WorldWideScience

Sample records for volumetric power density

  1. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  2. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries.

    Science.gov (United States)

    Qiu, Bao; Yin, Chong; Xia, Yonggao; Liu, Zhaoping

    2017-02-01

    As rechargeable Li-ion batteries have expanded their applications into on-board energy storage for electric vehicles, the energy and power must be increased to meet the new demands. Li-rich layered oxides are one of the most promising candidate materials; however, it is very difficult to make them compatible with high volumetric energy density and power density. Here, we develop an innovative approach to synthesize three-dimensional (3D) nanoporous Li-rich layered oxides Li[Li 0.144 Ni 0.136 Co 0.136 Mn 0.544 ]O 2 , directly occurring at deep chemical delithiation with carbon dioxide. It is found that the as-prepared material presents a micrometer-sized spherical structure that is typically composed of interconnected nanosized subunits with narrow distributed pores at 3.6 nm. As a result, this unique 3D micro-/nanostructure not only has a high tap density over 2.20 g cm -3 but also exhibits excellent rate capability (197.6 mA h g -1 at 1250 mA g -1 ) as an electrode. The excellent electrochemical performance is ascribed to the unique nanoporous micro-nanostructures, which facilitates the Li + diffusion and enhances the structural stability of the Li-rich layered cathode materials. Our work offers a comprehensive designing strategy to construct 3D nanoporous Li-rich layered oxides for both high volumetric energy density and power density in Li-ion batteries.

  3. Volumetric breast density affects performance of digital screening mammography

    OpenAIRE

    Wanders, JO; Holland, K; Veldhuis, WB; Mann, RM; Pijnappel, RM; Peeters, PH; Van Gils, CH; Karssemeijer, N

    2016-01-01

    PURPOSE: To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). METHODS: We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the Ameri...

  4. Automated volumetric breast density estimation: A comparison with visual assessment

    International Nuclear Information System (INIS)

    Seo, J.M.; Ko, E.S.; Han, B.-K.; Ko, E.Y.; Shin, J.H.; Hahn, S.Y.

    2013-01-01

    Aim: To compare automated volumetric breast density (VBD) measurement with visual assessment according to Breast Imaging Reporting and Data System (BI-RADS), and to determine the factors influencing the agreement between them. Materials and methods: One hundred and ninety-three consecutive screening mammograms reported as negative were included in the study. Three radiologists assigned qualitative BI-RADS density categories to the mammograms. An automated volumetric breast-density method was used to measure VBD (% breast density) and density grade (VDG). Each case was classified into an agreement or disagreement group according to the comparison between visual assessment and VDG. The correlation between visual assessment and VDG was obtained. Various physical factors were compared between the two groups. Results: Agreement between visual assessment by the radiologists and VDG was good (ICC value = 0.757). VBD showed a highly significant positive correlation with visual assessment (Spearman's ρ = 0.754, p < 0.001). VBD and the x-ray tube target was significantly different between the agreement group and the disagreement groups (p = 0.02 and 0.04, respectively). Conclusion: Automated VBD is a reliable objective method to measure breast density. The agreement between VDG and visual assessment by radiologist might be influenced by physical factors

  5. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  6. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  7. The relationship between anatomic noise and volumetric breast density for digital mammography

    International Nuclear Information System (INIS)

    Mainprize, James G.; Tyson, Albert H.; Yaffe, Martin J.

    2012-01-01

    Purpose: The appearance of parenchymal/stromal patterns in mammography have been characterized as having a Wiener power spectrum with an inverse power-law shape described by the exponential parameter, β. The amount of fibroglandular tissue, which can be quantified in terms of volumetric breast density (VBD), influences the texture and appearance of the patterns formed in a mammogram. Here, a large study is performed to investigate the variations in β in a clinical population and to indicate the relationship between β and breast density. Methods: From a set of 2686 cranio-caudal normal screening mammograms, the parameter β was extracted from log-log fits to the Wiener spectrum over the range 0.15–1 mm −1 . The Wiener spectrum was calculated from regions of interest in the compression paddle contact region of the breast. An in-house computer program, Cumulus V, was used to extract the volumetric breast density and identify the compression paddle contact regions of the breast. The Wiener spectra were calculated with and without modulation transfer function (MTF) correction to determine the impact of VBD on the intrinsic anatomic noise. Results: The mean volumetric breast density was 25.5% (±12.6%) over all images. The mean β following a MTF correction which decreased the β slightly (≈−0.08) was found to be 2.87. Varying the maximum of the spatial frequency range of the fits from 0.7 to 1.0, 1.25 or 1.5 mm −1 showing small decreases in the result, although the effect of the quantum noise power component on reducing β was clearly observed at 1.5 mm −1 . Conclusions: The texture parameter, β, was found to increase with VBD at low volumetric breast densities with an apparent leveling off at higher densities. The relationship between β and VBD measured here can be used to create probabilistic models for computer simulations of detectability. As breast density is a known risk predictor for breast cancer, the correlation between β and VBD suggests that

  8. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density

    KAUST Repository

    Kurra, Narendra

    2014-09-10

    Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top-down photolithographic process and bottom-up chemical synthesis is employed to fabricate the micro-pseudocapacitors (μ-pseudocapacitors). The resulting Ni(OH)2-based devices show several excellent characteristics including high-rate redox activity up to 500 V s-1 and an areal cell capacitance of 16 mF cm-2 corresponding to a volumetric stack capacitance of 325 F cm-3. This volumetric capacitance is two-fold higher than carbon and metal oxide based μ-supercapacitors with interdigitated electrode architecture. Furthermore, these μ-pseudocapacitors show a maximum energy density of 21 mWh cm-3, which is superior to the Li-based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ-pseudocapacitors are shown to be capable of powering a light-emitting diode.

  9. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    Science.gov (United States)

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  10. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  11. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    Science.gov (United States)

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  14. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  15. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.

    Directory of Open Access Journals (Sweden)

    Abbas Cheddad

    Full Text Available INTRODUCTION: Mammographic density, the white radiolucent part of a mammogram, is a marker of breast cancer risk and mammographic sensitivity. There are several means of measuring mammographic density, among which are area-based and volumetric-based approaches. Current volumetric methods use only unprocessed, raw mammograms, which is a problematic restriction since such raw mammograms are normally not stored. We describe fully automated methods for measuring both area and volumetric mammographic density from processed images. METHODS: The data set used in this study comprises raw and processed images of the same view from 1462 women. We developed two algorithms for processed images, an automated area-based approach (CASAM-Area and a volumetric-based approach (CASAM-Vol. The latter method was based on training a random forest prediction model with image statistical features as predictors, against a volumetric measure, Volpara, for corresponding raw images. We contrast the three methods, CASAM-Area, CASAM-Vol and Volpara directly and in terms of association with breast cancer risk and a known genetic variant for mammographic density and breast cancer, rs10995190 in the gene ZNF365. Associations with breast cancer risk were evaluated using images from 47 breast cancer cases and 1011 control subjects. The genetic association analysis was based on 1011 control subjects. RESULTS: All three measures of mammographic density were associated with breast cancer risk and rs10995190 (p0.10 for risk, p>0.03 for rs10995190. CONCLUSIONS: Our results show that it is possible to obtain reliable automated measures of volumetric and area mammographic density from processed digital images. Area and volumetric measures of density on processed digital images performed similar in terms of risk and genetic association.

  16. Determination of density and volumetric water content of soil at multiple photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Un, A., E-mail: ademun25@yahoo.co [Department of Physics, Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100 Agri (Turkey); Demir, D.; Sahin, Y. [Department of Physics, Faculty of Science, Atatuerk University, 25240 Erzurum (Turkey)

    2011-08-15

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm{sup 3} cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were {sup 241}Am, {sup 133}Ba and {sup 137}Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  17. Determination of density and volumetric water content of soil at multiple photon energies

    International Nuclear Information System (INIS)

    Un, A.; Demir, D.; Sahin, Y.

    2011-01-01

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3x3x1 mm 3 cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were 241 Am, 133 Ba and 137 Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  18. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting

    NARCIS (Netherlands)

    van der Waal, Daniëlle; den Heeten, Gerard J.; Pijnappel, Ruud M.; Schuur, Klaas H.; Timmers, Johanna M. H.; Verbeek, André L. M.; Broeders, Mireille J. M.

    2015-01-01

    The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised

  19. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting

    NARCIS (Netherlands)

    Waal, D. van der; Heeten, GJ. den; Pijnappel, R.M.; Schuur, K.H.; Timmers, J.M.; Verbeek, A.L.; Broeders, M.J.

    2015-01-01

    INTRODUCTION: The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of

  20. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software : A Cross-Sectional Study in a Breast Cancer Screening Setting

    NARCIS (Netherlands)

    van der Waal, Danielle; den Heeten, Gerard J.; Pijnappel, Ruud M.; Schuur, Klaas H.; Timmers, Johanna M. H.; Verbeek, Andre L. M.; Broeders, Mireille J. M.

    2015-01-01

    Introduction The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of

  1. Volumetric mammographic density: heritability and association with breast cancer susceptibility loci.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Thompson, Deborah J; Li, Jingmei; Eriksson, Mikael; Hall, Per; Czene, Kamila

    2014-12-01

    Mammographic density is a strong heritable trait, but data on its genetic component are limited to area-based and qualitative measures. We studied the heritability of volumetric mammographic density ascertained by a fully-automated method and the association with breast cancer susceptibility loci. Heritability of volumetric mammographic density was estimated with a variance component model in a sib-pair sample (N pairs = 955) of a Swedish screening based cohort. Associations with 82 established breast cancer loci were assessed in an independent sample of the same cohort (N = 4025 unrelated women) using linear models, adjusting for age, body mass index, and menopausal status. All tests were two-sided, except for heritability analyses where one-sided tests were used. After multivariable adjustment, heritability estimates (standard error) for percent dense volume, absolute dense volume, and absolute nondense volume were 0.63 (0.06) and 0.43 (0.06) and 0.61 (0.06), respectively (all P associated with rs10995190 (ZNF365; P = 9.0 × 10(-6) and 8.9 × 10(-7), respectively) and rs9485372 (TAB2; P = 1.8 × 10(-5) and 1.8 × 10(-3), respectively). We also observed associations of rs9383938 (ESR1) and rs2046210 (ESR1) with the absolute dense volume (P = 2.6 × 10(-4) and 4.6 × 10(-4), respectively), and rs6001930 (MLK1) and rs17356907 (NTN4) with the absolute nondense volume (P = 6.7 × 10(-6) and 8.4 × 10(-5), respectively). Our results support the high heritability of mammographic density, though estimates are weaker for absolute than percent dense volume. We also demonstrate that the shared genetic component with breast cancer is not restricted to dense tissues only. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. The effect of change in body mass index on volumetric measures of mammographic density

    Science.gov (United States)

    Hart, Vicki; Reeves, Katherine W.; Sturgeon, Susan R.; Reich, Nicholas G.; Sievert, Lynnette Leidy; Kerlikowske, Karla; Ma, Lin; Shepherd, John; Tice, Jeffrey A.; Mahmoudzadeh, Amir Pasha; Malkov, Serghei; Sprague, Brian L.

    2015-01-01

    Background Understanding how changes in body mass index (BMI) relate to changes in mammographic density is necessary to evaluate adjustment for BMI gain/loss in studies of change in density and breast cancer risk. Increase in BMI has been associated with a decrease in percent density, but the effect on change in absolute dense area or volume is unclear. Methods We examined the association between change in BMI and change in volumetric breast density among 24,556 women in the San Francisco Mammography Registry from 2007-2013. Height and weight were self-reported at the time of mammography. Breast density was assessed using single x-ray absorptiometry measurements. Cross-sectional and longitudinal associations between BMI and dense volume (DV), non-dense volume (NDV) and percent dense volume (PDV) were assessed using multivariable linear regression models, adjusted for demographics, risk factors, and reproductive history. Results In cross-sectional analysis, BMI was positively associated with DV (β=2.95 cm3, 95% CI 2.69, 3.21) and inversely associated with PDV (β=-2.03%, 95% CI -2.09, -1.98). In contrast, increasing BMI was longitudinally associated with a decrease in both DV (β=-1.01 cm3, 95% CI -1.59, -0.42) and PDV (β=-1.17%, 95% CI -1.31, -1.04). These findings were consistent for both pre- and postmenopausal women. Conclusion Our findings support an inverse association between change in BMI and change in PDV. The association between increasing BMI and decreasing DV requires confirmation. Impact Longitudinal studies of PDV and breast cancer risk, or those using PDV as an indicator of breast cancer risk, should evaluate adjustment for change in BMI. PMID:26315554

  3. Common genetic variation and novel loci associated with volumetric mammographic density.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  4. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting.

    Science.gov (United States)

    van der Waal, Daniëlle; den Heeten, Gerard J; Pijnappel, Ruud M; Schuur, Klaas H; Timmers, Johanna M H; Verbeek, André L M; Broeders, Mireille J M

    2015-01-01

    The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation. Digital mammographic exams (N = 992) of women participating in the Dutch breast cancer screening programme (age 50-75y) in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition) and with two commercially available automated software programs (Quantra and Volpara volumetric density). BI-RADS density (ordinal scale) was assessed by three radiologists. Quantra (v1.3) and Volpara (v1.5.0) provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC]). Based on the BI-RADS classification, 40.8% of the women had 'heterogeneously or extremely dense' breasts. The median volumetric percent density was 12.1% (IQR: 9.6-16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4-10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04-5.34) (ICC: 0.64). There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense) was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra. Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized.

  5. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Petri Tanska

    2013-01-01

    Full Text Available The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.

  6. Volumetric breast density measurement: sensitivity analysis of a relative physics approach.

    Science.gov (United States)

    Lau, Susie; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah

    2016-10-01

    To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p applications such as tracking density change over time, it remains to be seen how accurate the measures need to be.

  7. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in Klinefelter syndrome

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Hansen, Stinus; Jørgensen, Niklas Rye

    2014-01-01

    Although the expected skeletal manifestations of testosterone deficiency in Klinefelter's syndrome (KS) are osteopenia and osteoporosis, the structural basis for this is unclear. The aim of this study was to assess bone geometry, volumetric bone mineral density (vBMD), microarchitecture...

  8. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  9. Validation of a method for measuring the volumetric breast density from digital mammograms

    International Nuclear Information System (INIS)

    Alonzo-Proulx, O; Shen, S Z; Yaffe, M J; Packard, N; Boone, J M; Al-Mayah, A; Brock, K K

    2010-01-01

    The purpose of this study was to evaluate the performance of an algorithm used to measure the volumetric breast density (VBD) from digital mammograms. The algorithm is based on the calibration of the detector signal versus the thickness and composition of breast-equivalent phantoms. The baseline error in the density from the algorithm was found to be 1.25 ± 2.3% VBD units (PVBD) when tested against a set of calibration phantoms, of thicknesses 3-8 cm, with compositions equivalent to fibroglandular content (breast density) between 0% and 100% and under x-ray beams between 26 kVp and 32 kVp with a Rh/Rh anode/filter. The algorithm was also tested against images from a dedicated breast computed tomography (CT) scanner acquired on 26 volunteers. The CT images were segmented into regions representing adipose, fibroglandular and skin tissues, and then deformed using a finite-element algorithm to simulate the effects of compression in mammography. The mean volume, VBD and thickness of the compressed breast for these deformed images were respectively 558 cm 3 , 23.6% and 62 mm. The displaced CT images were then used to generate simulated digital mammograms, considering the effects of the polychromatic x-ray spectrum, the primary and scattered energy transmitted through the breast, the anti-scatter grid and the detector efficiency. The simulated mammograms were analyzed with the VBD algorithm and compared with the deformed CT volumes. With the Rh/Rh anode filter, the root mean square difference between the VBD from CT and from the algorithm was 2.6 PVBD, and a linear regression between the two gave a slope of 0.992 with an intercept of -1.4 PVBD and a correlation with R 2 = 0.963. The results with the Mo/Mo and Mo/Rh anode/filter were similar.

  10. Validation of a method for measuring the volumetric breast density from digital mammograms

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo-Proulx, O; Shen, S Z; Yaffe, M J [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Packard, N; Boone, J M [UC Davis Medical Center, University of California-Davis, Sacramento, CA 95817 (United States); Al-Mayah, A; Brock, K K, E-mail: oliviera@sri.utoronto.c [University Health Network, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2010-06-07

    The purpose of this study was to evaluate the performance of an algorithm used to measure the volumetric breast density (VBD) from digital mammograms. The algorithm is based on the calibration of the detector signal versus the thickness and composition of breast-equivalent phantoms. The baseline error in the density from the algorithm was found to be 1.25 {+-} 2.3% VBD units (PVBD) when tested against a set of calibration phantoms, of thicknesses 3-8 cm, with compositions equivalent to fibroglandular content (breast density) between 0% and 100% and under x-ray beams between 26 kVp and 32 kVp with a Rh/Rh anode/filter. The algorithm was also tested against images from a dedicated breast computed tomography (CT) scanner acquired on 26 volunteers. The CT images were segmented into regions representing adipose, fibroglandular and skin tissues, and then deformed using a finite-element algorithm to simulate the effects of compression in mammography. The mean volume, VBD and thickness of the compressed breast for these deformed images were respectively 558 cm{sup 3}, 23.6% and 62 mm. The displaced CT images were then used to generate simulated digital mammograms, considering the effects of the polychromatic x-ray spectrum, the primary and scattered energy transmitted through the breast, the anti-scatter grid and the detector efficiency. The simulated mammograms were analyzed with the VBD algorithm and compared with the deformed CT volumes. With the Rh/Rh anode filter, the root mean square difference between the VBD from CT and from the algorithm was 2.6 PVBD, and a linear regression between the two gave a slope of 0.992 with an intercept of -1.4 PVBD and a correlation with R{sup 2} = 0.963. The results with the Mo/Mo and Mo/Rh anode/filter were similar.

  11. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Soo [Department of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine (Korea, Republic of); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Kim, Namkug; Chae, Eun Jin [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Lee, Young Kyung [Department of Radiology, Kyung Hee University Hospital at Gangdong (Korea, Republic of); Oh, Yeon Mok; Lee, Sang Do [Division of Pulmonology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of)

    2014-01-15

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV{sub 1} and FEV{sub 1}/FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV{sub 1}, and FEV{sub 1}/FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT.

  12. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    International Nuclear Information System (INIS)

    Kim, Song Soo; Seo, Joon Beom; Kim, Namkug; Chae, Eun Jin; Lee, Young Kyung; Oh, Yeon Mok; Lee, Sang Do

    2014-01-01

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV 1 and FEV 1 /FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV 1 , and FEV 1 /FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT

  13. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  14. Evaluation of Quantra Hologic Volumetric Computerized Breast Density Software in Comparison With Manual Interpretation in a Diverse Population.

    Science.gov (United States)

    Richard-Davis, Gloria; Whittemore, Brianna; Disher, Anthony; Rice, Valerie Montgomery; Lenin, Rathinasamy B; Dollins, Camille; Siegel, Eric R; Eswaran, Hari

    2018-01-01

    Increased mammographic breast density is a well-established risk factor for breast cancer development, regardless of age or ethnic background. The current gold standard for categorizing breast density consists of a radiologist estimation of percent density according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) criteria. This study compares paired qualitative interpretations of breast density on digital mammograms with quantitative measurement of density using Hologic's Food and Drug Administration-approved R2 Quantra volumetric breast density assessment tool. Our goal was to find the best cutoff value of Quantra-calculated breast density for stratifying patients accurately into high-risk and low-risk breast density categories. Screening digital mammograms from 385 subjects, aged 18 to 64 years, were evaluated. These mammograms were interpreted by a radiologist using the ACR's BI-RADS density method, and had quantitative density measured using the R2 Quantra breast density assessment tool. The appropriate cutoff for breast density-based risk stratification using Quantra software was calculated using manually determined BI-RADS scores as a gold standard, in which scores of D3/D4 denoted high-risk densities and D1/D2 denoted low-risk densities. The best cutoff value for risk stratification using Quantra-calculated breast density was found to be 14.0%, yielding a sensitivity of 65%, specificity of 77%, and positive and negative predictive values of 75% and 69%, respectively. Under bootstrap analysis, the best cutoff value had a mean ± SD of 13.70% ± 0.89%. Our study is the first to publish on a North American population that assesses the accuracy of the R2 Quantra system at breast density stratification. Quantitative breast density measures will improve accuracy and reliability of density determination, assisting future researchers to accurately calculate breast cancer risks associated with density increase.

  15. Areal and volumetric Bone Mineral Density and risk of multiple types of fracture in older men

    Science.gov (United States)

    Chalhoub, Didier; Orwoll, Eric S.; Cawthon, Peggy M.; Ensrud, Kristine E.; Boudreau, Robert; Greenspan, Susan; Newman, Anne B.; Zmuda, Joseph; Bauer, Douglas; Cummings, Steven; Cauley, Jane A.

    2016-01-01

    Although many studies have examined the association between low bone mineral density (BMD) and fracture risk in older men, none have simultaneously studied the relationship between multiple BMD sites and risk of different types of fractures. Using data from the Osteoporotic Fractures in Men study, we evaluated the association between areal BMD (aBMD) by dual-energy X-ray absorptiometry (DXA) and volumetric BMD (vBMD) by quantitative computed tomography (QCT) measurements, and different types of fractures during an average of 9.7 years of follow up. Men answered questionnaires about fractures every 4 months (>97% completions). Fractures were confirmed by centralized review of radiographic reports; pathological fractures were excluded. Risk of fractures was assessed at the hip, spine, wrist, shoulder, rib/chest/sternum, ankle/foot/toe, arm, hand/finger, leg, pelvis/coccyx, skull/face and any non-spine fracture. Age and race adjusted Cox proportional-hazards modeling was used to assess the risk of fracture in 3301 older men with both aBMD (at the femoral neck (FN) and lumbar spine) and vBMD (at the trabecular spine and FN, and cortical FN) measurements, with hazard ratios (HRs) expressed per standard deviation (SD) decrease. Lower FN and spine aBMD were associated with an increased risk of fracture at the hip, spine, wrist, shoulder, rib/chest/sternum, arm, and any non-spine fracture (statistically significant HRs per SD decrease ranged from 1.24 - 3.57). Lower trabecular spine and FN vBMD were associated with increased risk of most fractures with statistically significant HRs ranging between 1.27 and 3.69. There was a statistically significant association between FN cortical vBMD and fracture risk at the hip (HR=1.55) and spine sites (HR=1.26), but no association at other fracture sites. In summary, both lower aBMD and vBMD were associated with increased fracture risk. The stronger associations observed for trabecular vBMD than cortical vBMD may reflect the greater

  16. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software

    OpenAIRE

    Waade, G; Highnam, R; Hauge, I; McEntee, M; Hofvind, S; Denton, E; Kelly, J; Sarwar, J; Hogg, P

    2016-01-01

    Purpose: Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation, however the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric de...

  17. Combat Power Analysis is Combat Power Density

    Science.gov (United States)

    2012-05-17

    Lanchester equations, Weapon Effectiveness Index (WEI), Weighted Unit Value (WUV), Armored Division Equivalents (ADE), and Unit Frontages. The research...6 Lanchester Equations... Lanchester Equations ............................................................................................... 53 Appendix C: Relative Combat Power

  18. Evaluation of bone mineral density measurement of lumbar vertebrae by volumetric quantitative CT in postmenopausal women

    International Nuclear Information System (INIS)

    Cai Yuezeng; Wang Liying; Lan Jing; Li Jingxue; Wu Shengyong

    2009-01-01

    Objective: To demonstrate the validity of volumetric QCT and dual energy X-ray absorptiometry(DXA) in bone mineral density (BMD) measurement and compare the difference in discriminating osteoporotic postmenopausal women with and without vertebral fracture. Methods: One hundred and eighteen postmenopausal women [mean age (62.1±7.0) years] who received thoracolumbar radiographic examination were enrolled and divided into four groups (normal, osteopenia, osteoporotic and osteoporotic fractured group) also based on their BMD value of lumbar vertebra(AP-SPINE) measured by DXA: >(x-bar)-1s, (x-bar)-1s-(x-bar)-2s, 3 . Apparent bone volume to total volume ratio (App BV/TV% ) was calculated on the base of trabecular bone whose CT values were among 60 HU, 80 HU, 100 HU, 120- 400 HU, respectively. Analysis of covariance (ANCOVA) and calculation of coefficient of determination (R 2 ) were performed for each parameter among the 4 groups. Results: The values of 2D-TRAB, 3D-INT, 3D-TRAB, App 60 BV/TV%, App 80 BV/TV%, App 100 BV/TV% and App 120 BV/TV% in osteoporotic fractured group [(48.8 ± 24.9) mg/cm 3 , (94.4 ± 20.2) mg/cm 3 , (59.3 ± 28.0) mg/cm 3 , (56.1 ± 22.8)%, (43.2 ± 22.2)%, (31.3 ± 19.4)%, (21.3 ± 15.6)%] were significantly lower than those in osteoporotic group [(74.9 ± 21.0) mg/cm 3 , (115.0 ± 14.3) mg/cm 3 , (82.0 ± 23.7) mg//cm 3 , (75.2 ± 16.8)%, (62.6 ± 20.5)%, (48.8 ± 21.7)%, (35.5 ± 20.1)%], osteopenia group [(89.2 ± 23.8) mg/cm 3 , (126.9 ± 12.9)mg/cm 3 , (97.8 ± 25.2) mg/cm 3 , (85.1 ± 13.7)%, (75.1 ± 17.9)%, (62.8 ± 20.9)%, (49.2 ± 21.9)%], and normal group [(120.6 ± 19.4) mg/cm 3 , (154.0 ± 16.3) mg/cm 3 , (131.1 ± 21.1)mg/cm 3 , (95.6 ± 5.3)%, (91.4 ± 8.7)%, (84.7 ± 12.4)% (75.2 ± 15.5)%], P 2 ] and osteoporotic groups [(0.85 ± 0.06) g//cm 2 , P>0.05]. In osteoporotic groups, AP-SPINE was not correlated significantly with other variables except 3D-CORT (R 2 =0.189, P 60,80,100,120 BV/TV% were correlated significantly with 3D

  19. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    Science.gov (United States)

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population

    Science.gov (United States)

    Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.

    2010-03-01

    We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, pwomen with very low-density breasts (peffects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.

  2. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  3. Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis.

    Science.gov (United States)

    Wang, Zhi-Wei; Lee, Wayne Yuk-Wai; Lam, Tsz-Ping; Yip, Benjamin Hon-Kei; Yu, Fiona Wai-Ping; Yu, Wing-Sze; Zhu, Feng; Ng, Bobby Kin-Wah; Qiu, Yong; Cheng, Jack Chun-Yiu

    2017-06-01

    Osteopenia has been widely reported in about 30 % of girls with adolescent idiopathic scoliosis (AIS). However, the bone quality profile of the 70 % non-osteopenic AIS defined by areal bone mineral density (BMD) with conventional dual-energy X-ray absorptiometry (DXA) has not been adequately studied. Our purpose was to verify whether abnormal volumetric BMD (vBMD) and bone structure (morphometry and micro-architecture) also existed in the non-osteopenic AIS when compared with matched controls using both DXA and high-resolution peripheral computed tomography (HR-pQCT). This was a case-control cross-sectional study. 257 AIS girls with a mean age of 12.7 (SD = 0.8) years old and 187 age- and gender-matched normal controls with an average age of 12.9 (SD = 0.5) years old were included. Areal BMD (aBMD) and bone quality were measured with standard DXA and HR-pQCT, respectively. The parameters of HR-pQCT could be categorized as bone morphometry, vBMD and bone micro-architecture. The results were compared between the osteopenic AIS and osteopenic control, and between the non-osteopenic AIS and non-osteopenic control. In addition to the lower aBMD and vBMD, osteopenic AIS showed significantly greater cortical perimeter and trabecular area than the osteopenic control even after adjustments of age (P architecture and volumetric density profile compared with their normal matched controls. The observed abnormalities were suggestive of decreased endocortical bone apposition or active endocortical resorption that could affect the mechanical bone strength in AIS. The underlying pathomechanism might be attributed to abnormal bone modeling/remodeling that could be associated with the etiopathogenesis of AIS.

  4. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions.

    Science.gov (United States)

    Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Poplack, Steven P; Karellas, Andrew; Paulsen, Keith D

    A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different ( p =0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with ( r =0.809, p 0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for mammography are translatable to tomosynthesis

  5. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanhui [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Ding, Yi [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Shandong Applied Research Center for Gold Technology (Au-SDARC), Yantai 264005 (China)

    2011-09-15

    A sub-micrometer-thick, flexible, all-solid-state supercapacitor is fabricated. Through simultaneous realization of high dispersity of pseudocapacitance materials and quick electrode response, the hybrid nanostructures show enhanced volumetric capacitance and excellent stability, as well as very high power and energy densities. This suggests their potential as next-generation, high-performance energy conversion and storage devices for wearable electronics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software.

    Science.gov (United States)

    Waade, Gunvor Gipling; Highnam, Ralph; Hauge, Ingrid H R; McEntee, Mark F; Hofvind, Solveig; Denton, Erika; Kelly, Judith; Sarwar, Jasmine J; Hogg, Peter

    2016-06-01

    Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation; however, the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric density classification and to examine whether the current quality control (QC) standard is sufficient for assessing mammographic density. Raw data from 52 digital screening mammograms were included in the study. For each image, the clinically recorded CBT was artificially increased and decreased in increments of 1 mm to simulate measurement error, until ±15% from the recorded CBT was reached. New images were created for each 1 mm step in thickness resulting in a total of 974 images which then had volpara density grade (VDG) and volumetric density percentage assigned. A change in VDG was observed in 38.5% (n = 20) of mammograms when applying ±15% error to the recorded CBT and 11.5% (n = 6) was within the QC standard prescribed error of ±5 mm. The current QC standard of ±5 mm error in recorded CBT creates the potential for error in mammographic density measurement. This may lead to inaccurate classification of mammographic density. The current QC standard for assessing mammographic density should be reconsidered.

  7. O Electromagnetic Power Waves and Power Density Components.

    Science.gov (United States)

    Petzold, Donald Wayne

    1980-12-01

    On January 10, 1884 Lord Rayleigh presented a paper entitled "On the Transfer of Energy in the Electromagnetic Field" to the Royal Society of London. This paper had been authored by the late Fellow of Trinity College, Cambridge, Professor J. H. Poynting and in it he claimed that there was a general law for the transfer of electromagnetic energy. He argued that associated with each point in space is a quantity, that has since been called the Poynting vector, that is a measure of the rate of energy flow per unit area. His analysis was concerned with the integration of this power density vector at all points over an enclosing surface of a specific volume. The interpretation of this Poynting vector as a true measure of the local power density was viewed with great skepticism unless the vector was integrated over a closed surface, as the development of the concept required. However, within the last decade or so Shadowitz indicates that a number of prominent authors have argued that the criticism of the interpretation of Poynting's vector as a local power density vector is unjustified. The present paper is not concerned with these arguments but instead is concerned with a decomposition of Poynting's power density vector into two and only two components: one vector which has the same direction as Poynting's vector and which is called the forward power density vector, and another vector, directed opposite to the Poynting vector and called the reverse power density vector. These new local forward and reverse power density vectors will be shown to be dependent upon forward and reverse power wave vectors and these vectors in turn will be related to newly defined forward and reverse components of the electric and magnetic fields. The sum of these forward and reverse power density vectors, which is simply the original Poynting vector, is associated with the total electromagnetic energy traveling past the local point. Another vector which is the difference between the forward

  8. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  9. Methods to enhance blanket power density

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01

    The overall objective of this task is to investigate the extent to which the power density in the FED/INTOR breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow advanced reactor blanket modules to be tested on FED/INTOR under representative conditions

  10. Decrease in local volumetric bone mineral density (vBMD) in osteoarthritic joints is associated with the increase in cartilage damage: a pQCT study

    Science.gov (United States)

    Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong

    2017-11-01

    Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.

  11. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1994-01-01

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (≅48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D 2 O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 10 14 n/cm 2 ·s and fast fluxes (>0.1 MeV) of 2 x 10 14 n/cm 2 ·s. The core centerline thermal neutron flux in the D 2 O reflector is about 2 x 10 14 n/cm 2 ·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D 2 O reflector of 3 x 10 14 n/cm 2 ·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  12. Comparison of Visual Assessment of Breast Density in BI-RADS 4th and 5th Editions With Automated Volumetric Measurement.

