19. Temperature Controller for a Solar Furnace

    Science.gov (United States)

    Hale, R. R.; Mcdougal, A. R.

    1982-01-01

    Relatively-simple movable sheild has been suggested for controlling temperature of solar furnace. Temperature modulator can be set to have collected solar energy fully "on", fully "off" or any intermediate level. Parabolic mirror concentrates Sunlight into receiver. Shade plate that blocks insolation at back of receiver produces shade zone in center of collector. No radiation is returned to receiver from shade zone; only rays falling on other areas of reflecting surface are directed back toward receiver.

  20. Volumetric hemispheric ratio as a useful tool in personality psychology.

    Science.gov (United States)

    Montag, Christian; Schoene-Bake, Jan-Christoph; Wagner, Jan; Reuter, Martin; Markett, Sebastian; Weber, Bernd; Quesada, Carlos M

    2013-02-01

    The present study investigates the link between volumetric hemispheric ratios (VHRs) and personality measures in N=267 healthy participants using Eysenck's Personality Inventory-Revised (EPQ-R) and the BIS/BAS scales. A robust association between extraversion and VHRs was observed for gray matter in males but not females. Higher gray matter volume in the left than in the right hemisphere was associated with higher extraversion in males. The results are discussed in the context of positive emotionality and laterality of the human brain.

  1. AN ATTRIBUTION OF CAVITATION RESONANCE: VOLUMETRIC OSCILLATIONS OF CLOUD

    Institute of Scientific and Technical Information of China (English)

    ZUO Zhi-gang; LI Sheng-cai; LIU Shu-hong; LI Shuang; CHEN Hui

    2009-01-01

    In order to further verify the proposed theory of cavitation resonance, as well as to proceed the investigations into microscopic level, a series of studies are being carried out on the Warwick venturi. The analysis of the oscillation characteristics of the cavitation resonance has conclusively verified the macro-mechanism proposed through previous studies on other cavitating flows by the authors. The initial observations using high-speed photographic approach have revealed a new attribution of cavitation resonance. That is, the volumetric oscillation of cavitation cloud is associated with the cavitation resonance, which is a collective behaviour of the bubbles in the cloud.

  2. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  3. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Science.gov (United States)

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  4. Estimation of volumetric breast density for breast cancer risk prediction

    Science.gov (United States)

    Pawluczyk, Olga; Yaffe, Martin J.; Boyd, Norman F.; Jong, Roberta A.

    2000-04-01

    Mammographic density (MD) has been shown to be a strong risk predictor for breast cancer. Compared to subjective assessment by a radiologist, computer-aided analysis of digitized mammograms provides a quantitative and more reproducible method for assessing breast density. However, the current methods of estimating breast density based on the area of bright signal in a mammogram do not reflect the true, volumetric quantity of dense tissue in the breast. A computerized method to estimate the amount of radiographically dense tissue in the overall volume of the breast has been developed to provide an automatic, user-independent tool for breast cancer risk assessment. The procedure for volumetric density estimation consists of first correcting the image for inhomogeneity, then performing a volume density calculation. First, optical sensitometry is used to convert all images to the logarithm of relative exposure (LRE), in order to simplify the image correction operations. The field non-uniformity correction, which takes into account heel effect, inverse square law, path obliquity and intrinsic field and grid non- uniformity is obtained by imaging a spherical section PMMA phantom. The processed LRE image of the phantom is then used as a correction offset for actual mammograms. From information about the thickness and placement of the breast, as well as the parameters of a breast-like calibration step wedge placed in the mammogram, MD of the breast is calculated. Post processing and a simple calibration phantom enable user- independent, reliable and repeatable volumetric estimation of density in breast-equivalent phantoms. Initial results obtained on known density phantoms show the estimation to vary less than 5% in MD from the actual value. This can be compared to estimated mammographic density differences of 30% between the true and non-corrected values. Since a more simplistic breast density measurement based on the projected area has been shown to be a strong indicator

  5. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  6. Solar Stirling system development

    Science.gov (United States)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  7. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  8. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.

    Science.gov (United States)

    Li, Jia; Liu, Kang; Gao, Xiang; Yao, Bin; Huo, Kaifu; Cheng, Yongliang; Cheng, Xiaofeng; Chen, Dongchang; Wang, Bo; Sun, Wanmei; Ding, Dong; Liu, Meilin; Huang, Liang

    2015-11-11

    Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

  9. Solar energy program. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-02-01

    this annual report describes the work done at Argonne National Laboratory on the Solar Energy Program during FY 1978 (July 1, 1977 to June 30, 1978). Areas included in this report are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, satellite power systems, bioconversion, central receiver solar thermal power, and wind energy conversion.

  10. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  11. Hybrid solar lighting systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  12. A final report on the Phase 1 testing of a molten-salt cavity receiver

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J M [ed.; Smith, D C [Babcock and Wilcox Co., Barberton, OH (United States). Nuclear Equipment Div.

    1992-05-01

    This report describes the design, construction, and testing of a solar central receiver using molten nitrate salt as a heat exchange fluid. Design studies for large commercial plants (30--100 MWe) have shown molten salt to be an excellent fluid for solar thermal plants as it allows for efficient thermal storage. Plant design studies concluded that an advanced receiver test was required to address uncertainties not covered in prior receiver tests. This recommendation led to the current test program managed by Sandia National Laboratories for the US Department of Energy. The 4.5 MWt receiver is installed at Sandia National Laboratories' Central Receiver Test Facility in Albuquerque, New Mexico. The receiver incorporates features of large commercial receiver designs. This report describes the receiver's configuration, heat absorption surface (design and sizing), the structure and supporting systems, and the methods for control. The receiver was solar tested during a six-month period at the Central Receiver Test Facility in Albuquerque, NM. The purpose of the testing was to characterize the operational capabilities of the receiver under a number of solar operating and stand-by conditions. This testing consisted of initial check-out of the systems, followed by steady-state performance, transient receiver operation, receiver operation in clouds, receiver thermal loss testing, receiver start-up operation, and overnight thermal conditioning tests. This report describes the design, fabrication, and results of testing of the receiver.

  13. Volumetric display containing multiple two-dimensional color motion pictures

    Science.gov (United States)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  14. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  15. Myocardial kinematics based on tagged MRI from volumetric NURBS models

    Science.gov (United States)

    Tustison, Nicholas J.; Amini, Amir A.

    2004-04-01

    We present current research in which left ventricular deformation is estimated from tagged cardiac magnetic resonance imaging using volumetric deformable models constructed from nonuniform rational B-splines (NURBS). From a set of short and long axis images at end-diastole, the initial NURBS model is constructed by fitting two surfaces with the same parameterization to the set of epicardial and endocardial contours from which a volumetric model is created. Using normal displacements of the three sets of orthogonal tag planes as well as displacements of both tag line and contour/tag line intersection points, one can solve for the optimal homogeneous coordinates, in a least squares sense, of the control points of the NURBS model at a later time point using quadratic programming. After fitting to all time points of data, lofting the NURBS model at each time point creates a comprehensive 4-D NURBS model. From this model, we can extract 3-D myocardial displacement fields and corresponding strain maps, which are local measures of non-rigid deformation.

  16. Volumetric breast density affects performance of digital screening mammography.

    Science.gov (United States)

    Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico

    2017-02-01

    To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.

  17. Volumetric properties of human islet amyloid polypeptide in liquid water.

    Science.gov (United States)

    Brovchenko, I; Andrews, M N; Oleinikova, A

    2010-04-28

    The volumetric properties of human islet amyloid polypeptide (hIAPP) in water were studied in a wide temperature range by computer simulations. The intrinsic density rho(p) and the intrinsic thermal expansion coefficient alpha(p) of hIAPP were evaluated by taking into account the difference between the volumetric properties of hydration and bulk water. The density of hydration water rho(h) was found to decrease almost linearly with temperature upon heating and its thermal expansion coefficient was found to be notably higher than that of bulk water. The peptide surface exposed to water is more hydrophobic and its rho(h) is smaller in conformation with a larger number of intrapeptide hydrogen bonds. The two hIAPP peptides studied (with and without disulfide bridge) show negative alpha(p), which is close to zero at 250 K and decreases to approximately -1.5 x 10(-3) K(-1) upon heating to 450 K. The analysis of various structural properties of peptides shows a correlation between the intrinsic peptide volumes and the number of intrapeptide hydrogen bonds. The obtained negative values of alpha(p) can be attributed to the shrinkage of the inner voids of the peptides upon heating.

  18. Volumetric verification of multiaxis machine tool using laser tracker.

    Science.gov (United States)

    Aguado, Sergio; Samper, David; Santolaria, Jorge; Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space.

  19. The Volumetric Rate of Superluminous Supernovae at z~1

    CERN Document Server

    Prajs, S; Smith, M; Levan, A; Karpenka, N V; Edwards, T D P; Walker, C R; Wolf, W M; Balland, C; Carlberg, R; Howell, A; Lidman, C; Pain, R; Pritchet, C; Ruhlmann-Kleider, V

    2016-01-01

    We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z~1, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically-identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et.al. (2010) and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91 (+76/-36) SNe/Yr/Gpc^3 at a volume-weighted redshift of z=1.13. This is equivalent to 2.2 (+1.8/-0.9) x10^-4 of the volumetric core collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formati...

  20. Integration of small solar tower systems into distributed utilities; Integracion de pequenas plantas solares de toree en sistemas de cogeneracion aislados

    Energy Technology Data Exchange (ETDEWEB)

    Baonza, F.; Marcos, M. J.; Romero, M.; Izquierdo, M. [Ciemat. Madrid (Spain)

    2000-07-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy island (Blocks of buildings, new neighborhoods in residential areas, shopping centers hospitals, recreational areas, eco-parks, small rural areas or isolated ones such as island or mountain communities). Following this strategy, the integration of small solar tower fields into Distributed Utilities and Power Islands is proposed. This application strongly influences field concepts leading to modular small-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begun. In addition, integration into simple-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. This book includes the design and performance analysis of a 1.3-MW system making use of a pressurized volumetric receiver and a regenerative gas turbine in combination with waste-heat applications for water heating and refrigeration. (Author)

  1. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  2. Pressure difference receiving ears

    DEFF Research Database (Denmark)

    Michelsen, Axel; Larsen, Ole Næsbye

    2007-01-01

    of such pressure difference receiving ears have been hampered by lack of suitable experimental methods. In this review, we review the methods for collecting reliable data on the binaural directional cues at the eardrums, on how the eardrum vibrations depend on the direction of sound incidence, and on how sound...... waves behave in the air spaces leading to the interior surfaces of eardrums. A linear mathematical model with well-defined inputs is used for exploring how the directionality varies with the binaural directional cues and the amplitude and phase gain of the sound pathway to the inner surface...

  3. Methods and systems for concentrated solar power

    Science.gov (United States)

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  4. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  5. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  6. Transient simulation of molten salt central receiver

    Science.gov (United States)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  7. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  8. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  9. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  10. Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Lee A.; Loomis, James; Bhatia, Bikram; Bierman, David M.; Wang, Evelyn N.; Chen, Gang

    2015-12-09

    Solar energy is a bountiful renewable energy resource: the energy in the sunlight that reaches Earth in an hour exceeds the energy consumed by all of humanity in a year.(1) While the phrase “solar energy conversion” probably brings photovoltaic (PV) cells to mind first, PV is not the only option for generating electricity from sunlight. Another promising technology for solar energy conversion is solar–thermal conversion, commonly referred to as concentrating solar power (CSP).(2) The first utility-scale CSP plants were constructed in the 1980s, but in the two decades that followed, CSP saw little expansion.(3, 4) More recent years, however, have seen a CSP renaissance due to unprecedented growth in the adoption of CSP.(3, 5) Photographs of two operating CSP plants, a parabolic trough collector plant and a central receiver (or “power tower”), are shown here.

  11. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  12. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  13. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  14. Rapid mapping of volumetric machine errors using distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Krulewich, D.A.

    1998-04-01

    This paper describes a relatively inexpensive, fast, and easy to execute approach to maping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) models the relationship between volumetric error and the current state of the machine, (2) acquiring error data based on distance measurements throughout the work volume; and (3)fitting the error model using the nonlinear equation for the distance. The error model is formulated from the kinematic relationship among the six degrees of freedom of error an each moving axis. Expressing each parametric error as function of position each is combined to predict the error between the functional point and workpiece, also as a function of position. A series of distances between several fixed base locations and various functional points in the work volume is measured using a Laser Ball Bar (LBB). Each measured distance is a non-linear function dependent on the commanded location of the machine, the machine error, and the location of the base locations. Using the error model, the non-linear equation is solved producing a fit for the error model Also note that, given approximate distances between each pair of base locations, the exact base locations in the machine coordinate system determined during the non-linear filling procedure. Furthermore, with the use of 2048 more than three base locations, bias error in the measuring instrument can be removed The volumetric errors of three-axis commercial machining center have been mapped using this procedure. In this study, only errors associated with the nominal position of the machine were considered Other errors such as thermally induced and load induced errors were not considered although the mathematical model has the ability to account for these errors. Due to the proprietary nature of the projects we are

  15. Trouble in paradise. Did Chinese solar producer Jinko Solar pollute water with toxic effluents?; Aerger im Paradies. Hat der chinesische Solarkonzern Jinko Solar Giftstoffe ins Abwasser geleitet?