    Science.gov (United States)

    Youk, Ji Hyun; Kim, So Jung; Son, Eun Ju; Gweon, Hye Mi; Kim, Jeong-Ah

    2017-09-01

    The purpose of this study was to compare visual assessments of mammographic breast density by radiologists using BI-RADS 4th and 5th editions in correlation with automated volumetric breast density measurements. A total of 337 consecutive full-field digital mammographic examinations with standard views were retrospectively assessed by two radiologists for mammographic breast density according to BI-RADS 4th and 5th editions. Fully automated measurement of the volume of fibroglandular tissue and total breast and percentage breast density was performed with a commercially available software program. Interobserver and intraobserver agreement was assessed with kappa statistics. The distributions of breast density categories for both editions of BI-RADS were compared and correlated with volumetric data. Interobserver agreement on breast density category was moderate to substantial (κ = 0.58-0.63) with use of BI-RADS 4th edition and substantial (κ = 0.63-0.66) with use of the 5th edition but without significant difference between the two editions. For intraobserver agreement between the two editions, the distributions of density category were significantly different (p density data, including percentage breast density, were significantly different among density categories (p density assessment had good correlation with visual assessment for both editions of BI-RADS.

  13. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults.

    Science.gov (United States)

    Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier

    2014-01-01

    Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, pBMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  14. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  15. Proximal Femur Volumetric Bone Mineral Density and Mortality: 13 Years of Follow-Up of the AGES-Reykjavik Study.

    Science.gov (United States)

    Marques, Elisa A; Elbejjani, Martine; Gudnason, Vilmundur; Sigurdsson, Gunnar; Lang, Thomas; Sigurdsson, Sigurdur; Aspelund, Thor; Meirelles, Osorio; Siggeirsdottir, Kristin; Launer, Lenore; Eiriksdottir, Gudny; Harris, Tamara B

    2017-06-01

    Bone mineral density (BMD) has been linked to mortality, but little is known about the independent contribution of each endosteal bone compartment and also the rate of bone loss to risk of mortality. We examined the relationships between (1) baseline trabecular and cortical volumetric BMD (vBMD) at the proximal femur, and (2) the rate of trabecular and cortical bone loss and all-cause mortality in older adults from the AGES-Reykjavik study. The analysis of trabecular and cortical vBMD and mortality was based on the baseline cohort of 4654 participants (aged ≥66 years) with a median follow-up of 9.4 years; the association between rate of bone loss and mortality was based on 2653 participants with bone loss data (median follow-up of 5.6 years). Analyses employed multivariable Cox-proportional models to estimate hazard ratios (HRs) with time-varying fracture status; trabecular and cortical variables were included together in all models. Adjusted for important confounders, Cox models showed that participants in the lowest quartile of trabecular vBMD had an increased risk of mortality compared to participants in other quartiles (HR = 1.12; 95% confidence interval (CI), 1.01 to 1.25); baseline cortical vBMD was not related to mortality (HR = 1.08; 95% CI, 0.97 to 1.20). After adjustment for time-dependent fracture status, results were attenuated and not statistically significant. A faster loss (quartile 1 versus quartiles 2-4) in both trabecular and cortical bone was associated with higher mortality risk (HR = 1.37 and 1.33, respectively); these associations were independent of major potential confounders including time-dependent incident fractures (HR = 1.32 and 1.34, respectively). Overall, data suggest that faster bone losses over time in both the trabecular and cortical bone compartments are associated with mortality risk and that measurements of change in bone health may be more informative than single-point measurements in explaining mortality

  16. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.

    Science.gov (United States)

    Lee, Jae Ah; Shin, Min Kyoon; Kim, Shi Hyeong; Kim, Seon Jeong; Spinks, Geoffrey M; Wallace, Gordon G; Ovalle-Robles, Raquel; Lima, Márcio D; Kozlov, Mikhail E; Baughman, Ray H

    2012-01-24

    We report mechanically robust, electrically conductive, free-standing, and transparent hybrid nanomembranes made of densified carbon nanotube sheets that were coated with poly(3,4-ethylenedioxythiophene) using vapor phase polymerization and their performance as supercapacitors. The hybrid nanomembranes with thickness of ~66 nm and low areal density of ~15 μg/cm(2)exhibited high mechanical strength and modulus of 135 MPa and 12.6 GPa, respectively. They also had remarkable shape recovery ability in liquid and at the liquid/air interface unlike previous carbon nanotube sheets. The hybrid nanomembrane attached on a current collector had volumetric capacitance of ~40 F/cm(3) at 100 V s(-1) (~40 and ~80 times larger than that of onion-like carbon measured at 100 V s(-1) and activated carbon measured at 20 V s(-1), respectively), and it showed rectangular shapes of cyclic voltammograms up to ~5 V s(-1). High mechanical strength and flexibility of the hybrid nanomembrane enabled twisting it into microsupercapacitor yarns with diameters of ~30 μm. The yarn supercapacitor showed stable cycling performance without a metal current collector, and its capacitance decrease was only ~6% after 5000 cycles. Volumetric energy and power density of the hybrid nanomembrane was ~70 mWh cm(-3) and ~7910 W cm(-3), and the yarn possessed the energy and power density of ~47 mWh cm(-3) and ~538 W cm(-3). © 2011 American Chemical Society

  17. A mixed C-vine copula model for hedging price and volumetric risk in wind power trading

    DEFF Research Database (Denmark)

    Pircalabu, Anca; Jung, Jesper

    2017-01-01

    correlation with the much more liquid German market to construct a proxy hedge. We propose a three-dimensional mixed vine copula to model the evolution of the Danish and German spot electricity prices and the Danish wind power production. We construct a realistic hedging portfolio by identifying various...... of not only forwards, but also a basket of e.g. call and put options. Illiquidity and an almost non-existent market for options challenge however the optimal hedging of joint price and volumetric risk in many market places. Here, we consider the case of the Danish power market, and exploit its strong positive...... instruments available in the market, such as real options in the form of the right to transfer electricity across the border and the right to convert electricity to heat. Using the proposed vine copula to determine optimal hedging decisions, we show that significant benefits are to be drawn by extending...

  18. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  19. Are bone turnover markers associated with volumetric bone density, size, and strength in older men and women? The AGES-Reykjavik study.

    Science.gov (United States)

    Marques, E A; Gudnason, V; Sigurdsson, G; Lang, T; Johannesdottir, F; Siggeirsdottir, K; Launer, L; Eiriksdottir, G; Harris, T B

    2016-05-01

    Association between serum bone formation and resorption markers and bone mineral, structural, and strength variables derived from quantitative computed tomography (QCT) in a population-based cohort of 1745 older adults was assessed. The association was weak for lumbar spine and femoral neck areal and volumetric bone mineral density. The aim of this study was to examine the relationship between levels of bone turnover markers (BTMs; osteocalcin (OC), C-terminal cross-linking telopeptide of type I collagen (CTX), and procollagen type 1N propeptide (P1NP)) and quantitative computed tomography (QCT)-derived bone density, geometry, and strength indices in the lumbar spine and femoral neck (FN). A total of 1745 older individuals (773 men and 972 women, aged 66-92 years) from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort were studied. QCT was performed in the lumbar spine and hip to estimate volumetric trabecular, cortical, and integral bone mineral density (BMD), areal BMD, bone geometry, and bone strength indices. Association between BTMs and QCT variables were explored using multivariable linear regression. Major findings showed that all BMD measures, FN cortical index, and compressive strength had a low negative correlation with the BTM levels in both men and women. Correlations between BTMs and bone size parameters were minimal or not significant. No associations were found between BTMs and vertebral cross-sectional area in women. BTMs alone accounted for only a relatively small percentage of the bone parameter variance (1-10 %). Serum CTX, OC, and P1NP were weakly correlated with lumbar spine and FN areal and volumetric BMD and strength measures. Most of the bone size indices were not associated with BTMs; thus, the selected bone remodeling markers do not reflect periosteal bone formation. These results confirmed the limited ability of the most sensitive established BTMs to predict bone structural integrity in older adults.

  20. High energy density matter generation using a focused soft-X-ray laser for volumetric heating of thin foils

    Czech Academy of Sciences Publication Activity Database

    Rus, Bedřich; Mocek, Tomáš; Kozlová, Michaela; Polan, Jiří; Homer, Pavel; Fajardo, M.; Foord, M.E.; Chung, H.; Moon, S.J.; Lee, R. W.

    2011-01-01

    Roč. 7, č. 1 (2011), s. 11-16 ISSN 1574-1818 R&D Projects: GA ČR GA202/05/2316 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory X-ray lasers * volumetric heating * aluminum transmission * polyimide transmission * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.595, year: 2011 http://www.sciencedirect.com/science/article/pii/S1574181810000406

  1. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    Science.gov (United States)

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but

  2. Calculation of power density with MCNP in TRIGA reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2006-01-01

    Modern Monte Carlo codes (e.g. MCNP) allow calculation of power density distribution in 3-D geometry assuming detailed geometry without unit-cell homogenization. To normalize MCNP calculation by the steady-state thermal power of a reactor, one must use appropriate scaling factors. The description of the scaling factors is not adequately described in the MCNP manual and requires detailed knowledge of the code model. As the application of MCNP for power density calculation in TRIGA reactors has not been reported in open literature, the procedure of calculating power density with MCNP and its normalization to the power level of a reactor is described in the paper. (author)

  3. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

    Science.gov (United States)

    Zhu, Liang; Liu, Yu; Su, Chao; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-08-08

    We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Power density forecasting device for nuclear power plant

    International Nuclear Information System (INIS)

    Fukuzaki, Takaharu; Kiguchi, Takashi.

    1978-01-01

    Purpose: To attain effective reactor operation in a bwr type reactor by forecasting the power density of the reactor after adjustment and comparing the same with the present status of the reactor by the on-line calculation in a short time. Constitution: The present status for the reactor is estimated in a present status decision section based on a measurement signal from the reactor and it is stored in an operation result collection section. The reactor status after the forecasting is estimated in a forecasting section based on a setting signal from a forecasting condition setting section and it is compared with the result value from the operation results collection section. If the forecast value does not coincide with the result value in the above comparison, the setting value in the forecast condition setting section is changed in the control section. The above procedures are repeated so as to minimize the difference between the forecast value and the result value to thereby exactly forecast the reactor status and operate the reactor effectively. (Moriyama, K.)

  5. Are adult patients with Laron syndrome osteopenic? A comparison between dual-energy X-ray absorptiometry and volumetric bone densities.

    Science.gov (United States)

    Benbassat, Carlos A; Eshed, Varda; Kamjin, Moshe; Laron, Zvi

    2003-10-01

    Severe short stature resulting from a deficiency in IGF-I is a prominent feature of Laron syndrome (LS). Although low bone mineral density (BMD) has been noted in LS patients examined by dual energy x-ray absorptiometry (DEXA), this technique does not take volume into account and may therefore underestimate the true bone density in patients with small bones. The aim of the present study was to evaluate the BMD yielded by DEXA in our LS patients using estimated volumetric values. Volumetric density was calculated with the following formulas: bone mineral apparent density (BMAD) = bone mineral content (BMC)/(area)(3/2) for the lumbar spine and BMAD = BMC/area(2) for the femoral neck. The study sample included 12 patients (mean age, 43.9 yr; mean height, 123.7 cm). Findings were compared with 10 osteopenic subjects without developmental abnormalities (mean age, 56 yr; mean height, 164.8 cm) and 10 healthy control subjects matched for sex and age to the LS patients (mean height, 165.5 cm). BMAD in the LS group was 0.201 +/- 0.02 g/cm(3) at the lumbar spine and 0.201 +/- 0.04 g/cm(3) at the femoral neck; corresponding values for the osteopenic group were 0.130 +/- 0.01 and 0.140 +/- 0.01 g/cm(3), and for the controls, 0.178 +/- 0.03 and 0.192 +/- 0.02 g/cm(3). Although areal BMD was significantly lower in the LS and osteopenic subjects compared with controls (P < 0.02) at both the lumbar spine and femoral neck, BMAD was low (P < 0.01) in the osteopenic group only. In conclusion, DEXA does not seem to be a reliable measure of osteoporosis in patients with LS.

  6. Ambient RF energy scavenging: GSM and WLAN power density measurements

    NARCIS (Netherlands)

    Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.

    2009-01-01

    To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m

  7. Expanding the reduced-current approach for thermoelectric generators to achieve higher volumetric power density

    DEFF Research Database (Denmark)

    Wijesooriyage, Waruna Dissanayaka; Rosendahl, Lasse

    2015-01-01

    Thermoelectrics are candidate niche electrical generator devices for energy management. At present, scientists are more focused on thermoelectric (TE) material development, but the TE module design procedure is still in a relatively virgin state. One of the most well-known methods is the reduced ...

  8. A performance analysis for MHD power cycles operating at maximum power density

    International Nuclear Information System (INIS)

    Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi

    1996-01-01

    An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)

  9. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures.

    Science.gov (United States)

    Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun

    2016-10-01

    The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO 2 (G-MnO 2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO 2 -intercalated graphite oxide (GO-MnO 2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm -3 , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO 2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg -1 and 54.4 Wh L -1 (based on total volume of two electrodes) in 1 m Na 2 SO 4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ICRF power limitation relation to density limit in ASDEX

    International Nuclear Information System (INIS)

    Ryter, F.

    1992-01-01

    Launching high ICRF power into ASDEX plasmas required good antenna-plasma coupling. This could be achieved by sufficient electron density in front of the antennas i.e. small antenna-plasma distance (1-2 cm) and moderate to high line-averaged electron density compared to the density window in ASDEX. These are conditions eventually close to the density limit. ICRF heated discharges terminated by plasma disruptions caused by the RF pulse limited the maximum RF power which can be injected into the plasma. The disruptions occurring in these cases have clear phenomenological similarities with those observed in density limit discharges. We show in this paper that the ICRF-power limitation by plasma disruptions in ASDEX was due to reaching the density limit. (orig.)

  11. ICRF power limitation relation to density limit in ASDEX

    International Nuclear Information System (INIS)

    Ryter, F.

    1992-01-01

    Launching high ICRF power into ASDEX plasmas required good antenna-plasma coupling. This could be achieved by sufficient electron density in front of the antennas i.e. small antenna-plasma distance (1-2 cm) and moderate to high line-averaged electron density compared to the density window in ASDEX. These are conditions eventually close to the density limit. ICRF heated discharges terminated by plasma disruptions caused by the RF pulse limited the maximum RF power which can be injected into the plasma. The disruptions occurring in these cases have clear phenomenological similarities with those observed in density limit discharges. We show in this paper that the ICRF-power limitation by plasma disruptions in ASDEX was due to reaching the density limit. (author) 3 refs., 3 figs

  12. Power Spectral Density and Hilbert Transform

    Science.gov (United States)

    2016-12-01

    there is 1.3 W of power. How much bandwidth does a pure sine wave require? The bandwidth of an ideal sine wave is 0 Hz. How do you represent a 1-W...the Hilbert transform. 2.3 Hilbert Transform The Hilbert transform is a math function used to convert a real function into an analytic signal...The math operation minus 2 means to move 2 steps back on the number line. For minus –2, we move 2 steps backwards from –2, which is the same as

  13. Densities and volumetric properties of binary mixtures of xylene with N,N-dimethylformamide at different temperatures

    International Nuclear Information System (INIS)

    Chen Bin; Liu Wei

    2007-01-01

    Densities of binary mixtures of o-xylene, or m-xylene, or p-xylene with N,N-dimethylformamide have been measured over the full range of compositions at atmospheric pressure and various temperatures by means of a vibrating-tube densimeter. The excess molar volume V m E , calculated from the density data, provides the temperature dependence of V m E in the temperature range (293.15 to 353.15)K. The V m E results were correlated using the fourth-order Redlich-Kister polynomial equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Partial molar volumes and excess partial molar volumes of two components were also calculated. It was found that the V m E in the systems studied increase with rising temperature

  14. Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K

    International Nuclear Information System (INIS)

    Wang Haijun; Liu Wei; Huang Jihou

    2004-01-01

    The densities of (o-xylene, or m-xylene, or p-xylene + dimethyl sulfoxide) were measured at temperatures (293.15, 303.15, 313.15, 323.15, 333.15, 343.15, 353.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume V m E calculated from the density data provide the temperature dependence of V m E in the temperature range of (293.15 to 353.15) K. The V m E results were correlated using the fourth-order Redlich-Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Also we have calculated partial molar volume and excess partial molar volumes of two components. It was found that the V m E in the systems studied increase with rising temperature

  15. Proximal tibia volumetric bone mineral density is correlated to the magnitude of local acceleration in male long-distance runners

    OpenAIRE

    Dériaz, Olivier; Najafi, Bijan; Ballabeni, Pierluigi; Crettenand, Antoinette; Gobelet, Charles; Aminian, Kamiar; Rizzoli, René; Gremion, Gerald

    2010-01-01

    The beneficial effect of physical exercise on bone mineral density (BMD) is at least partly explained by the forces exerted directly on the bones. Male runners present generally higher BMD than sedentary individuals. We postulated that the proximal tibia BMD is related to the running distance, as well as to the magnitude of the shocks (while running) in male runners. A prospective study (three yearly measurements) included 81 healthy male subjects: 16 sedentary lean subjects, and 3 groups of ...

  16. Determinants of the reliability of ultrasound tomography sound speed estimates as a surrogate for volumetric breast density

    Energy Technology Data Exchange (ETDEWEB)

    Khodr, Zeina G.; Pfeiffer, Ruth M.; Gierach, Gretchen L., E-mail: GierachG@mail.nih.gov [Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive MSC 9774, Bethesda, Maryland 20892 (United States); Sak, Mark A.; Bey-Knight, Lisa [Karmanos Cancer Institute, Wayne State University, 4100 John R, Detroit, Michigan 48201 (United States); Duric, Nebojsa; Littrup, Peter [Karmanos Cancer Institute, Wayne State University, 4100 John R, Detroit, Michigan 48201 and Delphinus Medical Technologies, 46701 Commerce Center Drive, Plymouth, Michigan 48170 (United States); Ali, Haythem; Vallieres, Patricia [Henry Ford Health System, 2799 W Grand Boulevard, Detroit, Michigan 48202 (United States); Sherman, Mark E. [Division of Cancer Prevention, National Cancer Institute, Department of Health and Human Services, 9609 Medical Center Drive MSC 9774, Bethesda, Maryland 20892 (United States)

    2015-10-15

    Purpose: High breast density, as measured by mammography, is associated with increased breast cancer risk, but standard methods of assessment have limitations including 2D representation of breast tissue, distortion due to breast compression, and use of ionizing radiation. Ultrasound tomography (UST) is a novel imaging method that averts these limitations and uses sound speed measures rather than x-ray imaging to estimate breast density. The authors evaluated the reproducibility of measures of speed of sound and changes in this parameter using UST. Methods: One experienced and five newly trained raters measured sound speed in serial UST scans for 22 women (two scans per person) to assess inter-rater reliability. Intrarater reliability was assessed for four raters. A random effects model was used to calculate the percent variation in sound speed and change in sound speed attributable to subject, scan, rater, and repeat reads. The authors estimated the intraclass correlation coefficients (ICCs) for these measures based on data from the authors’ experienced rater. Results: Median (range) time between baseline and follow-up UST scans was five (1–13) months. Contributions of factors to sound speed variance were differences between subjects (86.0%), baseline versus follow-up scans (7.5%), inter-rater evaluations (1.1%), and intrarater reproducibility (∼0%). When evaluating change in sound speed between scans, 2.7% and ∼0% of variation were attributed to inter- and intrarater variation, respectively. For the experienced rater’s repeat reads, agreement for sound speed was excellent (ICC = 93.4%) and for change in sound speed substantial (ICC = 70.4%), indicating very good reproducibility of these measures. Conclusions: UST provided highly reproducible sound speed measurements, which reflect breast density, suggesting that UST has utility in sensitively assessing change in density.

  17. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  18. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  19. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  20. PIII Plasma Density Enhancement by a New DC Power Source

    International Nuclear Information System (INIS)

    Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Munoz-Castro, A. E.; Valencia A, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.

    2006-01-01

    In practical terms, those plasmas produced by a DC voltage power supply do not attain densities above the 108 to 109 cm-3 band. Here we present a power supply, controlled in current and voltage, which has been successfully designed and constructed delivering plasma densities in the orders of 109 - 1010 cm-3. Its experimental performance test was conducted within one toroidal and one cylindrical chambers capable of 29 and 35 litres, respectively, using nitrogen gas. The DC plasma was characterized by a double electric probe. Several physical phenomena present in the PIII process have been keenly investigated including plasma sheath dynamics, interaction of plasma and surface, etc. In this paper we analyze the effect of the implantation voltage, plasma density and pulse time in the PIII average heating power and fluence density

  1. The relationships between breast volume, breast dense volume and volumetric breast density with body mass index, body fat mass and ethnicity

    Science.gov (United States)

    Zakariyah, N.; Pathy, N. B.; Taib, N. A. M.; Rahmat, K.; Judy, C. W.; Fadzil, F.; Lau, S.; Ng, K. H.

    2016-03-01

    It has been shown that breast density and obesity are related to breast cancer risk. The aim of this study is to investigate the relationships of breast volume, breast dense volume and volumetric breast density (VBD) with body mass index (BMI) and body fat mass (BFM) for the three ethnic groups (Chinese, Malay and Indian) in Malaysia. We collected raw digital mammograms from 2450 women acquired on three digital mammography systems. The mammograms were analysed using Volpara software to obtain breast volume, breast dense volume and VBD. Body weight, BMI and BFM of the women were measured using a body composition analyser. Multivariable logistic regression was used to determine the independent predictors of increased overall breast volume, breast dense volume and VBD. Indians have highest breast volume and breast dense volume followed by Malays and Chinese. While Chinese are highest in VBD, followed by Malay and Indian. Multivariable analysis showed that increasing BMI and BFM were independent predictors of increased overall breast volume and dense volume. Moreover, BMI and BFM were independently and inversely related to VBD.

  2. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer.

    Science.gov (United States)

    Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki

    2017-04-01

    Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.

  3. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    Science.gov (United States)

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% pAsians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% pAsians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  5. Evaluation of neutron flux density and power density with SPN-detectors and micro calorimeters

    International Nuclear Information System (INIS)

    Gehre, G.; Rindelhardt, U.; Seidenkranz, T.; Hogel, J.; Jirousek, V.; Vazek, J.

    1983-02-01

    During investigations with a special equipped fuel assembly in the Rheinsberg nuclear power station the neutron flux and the power density were evaluated from measurements with SPN-detectors and micro calorimeters. The reliability of both detector types, their measurement accuracy under different physical conditions and the usefulness of the developed calculation models are discussed in detail. The thermal flux and the power density evaluated with SPND's agree well with theoretical results. The values obtained through micro calorimeter measurements are systematic lower by about 18%. This deviation is probably a result of differences in the used calculation models. (author)

  6. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian

    2007-01-01

    Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became...... sick and were early euthanised. After 6 days, bone density (peripheral quantitative computed tomography), bone mechanical strength (three-point bending test) and serum insulin-like growth factor-I (sIGF-I) (immunoassay) were measured in the surviving piglets (casein n=5, whey n=9, soy n=5)....

  7. Research on Power Factor Correction Boost Inductor Design Optimization – Efficiency vs. Power Density

    DEFF Research Database (Denmark)

    Li, Qingnan; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2011-01-01

    Nowadays, efficiency and power density are the most important issues for Power Factor Correction (PFC) converters development. However, it is a challenge to reach both high efficiency and power density in a system at the same time. In this paper, taking a Bridgeless PFC (BPFC) as an example......, a useful compromise between efficiency and power density of the Boost inductors on 3.2kW is achieved using an optimized design procedure. The experimental verifications based on the optimized inductor are carried out from 300W to 3.2kW at 220Vac input....

  8. Bone size and volumetric density in women with anorexia nervosa receiving estrogen replacement therapy and in women recovered from anorexia nervosa.

    Science.gov (United States)

    Karlsson, M K; Weigall, S J; Duan, Y; Seeman, E

    2000-09-01

    Anorexia nervosa is associated with bone loss during adulthood, but may also delay skeletal growth and mineral accrual during growth. We asked the following questions. 1) Is anorexia nervosa associated with reduced bone size and reduced volumetric bone mineral density (vBMD)? 2) Is estrogen replacement therapy (ERT) or recovery from anorexia nervosa associated with normal bone size and vBMD? Using dual-energy x-ray absorptiometry, we measured bone size and vBMD of the third lumbar vertebra and femoral neck in a cross-sectional study of 161 female patients: 77 with untreated anorexia nervosa, 58 with anorexia nervosa receiving ERT, 26 recovered from anorexia nervosa, and 205 healthy age-matched controls. Results were expressed as the SD or z-score (mean +/- SEM). Deficits in vertebral body and femoral neck width in untreated women were -1.0 +/- 0.1 and -0.3 +/- 0.1 SD (P anorexia nervosa is due to reduced bone size and reduced vBMD. Although causality cannot be inferred in cross-sectional studies, the data are consistent with the view that malnutrition may contribute to reduced bone size, whereas estrogen deficiency may reduce vBMD. The use of ERT early in disease is a reasonable component of management if the chance of recovery appears remote.

  9. Effect of β-hydroxy-β-methylbutyrate (HMB) administration on volumetric bone mineral density, and morphometric and mechanical properties of tibia in male turkeys.

    Science.gov (United States)

    Tatara, M R

    2009-12-01

    This study was performed to investigate the effects of β-hydroxy-β-methylbutyrate (HMB) administration on skeletal system properties in turkeys. Thirty-two males were randomly divided into two groups at the age of 35 days of life. The first group included control turkeys (n = 16) treated with placebo, while the second group of birds (HMB group; n = 16) was administered orally with calcium salt of HMB during the last 15 weeks of life. The turkeys were sacrificed at the age of 20 weeks and tibia was isolated for analysis of bone geometrical parameters, volumetric bone mineral density (vBMD) and mechanical properties. Furthermore, assessment of free amino acid concentrations in plasma was performed. The results showed a 6.3% increase of vBMD of tibia in response to HMB treatment (p HMB-treated turkeys by 21.3%, 49.0%, 27.2% and 28.3%, respectively (p ≤ 0.01). β-hydroxy-β-methylbutyrate administration increased plasma concentrations of proline,glutamate, leucine, isoleucine, valine, alanine, aspartate, phenylalanine and cysteic acid (p HMB improves vBMD, and geometrical and mechanical properties of skeletal system in turkeys, and that these effects are associated with improved plasma amino acid concentrations.

  10. Stopping power of degenerate electron liquid at metallic densities

    International Nuclear Information System (INIS)

    Tanaka, Shigenori; Ichimaru, Setsuo

    1985-01-01

    We calculate the stopping power of the degenerate electron liquid at metallic densities in the dielectric formalism. The strong Coulomb-coupling effects beyond the random-phase approximation are taken into account through the static and dynamic local-field corrections. It is shown that those strong-coupling and dynamic effects act to enhance the stopping power substantially in the low-velocity regime, leading to an improved agreement with experimental data. (author)

  11. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  12. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients

    NARCIS (Netherlands)

    Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.

    2014-01-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we

  13. 47 CFR 25.208 - Power flux density limits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power flux density limits. 25.208 Section 25.208 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE... emissions from all co-frequency space stations of a single non-geostationary-satellite orbit (NGSO) system...

  14. Dimmable electronic ballasts by variable power density modulation technique

    Science.gov (United States)

    Borekci, Selim; Kesler, Selami

    2014-11-01

    Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.

  15. Nonimaging optical designs for maximum-power-density remote irradiation.

    Science.gov (United States)

    Feuermann, D; Gordon, J M; Ries, H

    1998-04-01

    Designs for flexible, high-power-density, remote irradiation systems are presented. Applications include industrial infrared heating such as in semiconductor processing, alternatives to laser light for certain medical procedures, and general remote high-brightness lighting. The high power densities in herent to the small active radiating regions of conventional metal-halide, halogen, xenon, microwave-sulfur, and related lamps can be restored with nonimaging concentrators with little loss of power. These high fluxlevels can then be transported at high transmissivity with light channels such as optical fibers or lightpipes, and reshaped into luminaires that can deliver prescribed angular and spatial flux distributions onto desired targets. Details for nominally two- and three-dimensional systems are developed, along with estimates ofoptical performance.

  16. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  17. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  18. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina, E-mail: despina.kontos@uphs.upenn.edu [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a

  19. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    International Nuclear Information System (INIS)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina

    2013-01-01

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0

  20. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  1. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  2. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  3. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-06

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low

  4. Heritability of prevalent vertebral fracture and volumetric bone mineral density and geometry at the lumbar spine in three generations of the Framingham study.

    Science.gov (United States)

    Liu, Ching-Ti; Karasik, David; Zhou, Yanhua; Hsu, Yi-Hsiang; Genant, Harry K; Broe, Kerry E; Lang, Thomas F; Samelson, Elizabeth J; Demissie, Serkalem; Bouxsein, Mary L; Cupples, L Adrienne; Kiel, Douglas P

    2012-04-01

    Genetic factors likely contribute to the risk for vertebral fractures; however, there are few studies on the genetic contributions to vertebral fracture (VFrx), vertebral volumetric bone mineral density (vBMD), and geometry. Also, the heritability (h(2)) for VFrx and its genetic correlation with phenotypes contributing to VFrx risk have not been established. This study aims to estimate the h(2) of vertebral fracture, vBMD, and cross-sectional area (CSA) derived from quantitative computed tomography (QCT) scans and to estimate the extent to which they share common genetic association in adults of European ancestry from three generations of Framingham Heart Study (FHS) families. Members of the FHS families were assessed for VFrx by lateral radiographs or QCT lateral scout views at 13 vertebral levels (T(4) to L(4)) using Genant's semiquantitative (SQ) scale (grades 0 to 3). Vertebral fracture was defined as having at least 25% reduction in height of any vertebra. We also analyzed QCT scans at the L(3) level for integral (In.BMD) and trabecular (Tb.BMD) vBMD and CSA. Heritability estimates were calculated, and bivariate genetic correlation analysis was performed, adjusting for various covariates. For VFrx, we analyzed 4099 individuals (148 VFrx cases) including 2082 women and 2017 men from three generations. Estimates of crude and multivariable-adjusted h(2) were 0.43 to 0.69 (p < 1.1 × 10(-2)). A total of 3333 individuals including 1737 men and 1596 women from two generations had VFrx status and QCT-derived vBMD and CSA information. Estimates of crude and multivariable-adjusted h(2) for vBMD and CSA ranged from 0.27 to 0.51. In a bivariate analysis, there was a moderate genetic correlation between VFrx and multivariable-adjusted In.BMD (-0.22) and Tb.BMD (-0.29). Our study suggests vertebral fracture, vertebral vBMD, and CSA in adults of European ancestry are heritable, underscoring the importance of further work to identify the specific variants underlying

  5. Active learning for noisy oracle via density power divergence.

    Science.gov (United States)

    Sogawa, Yasuhiro; Ueno, Tsuyoshi; Kawahara, Yoshinobu; Washio, Takashi

    2013-10-01

    The accuracy of active learning is critically influenced by the existence of noisy labels given by a noisy oracle. In this paper, we propose a novel pool-based active learning framework through robust measures based on density power divergence. By minimizing density power divergence, such as β-divergence and γ-divergence, one can estimate the model accurately even under the existence of noisy labels within data. Accordingly, we develop query selecting measures for pool-based active learning using these divergences. In addition, we propose an evaluation scheme for these measures based on asymptotic statistical analyses, which enables us to perform active learning by evaluating an estimation error directly. Experiments with benchmark datasets and real-world image datasets show that our active learning scheme performs better than several baseline methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  7. Atmospheric turbulence profiling with unknown power spectral density

    Science.gov (United States)

    Helin, Tapio; Kindermann, Stefan; Lehtonen, Jonatan; Ramlau, Ronny

    2018-04-01

    Adaptive optics (AO) is a technology in modern ground-based optical telescopes to compensate for the wavefront distortions caused by atmospheric turbulence. One method that allows to retrieve information about the atmosphere from telescope data is so-called SLODAR, where the atmospheric turbulence profile is estimated based on correlation data of Shack-Hartmann wavefront measurements. This approach relies on a layered Kolmogorov turbulence model. In this article, we propose a novel extension of the SLODAR concept by including a general non-Kolmogorov turbulence layer close to the ground with an unknown power spectral density. We prove that the joint estimation problem of the turbulence profile above ground simultaneously with the unknown power spectral density at the ground is ill-posed and propose three numerical reconstruction methods. We demonstrate by numerical simulations that our methods lead to substantial improvements in the turbulence profile reconstruction compared to the standard SLODAR-type approach. Also, our methods can accurately locate local perturbations in non-Kolmogorov power spectral densities.