    Energy Technology Data Exchange (ETDEWEB)

    Siemer, Jochen

    2011-10-15

    When neighbours protested against toxic effluents emitted by a Chinese industrial plant, this received international attention, especially as the plant in question is producing solar cells for Jinko Solar at Haining. However, the real facts are impossible to obtain.

  16. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  17. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  18. Optimization approaches to volumetric modulated arc therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Bortfeld, Thomas; Craft, David [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Alber, Markus [Department of Medical Physics and Department of Radiation Oncology, Aarhus University Hospital, Aarhus C DK-8000 (Denmark); Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg D-69120 (Germany); Bokrantz, Rasmus [RaySearch Laboratories, Stockholm SE-111 34 (Sweden); Chen, Danny [Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Men, Chunhua [Department of Research, Elekta, Maryland Heights, Missouri 63043 (United States); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Papp, Dávid [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Romeijn, Edwin [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Salari, Ehsan [Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260 (United States)

    2015-03-15

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

  19. Volumetric properties of water/AOT/isooctane microemulsions.

    Science.gov (United States)

    Du, Changfei; He, Wei; Yin, Tianxiang; Shen, Weiguo

    2014-12-23

    The densities of AOT/isooctane micelles and water/AOT/isooctane microemulsions with the molar ratios R of water to AOT being 2, 8, 10, 12, 16, 18, 20, 25, 30, and 40 were measured at 303.15 K. The apparent specific volumes of AOT and the quasi-component water/AOT at various concentrations were calculated and used to estimate the volumetric properties of AOT and water in the droplets and in the continuous oil phase, to discuss the interaction between the droplets, and to determine the critical micelle concentration and the critical microemulsion concentrations. A thermodynamic model was proposed to analysis the stability boundary of the microemulsion droplets, which confirms the maximum value of R being about 65 for the stable AOT/water/isooctane microemulsion droplets.

  20. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  1. In-line hologram segmentation for volumetric samples.

    Science.gov (United States)

    Orzó, László; Göröcs, Zoltán; Fehér, András; Tőkés, Szabolcs

    2013-01-01

    We propose a fast, noniterative method to segment an in-line hologram of a volumetric sample into in-line subholograms according to its constituent objects. In contrast to the phase retrieval or twin image elimination algorithms, we do not aim or require to reconstruct the complex wave field of all the objects, which would be a more complex task, but only provide a good estimate about the contribution of the particular objects to the original hologram quickly. The introduced hologram segmentation algorithm exploits the special inner structure of the in-line holograms and applies only the estimated supports and reconstruction distances of the corresponding objects as parameters. The performance of the proposed method is demonstrated and analyzed experimentally both on synthetic and measured holograms. We discussed how the proposed algorithm can be efficiently applied for object reconstruction and phase retrieval tasks.

  2. Three-Dimensional Volumetric Restoration by Structural Fat Grafting

    Science.gov (United States)

    Clauser, Luigi C.; Consorti, Giuseppe; Elia, Giovanni; Galié, Manlio; Tieghi, Riccardo

    2013-01-01

    The use of adipose tissue transfer for correction of maxillofacial defects was reported for the first time at the end of the 19th century. Structural fat grafting (SFG) was introduced as a way to improve facial esthetics and in recent years has evolved into applications in craniomaxillofacial reconstructive surgery. Several techniques have been proposed for harvesting and grafting the fat. However, owing to the damage of many adipocytes during these maneuvers, the results have not been satisfactory and have required several fat injection procedures for small corrections. The author's (L.C.) overview the application of SFG in the management of volumetric deficit in the craniomaxillofacial in patients treated with a long-term follow-up. PMID:24624259

  3. Semi-automatic volumetrics system to parcellate ROI on neocortex

    Science.gov (United States)

    Tan, Ou; Ichimiya, Tetsuya; Yasuno, Fumihiko; Suhara, Tetsuya

    2002-05-01

    A template-based and semi-automatic volumetrics system--BrainVol is build to divide the any given patient brain to neo-cortical and sub-cortical regions. The standard region is given as standard ROI drawn on a standard brain volume. After normalization between the standard MR image and the patient MR image, the sub-cortical ROIs' boundary are refined based on gray matter. The neo-cortical ROIs are refined by sulcus information that is semi-automatically marked on the patient brain. Then the segmentation is applied to 4D PET image of same patient for calculation of TAC (Time Activity Curve) by co-registration between MR and PET.

  4. Out-of-core clustering of volumetric datasets

    Institute of Scientific and Technical Information of China (English)

    GRANBERG Carl J.; LI Ling

    2006-01-01

    In this paper we present a novel method for dividing and clustering large volumetric scalar out-of-core datasets. This work is based on the Ordered Cluster Binary Tree (OCBT) structure created using a top-down or divisive clustering method. The OCBT structure allows fast and efficient sub volume queries to be made in combination with level of detail (LOD) queries of the tree. The initial partitioning of the large out-of-core dataset is done by using non-axis aligned planes calculated using Principal Component Analysis (PCA). A hybrid OCBT structure is also proposed where an in-core cluster binary tree is combined with a large out-of-core file.

  5. Volumetric Survey Speed: A Figure of Merit for Transient Surveys

    CERN Document Server

    Bellm, Eric C

    2016-01-01

    Time-domain surveys can exchange sky coverage for revisit frequency, complicating the comparison of their relative capabilities. By using different revisit intervals, a specific camera may execute surveys optimized for discovery of different classes of transient objects. We propose a new figure of merit, the instantaneous volumetric survey speed, for evaluating transient surveys. This metric defines the trade between cadence interval and snapshot survey volume and so provides a natural means of comparing survey capability. The related metric of areal survey speed imposes a constraint on the range of possible revisit times: we show that many modern time-domain surveys are limited by the amount of fresh sky available each night. We introduce the concept of "spectroscopic accessibility" and discuss its importance for transient science goals requiring followup observing. We present an extension of the control time algorithm for cases where multiple consecutive detections are required. Finally, we explore how surv...

  6. Volumetric optical coherence microscopy enabled by aberrated optics (Conference Presentation)

    Science.gov (United States)

    Mulligan, Jeffrey A.; Liu, Siyang; Adie, Steven G.

    2017-02-01

    Optical coherence microscopy (OCM) is an interferometric imaging technique that enables high resolution, non-invasive imaging of 3D cell cultures and biological tissues. Volumetric imaging with OCM suffers a trade-off between high transverse resolution and poor depth-of-field resulting from defocus, optical aberrations, and reduced signal collection away from the focal plane. While defocus and aberrations can be compensated with computational methods such as interferometric synthetic aperture microscopy (ISAM) or computational adaptive optics (CAO), reduced signal collection must be physically addressed through optical hardware. Axial scanning of the focus is one approach, but comes at the cost of longer acquisition times, larger datasets, and greater image reconstruction times. Given the capabilities of CAO to compensate for general phase aberrations, we present an alternative method to address the signal collection problem without axial scanning by using intentionally aberrated optical hardware. We demonstrate the use of an astigmatic spectral domain (SD-)OCM imaging system to enable single-acquisition volumetric OCM in 3D cell culture over an extended depth range, compared to a non-aberrated SD-OCM system. The transverse resolution of the non-aberrated and astigmatic imaging systems after application of CAO were 2 um and 2.2 um, respectively. The depth-range of effective signal collection about the nominal focal plane was increased from 100 um in the non-aberrated system to over 300 um in the astigmatic system, extending the range over which useful data may be acquired in a single OCM dataset. We anticipate that this method will enable high-throughput cellular-resolution imaging of dynamic biological systems over extended volumes.

  7. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.

    Science.gov (United States)

    Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin

    2016-05-01

    Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45

  8. The volumetric rate of superluminous supernovae at z ˜ 1

    Science.gov (United States)

    Prajs, S.; Sullivan, M.; Smith, M.; Levan, A.; Karpenka, N. V.; Edwards, T. D. P.; Walker, C. R.; Wolf, W. M.; Balland, C.; Carlberg, R.; Howell, D. A.; Lidman, C.; Pain, R.; Pritchet, C.; Ruhlmann-Kleider, V.

    2017-01-01

    We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z ˜ 1.0, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et al. and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91^{+76}_{-36} SNe yr-1 Gpc-3 at a volume-weighted redshift of z = 1.13. This is equivalent to 2.2^{+1.8}_{-0.9}× 10^{-4} of the volumetric core-collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formation history. We also estimate the rate of ultra-long gamma-ray bursts based on the events discovered by the Swift satellite, and show that it is comparable to the rate of SLSNe, providing further evidence of a possible connection between these two classes of events. We also examine the host galaxies of the SLSNe discovered in SNLS, and find them to be consistent with the stellar-mass distribution of other published samples of SLSNe.

  9. Volumetric analysis of corticocancellous bones using CT data

    Energy Technology Data Exchange (ETDEWEB)

    Krappinger, Dietmar; Linde, Astrid von; Rosenberger, Ralf; Blauth, Michael [Medical University Innsbruck, Department of Trauma Surgery and Sports Medicine, Innsbruck (Austria); Glodny, Bernhard; Niederwanger, Christian [Medical University Innsbruck, Department of Radiology I, Innsbruck (Austria)

    2012-05-15

    To present a method for an automated volumetric analysis of corticocancellous bones such as the superior pubic ramus using CT data and to assess the reliability of this method. Computed tomography scans of a consecutive series of 250 patients were analyzed. A Hounsfield unit (HU) thresholding-based reconstruction technique (''Vessel Tracking,'' GE Healthcare) was used. A contiguous space of cancellous bone with similar HU values between the starting and end points was automatically identified as the region of interest. The identification was based upon the density gradient to the adjacent cortical bone. The starting point was defined as the middle of the parasymphyseal corticocancellous transition zone on the axial slice showing the parasymphyseal superior pubic ramus in its maximum anteroposterior width. The end point was defined as the middle of the periarticular corticocancellous transition zone on the axial slice showing the quadrilateral plate as a thin cortical plate. The following parameters were automatically obtained on both sides: length of the center line, volume of the superior pubic ramus between the starting point and end point, minimum, maximum and mean diameter perpendicular to the center line, and mean cross-sectional area perpendicular to the center line. An automated analysis without manual adjustments was successful in 207 patients (82.8%). The center line showed a significantly greater length in female patients (67.6 mm vs 65.0 mm). The volume was greater in male patients (21.8 cm{sup 3} vs 19.4 cm{sup 3}). The intersite reliability was high with a mean difference between the left and right sides of between 0.1% (cross-sectional area) and 2.3% (volume). The method presented allows for an automated volumetric analysis of a corticocancellous bone using CT data. The method is intended to provide preoperative information for the use of intramedullary devices in fracture fixation and percutaneous cement augmentation techniques

  10. An Analysis Methodology for Stochastic Characteristic of Volumetric Error in Multiaxis CNC Machine Tool

    Directory of Open Access Journals (Sweden)

    Qiang Cheng

    2013-01-01

    Full Text Available Traditional approaches about error modeling and analysis of machine tool few consider the probability characteristics of the geometric error and volumetric error systematically. However, the individual geometric error measured at different points is variational and stochastic, and therefore the resultant volumetric error is aslo stochastic and uncertain. In order to address the stochastic characteristic of the volumetric error for multiaxis machine tool, a new probability analysis mathematical model of volumetric error is proposed in this paper. According to multibody system theory, a mean value analysis model for volumetric error is established with consideration of geometric errors. The probability characteristics of geometric errors are obtained by statistical analysis to the measured sample data. Based on probability statistics and stochastic process theory, the variance analysis model of volumetric error is established in matrix, which can avoid the complex mathematics operations during the direct differential. A four-axis horizontal machining center is selected as an illustration example. The analysis results can reveal the stochastic characteristic of volumetric error and are also helpful to make full use of the best workspace to reduce the random uncertainty of the volumetric error and improve the machining accuracy.

  11. Volumetric and two-dimensional image interpretation show different cognitive processes in learners

    NARCIS (Netherlands)

    van der Gijp, Anouk; Ravesloot, C.J.; van der Schaaf, Marieke F; van der Schaaf, Irene C; Huige, Josephine C B M; Vincken, Koen L; Ten Cate, Olle Th J; van Schaik, JPJ

    2015-01-01

    RATIONALE AND OBJECTIVES: In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional imag

  12. Reducing the convective losses of cavity receivers

    Science.gov (United States)

    Flesch, Robert; Grobbel, Johannes; Stadler, Hannes; Uhlig, Ralf; Hoffschmidt, Bernhard

    2016-05-01

    Convective losses reduce the efficiency of cavity receivers used in solar power towers especially under windy conditions. Therefore, measures should be taken to reduce these losses. In this paper two different measures are analyzed: an air curtain and a partial window which covers one third of the aperture opening. The cavity without modifications and the usage of a partial window were analyzed in a cryogenic wind tunnel at -173°C. The cryogenic environment allows transforming the results from the small model cavity to a large scale receiver with Gr≈3.9.1010. The cavity with the two modifications in the wind tunnel environment was analyzed with a CFD model as well. By comparing the numerical and experimental results the model was validated. Both modifications are capable of reducing the convection losses. In the best case a reduction of about 50 % was achieved.

  13. CERN apprentice receives award

    CERN Multimedia

    2008-01-01

    Another CERN apprentice has received an award for the quality of his work. Stéphane Küng (centre), at the UIG ceremony last November, presided over by Geneva State Councillor Pierre-François Unger, Head of the Department of Economics and Health. Electronics technician Stéphane Küng was honoured in November by the Social Foundation of the Union Industrielle Genevoise (UIG) as one of Geneva’s eight best apprentices in the field of mechatronics. The 20-year-old Genevan obtained his Federal apprentice’s certificate (Certificat fédéral de capacité - CFC) in June 2007, achieving excellent marks in his written tests at the Centre d’Enseignement Professionnel Technique et Artisanal (CEPTA). Like more than 200 youngsters before him, Stéphane Küng spent part of his four-year sandwich course working at CERN, where he followed many practical training courses and gained valuable hands-on experience in various technical groups and labs. "It’ always very gr...