  8. Optimization of power and energy densities in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Laboratories, PO Box 969 MS 9291, Livermore, CA 94551 (United States)

    2010-06-01

    Supercapacitors use nanoporous electrodes to store large amounts of charge on their high surface areas, and use the ions in electrolytes to carry charge into the pores. Their high power density makes them a potentially useful complement to batteries. However, ion transport through long, narrow channels still limits power and efficiency in these devices. Proper design can mitigate this. Current collector geometry must also be considered once this is done. Here, De Levie's model for porous electrodes is applied to quantitatively predict device performance and to propose optimal device designs for given specifications. Effects unique to nanoscale pores are considered, including that pores may not have enough salt to fully charge. Supercapacitors are of value for electric vehicles, portable electronics, and power conditioning in electrical grids with distributed renewable sources, and that value will increase as new device fabrication methods are developed and proper design accommodates those improvements. Example design outlines for vehicle applications are proposed and compared. (author)

  9. Profiles of radiation power density in WEGA stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Otte, M.; Giannone, L.

    2005-01-01

    On the WEGA stellarator, a 12 channel bolometer camera has been used to measure the radiation power losses of the plasma, which is heated by ECR at 2.45 GHz with a maximum power of 26 kW. The typical electron temperatures achieved are around 10 eV. The bolometer is of the Au resistor type and is positioned on the mid-plane, viewing the plasma from the low-field side with a spatial resolution of about 6 cm. The viewing angle is opened to poloidally (±47 o ) and covers the whole cross-section. Angular profiles of radiation power density (emissivity) can be achieved using the measured fluxes to the channels, which are given by the integrals along the sight lines. Using Abel inversion with maximum entropy regularisation, radial profiles of emissivity could be obtained. It is found that the angular profile of emissivity depends on the magnetic configuration, the working gas (Ar, He) and the heating scenario. Peaked and hollow emissivity profiles have been obtained by using different types of heating antenna. By changing the magnetic configuration, strong edge radiation has been observed. The largest emissivity values are obtained in the upper SOL range of Ar-discharges. This edge radiation can be reduced by shifting the flux surfaces inwards or by changing their shape at the antenna. The reconstruction of the radial profile of the emissivity was carried out in the case of a peaked angular profile with minimum edge radiation. The total radiation power was estimated by linear extrapolation of the integrated radiation power in the viewing region to the torus volume. It is typically less than 30% of the ECRH input power, but depending on the ECRH input power, again the magnetic configuration, the working gas as well as the absolute field strength on the magnetic axis. Maximum radiation losses have been obtained around 0.6·B0, where B 0 =87.5 mT is the resonant field strength of the ECRH. No evidence for impurities was obtained from spectroscopic measurements, and thus the

  10. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  11. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.; Wallack, Maxwell J; Kim, Kyoung-Yeol; He, Weihua; Feng, Yujie; Saikaly, Pascal

    2015-01-01

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  12. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  13. Galactic densities, substructure and the initial power spectrum

    International Nuclear Information System (INIS)

    Bullock, J.S.; Zentner, A.R.

    2003-01-01

    Although the currently favored cold dark matter plus cosmological constant model for structure formation assumes an n = 1 scale-invariant initial power spectrum, most inflation models produce at least mild deviations from n = 1. Because the lever arm from the CMB normalization to galaxy scales is long, even a small 'tilt' can have important implications for galactic observations. Here we calculate the COBS-normalized power spectra for several well-motivated models of inflation and compute implications for the substructure content and central densities of galaxy halos. Using an analytic model, normalized against N-body simulations, we show that while halos in the standard (n = 1) model are overdense by a factor of ∼ 6 compared to observations, several of our example inflation+LCDM models predict halo densities well within the range of observations, which prefer models with n ∼ 0.85. We go on to use a semi-analytic model (also normalized against N-body simulations) to follow the merger histories of galaxy-sized halos and track the orbital decay, disruption, and evolution of the merging substructure. Models with n ∼ 0.85 predict a factor of ∼ 3 fewer subhalos at a fixed circular velocity than the standard n 1 case. Although this level of reduction does not resolve the 'dwarf satellite problem', it does imply that the level of feedback required to match the observed number of dwarfs is sensitive to the initial power spectrum. Finally, the fraction of galaxy-halo mass that is bound up in substructure is consistent with limits imposed by multiply imaged quasars for all models considered: f sat > 0.01 even for an effective tilt of n ∼ 0.8. We conclude that, at their current level, lensing constraints of this kind do not provide an interesting probe of the primordial power spectrum

  14. Exploring novel high power density concepts for attractive fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A. [California State Univ., Los Angeles, CA (United States). Dept. of Mechanical Engineering; APEX Team

    1999-05-01

    The advanced power extraction study is aimed at exploring innovative concepts for fusion power technology (FPT) that can tremendously enhance the potential of fusion as an attractive and competitive energy source. Specifically, the study is exploring new and `revolutionary` concepts that can provide the capability to efficiently extract heat from systems with high neutron and surface heat loads while satisfying all the FPT functional requirements and maximizing reliability, maintainability, safety, and environmental requirements. The primary criteria for measuring performance of the new concepts are: (1) high power density capability with a peak neutron wall load (NWL) of {proportional_to}10 MW m{sup -2} and surface heat flux of {proportional_to}2 MW m{sup -2}; (2) high power conversion efficiency, {proportional_to}40% net; and (3) clear potential to achieve high availability; specifically low failure rate, large design margin, and short downtime for maintenance. A requirement that MTBF{>=}43 MTTR was derived as a necessary condition to achieve the required first wall/blanket availability, where MTBF is the mean time between failures and MTTR is the mean time to recover. Highlights of innovative and promising new concepts that may satisfy these criteria are provided. (orig.) 40 refs.

  15. Density matrix embedding in an antisymmetrized geminal power bath

    International Nuclear Information System (INIS)

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy

    2015-01-01

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation

  16. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  17. POWER SPECTRUM DENSITY (PSD ANALYSIS OF AUTOMOTIVE PEDAL-PAD

    Directory of Open Access Journals (Sweden)

    AHMED RITHAUDDEEN YUSOFF

    2016-04-01

    Full Text Available Vibration at the pedal-pad may contribute to discomfort of foot plantar fascia during driving. This is due to transmission of vibration to the mount, chassis, pedal, and then to the foot plantar fascia. This experimental study is conducted to determine the estimation of peak value using the power spectral density of the vertical vibration input at the foot. The power spectral density value is calculated based on the frequency range between 13 Hz to 18 Hz. This experiment was conducted using 12 subjects testing on three size of pedal-pads; small, medium and large. The result shows that peak value occurs at resonance frequency of 15 Hz. The PSD values at that resonance frequency are 0.251 (m/s2 2/Hz for small pedal-pad, followed by the medium pedal-pad is at 0.387 (m/s2 2/Hz and lastly for the large pedal-pad is at 0.483 (m/s22/Hz. The resultsindicate that during driving, the foot vibration when interact with the large pedal-pad contributed higher stimulus compared with the small and medium pedal-pad. The pedal-pad size plays an important role in the pedal element designs in terms of vibration-transfer from pedal-pads on the feet, particularly to provide comfort to the driver while driving.

  18. LTCC magnetic components for high density power converter

    Science.gov (United States)

    Lebourgeois, Richard; Labouré, Eric; Lembeye, Yves; Ferrieux, Jean-Paul

    2018-04-01

    This paper deals with multilayer magnetic components for power electronics application and specifically for high frequency switching. New formulations based on nickel-zinc-copper spinel ferrites were developed for high power and high frequency applications. These ferrites can be sintered at low temperature (around 900°C) which makes them compatible with the LTCC (Low Temperature Co-fired Ceramics) technology. Metallic parts of silver or gold can be fully integrated inside the ferrite while guaranteeing the integrity of both the ferrite and the metal. To make inductors or transformers with the required properties, it is mandatory to have nonmagnetic parts between the turns of the winding. Then it is essential to find a dielectric material, which can be co-sintered both with the ferrite and the metal. We will present the solution we found to this problem and we will describe the results we obtained for a multilayer co-sintered transformer. We will see that these new components have good performance compared with the state of the art and are very promising for developing high density switching mode power supplies.

  19. K-correlation power spectral density and surface scatter model

    Science.gov (United States)

    Dittman, Michael G.

    2006-08-01

    The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.

  20. Power-spectral-density relationship for retarded differential equations

    Science.gov (United States)

    Barker, L. K.

    1974-01-01

    The power spectral density (PSD) relationship between input and output of a set of linear differential-difference equations of the retarded type with real constant coefficients and delays is discussed. The form of the PSD relationship is identical with that applicable to unretarded equations. Since the PSD relationship is useful if and only if the system described by the equations is stable, the stability must be determined before applying the PSD relationship. Since it is sometimes difficult to determine the stability of retarded equations, such equations are often approximated by simpler forms. It is pointed out that some common approximations can lead to erroneous conclusions regarding the stability of a system and, therefore, to the possibility of obtaining PSD results which are not valid.

  1. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  2. HEDPIN: a computer program to estimate pinwise power density

    International Nuclear Information System (INIS)

    Cappiello, M.W.

    1976-05-01

    A description is given of the digital computer program, HEDPIN. This program, modeled after a previously developed program, POWPIN, provides a means of estimating the pinwise power density distribution in fast reactor triangular pitched pin bundles. The capability also exists for computing any reaction rate of interest at the respective pin positions within an assembly. HEDPIN was developed in support of FTR fuel and test management as well as fast reactor core design and core characterization planning and analysis. The results of a test devised to check out HEDPIN's computational method are given, and the realm of application is discussed. Nearly all programming is in FORTRAN IV. Variable dimensioning is employed to make efficient use of core memory and maintain short running time for small problems. Input instructions, sample problem, and a program listing are also given

  3. Power Spectral Density Evaluation of Laser Milled Surfaces

    Directory of Open Access Journals (Sweden)

    Raoul-Amadeus Lorbeer

    2017-12-01

    Full Text Available Ablating surfaces with a pulsed laser system in milling processes often leads to surface changes depending on the milling depth. Especially if a constant surface roughness and evenness is essential to the process, structural degradation may advance until the process fails. The process investigated is the generation of precise thrust by laser ablation. Here, it is essential to predict or rather control the evolution of the surfaces roughness. Laser ablative milling with a short pulse laser system in vacuum (≈1 Pa were performed over depths of several 10 µm documenting the evolution of surface roughness and unevenness with a white light interference microscope. Power spectral density analysis of the generated surface data reveals a strong influence of the crystalline structure of the solid. Furthermore, it was possible to demonstrate that this effect could be suppressed for gold.

  4. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  5. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  6. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  7. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  8. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  9. Methods to enhance blanket power density in low-power fusion devices

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01

    The overall objective of this task is to investigate the extent to which the power density in the FED breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow testing of advanced reactor blanket modules on INTOR at representative conditions. The tentative approach adopted for this task consists of three parts. First, the requirements for augmented heating of the test module are outlined for different applications of interest. Second, methods are identified which have potential for augmenting the heating power in a test module, and this list of methods is narrowed to those which appear to be most useful. Finally, these methods are examined in more detail to determine the practical benefits of employing each

  10. Implementation of 252Cf-source-driven power spectrum density measurement system

    International Nuclear Information System (INIS)

    Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming

    2012-01-01

    The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)

  11. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  12. Radiological assessment of breast density by visual classification (BI-RADS) compared to automated volumetric digital software (Quantra): implications for clinical practice.

    Science.gov (United States)

    Regini, Elisa; Mariscotti, Giovanna; Durando, Manuela; Ghione, Gianluca; Luparia, Andrea; Campanino, Pier Paolo; Bianchi, Caterina Chiara; Bergamasco, Laura; Fonio, Paolo; Gandini, Giovanni

    2014-10-01

    This study was done to assess breast density on digital mammography and digital breast tomosynthesis according to the visual Breast Imaging Reporting and Data System (BI-RADS) classification, to compare visual assessment with Quantra software for automated density measurement, and to establish the role of the software in clinical practice. We analysed 200 digital mammograms performed in 2D and 3D modality, 100 of which positive for breast cancer and 100 negative. Radiological density was assessed with the BI-RADS classification; a Quantra density cut-off value was sought on the 2D images only to discriminate between BI-RADS categories 1-2 and BI-RADS 3-4. Breast density was correlated with age, use of hormone therapy, and increased risk of disease. The agreement between the 2D and 3D assessments of BI-RADS density was high (K 0.96). A cut-off value of 21% is that which allows us to best discriminate between BI-RADS categories 1-2 and 3-4. Breast density was negatively correlated to age (r = -0.44) and positively to use of hormone therapy (p = 0.0004). Quantra density was higher in breasts with cancer than in healthy breasts. There is no clear difference between the visual assessments of density on 2D and 3D images. Use of the automated system requires the adoption of a cut-off value (set at 21%) to effectively discriminate BI-RADS 1-2 and 3-4, and could be useful in clinical practice.

  13. Three-dimensional Core Design of a Super Fast Reactor with a High Power Density

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi; Ju, Haitao

    2010-01-01

    The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/cm 3 . The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied

  14. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Science.gov (United States)

    2010-07-01

    ... cylinders having an internal diameter of 13.0 cm and a 15.5 cm stroke length, the rounded displacement would... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes...

  15. Enhancing power density of biophotovoltaics by decoupling storage and power delivery

    Science.gov (United States)

    Saar, Kadi L.; Bombelli, Paolo; Lea-Smith, David J.; Call, Toby; Aro, Eva-Mari; Müller, Thomas; Howe, Christopher J.; Knowles, Tuomas P. J.

    2018-01-01

    Biophotovoltaic devices (BPVs), which use photosynthetic organisms as active materials to harvest light, have a range of attractive features relative to synthetic and non-biological photovoltaics, including their environmentally friendly nature and ability to self-repair. However, efficiencies of BPVs are currently lower than those of synthetic analogues. Here, we demonstrate BPVs delivering anodic power densities of over 0.5 W m-2, a value five times that for previously described BPVs. We achieved this through the use of cyanobacterial mutants with increased electron export characteristics together with a microscale flow-based design that allowed independent optimization of the charging and power delivery processes, as well as membrane-free operation by exploiting laminar flow to separate the catholyte and anolyte streams. These results suggest that miniaturization of active elements and flow control for decoupled operation and independent optimization of the core processes involved in BPV design are effective strategies for enhancing power output and thus the potential of BPVs as viable systems for sustainable energy generation.

  16. Bone Geometry, Volumetric Density, Microarchitecture and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients with Hypophosphatemic Rickets

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram Vinod; Hansen, Stinus; Folkestad, Lars

    2015-01-01

    Hypophosphatemic rickets (HR) is characterized by a generalized mineralization defect. Although densitometric studies have found the patients to have an elevated bone mineral density (BMD), data on bone geometry and microstructure are scarce. The aim of this cross-sectional in vivo study was to a......Hypophosphatemic rickets (HR) is characterized by a generalized mineralization defect. Although densitometric studies have found the patients to have an elevated bone mineral density (BMD), data on bone geometry and microstructure are scarce. The aim of this cross-sectional in vivo study...

  17. New final doublets and power densities for the international linear ...

    Indian Academy of Sciences (India)

    Abstract. In this paper we use current and proposed final doublet magnet technologies to reoptimise the interaction region of the international linear collider and reduce the power losses. The result is a set of three new final doublet layouts with improved beam transport properties. The effect of localised power deposition and ...

  18. Experimental study of the density and derived volumetric (excess, apparent, and partial molar volumes) properties of aqueous 1-propanol mixtures at temperatures from 298 K to 582 K and pressures up to 40 MPa

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2014-01-01

    Highlights: • Density of (water + 1-propanol) mixtures. • Excess molar volumes of (water + 1-propanol) mixtures. • Apparent molar volumes of (water + 1-propanol) mixtures. -- Abstract: Densities of (water + 1-propanol) mixtures have been measured over the temperature range from 298 K to 582 K and at pressures up to 40 MPa using the constant-volume piezometer immersed in a precision liquid thermostat. The measurements were made for six compositions of (0.869, 2.465, 2.531, 7.407, 14.377, and 56.348) mol · kg −1 of 1-propanol. The expanded uncertainty of the density, pressure, temperature, and concentration measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.06%, 0.05%, 15 mK, and 0.015%, respectively. The derived volumetric properties such as excess (V m E ), apparent (V Φ ), and partial (V ¯ 2 ∞ ) molar volumes were calculated using the measured values of density for the mixture and for pure components (water and 1-propanol). The concentration dependences of the apparent molar volumes were extrapolated to zero concentration to yield the partial molar volumes of 1-propanol at infinite dilution (V ¯ 2 ∞ ). The temperature, pressure, and concentration dependence of density and derived properties of the mixture were studied. All experimental and derived properties (excess, apparent, and partial molar volumes) were compared with the reported data by other authors. The small and negative values of excess molar volume for the mixtures were found at all experimental temperatures, pressures, and over the entire concentration range. The excess molar volume minimum is found at concentration about 0.4 mole fraction of 1-propanol. The concentration minimum of the derived apparent molar volumes V Φ near the 2.5 mol · kg −1 (dilute mixture) was observed

  19. Wind power statistics and an evaluation of wind energy density

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)

    1995-11-01

    In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)

  20. Frontiers in pulse-power-based high energy density plasma physics and its applications

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2008-03-01

    The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)

  1. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  2. Effects of motor programming on the power spectral density function of finger and wrist movements

    NARCIS (Netherlands)

    Van Galen, G P; Van Doorn, R R; Schomaker, L R

    Power spectral density analysis was applied to the frequency content of the acceleration signal of pen movements in line drawing. The relative power in frequency bands between 1 and 32 Hz was measured as a function of motoric and anatomic task demands. Results showed a decrease of power at the lower

  3. Feedback control of plasma density and heating power for steady state operation in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi

    2015-12-15

    Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.

  4. Volumetric studies to examine the interactions of imidazolium based ionic liquids with water by means of density and speed of sound measurements

    International Nuclear Information System (INIS)

    Lal, Bhajan; Sahin, Melike; Ayranci, Erol

    2012-01-01

    Highlights: ► Imidazolium based ionic liquids in water were investigated thermodynamically. ► Densities and speeds of sound were measured for these systems. ► Apparent molar volumes and isentropic compressions were calculated. ► Apparent molar isobaric expansions at infinite dilution were derived. ► The results were interpreted in terms of ionic liquid–water interactions. - Abstract: Densities and speeds of sound for aqueous solutions of ionic liquids having 1-butyl-3-methylimidazolium as cation and chloride, bromide, iodide, acetate, tetrafluoroborate, and trifluoromethanesulfonate as anions were accurately measured at various concentrations and temperatures. The data were used in evaluating thermodynamic properties as apparent molar volumes and apparent molar isentropic compressions. Infinite dilution values of these properties were determined using appropriate extrapolation procedures utilizing Debye–Hückel limiting law for electrolyte solutions. Apparent molar isobaric expansions at infinite dilutions were also evaluated from the temperature dependence of apparent molar volumes. The results were interpreted in terms of ionic liquid–water interactions.

  5. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  6. Radiation power profiles and density limit with a divertor in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Giannone, L.; Burhenn, R.; McCormick, K.; Brakel, R.; Feng, Y.; Grigull, P.; Igitkhanov, Y.

    2002-01-01

    The addition of a divertor into the W7-AS stellarator has allowed access to a high density regime where the radiation profiles reach a steady state. In earlier limiter discharges, the plasma suffered a radiative collapse at high densities. In contrast to limiter experiments, where the impurity confinement time measured by Al laser blow-off increased with increasing line integrated density, in divertor discharges, above a density threshold, the impurity confinement time decreased with increasing line integrated density. The observation that the divertor plasma radiates mainly at the plasma edge rather than the plasma centre is a further indication that changes to the impurity transport coefficients at these high densities are the basis for the achievement of steady state discharges in the divertor configuration of W7-AS. The maximum line integrated density reached with a divertor is compared to that reached with a limiter. The previously derived scaling law for the density limit with a limiter shows that the achieved densities do not exceed those predicted when the higher deposited power is taken into account. In a divertor the radiated power is located at the plasma edge and increasing the density, cooling the plasma edge and radiating sufficient power to cause plasma detachment determines the density limit. (author)

  7. High power density superconducting motor for control applications

    International Nuclear Information System (INIS)

    Lopez, J; Granados, X; Lloberas, J; Torres, R; Grau, J; Maynou, R; Bosch, R

    2008-01-01

    A high dynamics superconducting low power motor for control applications has been considered for design. The rotor is cylindrical with machined bulks that generate the field by trapping flux in a four poles configuration. The toothless iron armature is wound by copper, acting iron only as magnetic screen. Details of the magnetic assembling, cryogenics and electrical supply conditioning will be reported. Improvements due to the use of a superconducting set are compared with performances of equivalent conventional motors

  8. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K. [Laboratory for X-ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059 (United States); KFKI Research Institute for Particle and Nuclear Physics, EURATOM Association, P.O. Box 49, 1525 Budapest (Hungary)

    2012-07-11

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  9. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  10. Densities and volumetric properties of (acetonitrile+an amide) binary mixtures at temperatures between 293.15K and 318.15K

    International Nuclear Information System (INIS)

    Nain, Anil Kumar

    2006-01-01

    The densities of binary mixtures of acetonitrile (ACN) with formamide (FA), N,N-dimethylformamide (DMF), N-methylacetamide (NMA), and N,N-dimethylacetamide (DMA), including those of pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E , and partial molar volumes, V-bar m,1 and V-bar m,2 , were calculated over whole composition range. The variation of these parameters with composition and temperature of the mixtures has been discussed in terms of molecular interaction in these mixtures. The V m E values were found negative for all the mixtures and at each temperature studied, indicating the presence of specific interactions between ACN and amide molecules. The extent of negative deviations in V m E values follows the order: FA>NMA>DMA>DMF. It is observed that the V m E values depend upon the positions of methyl groups in these amide molecules

  11. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  12. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  13. Study of In-Cylinder Reactions of High Power-Density Direct Injection Diesel Engines

    National Research Council Canada - National Science Library

    Jansons, M

    2004-01-01

    Direct-injection (DI) Diesel or compression-ignition (CI) engine combustion process is investigated when new design and operational strategies are employed in order to achieve a high power-density (HPD) engine...

  14. Efficient, High Power Density Hydrocarbon-Fueled Solid Oxide Stack System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop and demonstrate an innovative high power density design for direct internal reforming of regolith off-gases...

  15. Efficient, high power density hydrocarbon-fueled solid oxide stack system, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop and demonstrate an innovative high power density design for direct internal reforming of regolith off-gases...

  16. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    OpenAIRE

    Pan, Liwen; Zhang, Chengning

    2015-01-01

    This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge cir...

  17. Methods for reconstruction of the density distribution of nuclear power

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2015-01-01

    Highlights: • Two methods for reconstruction of the pin power distribution are presented. • The ARM method uses analytical solution of the 2D diffusion equation. • The PRM method uses polynomial solution without boundary conditions. • The maximum errors in pin power reconstruction occur in the peripheral water region. • The errors are significantly less in the inner area of the core. - Abstract: In analytical reconstruction method (ARM), the two-dimensional (2D) neutron diffusion equation is analytically solved for two energy groups (2G) and homogeneous nodes with dimensions of a fuel assembly (FA). The solution employs a 2D fourth-order expansion for the axial leakage term. The Nodal Expansion Method (NEM) provides the solution average values as the four average partial currents on the surfaces of the node, the average flux in the node and the multiplying factor of the problem. The expansion coefficients for the axial leakage are determined directly from NEM method or can be determined in the reconstruction method. A new polynomial reconstruction method (PRM) is implemented based on the 2D expansion for the axial leakage term. The ARM method use the four average currents on the surfaces of the node and four average fluxes in corners of the node as boundary conditions and the average flux in the node as a consistency condition. To determine the average fluxes in corners of the node an analytical solution is employed. This analytical solution uses the average fluxes on the surfaces of the node as boundary conditions and discontinuities in corners are incorporated. The polynomial and analytical solutions to the PRM and ARM methods, respectively, represent the homogeneous flux distributions. The detailed distributions inside a FA are estimated by product of homogeneous distribution by local heterogeneous form function. Moreover, the form functions of power are used. The results show that the methods have good accuracy when compared with reference values and

  18. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-01-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ω r of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ω r of the outer resonant coil changes from the non-resonant condition (where ω r is not the driving angular frequency ω rf ) to the resonant condition (where ω r = ω rf ), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)

  19. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    International Nuclear Information System (INIS)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001

  20. Low prepulse, high power density water dielectric switching

    International Nuclear Information System (INIS)

    Johnson, D.L.; VanDevender, J.P.; Martin, T.H.

    1979-01-01

    Prepulse voltage suppression has proven difficult in high power, high voltage accelerators employing self-breakdown water dielectric switches. A novel and cost effective water switch has been developed at Sandia Laboratories which reduces prepulse voltage by reducing the capacity across the switch. This prepulse suppression switch causes energy formerly stored in the switch capacity and dissipated in the arc to be useful output energy. The switching technique also allows the pulse forming lines to be stacked in parallel and electrically isolated from the load after the line has been discharged. The switch consists of a ground plane, with several holes, inserted between the switch electrodes. The output line switch electrodes extend through the holes and face electrodes on the pulse forming line (PFL). The capacity between the PFL and the output transmission line is reduced by about 80%. The gap spacing between the output line electrode and the hole in the ground plane is adjusted so that breakdown occurs after the main pulse and provides a crow bar between the load and the source. Performance data from the Proto II, Mite and Ripple test facilities are presented

  1. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  2. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  3. Weld defect identification in friction stir welding using power spectral density

    Science.gov (United States)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  4. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  5. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  6. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...

  7. Study of variations of radiofrequency power density from mobile phone base stations with distance

    International Nuclear Information System (INIS)

    Ayinmode, B. O.; Farai, I. P.

    2013-01-01

    The variations of radiofrequency (RF) radiation power density with distance around some mobile phone base stations (BTSs), in ten randomly selected locations in Ibadan, western Nigeria, were studied. Measurements were made with a calibrated hand-held spectrum analyser. The maximum Global System of Mobile (GSM) communication 1800 signal power density was 323.91 μW m -2 at 250 m radius of a BTS and that of GSM 900 was 1119.00 μW m -2 at 200 m radius of another BTS. The estimated total maximum power density was 2972.00 μW m -2 at 50 m radius of a different BTS. This study shows that the maximum carrier signal power density and the total maximum power density from a BTS may be observed averagely at 200 and 50 m of its radius, respectively. The result of this study demonstrates that exposure of people to RF radiation from phone BTSs in Ibadan city is far less than the recommended limits by International scientific bodies. (authors)

  8. Assessing different parameters estimation methods of Weibull distribution to compute wind power density

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Alavi, Omid; Mostafaeipour, Ali; Goudarzi, Navid; Jalilvand, Mahdi

    2016-01-01

    Highlights: • Effectiveness of six numerical methods is evaluated to determine wind power density. • More appropriate method for computing the daily wind power density is estimated. • Four windy stations located in the south part of Alberta, Canada namely is investigated. • The more appropriate parameters estimation method was not identical among all examined stations. - Abstract: In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.

  9. REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING

    International Nuclear Information System (INIS)

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2009-01-01

    We find that nonlinearities in the dark matter power spectrum are dramatically smaller if the density field first undergoes a logarithmic mapping. In the Millennium simulation, this procedure gives a power spectrum with a shape hardly departing from the linear power spectrum for k ∼ -1 at all redshifts. Also, this procedure unveils pristine Fisher information on a range of scales reaching a factor of 2-3 smaller than in the standard power spectrum, yielding 10 times more cumulative signal to noise at z = 0.

  10. Power density effect on feasibility of water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    Sidik, Permana; Takaki, Naoyuki; Sekimoto, Hiroshi

    2008-01-01

    Breeding is made possible by the high value of neutron regeneration ratio η for 233 U in thermal energy region. The reactor is fueled by 233 U-Th oxide and it has used the light water as moderator. Some characteristics such as spectrum, η value, criticality, breeding performance and number density are evaluated. Several power densities are evaluated in order to analyze its effect to the breeding performance. The η value of fissile 233 U obtains higher value than 2 which may satisfy the breeding capability especially for thermal reactor for all investigated MFR. The increasing enrichment and decreasing conversion ratio are more significant for MFR 233 U enrichment. Number density of 233 Pa decreases significantly with decreasing power density which leads the reactor has better breeding performance because lower capture rate of 233 Pa. (author)

  11. Power density of piezoelectric transformers improved using a contact heat transfer structure.

    Science.gov (United States)

    Shao, Wei Wei; Chen, Li Juan; Pan, Cheng Liang; Liu, Yong Bin; Feng, Zhi Hua

    2012-01-01

    Based on contact heat transfer, a novel method to increase power density of piezoelectric transformers is proposed. A heat transfer structure is realized by directly attaching a dissipater to the piezoelectric transformer plate. By maintaining the vibration mode of the transformer and limiting additional energy losses from the contact interface, an appropriate design can improve power density of the transformer on a large scale, resulting from effective suppression of its working temperature rise. A prototype device was fabricated from a rectangular piezoelectric transformer, a copper heat transfer sheet, a thermal grease insulation pad, and an aluminum heat radiator. The experimental results show the transformer maintains a maximum power density of 135 W/cm(3) and an efficiency of 90.8% with a temperature rise of less than 10 °C after more than 36 h, without notable changes in performance. © 2012 IEEE

  12. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors

    Science.gov (United States)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng

    2018-01-01

    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  13. Low density, microcellular, dopable, agar/gelatin foams for pulsed power experiments

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, W.F. [Orion International Technologies, Inc., Albuquerque, NM (United States); Aubert, J.H. [Sandia National Lab., Albuquerque, NM (United States)

    1997-04-01

    Low-density, microcellular foams prepared from the natural polymers agar and gelatin have been developed for pulsed-power physics experiments. Numerous experiments were supported with foams having densities at or below 10 mg/cm{sup 3}. For some of the experiments, the agar/gelatin foam was uniformly doped with metallic elements using soluble salts. Depending on the method of preparation, cell sizes were typically below 10 microns and for one process were below 1.0 micron.

  14. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.

    Science.gov (United States)

    Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.

  15. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  16. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    Science.gov (United States)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  17. Density dependence of SOL power width in ASDEX upgrade L-Mode

    Directory of Open Access Journals (Sweden)

    B. Sieglin

    2017-08-01

    A recent study [4] with an open divertor configuration found an asymmetry of the power fall-off length between inner and outer target with a smaller power fall-off length λq,i on the inner divertor target. Measurements with a closed divertor configuration find a similar asymmetry for low recycling divertor conditions. It is found, in the experiment, that the in/out asymmetry λq,i/λq,o is strongly increasing with increasing density. Most notably the heat flux density at the inner divertor target is reducing with increasing λq,i whilst the total power onto each divertor target stays constant. It is found that λq,o exhibits no significant density dependence for hydrogen and deuterium but increases with about the square root of the electron density for helium. The difference between H,D and He could be due to the different recycling behaviour in the divertor. These findings may help current modelling attempts to parametrize the density dependence of the widening of the power channel and thus allow for detailed comparison to both divertor effects like recycling or increased upstream SOL cross field transport.

  18. Evaluation of plasma-wave spectral density from cross-power spectra

    International Nuclear Information System (INIS)

    Ilic, D.B.; Harker, K.J.

    1975-01-01

    The plasma-wave spectral density is evaluated by performing a spatial Fourier transform on experimental cross-power spectra of ion acoustic waves. The cross-power spectra are recorded on analog magnetic tape, converted to digital form, transferred to digital magnetic tape, and Fourier transformed on a digital computer. The important effects of sampling, finite data strings, and data smoothing on the end results are discussed and illustrated. The results indicate the usefulness of the spectral density method for the study of nonlinear wave phenomena. (auth)

  19. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Science.gov (United States)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  20. Workshop on high power ICH antenna designs for high density tokamaks

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1990-01-01

    A workshop in high power ICH antenna designs for high density tokamaks was held in Boulder, Colorado on January 31 through February 2, 1990. The purposes of the workshop were to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of rf auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made

  1. Maximum attainable power density and wall load in tokamaks underlying reactor relevant constraints

    International Nuclear Information System (INIS)

    Borrass, K.; Buende, R.

    1979-09-01

    The characteristic data of tokamaks optimized with respect to their power density or wall load are determined. Reactor relevant constraints are imposed, such as a fixed plant net power output, a fixed blanket thickness and the dependence of the maximum toroidal field on the geometry and conductor material. The impact of finite burn times is considered. Various scaling laws of the toroidal beta with the aspect ratio are discussed. (orig.) 891 GG/orig. 892 RDG [de

  2. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  3. Preparation of Ni-Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO{sub 3} based electrolyte film with high power density

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Young-Wan; Ida, Shintaro; Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka 819-0395 (Japan); Eto, Hiroyuki [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-Shi, Ibaraki 311-0102 (Japan); Inagaki, Toru [The Kansai Electric Power Co., Inc., 11-20 Nakoji 3-Chome, Amagasaki, Hyogo 661-0974 (Japan)

    2010-10-01

    Optimization of sintering temperature for NiO-Fe{sub 2}O{sub 3} composite oxide substrate was studied in order to obtain a dense substrate with smooth surface. By in situ reduction, the substrate was changed to a porous Ni-Fe alloy metal. The volumetric shrinkage and porosity of the substrate were also studied systematically with the Ni-Fe substrate reduced at different temperatures. A Sr and Mg-doped LaGaO{sub 3} (LSGM) thin film was prepared on dense substrate by the pulsed laser deposition (PLD) method. The LSGM film with stoichiometric composition was successfully prepared under optimal deposition parameters and a target composition. Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSC55) cathode was prepared by the slurry coating method on the deposited film. Prepared SOFC single cell shows high power density and the maximum power density (MPD) achieved was 1.79, 0.82 and 0.29 W cm{sup -2} at 973, 873 and 773 K, respectively. After thermal cycle from 973 to 298 K, the cell shows almost theoretical open circuit potential (1.1 V) and the power density of 1.62 W cm{sup -2}, which is almost the same as that at first cycles. Therefore, the Ni-Fe porous metal support made by the selective reduction is highly promising as a metal anode substrate for SOFC using LaGaO{sub 3} thin film. (author)

  4. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  5. An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index

    DEFF Research Database (Denmark)

    Dierckx, Goedele; Goegebeur, Yuri; Guillou, Armelle

    2013-01-01

    We introduce a robust and asymptotically unbiased estimator for the tail index of Pareto-type distributions. The estimator is obtained by fitting the extended Pareto distribution to the relative excesses over a high threshold with the minimum density power divergence criterion. Consistency...

  6. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa H.; Muhl, Thuy Thanh

    2018-01-01

    For use of metal supported solid oxide fuel cell (MS-SOFC) in mobile applications it is important to reduce the thermal mass to enable fast startup, increase stack power density in terms of weight and volume and reduce costs. In the present study, we report on the effect of reducing the Technical...

  7. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa Helen; Muhl, Thuy

    2017-01-01

    For use of metal supported SOFC in mobile applications it is important to reduce the thermal mass to enable fast start up, increase stack power density in terms of weight and volume and reduce costs. In the present study, we report on the effect of reducing the support layer thickness of 313 μm...

  8. Electroencephalogram Power Density and Slow Wave Sleep as a Function of Prior Waking and Circadian Phase

    NARCIS (Netherlands)

    Dijk, Derk-Jan; Brunner, Daniel P.; Beersma, Domien G.M.; Borbély, Alexander A.

    1990-01-01

    Human sleep electroencephalograms, recorded in four experiments, were subjected to spectral analysis. Waking prior to sleep varied from 12 to 36 h and sleep was initiated at different circadian phases. Power density of delta and theta frequencies in rapid-eye-movement (REM) sleep and non-REM (NREM)

  9. Effects of SWS deprivation on subsequent EEG power density and spontaneous sleep duration

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.

    In order to test predictions of the 2-process model of sleep regulation, the effects of slow wave sleep (SWS) deprivation by acoustic stimulation during the first part of the sleep period on EEG power density and sleep duration were investigated in 2 experiments. In the first experiment, 8 subjects

  10. High-energy-density physics researches based on pulse power technology

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko; Nakajima, Mitsuo; Kawamura, Tohru; Sasaki, Toru; Kondo, Kotaro; Yano, Yuuri

    2006-01-01

    Plasmas driven by pulse power device are of interest, concerning the researches on high-energy-density (HED) physics. Dense plasmas are produced using pulse power driven exploding discharges in water. Experimental results show that the wire plasma is tamped and stabilized by the surrounding water and it evolves through a strongly coupled plasma state. A shock-wave-heated, high temperature plasma is produced in a compact pulse power device. Experimental results show that strong shock waves can be produced in the device. In particular, at low initial pressure condition, the shock Mach number reaches 250 and this indicates that the shock heated region is dominated by radiation processes. (author)

  11. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  12. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  13. Probability density function evolution of power systems subject to stochastic variation of renewable energy

    Science.gov (United States)

    Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.

    2018-05-01

    As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.

  14. Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering

    Science.gov (United States)

    Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.

    2016-12-01

    Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.

  15. The behaviour of WWER nuclear power stations under abnormal operational conditions

    International Nuclear Information System (INIS)

    Ackermann, G.; Dreger, P.; Prasser, H.M.; Reichenbach, D.

    1985-01-01

    The big power WWER type reactors can show the volumetric oscillations of the power density into the reactor core because of xenon poisoning. The ununiform xenon distribution occurs in the case of nonideal mixing of the coolant into the reactor vessel. This effect usually leads to decreasing of the reactor power. The theoretical and experimental investigations with the goal to evaluate the volumetric distribution of the temperature near the coolant input into the reactor core is discussed in this paper as well as the three dimensional model of the reactor core together with the primary coolant circuit model to calculate volumetric xenon oscillations

  16. An expression relating breaking stress and density of trabecular bone

    DEFF Research Database (Denmark)

    Rajapakse, C.S.; Thomsen, J.S.; Ortiz, J.S.E.

    2004-01-01

    Bone mineral density (BMD) is the principal diagnostic tool used in clinical settings to diagnose and monitor osteoporosis. Experimental studies on ex vivo bone samples from multiple skeletal locations have been used to propose that their breaking stress bears a power-law relationship to volumetric...

  17. Ultrasound assisted destruction of estrogen hormones in aqueous solution: Effect of power density, power intensity and reactor configuration

    International Nuclear Information System (INIS)

    Suri, Rominder P.S.; Nayak, Mohan; Devaiah, Uthappa; Helmig, Edward

    2007-01-01

    There are many reports documenting the adverse effects, such as feminization of fish, of estrogen hormones in the environment. One of the major sources of these compounds is from municipal wastewater effluents. The biological processes at municipal wastewater treatment plants cannot completely remove these compounds. This paper discusses the use of ultrasound to destroy estrogen compounds in water. The study examines the effect of ultrasound power density and power intensity on the destruction of various estrogen compounds which include: 17α-estradiol, 17β-estradiol, estrone, estriol, equilin, 17α-dihydroequilin, 17α-ethinyl estradiol and norgestrel. These tests were conducted in single component batch and flow through reactors using 0.6, 2 and 4 kW ultrasound sources. The sonolysis process produced 80-90% destruction of individual estrogens at initial concentration of 10 μg/L within 40-60 min of contact time. First order rate constants for the individual compounds under different conditions are presented. The estrogen degradation rates increase with increase in power intensity. However, the energy efficiency of the reactor was higher at lower power density. The 4 kW ultrasound reactor was more energy efficient compared to the 0.6 and 2 kW sonicators

  18. Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles

    Directory of Open Access Journals (Sweden)

    Liu Xiping

    2017-06-01

    Full Text Available This paper proposes a permanent magnet (PM-assisted synchronous reluctance machine (PMASynRM using ferrite magnets with the same power density as rareearth PM synchronous motors employed in Toyota Prius 2010. A suitable rotor structure for high torque density and high power density is discussed with respect to the demagnetization of ferrite magnets, mechanical strength and torque ripple. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2-D finite element analysis (FEA. The analysis results show that a high power density and high efficiency of PMASynRM are obtained by using ferrite magnets.

  19. A single-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/copper hexacyanoferrate hybrid film for high-volumetric performance flexible supercapacitors

    Science.gov (United States)

    Li, Jianmin; Li, Haizeng; Li, Jiahui; Wu, Guiqing; Shao, Yuanlong; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2018-05-01

    Volumetric energy density is generally considered to be detrimental to the actual application of supercapacitors, which has provoked a range of research work on increasing the packing density of electrodes. Herein, we fabricate a free-standing single-walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/copper hexacyanoferrate (CuHCF) nanoparticles (NPs) composite supercapacitor electrode, with a high packing density of 2.67 g cm-3. The pseudocapacitive CuHCF NPs are decorated onto the SWCNTs/PEDOT:PSS networks and filled in interspace to increase both of packing density and specific capacitance. This hybrid electrode exhibits a series of outstanding performances, such as high electric conductivity, ultrahigh areal and volumetric capacitances (969.8 mF cm-2 and 775.2 F cm-3 at scan rate of 5 mV s-1), long cycle life and superior rate capability. The asymmetric supercapacitor built by using the SWCNTs/PEDOT:PSS/CuHCF film as positive electrode and Mo-doped WO3/SWCNTs film as negative electrode, can deliver a high energy density of 30.08 Wh L-1 with a power density of 4.25 kW L-1 based on the total volume of the device. The approach unveiled in this study could provide important insights to improving the volumetric performance of energy storage devices and help to reach the critical targets for high rate and high power density demand applications.

  20. Non-linear behaviour of power density and exposure time of argon laser on ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, E M; Talaat, M S; Salem, E F [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    1997-12-31

    In ophthalmology, the thermal effect of argon laser is the most widely used category of laser- tissue interaction. The rise in tissue temperature has to exceed a threshold value for photo coagulation of retinal blood vessels. This value mainly depends on the laser. The most suitable argon laser power P and exposure time (t) which would be more effective for thermal and electrical behaviour of chicken eye was studied. This was achieved by measuring the variations in ocular temperature in electroretinogram (ERG) records under the effect of argon experiment, while power density (P) and exposure time (t) were varied in four different ways for each dose (pt). Results indicated that for the same laser dose, the temperature distribution of the eye, using low power density and high exposure time was higher than that high power density and low exposure time, indicating non-linearity of the laser dose. This finding was confirmed by ERG records which showed similar variations in b-wave latency, amplitude and duration, for the laser exposure conditions. This indicates variations in retinal function due to laser-dependent temperature variations. 5 figs., 3 tabs.

  1. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    Science.gov (United States)

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the

  3. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.

    Science.gov (United States)

    Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  4. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)

    Science.gov (United States)

    Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  5. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Faust, I.; Parker, R. R. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Tritz, K. [The Johns Hopkins University, Baltimore, Maryland 21209 (United States); Stratton, B. C. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2014-11-15

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  6. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    International Nuclear Information System (INIS)

    Faust, I.; Parker, R. R.; Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Tritz, K.; Stratton, B. C.

    2014-01-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed

  7. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  8. Evaluation of population density and distribution criteria in nuclear power plant siting

    International Nuclear Information System (INIS)

    Young, M.

    1994-06-01

    The NRC has proposed revisions to 10 CFR 100 which include the codification of nuclear reactor site population density limits to 500 people per square mile, at the siting stage, averaged over any radial distance out to 30 miles, and 1,000 people per square mile within the 40-year lifetime of a nuclear plant. This study examined whether there are less restrictive alternative population density and/or distribution criteria which would provide equivalent or better protection to human health in the unlikely event of a nuclear accident. This study did not attempt to directly address the issue of actual population density limits because there are no US risk standards established for the evaluation of population density limits. Calculations were performed using source terms for both a current generation light water reactor (LWR) and an advanced light water reactor (ALWR) design. The results of this study suggest that measures which address the distribution of the population density, including emergency response conditions, could result in lower average individual risks to the public than the proposed guidelines that require controlling average population density. Studies also indicate that an exclusion zone size, determined by emergency response conditions and reactor design (power level and safety features), would better serve to protect public health than a rigid standard applied to all sites

  9. Generation of high-power-density atmospheric pressure plasma with liquid electrodes

    International Nuclear Information System (INIS)

    Dong Lifang; Mao Zhiguo; Yin Zengqian; Ran Junxia

    2004-01-01

    We present a method for generating atmospheric pressure plasma using a dielectric barrier discharge reactor with two liquid electrodes. Four distinct kinds of discharge, including stochastic filaments, regular square pattern, glow-like discharge, and Turing stripe pattern, are observed in argon with a flow rate of 9 slm. The electrical and optical characteristics of the device are investigated. Results show that high-power-density atmospheric pressure plasma with high duty ratio in space and time can be obtained. The influence of wall charges on discharge power and duty ratio has been discussed

  10. New directions in fusion machines: report on the MFAC Panel X on high power density options

    International Nuclear Information System (INIS)

    Linford, R.K.

    1985-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, high-power-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce substantially the cost of development steps in physics and technology.''

  11. New directions in fusion machines: report on the MFAC Panel X on high power density options

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1985-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, high-power-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce substantially the cost of development steps in physics and technology.''

  12. Hydrogen consumption and power density in a co-flow planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ben Moussa, Hocine; Zitouni, Bariza [Laboratoire d' etude des systemes energetiques industriels (LESEI), Universite de Batna, Batna (Algeria); Oulmi, Kafia [Laboratoire de chimie et de chimie de l' environnement, Universite de Batna, Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP. 62 Route de l' Observatoire. Bouzareah. Alger (Algeria); Mandin, Philippe [Centre de Developpement des Energies Renouvelables (CDER), LECA, UMR 7575 CNRS-ENSCP Paris 6 (France)

    2009-06-15

    In the present work, power density and hydrogen consumption in a co-flow planar solid oxide fuel cell (SOFC) are studied according to the inlet functional parameters; such as the operational temperature, the operational pressure, the flow rates and the mass fractions of the species. Furthermore, the effect of the cell size is investigated. The results of a zero and a one-dimensional numerical electro-dynamic model predict the remaining quantity of the fed hydrogen at the output of the anode flow channel. The remaining hydrogen quantities and the SOFC's power density obtained are discussed as a function of the inlet functional parameters, the geometrical configuration of the cell and several operating cell voltages values. (author)

  13. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  14. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    Science.gov (United States)

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  15. Electrochemical Supercapacitor Electrodes from Sponge-like Graphene Nanoarchitectures with Ultrahigh Power Density.

    Science.gov (United States)

    Xu, Zhanwei; Li, Zhi; Holt, Chris M B; Tan, Xuehai; Wang, Huanlei; Amirkhiz, Babak Shalchi; Stephenson, Tyler; Mitlin, David

    2012-10-18

    We employed a microwave synthesis process of cobalt phthalocyanine molecules templated by acid-functionalized multiwalled carbon nanotubes to create three-dimensional sponge-like graphene nanoarchitectures suited for ionic liquid-based electrochemical capacitor electrodes that operate at very high scan rates. The sequential "bottom-up" molecular synthesis and subsequent carbonization process took less than 20 min to complete. The 3D nanoarchitectures are able to deliver an energy density of 7.1 W·h kg(-1) even at an extra high power density of 48 000 W kg(-1). In addition, the ionic liquid supercapacitor based on this material works very well at room temperature due to its fully opened structures, which is ideal for the high-power energy application requiring more tolerance to temperature variation. Moreover, the structures are stable in both ionic liquids and 1 M H2SO4, retaining 90 and 98% capacitance after 10 000 cycles, respectively.

  16. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  17. Road simulation for four-wheel vehicle whole input power spectral density

    Science.gov (United States)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  18. A two-parameter family of double-power-law biorthonormal potential-density expansions

    Science.gov (United States)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2017a) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  19. Maximization of ICRF power by SOL density tailoring with local gas injection

    Czech Academy of Sciences Publication Activity Database

    Jacquet, P.; Goniche, M.; Bobkov, V.; Lerche, E.; Pinsker, R.I.; Pitts, R.A.; Zhang, W.; Colas, L.; Hosea, J.; Moriyama, S.; Wang, S.-J.; Wukitch, S.; Zhang, X.; Bilato, R.; Bufferand, H.; Guimarais, L.; Faugel, H.; Hanson, G.R.; Kocan, M.; Monakhov, I.; Noterdaeme, J.-M.; Petržílka, Václav; Shaw, A.; Stepanov, I.; Sips, A.C.C.; Van Eester, D.; Wauters, T.

    2016-01-01

    Roč. 56, č. 4 (2016), s. 046001 ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : ICRF power * antenna loading * gas injection * SOL density Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/4/046001

  20. Discrimination of neutrons and gamma quanta with the aid of their power density spectra

    International Nuclear Information System (INIS)

    Buchmueller, R.

    1977-01-01

    The paper introduces a method of using only one fission chamber to discriminate the neutron flux against the gamma flux. The gamma chamber current may be several orders of magnitude higher than the neutron chamber current. In specially dimensioned fission chambers the neutrons and gamma quanta are made to generate different current pulses. Discrimination becomes possible by recording the power density spectrum of the mixture of pulses over a broad frequency range ( [de

  1. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  2. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  3. Effect of areal power density and relative humidity on corrosion resistant container performance

    International Nuclear Information System (INIS)

    Gansemer, J.D.

    1994-10-01

    The impact of the rewetting process on the performance of waste containers at the Yucca Mountain repository is analyzed. This paper explores the impact of the temperature-humidity relationships on pitting corrosion failure of stainless steel containers for different areal power densities (APDs)in the repository. It compares the likely performance of containers in a repository with a low APD, 55 Kw/acre, and a high APD, 110 kW/acre

  4. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  5. Statistical algorithm for automated signature analysis of power spectral density data

    International Nuclear Information System (INIS)

    Piety, K.R.

    1977-01-01

    A statistical algorithm has been developed and implemented on a minicomputer system for on-line, surveillance applications. Power spectral density (PSD) measurements on process signals are the performance signatures that characterize the ''health'' of the monitored equipment. Statistical methods provide a quantitative basis for automating the detection of anomalous conditions. The surveillance algorithm has been tested on signals from neutron sensors, proximeter probes, and accelerometers to determine its potential for monitoring nuclear reactors and rotating machinery

  6. Biowaste-Derived Hierarchical Porous Carbon Nanosheets for Ultrahigh Power Density Supercapacitors.

    Science.gov (United States)

    Yu, Dengfeng; Chen, Chong; Zhao, Gongyuan; Sun, Lei; Du, Baosheng; Zhang, Hong; Li, Zhuo; Sun, Ye; Besenbacher, Flemming; Yu, Miao

    2018-03-05

    Low-cost activated carbons with high capacitive properties remain desirable for supercapacitor applications. Herein, a three-dimensional scaffolding framework of porous carbon nanosheets (PCNSs) has been produced from a typical biowaste, namely, ground cherry calyces, the specific composition and natural structures of which have contributed to the PCNSs having a very large specific surface area of 1612 m 2  g -1 , a hierarchical pore size distribution, a turbostratic carbon structure with a high degree graphitization, and about 10 % oxygen and nitrogen heteroatoms. A high specific capacitance of 350 F g -1 at 0.1 A g -1 has been achieved in a two-electrode system with 6 m KOH; this value is among the highest specific capacitance of biomass-derived carbon materials. More inspiringly, a high energy density of 22.8 Wh kg -1 at a power density of 198.8 W kg -1 can be obtained with 1 m aqueous solution of Li 2 SO 4 , and an ultrahigh energy density of 81.4 Wh kg -1 at a power density of 446.3 W kg -1 is realized with 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Genetic search for an optimal power flow solution from a high density cluster

    Energy Technology Data Exchange (ETDEWEB)

    Amarnath, R.V. [Hi-Tech College of Engineering and Technology, Hyderabad (India); Ramana, N.V. [JNTU College of Engineering, Jagityala (India)

    2008-07-01

    This paper proposed a novel method to solve optimal power flow (OPF) problems. The method is based on a genetic algorithm (GA) search from a High Density Cluster (GAHDC). The algorithm of the proposed method includes 3 stages, notably (1) a suboptimal solution is obtained via a conventional analytical method, (2) a high density cluster, which consists of other suboptimal data points from the first stage, is formed using a density-based cluster algorithm, and (3) a genetic algorithm based search is carried out for the exact optimal solution from a low population sized, high density cluster. The final optimal solution thoroughly satisfies the well defined fitness function. A standard IEEE 30-bus test system was considered for the simulation study. Numerical results were presented and compared with the results of other approaches. It was concluded that although there is not much difference in numerical values, the proposed method has the advantage of minimal computational effort and reduced CPU time. As such, the method would be suitable for online applications such as the present Optimal Power Flow problem. 24 refs., 2 tabs., 4 figs.

  8. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  9. Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure.

    Science.gov (United States)

    Lu, Yonghui; Xu, Shangcheng; He, Mindi; Chen, Chunhai; Zhang, Lei; Liu, Chuan; Chu, Fang; Yu, Zhengping; Zhou, Zhou; Zhong, Min

    2012-07-16

    Extensive evidence indicates that glucose administration attenuates memory deficits in rodents and humans, and cognitive impairment has been associated with reduced glucose metabolism and uptake in certain brain regions including the hippocampus. In the present study, we investigated whether glucose treatment attenuated memory deficits caused by chronic low-power-density microwave (MW) exposure, and the effect of MW exposure on hippocampal glucose uptake. We exposed Wistar rats to 2.45 GHz pulsed MW irradiation at a power density of 1 mW/cm(2) for 3 h/day, for up to 30 days. MW exposure induced spatial learning and memory impairments in rats. Hippocampal glucose uptake was also reduced by MW exposure in the absence or presence of insulin, but the levels of blood glucose and insulin were not affected. However, these spatial memory deficits were reversed by systemic glucose treatment. Our results indicate that glucose administration attenuates the spatial memory deficits induced by chronic low-power-density MW exposure, and reduced hippocampal glucose uptake may be associated with cognitive impairment caused by MW exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Graphene-based in-plane micro-supercapacitors with high power and energy densities

    Science.gov (United States)

    Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088

  11. Graphene-based in-plane micro-supercapacitors with high power and energy densities.

    Science.gov (United States)

    Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.

  12. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  13. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  14. Nominal power density analysis of thermoelectric pins with non-constant cross sections

    International Nuclear Information System (INIS)

    Shi, Yaoguang; Mei, Deqing; Yao, Zhehe; Wang, Yancheng; Liu, Haiyan; Chen, Zichen

    2015-01-01

    Highlights: • Nominal power density of TEGs with non-constant cross sections pins is analyzed. • An analytical model of nominal power density (NPD) is developed. • Influences of shape parameter on NPD for different geometric pins are investigated. • Effects of dimensionless efficiency and the temperature ratio on NPD are examined. - Abstract: The investigation of the geometric structure of TEG (thermoelectric generator) pins is essential, as their geometry determines the performance of devices. In this study, nominal power density (NPD) is used to find a better geometric structure of thermoelectric pins of TEGs, since a comparison of maximum dimensionless efficiencies for different geometric pins cannot be used to identify the optimum geometry. The influence of shape parameter on NPD for TEG pins in linear, quadratic and exponential cross-sectional functions is studied. The NPD decreases when the shape parameter increases for different geometric pins, while the maximum values of NPD are the same. Then, the effects of dimensionless efficiency and the temperature ratio on the NPD are analyzed. The NPD decreases with the increase in dimensionless efficiency and temperature ratio. Pins with linear variation in cross section have the highest NPD among the three geometries of pins evaluated

  15. Flexible Aqueous Li-Ion Battery with High Energy and Power Densities.

    Science.gov (United States)

    Yang, Chongyin; Ji, Xiao; Fan, Xiulin; Gao, Tao; Suo, Liumin; Wang, Fei; Sun, Wei; Chen, Ji; Chen, Long; Han, Fudong; Miao, Ling; Xu, Kang; Gerasopoulos, Konstantinos; Wang, Chunsheng

    2017-11-01

    A flexible and wearable aqueous symmetrical lithium-ion battery is developed using a single LiVPO 4 F material as both cathode and anode in a "water-in-salt" gel polymer electrolyte. The symmetric lithium-ion chemistry exhibits high energy and power density and long cycle life, due to the formation of a robust solid electrolyte interphase consisting of Li 2 CO 3 -LiF, which enables fast Li-ion transport. Energy densities of 141 Wh kg -1 , power densities of 20 600 W kg -1 , and output voltage of 2.4 V can be delivered during >4000 cycles, which is far superior to reported aqueous energy storage devices at the same power level. Moreover, the full cell shows unprecedented tolerance to mechanical stress such as bending and cutting, where it not only does not catastrophically fail, as most nonaqueous cells would, but also maintains cell performance and continues to operate in ambient environment, a unique feature apparently derived from the high stability of the "water-in-salt" gel polymer electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    Science.gov (United States)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  17. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  18. Determination of power density distribution of fuel assemblies for research reactor by directly measuring the strontium-91 activities

    International Nuclear Information System (INIS)

    Yuan, Liq-Ji

    1987-01-01

    This work described the investigations of reactor core power peaking and three dimensional power density distribution of present core configuration of Tsing Hua Open-pool reactor (THOR). An experimental program, based on non-destructive fuel gamma scanning of 91 Sr activities, provides the data of fission density distribution for individual fuel pin of four-rod TRIGA-LEU cluster or for MTR-type fuel assembly. The informations are essentially important for the safety of reactor operation and for fuel management especially for the mixed loading with three different types of fuel at present. The relative power peaking values and the power density distribution for present core are discussed. (author)

  19. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  20. Heavy density concrete for nuclear radiation shielding and power stations: [Part]3

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the third part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. Specific considerations relevant to natural but manufactured heavy aggregates like haematite used in India are briefly discussed. They include water-cement ratio, strength versus water-cement ratio, mix design strength and aggregate grading. Some typical mix proportions in haematite concretes used in India are given. Equipment for heavy density concrete is mentioned. Quality control methods and tests for heavy density concrete are described under the heading: type and chemical composition of the rock, specific gravity and surface absorption of the aggregates, grading of aggregates, cement, batching, mixing, compressive strength, and density. Construction aspects such as form work, placement, vibration, finishing, and temperature control are discussed. Finally it is pointed out that for optimising the design and economy of heavy density concrete, it is necessary to carry out country-wide survey of suitable materials, to study their properties, suitability and effectiveness in shielding radiation. (M.G.B.)

  1. A geographical model of radio-frequency power density around mobile phone masts

    International Nuclear Information System (INIS)

    Briggs, David; Beale, Linda; Bennett, James; Toledano, Mireille B.; Hoogh, Kees de

    2012-01-01

    Public concern about possible health effects of EMF radiation from mobile phone masts has led to an increase of epidemiological studies and health risk assessments which, in turn, require adequate methods of exposure estimation. Difficulties in exposure modelling are exacerbated both by the complexity of the propagation processes, and the need to obtain estimates for large study populations in order to provide sufficient statistical power to detect or exclude the small relative risks that might exist. Use of geographical information system (GIS) techniques offers the means to make such computations efficiently. This paper describes the development and field validation of a GIS-based exposure model (Geomorf). The model uses a modified Gaussian formulation to represent spatial variations in power densities around mobile phone masts, on the basis of power output, antenna height, tilt and the surrounding propagation environment. Obstruction by topography is allowed for, through use of a visibility function. Model calibration was done using field data from 151 measurement sites (1510 antenna-specific measurements) around a group of masts in a rural location, and 50 measurement sites (658 antenna-specific measurements) in an urban area. Different parameter settings were found to be necessary in urban and rural areas to obtain optimum results. The calibrated models were then validated against independent sets of data gathered from measurement surveys in rural and urban areas, and model performance was compared with that of two commonly used path-loss models (the COST-231 adaptations of the Hata and Walfisch–Ikegami models). Model performance was found to vary somewhat between the rural and urban areas, and at different measurement levels (antenna-specific power density, total power density), but overall gave good estimates (R 2 = 0.641 and 0.615, RMSE = 10.7 and 6.7 dB m at the antenna and site-level respectively). Performance was considerably better than that of both

  2. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode

    Science.gov (United States)

    Vidyadharan, Baiju; Aziz, Radhiyah Abd; Misnon, Izan Izwan; Anil Kumar, Gopinathan M.; Ismail, Jamil; Yusoff, Mashitah M.; Jose, Rajan

    2014-12-01

    Electrochemical materials are under rigorous search for building advanced energy storage devices. Herein, supercapacitive properties of highly crystalline and ultrathin cobalt oxide (Co3O4) nanowires (diameter ∼30-60 nm) synthesized using an aqueous polymeric solution based electrospinning process are reported. These nanowire electrodes show a specific capacitance (CS) of ∼1110 F g-1 in 6 M KOH at a current density of 1 A g-1 with coulombic efficiency ∼100%. Asymmetric supercapacitors (ASCs) (CS ∼175 F g-1 at 2 A g-1 galvanostatic cycling) are fabricated using the Co3O4 as anode and commercial activated carbon (AC) as cathode and compared their performance with symmetric electrochemical double layer capacitors (EDLCs) fabricated using AC (CS ∼31 F g-1 at 2 A g-1 galvanostatic cycling). The Co3O4//AC ASCs deliver specific energy densities (ES) of 47.6, 35.4, 20 and 8 Wh kg-1 at specific power densities (PS) 1392, 3500, 7000 and 7400 W kg-1, respectively. The performance of ASCs is much superior to the control EDLCs, which deliver ES of 9.2, 8.9, 8.4 and 6.8 Wh kg-1 at PS 358, 695, 1400 and 3500 W kg-1, respectively. The ASCs show nearly six times higher energy density (∼47.6 Wh kg-1) than EDLC (8.4 Wh kg-1) without compromising its power density (∼1400 W kg-1) at similar galvanostatic cycling conditions (2 A g-1).

  3. Interaction of a high-power laser pulse with supercritical-density porous materials

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Rozanov, Vladislav B; Caruso, A; Strangio, C

    2000-01-01

    The properties of a nonequilibrium plasma produced by high-power laser pulses with intensities I L ∼ 10 14 -10 15 W cm -2 irradiating plane targets made of a porous material are investigated. The mean density of matter in targets was substantially higher than the critical plasma density corresponding to a plasma resonance. The density of porous material was ρ a ∼ 1 - 20 mg cm -3 , whereas the critical density at the wavelength of incident radiation was ρ cr ∼ 3 mg cm -3 . An anomalously high absorption (no less than 80%) of laser radiation inside a target was observed. Within the first 3 - 4 ns of interaction, the plasma flow through the irradiated target surface in the direction opposite of the direction of the laser beam was noticeably suppressed. Only about 5% of absorbed laser energy was transformed into the energy of particles in this flow during the laser pulse. Absorbed energy was stored as the internal plasma energy at this stage (the greenhouse effect). Then, this energy was transformed, similar to a strong explosion, into the energy of a powerful hydrodynamic flow of matter surrounding the absorption region. The specific features of the formation and evolution of a nonequilibrium laser-produced plasma in porous media are theoretically analysed. This study allows the results of experiments to be explained. In particular, we investigated absorption of laser radiation in the bulk of a target, volume evaporation of porous material, the expansion of a laser-produced plasma inside the pores, stochastic collisions of plasma flows, and hydrothermal energy dissipation. These processes give rise to long-lived oscillations of plasma density and lead to the formation of an internal region where laser radiation is absorbed. (invited paper)

  4. Flexible and freestanding supercapacitor based on nanostructured poly(m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities

    Science.gov (United States)

    Choudhury, Arup; Dey, Baban; Sinha Mahapatra, Susanta; Kim, Doo-Won; Yang, Kap-Seung; Yang, Duck-Joo

    2018-04-01

    Nanostructured poly(m-aminophenol) (PmAP) coated freestanding carbon nanofiber (CNF) mats were fabricated through simple in situ rapid-mixing polymerization of m-aminophenol in the presence of a CNF mat for flexible solid-state supercapacitors. The surface compositions, morphology and pore structure of the hybrid mats were characterized by using various techniques, e.g., FTIR, Raman, XRD, FE-SEM, TEM, and N2 absorption. The results show that the PmAP nanoparticles were homogeneously deposited on CNF surfaces and formed a thin flexible hybrid mat, which were directly used to made electrodes for electrochemical analysis without using any binders or conductive additives. The electrochemical performances of the hybrid mats were easily tailored by varying the PmAP loading on a hybrid electrode. The PmAP/CNF-10 hybrid electrode with a relatively low PmAP loading (> 42 wt%) showed a high specific capacitance of 325.8 F g-1 and a volumetric capacitance of 273.6 F cm-3 at a current density of 0.5 A g-1, together with a specific capacitance retention of 196.2 F g-1 at 20 A g-1. The PmAP/CNF-10 hybrid electrode showed good cycling stability with 88.2% capacitance retention after 5000 cycles. A maximum energy density of 45.2 Wh kg-1 and power density of 20.4 kW kg-1 were achieved for the PmAP/CNF-10 hybrid electrode. This facile and cost-effective synthesis of a flexible binder-free PmAP/CNF hybrid mat with excellent capacitive performances encourages its possible commercial exploitation.