  14. Solar Collectors

    Science.gov (United States)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  15. High Volumetric Energy Density Hybrid Supercapacitors Based on Reduced Graphene Oxide Scrolls.

    Science.gov (United States)

    Rani, Janardhanan R; Thangavel, Ranjith; Oh, Se-I; Woo, Jeong Min; Chandra Das, Nayan; Kim, So-Yeon; Lee, Yun-Sung; Jang, Jae-Hyung

    2017-07-12

    The low volumetric energy density of reduced graphene oxide (rGO)-based electrodes limits its application in commercial electrochemical energy storage devices that require high-performance energy storage capacities in small volumes. The volumetric energy density of rGO-based electrode materials is very low due to their low packing density. A supercapacitor with enhanced packing density and high volumetric energy density is fabricated using doped rGO scrolls (GFNSs) as the electrode material. The restacking of rGO sheets is successfully controlled through synthesizing the doped scroll structures while increasing the packing density. The fabricated cell exhibits an ultrahigh volumetric energy density of 49.66 Wh/L with excellent cycling stability (>10 000 cycles). This unique design strategy for the electrode material has significant potential for the future supercapacitors with high volumetric energy densities.

  16. Global segmentation and curvature analysis of volumetric data sets using trivariate B-spline functions.

    Science.gov (United States)

    Soldea, Octavian; Elber, Gershon; Rivlin, Ehud

    2006-02-01

    This paper presents a method to globally segment volumetric images into regions that contain convex or concave (elliptic) iso-surfaces, planar or cylindrical (parabolic) iso-surfaces, and volumetric regions with saddle-like (hyperbolic) iso-surfaces, regardless of the value of the iso-surface level. The proposed scheme relies on a novel approach to globally compute, bound, and analyze the Gaussian and mean curvatures of an entire volumetric data set, using a trivariate B-spline volumetric representation. This scheme derives a new differential scalar field for a given volumetric scalar field, which could easily be adapted to other differential properties. Moreover, this scheme can set the basis for more precise and accurate segmentation of data sets targeting the identification of primitive parts. Since the proposed scheme employs piecewise continuous functions, it is precise and insensitive to aliasing.

  17. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT.

    Science.gov (United States)

    Viehland, Christian; Keller, Brenton; Carrasco-Zevallos, Oscar M; Nankivil, Derek; Shen, Liangbo; Mangalesh, Shwetha; Viet, Du Tran; Kuo, Anthony N; Toth, Cynthia A; Izatt, Joseph A

    2016-05-01

    Current-generation software for rendering volumetric OCT data sets based on ray casting results in volume visualizations with indistinct tissue features and sub-optimal depth perception. Recent developments in hand-held and microscope-integrated intrasurgical OCT designed for real-time volumetric imaging motivate development of rendering algorithms which are both visually appealing and fast enough to support real time rendering, potentially from multiple viewpoints for stereoscopic visualization. We report on an enhanced, real time, integrated volumetric rendering pipeline which incorporates high performance volumetric median and Gaussian filtering, boundary and feature enhancement, depth encoding, and lighting into a ray casting volume rendering model. We demonstrate this improved model implemented on graphics processing unit (GPU) hardware for real-time volumetric rendering of OCT data during tissue phantom and live human surgical imaging. We show that this rendering produces enhanced 3D visualizations of pathology and intraoperative maneuvers compared to standard ray casting.

  18. Low-profile heliostat design for solar central receiver systems

    Science.gov (United States)

    Fourakis, E.; Severson, A. M.

    1977-01-01

    Heliostat designs intended to reduce costs and the effect of adverse wind loads on the devices were developed. Included was the low-profile heliostat consisting of a stiff frame with sectional focusing reflectors coupled together to turn as a unit. The entire frame is arranged to turn angularly about a center point. The ability of the heliostat to rotate about both the vertical and horizontal axes permits a central computer control system to continuously aim the sun's reflection onto a selected target. An engineering model of the basic device was built and is being tested. Control and mirror parameters, such as roughness and need for fine aiming, are being studied. The fabrication of these prototypes is in process. The model was also designed to test mirror focusing techniques, heliostat geometry, mechanical functioning, and tracking control. The model can be easily relocated to test mirror imaging on a tower from various directions. In addition to steering and aiming studies, the tests include the effects of temperature changes, wind gusting and weathering. The results of economic studies on this heliostat are also presented.

  19. Volumetric and two-dimensional image interpretation show different cognitive processes in learners.

    Science.gov (United States)

    van der Gijp, Anouk; Ravesloot, Cécile J; van der Schaaf, Marieke F; van der Schaaf, Irene C; Huige, Josephine C B M; Vincken, Koen L; Ten Cate, Olle Th J; van Schaik, Jan P J

    2015-05-01

    In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional images. This study aimed to investigate and compare knowledge and skills used for interpretation of volumetric versus 2D images. Twenty radiology clerks were asked to think out loud while reading four or five volumetric computed tomography (CT) images in stack mode and four or five 2D CT images. Cases were presented in a digital testing program allowing stack viewing of volumetric data sets and changing views and window settings. Thoughts verbalized by the participants were registered and coded by a framework of knowledge and skills concerning three components: perception, analysis, and synthesis. The components were subdivided into 16 discrete knowledge and skill elements. A within-subject analysis was performed to compare cognitive processes during volumetric image readings versus 2D cross-sectional image readings. Most utterances contained knowledge and skills concerning perception (46%). A smaller part involved synthesis (31%) and analysis (23%). More utterances regarded perception in volumetric image interpretation than in 2D image interpretation (Median 48% vs 35%; z = -3.9; P Cognitive processes in volumetric and 2D cross-sectional image interpretation differ substantially. Volumetric image interpretation draws predominantly on perceptual processes, whereas 2D image interpretation is mainly characterized by synthesis. The results encourage the use of volumetric images for teaching and testing perceptual skills. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  20. GNSS Software Receiver for UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; von Benzon, Hans-Henrik

    2016-01-01

    This paper describes the current activities of GPS/GNSS Software receiver development at DTU Space. GNSS Software receivers have received a great deal of attention in the last two decades and numerous implementations have already been presented. DTU Space has just recently started development of ...... of our own GNSS software-receiver targeted for mini UAV applications, and we will in in this paper present our current progress and briefly discuss the benefits of Software Receivers in relation to our research interests....

  1. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

    Science.gov (United States)

    Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk

    2015-01-01

    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. PMID:26109057

  2. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density.

    Science.gov (United States)

    Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-Man; Doo, Seok-Gwang; Chang, Hyuk

    2015-06-25

    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l(-1) at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.

  3. Numerical Validation and Comparison of Three Solar Wind Heating Methods by the SIP-CESE MHD Model

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Ping; FENG Xue-Shang; XIANG Chang-Qing; JIANG Chao-Wei

    2011-01-01

    We conduct simulations using the three-dimensional(3D) solar-interplanetary conservation element/solution element(SIP-CESE) maguetohydrodynamic(MHD) model and magnetogram data from a Carrington rotation (CR) 1897 to compare the three commonly used heating methods, I.e. The Wentzel-Kramers-Brillouin(WKB)Alfvén wave heating method, the turbulence heating method and the volumetric heating method. Our results show that all three heating models can basically reproduce the bimodal structure of the solar wind observed near the solar minimum. The results also demonstrate that the major acceleration interval terminates about 4Rs for the turbulence heating method and 1ORs for both the WKB Alfvén wave heating method and the volumetric heating method. The turbulence heating and the volumetric heating methods can capture the observed changing trends by the WIND satellite, while the WKB Alfvén wave heating method does not.

  4. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  5. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  6. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  7. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  8. Total monitor units influence on plan quality parameters in volumetric modulated arc therapy for breast case.

    Science.gov (United States)

    Mancosu, P; Reggiori, G; Alongi, F; Cozzi, L; Fogliata, A; Lobefalo, F; Navarria, P; Stravato, A; Tomatis, S; Scorsetti, M

    2014-05-01

    To investigate the correlation between total monitor units (MU), dosimetric findings, and pre-treatment quality assurance for volumetric modulated arc therapy (VMAT) by RapidArc (RA). Ten patients with breast cancer were considered. Dose prescriptions were: 48 Gy and 40.5 Gy in 15 fractions to, respectively, PTV(Boost) and PTVWholeBreast. A reference plan was optimized and four more plans using the "MU Objective", a tool for total MU controlling, were prepared imposing ± 20 and ± 50% total MU for inducing different complexities. Plan objectives were: D95% > 95% for both PTVs, and D2% Plans were evaluated in terms of technical parameters, dosimetric plan objectives findings and pre-treatment quality assurance (QA). Concerning PTVs, there were no significant differences for target coverage (D95%); mean doses for ipsilateral lung and controlateral breast, and V18 Gy for heart decreased with MUs increasing, reaching a plateau with reference plan. Body volume receiving low dose (V5-10 Gy) was minimized for reference plans. All plans had GAI (3 mm, 3%) > 95%. The data suggest that the best plan is the reference one, where the "MU Objective" tool was not used during optimisation. Nevertheless, it is advisable to use the "MU Objective" tool for re-planning when low GAI is found to increase its value. In this case, attention should be paid to OARs dose limits, since their values may be increased. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Solar urticaria

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  10. Evaluation of thermal cycling creep-fatigue damage for a molten salt receiver

    Science.gov (United States)

    Grossman, James W.; Jones, Wendell B.; Veers, Paul S.

    1990-01-01

    A molten salt cavity receiver was solar tested at Sandia National Laboratories during a year-long test program. Upon completion of testing, an analysis was performed to determine the effect of thermal cycling on the receiver. The results indicate a substantial fatigue damage accumulation for the receiver when the relatively short test time is considered. This paper describes the methodology used to analyze the cycling, the results as they pertain to this receiver, and how they affect future receiver design.

  11. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  12. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    investigating organic solar cell technology. In spring 2011, Nanotechnology launches a new section wholly dedicated to the coverage of new and stimulating research into energy sources based on nanoscale science and technology. There is at present considerable concern over how to fuel the planet in a sustainable manner with the increasingly energy-thirsty human population. Yet the Earth receives more solar energy in one hour than the world population consumes in one year [8]. No wonder research into photovoltaics and ways of increasing the efficiency with which this energy can be harnessed continues to hold so much fascination. References [1] Levin I and White C E 1949 J. Chem. Phys. 18 417 [2] Chirvase D, Parisi J, Hummelen J C and Dyakonov V 2004 Nanotechnology 15 1317 [3] Kwong C Y, Choy W C H, Djurišić A B, Chui P C, Cheng K W and Chan W K 2004 Nanotechnology 15 1156 [4] Krebs F C, Thomann Y, Thomann R and Andreasen J W 2008 Nanotechnology 19 424013 [5] Zeng T-W, Lin Y-Y, Lo H-H, Chen C-W, Chen C-H, Liou S-C, Huang H-Y and Su W-F 2006 Nanotechnology 17 5387 [6] Dissanayake D M N M, Hatton R A, Lutz T, Curry R J and Silva S R P 2009 Nanotechnology 20 245202 [7] Nicholson P G and Castro F A 2010 Nanotechnology 21 492001 [8] http://www.solarenergyworld.org/solar-energy-facts/

  13. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  14. Volumetric capnography for the evaluation of chronic airways diseases

    Directory of Open Access Journals (Sweden)

    Veronez L

    2014-09-01

    Full Text Available Liliani de Fátima Veronez,1 Monica Corso Pereira,2 Silvia Maria Doria da Silva,2 Luisa Affi Barcaui,2 Eduardo Mello De Capitani,2 Marcos Mello Moreira,2 Ilma Aparecida Paschoalz2 1Department of Physical Therapy, University of Votuporanga (Educational Foundation of Votuporanga, Votuporanga, 2Department of Internal Medicine, School of Medical Sciences, State University of Campinas (UNICAMP, Campinas, Sao Paulo, BrazilBackground: Obstructive lung diseases of different etiologies present with progressive peripheral airway involvement. The peripheral airways, known as the silent lung zone, are not adequately evaluated with conventional function tests. The principle of gas washout has been used to detect pulmonary ventilation inhomogeneity and to estimate the location of the underlying disease process. Volumetric capnography (VC analyzes the pattern of CO2 elimination as a function of expired volume.Objective: To measure normalized phase 3 slopes with VC in patients with non-cystic fibrosis bronchiectasis (NCB and in bronchitic patients with chronic obstructive pulmonary disease (COPD in order to compare the slopes obtained for the groups.Methods: NCB and severe COPD were enrolled sequentially from an outpatient clinic (Hospital of the State University of Campinas. A control group was established for the NCB group, paired by sex and age. All subjects performed spirometry, VC, and the 6-Minute Walk Test (6MWT. Two comparisons were made: NCB group versus its control group, and NCB group versus COPD group. The project was approved by the ethical committee of the institution. Statistical tests used were Wilcoxon or Student’s t-test; P<0.05 was considered to be a statistically significant difference.Results: Concerning the NCB group (N=20 versus the control group (N=20, significant differences were found in body mass index and in several functional variables (spirometric, VC, 6MWT with worse results observed in the NCB group. In the comparison between

  15. Hepatosplenic volumetric assessment at MDCT for staging liver fibrosis.

    Science.gov (United States)

    Pickhardt, Perry J; Malecki, Kyle; Hunt, Oliver F; Beaumont, Claire; Kloke, John; Ziemlewicz, Timothy J; Lubner, Meghan G

    2017-07-01

    To investigate hepatosplenic volumetry at MDCT for non-invasive prediction of hepatic fibrosis. Hepatosplenic volume analysis in 624 patients (mean age, 48.8 years; 311 M/313 F) at MDCT was performed using dedicated software and compared against pathological fibrosis stage (F0 = 374; F1 = 48; F2 = 40; F3 = 65; F4 = 97). The liver segmental volume ratio (LSVR) was defined by Couinaud segments I-III over segments IV-VIII. All pre-cirrhotic fibrosis stages (METAVIR F1-F3) were based on liver biopsy within 1 year of MDCT. LSVR and total splenic volumes increased with stage of fibrosis, with mean(±SD) values of: F0: 0.26 ± 0.06 and 215.1 ± 88.5 mm(3); F1: 0.25 ± 0.08 and 294.8 ± 153.4 mm(3); F2: 0.331 ± 0.12 and 291.6 ± 197.1 mm(3); F3: 0.39 ± 0.15 and 509.6 ± 402.6 mm(3); F4: 0.56 ± 0.30 and 790.7 ± 450.3 mm(3), respectively. Total hepatic volumes showed poor discrimination (F0: 1674 ± 320 mm(3); F4: 1631 ± 691 mm(3)). For discriminating advanced fibrosis (≥F3), the ROC AUC values for LSVR, total liver volume, splenic volume and LSVR/spleen combined were 0.863, 0.506, 0.890 and 0.947, respectively. Relative changes in segmental liver volumes and total splenic volume allow for non-invasive staging of hepatic fibrosis, whereas total liver volume is a poor predictor. Unlike liver biopsy or elastography, these CT volumetric biomarkers can be obtained retrospectively on routine scans obtained for other indications. • Regional changes in hepatic volume (LSVR) correlate well with degree of fibrosis. • Total liver volume is a very poor predictor of underlying fibrosis. • Total splenic volume is associated with the degree of hepatic fibrosis. • Hepatosplenic volume assessment is comparable to elastography for staging fibrosis. • Unlike elastography, volumetric analysis can be performed retrospectively.

  16. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    Directory of Open Access Journals (Sweden)

    Iliadis Georgios

    2012-01-01

    Full Text Available Abstract Background In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O6-methylguanine methyltransferase related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. Methods We prospectively analyzed 65 patients suffering from glioblastoma (GBM who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy. The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA, for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. Results In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS (p = 0.023 and for preoperative necrosis on progression-free survival (PFS (p = 0.030. Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5% evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei was inversely associated with pre-operative tumor necrosis (p = 0.021. Conclusions Our findings implicate that volumetric parameters may have a significant role in

  17. New Low Cost Structure for Dual Axis Mount Solar Tracking System Using Adaptive Solar Sensor

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2010-01-01

    A solar tracking system is designed to optimize the operation of solar energy receivers. The objective of this paper is proposing a new tracking system structure with two axis. The success strategy of this new project focuses on the economical analysis of solar energy. Therefore it is important...... to determine the most cost effective design, to consider the costs of production and maintenance, and operating. The proposed tracking system uses a new solar sensor position with an adaptive feature....

  18. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM)

    OpenAIRE

    Miqdam T. Chaichan; Hussein A. Kazem

    2015-01-01

    This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temp...

  19. Solar flair.

    Science.gov (United States)

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  20. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  1. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  2. Solar Energy: Solar System Economics.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  3. Sensitivity analysis of heliostat aiming strategies and receiver size on annual thermal production of a molten salt external receiver

    Science.gov (United States)

    Servert, Jorge; González, Ana; Gil, Javier; López, Diego; Funes, Jose Felix; Jurado, Alfonso

    2017-06-01

    Even though receiver size and aiming strategy are to be jointly analyzed to optimize the thermal energy that can be extracted from a solar tower receiver, customarily, they have been studied as separated problems. The main reason is the high-level of detail required to define aiming strategies, which are often simplified in annual simulation models. Aiming strategies are usually focused on obtaining a homogeneous heat flux on the central receiver, with the goal to minimize the maximum heat flux value that may lead to damaging it. Some recent studies have addressed the effect of different aiming strategies on different receiver types, but they have only focused on the optical efficiency. The receiver size is also an additional parameter that has to be considered: larger receiver sizes provide a larger aiming surface and a reduction on spillage losses, but require higher investment while penalizing the thermal performance of the receiver due to the greater external convection losses. The present paper presents a sensitivity analysis of both factors for a predefined solar field at a fixed location, using a central receiver and molten salts as HTF. The analysis includes the design point values and annual energy outputs comparing the effect on the optical performance (measured using a spillage factor) and thermal energy production.

  4. DIFFERENTIAL ANALYSIS OF VOLUMETRIC STRAINS IN POROUS MATERIALS IN TERMS OF WATER FREEZING

    Directory of Open Access Journals (Sweden)

    Rusin Z.

    2013-06-01

    Full Text Available The paper presents the differential analysis of volumetric strain (DAVS. The method allows measurements of volumetric deformations of capillary-porous materials caused by water-ice phase change. The VSE indicator (volumetric strain effect, which under certain conditions can be interpreted as the minimum degree of phase change of water contained in the material pores, is proposed. The test results (DAVS for three materials with diversified microstructure: clinker brick, calcium-silicate brick and Portland cement mortar were compared with the test results for pore characteristics obtained with the mercury intrusion porosimetry.

  5. Is there a role for the use of volumetric cone beam computed tomography in periodontics?

    Science.gov (United States)

    du Bois, A H; Kardachi, B; Bartold, P M

    2012-03-01

    Volumetric computed cone beam tomography offers a number of significant advantages over conventional intraoral and extraoral panoramic radiography, as well as computed tomography. To date, periodontal diagnosis has relied heavily on the assessment of both intraoral radiographs and extraoral panoramic radiographs. With emerging technology in radiology there has been considerable interest in the role that volumetric cone beam computed tomography might play in periodontal diagnostics. This narrative reviews the current evidence and considers whether there is a role for volumetric cone beam computed tomography in periodontics.

  6. Optimal concentration and temperatures of solar thermal power plants

    OpenAIRE

    2012-01-01

    Using simple, finite-time, thermodynamic models of solar thermal power plants, the existence of an optimal solar receiver temperature has previously been demonstrated in literature. Scant attention has been paid, however, to the presence of an optimal level of solar concentration at which the conversion of incident sunlight to electricity (solar-to-electric efficiency) is maximized. This paper addresses that gap. The paper evaluates the impact, on the design of Rankine-cycle solar-trough and ...

  7. Parkinson's disease: diagnostic utility of volumetric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Che; Chen, Meng-Hsiang [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); Chou, Kun-Hsien [National Yang-Ming University, Brain Research Center, Taipei (China); Lee, Pei-Lin [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Tsai, Nai-Wen; Lu, Cheng-Hsien [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Neurology, Kaohsiung (China); Chen, Hsiu-Ling [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hsu, Ai-Ling [National Taiwan University, Institute of Biomedical Electronics and Bioinformatics, Taipei (China); Huang, Yung-Cheng [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Nuclear Medicine, Kaohsiung (China); Lin, Ching-Po [National Yang-Ming University, Brain Research Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2017-04-15

    This paper aims to examine the effectiveness of structural imaging as an aid in the diagnosis of Parkinson's disease (PD). High-resolution T{sub 1}-weighted magnetic resonance imaging was performed in 72 patients with idiopathic PD (mean age, 61.08 years) and 73 healthy subjects (mean age, 58.96 years). The whole brain was parcellated into 95 regions of interest using composite anatomical atlases, and region volumes were calculated. Three diagnostic classifiers were constructed using binary multiple logistic regression modeling: the (i) basal ganglion prior classifier, (ii) data-driven classifier, and (iii) basal ganglion prior/data-driven hybrid classifier. Leave-one-out cross validation was used to unbiasedly evaluate the predictive accuracy of imaging features. Pearson's correlation analysis was further performed to correlate outcome measurement using the best PD classifier with disease severity. Smaller volume in susceptible regions is diagnostic for Parkinson's disease. Compared with the other two classifiers, the basal ganglion prior/data-driven hybrid classifier had the highest diagnostic reliability with a sensitivity of 74%, specificity of 75%, and accuracy of 74%. Furthermore, outcome measurement using this classifier was associated with disease severity. Brain structural volumetric analysis with multiple logistic regression modeling can be a complementary tool for diagnosing PD. (orig.)

  8. Volumetric Analysis of Regional Cerebral Development in Preterm Children

    Science.gov (United States)

    Kesler, Shelli R.; Ment, Laura R.; Vohr, Betty; Pajot, Sarah K.; Schneider, Karen C.; Katz, Karol H.; Ebbitt, Timothy B.; Duncan, Charles C.; Makuch, Robert W.; Reiss, Allan L.

    2011-01-01

    Preterm birth is frequently associated with both neuropathologic and cognitive sequelae. This study examined cortical lobe, subcortical, and lateral ventricle development in association with perinatal variables and cognitive outcome. High-resolution volumetric magnetic resonance imaging scans were acquired and quantified using advanced image processing techniques. Seventy-three preterm and 33 term control children ages 7.3-11.4 years were included in the study. Results indicated disproportionately enlarged parietal and frontal gray matter, occipital horn, and ventricular body, as well as reduced temporal and subcortical gray volumes in preterm children compared with control subjects. Birth weight was negatively correlated with parietal and frontal gray, as well as occipital horn volumes. Intraventricular hemorrhage was associated with reduced subcortical gray matter. Ventricular cerebrospinal fluid was negatively correlated with subcortical gray matter volumes but not with white matter volumes. Maternal education was the strongest predictor of cognitive function in the preterm group. Preterm birth appears to be associated with disorganized cortical development, possibly involving disrupted synaptic pruning and neural migration. Lower birth weight and the presence of intraventricular hemorrhage may increase the risk for neuroanatomic abnormality. PMID:15519112

  9. Volumetric microscale particle tracking velocimetry (PTV) in porous media

    Science.gov (United States)

    Guo, Tianqi; Aramideh, Soroush; Ardekani, Arezoo M.; Vlachos, Pavlos P.

    2016-11-01

    The steady-state flow through refractive-index-matched glass bead microchannels is measured using microscopic particle tracking velocimetry (μPTV). A novel technique is developed to volumetrically reconstruct particles from oversampled two-dimensional microscopic images of fluorescent particles. Fast oversampling of the quasi-steady-state flow field in the lateral direction is realized by a nano-positioning piezo stage synchronized with a fast CMOS camera. Experiments at different Reynolds numbers are carried out for flows through a series of both monodispersed and bidispersed glass bead microchannels with various porosities. The obtained velocity fields at pore-scale (on the order of 10 μm) are compared with direct numerical simulations (DNS) conducted in the exact same geometries reconstructed from micro-CT scans of the glass bead microchannels. The developed experimental method would serve as a new approach for exploring the flow physics at pore-scale in porous media, and also provide benchmark measurements for validation of numerical simulations.

  10. Buoyancy Driven Mixing with Continuous Volumetric Energy Deposition

    Science.gov (United States)

    Wachtor, Adam J.; Jebrail, Farzaneh F.; Dennisen, Nicholas A.; Andrews, Malcolm J.; Gore, Robert A.

    2014-11-01

    An experiment involving a miscible fluid pair is presented which transitioned from a Rayleigh-Taylor (RT) stable to RT unstable configuration through continuous volumetric energy deposition (VED) by microwave radiation. Initially a light, low microwave absorbing fluid rested above a heavier, more absorbing fluid. The alignment of the density gradient with gravity made the system stable, and the Atwood number (At) for the initial setup was approximately -0.12. Exposing the fluid pair to microwave radiation preferentially heated the bottom fluid, and caused its density to drop due to thermal expansion. As heating of the bottom fluid continued, the At varied from negative to positive, and after the system passed through the neutral stability point, At = 0, buoyancy driven mixing ensued. Continuous VED caused the At to continue increasing and further drive the mixing process. Successful VED mixing required careful design of the fluid pair used in the experiment. Therefore, fluid selection is discussed, along with challenges and limitations of data collection using the experimental microwave facility. Experimental and model predictions of the neutral stability point, and onset of buoyancy driven mixing, are compared, and differences with classical, constant At RT driven turbulence are discussed.

  11. FELIX 3D display: an interactive tool for volumetric imaging

    Science.gov (United States)

    Langhans, Knut; Bahr, Detlef; Bezecny, Daniel; Homann, Dennis; Oltmann, Klaas; Oltmann, Krischan; Guill, Christian; Rieper, Elisabeth; Ardey, Goetz

    2002-05-01

    The FELIX 3D display belongs to the class of volumetric displays using the swept volume technique. It is designed to display images created by standard CAD applications, which can be easily imported and interactively transformed in real-time by the FELIX control software. The images are drawn on a spinning screen by acousto-optic, galvanometric or polygon mirror deflection units with integrated lasers and a color mixer. The modular design of the display enables the user to operate with several equal or different projection units in parallel and to use appropriate screens for the specific purpose. The FELIX 3D display is a compact, light, extensible and easy to transport system. It mainly consists of inexpensive standard, off-the-shelf components for an easy implementation. This setup makes it a powerful and flexible tool to keep track with the rapid technological progress of today. Potential applications include imaging in the fields of entertainment, air traffic control, medical imaging, computer aided design as well as scientific data visualization.