  5. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  6. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.

    Science.gov (United States)

    Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat

    2015-05-13

    Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

  7. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    International Nuclear Information System (INIS)

    Reimund, Kevin K.

    2015-01-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π(1+√w -1 ), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at "maximum power density operating pressure" requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  8. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    Energy Technology Data Exchange (ETDEWEB)

    Reimund, Kevin K. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; McCutcheon, Jeffrey R. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; Wilson, Aaron D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  9. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  10. Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide

    International Nuclear Information System (INIS)

    Wang, Yue-Sheng; Tsai, Dah-Shyang; Chung, Wen-Hung; Syu, Yong-Sin; Huang, Ying-Sheng

    2012-01-01

    Highlights: ► Mo-doping (15 mol%) enhances capacitance and diminishes oxide resistance. ► Influences of Mo-doped MnO 2 are analyzed at the level of capacitor power and energy. ► Polarization loss of the asymmetric capacitor is more than that of the symmetric one. ► Pseudocapacitance benefit on energy is evaluated with power and current densities. - Abstract: Ultracapacitors of asymmetric configuration have been prepared with activated carbon (AC) and undoped or Mo-doped manganese oxide (MnO 2 ) in 1.0 M Na 2 SO 4 electrolyte. Phase analysis shows the AC powder, 1–15 μm in size, contains both disordered and graphitic structures, and the undoped and Mo-doped oxide powder, 0.05–0.20 μm in particle size, mainly involves amorphous MnO 2 and MoO 2 . CV results indicate the single electrode of AC plus 10 wt% Mo-doped MnO 2 (A9O M 1) is superior to the electrode with undoped MnO 2 or high content of doped MnO 2 , exhibiting features of double layer capacitance at high scan rate and pseudocapacitance characteristics at low scan rate. When assembled with a negative electrode of AC, the capacitor of positive A9O M 1 electrode demonstrates the least power loss among three asymmetric capacitors. This asymmetric capacitor also shows a higher capacitance than the symmetric AC capacitor when the current density is less than 8.0 A g −1 in 1.8 V potential window. But a higher electrode resistance of A9O M 1, in contrast with AC, compromises its capacitance plus. When the energy density of A9O M 1 asymmetric capacitor is compared with that of symmetric AC capacitor at the same power level, the capacitance benefit on energy density is restricted to current density ≤ 3.0 A g −1 .

  11. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities.

    Science.gov (United States)

    Choi, Bong Gill; Yang, Minho; Hong, Won Hi; Choi, Jang Wook; Huh, Yun Suk

    2012-05-22

    In order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO(2) was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO(2)/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current increase to 35 A/g. Moreover, when the MnO(2)/e-CMG composite electrode was asymmetrically assembled with an e-CMG electrode, the assembled full cell shows remarkable cell performance: energy density of 44 Wh/kg, power density of 25 kW/kg, and excellent cycle life.

  12. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors.

    Science.gov (United States)

    Chen, Ying-Chu; Lin, Yan-Gu; Hsu, Yu-Kuei; Yen, Shi-Chern; Chen, Kuei-Hsien; Chen, Li-Chyong

    2014-09-24

    A simple one-step electroplating route is proposed for the synthesis of novel iron oxyhydroxide lepidocrocite (γ-FeOOH) nanosheet anodes with distinct layered channels, and the microstructural influence on the pseudocapacitive performance of the obtained γ-FeOOH nanosheets is investigated via in situ X-ray absorption spectroscopy (XAS) and electrochemical measurement. The in situ XAS results regarding charge storage mechanisms of electrodeposited γ-FeOOH nanosheets show that a Li(+) can reversibly insert/desert into/from the 2D channels between the [FeO6 ] octahedral subunits depending on the applied potential. This process charge compensates the Fe(2+) /Fe(3+) redox transition upon charging-discharging and thus contributes to an ideal pseudocapacitive behavior of the γ-FeOOH electrode. Electrochemical results indicate that the γ-FeOOH nanosheet shows the outstanding pseudocapacitive performance, which achieves the extraordinary power density of 9000 W kg(-1) with good rate performance. Most importantly, the asymmetric supercapacitors with excellent electrochemical performance are further realized by using 2D MnO2 and γ-FeOOH nanosheets as cathode and anode materials, respectively. The obtained device can be cycled reversibly at a maximum cell voltage of 1.85 V in a mild aqueous electrolyte, further delivering a maximum power density of 16 000 W kg(-1) at an energy density of 37.4 Wh kg(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    Science.gov (United States)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  14. Wind farm density and harvested power in very large wind farms: A low-order model

    Science.gov (United States)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  15. Effect of low-power density laser radiation on heatling of open skin wounds in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kana, J.S.; Hutschenreiter, G.; Haina, D.; Waidelich, W.

    1981-03-01

    Researchers performed a study to determine whether laser radation of low-power density would affect the healing of open skin wounds in rats. The wounds were irradiated daily with a helium-neon laser and an argon laser at a constant power density of 45 mW/sq cm. The rate of wound closure was followed by photographing the wounds in a standardized way. The collagen hydroxyproline concentration in the scar tissue was determined on the 18th postoperative day. Helium-neon laser radiation had a statistically significant stimulating effect on collagen synthesis in the wound, with a maximum effect at an energy density of 4 joules/sq cm. The rate of wound closure was enhanced significantly between the third and 12th postoperative days. The argon laser exposure produced a significant increase in collagen concentration both in irradiated and nonirradiated contralateral wounds. However, an acceleration of the healing rate was not registered in this case. The wound contraction up to the fourth day of the experiment was inhibited under helium-neon and argon laser exposure to 20 joules/sq cm. The described effects were not specific for the laser light. There may be a wavelength-selective influence of coherent light on the metabolic and proliferation processes in wound healing, with the associated problem of the possible carcinogenic effects of laser radiation.

  16. Magnetic field power density spectra during 'scatter-free' solar particle events

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.

    1993-01-01

    We have examined interplanetary magnetic field power spectral density during four previously identified 3He-rich flare periods when the about 1 MeV nucleon-1 particles exhibited nearly scatter-free transport from the sun to 1 AU. Since the scattering mean free path A was large, it might be expected that interplanetary turbulence was low, yet the spectral density value was low only for one of the four periods. For the other three, however, the spectral index q of the power density spectrum was near 2.0, a value at which quasi-linear theories predict an increase in the scattering mean free path. Comparing the lambda values from the energetic particles with that computed from a recent quasi-linear theory which includes helicity and the propagation direction of waves, we find lambda(QLT)/lambda(SEP) = 0.08 +/- 0.03 for the four events. Thus, the theory fits the q-dependence of lambda; however, as found for previous quasi-linear theories, the absolute value is low.

  17. Timing A Pulsed Thin Film Pyroelectric Generator For Maximum Power Density

    International Nuclear Information System (INIS)

    Smith, A.N.; Hanrahan, B.M.; Neville, C.J.; Jankowski, N.R

    2016-01-01

    Pyroelectric thermal-to-electric energy conversion is accomplished by a cyclic process of thermally-inducing polarization changes in the material under an applied electric field. The pyroelectric MEMS device investigated consisted of a thin film PZT capacitor with platinum bottom and iridium oxide top electrodes. Electric fields between 1-20 kV/cm with a 30% duty cycle and frequencies from 0.1 - 100 Hz were tested with a modulated continuous wave IR laser with a duty cycle of 20% creating temperature swings from 0.15 - 26 °C on the pyroelectric receiver. The net output power of the device was highly sensitive to the phase delay between the laser power and the applied electric field. A thermal model was developed to predict and explain the power loss associated with finite charge and discharge times. Excellent agreement was achieved between the theoretical model and the experiment results for the measured power density versus phase delay. Limitations on the charging and discharging rates result in reduced power and lower efficiency due to a reduced net work per cycle. (paper)

  18. Power probability density function control and performance assessment of a nuclear research reactor

    International Nuclear Information System (INIS)

    Abharian, Amir Esmaeili; Fadaei, Amir Hosein

    2014-01-01

    Highlights: • In this paper, the performance assessment of static PDF control system is discussed. • The reactor PDF model is set up based on the B-spline functions. • Acquaints of Nu, and Th-h. equations solve concurrently by reformed Hansen’s method. • A principle of performance assessment is put forward for the PDF of the NR control. - Abstract: One of the main issues in controlling a system is to keep track of the conditions of the system function. The performance condition of the system should be inspected continuously, to keep the system in reliable working condition. In this study, the nuclear reactor is considered as a complicated system and a principle of performance assessment is used for analyzing the performance of the power probability density function (PDF) of the nuclear research reactor control. First, the model of the power PDF is set up, then the controller is designed to make the power PDF for tracing the given shape, that make the reactor to be a closed-loop system. The operating data of the closed-loop reactor are used to assess the control performance with the performance assessment criteria. The modeling, controller design and the performance assessment of the power PDF are all applied to the control of Tehran Research Reactor (TRR) power in a nuclear process. In this paper, the performance assessment of the static PDF control system is discussed, the efficacy and efficiency of the proposed method are investigated, and finally its reliability is proven

  19. Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.

    Science.gov (United States)

    Allen, Stewart J; Ross, James A

    2007-01-01

    The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.

  20. Wind Characteristics and an Evaluation of Wind Power Density at Three Sites in Egypt

    International Nuclear Information System (INIS)

    Etman, S.M.

    2008-01-01

    This paper presents the results of the analysis of wind speed data for one calendar year (2005) at three stations (El-Tor, El-Nonzha, and El-Notron) in Egypt along with the wind energy potential of each site. The wind power density at 25 m height was obtained by extrapolation of data at 10 m using a Power-law expression. The frequency distribution of observed hourly wind speeds occurring at each station is examined, particularly for wind speeds greater than or equal to 3 and 5 m/s (cut-in wind speeds for most wind turbines). The study reveals that the wind turbine can be operated at the sites El-Tor, El-Nouzha, and El-Notron with an annual availability factor of about 89.9 %, 76.2 %, and 67.9 % if the cut-in wind speed is 3 m/s and 67.2 %,51.8 %, and 17.1 % if the cut-in wind speed is 5 m/s, respectively. The total available wind power density ( kWh/m 2 /yr) Was estimated at the selected sites; El-Tor, El-Nouzha and El-Notron and was found to be: 3838.4, 825.5 and 284 kWh/m 2 /yr for case 3m/s and 2276.2, 489,5 and 71 kWh/m 2 /yr for case 5 m/s, respectively

  1. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-05-20

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  2. New directions in fusion machines: Report on the MFAC panel X on high power density options

    International Nuclear Information System (INIS)

    Linford, R.K.

    1986-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, highpower-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce4 substantially the cost of development steps in physics and technology.''

  3. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Science.gov (United States)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  4. Sensitivity analysis for reactivity and power density investigations in nuclear reactors

    International Nuclear Information System (INIS)

    Naguib, K.; Morcos, H.N.; Sallam, O.H.; Abdelsamei, SH.

    1993-01-01

    Sensitivity analysis theory based on the variational functional approaches was applied to evaluate sensitivities of eigenvalues and power densities due to variation of the absorber concentration in the reactor core. The practical usefulness of this method is illustrated by considering test cases. The result indicates that this method is as accurate as those obtained from direct calculations, yet it provides an economical means in saving computational time since it requires fewer calculations. The SARC-1/2 code have been written in Fortran-77 to solve this problem.3 tab. 1 fig

  5. Engineering science research issues in high power density transmission dynamics for aerospace applications. [rotorcraft geared rotors

    Science.gov (United States)

    Singh, Rajendra; Houser, Donald R.

    1993-01-01

    This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.

  6. Measurement of reactor parameters of the 'Nora' reactor by noise analysis method - power spectral density

    International Nuclear Information System (INIS)

    Jovanovic, S.; Stormark, E.

    1966-01-01

    Measurements of reactor parameters the Nora reactor by Power Spectral Density (PSD) method are described. In case of critical reactor this method was applied for direct measurement of β/l ratio, β is the effective yield of delayed neutrons and l is the neutron lifetime. In case of subcritical reactor values of α+β-ρ/l were measured, ρ is the negative reactivity. Out coming PSD was measured by a filter or by ISAC. PSD was registered by ISAC as well as the auto-correlation function [sr

  7. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  8. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  9. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: ppessoa@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@imp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  10. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2013-01-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  11. Beam alignment based on two-dimensional power spectral density of a near-field image.

    Science.gov (United States)

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  12. Improving the peak power density estimation for the DNBR trip signal

    International Nuclear Information System (INIS)

    Moreira, Joao M. L.; Souza, Rose Mary G.P.

    2002-01-01

    The departure from nucleate boiling (DNB) core protection in PWR reactors is usually carried out through the over temperature trip or the instantaneous minimum DNB ratio (DNBR) trip. The protection is obtained through specialized correlations or fast digital computer simulators that infer the core power level, and local coolant thermal and flow conditions out of process variables furnished by the instrumentation. The power density distribution information is usually expressed in terms of F q , the power peak factor, and its location. F q , in its turn, can be determined through the control rod position or, more often, through the power axial offset (AO) F q =f (AO, control rod positions). The AO, defined as the difference between upper and lower long ion chambers signals, is supplied for each channel by separate sets of out-of-core detectors positioned 90 or 120 degrees apart in plan. The AO is given by AO=(S t -S b )/(S t +S b ) where S t and S b are the out-of-core signals from the top and the bottom sections, respectively. In current PWRs a large penalty is imposed to the result of the first equation, because of the difficult of inferring with good accuracy the peak factor from the AO obtained from the out-of-core instrumentation. This ends up reducing the plant capacity factor. In this work, the f function in the first equation, which correlates the power peak factor with the axial offset yielded by out-of-core detectors and control rod positions, is obtained through a combination of specific experiments in the IPEN/MB-01 zero-power reactor and calculation results. For improving the peak factor estimation, it is necessary to consider accurately the response of the out-of-core detectors to different power density distribution in the core. This task is not easily accomplished through calculation due to the difficulties involved in the necessary neutron transport treatment for the out-of-core detector responses

  13. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte

    International Nuclear Information System (INIS)

    Cho, Sungmee; Kim, YoungNam; Kim, Jung-Hyun; Manthiram, Arumugam; Wang Haiyan

    2011-01-01

    Graphical abstract: . A: Cross-sectional TEM images show a GDC single layer and YSZ/GDC bilayer electrolyte structures. As clearly observed from TEM images, the YSZ interlayer thickness varies from ∼330 nm to ∼1 μm. B: The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. Display Omitted Highlights: → YSZ/ GDC bilayer thin film electrolytes were deposited by a pulsed laser deposition (PLD) technique. → Thin YSZ film as a blocking layer effectively suppresses the cell voltage drop without reducing the ionic conductivity of the electrolyte layer. → The YSZ/ GDC bilayer structure presents a feasible architecture for enhancing the overall power density and enabling chemical, mechanical, and structural stability in the cells. - Abstract: Bilayer electrolytes composed of a gadolinium-doped CeO 2 (GDC) layer (∼6 μm thickness) and an yttria-stabilized ZrO 2 (YSZ) layer with various thicknesses (∼330 nm, ∼440 nm, and ∼1 μm) were deposited by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). The bilayer electrolytes were prepared between a NiO-YSZ (60:40 wt.% with 7.5 wt.% carbon) anode and La 0.5 Sr 0.5 CoO 3 -Ce 0.9 Gd 0.1 O 1.95 (50:50 wt.%) composite cathode for anode-supported single cells. Significantly enhanced maximum power density was achieved, i.e., a maximum power density of 188, 430, and 587 mW cm -2 was measured in a bilayer electrolyte single cell with ∼330 nm thin YSZ at 650, 700, and 750 deg. C, respectively. The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. This signifies that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced

  14. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  15. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  16. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  17. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-01-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  18. Fatigue-associated alterations of cognitive function and electroencephalographic power densities.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available Fatigue is a common problem in modern society. We attempted to identify moderate- to long-term fatigue-related alterations in the central nervous system using cognitive tasks and electroencephalography (EEG measures. The study group consisted of 17 healthy male participants. After saliva samples were collected to measure copy number of human herpesvirus (HHV-6 DNA to assess the level of moderate- to long-term fatigue, subjects were evaluated using EEG, with their eyes open for 2 min, then closed for 1 min sitting quietly. Thereafter, they completed cognitive task trials to evaluate simple selective attention for 3 min (Task 1 and conflict-controlling selective attention for 6 min (Task 2, which included Stroop trials. The percent error of Task 2 for Stroop trials was positively associated with the copy number of saliva HHV-6 DNA, although the simple selective attention measures in Task 1 did not differ significantly. EEG power densities (especially the alpha power density during the eye-closed condition were negatively associated with the saliva HHV-6 DNA level. Impaired high-level information processing such as that required for conflict-controlling selective attention in the central nervous system may be a characteristic feature of moderate- to long-term fatigue.

  19. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-07-10

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s{sup 1} bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  20. Determination of power density in VVER-1000 Mock-Up in LR-0 reactor

    Directory of Open Access Journals (Sweden)

    Košál Michal

    2017-01-01

    Full Text Available The pin power density is an important quantity which has to be monitored during the reactor operation, for two main reasons. Firstly, it is part of the limits and conditions of safe operation and, secondly, it is source term in neutron transport calculations used for the adequate assessing of the state of core structures and pressure vessel material. It is often calculated using deterministic codes which may have problems with an adequate definition of boundary conditions in subcritical regions. This may lead to overestimation of real situation, and therefore the validation of the utility codes contributes not only to better fuel utilization, but also to more precise description of radiation situation in structural components of core. Current paper presents methods developed at LR-0 reactor, as well as selected results for pin power density measurement in peripheral regions of VVER-1000 mock-up. The presented data show that the results of a utility diffusion code at core boundary overestimate the measurement. This situation, however satisfactory safe, may lead to unduly conservative approach in the determination of radiation damage of core structures.

  1. High Efficiency Hybrid Energy Storage Utilizing High Power Density Ultracapacitors For Long Duration Balloon Flights, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — FastCAP proposes to develop an ultra-high power density and high frequency ultracapacitor capable of surviving over the wide temperature range of -60C to 130C and...

  2. Evaluation for the models of neutron diffusion theory in terms of power density distributions of the HTTR

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Shimakawa, Satoshi; Nojiri, Naoki; Fujimoto, Nozomu

    2003-10-01

    In the case of evaluations for the highest temperature of the fuels in the HTTR, it is very important to expect the power density distributions accurately; therefore, it is necessary to improve the analytical model with the neutron diffusion and the burn-up theory. The power density distributions are analyzed in terms of two models, the one mixing the fuels and the burnable poisons homogeneously and the other modeling them heterogeneously. Moreover these analytical power density distributions are compared with the ones derived from the gross gamma-ray measurements and the Monte Carlo calculational code with continuous energy. As a result the homogeneous mixed model isn't enough to expect the power density distributions of the core in the axial direction; on the other hand, the heterogeneous model improves the accuracy. (author)

  3. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  4. The reversed-field pinch as a poloidal-field-dominated, compact, high-power-density fusion system

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1988-01-01

    This paper discusses the feasibility of reversed-field pinch devices as future thermonuclear reactors. Safety, cost, ion temperatures, Lawson numbers, and power densities are reviewed for these types of devices. 12 refs., 2 figs., 1 tab

  5. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  6. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  7. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  8. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    Science.gov (United States)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  9. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells

    Science.gov (United States)

    Choi, Sihyuk; Kucharczyk, Chris J.; Liang, Yangang; Zhang, Xiaohang; Takeuchi, Ichiro; Ji, Ho-Il; Haile, Sossina M.

    2018-03-01

    Over the past several years, important strides have been made in demonstrating protonic ceramic fuel cells (PCFCs). Such fuel cells offer the potential of environmentally sustainable and cost-effective electric power generation. However, their power outputs have lagged behind predictions based on their high electrolyte conductivities. Here we overcome PCFC performance and stability challenges by employing a high-activity cathode, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), in combination with a chemically stable electrolyte, BaZr0.4Ce0.4Y0.1Yb0.1O3 (BZCYYb4411). We deposit a thin dense interlayer film of the cathode material onto the electrolyte surface to mitigate contact resistance, an approach which is made possible by the proton permeability of PBSCF. The peak power densities of the resulting fuel cells exceed 500 mW cm-2 at 500 °C, while also offering exceptional, long-term stability under CO2.

  10. Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency

    International Nuclear Information System (INIS)

    Jafferis, Noah T; Lok, Mario; Wei, Gu-Yeon; Wood, Robert J; Winey, Nastasia

    2016-01-01

    In previous work we presented design and manufacturing rules for optimizing the energy density of piezoelectric bimorph actuators through the use of laser-induced melting, insulating edge coating, and features for rigid ground attachments to maximize force output, as well as a pre-stacked technique to enable mass customization. Here we adapt these techniques to bending actuators with four active layers, which utilize thinner material layers. This allows the use of lower operating voltages, which is important for overall power usage optimization, as typical small-scale power supplies are low-voltage and the efficiency of boost-converter and drive circuitry increases with decreasing output voltage. We show that this optimization results in a 24%–47% reduction in the weight of the required power supply (depending on the type of drive circuit used). We also present scaling arguments to determine when multi-layer actuator are preferable to thinner actuators, and show that our techniques are capable of scaling down to sub-mg weight actuators. (paper)

  11. 2D Spatial Frequency Considerations in Comparing 1D Power Spectral Density Measurements

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Barber, S.; Church, E.L.; Kaznatcheev, K.; McKinney, W.R.; Yashchuk, V.Y.

    2010-01-01

    The frequency footprint of ID and 2D profiling instruments needs to be carefully considered in comparing ID surface roughness spectrum measurements made by different instruments. Contributions from orthogonal direction frequency components can not be neglected. The use of optical profiling instruments is ubiquitous in the measurement of the roughness of optical surfaces. Their ease-of-use and non-contact measurement method found widespread use in the optics industry for measuring the quality of delicate optical surfaces. Computerized digital data acquisition with these instruments allowed for quick and easy calculation of surface roughness statistics, such as root-mean-square (RMS) roughness. The computing power of the desktop computer allowed for the rapid conversion of spatial domain data into the frequency domain, enabling the application of sophisticated signal processing techniques to be applied to the analysis of surface roughness, the most powerful of which is the power spectral density (PSP) function. Application of the PSD function to surface statistics introduced the concept of 'bandwidth-limited' roughness, where the value of the RMS roughness depends critically upon the spatial frequency response of the instrument. Different instruments with different spatial frequency response characteristics give different answers when measuring the same surface.

  12. Radial power density distribution of MOX fuel rods in the IFA-651

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ho; Koo, Yang Hyun; Joo, Hyung Kook; Cheon, Jin Sik; Oh, Je Yong; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Two MOX fuel rods, which were fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with Korea Atomic Energy Research Institute, have been irradiated in the HBWR from June, 2000 in the framework of OECD-HRP together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is basic in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods has been developed based on neutron physics results and DEPRESS program. The developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight under-prediction at the outer part of the pellet above the burnup of 20 MWd/kgHM. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. 24 figs., 4 tabs. (Author)

  13. Radial power density distribution of MOX fuel rods in the HBWR

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Joo, Hyung Kook; Lee, Byung Ho; Sohn, Dong Seong

    1999-07-01

    Two MOX fuel rods, which ar being fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with the Korea Atomic Energy Research Institute (KAERI), are going to be irradiated in the HBWR (Halden Boiling Water Reactor) from the beginning of 2000 in the framework of OECD Halden Reactor Programme (HRP) together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is a basic property in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR H BWR that calculates radial power density distribution for three MOX fuel rods have been developed subroutine FACTOR H BWR gives good agreement with the physics calculation except slight underprediction in the central part and a little overprediction at the outer part of the pellet. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. (author). 5 refs., 3 tabs., 24 figs

  14. Durability of Low Platinum Fuel Cells Operating at High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Polevaya, Olga [Nuvera Fuel Cells Inc.; Blanchet, Scott [Nuvera Fuel Cells Inc.; Ahluwalia, Rajesh [Argonne National Lab; Borup, Rod [Los-Alamos National Lab; Mukundan, Rangachary [Los-Alamos National Lab

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  15. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  16. A New Method for Simulating Power Flow Density Focused by a Silicon Lens Antenna Irradiated with Linearly Polarized THz Wave

    Directory of Open Access Journals (Sweden)

    Catur Apriono

    2015-08-01

    Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.

  17. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    International Nuclear Information System (INIS)

    Conboy, Thomas; Hejzlar, Pavel

    2006-01-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  18. Soft-solution route to ZnO nanowall array with low threshold power density

    Science.gov (United States)

    Jang, Eue-Soon; Chen, Xiaoyuan; Won, Jung-Hee; Chung, Jae-Hun; Jang, Du-Jeon; Kim, Young-Woon; Choy, Jin-Ho

    2010-07-01

    ZnO nanowall array (ZNWA) has been directionally grown on the buffer layer of ZnO nanoparticles dip-coated on Si-wafer under a soft solution process. Nanowalls on substrate are in most suitable shape and orientation not only as an optical trap but also as an optical waveguide due to their unique growth habit, V[011¯0]≫V[0001]≈V[0001¯]. Consequently, the stimulated emission at 384 nm through nanowalls is generated by the threshold power density of only 25 kW/cm2. Such UV lasing properties are superior to those of previously reported ZnO nanorod arrays. Moreover, there is no green (defect) emission due to the mild procedure to synthesize ZNWA.

  19. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  20. Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ding

    2015-06-01

    Full Text Available This paper presents a rigorous design and optimization of an axial flux microelectromechanical systems (MEMS brushless dc (BLDC micromotor with dual rotor improving both efficiency and power density with an external diameter of only around 10 mm. The stator is made of two layers of windings by MEMS technology. The rotor is developed by film permanent magnets assembled over the rotor yoke. The characteristics of the MEMS micromotor are analyzed and modeled through a 3-D magnetic equivalent circuit (MEC taking the leakage flux and fringing effect into account. Such a model yields a relatively accurate prediction of the flux in the air gap, back electromotive force (EMF and electromagnetic torque, whilst being computationally efficient. Based on 3-D MEC model the multi-objective firefly algorithm (MOFA is developed for the optimal design of this special machine. Both 3-D finite element (FE simulation and experiments are employed to validate the MEC model and MOFA optimization design.

  1. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    Science.gov (United States)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  2. Simulation, measurement, and emulation of photovoltaic modules using high frequency and high power density power electronic circuits

    Science.gov (United States)

    Erkaya, Yunus

    system variables so that any PV module can be emulated as the design requires. A non-synchronous buck converter is proposed for the emulation of a single, high-power PV module using traditional silicon devices. With the proof-of-concept working and improvements in efficiency, power density and steady-state errors made, dynamic tests were performed using an inverter connected to the PV emulator. In order to improve the dynamic characteristics, a synchronous buck converter topology is proposed along with the use of advanced GaNFET devices which resulted in very high power efficiency and improved dynamic response characteristics when emulating PV modules.

  3. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    Science.gov (United States)

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  4. Finite difference applied to the reconstruction method of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2016-01-01

    Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.

  5. Development of Optimized Core Design and Analysis Methods for High Power Density BWRs

    Science.gov (United States)

    Shirvan, Koroush

    Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR capital cost. Generally, the core power density in BWRs is limited by the thermal Critical Power of its assemblies, below which heat removal can be accomplished with low fuel and cladding temperatures. The present study investigates both increases in the heat transfer area between ~he fuel and coolant and changes in operating parameters to achieve higher power levels while meeting the appropriate thermal as well as materials and neutronic constraints. A scoping study is conducted under the constraints of using fuel with cylindrical geometry, traditional materials and enrichments below 5% to enhance its licensability. The reactor vessel diameter is limited to the largest proposed thus far. The BWR with High power Density (BWR-HD) is found to have a power level of 5000 MWth, equivalent to 26% uprated ABWR, resulting into 20% cheaper O&M and Capital costs. This is achieved by utilizing the same number of assemblies, but with wider 16x16 assemblies and 50% shorter active fuel than that of the ABWR. The fuel rod diameter and pitch are reduced to just over 45% of the ABWR values. Traditional cruciform form control rods are used, which restricts the assembly span to less than 1.2 times the current GE14 design due to limitation on shutdown margin. Thus, it is possible to increase the power density and specific power by 65%, while maintaining the nominal ABWR Minimum Critical Power Ratio (MCPR) margin. The plant systems outside the vessel are assumed to be the same as the ABWR-Il design, utilizing a combination of active and passive safety systems. Safety analyses applied a void reactivity coefficient calculated by SIMULA TE-3 for an equilibrium cycle core that showed a 15% less negative coefficient for the BWR-HD compared to the ABWR. The feedwater

  6. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    Science.gov (United States)

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  7. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Science.gov (United States)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  8. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  9. Engineering and physics of high-power-density, compact, reversed-field-pinch fusion reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Krakowski, R.A.; Schultz, K.R.; Steiner, D.

    1989-01-01

    The technical feasibility and key developmental issues of compact, high-power-density Reversed-Field-Pinch (RFP) reactors are the primary results of the TITAN RFP reactor study. Two design approaches emerged, TITAN-I and TITAN-II, both of which are steady-state, DT-burning, circa 1000 MWe power reactors. The TITAN designs are physically compact and have a high neutron wall loading of 18 MW m 2 . Detailed analyses indicate that: a) each design is technically feasible; b) attractive features of compact RFP reactors can be realized without sacrificing the safety and environmental potential of fusion; and c) major features of this particular embodiment of the RFP reactor are retained in a design window of neutron wall loading ranging from 10 to 20 MW/m 2 . A major product of the TITAN study is the identification and quantification of major engineering and physics requirements for this class of RFP reactors. These findings are the focus of this paper. (author). 26 refs.; 4 figs.; 1 tab

  10. Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.

    Science.gov (United States)

    Gutiérrez, David; Ramírez-Moreno, Mauricio A

    2016-04-01

    We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

  11. APEX and ALPS, high power density technology programs in the U.S

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Berk, S.; Abdou, M.; Mattas, R.

    1999-02-01

    In fiscal year (FY) 1998 two new fusion technology programs were initiated in the US, with the goal of making marked progress in the scientific understanding of technologies and materials required to withstand high plasma heat flux and neutron wall loads. APEX is exploring new and revolutionary concepts that can provide the capability to extract heat efficiently from a system with high neutron and surface heat loads while satisfying all the fusion power technology requirements and achieving maximum reliability, maintainability, safety, and environmental acceptability. ALPS program is evaluating advanced concepts including liquid surface limiters and divertors on the basis of such factors as their compatibility with fusion plasma, high power density handling capabilities, engineering feasibility, lifetime, safety and R and D requirements. The APEX and ALPS are three-year programs to specify requirements and evaluate criteria for revolutionary approaches in first wall, blanket and high heat flux component applications. Conceptual design and analysis of candidate concepts are being performed with the goal of selecting the most promising first wall, blanket and high heat flux component designs that will provide the technical basis for the initiation of a significant R and D effort beginning in FY2001. These programs are also considering opportunities for international collaborations

  12. THE X-RAY POWER SPECTRAL DENSITY FUNCTION OF THE SEYFERT ACTIVE GALACTIC NUCLEUS NGC 7469

    International Nuclear Information System (INIS)

    Markowitz, A.