  12. Toward a Philosophy and Theory of Volumetric Nonthermal Processing.

    Science.gov (United States)

    Sastry, Sudhir K

    2016-06-01

    Nonthermal processes for food preservation have been under intensive investigation for about the past quarter century, with varying degrees of success. We focus this discussion on two volumetrically acting nonthermal processes, high pressure processing (HPP) and pulsed electric fields (PEF), with emphasis on scientific understanding of each, and the research questions that need to be addressed for each to be more successful in the future. We discuss the character or "philosophy" of food preservation, with a question about the nature of the kill step(s), and the sensing challenges that need to be addressed. For HPP, key questions and needs center around whether its nonthermal effectiveness can be increased by increased pressures or pulsing, the theoretical treatment of rates of reaction as influenced by pressure, the assumption of uniform pressure distribution, and the need for (and difficulties involved in) in-situ measurement. For PEF, the questions include the rationale for pulsing, difficulties involved in continuous flow treatment chambers, the difference between electroporation theory and experimental observations, and the difficulties involved in in-situ measurement and monitoring of electric field distribution.

  13. Optical artefact characterization and correction in volumetric scintillation dosimetry

    Science.gov (United States)

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillator detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts.

  14. An MRI-based semiautomated volumetric quantification of hip osteonecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Malizos, K.N.; Siafakas, M.S.; Karachalios, T.S. [Dept. of Orthopaedics, Univ. of Thessalia, Larissa (Greece); Fotiadis, D.I. [Dept. of Computer Science, Univ. of Ioannina (Greece); Soucacos, P.N. [Dept. of Orthopaedic Surgery, Univ. of Ioannina (Greece)

    2001-12-01

    Objective: To objectively and precisely define the spatial distribution of osteonecrosis and to investigate the influence of various factors including etiology. Design: A volumetric method is presented to describe the size and spatial distribution of necrotic lesions of the femoral head, using MRI scans. The technique is based on the definition of an equivalent sphere model for the femoral head. Patients: The gender, age, number of hips involved, disease duration, pain intensity, limping disability and etiology were correlated with the distribution of the pathologic bone. Seventy-nine patients with 122 hips affected by osteonecrosis were evaluated. Results: The lesion size ranged from 7% to 73% of the sphere equivalent. The lateral octants presented considerable variability, ranging from wide lateral lesions extending beyond the lip of the acetabulum, to narrow medial lesions, leaving a lateral supporting pillar of intact bone. Patients with sickle cell disease and steroid administration presented the largest lesions. The extent of the posterior superior medial octant involvement correlated with the symptom intensity, a younger age and male gender. Conclusion: The methodology presented here has proven a reliable and straightforward imaging tool for precise assessment of necrotic lesions. It also enables us to target accurately the drilling and grafting procedures. (orig.)

  15. Illustration-inspired depth enhanced volumetric medical visualization.

    Science.gov (United States)

    Svakhine, Nikolai A; Ebert, David S; Andrews, William M

    2009-01-01

    Volume illustration can be used to provide insight into source data from CT/MRI scanners in much the same way as medical illustration depicts the important details of anatomical structures. As such, proven techniques used in medical illustration should be transferable to volume illustration, providing scientists with new tools to visualize their data. In recent years, a number of techniques have been developed to enhance the rendering pipeline and create illustrative effects similar to the ones found in medical textbooks and surgery manuals. Such effects usually highlight important features of the subject while subjugating its context and providing depth cues for correct perception. Inspired by traditional visual and line-drawing techniques found in medical illustration, we have developed a collection of fast algorithms for more effective emphasis/de-emphasis of data as well as conveyance of spatial relationships. Our techniques utilize effective outlining techniques and selective depth enhancement to provide perceptual cues of object importance as well as spatial relationships in volumetric datasets. Moreover, we have used illustration principles to effectively combine and adapt basic techniques so that they work together to provide consistent visual information and a uniform style.

  16. Connectivity network measures predict volumetric atrophy in mild cognitive impairment.

    Science.gov (United States)

    Nir, Talia M; Jahanshad, Neda; Toga, Arthur W; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    Alzheimer's disease (AD) is characterized by cortical atrophy and disrupted anatomic connectivity, and leads to abnormal interactions between neural systems. Diffusion-weighted imaging (DWI) and graph theory can be used to evaluate major brain networks and detect signs of a breakdown in network connectivity. In a longitudinal study using both DWI and standard magnetic resonance imaging (MRI), we assessed baseline white-matter connectivity patterns in 30 subjects with mild cognitive impairment (MCI, mean age 71.8 ± 7.5 years, 18 males and 12 females) from the Alzheimer's Disease Neuroimaging Initiative. Using both standard MRI-based cortical parcellations and whole-brain tractography, we computed baseline connectivity maps from which we calculated global "small-world" architecture measures, including mean clustering coefficient and characteristic path length. We evaluated whether these baseline network measures predicted future volumetric brain atrophy in MCI subjects, who are at risk for developing AD, as determined by 3-dimensional Jacobian "expansion factor maps" between baseline and 6-month follow-up anatomic scans. This study suggests that DWI-based network measures may be a novel predictor of AD progression.

  17. Femoral head osteonecrosis: Volumetric MRI assessment and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Bassounas, Athanasios E. [Department of Medical Physics, School of Medicine, University of Ioannina, GR 451 10 Ioannina (Greece); Karantanas, Apostolos H. [Department of Radiology, School of Medicine, University of Crete, Heraklion, GR 711 10 (Greece); Fotiadis, Dimitrios I. [Unit of Medical Technology and Intelligent Information Systems, Department of Computer Science, University of Ioannina and Biomedical Research Institute-FORTH, GR 451 10 Ioannina (Greece); Malizos, Konstantinos N. [Orthopaedic Department, Medical School, University of Thessalia, GR 412 22 Larissa (Greece)]. E-mail: kmalizos@otenet.gr

    2007-07-15

    Effective treatment of femoral head osteonecrosis (FHON) requires early diagnosis and accurate assessment of the disease severity. The ability to predict in the early stages the risk of collapse is important for selecting a joint salvage procedure. The aim of the present study was to evaluate the outcome in patients treated with vascularized fibular grafts in relation to preoperative MR imaging volumetry. We studied 58 patients (87 hips) with FHON. A semi-automated octant-based lesion measurement method, previously described, was performed on the T1-w MR images. The mean time of postoperative follow-up was 7.8 years. Sixty-three hips were successful and 24 failed and converted to total hip arthroplasty within a period of 2-4 years after the initial operation. The rate of failures for hips of male patients was higher than in female patients. The mean lesion size was 28% of the sphere equivalent of the femoral head, 24 {+-} 12% for the successful hips and 37 {+-} 9% for the failed (p < 0.001). The most affected octants were antero-supero-medial (58 {+-} 26%) and postero-supero-medial (54 {+-} 31%). All but postero-infero-medial and postero-infero-lateral octants, showed statistically significant differences in the lesion size between patients with successful and failed hips. In conclusion, the volumetric analysis of preoperative MRI provides useful information with regard to a successful outcome in patients treated with vascularized fibular grafts.

  18. Three-dimensional volumetric quantification of fat loss following cryolipolysis.

    Science.gov (United States)

    Garibyan, Lilit; Sipprell, William H; Jalian, H Ray; Sakamoto, Fernanda H; Avram, Mathew; Anderson, R Rox

    2014-02-01

    Cryolipolysis is a noninvasive and well-tolerated treatment for reduction of localized subcutaneous fat. Although several studies demonstrate the safety and efficacy of this procedure, volumetric fat reduction from this treatment has not been quantified. This prospective study investigated the change in volume of fat after cryolipolysis treatment using three-dimensional (3D) photography. A prospective study of subjects treated with cryolipolysis on the flank (love handle) was performed at Massachusetts General Hospital. Volume measurements were performed with a Canfield Scientific Vectra three-dimensional camera and software to evaluate the amount of post procedure volume change. Clinical outcomes were assessed with caliper measurements, subject surveys, and blinded physician assessment of photographs. Eleven subjects were enrolled in this study. Each subject underwent a single cycle of cryolipolysis to one flank. The untreated flank served as an internal control. The follow-up time after treatment was 2 months. The mean amount of calculated absolute fat volume loss using 3D photography from baseline to 2 months follow-up visit was 56.2 ± 25.6 from the treatment site and 16.6 ± 17.6 cc from the control (P fat removal methodology that on average leads to 39.6 cc of fat loss of the treated flank at 2 months after a single treatment cycle. © 2013 Wiley Periodicals, Inc.

  19. Cortical thickness and brain volumetric analysis in body dysmorphic disorder.

    Science.gov (United States)

    Madsen, Sarah K; Zai, Alex; Pirnia, Tara; Arienzo, Donatello; Zhan, Liang; Moody, Teena D; Thompson, Paul M; Feusner, Jamie D

    2015-04-30

    Individuals with body dysmorphic disorder (BDD) suffer from preoccupations with perceived defects in physical appearance, causing severe distress and disability. Although BDD affects 1-2% of the population, the neurobiology is not understood. Discrepant results in previous volumetric studies may be due to small sample sizes, and no study has investigated cortical thickness in BDD. The current study is the largest neuroimaging analysis of BDD. Participants included 49 medication-free, right-handed individuals with DSM-IV BDD and 44 healthy controls matched by age, sex, and education. Using high-resolution T1-weighted magnetic resonance imaging, we computed vertex-wise gray matter (GM) thickness on the cortical surface and GM volume using voxel-based morphometry. We also computed volumes in cortical and subcortical regions of interest. In addition to group comparisons, we investigated associations with symptom severity, insight, and anxiety within the BDD group. In BDD, greater anxiety was significantly associated with thinner GM in the left superior temporal cortex and greater GM volume in the right caudate nucleus. There were no significant differences in cortical thickness, GM volume, or volumes in regions of interest between BDD and control subjects. Subtle associations with clinical symptoms may characterize brain morphometric patterns in BDD, rather than large group differences in brain structure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Region-of-interest volumetric visual hull refinement

    KAUST Repository

    Knoblauch, Daniel

    2010-01-01

    This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual hull reconstruction, resulting in a first 3D approximation of the target, followed by a region-of-interest estimation, tasked with identifying features of interest, which in turn are used to locally refine the voxel grid and extract a higher-resolution surface representation for those regions. This approach is illustrated for the reconstruction of avatars for use in tele-immersion environments, where head and hand regions are of higher interest. To allow reproducability and direct comparison a publicly available data set for human visual hull reconstruction is used. This paper shows that region-of-interest reconstruction of the target is faster and visually comparable to higher resolution focused visual hull reconstructions. This approach reduces the amount of data generated through the reconstruction, allowing faster post processing, as rendering or networking of the surface voxels. Reconstruction speeds support smooth interactions between the avatar and the virtual environment, while the improved resolution of its facial region and hands creates a higher-degree of immersion and potentially impacts the perception of body language, facial expressions and eye-to-eye contact. Copyright © 2010 by the Association for Computing Machinery, Inc.

  1. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  2. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    Science.gov (United States)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  3. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    Science.gov (United States)

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  4. Design of a Traditional Solar Tracking System

    Science.gov (United States)

    Barsoum, Nader; Vasant, Pandian

    2010-06-01

    Solar energy is rapidly advancing as an important means of renewable energy resource. More energy is produced by tracking the solar panel to remain aligned to the sun at a right angle to the rays of light. This paper describes in detail the design and construction of a prototype for solar tracking system with two degrees of freedom, which detects the sunlight using photocells. The control circuit for the solar tracker is based on a PIC16F84A microcontroller (MCU). This is programmed to detect the sunlight through the photocells and then actuate the motor to position the solar panel where it can receive maximum sunlight.

  5. Development of solar energy in Peru

    Science.gov (United States)

    Pierson, H. O.; Nahui, A.

    1981-06-01

    Development of solar energy technology utilization in Peru is discussed. Peru receives a high degree of solar radiation (except for part of its coastal area) and has almost an ideal climate for the development of solar energy. The development of low temperature applications, including the design of passive solar heated buildings for the high Andes, the design and evaluation of various types of solar water heaters and crop dryers for both household and industrial uses (based on flat plate collectors), and the construction of a desalinization prototype plant are reported. Photovoltaic systems are investigated for suitable applications and have an excellent potential, especially in telecommunications.

  6. Solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sommer-Larsen, P.; Krebs, F.C. (Risoe DTU, Roskilde (Denmark)); Plaza, D.M. (Plataforma Solar de Almeria-CIEMAT (Spain))

    2010-11-15

    Solar energy is the most abundant energy resource on earth. In a sustainable future with an ever-increasing demand for energy, we will need to use this resource better. Solar energy technologies either convert sunlight directly into heat and electrical energy or use it to power chemical conversions which create 'solar fuels' or synthetic compounds. Solar heating technologies have developed steadily for many years and solar heating and cooling is one of the world's commonest renewable energy technologies. This chapter, however, focuses on technologies for electricity production and touches more briefly on the prospects for solar fuels. The section on Danish perspectives also discusses solar thermal heating in district heating plants. In recent decades, two technologies for converting solar energy into electrical energy have dominated: photovoltaics (PV) and concentrating solar power (CSP). Today's silicon and thin-film PV technologies are advancing steadily, with new materials and technologies constantly being developed, and there are clear roadmaps for lowering production costs. In the discussion below we assess the maturation potential of currently emerging PV technologies within the next 40 years. Concentrating solar power is already a proven technology, and below we evaluate its potential to become a substantial part of the energy mix by 2050. Solar fuels cover a range of technologies. The chapter is to a great extent based on two recent roadmaps from the International Energy Agency (IEA). Many reports, predictions, scenarios and roadmaps for solar energy deployment exist. The IEA predictions for the penetration of solar energy in the future energy system are low relative to many of the other studies. The IEA roadmaps, however, cover most aspects of the future deployment of the technologies and reference older work. (Author)

  7. Offset truss hex solar concentrator

    Science.gov (United States)

    White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)

    1991-01-01

    A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.