    2010-01-01

    We present the broadband X-ray power spectral density (PSD) function of the X-ray-luminous Seyfert 1.2 NGC 7469, measured from Rossi X-ray Timing Explorer monitoring data and two XMM-Newton observations. We find significant evidence for a turnover in the 2-10 keV PSD at a temporal frequency of 2.0 +3.0 -0.8 x 10 -6 Hz or 1.0 +3.0 -0.6 x 10 -6 Hz, depending on the exact form of the break (sharply broken or slowly bending power law, respectively). The 'surrogate' Monte Carlo method of Press et al. was used to map out the probability distributions of PSD model parameters and obtain reliable uncertainties (68% confidence limits quoted here). The corresponding break timescale of 5.8 ± 3.5 days or 11.6 +17.5 -8.7 days, respectively, is consistent with the empirical relation between PSD break timescale, black hole mass, and bolometric luminosity of McHardy et al. Compared to the 2-10 keV PSD, the 10-20 keV PSD has a much flatter shape at high temporal frequencies, and no PSD break is significantly detected, suggesting an energy-dependent evolution not unlike that exhibited by several Galactic black hole systems.

  13. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  14. Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping

    Science.gov (United States)

    Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong

    2018-06-01

    The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.

  15. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    invariance: Iq(f) ~ f-?(q) , ?(q) is the scaling exponent. This allows to characterize the scaling behavior of a process: fractal or multifractal with intermittent properties. For q = 2, the Hilbert spectrum is defined. In this work, The data are collected at the University site of Guadeloupe, an island in the West Indies, located at 16°15 N latitude 60°30 W longitude. Our measurements sampled at 1 Hz were performed during one year period. The analyzed data present a power spectral density E(f) displaying a power law of the form E(f) ~ f-β with 1.6 ˜ β ˜ 2.2 for frequencies f ˜ 0.1 Hz, corresponding to time scales T × 10 s. Furthermore, global solar radiation data possesses multifractal properties. For comparison, other multifractal analysis techniques such as structure functions, MDFA, wavelet leaders are also used. This preliminary work set the basis for further investigation dedicated to simulate and forecast a sequence of solar energy fluctuation under different meteorological conditions, in the multifractal framework.

  16. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  17. Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

    Science.gov (United States)

    Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio

    2018-02-01

    The power spectral density (PSD) of any time-dependent stochastic process X t is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X t over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T\\to ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.

  18. High power and high energy electrodes using carbon nanotubes

    Science.gov (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  19. Optimization of fusion power density in the two-energy-component tokamak reactor

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1974-10-01

    The optimal plasma conditions for maximizing fusion power density P/sub f/ in a beam-driven D--T tokamak reactor (TCT) are considered. Given T/sub e/ = T/sub i/ and fixed total plasma pressure, there is an optimal n/sub e/tau/sub E/ for maximizing P/sub f/, viz. n/sub e/tau/sub E/ = 4 x 10 12 to 2 x 10 13 cm -3 sec for T/sub e/ = 3--15 keV and 200-keV D beams. The corresponding anti GAMMA equals (beam pressure/bulk-plasma pressure) is 0.96 to 0.70. P/sub fmax/ increases as T/sub e/ is reduced and can be an order of magnitude larger than the maximum P/sub f/ of a thermal reactor of the same beta, at any temperature. A lower practical limit to T/sub e/ may be set by requiring a minimum beam power multiplication Q/sub b/. For the purpose of fissile breeding, the minimum Q/sub b/ approximately 0.6, requiring T/sub e/ greater than or equal to 3 keV if Z = 1. The optimal operating conditions of a TCT for obtaining P/sub fmax/ are considerably different from those for enhancing Q/sub b/. Maximizing P/sub f/ requires restricting both T/sub e/ and n/sub e/tau/sub E/, maintaining a bulk plasma markedly enriched in tritium, and spoiling confinement of fusion alphas. Considerable impurity content can be tolerated without seriously degrading P/sub fmax/, and high-Z impurity radiation may be useful for regulating tau/sub E/. (auth)

  20. High-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system

    International Nuclear Information System (INIS)

    Ross, M.

    1979-01-01

    A variational theory is developed that is accurate at normal liquid densities and densities up to 4 times that of the argon triple point. This theory uses the inverse 12th-power potential as a reference system. The properties of this reference system are expressed in terms of hard-sphere packing fractions by using a modified form of hard-space variational theory. As a result of this ''bootstrapping,'' a variational procedure may be followed that employs the inverse 12th-power system as a reference but uses the hard-sphere packing fraction as the scaling parameter with which to minimize the Helmholtz free energy

  1. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    Science.gov (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  2. Intercomparison of auto- and cross-power spectral density surveillance systems for sodium boiling detection in fast reactors

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    1979-01-01

    Theoretical and experimental investigations on detection systems for small narrow-band components in noise signals were conducted. These detectionn systems are based on the continuous surveillance of the power spectral density for characteristic peaks. Detection sensitivity for auto- and cross-correlation measurements was computed for signals with normally distributed amplitudes in dependence of signal coherence. The derived detection criteria allowed the comparison of auto- and cross-power spectral density surveillance. Theoretical results were confirmed in a number of experimental parameter studies. Special theoretical investigations were done for the optimal detection of local sodium boiling in liquid-metal fast breeder reactors

  3. The use of surface power for characterisation of structure-borne sound sources of low modal density

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1996-01-01

    The use of the surface power methods for source characterisaiton of vibrating machinery of low modal density is investigated in this paper. It was demonstrated by Ohlrich and Larsen that this relatively simple, but very useful measurement technique for quantifying the vibratory strength of machin......The use of the surface power methods for source characterisaiton of vibrating machinery of low modal density is investigated in this paper. It was demonstrated by Ohlrich and Larsen that this relatively simple, but very useful measurement technique for quantifying the vibratory strength...

  4. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...

  5. High power density superconducting rotating machines—development status and technology roadmap

    Science.gov (United States)

    Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang

    2017-12-01

    Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.

  6. A New CDS Structure for High Density FPA with Low Power

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2015-01-01

    Full Text Available Being an essential part of infrared readout integrated circuit, correlated double sampling (CDS circuits play important roles in both depressing reset noise and conditioning integration signals. To adapt applications for focal planes of large format and high density, a new structure of CDS circuit occupying small layout area is proposed, whose power dissipation has been optimized by using MOSFETs in operation of subthreshold region, which leads to 720 nW. Then the noise calculation model is established, based on which the noise analysis has been carried out by the approaches of transfer function and numerical simulations using SIMULINK and Verilog-A. The results are in good agreement, demonstrating the validity of the present noise calculation model. Thermal noise plays a dominant role in the long wave situation while 1/f noise is the majority in the medium wave situation. The total noise of long wave is smaller than medium wave, both of which increase with the integration capacitor and integration time increasing.

  7. New structures of power density spectra for four Kepler active galactic nuclei

    Science.gov (United States)

    Dobrotka, A.; Antonuccio-Delogu, V.; Bajčičáková, I.

    2017-09-01

    Many nearby active galactic nuclei display a significant short-term variability. In this work, we reanalyse photometric data of four active galactic nuclei observed by Kepler in order to study the flickering activity, with our main goal to search for multiple components in the power density spectra. We find that all four objects have similar characteristics, with two break frequencies at approximately log( f /Hz) = -5.2 and -4.7. We consider some physical phenomena whose characteristic time-scales are consistent with those observed, in particular mass accretion fluctuations in the inner geometrically thick disc (hot X-ray corona) and unstable relativistic Rayleigh-Taylor modes. The former is supported by detection of the same break frequencies in the Swift X-ray data of ZW229-15. We also discuss rms-flux relations, and we detect a possible typical linear trend at lower flux levels. Our findings support the hypothesis of a multiplicative character of variability, in agreement with the propagating accretion fluctuation model.

  8. Substructure identification for shear structures: cross-power spectral density method

    International Nuclear Information System (INIS)

    Zhang, Dongyu; Johnson, Erik A

    2012-01-01

    In this paper, a substructure identification method for shear structures is proposed. A shear structure is divided into many small substructures; utilizing the dynamic equilibrium of a one-floor substructure, an inductive identification problem is formulated, using the cross-power spectral densities between structural floor accelerations and a reference response, to estimate the parameters of that one story. Repeating this procedure, all story parameters of the shear structure are identified from top to bottom recursively. An identification error analysis is performed for the proposed substructure method, revealing how uncertain factors (e.g. measurement noise) in the identification process affect the identification accuracy. According to the error analysis, a smart reference selection rule is designed to choose the optimal reference response that further enhances the identification accuracy. Moreover, based on the identification error analysis, explicit formulae are developed to calculate the variances of the parameter identification errors. A ten-story shear structure is used to illustrate the effectiveness of the proposed substructure method. The simulation results show that the method, combined with the reference selection rule, can very accurately identify structural parameters despite large measurement noise. Furthermore, the proposed formulae provide good predictions for the variances of the parameter identification errors, which are vital for providing accurate warnings of structural damage. (paper)

  9. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    Science.gov (United States)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  10. Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density

    Science.gov (United States)

    Lin, Sheng-Chi; Lu, Yi-Ting; Chien, Yu-An; Wang, Jeng-An; You, Ting-Hsuan; Wang, Yu-Sheng; Lin, Chih-Wen; Ma, Chen-Chi M.; Hu, Chi-Chang

    2017-09-01

    Carbon nanofibers modified with carboxyl groups (CNF-COOH) possessing good wettability and high porosity are homogeneously deposited with amorphous manganese dioxide (amorphous MnO2) by potentiodynamic deposition for asymmetric super-capacitors (ASCs). The potential-cycling in 1 M H2SO4 successfully enhances the hydrophilicity of carbonized polymer nanofibers and facilitates the access of electrolytes within the CNF-COOH matrix. This modification favors the deposition of amorphous MnO2 and improves its electrochemical utilization. In this composite, MnO2 homogeneously dispersed onto CNF-COOH provides desirable pseudocapacitance and the CNF-COOH network works as the electron conductor. The composite of CNF-COOH@MnO2-20 shows a high specific capacitance of 415 F g-1 at 5 mV s-1. The capacitance retention of this composite is 94% in a 10,000-cycle test. An ASC cell consisting of this composite and activated carbon as positive and negative electrodes can be reversibly charged/discharged to a cell voltage of 2.0 V in 1 M Na2SO4 and 4 mM NaHCO3 with specific energy and power of 36.7 Wh kg-1 and 354.9 W kg-1, respectively. This ASC also shows excellent cell capacitance retention (8% decay) in the 2V, 10,000-cycle stability test, revealing superior performance.

  11. Study on the impact of the engineering energy gain and the FPC mass power density on the generation cost of fusion power plant

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican

    2004-01-01

    The impact of the engineering energy gain and the fusion-power-core (FPC) mass power density (MPD) on the generation cost of fusion power plant are analyzed based on the economic elasticity approach in this paper. From the functions describing the relationship of the generation cost with the engineering energy gain and the MPD, the elasticity coefficients of the generation cost with the engineering energy gain and the MPD have been derived respectively to analyze their sensitivity to the generation cost and the MPD to the generation cost decreases with increasing the engineering energy gain or the MPD. (authors)

  12. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  13. On the impact of low power density microwaves in some living tissues

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, M.; Tufescu, D.E. [Univ. Al. I. Cuza, Faculty of Physics, Iasi (Romania)

    2006-07-01

    The biomedical and ecological interest for the microwave impact on the Earth biosphere is continuously increased since the industrial, military and communication activities strongly contribute to the electromagnetic stress of living bodies. In the next the authors present some of the main results obtained regarding the microwave exposure of various types of biological material: bacteria, fungi, young plant seedlings, dry seeds, animal tissues. The electromagnetic exposure was carried out in open space in well controlled environmental conditions by using 10.75 GHz/1 m W cm{sup -2} microwaves. Biochemical assays and cytogenetic tests have been carried out to reveal the changes induced post irradiation. The response of some pathogen bacteria, have been emphasized by means of turbidimetric measurements - the stimulatory effect being noticed at the level of the microbial population density (the stimulation of the human body microbial flora seems to be one of the side effects of microwave exposures). The behavior of some fungus species was investigated by spectrophotometric assay of various enzyme systems: either inhibitor y or stimulatory effects have been revealed, depending on the species and enzyme peculiarities (certain biotechnological tools could be developed based on fungi exposure to microwaves). The genetic effects of seed exposure have been studied by applying cytogenetic tests to meristem tissues provided by freshly germinated cereal plantlets. Significant rate of chromosomal aberrations has been observed following the microwave exposure as well as stimulatory influence on the proliferation rate (the possibility of plant growth stimulation is suggested). The vegetal tissue cultures (in vitro micro propagated pharmaceutical plants) exposed to low power density microwaves presented increased levels of assimilatory pigments (the controlled development of technical plants for medical uses is proposed). The chlorophyll ratio in young tree seedlings after

  14. On the impact of low power density microwaves in some living tissues

    International Nuclear Information System (INIS)

    Creanga, M.; Tufescu, D.E.

    2006-01-01

    The biomedical and ecological interest for the microwave impact on the Earth biosphere is continuously increased since the industrial, military and communication activities strongly contribute to the electromagnetic stress of living bodies. In the next the authors present some of the main results obtained regarding the microwave exposure of various types of biological material: bacteria, fungi, young plant seedlings, dry seeds, animal tissues. The electromagnetic exposure was carried out in open space in well controlled environmental conditions by using 10.75 GHz/1 m W cm -2 microwaves. Biochemical assays and cytogenetic tests have been carried out to reveal the changes induced post irradiation. The response of some pathogen bacteria, have been emphasized by means of turbidimetric measurements - the stimulatory effect being noticed at the level of the microbial population density (the stimulation of the human body microbial flora seems to be one of the side effects of microwave exposures). The behavior of some fungus species was investigated by spectrophotometric assay of various enzyme systems: either inhibitor y or stimulatory effects have been revealed, depending on the species and enzyme peculiarities (certain biotechnological tools could be developed based on fungi exposure to microwaves). The genetic effects of seed exposure have been studied by applying cytogenetic tests to meristem tissues provided by freshly germinated cereal plantlets. Significant rate of chromosomal aberrations has been observed following the microwave exposure as well as stimulatory influence on the proliferation rate (the possibility of plant growth stimulation is suggested). The vegetal tissue cultures (in vitro micro propagated pharmaceutical plants) exposed to low power density microwaves presented increased levels of assimilatory pigments (the controlled development of technical plants for medical uses is proposed). The chlorophyll ratio in young tree seedlings after

  15. Theoretical remarks on the statistics of three discriminants in Piety's automated signature analysis of PSD [Power Spectral Density] data

    International Nuclear Information System (INIS)

    Behringer, K.; Spiekerman, G.

    1984-01-01

    Piety (1977) proposed an automated signature analysis of power spectral density data. Eight statistical decision discriminants are introduced. For nearly all the discriminants, improved confidence statements can be made. The statistical characteristics of the last three discriminants, which are applications of non-parametric tests, are considered. (author)

  16. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the

  17. Changes in EEG power density of non-REM sleep in depressed patients during treatment with trazodone

    NARCIS (Netherlands)

    Bemmel, Alex L. van; Beersma, Domien G.M.; Hoofdakker, Rutger H. van den

    1995-01-01

    Recently, it was hypothesized that acute or cumulative suppression of non-REM sleep intensity might be related to the therapeutic effects of antidepressants. This intensity has been proposed to be expressed in the EEG power density in non-REM sleep. In the present study, the relationship was

  18. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    Science.gov (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of power density and primer application on polymerization of dual-cured resin cements monitored by ultrasonic measurement.

    Science.gov (United States)

    Takubo, Chikako; Yasuda, Genta; Murayama, Ryosuke; Ogura, Yukari; Tonegawa, Motoka; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2010-08-01

    We used ultrasonic measurements to monitor the influence of power density and primer application on the polymerization reaction of dual-cured resin cements. The ultrasonic equipment comprised a pulser-receiver, transducers, and an oscilloscope. Resin cements were mixed and inserted into a transparent mould, and specimens were placed on the sample stage, onto which the primer, if used, was also applied. Power densities of 0 (no irradiation), 200, or 600 mW cm(-2) were used for curing. The transit time through the cement disk was divided by the specimen thickness to obtain the longitudinal sound velocity. When resin cements were light-irradiated, each curve displayed an initial plateau of approximately 1,500 m s(-1), which rapidly increased to a second plateau of 2,300-2,900 m s(-1). The rate of sound velocity increase was retarded when the cements were light-irradiated at lower power densities, and increased when the primer was applied. The polymerization behaviour of dual-cured resin cements was therefore shown to be affected by the power density of the curing unit and the application of self-etching primer. (c) 2010 The Authors. Journal compilation (c) 2010 Eur J Oral Sci.

  20. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    Science.gov (United States)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,I of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,I-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,I-α anti-correlation can hardly be reconciled with the predicted Ep,I ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,I are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,I. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  1. Analysis of the methodical component of core power density field calculation error on the basis of Mochovce-1 commissioning tests

    International Nuclear Information System (INIS)

    Brik, A.

    2009-01-01

    In the first decade of June 2008, during the power commissioning of the reactor at the Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant (BOP) needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields calculation error in the core of Mochovce-1 reactor operating with varying load. (author)

  2. Analysis of the methodical component of core power density field calculation error on the basis of Mochovce-1 commissioning tests

    International Nuclear Information System (INIS)

    Brik, A.

    2009-01-01

    In the first decade of June 2008, during the power commissioning of the reactor at Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system's database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields' calculation error in the core of Mochovce-1 reactor operating with varying load. (Authors)

  3. Volumetric properties of ammonium nitrate in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Vranes, Milan; Dozic, Sanja; Djeric, Vesna; Gadzuric, Slobodan

    2012-01-01

    Highlights: ► We observed interactions and changes in the solution using volumetric properties. ► The greatest influence on the solvent–solvent interactions has temperature. ► The smallest influence temperature has on the ion–ion interactions. ► Temperature has no influence on concentrated systems and partially solvated melts. - Abstract: The densities of the ammonium nitrate in N,N-dimethylformamide (DMF) mixtures were measured at T = (308.15 to 348.15) K for different ammonium nitrate molalities in the range from (0 to 6.8404) mol·kg −1 . From the obtained density data, volumetric properties (apparent molar volumes and partial molar volumes) have been evaluated and discussed in the term of respective ionic and dipole interactions. From the apparent molar volume, determined at various temperatures, the apparent molar expansibility and the coefficients of thermal expansion were also calculated.

  4. Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud

    Science.gov (United States)

    Pingel, N. M.; Lee, Min-Young; Burkhart, Blakesley; Stanimirović, Snežana

    2018-04-01

    We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H I, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of ‑3.23 ± 0.05 and ‑3.22 ± 0.05 for the uncorrected and opacity-corrected H I column density images. This result suggests that the H I in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of ‑2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of ‑3.08 ± 0.08 and ‑2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly ‑3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.

  5. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    Science.gov (United States)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  6. Influence of power density on the setting behaviour of light-cured glass-ionomer cements monitored by ultrasound measurements.

    Science.gov (United States)

    Tonegawa, Motoka; Yasuda, Genta; Chikako, Takubo; Tamura, Yukie; Yoshida, Takeshi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2009-07-01

    To monitor the influence of the power density of the curing unit on the setting behaviour of light-cured glass-ionomer cements (LCGICs) using ultrasound measurements. The ultrasound equipment comprised a pulser-receiver, transducers and an oscilloscope. The LCGICs used were Fuji II LC, Fuji II LC EM and Fuji Filling LC. The cements were mixed according to the manufacturer's instructions and then inserted into a transparent mould. The specimens were placed on the sample stage and cured with power densities of 0 (no irradiation), 200 or 600 mW/cm(2). The transit time through the cement disk was divided by the specimen thickness and then the longitudinal ultrasound velocity (V) within the material was obtained. Analysis of variance and Tukey's Honestly Significantly Different test were used to compare the V values between the set cements. When the LCGICs were light-irradiated, each curve displayed an initial plateau at approximately 1500 m/s and then rapidly increased to a second plateau at approximately 2600 m/s. The rate of increase of V was retarded when the cements were light-irradiated with a power density of 200 mW/cm(2) than with a power density of 600 mW/cm(2). Although sonic echoes were detected from the beginning of the measurements, the rates of increase of the sonic velocity were relatively slow when the cement was not light-irradiated. The ultrasound device monitored the setting processes of LCGICs accurately based on the longitudinal V. The polymerization behaviour of LCGICs was shown to be affected by the power density of the curing unit.

  7. Simulation of electron beam from two strip electron guns and control of power density by rotation of gun

    International Nuclear Information System (INIS)

    Sahu, G K; Baruah, S; Thakur, K B

    2012-01-01

    Electron beam is preferably used for large scale evaporation of refractory materials. Material evaporation from a long and narrow source providing a well collimated wedge shaped atomic beam has applications in isotopic purification of metals relevant to nuclear industry. The electron beam from an electron gun with strip type filament provides a linear heating source. However, the high power density of the electron beam can lead to turbulence of the melt pool and undesirable splashing of molten metal. For obtaining quiet surface evaporation, the linear electron beam is generally scanned along its length. To further reduce the power density to maintain quiet evaporation the width of the vapour source can be controlled by rotating the electron gun on its plane, thereby scanning an inclined beam over the molten pool. The rotation of gun has further advantages. When multiple strip type electron guns are used for scaling up evaporation length, a dark zone appears between two beams due to physical separation of adjacent guns. This dark zone can be reduced by rotating the gun and thereby bringing two adjacent beams closer. The paper presented here provides the simulation results of the electron beam trajectory and incident power density originating from two strip electron guns by using in-house developed code. The effect of electron gun rotation on the electron beam trajectory and power density is studied. The simulation result is experimentally verified with the image of molten pool and heat affected zone taken after experiment. This technique can be gainfully utilized in controlling the time averaged power density of the electron beam and obtaining quiet evaporation from the metal molten pool.

  8. Research on instability design method without occurring boiling transition for hyper ABWR plants of extended core power density

    International Nuclear Information System (INIS)

    Okamoto, T.; Hotta, A.; Ama, T.

    2008-01-01

    The hyper ABWR (Advanced Boiling Water Reactor) project aims to develop an advanced BWR concept that is competitive in the global market with both highly economic and safety features. Expecting plant construction within the coming ten years, a research program for substantiating the basic design of a high core power density ABWR was conducted. By inheriting the conventional ABWR design, it is possible to reduce construction costs. In order to achieve the rated core power of over 1650MWe which is almost equivalent to that of the EPR (European Pressurized Water Reactor), the core power density of ABWR will be up-rated by at least 25%. Three key subjects linked to this target were recognized. They are, (1) fuel design applicable to the high power density core, (2) improvement of the evaluation method for the coupled neutronic and thermal-hydraulic instability under a wider power-flow operating range, and (3) improvement of the steam separator performance under high quality conditions. In this paper, the second subject has been focused on. In the second subject, the uncertainty approach was introduced in the instability analysis where the best-estimate plant simulator was combined with a direct prediction of boiling transition by the sub-channel code. By employing the CSAU like method, a safety evaluation system that enables to include influences of uncertainties has been developed. Based on the correlation between the time margin for reaching the boiling transition under power oscillations and the decay ratio in the power-flow operation map, an automatic power oscillation suppressing system was designed. The set-point for activating suppression mechanisms (i.e. scram or SRI) could be determined based on this correlation. It was proposed that the present conservative acceptance criterion of the deterministic decay ratio can be replaced with a more rational one of the time margin with including uncertainties. (author)

  9. Power density investigations for the large wind turbines' grid-side press-pack IGBT 3L-NPC-VSCs

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2012-01-01

    -thermal models are required to be derived, implemented, and utilized. In this study, employed as a grid-side medium voltage full-scale voltage source converters (VSCs) in a multi-MW wind turbine, press-pack IGBT three-level neutral-point-clamped VSC (3L-NPC-VSC), 3L active NPC-VSC (3L-ANPC-VSC), and 3L neutral......Power density is the important design criterion in wind turbine converter design provided that satisfactory converter performance is guaranteed. In order to assess a converter in terms of power density, which is dependent on converter electrical and thermal behaviors, converter electro......-point-piloted VSC (3L-NPP-VSC) are characterized in terms of converter operating principles, physical structure, power loss, and DC bus capacitor size for establishing the basis for converter electro-thermal modeling. Via the practical implementations of the converter electro-thermal models in a computation...

  10. Power density investigation on the press-pack IGBT 3L-HB-VSCs applied to large wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    capabilities, DC capacitor sizes, converter cabinet volumes of the three 3LHB- VSCs utilizing press-pack IGBTs are investigated in order to quantify and compare the power densities of the 3L-HB-VSCs employed as grid-side converters. Also, the suitable transformer types for the 3L-HB-VSCs are determined......With three different DC-side and AC-side connections, the three-level H-bridge voltage source converters (3L-HB-VSCs) are alternatives to 3L neutral-point-clamped VSCs (3L-NPC-VSCs) for interfacing large wind turbines with electricity grids. In order to assess their feasibility for large wind...... turbines, they should be investigated in terms of power density, which is one of the most important design criteria for wind turbine converters due to turbine nacelle space limitation. In this study, by means of the converter electro-thermal models based on the converter characteristics, the power...

  11. On the Influence of Piston and Cylinder Density in Tribodynamics of a Radial Piston Digital Fluid Power Displacement Motor

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.

    2015-01-01

    -stroke displacement simulations are used as basis for the parametric analysis. From the parametric analysis a change, in the minimum film thickness as function of piston and cylinder density, is shown for certain operating modes of the digital fluid power displacement motor. This indicate a need for careful....... In this paper the influence of the inertia term on the lubrication gaps of a radial piston motor are studied by a parametric analysis of the piston and cylinder density in a multibody tribodynamic simulation model. The motor is modeled as a digital fluid power displacement machine and a series of full...... assessment of the applicability, of the force balance condition, if it is used in multibody tribodynamic simulations of radial piston digital fluid power displacement motors....

  12. Volumetric formulation of lattice Boltzmann models with energy conservation

    OpenAIRE

    Sbragaglia, M.; Sugiyama, K.

    2010-01-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. ...

  13. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  14. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  15. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  16. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    Science.gov (United States)

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  17. Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

    Science.gov (United States)

    Duffy, Kirsten P.

    2016-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.

  18. Heating power at the substrate, electron temperature, and electron density in 2.45 GHz low-pressure microwave plasma

    Science.gov (United States)

    Kais, A.; Lo, J.; Thérèse, L.; Guillot, Ph.

    2018-01-01

    To control the temperature during a plasma treatment, an understanding of the link between the plasma parameters and the fundamental process responsible for the heating is required. In this work, the power supplied by the plasma onto the surface of a glass substrate is measured using the calorimetric method. It has been shown that the powers deposited by ions and electrons, and their recombination at the surface are the main contributions to the heating power. Each contribution is estimated according to the theory commonly used in the literature. Using the corona balance, the Modified Boltzmann Plot (MBP) is employed to determine the electron temperature. A correlation between the power deposited by the plasma and the results of the MBP has been established. This correlation has been used to estimate the electron number density independent of the Langmuir probe in considered conditions.

  19. Kosovo’s Ground Flash Density and Protection of Transmission Lines of the Kosovo Power System from Atmospheric Discharges

    Directory of Open Access Journals (Sweden)

    Bahri Prebreza

    2018-03-01

    Full Text Available In this paper is presented the protection of transmission power lines of the Kosovo Power System from atmospheric discharges, with the use of surge arresters. Atmospheric discharges represent one of the main causes of interruptions for the Kosovo Power System. In addition, the ground flash density for Kosovo is given. The transmission lines with the worst performance regarding atmospheric discharges are discussed in more detail and are presented recommendations about the surge arresters used to protect the system from these overvoltages. The data provided by the localized lightning system in Kosovo enable us to provide a detailed correlation of the reported outages of the Kosovo Power System and corresponding atmospheric discharges. Recommendations for protection in terms of surge arresters are given followed by subsequent dynamic simulations using MATLAB software.

  20. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  1. Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe

    OpenAIRE

    Takahashi, Ryuichi

    2008-01-01

    We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime ($k \\approx 0.1h$/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state $w(a)$. It turns out that the power spectrum coincides with the approx...

  2. Simulation study of a high power density rectenna array for biomedical implantable devices

    Science.gov (United States)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  3. ICRF power-deposition profiles and heating in monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Stuart, D.F.

    1989-01-01

    In this paper, we compare experimental results of electron and ion-heating in discharges that feature monster sawtooth with those in pellet-produced peaked-density profile discharges which were heated with ICRF. Also we carry out a comprehensive analysis of ICRF-heated peaked-density profile discharges by a transport code to simulate the evolution of JET discharges and to provide an insight into the improved heating and confinement found in these discharges. In this analysis, the ICRF power-deposition profile in the minority-heating scenario is computed by the ray-tracing code BRAYCO that self-consistently takes the finite antenna geometry, its radiation spectrum and the hot-plasma damping into account. The power delivered to ions and electrons is calculated based on Stix model. (author) 10 refs., 5 figs

  4. Extremely high-power-density atmospheric-pressure thermal plasma jet generated by the nitrogen-boosted effect

    Science.gov (United States)

    Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro

    2018-06-01

    In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.

  5. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  6. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Science.gov (United States)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  7. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    Science.gov (United States)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  8. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    Science.gov (United States)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  9. Design and Performance Test of Axial Halbach Brushless DC Motor with Power Density 1.5 Kw/Kg

    Directory of Open Access Journals (Sweden)

    Kevin Dwi Prasetio

    2017-01-01

    Full Text Available Progress of technology on electric vehicle component sector is one reason the emergence of electric vehicles at the moment. Starting from battery which has a great current density up to the automatic control systems on electric vehicles. But there are still some shortcomings of this electric vehicle components, one of which is the low value of power density of existing electric motor in the market today.On vehicles such as electric cars when Race Car Contest, energy saving problems about power density of the driving motor is very vital. This is because the total weight of the vehicle has a huge influence on the vehicle efficiency is against it. The issue is one of the reasons of the research task. In this final task is done making the design, simulation, and architecture of the Axial Halbach Brushless DC Motor. Use of system configuration on the halbach magnet to avoid the use of iron as a material cantilever rotor. By changing the material of the cantilever rotor with lighter materials such as aluminum or even carbon fibre, the value of power density electric motors can be increased. Then using the litz wire on coil stator to reduce loss-power loss due to the barriers on the coil. Coreless stator on the system and to avoid the phenomenon of cogging at the time due to low rpm style attraction magnet with iron in the core material. While the creation process begins by determining the specifications of the Axial Halbach Brushless DC motors. Then go into the design phase of the mechanical and electrical design. Who then conducted simulations to help determine other parameters such as air gap, slot turn, and magnetic orientation. The process of making a component of stator and rotor after the simulation is completed. After all the components of the rotor and stator on assembly, mounting the hall sensor is carried out to the right to position obtained by reading the signals. After the motor can spin with good motor performance, testing can be done

  10. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power

    Science.gov (United States)

    Yost, Dillon C.; Yao, Yi; Kanai, Yosuke

    2017-09-01

    In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.

  11. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Savander, V. I.; Shumskiy, B. E., E-mail: borisshumskij@yandex.ru [National Research Nuclear University MEPhI (Russian Federation); Pinegin, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  12. Quantitative Analysis of the Effects of Slow Wave Sleep Deprivation During the First 3 h of Sleep on Subsequent EEG Power Density

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Bloem, Gerda M.; Hoofdakker, Rutger H. van den

    1987-01-01

    The relation between EEG power density during slow wave sleep (SWS) deprivation and power density during subsequent sleep was investigated. Nine young male adults slept in the laboratory for 3 consecutive nights. Spectral analysis of the EEG on the 2nd (baseline) night revealed an exponential

  13. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    Science.gov (United States)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  14. Need and trends of volumetric tests in recurring inspection of pressurized components in pressurized water reactors

    International Nuclear Information System (INIS)

    Bergemann, W.

    1982-01-01

    On the basis of the types of stress occurring in nuclear power plants and of practical results it has been shown that cracks in primary circuit components arise due to operating stresses in both the materials surfaces and the bulk of the materials. For this reason, volumetric materials testing is necessary in addition to surface testing. An outlook is given on the trends of volumetric testing. (author)

  15. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

    Science.gov (United States)

    Zhi, Mingjia; Manivannan, Ayyakkannu; Meng, Fanke; Wu, Nianqiang

    2012-06-01

    This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 F g-1 for the whole electrode and 900 F g-1 for the MnO2 shell at a scan rate of 2 mV s-1. Good cycling stability, high energy density (80.2 Wh kg-1) and high power density (57.7 kW kg-1) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors.

  16. Nuclear data uncertainties for local power densities in the Martin-Hoogenboom benchmark

    International Nuclear Information System (INIS)

    Van der Marck, S.C.; Rochman, D.A.

    2013-01-01

    The recently developed method of fast Total Monte Carlo to propagate nuclear data uncertainties was applied to the Martin-Hoogenboom benchmark. This Martin- Hoogenboom benchmark prescribes that one calculates local pin powers (of light water cooled reactor) with a statistical uncertainty lower than 1% everywhere. Here we report, for the first time, an estimate of the nuclear data uncertainties for these local pin powers. For each of the more than 6 million local power tallies, the uncertainty due to nuclear data uncertainties was calculated, based on random variation of data for 235 U, 238 U, 239 Pu and H in H 2 O thermal scattering. In the center of the core region, the nuclear data uncertainty is 0.9%. Towards the edges of the core, this uncertainty increases to roughly 3%. The nuclear data uncertainties have been shown to be larger than the statistical uncertainties that the benchmark prescribes

  17. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    Science.gov (United States)

    Ring, Peter

    2018-05-01

    We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  18. Cooling of high-density and power electronics by means of heat pipes

    International Nuclear Information System (INIS)

    Hubbeling, L.

    1980-06-01

    This report describes how heat pipes can be used for cooling modern electronic equipment, with numerous advantages over air-cooled systems. A brief review of heat-pipe properties is given, with a detailed description of a functioning prototype. This is a single-width CAMAC unit containing high-density electronic circuits cooled by three heat pipes, and allowing a dissipation of over 120 W instead of the normal maximum of 20 W. (orig.)

  19. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    Directory of Open Access Journals (Sweden)

    Ring Peter

    2018-01-01

    Full Text Available We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  20. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  1. Calculus of the Power Spectral Density of Ultra Wide Band Pulse Position Modulation Signals Coded with Totally Flipped Code

    Directory of Open Access Journals (Sweden)

    DURNEA, T. N.

    2009-02-01

    Full Text Available UWB-PPM systems were noted to have a power spectral density (p.s.d. consisting of a continuous portion and a line spectrum, which is composed of energy components placed at discrete frequencies. These components are the major source of interference to narrowband systems operating in the same frequency interval and deny harmless coexistence of UWB-PPM and narrowband systems. A new code denoted as Totally Flipped Code (TFC is applied to them in order to eliminate these discrete spectral components. The coded signal transports the information inside pulse position and will have the amplitude coded to generate a continuous p.s.d. We have designed the code and calculated the power spectral density of the coded signals. The power spectrum has no discrete components and its envelope is largely flat inside the bandwidth with a maximum at its center and a null at D.C. These characteristics make this code suited for implementation in the UWB systems based on PPM-type modulation as it assures a continuous spectrum and keeps PPM modulation performances.

  2. Density and temperature profile modifications with electron cyclotron power injection in quiescent double barrier discharges on DIII-D

    International Nuclear Information System (INIS)

    Casper, T A; Burrell, K H; Doyle, E J; Gohil, P; Lasnier, C J; Leonard, A W; Moller, J M; Osborne, T H; Snyder, P B; Thomas, D M; Weiland, J; West, W P

    2006-01-01

    Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes. Our initial experiments and modelling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters, namely ion temperature and rotation, electron density and impurity concentration. At onset and termination of the EC pulse, dynamically changing conditions are induced that provide a rapid evolution of T e /T i profiles accessible with 0.3 e /T i ) axis e /T i ratio as the ion temperature and density profiles flatten with this change in transport. The change in transport is consistent with a destabilization of ITG turbulence as inferred from the reduction of the stability threshold due to the change in T e /T i

  3. An optimally weighted estimator of the linear power spectrum disentangling the growth of density perturbations across galaxy surveys

    International Nuclear Information System (INIS)

    Sorini, D.

    2017-01-01

    Measuring the clustering of galaxies from surveys allows us to estimate the power spectrum of matter density fluctuations, thus constraining cosmological models. This requires careful modelling of observational effects to avoid misinterpretation of data. In particular, signals coming from different distances encode information from different epochs. This is known as ''light-cone effect'' and is going to have a higher impact as upcoming galaxy surveys probe larger redshift ranges. Generalising the method by Feldman, Kaiser and Peacock (1994) [1], I define a minimum-variance estimator of the linear power spectrum at a fixed time, properly taking into account the light-cone effect. An analytic expression for the estimator is provided, and that is consistent with the findings of previous works in the literature. I test the method within the context of the Halofit model, assuming Planck 2014 cosmological parameters [2]. I show that the estimator presented recovers the fiducial linear power spectrum at present time within 5% accuracy up to k ∼ 0.80 h Mpc −1 and within 10% up to k ∼ 0.94 h Mpc −1 , well into the non-linear regime of the growth of density perturbations. As such, the method could be useful in the analysis of the data from future large-scale surveys, like Euclid.

  4. Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires.

    Science.gov (United States)

    Zhao, Quan-Liang; He, Guang-Ping; Di, Jie-Jian; Song, Wei-Li; Hou, Zhi-Ling; Tan, Pei-Pei; Wang, Da-Wei; Cao, Mao-Sheng

    2017-07-26

    A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 μW/cm 2 , respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g 33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.

  5. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    Science.gov (United States)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  6. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    Science.gov (United States)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  7. Automated Volumetric Mammographic Breast Density Measurements May Underestimate Percent Breast Density for High-density Breasts

    NARCIS (Netherlands)

    Rahbar, K.; Gubern Merida, A.; Patrie, J.T.; Harvey, J.A.

    2017-01-01

    RATIONALE AND OBJECTIVES: The purpose of this study was to evaluate discrepancy in breast composition measurements obtained from mammograms using two commercially available software methods for systematic trends in overestimation or underestimation compared to magnetic resonance-derived

  8. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  9. Volumetric breast density estimation from full-field digital mammograms.

    Science.gov (United States)

    van Engeland, Saskia; Snoeren, Peter R; Huisman, Henkjan; Boetes, Carla; Karssemeijer, Nico

    2006-03-01

    A method is presented for estimation of dense breast tissue volume from mammograms obtained with full-field digital mammography (FFDM). The thickness of dense tissue mapping to a pixel is determined by using a physical model of image acquisition. This model is based on the assumption that the breast is composed of two types of tissue, fat and parenchyma. Effective linear attenuation coefficients of these tissues are derived from empirical data as a function of tube voltage (kVp), anode material, filtration, and compressed breast thickness. By employing these, tissue composition at a given pixel is computed after performing breast thickness compensation, using a reference value for fatty tissue determined by the maximum pixel value in the breast tissue projection. Validation has been performed using 22 FFDM cases acquired with a GE Senographe 2000D by comparing the volume estimates with volumes obtained by semi-automatic segmentation of breast magnetic resonance imaging (MRI) data. The correlation between MRI and mammography volumes was 0.94 on a per image basis and 0.97 on a per patient basis. Using the dense tissue volumes from MRI data as the gold standard, the average relative error of the volume estimates was 13.6%.

  10. Volumetric breast density estimation from full-field digital mammograms.

    NARCIS (Netherlands)

    Engeland, S. van; Snoeren, P.R.; Huisman, H.J.; Boetes, C.; Karssemeijer, N.

    2006-01-01

    A method is presented for estimation of dense breast tissue volume from mammograms obtained with full-field digital mammography (FFDM). The thickness of dense tissue mapping to a pixel is determined by using a physical model of image acquisition. This model is based on the assumption that the breast

  11. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  12. The influence of changes in the VVER-1000 fuel assembly shape during operation on the power density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, L. K., E-mail: Shishkov-LK@nrcki.ru; Gorodkov, S. S.; Mikailov, E. F.; Sukhino-Homenko, E. A.; Sumarokova, A. S., E-mail: Sumarokova-AS@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    A new approach to calculation of the coefficients of sensitivity of the fuel pin power to deviations in gap sizes between fuel assemblies of the VVER-1000 reactor during its operation is proposed. It is shown that the calculations by the MCU code should be performed for a full-size model of the core to take the interference of the gap influence into account. In order to reduce the conservatism of calculations, the coolant density and coolant temperature feedbacks should be taken into account, as well as the fuel burnup.

  13. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    Science.gov (United States)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  14. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  15. Separation Test Method for Investigation of Current Density Effects on Bond Wires of SiC Power MOSFET Modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    and average temperature during the test. By analyzing the output characteristics of the linear region of MOSFET, the constraint relations among the gate voltage, on-state voltage drop and junction temperature are revealed in this paper. The one-to-one correspondence between gate voltage and conduction power...... loss can be used to adjust the current density under fixed temperature swing and average temperature. The commercial Silicon Carbide (SiC) MOSFET modules are tested to experimentally verify the proposed method. Finally, the effectiveness of proposed test method is validated by the experimental results....

  16. Cost-based optimizations of power density and target-blanket modularity for 232Th/233U-based ADEP

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    A cost-based parametric systems model is developed for an Accelerator-Driven Energy Production (ADEP) system based on a 232 Th/ 233 U fuel cycle and a molten-salt (LiF/BeF 2 /ThF 3 ) fluid-fuel primary system. Simplified neutron-balance, accelerator, reactor-core, chemical-processing, and balance-of-plant models are combined parametrically with a simplified costing model. The main focus of this model is to examine trade offs related to fission power density, reactor-core modularity, 233 U breeding rate, and fission product transmutation capacity

  17. The determination of self-powered neutron detector sensitivity on thermal and epithermal neutron flux densities

    International Nuclear Information System (INIS)

    Erben, O.

    1980-01-01

    The coefficients of thermal and epithermal neutron flux density depression and self-shielding for the SPN detectors with vanadium, rhodium, silver and cobalt emitters are presented, (for cobalt SPN detectors the functions describing the absorbtion of neutrons along the emitter cross-section are also shown). Using these coefficients and previously published beta particle escape efficiencies, sensitivities are determined for the principal types of detectors produced by Les Cables de Lyon and SODERN companies. The experiments and their results verifying the validity of the theoretical work are described. (author)

  18. Performance of green LTE networks powered by the smart grid with time varying user density

    KAUST Repository

    Ghazzai, Hakim

    2013-09-01

    In this study, we implement a green heuristic algorithm involving the base station sleeping strategy that aims to ensure energy saving for the radio access network of the 4GLTE (Fourth Generation Long Term Evolution) mobile networks. We propose an energy procurement model that takes into consideration the existence of multiple energy providers in the smart grid power system (e.g. fossil fuel and renewable energy sources, etc.) in addition to deployed photovoltaic panels in base station sites. Moreover, the analysis is based on the dynamic time variation of daily traffic and aims to maintain the network quality of service. Our simulation results show an important contribution in the reduction of CO2 emissions that can be reached by optimal power allocation over the active base stations. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  19. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    Directory of Open Access Journals (Sweden)

    F Sohbatzadeh

    2017-02-01

    Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power

  20. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    Science.gov (United States)

    Xu, Chen; Tian, Hui; Reece, Charles E.; Kelley, Michael J.

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  1. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    International Nuclear Information System (INIS)

    Reece, Charles; Tian, Hui; Kelley, Michael; Xu, Chen

    2012-01-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  2. Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Sfaxi, L.; Baira, M.; Maaref, H.; Bru-Chevallier, C.

    2011-01-01

    Self-assembled InAs/GaAs (001) quantum dots (QDs) were grown by molecular beam epitaxy using ultra low-growth rate. A typical dot diameter of around 28 ± 2 nm and a typical height of 5 ± 1 nm are observed based on atomic force microscopy image. The photoluminescence (PL) spectra, their power and temperature dependences have been studied for ground (GS) and three excited states (1–3ES) in InAs QDs. By changing the excitation power density, we can significantly influence the distribution of excitons within the QD ensemble. The PL peak energy positions of GS and ES emissions bands depend on an excitation light power. With increasing excitation power, the GS emission energy was red-shifted, while the 1–3ES emission energies were blue-shifted. It is found that the full width at half maximum of the PL spectra has unusual relationship with increasing temperature from 9 to 300 K. The temperature dependence of QD PL spectra shown the existence of two stages of PL thermal quenching and two distinct activation energies corresponding to the temperature ranges I (9–100 K) and II (100–300 K).

  3. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    Science.gov (United States)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    Estimating carbon sequestration and greenhouse gas emissions from forest management, natural processes, and disturbance is of growing interest for mitigating global warming. Ponderosa pine is common at mid-elevations throughout the western United States and is a dominant tree species in southwestern forests. Existing unmanaged "relict" sites and stand reconstructions of southwestern ponderosa pine forests from before European settlement (late 1800s) provide evidence of forests of larger trees of lower density and less vulnerability to severe fires than today's typical conditions of high densities of small trees that have resulted from a century of fire suppression. Forest treatments to improve forest health in the region include tree cutting focused on small-diameter trees (thinning), low-intensity prescribed burning, and monitoring rather than suppressing wildfires. Stimulated by several uncharacteristically-intense fires in the last decade, a collaborative process found strong stakeholder agreement to accelerate forest treatments to reduce fire risk and restore ecological conditions. Land use planning to ramp up management is underway and could benefit from quick and inexpensive techniques to inventory tree-level carbon because existing inventory data are not adequate to capture the range of forest structural conditions. Our approach overcomes these shortcomings by employing recent breakthroughs in estimating aboveground biomass from high resolution light detection and ranging (lidar) remote sensing. Lidar is an active remote sensing technique, analogous to radar, which measures the time required for a transmitted pulse of laser light to return to the sensor after reflection from a target. Lidar data can capture 3-dimensional forest structure with greater detail and broader spatial coverage than is feasible with conventional field measurements. We developed a novel methodology for extensive sampling and field validation of forest carbon, applicable to managed and

  4. A Study on the Development of BLDC Motor with High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Cheol; Kong, Yeong Kyung; Choi, Tae In [Agency for Defense Development (Korea); Song, Jong Hwan [Hyosung Ltd., (Korea)

    2000-05-01

    The motor for torpedo propulsion is needed the compact and short rating high power characteristics. This paper describes the development of the motor through the theory and Finite Element Method(FEM) analysis for Brushless Direct Current Motor(BLDCM) of 7 phase 6 poles. Back EMF, inductance and eddy current loss were analyzed. The proposed methods like magnetic wedge acquired by these FEM analysis were introduced. Phase-leading angle using encoder was used. Test results on the motor of 7 phases 6 poles were showed the validity of proposed methods and phase-leading angle. (author). 9 refs., 12 figs., 5 tabs.

  5. Volumetric and calorimetric properties of aqueous ionene solutions.

    Science.gov (United States)

    Lukšič, Miha; Hribar-Lee, Barbara

    2017-02-01

    The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions - ionenes - were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion's charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH 2 group of the polyion's backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found.

  6. Validation of the α-μ Model of the Power Spectral Density of GPS Ionospheric Amplitude Scintillation

    Directory of Open Access Journals (Sweden)

    Kelias Oliveira

    2014-01-01

    Full Text Available The α-μ model has become widely used in statistical analyses of radio channels, due to the flexibility provided by its two degrees of freedom. Among several applications, it has been used in the characterization of low-latitude amplitude scintillation, which frequently occurs during the nighttime of particular seasons of high solar flux years, affecting radio signals that propagate through the ionosphere. Depending on temporal and spatial distributions, ionospheric scintillation may cause availability and precision problems to users of global navigation satellite systems. The present work initially stresses the importance of the flexibility provided by α-μ model in comparison with the limitations of a single-parameter distribution for the representation of first-order statistics of amplitude scintillation. Next, it focuses on the statistical evaluation of the power spectral density of ionospheric amplitude scintillation. The formulation based on the α-μ model is developed and validated using experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S, Brazil, located near the southern crest of the ionospheric equatorial ionization anomaly. These data were collected between December 2001 and January 2002, a period of high solar flux conditions. The results show that the proposed model fits power spectral densities estimated from field data quite well.

  7. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    Science.gov (United States)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  8. High power density dc/dc converter: Selection of converter topology

    Science.gov (United States)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  9. Calculation of electronic stopping power along glancing swift heavy ion tracks in perovskites using ab initio electron density data

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, O; Duvenbeck, A; Akcoeltekin, E; Meyer, R; Schleberger, M [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany); Lebius, H [CIMAP, blvd Henri Becquerel, 14070 Caen (France)], E-mail: marika.schleberger@uni-due.de

    2008-08-06

    In recent experiments the irradiation of insulators of perovskite type with swift (E{approx}100 MeV) heavy ions under glancing incidence has been shown to provide a unique means to generate periodically arranged nanodots at the surface. The physical origin of these patterns has been suggested as stemming from a highly anisotropic electron density distribution within the bulk. In order to show the relevance of the electron density distribution of the target we present a model calculation for the system Xe{sup 23+} {yields} SrTiO{sub 3} that is known to produce the aforementioned surface modifications. On the basis of the Lindhard model of electronic stopping, we employ highly-resolved ab initio electron density data to describe the conversion of kinetic energy into excitation energy along the ion track. The primary particle dynamics are obtained via integration of the Newtonian equations of motion that are governed by a space- and time-dependent frictional force originating from Lindhard stopping. The analysis of the local electronic stopping power along the ion track reveals a pronounced periodic structure. The periodicity length varies strongly with the particular choice of the polar angle of incidence and is directly correlated to the experimentally observed formation of periodic nanodots at insulator surfaces.

  10. Verification of surface contamination density standard using clearance automatic laser inspection system for objects from a nuclear power plant

    International Nuclear Information System (INIS)

    Sasaki, Michiya; Ogino, Haruyuki; Ichiji, Takeshi; Hattori, Takatoshi

    2008-01-01

    In the clearance level inspection in Japan, it is necessary to indicate that the activity level of the target object must be less than not only the clearance levels, but also the surface contamination density standards. The classification measurements for these two standards have been performed separately, and the GM survey meters based on beta-ray measurement have mainly been used for surface contamination density measurement so far. Recently the Clearance Automatic Laser Inspection System, named CLALIS, has been developed to estimate the low-level activity concentration. This system consists of 3-dimensional laser scanner for shape measurement and eight large NE102A plastic scintillation detectors for gamma-ray measurement, and it has been clarified that the CLALIS has adequate detection ability for clearance measurement of both metal scraps and concrete debris. In this study, we compared the surface contamination densities for a number of actual contaminated and non-contaminated objects generated inside from the radiation controlled area at the Kashiwazaki-Kariwa nuclear power station by using the CLALIS and the GM survey meter. As a result, since CLALIS could detect the surface contamination as well as the GM survey meter for all measurement targets, it was revealed that CLALIS can rationally achieve clearance level inspection in a single radiation measurement. The practicality of CLALIS in view of the detection limit and processing time was discussed by comparison with the usual radiation monitors for surface contamination measurement. (author)

  11. Improving the AGR fuel testing power density profile versus irradiation-time in the advanced test reactor

    International Nuclear Information System (INIS)

    Chang, Gray S.; Lillo, Misti A.; Maki, John T.; Petti, David A.

    2009-01-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235 U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235 U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250degC throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235 U

  12. Characterization of Anodized Titanium Based Novel Paradigm Supercapacitors: Impact of Salt Identity and Frequency on Dielectric Values, Power, and Energy Densities

    Science.gov (United States)

    2017-03-01

    solution, sufficient charge carriers to counteract the applied but not cause ion- lock , are energy densities at their maximum. For the salt identities and...OF ANODIZED TITANIUM- BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER, AND ENERGY DENSITIES...SUBTITLE CHARACTERIZATION OF ANODIZED TITANIUM-BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER

  13. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  14. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence.

    Science.gov (United States)

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice

    2012-05-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.

  15. The Atlas pulsed power facility for high energy density physics experiments

    CERN Document Server

    Miller, R B; Barr, G W; Bowman, D W; Cochrane, J C; Davis, H A; Elizondo, J M; Gribble, R F; Griego, J R; Hicks, R D; Hinckley, W B; Hosack, K W; Nielsen, K E; Parker, J V; Parsons, M O; Rickets, R L; Salazar, H R; Sánchez, P G; Scudder, D W; Shapiro, C; Thompson, M C; Trainor, R J; Valdez, G A; Vigil, B N; Watt, R G; Wysocki, F J; Kirbie, H C

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. Here, the authors describe how the primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently- removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the Marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-ys risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line compo...

  16. Irish study of high-density Schizophrenia families: Field methods and power to detect linkage

    Energy Technology Data Exchange (ETDEWEB)

    Kendler, K.S.; Straub, R.E.; MacLean, C.J. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1996-04-09

    Large samples of multiplex pedigrees will probably be needed to detect susceptibility loci for schizophrenia by linkage analysis. Standardized ascertainment of such pedigrees from culturally and ethnically homogeneous populations may improve the probability of detection and replication of linkage. The Irish Study of High-Density Schizophrenia Families (ISHDSF) was formed from standardized ascertainment of multiplex schizophrenia families in 39 psychiatric facilities covering over 90% of the population in Ireland and Northern Ireland. We here describe a phenotypic sample and a subset thereof, the linkage sample. Individuals were included in the phenotypic sample if adequate diagnostic information, based on personal interview and/or hospital record, was available. Only individuals with available DNA were included in the linkage sample. Inclusion of a pedigree into the phenotypic sample required at least two first, second, or third degree relatives with non-affective psychosis (NAP), one of whom had schizophrenia (S) or poor-outcome schizoaffective disorder (PO-SAD). Entry into the linkage sample required DNA samples on at least two individuals with NAP, of whom at least one had S or PO-SAD. Affection was defined by narrow, intermediate, and broad criteria. 75 refs., 6 tabs.

  17. ICRF power-deposition profiles, heating and confinement of monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Start, D.F.H.

    1989-01-01

    The ion cyclotron resonance heating of monster sawtooth (period greater than the energy confinement time) and pellet-fueled peaked-density profiles in limiter discharges of JET Tokamak are studied. The monster sawtooth is a characteristic JET regime which is related to fast ions generated during the minority ion heating. In the ICRF heating of peaked-density profile discharges, we find typically the T i0 is higher roughly by a factor of 2 and T e0 roughly by 35% at a fixed P TOT /n e0 when compared to non-peaked profile cases. Here, T e0 and T i0 are central electron and ion temperatures, respectively, n e0 is the central electron density and P TOT is the total input power. The ion heating is improved in the pellet case, in part, due to a higher collisionality between the background ions and the energetic minority, but more significantly by a reduction of local ion energy transport in the central region. The transport-code simulation of these discharges reveals that there is a reduction of both χ e and χ i in the central region of the plasma in the ICRF heated peaked-profile discharges where χ e and χ i are the electron and ion heat conductivities, respectively. The improvement of confinement is not explained quantitatively by any of the existing η i -driven turbulence theories as the n i parameter (η i = d ln T i /d ln n i where T i is the ion temperature and n i is the ion density), instead of dropping below the critical value, remains above it for most of the duration of the improved confinement phase. The physical mechanism(s) that plays a role in this improvement is not yet clear. (author)

  18. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors

    Science.gov (United States)

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-10-01

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm-3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm-3, which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs.

  19. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Granqvist, Claes G.; Niklasson, Gunnar A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala (Sweden)

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.

  20. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    International Nuclear Information System (INIS)

    Younger, S.M.; Fowler, C.M.; Lindemuth, I.; Chernyshev, V.K.; Mokhov, V.N.; Pavlovskii, A.I.

    1999-01-01

    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation, isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications

  1. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  2. Detection of Atrial Fibrillation Using Artifical Neural Network with Power Spectrum Density of RR Interval of Electrocardiogram

    Science.gov (United States)

    Afdala, Adfal; Nuryani, Nuryani; Satrio Nugroho, Anto

    2017-01-01

    Atrial fibrillation (AF) is a disorder of the heart with fairly high mortality in adults. AF is a common heart arrythmia which is characterized by a missing or irregular contraction of atria. Therefore, finding a method to detect atrial fibrillation is necessary. In this article a system to detect atrial fibrillation has been proposed. Detection system utilized backpropagation artifical neural network. Data input in this method includes power spectrum density of R-peaks interval of electrocardiogram which is selected by wrapping method. This research uses parameter learning rate, momentum, epoch and hidden layer. System produces good performance with accuracy, sensitivity, and specificity of 83.55%, 86.72 % and 81.47 %, respectively.

  3. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Nielsen, Nina Skall; Jacobsen, Charlotte

    2010-01-01

    system. With regards to in vivo considerations, a pre-treatment step confirmed that the ester bond linking rutin and acyl moieties was most susceptible to hydrolysis by digestive enzymes, while rutin itself was not degraded. Thus, acylation of rutin with medium or long chain fatty acids may result......Practical limitations exist regarding the effectiveness of flavonoids as antioxidants in many food systems, possibly due to their poor solubility and miscibility in lipidic environments. Current strategies to improve these properties include enzymatically acylating flavonoids with lipophilic...... rutin compounds exhibited decreased reducing power and metal chelating abilities as compared to rutin. Conversely, investigations on the oxidation of human low density lipoprotein (LDL) revealed that rutin laurate was most effective in inhibiting oxidation by prolonging LDL lag time for an in vitro...

  4. Calculation of the collision stopping power of simple and composed materials for fast electrons considering the density effect with the aid of effective material parameters

    International Nuclear Information System (INIS)

    Geske, G.

    1979-01-01

    With the aid of two effective material parameters a simple expression is presented for the Bethe-Bloch-formula for the calculation of the collision stopping power of materials for fast electrons. The formula has been modified in order to include the density effect. The derivation was accomplished in connection with a formalism given by Kim. It was shown that the material dependence on the collision stopping power is entirely comprehended by the density and two effective material parameters. Thus a simple criterion is given for the comparison of materials as to their collision stopping power

  5. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  6. The measurement of power losses at high magnetic field densities or at small cross-section of test specimen using the averaging

    CERN Document Server

    Gorican, V; Hamler, A; Nakata, T

    2000-01-01

    It is difficult to achieve sufficient accuracy of power loss measurement at high magnetic field densities where the magnetic field strength gets more and more distorted, or in cases where the influence of noise increases (small specimen cross section). The influence of averaging on the accuracy of power loss measurement was studied on the cast amorphous magnetic material Metglas 2605-TCA. The results show that the accuracy of power loss measurements can be improved by using the averaging of data acquisition points.

  7. Core Power Control of the fast nuclear reactors with estimation of the delayed neutron precursor density using Sliding Mode method

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Nasrabadi, M.N.; Hassanvand, R.

    2016-01-01

    Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.

  8. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    Science.gov (United States)

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  9. Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes

    International Nuclear Information System (INIS)

    Tereshchenko, E.D.; Khudukon, B.Z.; Gurevich, A.V.; Zybin, K.P.; Frolov, V.L.; Myasnikov, E.N.; Muravieva, N.V.; Carlson, H.C.

    2004-01-01

    Observations of the ionospheric electron density modified by a powerful wave of the Sura HF heating facility were carried out in Russia at middle latitudes in August 2002. Amplitude scintillations and variations of the phase of VHF signals from Russian orbiting satellites passing over the heated region along the chain of three satellite receivers have been recorded. The experimental data were converted to electron density maps using a stochastic inversion. Tomographic measurements conducted during a low magnetic activity revealed that HF powerful waves can produce significant electron density disturbances up to heights significantly exceeding altitudes of the F layer peak. Both large-scale plasma enhancements and small-scale density irregularities can be generated by the HF radiation. Wavy density structures were also observed within a sector which is much wider than the area covered by the main lobe of the heating antenna. Small-scale density irregularities are mostly field-aligned although large-scale structures can be detected within a much larger area. A distinctive peculiarity of electron density changes occurred during heating is producing a zone of low density inside the area illuminated by the antenna beam. The results indicate that satellite radio tomography and scintillation measurements are effective diagnostic techniques giving a valuable information to studies of effects induced by HF modification. The complete system of plasma density disturbances describing by the theory of 'the magnetic zenith effect' has been for the first time studied in this Letter. A good agreement between the theory and experimental data has been obtained

  10. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2015-11-01

    (MHD simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  11. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview

    International Nuclear Information System (INIS)

    Obot, I.B.; Macdonald, D.D.; Gasem, Z.M.

    2015-01-01

    The use of computational chemistry as a tool in the design and development of organic corrosion inhibitors has been greatly enhanced by the development of density functional theory (DFT). Whereas, traditionally, corrosion scientists have identified new corrosion inhibitor molecules either by incrementally changing the structures of existing inhibitors or by testing hundreds of compounds in the laboratory, these experimental means are often very expensive and time-consuming. Thus, ongoing hardware and software advances have opened the door for powerful use of theoretical chemistry in corrosion inhibition research at a reduced cost. DFT has enabled corrosion scientist to accurately predict the inhibition efficacies of organic corrosion inhibitors based on electronic/molecular properties and reactivity indices. This review summarizes the main features of DFT, giving a brief background to selected DFT-based chemical reactivity concepts, calculations and their applications to organic corrosion inhibitor design. The paper also reviews the principles upon which modern corrosion science is based with emphasis on corrosion in the oil and gas industry and with the goal of identifying important issues in the design of new, more effective inhibitors in this field. The impact of this review is to illustrate the enormous power of DFT and to identify shortcomings in past work, including the assumption that inhibitors only interact with bare metal surfaces.

  12. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study

    International Nuclear Information System (INIS)

    Fabel, M.; Biederer, J.; Jochens, A.; Bornemann, L.; Soza, G.; Heller, M.; Bolte, H.

    2011-01-01

    Purpose: Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Materials and methods: Fifty artificial lymph nodes were produced in a size range from 10 to 55 mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST ® ) within different surrounding tissues. MDCT was performed using different collimations (1–5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. Results: The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. Conclusion: The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3 mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable

  13. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  14. Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability

    Directory of Open Access Journals (Sweden)

    Haozhe Zhang

    2018-01-01

    Full Text Available The overall electrochemical performances of Ni–Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery with outstanding durability and high power density based on self-supported NiCo2O4 nanosheets as cathode and Zn nanosheets as anode. This Ni//Zn battery is able to deliver a remarkable capacity of 183.1 mAh g−1 and a good cycling performance (82.7% capacity retention after 3500 cycles. More importantly, this battery achieves an admirable power density of 49.0 kW kg−1 and energy density of 303.8 Wh kg−1, substantially higher than most recently reported batteries. With such excellent electrochemical performance, this battery will have great potential as an ultrafast power source in practical application.

  15. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis

    International Nuclear Information System (INIS)

    Ouyang Wei; Wang Wei; Zhang Haixia; Wu Wengang; Li Zhihong

    2013-01-01

    The great advances in nanotechnology call for advances in miniaturized power sources for micro/nano-scale systems. Nanofluidic channels have received great attention as promising high-power-density substitutes for ion exchange membranes for use in energy harvesting from ambient ionic concentration gradient, namely reverse electrodialysis. This paper proposes the nanofluidic crystal (NFC), of packed nanoparticles in micro-meter-sized confined space, as a facile, high-efficiency and high-power-density scaling-up scheme for energy harvesting by nanofluidic reverse electrodialysis (NRED). Obtained from the self-assembly of nanoparticles in a micropore, the NFC forms an ion-selective network with enormous nanochannels due to electrical double-layer overlap in the nanoparticle interstices. As a proof-of-concept demonstration, a maximum efficiency of 42.3 ± 1.84%, a maximum power density of 2.82 ± 0.22 W m −2 , and a maximum output power of 1.17 ± 0.09 nW/unit (nearly three orders of magnitude of amplification compared to other NREDs) were achieved in our prototype cell, which was prepared within 30 min. The current NFC-based prototype cell can be parallelized and cascaded to achieve the desired output power and open circuit voltage. This NFC-based scaling-up scheme for energy harvesting based on NRED is promising for the building of self-powered micro/nano-scale systems. (paper)

  16. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  17. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  18. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  19. Determination of the relative power density distribution in a heterogeneous reactor from the results of measurements of the reactivity effects and the neutron importance function

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Glushkov, E. S.; Zimin, A. A.; Kapitonova, A. V.; Kompaniets, G. V.; Nosov, V. I.; Petrushenko, R. P.; Smirnov, O. N.