  8. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  9. Solar Thermal Electricity Generating System

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  10. Stirling Converters For Solar Power

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1993-01-01

    Two designs expected to meet long-term goals for performance and cost. Proposed for advanced systems to convert solar thermal power to electrical power. Each system, designed to operate with 11-m-diameter paraboloidal reflector, includes solar-energy receiver, liquid-metal heat-transport subsystem, free-piston Stirling engine, cooling subsystem, alternator or generator coupled directly or indirectly to commercial electric-power system, and control and power-conditioning circuitry. System converts approximately 75 kW of input solar thermal power falling on collector to about 25 kW of output electrical power.

  11. On the Uncertain Future of the Volumetric 3D Display Paradigm

    Science.gov (United States)

    Blundell, Barry G.

    2017-06-01

    Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available. Consequently, in this paper we review aspects of the volumetric paradigm and identify important issues which have, to date, precluded their successful commercialization. Potentially advantageous characteristics are outlined and demonstrate that significant research is still needed in order to overcome barriers which continue to hamper the effective exploitation of this display modality. Given the recent resurgence of interest in developing commercially viable general purpose volumetric systems, this discussion is of particular relevance.

  12. Volumetric study of the olfactory bulb in patients with chronic rhinonasal sinusitis using MRI

    Directory of Open Access Journals (Sweden)

    Reda A. Alarabawy

    2016-06-01

    Conclusions: MRI with volumetric analysis is a useful tool in assessment of the olfactory bulb volume in patients with olfactory loss and appears to be of help in assessment of the degree of recovery in patients after sinus surgery.

  13. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  14. Effect of consolidation pressure on volumetric composition and stiffness of unidirectional flax fibre composites

    DEFF Research Database (Denmark)

    Aslan, Mustafa; Mehmood, S.; Madsen, Bo

    2013-01-01

    Unidirectional flax/polyethylene terephthalate composites are manufactured by filament winding, followed by compression moulding with low and high consolidation pressure, and with variable flax fibre content. The experimental data of volumetric composition and tensile stiffness are analysed with ...

  15. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    The mechanical properties, volumetric shrinkage and depth of cure of a short fiber-reinforced resin composite (SFRC) were investigated in this study and compared to both a bulk fill resin composite (BFRC) and conventional glass/ceramic-filled resin composite (CGRC). Fracture toughness, flexural properties, volumetric shrinkage and depth of cure of the SFRC, BFRC and CGRC were measured. SFRC had significantly higher fracture toughness than BFRCs and CGRCs. The flexural properties of SFRC were comparable with BFRCs and CGRCs. SFRC showed significantly lower volumetric shrinkage than the other tested resin composites. The depth of cure of the SFRC was similar to BFRCs and higher than CGRCs. The data from this laboratory investigation suggests that SFRC exhibits improvements in fracture toughness, volumetric shrinkage and depth of cure when compared with CGRC, but depth of cure of SFRC was similar to BFRC.

  16. Review of prospects and challenges of eye tracking in volumetric imaging.

    Science.gov (United States)

    Venjakob, Antje C; Mello-Thoms, Claudia R

    2016-01-01

    While eye tracking research in conventional radiography has flourished over the past decades, the number of eye tracking studies that looked at multislice images lags behind. A possible reason for the lack of studies in this area might be that the eye tracking methodology used in the context of conventional radiography cannot be applied one-on-one to volumetric imaging material. Challenges associated with eye tracking in volumetric imaging are particularly associated with the selection of stimulus material, the detection of events in the eye tracking data, the calculation of meaningful eye tracking parameters, and the reporting of abnormalities. However, all of these challenges can be addressed in the design of the experiment. If this is done, eye tracking studies using volumetric imaging material offer almost unlimited opportunity for perception research and are highly relevant as the number of volumetric images that are acquired and interpreted is rising.

  17. Solar System Educators Program

    Science.gov (United States)

    Knudsen, R.

    2004-11-01

    The Solar System Educators Program is a nationwide network of highly motivated teachers who lead workshops that show other teachers in their local communities how to successfully incorporate NASA materials and research into their classes. Currently there are 57 Solar System Educators in 37 states whose workshops are designed to assist their fellow teachers in understanding and including standards-based NASA materials into their classroom activities. Solar System Educators attend a training institute during their first year in the program and have the option of attending subsequent annual institutes. The volunteers in this program receive additional web-based mission-specific telecon trainings in conjunction with the Solar System Ambassadors. Resource and handout materials in the form of DVDs, posters, pamphlets, fact sheets, postcards and bookmarks are also provided. Scientists can get involved with this program by partnering with the Solar System Educators in their regions, presenting at their workshops and mentoring these outstanding volunteers. This formal education program helps optimize project funding set aside for education through the efforts of these volunteer master teachers. At the same time, teachers become familiar with NASA's educational materials with which to inspire students into pursuing careers in science, technology, engineering and math.

  18. Planning strategies in volumetric modulated are therapy for breast.

    Science.gov (United States)

    Giorgia, Nicolini; Antonella, Fogliata; Alessandro, Clivio; Eugenio, Vanetti; Luca, Cozzi

    2011-07-01

    In breast radiotherapy with intensity modulation, it is a well established practice to extend the dose fluence outside the limit of the body contour to account for small changes in size and position of the target and the rest of the tissues due to respiration or to possible oedema. A simple approach is not applicable with RapidArc volumetric modulated are therapy not being based on a fixed field fluence delivery. In this study, a viable technical strategy to account for this need is presented. RapidArc (RA) plans for six breast cancer patients (three right and three left cases), were optimized (PRO version III) on the original CT data set (0) and on an alternative CT (E) generated with an artificial expansion (and assignment of soft-tissue equivalent HU) of 10 mm of the body in the breast region and of the PTV contours toward the external direction. Final dose calculations for the two set of plans were performed on the same original CT data set O, normalizing the dose prescription (50 Gy) to the target mean. In this way, two treatment plans on the same CT set O for each patient were obtained: the no action plan (OO) and the alternative plan based on an expanded optimization (EO). Fixing MU, these two plans were then recomputed on the expanded CT data set and on an intermediate one (with expansion = 5 mm), to mimic, possible changes in size due to edema during treatment or residual displacements due to breathing not properly controlled. Aim of the study was to quantify the robustness of this planning strategy on dose distributions when either the OO or the EO strategies were adopted. For all the combinations, a DVH analysis of all involved structures is reported. I. The two optimization approaches gave comparable dose distributions on the original CT data set. II. When plans were evaluated on the expanded CTs (mimicking the presence of edema), the EO approach showed improved target coverage if compared to OO: on CT_10 mm, Dv = 98% [%]= 92.5 +/- 0.9 and 68.5 +/- 3

  19. Planning strategies in volumetric modulated arc therapy for breast.

    Science.gov (United States)

    Nicolini, Giorgia; Fogliata, Antonella; Clivio, Alessandro; Vanetti, Eugenio; Cozzi, Luca

    2011-07-01

    In breast radiotherapy with intensity modulation, it is a well established practice to extend the dose fluence outside the limit of the body contour to account for small changes in size and position of the target and the rest of the tissues due to respiration or to possible oedema. A simple approach is not applicable with RapidArc volumetric modulated arc therapy not being based on a fixed field fluence delivery. In this study, a viable technical strategy to account for this need is presented. RapidArc (RA) plans for six breast cancer patients (three right and three left cases), were optimized (PRO version III) on the original CT data set (O) and on an alternative CT (E) generated with an artificial expansion (and assignment of soft-tissue equivalent HU) of 10 mm of the body in the breast region and of the PTV contours toward the external direction. Final dose calculations for the two set of plans were performed on the same original CT data set O, normalizing the dose prescription (50 Gy) to the target mean. In this way, two treatment plans on the same CT set O for each patient were obtained: the no action plan (OO) and the alternative plan based on an expanded optimization (EO). Fixing MU, these two plans were then recomputed on the expanded CT data set and on an intermediate one (with expansion = 5 mm), to mimic, possible changes in size due to edema during treatment or residual displacements due to breathing not properly controlled. Aim of the study was to quantify the robustness of this planning strategy on dose distributions when either the OO or the EO strategies were adopted. For all the combinations, a DVH analysis of all involved structures is reported. I. The two optimization approaches gave comparable dose distributions on the original CT data set. II. When plans were evaluated on the expanded CTs (mimicking the presence of edema), the EO approach showed improved target coverage if compared to OO: on CT_10 mm, DV = 98% [%] = 92.5 ± 0

  20. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  1. Volumetric Properties of the Mixture Tetrachloromethane CCl4 + CHCl3 Trichloromethane (VMSD1212, LB4576_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Tetrachloromethane CCl4 + CHCl3 Trichloromethane (VMSD1212, LB4576_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  2. Determination of ferrous iron in rock and mineral samples by three volumetric methods

    OpenAIRE

    Saikkonen, R.J.; Rautiainen, I.A.

    1993-01-01

    Ferrous iron was determined by three volumetric methods in 13 in-house reference rock samples and in 31 international geological reference samples. The methods used were Amonette & Scott' s oxidimetric method, Wilson's oxidimetric method and Pratt's method. The results for FeO by these volumetric methods in 13 in-house rock samples were compared to the results obtained in other analytical laboratories in Finland. The results for FeO in the international samples were compared with published da...

  3. FEMUR SHAPE RECOVERY FROM VOLUMETRIC IMAGES USING 3-D DEFORMABLE MODELS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new scheme for femur shape recovery from volumetric images using deformable models was proposed. First, prior 3-D deformable femur models are created as templates using point distribution models technology. Second, active contour models are employed to segment the magnetic resonance imaging (MRI) volumetric images of the tibial and femoral joints and the deformable models are initialized based on the segmentation results. Finally, the objective function is minimized to give the optimal results constraining the surface of shapes.

  4. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.

    Science.gov (United States)

    Gómez-Gualdrón, Diego A; Wang, Timothy C; García-Holley, Paula; Sawelewa, Ruth M; Argueta, Edwin; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K

    2017-04-07

    Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one

  5. Optimization of volumetric breast density estimation in digital mammograms.

    Science.gov (United States)

    Holland, Katharina; Gubern-Mérida, Albert; Mann, Ritse M; Karssemeijer, Nico

    2017-05-07

    Fibroglandular tissue volume and percent density can be estimated in unprocessed mammograms using a physics-based method, which relies on an internal reference value representing the projection of fat only. However, pixels representing fat only may not be present in dense breasts, causing an underestimation of density measurements. In this work, we investigate alternative approaches for obtaining a tissue reference value to improve density estimations, particularly in dense breasts. Two of three investigated reference values (F1, F2) are percentiles of the pixel value distribution in the breast interior (the contact area of breast and compression paddle). F1 is determined in a small breast interior, which minimizes the risk that peripheral pixels are included in the measurement at the cost of increasing the chance that no proper reference can be found. F2 is obtained using a larger breast interior. The new approach which is developed for very dense breasts does not require the presence of a fatty tissue region. As reference region we select the densest region in the mammogram and assume that this represents a projection of entirely dense tissue embedded between the subcutaneous fatty tissue layers. By measuring the thickness of the fat layers a reference (F3) can be computed. To obtain accurate breast density estimates irrespective of breast composition we investigated a combination of the results of the three reference values. We collected 202 pairs of MRI's and digital mammograms from 119 women. We compared the percent dense volume estimates based on both modalities and calculated Pearson's correlation coefficients. With the references F1-F3 we found respectively a correlation of [Formula: see text], [Formula: see text] and [Formula: see text]. Best results were obtained with the combination of the density estimations ([Formula: see text]). Results show that better volumetric density estimates can be obtained with the hybrid method, in particular for dense

  6. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images.

  7. Application of AAPM TG 119 to volumetric arc therapy (VMAT).

    Science.gov (United States)

    Mynampati, Dinesh Kumar; Yaparpalvi, Ravindra; Hong, Linda; Kuo, Hsiang-Chi; Mah, Dennis

    2012-09-06

    The purpose of this study was to create AAPM TG 119 benchmark plans for volumetric arc therapy (VMAT) and to compare VMAT plans with IMRT plan data. AAPM TG 119 proposes a set of test clinical cases for testing the accuracy of IMRT planning and delivery system. For these test cases, we generated two treatment plans, the first plan using 7-9 static dMLC IMRT fields and a second plan utilizing one- or two-arc VMAT technique. Dose optimization and calculations performed using 6 MV photons and Eclipse treatment planning system. Dose prescription and planning objectives were set according to the TG 119 goals. Plans were scored based on TG 119 planning objectives. Treatment plans were compared using conformity index (CI) for reference dose and homogeneity index (HI) (for D(5)-D(95)). For test cases prostate, head-and-neck, C-shape and multitarget prescription dose are 75.6 Gy, 50.4 Gy, 50 Gy and 50 Gy, respectively. VMAT dose distributions were comparable to dMLC IMRT plans. Our planning results matched TG 119 planning results. For treatment plans studied, conformity indices ranged from 1.05-1.23 (IMRT) and 1.04-1.23 (VMAT). Homogeneity indices ranged from 4.6%-11.0% (IMRT) and 4.6%-10.5% (VMAT). The ratio of total monitor units necessary for dMLC IMRT to that of VMAT was in the range of 1.1-2.0. AAPM TG 119 test cases are useful to generate VMAT benchmark plans. At preclinical implementation stage, plan comparison of VMAT and IMRT plans of AAPM TG 119 test case allowed us to understand basic capabilities of VMAT technique.