    2012-01-01

    A method for experimental determination of the relative power density distribution in a heterogeneous reactor based on measurements of fuel reactivity effects and importance of neutrons from a californium source is proposed. The method was perfected on two critical assembly configurations at the NARCISS facility of the Kurchatov Institute, which simulated a small-size heterogeneous nuclear reactor. The neutron importance measurements were performed on subcritical and critical assemblies. It is shown that, along with traditionally used activation methods, the developed method can be applied to experimental studies of special features of the power density distribution in critical assemblies and reactors.

  20. Method for Determining Volumetric Efficiency and Its Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ambrozik Andrzej

    2017-12-01

    Full Text Available Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.

  1. Performance-scalable volumetric data classification for online industrial inspection

    Science.gov (United States)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  2. Density distribution of currents induced inside the brain in the head part of the human model exposed to power frequency electric field

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Atsuo [Yongo National Collage of Technology (Japan); Isaka, Katsuo [University of Tokushima (Japan)

    1999-07-01

    The health effect of the weak current induced in the human body as a result of the interaction between human body and power frequency electric fields has been investigated. However, the current density inside the head part tissues of the human body exposed to the electric fields has rarely been discussed. In this paper, the finite element method is applied to the analysis of the current density distribution of the head part composed of scalp, skull, cerebrospinal liquid and brain tissues. The basic characteristics of the current density distributions of the brain in the asymmetrical human model have been made clear. (author)

  3. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  4. NOx, Soot, and Fuel Consumption Predictions under Transient Operating Cycle for Common Rail High Power Density Diesel Engines

    Directory of Open Access Journals (Sweden)

    N. H. Walke

    2016-01-01

    Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.

  5. High Power ICRH scenarios in Tore-Supra: a potential route towards improved core confinement at high density?

    Energy Technology Data Exchange (ETDEWEB)

    Rimini, F.G.; Fenzi-Bonizec, C.; Hoang, G.T.; Bourdelle, C.; Clairet, F.; Elbeze, D.; Gil, C.; Giruzzi, G.; Imbeaux, F.; Joffrin, E.; Lotte, P.; Maget, P.; Schunke, P.; Tsitrone, E. [Association Euratom-CEA, CEA/DSM/DRFC, Centre de Cadarache, 13 - Saint Paul lez Durance (France); Hennequin, P.; Honore, C. [CNRS-Ecole Polytechnique, LPTP, 91 - Palaiseau (France)

    2005-07-01

    As shown by many tokamak experiments, including Tore-Supra, an operational scenario based on tailoring the current profile via a combination of electron heating and fast plasma current ramp is particularly attractive for producing conditions favourable to internal transport barriers (ITBs) development. As we have reported in this paper, however, this is not a foolproof method for producing ITBs. In our case, reversed or flat shear conditions were indeed created, but only transiently and in a very narrow region in the plasma centre, {rho} < 0.3, and the KINEZERO code micro-stability analysis does not indicate that any significant stabilization of ITG (ion temperature gradient) or ETG (electron temperature gradient) modes is taking place. We have used the Cronos transport code to predict how we could redesign the experiment to maximize the probability to obtain more favourable conditions for triggering and sustaining high performance ITBs. Our modelling is done assuming that recycling can be moderated and edge density can be kept lower than in the actual experiments. In this case, with a substantial increase in LHCD power, from 2.5 MW to 8 MW, we could approach conditions of flat current profile over a wide region, extending to half radius, with a significant fraction of the total current, {approx} 70%, being non-inductively driven. The predictive Cronos transport model, which includes local reduction of transport according to magnetic shear, yields a long-lasting wide electron ITB located close to mid-radius.

  6. Estimation of the two-dimensional power spectral density of spatial fluctuation in terrestrial gamma-ray dose rate

    International Nuclear Information System (INIS)

    Minato, Susumu

    2000-01-01

    The multiple regression analysis done for 50 sets of data of natural terrestrial gamma-ray dose rates collected from different sites of the world led to an empirical formula for the variance of the data as a function of mean value and area. The mean values and areas studied in this paper range from 10 to 100 (nGy/h) and from 10 -3 to 10 7 (km 2 ), respectively. For an isotropic field of fluctuation, a two-dimensional power spectral density (2D PSD) was derived theoretically from the above mentioned empirical formula in a form of S(k)=0.952 x 10 -3 m 2.02 k -2.36 , where k (cycles/km) and m (nGy/h) are the wave number and the mean, respectively. The validity of the estimated 2D PSD was confirmed by comparing with PSDs obtained by the following two methods. One is the spatial auto-correlation analysis for several sets of randomly distributed 2D data consisting of more than 170 samples taken through ground surveys. The other is the direct 2D Fourier transform for two sets of 100 x 100 data matrix picked up from a dose rate map produced through airborne surveys. (author)

  7. Numerical simulation of the temperature, electron density, and electric field distributions near the ionospheric reflection height after turn-on of a powerful HF wave

    International Nuclear Information System (INIS)

    Muldrew, D.B.

    1986-01-01

    The time variation of the electron temperature profile in the ionosphere following turn-on of a powerful 1-s HF pulse is determined numerically from the energy balance equation. Using this and the equations of motion and continuity for a plasma, the effect of heating and the pondermotive force of a powerful HF wave on the electron density and electric field distributions are determined by numerical simulation. The temperature variation and ponderomotive force modify the density distribution, and this new density distribution, in turn, modifies the electric field distribution of the HF wave. The density deviations grow for a few hundred milliseconds after HF turn-on and then begin to fluctuate in time. At all heights the wave number of the density deviations is approximately twice the wave number of the HF wave. For electric fields near reflection of about 6.0 V/m, the electric field distribution becomes complicated, apparently depending on Bragg scattering of the HF wave from the density deviations. Density impulses propagate away (up and down) from electric field maxima, at the ion thermal velocity, at both turn-on and turn-off of the HF wave

  8. Effect of power plant condenser coolant discharge on population density of intertidal bivalve Donax cuneatus (L. 1758)

    International Nuclear Information System (INIS)

    Jahir Hussain, K.; Mohanty, A.K.; Prasad, M.V.R.; Satpathy, K.K.

    2008-01-01

    Impact of thermal discharge from a coastal power station (Madras Atomic Power Station, south-east coast of India) on the spatial variability of Donax cuneatus abundance was assessed to determine the impact boundary. Totally twenty sites were selected both on south and north side of effluents mixing zone in increasing spatial scale. Twelve locations were selected towards south side at a distance from 0 (near mixing point) to 2000 m and eight locations were selected towards north from the effluent mixing zone. The present study was conducted during January 2008. Mean water temperature along the coast ranged from 29.1 ± 0.1 - 31.2 ± 0.1 deg C. Total organic carbon content in the sediment ranged from 0.27 to 0.70%. D. cuneatus population in the swash zone ranged between 1.3 ± 1.5 to 88.3 ± 9.6 m -2 . Meager population of the wedge clam was observed up to 100 m south from mixing point and abundance gradually increased with increasing distance from the mixing zone. Comparatively high abundance was observed from 400 m; the density reached maximum at 1000 m (64.0 ± 3.6 m -2 ). Similar pattern was observed on north side too but less abundance was observed only up to 80m. Maximum abundance was observed (88.3 ± 9.6 m -2 ) at control location located 500 m north of the discharge point. 40 m on either side of discharge point were highly impacted, 80 to 100m towards plume flow (south) were moderately impacted and 80 m north of mixing point also witnessed moderate impact. After 100 m, effluents did not affect the northern side, whereas between 100 to 400 m, south was influenced slightly. Multivariate clustering pattern on the environmental variables of all sampling locations and abundance pattern of D. cuneatus showed similarity. Present investigation unambiguously showed that the abundance pattern of D. cuneatus on the sandy beach of Kalpakkam is not governed by single major factor but is influenced by multiple interacting factors. The population size of the wedge clam

  9. Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators

    International Nuclear Information System (INIS)

    Sim, Kyuho; Koo, Bonjin; Kim, Chang Ho; Kim, Tae Ho

    2013-01-01

    Highlights: ► We develop micro-power pack using automotive alternator and micro-gas turbine. ► We measure rotordynamic and power generation performance of micro-power pack. ► Micro-power pack shows dramatic increases in mass and volumetric power densities. ► Test results assure feasibility of micro-power pack for electric vehicles. -- Abstract: This paper presents the development of a micro-power pack using automotive alternators powered by a micro-gas turbine (MGT) to recharge battery packs, in particular for electric vehicles (EVs). The thermodynamic efficiency for the MGT with the power turbine is estimated from a simple Brayton cycle analysis. The rotordynamic and power generation performance of the MGT driven alternator was measured during a series of experiments under electrical no-loading and loading conditions, and with belt-pulley and flexible bellows couplings. The flexible coupling showed superior rotordynamic and power generation performance than the belt coupling due to the enhanced alignment of the alternator rotor and the reduced mechanical frictions. Furthermore, the micro-power pack showed dramatic increases in the mass and volumetric power densities by ∼4 times and ∼5 times, respectively, compared with those of a commercial diesel generator with similar power level. As a result, this paper assures the feasibility of the light-weight micro-power pack using a MGT and automotive alternators for EVs.

  10. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density.

    Science.gov (United States)

    Populoh, Sascha; Brunko, Oliver C; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-03-27

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm² and a maximum volumetric power density of 700 mW/cm³. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected.

  11. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  12. Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2015-12-01

    Full Text Available A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol/fumed silica (QPVA/FS was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm2 was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm2 was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the majority of published reports. The results confirm that QPVA/FS exhibits promise as a future polymeric electrolyte for use in direct alkaline alcoholic fuel cells.

  13. Temporal Coding of Volumetric Imagery

    Science.gov (United States)

    Llull, Patrick Ryan

    'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration

  14. Optimization of hydrostatic pressure at varied sonication conditions--power density, intensity, very low frequency--for isothermal ultrasonic sludge treatment.

    Science.gov (United States)

    Delmas, Henri; Le, Ngoc Tuan; Barthe, Laurie; Julcour-Lebigue, Carine

    2015-07-01

    This work aims at investigating for the first time the key sonication (US) parameters: power density (DUS), intensity (IUS), and frequency (FS) - down to audible range, under varied hydrostatic pressure (Ph) and low temperature isothermal conditions (to avoid any thermal effect). The selected application was activated sludge disintegration, a major industrial US process. For a rational approach all comparisons were made at same specific energy input (ES, US energy per solid weight) which is also the relevant economic criterion. The decoupling of power density and intensity was obtained by either changing the sludge volume or most often by changing probe diameter, all other characteristics being unchanged. Comprehensive results were obtained by varying the hydrostatic pressure at given power density and intensity. In all cases marked maxima of sludge disintegration appeared at optimum pressures, which values increased at increasing power intensity and density. Such optimum was expected due to opposite effects of increasing hydrostatic pressure: higher cavitation threshold then smaller and fewer bubbles, but higher temperature and pressure at the end of collapse. In addition the first attempt to lower US frequency down to audible range was very successful: at any operation condition (DUS, IUS, Ph, sludge concentration and type) higher sludge disintegration was obtained at 12 kHz than at 20 kHz. The same values of optimum pressure were observed at 12 and 20 kHz. At same energy consumption the best conditions - obtained at 12 kHz, maximum power density 720 W/L and 3.25 bar - provided about 100% improvement with respect to usual conditions (1 bar, 20 kHz). Important energy savings and equipment size reduction may then be expected. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.; Martin, Tobias; Grosset, A. V Pascal; Brownlee, Carson; Hollt, Thomas; Brown, Benjamin P.; Smith, Sean T.; Hansen, Charles D.

    2012-01-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  16. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.

    2012-02-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  17. Volumetric and superficial characterization of carbon activated

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T.

    2000-01-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  18. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  19. SU-F-T-136: Breath Hold Lung Phantom Study in Using CT Density Versus Relative Stopping Power Ratio for Proton Pencil Beam Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2016-06-15

    Purpose: To evaluate mass density effects of CT conversion table and its variation in current treatment planning system of spot scanning proton beam using an IROC proton lung phantom for this study. Methods: A proton lung phantom study was acquired to Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. Inside the lung phantom, GAF Chromic films and couples of thermal luminescent dosimeter (TLD) capsules embedded in specified PTV and adjacent structures to monitor delivered dosage and 3D dose distribution profiles. Various material such as cork (Lung), blue water (heart), Techron HPV (ribs) and organic material of balsa wood and cork as dosimetry inserts within phantom of solid water (soft tissue). Relative stopping power (RLSP) values were provided. Our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water. However lung phantom was irradiated by planning with density override and the results were compared with IROC measurements. The second attempt was conducted without density override and compared with IROC’s. Results: The higher passing rate of imaging and measurement results of the lung phantom irradiation met the criteria by IROC without density override. The film at coronal plane was found to be shift due to inclined cylinder insertion. The converted CT density worked as expected to correlate relative stopping power. Conclusion: The proton lung phantom provided by IROC is a useful tool to qualify our commissioned proton pencil beam delivery with TPS within reliable confidence. The relative mass stopping power ratios of materials were converted from the relative physical density relative to water and the results were satisfied.

  20. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  1. MR volumetric assessment of endolymphatic hydrops

    International Nuclear Information System (INIS)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E.; Dietrich, O.; Flatz, W.; Ertl-Wagner, B.; Keeser, D.

    2015-01-01

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  2. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  3. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    Science.gov (United States)

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  4. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    Science.gov (United States)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  5. Assessment of wind speed and wind power through three stations in Egypt, including air density variation and analysis results with rough set theory

    International Nuclear Information System (INIS)

    Essa, K.S.M.; Embaby, M.; Marrouf, A.A.; Koza, A.M.; Abd El-Monsef, M.E.

    2007-01-01

    It is well known that the wind energy potential is proportional to both air density and the third power of the wind speed average over a suitable time period. The wind speed and air density have random variables depending on both time and location. The main objective of this work is to derive the most general wind energy potential of the wind formulation putting into consideration the time variable in both wind speed and air density. The correction factor is derived explicitly in terms of the cross-correlation and the coefficients of variation.The application is performed for environmental and wind speed measurements at the Cairo Airport, Kosseir and Hurguada, Egypt. Comparisons are made between Weibull, Rayleigh, and actual data distributions of wind speed and wind power of one year 2005. A Weibull distribution is the best match to the actual probability distribution of wind speed data for most stations. The maximum wind energy potential was 373 W/m 2 in June at Hurguada (Red Sea coast) where the annual mean value was 207 W/m 2 . By Using Rough Set Theory, We Find That the Wind Power Depends on the Wind Speed with greater than air density

  6. Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Q. Cheng

    2010-10-01

    Full Text Available This contribution introduces a fractal filtering technique newly developed on the basis of a spectral energy density vs. area power-law model in the context of multifractal theory. It can be used to map anisotropic singularities of geochemical landscapes created from geochemical concentration values in various surface media such as soils, stream sediments, tills and water. A geochemical landscape can be converted into a Fourier domain in which the spectral energy density is plotted against the area (in wave number units, and the relationship between the spectrum energy density (S and the area (A enclosed by the above-threshold spectrum energy density can be fitted by power-law models. Mixed geochemical landscape patterns can be fitted with different S-A power-law models in the frequency domain. Fractal filters can be defined according to these different S-A models and used to decompose the geochemical patterns into components with different self-similarities. The fractal filtering method was applied to a geochemical dataset from 7,349 stream sediment samples collected from Gejiu mineral district, which is famous for its word-class tin and copper production. Anomalies in three different scales were decomposed from total values of the trace elements As, Sn, Cu, Zn, Pb, and Cd. These anomalies generally correspond to various geological features and geological processes such as sedimentary rocks, intrusions, fault intersections and mineralization.

  7. Relative power density distribution calculations of the Kori unit 1 pressurized water reactor with full-scope explicit modeling of monte carlo simulation

    International Nuclear Information System (INIS)

    Kim, J. O.; Kim, J. K.

    1997-01-01

    Relative power density distributions of the Kori unit 1 pressurized water reactor calculated by Monte Carlo modeling with the MCNP code. The Kori unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system coverages to a κ value of 1.00039 ≥ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root mean square error of 2.159%. (author)

  8. Huge enhancement of energy storage capacity and power density of supercapacitors based on the carbon dioxide activated microporous SiC-CDC

    International Nuclear Information System (INIS)

    Tee, Ester; Tallo, Indrek; Kurig, Heisi; Thomberg, Thomas; Jänes, Alar; Lust, Enn

    2015-01-01

    Nanostructured carbide-derived carbons (CDC) were synthesized from SiC powders (SiC-CDC) via gas phase chlorination within the temperature range from 1000 °C to 1100 °C. Thereafter the CDCs were additionally activated by CO 2 treatment method, resulting in nearly two-fold increase in specific surface area. The results of X-ray diffraction, high-resolution transmission electron microscopy and Raman spectroscopy showed that the synthesized CDC materials are mainly amorphous, however containing small graphitic crystallites. The low-temperature N 2 sorption experiments were performed and the specific micropore surface areas from 1100 m 2 g −1 up to 2270 m 2 g −1 were obtained, depending on the extent of CO 2 activation. The energy and power density characteristics of the supercapacitors based on 1 M (C 2 H 5 ) 3 CH 3 NBF 4 solution in acetonitrile and SiC-CDC as an electrode material were investigated using the cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge and constant power discharge methods. The electrochemical data indicated two-times increase in specific capacitance. Most importantly, the activation of SiC-CDC with CO 2 significantly increases the performance (energy density, power density, etc.) of the supercapacitors especially at higher potential scan rates and at higher power loads

  9. Development of Power Supply Management Module for Radio Signal Repeaters of Automatic Metering Reading System in Variable Solar Density Conditions

    Science.gov (United States)

    Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.

    2016-02-01

    In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.

  10. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    International Nuclear Information System (INIS)

    Carta, Jose A.; Ramirez, Penelope; Velazquez, Sergio

    2008-01-01

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error ε made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R 2 statistic (R a 2 ). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R a 2 statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R a 2 increases

  11. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Ramirez, Penelope; Velazquez, Sergio [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain)

    2008-10-15

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error {epsilon} made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R{sup 2} statistic (R{sub a}{sup 2}). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R{sub a}{sup 2} statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R{sub a}{sup 2} increases. (author)

  12. Focusing of undulator light at SPEAR with a lacquer-coated mirror to power densities of 10/sup 9/ watts/cm/sup 2/

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.; Kilic, H.; Watanabe, H.; Fuller, A.; Beck, M.; Toor, A.; Underwood, J.; Catura, R.

    1987-01-01

    A lacquer-coated, diamond turned Cu ellipsoid has been used to micro-focus undulator light from Beam Line V at SPEAR down to a half-power diameter of about 13 microns. This spot was source-size limited, as has been demonstrated with ray tracings of the optical system. The symmetry of the image, as well as its size and power density, clearly make this optic ideal for many soft x-ray applications, in particular for x-ray microscopy, microprobes, and for pumping soft x-ray transitions in various media

  13. Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe(Astrophysics and Cosmology)

    OpenAIRE

    Ryuichi, TAKAHASHI; Department of Physics and Astrophysics, Nagoya University

    2008-01-01

    We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime (k≈0.1h/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state w(a). It turns out that the power spectrum coincides with the approximate res...

  14. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  15. Measurement of the relative power density distribution of the IPEN/MB-01 reactor, using a fuel rod gamma scanning technique

    International Nuclear Information System (INIS)

    Carneiro, Alvaro Luiz Guimaraes

    1996-01-01

    This work presents a measurement methodology for determination of radial and axial relative power density distribution of the IPEN/MB-01 Reactor core by means of the fuel rod gamma scanning. The methodology is based on the proportionality between gamma activity emitted by the radioactive decay of the fission products and power density. The scanning technique consists of counting gamma radiation above 0,6 MeV along the active area of the fuel rod, getting a distribution profile. The experimental results will be used as a benchmark for qualification and to establish possible deviations for the calculational methodology currently used at IPEN. The comparison of the calculated and measured results showed good agreement. (author)

  16. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 5. Control of population densities surrounding nuclear power plants

    International Nuclear Information System (INIS)

    Nero, A.V.; Schroeder, C.H.; Yen, W.W.S.

    1977-01-01

    In view of the requirement that the California Energy Resources Conservation and Development Commission must specify land-use/population-density control measures to be used in the vicinity of nuclear power plants being granted land use, the possible forms of such measures are examined. Since these measures must maintain population densities below Nuclear Regulatory Commission criteria, if appropriate, NRC criteria for land use and population densities are given particular attention. In addition, a preliminary comparison of the cost of possible control measures with the reduced potential for damage to the public health and safety is made, yielding the result that control measures within approximately one mile of the plant site may be justified, in certain cases, on a strictly cost-benefit basis. However, it is not clear whether controls over such a limited region would satisfy the legal mandate

  17. Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain.

    Science.gov (United States)

    Ilic, Sanja; Leichliter, Sandra; Streeter, Jackson; Oron, Amir; DeTaboada, Luis; Oron, Uri

    2006-08-01

    The aim of the present study was to investigate the possible short- and long-term adverse neurological effects of low-level laser therapy (LLLT) given at different power densities, frequencies, and modalities on the intact rat brain. LLLT has been shown to modulate biological processes depending on power density, wavelength, and frequency. To date, few well-controlled safety studies on LLLT are available. One hundred and eighteen rats were used in the study. Diode laser (808 nm, wavelength) was used to deliver power densities of 7.5, 75, and 750 mW/cm2 transcranially to the brain cortex of mature rats, in either continuous wave (CW) or pulse (Pu) modes. Multiple doses of 7.5 mW/cm2 were also applied. Standard neurological examination of the rats was performed during the follow-up periods after laser irradiation. Histology was performed at light and electron microscopy levels. Both the scores from standard neurological tests and the histopathological examination indicated that there was no long-term difference between laser-treated and control groups up to 70 days post-treatment. The only rats showing an adverse neurological effect were those in the 750 mW/cm2 (about 100-fold optimal dose), CW mode group. In Pu mode, there was much less heating, and no tissue damage was noted. Long-term safety tests lasting 30 and 70 days at optimal 10x and 100x doses, as well as at multiple doses at the same power densities, indicate that the tested laser energy doses are safe under this treatment regime. Neurological deficits and histopathological damage to 750 mW/cm2 CW laser irradiation are attributed to thermal damage and not due to tissue-photon interactions.

  18. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    Science.gov (United States)

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density

    Science.gov (United States)

    Xie, Qinxing; Bao, Rongrong; Xie, Chao; Zheng, Anran; Wu, Shihua; Zhang, Yufeng; Zhang, Renwei; Zhao, Peng

    2016-06-01

    Graphene wrapped nitrogen-doped active carbon fibers (ACF@GR) of a core-shell structure were successfully prepared by a simple dip-coating method using natural silk as template. Compared to pure silk active carbon, the as-prepared ACF@GR composites exhibit high specific surface area in a range of 1628-2035 m2 g-1, as well as superior energy storage capability, an extremely high single-electrode capacitance of 552.8 F g-1 was achieved at a current density of 0.1 A g-1 in 6 M KOH aqueous electrolyte. The assembled aqueous symmetric supercapacitors are capable of deliver both high energy density and high power density, for instance, 17.1 Wh kg-1 at a power density of 50.0 W kg-1, and 12.2 Wh kg-1 at 4.7 kW kg-1 with a retention rate of 71.3% for ACF@GR1-based supercapacitor.

  20. Kajian Pemilihan Sumber Mikroorganisme Solid Phase Microbial Fuel Cell (SMFC Berdasarkan Jenis dan Volume Sampah, Power Density dan Efisiensi Penurunan COD

    Directory of Open Access Journals (Sweden)

    Ganjar Samudro

    2017-06-01

    Full Text Available Mikroorganisme merupakan salah satu komponen penting dalam proses Solid Phase Microbial Fuel Cell (SMFC untuk degradasi bahan organik dan transfer elektron. Pemilihan sumber mikroorganisme menjadi metode yang paling sederhana untuk dikaji sebagai informasi awal ketersediaan dan identifikasi jenis mikroorganisme yang mendukung proses SMFC. Tujuan kajian ini adalah untuk memilih sumber mikroorganisme tanah, septic tank dan sedimen sungai yang tepat digunakan dalam proses SMFC berdasarkan jenis dan volume sampah, power density, dan efisiensi penurunan COD. Kajian ini didasarkan pada hasil penelitian menggunakan reaktor SMFC tipe single chamber microbial fuel cell dengan variabel jenis dan volume sampah , serta sumber mikroorganisme. Metode perbandingan secara kuantitatif dilakukan berdasarkan kecenderungan nilai power density dan efisiensi penurunan COD tertinggi di antara jenis dan volume sampah kantin, dedaunan dan komposit kantin-dedaunan. Hasil yang didapatkan adalah sumber mikroorganisme tanah dan sedimen sungai tepat digunakan untuk volume sampah 1/3 dan 2/3 dari volume reaktor, sedangkan sumber mikroorganisme septic tank tepat digunakan untuk volume sampah 1/3 dan 1/2 dari volume reaktor. Sumber mikroorganisme dari septic tank menunjukkan kinerja power density dan efisiensi penurunan COD yang lebih rendah dibandingkan sumber mikroorganisme tanah dan sedimen sungai.

  1. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  2. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    Science.gov (United States)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  3. Adaptive controller for volumetric display of neuroimaging studies

    Science.gov (United States)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  4. Development of Power Supply Management Module for Radio Signal Repeaters of Automatic Metering Reading System in Variable Solar Density Conditions

    Directory of Open Access Journals (Sweden)

    Kondratjevs K.

    2016-02-01

    Full Text Available In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.

  5. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    OpenAIRE

    W. A. Stygar; T. J. Awe; J. E. Bailey; N. L. Bennett; E. W. Breden; E. M. Campbell; R. E. Clark; R. A. Cooper; M. E. Cuneo; J. B. Ennis; D. L. Fehl; T. C. Genoni; M. R. Gomez; G. W. Greiser; F. R. Gruner

    2015-01-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-G...

  6. Effects of volumetric expansion in molecular crystals: A quantum mechanical investigation on aspirin and paracetamol most stable polymorphs

    Science.gov (United States)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-02-01

    This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.

  7. The volumetric and thermochemical properties of YCl{sub 3}(aq), YbCl{sub 3}(aq), DyCl{sub 3}(aq), SmCl{sub 3}(aq), and GdCl{sub 3}(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa[Trivalent metal chlorides; Densities; Heat capacities; Single ion properties; Calorimetry; Densimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hakin, Andrew W. E-mail: hakin@uleth.ca; Lukacs, Michael J.; Liu, Jin Lian; Erickson, Kristy

    2003-11-01

    Relative densities and massic heat capacities have been measured for acidified aqueous solutions of YCl{sub 3}(aq), YbCl{sub 3}(aq), DyCl{sub 3}(aq), SmCl{sub 3}(aq), and GdCl{sub 3}(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. These measurements have been used to calculate experimental apparent molar volumes and heat capacities which, when used in conjunction with Young's rule, were used to calculate the apparent molar properties of the aqueous chloride salt solutions. The latter calculations required the use of volumetric and thermochemical data for aqueous solutions of hydrochloric acid that have been previously reported in the literature. The concentration dependences of the apparent molar properties have been modeled using Pitzer ion interaction equations to yield apparent molar volumes and heat capacities at infinite dilution. The temperature and concentration dependences of the apparent molar volumes and heat capacities of each trivalent salt system were modeled using modified Pitzer ion interaction equations. These equations utilized the revised Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences of apparent molar volumes and heat capacities at infinite dilution. Calculated apparent molar volumes and heat capacities at infinite dilution have been used to calculate single ion properties for the investigated trivalent metal cations. These values have been compared to those previously reported in the literature. The differences between single ion values calculated in this study and those values calculated from thermodynamic data for aqueous perchlorate salts are also discussed.

  8. Fast and sensitive rigid-body fitting into cryo-EM density maps with PowerFit

    NARCIS (Netherlands)

    C.p.van Zundert, Gydo; M.j.j. Bonvin, Alexandre

    2015-01-01

    Cryo-EM is a rapidly developing method to investigate the three dimensional structure of large macromolecular complexes. In spite of all the advances in the field, the resolution of most cryo-EM density maps is too low for de novo model building. Therefore, the data are often complemented by fitting

  9. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  10. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  11. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    Science.gov (United States)

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  12. Study of CdTe/CdS solar cell at low power density for low-illumination applications

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Nisha, E-mail: nishatanwer1989@gmail.com; Aziz, Anver, E-mail: aaziz@jmi.ac.in [Department Of Physics, Solar PV Lab, Jamia Millia Islamia, New Delhi-110025 (India); Datta, Shouvik [Department of Physics, IISER-Pune, Dr.homi Bhabha road, Pashan, Pune-411008 (India)

    2016-05-06

    In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cell at very low incident power, which gives good efficiency.

  13. Study of CdTe/CdS solar cell at low power density for low-illumination applications

    International Nuclear Information System (INIS)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2016-01-01

    In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cell at very low incident power, which gives good efficiency.

  14. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  15. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...

  16. Comparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. A case study

    International Nuclear Information System (INIS)

    Díaz, Santiago; Carta, José A.; Matías, José M.

    2017-01-01

    Highlights: • Eight measure-correlate-predict (MCP) models used to estimate the wind power densities (WPDs) at a target site are compared. • Support vector regressions are used as the main prediction techniques in the proposed MCPs. • The most precise MCP uses two sub-models which predict wind speed and air density in an unlinked manner. • The most precise model allows to construct a bivariable (wind speed and air density) WPD probability density function. • MCP models trained to minimise wind speed prediction error do not minimise WPD prediction error. - Abstract: The long-term annual mean wind power density (WPD) is an important indicator of wind as a power source which is usually included in regional wind resource maps as useful prior information to identify potentially attractive sites for the installation of wind projects. In this paper, a comparison is made of eight proposed Measure-Correlate-Predict (MCP) models to estimate the WPDs at a target site. Seven of these models use the Support Vector Regression (SVR) and the eighth the Multiple Linear Regression (MLR) technique, which serves as a basis to compare the performance of the other models. In addition, a wrapper technique with 10-fold cross-validation has been used to select the optimal set of input features for the SVR and MLR models. Some of the eight models were trained to directly estimate the mean hourly WPDs at a target site. Others, however, were firstly trained to estimate the parameters on which the WPD depends (i.e. wind speed and air density) and then, using these parameters, the target site mean hourly WPDs. The explanatory features considered are different combinations of the mean hourly wind speeds, wind directions and air densities recorded in 2014 at ten weather stations in the Canary Archipelago (Spain). The conclusions that can be drawn from the study undertaken include the argument that the most accurate method for the long-term estimation of WPDs requires the execution of a

  17. F-region electron density and Te / Ti measurements using incoherent scatter power data collected at ALTAIR

    Directory of Open Access Journals (Sweden)

    M. Milla

    2006-07-01

    Full Text Available The ALTAIR UHF radar was used in an incoherent scatter experiment to observe the low-latitude ionosphere during the Equis 2 rocket campaign. The measurements provided the first high-resolution electron density maps of the low-latitude D- and E-region in the Pacific sector and also extended into the F-region and topside ionosphere. Although the sampling frequency was well below the Nyquist frequency of F-region returns, we were able to estimate Te / Ti ratio and infer unbiased electron density estimates using a regularized inversion technique described here. The technique exploits magnetic aspect angle dependence of ISR cross-section for Te>Ti.

  18. Feasibility Study to Evaluate Candidate Materials of Nanofilled Block Copolymers for Use in Ultra High Density Pulsed Power Capacitors

    Science.gov (United States)

    2015-10-26

    capacitor films showing the first-ever application of self-assembling BCPs as the nanostructured dielectric media in electrostatic capacitors . Using... dielectric media in electrostatic capacitors . Using controlled ordering of lamellae- forming BCPs via our cold zone annealing soft-shear (CZA-SS...fast energy storage and discharge capabilities. However, the energy storage density of these capacitors is limited by the dielectric properties of

  19. Determination of Uncertainty for a One Milli Litre Volumetric Pipette

    International Nuclear Information System (INIS)

    Torowati; Asminar; Rahmiati; Arif-Sasongko-Adi

    2007-01-01

    An observation had been conducted to determine the uncertainty of volumetric pipette. The uncertainty was determined from data obtained from a determine process which used method of gravimetry. Calculation result from an uncertainty of volumetric pipette the confidence level of 95% and k=2. (author)

  20. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    Science.gov (United States)

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.