  8. Mammographic density estimation with automated volumetric breast density measurement.

    Science.gov (United States)

    Ko, Su Yeon; Kim, Eun-Kyung; Kim, Min Jung; Moon, Hee Jung

    2014-01-01

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p = 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  9. Rated MW from a heliostat field on cylindrical external receiver

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rabghi, O.M.; Fathalah, K.A. [King Abdulaziz Univ., Mechanical Engineering Dep., Jeddah (Saudi Arabia); Elsayed, M.M. [Kuwait Univ., Mechanical Engineering Dep., Safat (Kuwait)

    1995-12-31

    Some of the reflected beam radiation from a heliostat field bypasses the receiver surface. The spillage factor which is a measure of how much of reflected beam radiation actually intercepted by the receiver surface, is calculated and plotted for easy access. The variation of the spillage with tower height, external cylindrical receiver size, dimensionless radial distance from the tower is computed and plotted. The value of the rated MW energy absorbed by an external cylindrical receiver, is investigated, and its relations to the tower height, the site location and the field radius are given. The effect of changing the radial spacing on the rated MW and the total number of heliostats in the field is also computed and depicted. The developed set of charts for the spillage factor are believed to be very useful for solar central receiver system design. (author) 7 figs., 21 refs.

  10. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  11. Communications receivers principles and design

    CERN Document Server

    Rohde, Ulrich L; Zahnd, Hans

    2017-01-01

    This thoroughly updated guide offers comprehensive explanations of the science behind today’s radio receivers along with practical guidance on designing, constructing, and maintaining real-world communications systems. You will explore system planning, antennas and antenna coupling, amplifiers and gain control, filters, mixers, demodulation, digital communication, and the latest software defined radio (SDR) technology. Written by a team of telecommunication experts, Communications Receivers: Principles and Design, Fourth Edition, features technical illustrations, schematic diagrams, and detailed examples. Coverage includes: • Basic radio considerations • Radio receiver characteristics • Receiver system planning • Receiver implementation considerations • RF and baseband techniques for Software-Defined Radios • Transceiver SDR considerations • Antennas and antenna coupling • Mixers • Frequency sources and control • Ancillary receiver circuits • Performance measurement

  12. MEPSOCON project: Calibration of Radiometers for High Solar Irradiance; Proyecto MEPSOCON: Calibracion de Radiometros de Alta Irradiancia Solar

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.; Rodriguez-Alonso, M.

    2006-07-01

    The development of central receiver solar plants is a currently emerging field into renewable energies. For several years various receiver prototypes have been evaluated at the Plataforma Solar de Almeria (PSA). The measurement of the incident solar power on the receiver aperture is fundamental to the estimation of its efficiency. Many factors interfere with this measurement and consequently accuracy is very low. This uncertainty is transmitted to the design of the final solar plant and thereby to its price. The sensors used for this measurement are of small size in comparison with the receiver apertures, therefore different systems are necessary to obtain the incident solar power on the receiver aperture from the individual radiometer measurements. This report presents calibration procedures for the sensor used on the measurement of high solar irradiance and the analysis of the different factors affecting the incident power measurement to significantly reduce its uncertainty. (Author) 16 refs.

  13. Volumetric modulated arc therapy for carotid sparing in the management of early glottic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Lee, Sol Min; Kim, Gwi Eon [Dept. of Radiation Oncology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju (Korea, Republic of); Lee, Jae Gi; Park, Jong In; Sung, Won Mo [Program in Biomedical Radiation Sciences, Dept. of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Radiotherapy of the neck is known to cause carotid artery stenosis. We compared the carotid artery dose received between volumetric modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (IMRT) plans in patients with early glottic cancer. Twenty-one early glottic cancer patients who previously underwent definitive radiotherapy were selected for this study. For each patient, double arc VMAT, 8-field IMRT, 3-dimensional conformal radiotherapy (3DCRT), and lateral parallel-opposed photon field radiotherapy (LPRT) plans were created. The 3DCRT plan was generated using lateral parallel-opposed photon fields plus an anterior photon field. VMAT and IMRT treatment plan optimization was performed under standardized conditions to obtain adequate target volume coverage and spare the carotid artery. Dose-volume specifications for the VMAT, IMRT, 3DCRT, and LPRT plans were calculated with radiotherapy planning system. Monitor units (MUs) and delivery time were measured to evaluate treatment efficiency. Target volume coverage and homogeneity results were comparable between VMAT and IMRT; however, VMAT was superior to IMRT for carotid artery dose sparing. The mean dose to the carotid arteries in double arc VMAT was reduced by 6.8% compared to fixed-field IMRT (p < 0.001). The MUs for VMAT and IMRT were not significantly different (p = 0.089). VMAT allowed an approximately two-fold reduction in treatment delivery time in comparison to IMRT (3 to 5 minutes vs. 5 to 10 minutes). VMAT resulted in a lower carotid artery dose compared to conventional fixed-field IMRT, and maintained good target coverage in patients with early glottic cancer.

  14. Predicting deliverability of volumetric-modulated arc therapy (VMAT) plans using aperture complexity analysis.

    Science.gov (United States)

    Younge, Kelly C; Roberts, Don; Janes, Lindsay A; Anderson, Carlos; Moran, Jean M; Matuszak, Martha M

    2016-07-08

    The purpose of this study was to evaluate the ability of an aperture complexity metric for volumetric-modulated arc therapy (VMAT) plans to predict plan delivery accuracy. We developed a complexity analysis tool as a plug-in script to Varian's Eclipse treatment planning system. This script reports the modulation of plans, arcs, and individual control points for VMAT plans using a previously developed complexity metric. The calculated complexities are compared to that of 649 VMAT plans previously treated at our institution from 2013 to mid-2015. We used the VMAT quality assurance (QA) results from the 649 treated plans, plus 62 plans that failed pretreatment QA, to validate the ability of the complexity metric to predict plan deliverability. We used a receiver operating characteristic (ROC) analysis to determine an appropriate complexity threshold value above which a plan should be considered for reoptimization before it moves further through our planning workflow. The average complexity metric for the 649 treated plans analyzed with the script was 0.132 mm-1 with a standard deviation of 0.036 mm-1. We found that when using a threshold complexity value of 0.180 mm-1, the true positive rate for correctly identifying plans that failed QA was 44%, and the false-positive rate was 7%. Used clinically with this threshold, the script can identify overly modulated plans and thus prevent a significant portion of QA failures. Reducing VMAT plan complexity has a number of important clinical benefits, including improving plan deliverability and reducing treatment time. Use of the complexity metric during both the planning and QA processes can reduce the number of QA failures and improve the quality of VMAT plans used for treatment.

  15. Dosimetric comparison of different multileaf collimators in volumetric modulated arc therapy for malignant pleural mesothelioma

    Institute of Scientific and Technical Information of China (English)

    Fuli Zhang; Jun Hou; Jianping Chen; Huayong Jiang; Weidong Xu; Yadi Wang; Junmao Gao; Qingzhi Liu; Na Lu; Diandian Chen; Bo Yao

    2015-01-01

    Objective The aiom of the study was to compare the impacts of two types of multileaf col imators (MLC) [standard MLC with a width of 10 mm (sMLC) and micro-MLC with a width of 5 mm (mMLC)] on volumetric modulated arc therapy (VMAT) planning for malignant pleural mesothelioma. Methods VMAT for ten patients with inoperable malignant pleural mesotheliomas was retrospectively planned with the sMLC and mMLC. Histogram-based dose-volume parameters of the planning target vol-ume (PTV) [conformity index (CI) and homogeneous index (HI)] and organs-at-risk were compared for VMAT plans with sMLC (sMLC-VMAT) and mMLC (mMLC-VMAT). Results The mMLC-VMAT plans were more ef icient (average delivery time: 2.67±1.49 min) than the sMLC-VMAT plans (average delivery time: 4.21 ± 2.03 min; P 0.05). In addition, significant dose sparing in the fraction of the ipsilateral lung volume receiving > 20 Gy (V20; 54.72 ± 27.08 vs 58.52 ± 29.30) and > 30 Gy (V30; 42.74 ± 27.86 vs 46.86 ± 31.49) radiation, respectively, was observed for the mMLC plans (P < 0.05). Conclusion Comparing sMLC-VMAT and mMLC-VMAT not only demonstrated the higher ef iciency and better optimal target coverage of mMLC-VMAT, but also considerably improved the dose sparing of the ipsilateral lung in the VMAT plans for malignant pleural mesothelioma.

  16. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.

    2015-10-01

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on the location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.

  17. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors.

    Science.gov (United States)

    Chan, Raymond W; Podgorsak, Matthew B

    2015-01-01

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on the location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm(3)) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.

  18. A class solution for volumetric-modulated arc therapy planning in postprostatectomy radiotherapy.

    Science.gov (United States)

    Forde, Elizabeth; Bromley, Regina; Kneebone, Andrew; Eade, Thomas

    2014-01-01

    This study is aimed to test a postprostatectomy volumetric-modulated arc therapy (VMAT) planning class solution. The solution applies to both the progressive resolution optimizer algorithm version 2 (PRO 2) and the algorithm version 3 (PRO 3), addressing the effect of an upgraded algorithm. A total of 10 radical postprostatectomy patients received 68 Gy to 95% of the planning target volume (PTV), which was planned using VMAT. Each case followed a set of planning instructions; including contouring, field setup, and predetermined optimization parameters. Each case was run through both algorithms only once, with no user interaction. Results were averaged and compared against Radiation Therapy Oncology Group (RTOG) 0534 end points. In addition, the clinical target volume (CTV) D100, PTV D99, and PTV mean doses were recorded, along with conformity indices (CIs) (95% and 98%) and the homogeneity index. All cases satisfied PTV D95 of 68 Gy and a maximum dose D100 average dose was 67.7 and 68.0 Gy for PRO 2 and PRO 3, respectively. The mean homogeneity index for both algorithms was 0.08. The average 95% CI was 1.17 for PRO 2 and 1.19 for PRO 3. For 98%, the average results were 1.08 and 1.12 for PRO 2 and PRO 3, respectively. All cases for each algorithm met the RTOG organs at risk dose constraints. A successful class solution has been established for prostate bed VMAT radiotherapy regardless of the algorithm used. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  19. Renewable Energy Solar Power Surges On

    Institute of Scientific and Technical Information of China (English)

    DAVID HENDRICKSON

    2006-01-01

    @@ With the increased focus and attention solar power is receiving around the world as a potentially significant energy alternative, it makes sense that China's solar enterprises are today doing big business and raking in massive profits. Among the most notable returns have been those of newcomer Suntech Power Holdings.

  20. Atmospheric Extenction in Solar Tower Plants

    OpenAIRE

    2014-01-01

    Atmospheric attenuation of solar energy between heliostat and receiver in a solar tower plant can vary strongly with site and time - How strong can this loss be? - Which instruments can be used to measure this loss? - How can one connect accessible meteorological parameters with this loss? - Influence on output and design of Tower plants

  1. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  2. Calculation of irradiances on slopes for optimal utilization of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, S.

    1983-08-01

    The effective use of solar receivers and their positioning is important for an economic utilization of solar energy. A correct precalculation of the long term average available solar energy on slopes in consideration of the local meteorological data is the basis for the economic use. The characteristics of the solar receivers can be included in this method. An optimal orientation of the receiver, which depends also on the type of use, can be calculated.

  3. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  4. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging.

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-06-01

    The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR = 20. For

  5. Volumetric particle image velocimetry with a single plenoptic camera

    Science.gov (United States)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  6. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  7. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    Science.gov (United States)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  8. Improving plan quality for prostate volumetric-modulated arc therapy.

    Science.gov (United States)

    Wright, Katrina; Ferrari-Anderson, Janet; Barry, Tamara; Bernard, Anne; Brown, Elizabeth; Lehman, Margot; Pryor, David

    2017-08-04

    We critically evaluated the quality and consistency of volumetric-modulated arc therapy (VMAT) prostate planning at a single institution to quantify objective measures for plan quality and establish clear guidelines for plan evaluation and quality assurance. A retrospective analysis was conducted on 34 plans generated on the Pinnacle(3) version 9.4 and 9.8 treatment planning system to deliver 78 Gy in 39 fractions to the prostate only using VMAT. Data were collected on contoured structure volumes, overlaps and expansions, planning target volume (PTV) and organs at risk volumes and relationship, dose volume histogram, plan conformity, plan homogeneity, low-dose wash, and beam parameters. Standard descriptive statistics were used to describe the data. Despite a standardized planning protocol, we found variability was present in all steps of the planning process. Deviations from protocol contours by radiation oncologists and radiation therapists occurred in 12% and 50% of cases, respectively, and the number of optimization parameters ranged from 12 to 27 (median 17). This contributed to conflicts within the optimization process reflected by the mean composite objective value of 0.07 (range 0.01 to 0.44). Methods used to control low-intermediate dose wash were inconsistent. At the PTV rectum interface, the dose-gradient distance from the 74.1 Gy to 40 Gy isodose ranged from 0.6 cm to 2.0 cm (median 1.0 cm). Increasing collimator angle was associated with a decrease in monitor units and a single full 6 MV arc was sufficient for the majority of plans. A significant relationship was found between clinical target volume-rectum distance and rectal tolerances achieved. A linear relationship was determined between the PTV volume and volume of 40 Gy isodose. Objective values and composite objective values were useful in determining plan quality. Anatomic geometry and overlap of structures has a measurable impact on the plan quality achieved for prostate patients

  9. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study.

    Science.gov (United States)

    Fabel, M; Biederer, J; Jochens, A; Bornemann, L; Soza, G; Heller, M; Bolte, H

    2011-12-01

    Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Fifty artificial lymph nodes were produced in a size range from 10 to 55mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST®) within different surrounding tissues. MDCT was performed using different collimations (1-5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable compromise for semi-automated volumetric analysis. Copyright

  10. Radiation therapy for gastric mucosa-associated lymphoid tissue lymphoma: Dose-volumetric analysis and its clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyeon Won; Kim, Tae Hyun; Choi, Il Ju; Kim, Chan Gyoo; Lee, Jong Yeul; Cho, Soo Jeong; Eom, Hyeon Seok; Moon, Sung Ho; Kim, Dae Yong [Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2016-09-15

    To assess the clinical outcomes of radiotherapy (RT) using two-dimensional (2D) and three-dimensional conformal RT (3D-CRT) for patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma to evaluate the effectiveness of involved field RT with moderate-dose and to evaluate the benefit of 3D-CRT comparing with 2D-RT. Between July 2003 and March 2015, 33 patients with stage IE and IIE gastric MALT lymphoma received RT were analyzed. Of 33 patients, 17 patients (51.5%) were Helicobacter pylori (HP) negative and 16 patients (48.5%) were HP positive but refractory to HP eradication (HPE). The 2D-RT (n = 14) and 3D-CRT (n = 19) were performed and total dose was 30.6 Gy/17 fractions. Of 11 patients who RT planning data were available, dose-volumetric parameters between 2D-RT and 3D-CRT plans was compared. All patients reached complete remission (CR) eventually and median time to CR was 3 months (range, 1 to 15 months). No local relapse occurred and one patient died with second primary malignancy. Tumor response, survival, and toxicity were not significantly different between 2D-RT and 3D-CRT (p > 0.05, each). In analysis for dose-volumetric parameters, Dmax and CI for PTV were significantly lower in 3D-CRT plans than 2D-RT plans (p < 0.05, each) and Dmean and V15 for right kidney and Dmean for left kidney were significantly lower in 3D-CRT than 2D-RT (p < 0.05, each). Our data suggested that involved field RT with moderate-dose for gastric MALT lymphoma could be promising and 3D-CRT could be considered to improve the target coverage and reduce radiation dose to the both kidneys.

  11. Omnidirectional free-space optical receiver architecture

    Science.gov (United States)

    Murshid, Syed H.; Lovell, Gregory L.; Finch, Michael F.

    2013-05-01

    Free Space Optical (FSO) communication is the fusion of wireless technology and optical fiber communications systems. It has the potential of providing fiber optic data rates without the physical restraints of optical fiber cables. This endeavor presents a novel receiver structure with potential for omnidirectional free space optical communications. Interesting approaches for accomplishing omnidirectional free space lasercomm such as direct detection and solar blind non-line of sight UV scattering have been reported over the last few years. However, these technologies have resulted in limited distances of the order of 10 to 100 meters and data rates often limited to less than 1 Mb/s. This endeavor reports the architecture of an omnidirectional receiver setup by integrating an off the shelf detector and a fiber bundle, where the fiber bundle couples omnidirectional photons within its field of view and delivers these photons to the detector. The coupling of light from all directions into a detector is regulated by the cone of the acceptance angle of the fiber. Multiple fibers with overlapping acceptance angles provide the necessary coverage that may be needed to extract the optical signal from the free space optical channel. Simulated results showing the normalized power pattern of the system is presented to demonstrate omnidirectional potential of the structure. Theoretical power level versus distance plot for an FSO System employing On-O Keying (OOK) is also presented.

  12. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, Thomas, E-mail: thomas.devereux@petermac.org [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia); Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Foroudi, Farshad [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Supple, Jeremy [School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne (Australia); Siva, Shankar [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-04-01

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm{sup 3} of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm{sup 3} of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.

  13. Radiotherapy with volumetric modulated arc therapy for hepatocellular carcinoma patients ineligible for surgery or ablative treatments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.M.; Chung, N.N.; Chang, F.L. [Cheng-Ching General Hospital, Taichung, Taiwan (China). Dept. of Radiation Oncology; Hsu, W.C. [Cheng-Ching General Hospital, Taichung, Taiwan (China). Dept. of Radiation Oncology; Asia Univ., Taichung, Taiwan (China). Dept. of Healthcare Administration; Fogliata, A.; Cozzi, L. [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)

    2013-04-15

    The aim of this article is to report the dosimetric and clinical findings in the treatment of primary hepatocellular carcinoma (HCC) with volumetric modulated arc therapy (VMAT, RapidArc). A total of 138 patients were investigated. Dose prescription ranged from 45-66 Gy. Most patients (88.4 %) presented AJCC stage III or IV and 83 % were N0-M0. All were classified as Barcelona Clinic Liver Cancer (BCLC) stage A-C. All patients were treated using 10 MV photons with single or multiple, coplanar or non-coplanar arcs, and cone-down technique in case of early response of tumors. The patients' median age was 66 years (range 27-87 years), 83 % were treated with 60 Gy (12 % at 45 Gy, 6 % at 66 Gy), 62 % with cone-down, 98 % with multiple arcs. The mean initial planning target volume (PTV) was 777 {+-} 632 cm{sup 3}; the mean final PTV (after the cone-down) was 583 {+-} 548 cm{sup 3}. High target coverage was achieved. The final PTV was V{sub 98%} > 98 %. Kidneys received on average 5 and 8 Gy (left and right), while the maximum dose to the spinal cord was 22 Gy; mean doses to esophagus and stomach were 23 Gy and 15 Gy, respectively. The average volume of healthy liver receiving more than 30 Gy was 294 {+-} 145 cm{sup 3}. Overall survival at 12 months was 45 %; median survival was 10.3 months (95 % confidence interval 7.2-13.3 months). Actuarial local control at 6 months was 95 % and 93.7 % at 12 months. The median follow-up was 9 months and a maximum of 28 months. This study showed from the dosimetric point of view the feasibility and technical appropriateness of RapidArc for the treatment of HCC. Clinical results were positive and might suggest, with appropriate care, to consider RapidArc as an additional therapeutic opportunity for these patients. (orig.)

  14. Sparing of normal tissues with volumetric arc radiation therapy for glioblastoma: single institution clinical experience.

    Science.gov (United States)

    Briere, Tina Marie; McAleer, Mary Frances; Levy, Lawrence B; Yang, James N

    2017-05-02

    Patients with glioblastoma multiforme (GBM) require radiotherapy as part of definitive management. Our institution has adopted the use of volumetric arc therapy (VMAT) due to superior sparing of the adjacent organs at risk (OARs) compared to intensity modulated radiation therapy (IMRT). Here we report our clinical experience by analyzing target coverage and sparing of OARs for 90 clinical treatment plans. VMAT and IMRT patient cohorts comprising 45 patients each were included in this study. For all patients, the planning target volume (PTV) received 50 Gy in 30 fractions, and the simultaneous integrated boost PTV received 60 Gy. The characteristics of the two patient cohorts were examined for similarity. The doses to target volumes and OARs, including brain, brainstem, hippocampi, optic nerves, eyes, and cochleae were then compared using statistical analysis. Target coverage and normal tissue sparing for six patients with both clinical IMRT and VMAT plans were analyzed. PTV coverage of at least 95% was achieved for all plans, and the median mean dose to the boost PTV differed by only 0.1 Gy between the IMRT and VMAT plans. Superior sparing of the brainstem was found with VMAT, with a median difference in mean dose being 9.4 Gy. The ipsilateral cochlear mean dose was lower by 19.7 Gy, and the contralateral cochlea was lower by 9.5 Gy. The total treatment time was reduced by 5 min. The difference in the ipsilateral hippocampal D100% was 12 Gy, though this is not statistically significant (P = 0.03). VMAT for GBM patients can provide similar target coverage, superior sparing of the brainstem and cochleae, and be delivered in a shorter period of time compared with IMRT. The shorter treatment time may improve clinical efficiency and the quality of the treatment experience. Based on institutional clinical experience, use of VMAT for the treatment of GBMs appears to offer no inferiority in comparison to IMRT and may offer distinct advantages, especially for

  15. Solar Projects Analysis using Sensol

    Energy Technology Data Exchange (ETDEWEB)

    Relloso, S.; Domingo, M.

    2006-07-01

    In the recent years, SENER has developed a new software tool for solar projects analysis, named SENSOL. This tool can perform production calculations as well as economic analysis of the project, taking in account both plant operating and electricity selling strategies. This software can be applied to a variety of technologies: Central Receiver System, Parabolic Trough Technology, Photovoltaic Plants and Beam Down System. (Author)

  16. The effects of dimensional mould sizes on volumetric shrinkage strain of lateritic soil

    Directory of Open Access Journals (Sweden)

    John Engbonye SANI

    2016-07-01

    Full Text Available Dimensional influences of specimen size on the volumetric shrinkage strain values of a lateritic soil for waste containment system have not been researched upon. Therefore, this paper presents the result of a laboratory study on the volumetric shrinkage strain (VSS of lateritic soil at three different dimensional sizes of mould (split former mould, proctor mould and California bearing ratio mould at three energy levels; British standard light (BSL, West African standard (WAS and British standard heavy (BSH respectively. Compactions were done at different molding water content of -2% to +6% optimum moisture content (OMC. At -2% to +2% molding water content for the split former mould the volumetric shrinkage strain met the requirement of not more than 4% while at +4% and +6% only the WAS and BSH met the requirement. The proctor mould and the CBR mould on the other hand gave a lower value of volumetric shrinkage strain in all compactive effort and the values are lower than the 4% safe VSS suggested by Tay et al., (2001. Based on the VSS values obtained if the CBR mould can be used to model site condition it is recommended for use to simulate site condition for Volumetric shrinkage strain for all molding water content and compactive effort.

  17. Semi-automated volumetric analysis of lymph node metastases during follow-up--initial results.

    Science.gov (United States)

    Fabel, Michael; Bolte, H; von Tengg-Kobligk, H; Bornemann, L; Dicken, V; Delorme, S; Kauczor, H-U; Heller, M; Biederer, J

    2011-04-01

    Quantification of tumour burden in oncology requires accurate and reproducible evaluation. The current standard is RECIST measurement with its inherent disadvantages. Volumetric analysis is an alternative for therapy monitoring. The aim of this study was to evaluate the feasibility of volumetric analysis of lymph node metastases using a software prototype in a follow-up setting. MSCT was performed in 50 patients covering the chest, abdomen and pelvis. A total of 174 suspicious lymph nodes were evaluated by two radiologists regarding short axis diameters and volumetric analysis using semi-automated software. Quality of segmentation, time, maximum diameter and volume were documented. Variability of the derived change rates was computed as the standard deviation of the difference of the obtained respective change rates. The software performance provides robust volumetric analysis. Quality of segmentation was rated acceptable to excellent in 76-79% by each reader. Mean time spent per lesion was 38 s. The variability of change in effective diameters was 10.6%; for change rates of RECIST maximum diameter variability was 27.5%. Semi-automated volumetric analysis allows fast and convenient segmentation of most lymph node metastases. Compared with RECIST the inter-observer-variability in baseline and follow-up is reduced. This should principally allow subtle changes to be subclassified within the RECIST stable range as minor response [-15% to +10%].

  18. Solar radiation calculation methodology for building exterior surfaces

    Energy Technology Data Exchange (ETDEWEB)

    De la Flor, Francisco Jose Sanchez; Ortiz Cebolla, Rafael; Luis Molina Felix, Jose; Alvarez Dominguez, Servando [E S. Ingenieros. Grupo de Termotecnia, Avda. de los descubrimientos, s/n 41092 Sevilla (Spain)

    2005-11-01

    The present article shows a new methodology of calculation of the direct, diffuse and reflected incident solar radiation, in all type of surfaces, either in open urban environments or inside buildings. This methodology is applicable in problems related to solar access (space heating in buildings, shadowing of open spaces), solar gains (space cooling in buildings), and daylighting. Solar radiation is the most important contribution to the surface and volumetric energy balance during the daytime. Particularly, solar radiation is the main contributor to heat gains in buildings, especially in residential buildings, where internal gains are very low. Utilization of daylight in buildings may result in significant savings in electricity consumption for lighting while creating a higher quality indoor environment. Additional energy savings may also be realized during cooling season, when reduction of internal heat gains due to electric lighting results in a corresponding reduction of cooling energy consumption. The analysis of the existing calculation methods and proposed in the scientific bibliography for the calculation of the solar radiation in problems of solar access in winter, solar gains in summer, and daylighting, takes us to the necessity of outlining a new and complete methodology. This new methodology is applicable to all these problems with a great accuracy and calculation speed. (author)

  19. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  20. Solar Nexus.

    Science.gov (United States)

    Murphy, Jim

    1980-01-01

    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)